WorldWideScience

Sample records for photosystem ii controls

  1. Quality control of Photosystem II: reversible and irreversible protein aggregation decides the fate of Photosystem II under excessive illumination

    Directory of Open Access Journals (Sweden)

    Yasusi eYamamoto

    2013-10-01

    Full Text Available In response to excessive light, the thylakoid membranes of higher plant chloroplasts show dynamic changes including the degradation and reassembly of proteins, a change in the distribution of proteins, and large-scale structural changes such as unstacking of the grana. Here, we examined the aggregation of light-harvesting chlorophyll-protein complexes and Photosystem II core subunits of spinach thylakoid membranes under light stress with 77K chlorophyll fluorescence; aggregation of these proteins was found to proceed with increasing light intensity. Measurement of changes in the fluidity of thylakoid membranes with fluorescence polarization of diphenylhexatriene showed that membrane fluidity increased at a light intensity of 500–1,000 µmol photons m-2 s-1, and decreased at very high light intensity (1,500 µmol photons m-2 s-1. The aggregation of light-harvesting complexes at moderately high light intensity is known to be reversible, while that of Photosystem II core subunits at extremely high light intensity is irreversible. It is likely that the reversibility of protein aggregation is closely related to membrane fluidity: increases in fluidity should stimulate reversible protein aggregation, whereas irreversible protein aggregation might decrease membrane fluidity. When spinach leaves were pre-illuminated with moderately high light intensity, the qE component of non-photochemical quenching and the optimum quantum yield of Photosystem II increased, indicating that Photosystem II/ light-harvesting complexes rearranged in the thylakoid membranes to optimize Photosystem II activity. Transmission electron microscopy revealed that the thylakoids underwent partial unstacking under these light stress conditions. Thus, protein aggregation is involved in thylakoid dynamics and regulates photochemical reactions, thereby deciding the fate of Photosystem II.

  2. Photosystem II and photoinhibition

    NARCIS (Netherlands)

    Feikema, Willem Onno

    2006-01-01

    Plants harvest light energy and convert it into chemical energy. Light absorption by photosystems I and II (PSI and PSII) results in charge separations in their reaction centers (RCs), initiating a chain of redox reactions with PSI generating the reducing power for CO2 assimilation into sugars, and

  3. Light harvesting in photosystem II

    NARCIS (Netherlands)

    van Amerongen, H.; Croce, R.

    2013-01-01

    Water oxidation in photosynthesis takes place in photosystem II (PSII). This photosystem is built around a reaction center (RC) where sunlight-induced charge separation occurs. This RC consists of various polypeptides that bind only a few chromophores or pigments, next to several other cofactors. It

  4. Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination.

    Directory of Open Access Journals (Sweden)

    Tiffanie Chan

    Full Text Available Environmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100-1,000 µmol photons m(-1 s(-1 for 10 min at either 20°C or 30°C, the optimum quantum yield of Photosystem II decreased as the light intensity and temperature increased. Reactive oxygen species and endogenous cationic radicals produced through a photochemical reaction at and/or near the reaction center have been implicated in the damage to the D1 protein. Here we present evidence that lipid peroxidation induced by the illumination is involved in the damage to the D1 protein and the subunits of the light-harvesting complex of Photosystem II. This is reasoned from the results that considerable lipid peroxidation occurred in the thylakoids in the light, and that lipoxygenase externally added in the dark induced inhibition of Photosystem II activity in the thylakoids, production of singlet oxygen, which was monitored by electron paramagnetic resonance spin trapping, and damage to the D1 protein, in parallel with lipid peroxidation. Modification of the subunits of the light-harvesting complex of Photosystem II by malondialdehyde as well as oxidation of the subunits was also observed. We suggest that mainly singlet oxygen formed through lipid peroxidation under light stress participates in damaging the Photosystem II subunits.

  5. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.

    Science.gov (United States)

    Novoderezhkin, Vladimir I; Romero, Elisabet; van Grondelle, Rienk

    2015-12-14

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary processes of energy and charge transfer. Based on quantitative modeling we identify the exciton-vibrational coherences observed in 2D photon echo of the photosystem II reaction center (PSII-RC). We find that the vibrations resonant with the exciton splittings can modify the delocalization of the exciton states and produce additional states, thus promoting directed energy transfer and allowing a switch between the two charge separation pathways. We conclude that the coincidence of the frequencies of the most intense vibrations with the splittings within the manifold of exciton and charge-transfer states in the PSII-RC is not occurring by chance, but reflects a fundamental principle of how energy conversion in photosynthesis was optimized.

  6. Functional architecture of photosystem II supercomplexes

    NARCIS (Netherlands)

    Caffarri, S.; Kouril, R.; Kereiche, S.; Boekema, E.J.; Croce, R.

    2009-01-01

    Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it

  7. Lipids in the Structure of Photosystem I, Photosystem II and the Cytochrome b6f Complex

    NARCIS (Netherlands)

    Kern, Jan; Zouni, Athina; Guskov, Albert; Krauss, Norbert; Wada, Hajime; Murata, Norio

    2009-01-01

    This chapter describes the data accumulated in the last decade regarding the specific function of lipids in oxygenic photosynthesis, based on crystal structures of at least 3.0 Å resolution of the main photosynthetic membrane protein—pigment complexes, photosystem I, photosystem II and cytochrome

  8. Quality control of Photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids

    Directory of Open Access Journals (Sweden)

    Yasusi Yamamoto

    2016-08-01

    Full Text Available When oxygenic photosynthetic organisms are exposed to excessive light and/or heat, Photosystem II is damaged and electron transport is blocked. In these events, reactive oxygen species, endogenous radicals and lipid peroxidation products generated by photochemical reaction and/or heat cause the damage. Regarding light stress, plants first dissipate excessive light energy captured by light-harvesting chlorophyll protein complexes as heat to avoid the hazards, but once light stress is unavoidable, they tolerate the stress by concentrating damage in a particular protein in photosystem II, i.e. the reaction-center binding D1 protein of Photosystem II. The damaged D1 is removed by specific proteases and replaced with a new copy produced through de novo synthesis (reversible photoinhibition. When light intensity becomes extremely high, irreversible aggregation of D1 occurs and thereby D1 turnover is prevented. Once the aggregated products accumulate in Photosystem II complexes, removal of them by proteases is difficult, and irreversible inhibition of Photosystem II takes place (irreversible photoinhibition. Important is that various aspects of both the reversible and irreversible photoinhibition are highly dependent on the membrane fluidity of the thylakoids. Heat stress-induced inactivation of photosystem II is an irreversible process, which may be also affected by the fluidity of the thylakoid membranes. Here I describe why the membrane fluidity is a key to regulate the avoidance and tolerance of Photosystem II on environmental stresses.

  9. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    OpenAIRE

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identi...

  10. Photoinduced changes in photosystem II pigments

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, Atanaska S; Busheva, Mira C; Stoitchkova, Katerina V; Tzonova, Iren K, E-mail: katys@phys.uni-sofia.b

    2010-11-01

    The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ss-carotene (ss-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ss-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.

  11. Photoinduced changes in photosystem II pigments

    Science.gov (United States)

    Andreeva, Atanaska S.; Busheva, Mira C.; Stoitchkova, Katerina V.; Tzonova, Iren K.

    2010-11-01

    The photosynthetic apparatus in higher plants performs two seemingly opposing tasks: efficient harvest of sunlight, but also rapid and harmless dissipation of excess light energy as heat to avoid deleterious photodamage. In order to study this process in pigment-protein supercomplexes of photosystem II (PSII), 77 K fluorescence and room temperature resonance Raman (RR) spectroscopy were applied to investigate the changes in structure and spectral properties of the pigments in spinach PSII membranes. The high-light treatment results in a strong quenching of the fluorescence (being largest when the excitation is absorbed by carotenoids) and a red-shift of the main maximum. Decomposition of the fluorescence spectra into four bands revealed intensive quenching of F685 and F695 bands, possible bleaching of chlorophyll a, enhanced extent of light harvesting complexes (LHCII) aggregation and increased energy transfer to aggregated LHCII. The analysis of RR spectra revealed the predominant contribution of ß-carotene (ß-Car) upon 457.8 and 488 nm excitations and lutein (Lut) at 514.5 nm. During prolonged exposure to strong light no significant bleaching of ß-Car and weak photobleaching of Lut is observed. The results will contribute to the efforts to produce more efficient and robust solar cells when exposed to fluctuations in light intensity.

  12. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  13. Carotenoids assist in cyanobacterial Photosystem II assembly and function

    Directory of Open Access Journals (Sweden)

    Tomas eZakar

    2016-03-01

    Full Text Available Carotenoids (carotenes and xanthophylls are ubiquitous constituents of living organisms. They are protective agents against oxidative stresses and serve as modulators of membrane microviscosity. As antioxidants they can protect photosynthetic organisms from free radicals like reactive oxygen species that originate from water splitting, the first step of photosynthesis. We summarize the structural and functional roles of carotenoids in connection with cyanobacterial Photosystem II. Although carotenoids are hydrophobic molecules, their complexes with proteins also allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing their overexcitation through phycobilisomes. Recently it has been observed that carotenoids are not only required for the proper functioning, but also for the structural stability of phycobilisomes.

  14. Structure and membrane organization of photosystem II in green plants

    NARCIS (Netherlands)

    Hankamer, B; Barber, J; Boekema, EJ

    1997-01-01

    Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as

  15. Functional architecture of higher plant photosystem II supercomplexes

    NARCIS (Netherlands)

    Caffarri, Stefano; Kouril, Roman; Kereiche, Sami; Boekema, Egbert J.; Croce, Roberta; Kereïche, Sami

    2009-01-01

    Photosystem II ( PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it

  16. Overlapping Residual Herbicides for Control of Photosystem (PS) II- and 4-Hydroxyphenylpyruvate Dioxygenase (HPPD)-Inhibitor-Resistant Palmer amaranth (Amaranthus palmeri S. Watson) in Glyphosate-Resistant Maize

    Science.gov (United States)

    Chahal, Parminder S.; Ganie, Zahoor A.; Jhala, Amit J.

    2018-01-01

    A Palmer amaranth (Amaranthus palmeri S. Watson) biotype has evolved resistance to photosystem (PS) II- (atrazine) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (mesotrione, tembotrione, and topramezone) in maize seed production field in Nebraska, USA. The objectives of this study were to determine the effect of soil residual pre-emergence (PRE) herbicides followed by (fb) tank-mixture of residual and foliar active post-emergence (POST) herbicides on PS-II- and HPPD-inhibitor-resistant Palmer amaranth control, maize yield, and net economic returns. Field experiments were conducted in a grower's field infested with PS II- and HPPD-inhibitor-resistant Palmer amaranth near Shickley in Fillmore County, Nebraska, USA in 2015 and 2016. The contrast analysis suggested that saflufenacil plus dimethenamid-P or pyroxasulfone plus saflufenacil applied PRE provided 80–82% Palmer amaranth control compared to 65 and 39% control with saflufenacil and pyroxasulfone applied alone at 3 weeks after PRE (WAPRE), respectively. Among the PRE fb POST herbicide programs, 95–98% Palmer amaranth control was achieved with pyroxasulfone plus safluefenacil, or saflufenacil plus dimethenamid-P applied PRE, fb glyphosate plus topramezone plus dimethenamid-P plus atrazine, glyphosate plus diflufenzopyr plus dicamba plus pyroxasulfone, glyphosate plus diflufenzopyr plus pendimethalin, or glyphosate plus diflufenzopyr plus dicamba plus atrazine applied POST at 3 weeks after POST (WAPOST) through maize harvest. Based on contrast analysis, PRE fb POST programs provided 77–83% Palmer amaranth control at 3 WAPOST through maize harvest compared to 12–15% control with PRE-only and 66–84% control with POST-only programs. Similarly, PRE fb POST programs provided 99% biomass reduction at 6 WAPOST compared to PRE-only (28%) and POST-only (87%) programs. PRE fb POST programs provided higher maize yield (13,617 kg ha−1) and net return (US $1,724 ha−1) compared to the PRE

  17. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J.; Mercurio, Philip; Negri, Andrew P.

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zostera muelleri and Halodule uninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ′), indicating reduced photosynthesis and maximum effective yields (Fv/Fm) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows

  18. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Science.gov (United States)

    Flores, Florita; Collier, Catherine J; Mercurio, Philip; Negri, Andrew P

    2013-01-01

    Coastal waters of the Great Barrier Reef (GBR) are contaminated with agricultural pesticides, including the photosystem II (PSII) herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50) over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m '), indicating reduced photosynthesis and maximum effective yields (Fv/Fm ) corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect seagrass meadows of

  19. Phytotoxicity of four photosystem II herbicides to tropical seagrasses.

    Directory of Open Access Journals (Sweden)

    Florita Flores

    Full Text Available Coastal waters of the Great Barrier Reef (GBR are contaminated with agricultural pesticides, including the photosystem II (PSII herbicides which are the most frequently detected at the highest concentrations. Designed to control weeds, these herbicides are equally potent towards non-target marine species, and the close proximity of seagrass meadows to flood plumes has raised concerns that seagrasses may be the species most threatened by herbicides from runoff. While previous work has identified effects of PSII herbicides on the photophysiology, growth and mortality in seagrass, there is little comparative quantitative toxicity data for seagrass. Here we applied standard ecotoxicology protocols to quantify the concentrations of four priority PSII herbicides that inhibit photochemistry by 10, 20 and 50% (IC10, IC20 and IC50 over 72 h in two common seagrass species from the GBR lagoon. The photosystems of seagrasses Zosteramuelleri and Haloduleuninervis were shown to be generally more sensitive to the PSII herbicides Diuron, Atrazine, Hexazinone and Tebuthiuron than corals and tropical microalgae. The herbicides caused rapid inhibition of effective quantum yield (∆F/F m ', indicating reduced photosynthesis and maximum effective yields (Fv/Fm corresponding to chronic damage to PSII. The PSII herbicide concentrations which affected photosynthesis have been exceeded in the GBR lagoon and all of the herbicides inhibited photosynthesis at concentrations lower than current marine park guidelines. There is a strong likelihood that the impacts of light limitation from flood plumes and reduced photosynthesis from PSII herbicides exported in the same waters would combine to affect seagrass productivity. Given that PSII herbicides have been demonstrated to affect seagrass at environmental concentrations, we suggest that revision of environmental guidelines and further efforts to reduce PSII herbicide concentrations in floodwaters may both help protect

  20. Functional architecture of higher plant photosystem II supercomplexes

    OpenAIRE

    Caffarri, Stefano; Kouřil, Roman; Kereïche, Sami; Boekema, Egbert J; Croce, Roberta

    2009-01-01

    Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations ranging from a newly identified particle composed by a monomeric core and antenna proteins to the largest C2S2M2 supercomplex were isolated. Ch...

  1. Organisation on Photosystem I and Photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts

    Czech Academy of Sciences Publication Activity Database

    Gardian, Zdenko; Bumba, Ladislav; Schrofel, A.; Herbstová, Miroslava; Nebesářová, Jana; Vácha, František

    2007-01-01

    Roč. 1767, č. 6 (2007), s. 725-731 ISSN 0005-2728 R&D Projects: GA AV ČR IAA608170603; GA ČR GP310/07/P115; GA ČR GA206/06/0364 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z60220518 Keywords : Photosystem I * Photosystem II Subject RIV: BO - Biophysics Impact factor: 3.835, year: 2007

  2. The relative absorption cross-sections of photosystem I and photosystem II in chloroplasts from three types of Nicotiana tabacum.

    Science.gov (United States)

    Melis, A; Thielen, A P

    1980-02-08

    In the present study we used three types of Nicotiana tabacum, cv John William's Broad Leaf (the wild type and two mutants, the yellow-green Su/su and the yellow Su/su var. Aurea) in order to correlat functional properties of Photosystem II and Photosystem I with the structural organization of their chloroplasts. The effective absorption cross-section of Photosystem II and Photosystem I centers was measured by means of the rate constant of their photoconversion under light-limiting conditions. In agreement with earlier results (Okabe, K., Schmid, G.H. and Straub, J. (1977) Plant Physiol. 60, 150--156) the photosynthetic unit size for both System II and System I in the two mutants was considerably smaller as compared to the wild type. We observed biphasic kinetics in the photoconversion of System II in all three types of N. tabacum. However, the photoconversion of System I occurred with monophasic and exponential kinetics. Under our experimental conditions, the effective cross-section of Photosystem I was comparable to that of the fast System II component (alpha centers). The relative amplitude of the slow System II component (beta centers) varied between 30% in the wild type to 70% in the Su/su var. Aurea mutant. The increased fraction of beta centers is correlated with the decreased fraction of appressed photosynthetic membranes in the chloroplasts of the two mutants. As a working hypothesis, it is suggested that beta centers are located on photosynthetic membranes directly exposed to the stroma medium.

  3. Non-intrusive Assessment of Photosystem II and Photosystem I in Whole Coral Tissues

    Directory of Open Access Journals (Sweden)

    Milán Szabó

    2017-08-01

    Full Text Available Reef building corals (phylum Cnidaria harbor endosymbiotic dinoflagellate algae (genus Symbiodinium that generate photosynthetic products to fuel their host's metabolism. Non-invasive techniques such as chlorophyll (Chl fluorescence analyses of Photosystem II (PSII have been widely used to estimate the photosynthetic performance of Symbiodinium in hospite. However, since the spatial origin of PSII chlorophyll fluorescence in coral tissues is uncertain, such signals give limited information on depth-integrated photosynthetic performance of the whole tissue. In contrast, detection of absorbance changes in the near infrared (NIR region integrates signals from deeper tissue layers due to weak absorption and multiple scattering of NIR light. While extensively utilized in higher plants, NIR bio-optical techniques are seldom applied to corals. We have developed a non-intrusive measurement method to examine photochemistry of intact corals, based on redox kinetics of the primary electron donor in Photosystem I (P700 and chlorophyll fluorescence kinetics (Fast-Repetition Rate fluorometry, FRRf. Since the redox state of P700 depends on the operation of both PSI and PSII, important information can be obtained on the PSII-PSI intersystem electron transfer kinetics. Under moderate, sub-lethal heat stress treatments (33°C for ~20 min, the coral Pavona decussata exhibited down-regulation of PSII electron transfer kinetics, indicated by slower rates of electron transport from QA to plastoquinone (PQ pool, and smaller relative size of oxidized PQ with concomitant decrease of a specifically-defined P700 kinetics area, which represents the active pool of PSII. The maximum quantum efficiency of PSII (Fv/Fm and functional absorption cross-section of PSII (σPSII remained unchanged. Based on the coordinated response of P700 parameters and PSII-PSI electron transport properties, we propose that simple P700 kinetics parameters as employed here serve as indicators of

  4. Resonance assignment of PsbP: an extrinsic protein from photosystem II of Spinacia oleracea

    Czech Academy of Sciences Publication Activity Database

    Rathner, A.; Chandra, K.; Rathner, P.; Horničáková, M.; Schlagnitweit, J.; Kohoutová, Jaroslava; Ettrich, Rüdiger; Müller, N.

    2015-01-01

    Roč. 9, č. 2 (2015), s. 341-346 ISSN 1874-2718 Institutional support: RVO:61388971 Keywords : PsbP * Photosystem II * Oxygen evolving complex Subject RIV: EE - Microbiology, Virology Impact factor: 0.687, year: 2015

  5. Accelerated degradation of the D2 protein of photosystem II under ultraviolet radiation

    International Nuclear Information System (INIS)

    Jansen, M.A.K.; Edelman, M.; Greenberg, B.M.; Gaba, V.

    1996-01-01

    The D2 protein of photosystem II is relatively stable in vivo under photosynthetic active radiation, but its degradation accelerates under UVB radiation. Little is known about accelerated D2 protein degradation. We characterized wavelength dependence and sensitivity toward photosystem II inhibitors. The in vivo D2 degradation spectrum resembles the pattern for the rapidly turning over D1 protein of photosystem II, with rates being maximal in the UVB region. We propose that D2 degradation, like D1 degradation, is activated by distinct photosensitizers in the UVB and visible regions of the spectrum. In both wavelength regions, photosystem II inhibitors that are known to be targeted to the D1 protein affect D2 degradation. This suggests that degradation of the two proteins is coupled, D2 degradation being influenced by events occurring at the Q B niche on the D1 protein. (Author)

  6. Functional architecture of higher plant photosystem II supercomplexes.

    Science.gov (United States)

    Caffarri, Stefano; Kouril, Roman; Kereïche, Sami; Boekema, Egbert J; Croce, Roberta

    2009-10-07

    Photosystem II (PSII) is a large multiprotein complex, which catalyses water splitting and plastoquinone reduction necessary to transform sunlight into chemical energy. Detailed functional and structural studies of the complex from higher plants have been hampered by the impossibility to purify it to homogeneity. In this work, homogeneous preparations ranging from a newly identified particle composed by a monomeric core and antenna proteins to the largest C(2)S(2)M(2) supercomplex were isolated. Characterization by biochemical methods and single particle electron microscopy allowed to relate for the first time the supramolecular organization to the protein content. A projection map of C(2)S(2)M(2) at 12 A resolution was obtained, which allowed determining the location and the orientation of the antenna proteins. Comparison of the supercomplexes obtained from WT and Lhcb-deficient plants reveals the importance of the individual subunits for the supramolecular organization. The functional implications of these findings are discussed and allow redefining previous suggestions on PSII energy transfer, assembly, photoinhibition, state transition and non-photochemical quenching.

  7. Structure of photosystem II and substrate binding at room temperature.

    Science.gov (United States)

    Young, Iris D; Ibrahim, Mohamed; Chatterjee, Ruchira; Gul, Sheraz; Fuller, Franklin; Koroidov, Sergey; Brewster, Aaron S; Tran, Rosalie; Alonso-Mori, Roberto; Kroll, Thomas; Michels-Clark, Tara; Laksmono, Hartawan; Sierra, Raymond G; Stan, Claudiu A; Hussein, Rana; Zhang, Miao; Douthit, Lacey; Kubin, Markus; de Lichtenberg, Casper; Long Vo, Pham; Nilsson, Håkan; Cheah, Mun Hon; Shevela, Dmitriy; Saracini, Claudio; Bean, Mackenzie A; Seuffert, Ina; Sokaras, Dimosthenis; Weng, Tsu-Chien; Pastor, Ernest; Weninger, Clemens; Fransson, Thomas; Lassalle, Louise; Bräuer, Philipp; Aller, Pierre; Docker, Peter T; Andi, Babak; Orville, Allen M; Glownia, James M; Nelson, Silke; Sikorski, Marcin; Zhu, Diling; Hunter, Mark S; Lane, Thomas J; Aquila, Andy; Koglin, Jason E; Robinson, Joseph; Liang, Mengning; Boutet, Sébastien; Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Moriarty, Nigel W; Liebschner, Dorothee; Afonine, Pavel V; Waterman, David G; Evans, Gwyndaf; Wernet, Philippe; Dobbek, Holger; Weis, William I; Brunger, Axel T; Zwart, Petrus H; Adams, Paul D; Zouni, Athina; Messinger, Johannes; Bergmann, Uwe; Sauter, Nicholas K; Kern, Jan; Yachandra, Vittal K; Yano, Junko

    2016-12-15

    Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn 4 CaO 5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S 0 to S 4 ), in which S 1 is the dark-stable state and S 3 is the last semi-stable state before O-O bond formation and O 2 evolution. A detailed understanding of the O-O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S 1 ), two-flash illuminated (2F; S 3 -enriched), and ammonia-bound two-flash illuminated (2F-NH 3 ; S 3 -enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S 1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn 4 CaO 5 cluster in the S 2 and S 3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O-O bond formation mechanisms.

  8. Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo

    NARCIS (Netherlands)

    Hankamer, B; Nield, J; Zheleva, D; Boekema, E; Jansson, S; Barber, J

    1997-01-01

    Membranes enriched in photosystem II were isolated from spinach and further solubilised using n-octyl beta-D-glucopyranoside (OctGlc) and n-dodecyl beta-D-maltoside (DodGlc(2)). The OctGlc preparation had high rates of oxygen evolution and when subjected to size-exclusion HPLC and sucrose density

  9. PHOTOINHIBITION AND RECOVERY IN RELATION TO HETEROGENEITY OF PHOTOSYSTEM-II

    NARCIS (Netherlands)

    VANWIJK, KJ; SCHNETTGER, B; GRAF, M; KRAUSE, GH

    1993-01-01

    Photosystem II (PS II) heterogeneity during photoinhibition at 4-degrees-C and subsequent recovery at 20-degrees-C was investigated in spinach leaves and chloroplasts. The population of inactive, Q(B)-nonreducing centers was estimated by means of fluorescence induction in the presence of

  10. Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity

    NARCIS (Netherlands)

    Haag, Elisabeth; Irrgang, Klaus-D.; Boekema, Egbert J.; Renger, Gernot

    1990-01-01

    Oxygen-evolving photo system II core complexes were prepared from spinach by solubilizing photosystem II membrane fragments with dodecyl-β-D-maltoside. The core complexes consist of the intrinsic 47-kDa, 43-kDa, D1 and D2 polypeptides, the two subunits of cytochrome b559 and the extrinsic 33-kDa

  11. A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29

    NARCIS (Netherlands)

    Testi, Maria Grazia; Croce, Roberta; Polverino-De Laureto, Patrizia; Bassi, Roberto

    1996-01-01

    Protein phosphorylation is a major mechanism in the regulation of protein function. In chloroplast thylakoids several photosystem II subunits, including the major antenna light-harvesting complex II and several core complex components, are reversibly phosphorylated depending on the redox state of

  12. Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I of coral symbionts.

    Directory of Open Access Journals (Sweden)

    Mia O Hoogenboom

    Full Text Available Reef corals are heterotrophic coelenterates that achieve high productivity through their photosynthetic dinoflagellate symbionts. Excessive seawater temperature destabilises this symbiosis and causes corals to "bleach," lowering their photosynthetic capacity. Bleaching poses a serious threat to the persistence of coral reefs on a global scale. Despite expanding research on the causes of bleaching, the mechanisms remain a subject of debate.This study determined how light and food availability modulate the effects of temperature stress on photosynthesis in two reef coral species. We quantified the activities of Photosystem II, Photosystem I and whole chain electron transport under combinations of normal and stressful growth temperatures, moderate and high light levels and the presence or absence of feeding of the coral hosts. Our results show that PS1 function is comparatively robust against temperature stress in both species, whereas PS2 and whole chain electron transport are susceptible to temperature stress. In the symbiotic dinoflagellates of Stylophora pistillata the contents of chlorophyll and major photosynthetic complexes were primarily affected by food availability. In Turbinaria reniformis growth temperature was the dominant influence on the contents of the photosynthetic complexes. In both species feeding the host significantly protected photosynthetic function from high temperature stress.Our findings support the photoinhibition model of coral bleaching and demonstrate that PS1 is not a major site for thermal damage during bleaching events. Feeding mitigates bleaching in two scleractinian corals, so that reef responses to temperature stresses will likely be influenced by the coinciding availabilities of prey for the host.

  13. Is There Excitation Energy Transfer between Different Layers of Stacked Photosystem-II-Containing Thylakoid Membranes?

    Science.gov (United States)

    Farooq, Shazia; Chmeliov, Jevgenij; Trinkunas, Gediminas; Valkunas, Leonas; van Amerongen, Herbert

    2016-04-07

    We have compared picosecond fluorescence decay kinetics for stacked and unstacked photosystem II membranes in order to evaluate the efficiency of excitation energy transfer between the neighboring layers. The measured kinetics were analyzed in terms of a recently developed fluctuating antenna model that provides information about the dimensionality of the studied system. Independently of the stacking state, all preparations exhibited virtually the same value of the apparent dimensionality, d = 1.6. Thus, we conclude that membrane stacking does not affect the efficiency of the delivery of excitation energy toward the reaction centers but ensures a more compact organization of the thylakoid membranes within the chloroplast and separation of photosystems I and II.

  14. Photosystem II solubilizes as a monomer by mild detergent treatment of unstacked thylakoid membranes

    NARCIS (Netherlands)

    Dekker, Jan P.; Germano, Marta; Roon, Henny van; Boekema, Egbert J.

    2002-01-01

    We studied the aggregation state of Photosystem II in stacked and unstacked thylakoid membranes from spinach after a quick andmild solubilization with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by analysis by diode-array-assisted gel filtration chromatography and electron microscopy.

  15. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, A.V.; Wentworth, M.; Yakushevska, A.E.; Andersson, J.; Lee, P.J.; Keegstra, W.; Dekker, J.P.; Boekema, E.J.; Jansson, S.; Horton, P.

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the

  16. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    NARCIS (Netherlands)

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the

  17. The effects of light-induced reduction of the photosystem II reaction center

    Czech Academy of Sciences Publication Activity Database

    Kutý, Michal

    2009-01-01

    Roč. 8, č. 15 (2009), s. 923-933 ISSN 1610-2940 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z60870520 Keywords : Photosystem II * Reaction center * Pheophytin Subject RIV: CE - Biochemistry Impact factor: 2.336, year: 2009

  18. Pigment binding sites occupancy and functional architecture of the Photosystem II antenna complex Lhcb5

    NARCIS (Netherlands)

    Ballottari, M.; Mozzo, M.; Croce, R.; Morosinotto, T.; Bassi, R.

    2009-01-01

    Lhcb5 is an antenna protein that is highly conserved in plants and green algae. It is part of the inner layer of photosystem II antenna system retained in high light acclimated plants. To study the structure-function relation and the role of individual pigments in this complex, we (i) "knocked out"

  19. Room temperature photooxidation of beta-carotene and peripheral chlorophyll in photosystem II reaction centre

    Czech Academy of Sciences Publication Activity Database

    Litvín, Radek; Bína, David; Vácha, František

    2008-01-01

    Roč. 98, č. 2 (2008), s. 179-187 ISSN 0166-8595 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : photosystem II Subject RIV: BO - Biophysics Impact factor: 2.681, year: 2008

  20. Modulation of photosystem II chlorophyll fluorescence by electrogenic events generated by photosystem I

    NARCIS (Netherlands)

    Bulychev, A.A.; Vredenberg, W.J.

    2001-01-01

    In an attempt to uncover electric field interactions between PS I and PS II during their functioning, fluorescence induction curves were measured on hydroxylamine-treated thylakoids of Chenopodium album under conditions ensuring low and high levels of photogenerated membrane potentials. In parallel

  1. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature.

    Science.gov (United States)

    Hu, Zhengrong; Fan, Jibiao; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2016-04-01

    The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system

  2. A miniature bioassay for testing the acute phytotoxicity of photosystem II herbicides on seagrass.

    Directory of Open Access Journals (Sweden)

    Adam D Wilkinson

    Full Text Available Photosystem II (PSII herbicides have been detected in nearshore tropical waters such as those of the Great Barrier Reef and may add to the pressure posed by runoff containing sediments and nutrients to threatened seagrass habitats. There is a growing number of studies into the potential effects of herbicides on seagrass, generally using large experimental setups with potted plants. Here we describe the successful development of an acute 12-well plate phytotoxicity assay for the PSII herbicide Diuron using isolated Halophila ovalis leaves. Fluorescence images demonstrated Diuron affected the entire leaf surface evenly and responses were not influenced by isolating leaves from the plant. The optimum exposure duration was 24 h, by which time the inhibition of effective quantum yield of PSII (∆F/F(m' was highest and no deterioration of photosystems was evident in control leaves. The inhibition of ∆F/F(m' by Diuron in isolated H. ovalis leaves was identical to both potted and hydroponically grown plants (with leaves remaining attached to rhizomes, indicating similar reductions in photosynthetic activity in these acute well-plate assays. The sensitivity of the assay was not influenced by irradiance (range tested 40 to 400 μmol photons m(-2 s(-1. High irradiance, however, caused photo-oxidative stress in H. ovalis and this generally impacted in an additive or sub-additive way with Diuron to damage PSII. The bioassay using isolated leaves is more rapid, uses far less biological material and does not rely on specialised aquarium facilities in comparison with assays using potted plants. The development and validation of this sensitive bioassay will be useful to reliably screen and monitor the phytotoxicity of existing and emerging PSII herbicides and contribute to risk assessments and water quality guideline development in the future.

  3. A Miniature Bioassay for Testing the Acute Phytotoxicity of Photosystem II Herbicides on Seagrass

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Mercurio, Phil; O’Brien, Jake; Ralph, Peter J.; Negri, Andrew P.

    2015-01-01

    Photosystem II (PSII) herbicides have been detected in nearshore tropical waters such as those of the Great Barrier Reef and may add to the pressure posed by runoff containing sediments and nutrients to threatened seagrass habitats. There is a growing number of studies into the potential effects of herbicides on seagrass, generally using large experimental setups with potted plants. Here we describe the successful development of an acute 12-well plate phytotoxicity assay for the PSII herbicide Diuron using isolated Halophila ovalis leaves. Fluorescence images demonstrated Diuron affected the entire leaf surface evenly and responses were not influenced by isolating leaves from the plant. The optimum exposure duration was 24 h, by which time the inhibition of effective quantum yield of PSII (∆F/Fm’) was highest and no deterioration of photosystems was evident in control leaves. The inhibition of ∆F/Fm’ by Diuron in isolated H. ovalis leaves was identical to both potted and hydroponically grown plants (with leaves remaining attached to rhizomes), indicating similar reductions in photosynthetic activity in these acute well-plate assays. The sensitivity of the assay was not influenced by irradiance (range tested 40 to 400 μmol photons m-2 s-1). High irradiance, however, caused photo-oxidative stress in H. ovalis and this generally impacted in an additive or sub-additive way with Diuron to damage PSII. The bioassay using isolated leaves is more rapid, uses far less biological material and does not rely on specialised aquarium facilities in comparison with assays using potted plants. The development and validation of this sensitive bioassay will be useful to reliably screen and monitor the phytotoxicity of existing and emerging PSII herbicides and contribute to risk assessments and water quality guideline development in the future. PMID:25674791

  4. Backbone assignment and secondary structure of the PsbQ protein from Photosystem II

    Czech Academy of Sciences Publication Activity Database

    Horničáková, M.; Kohoutová, Jaroslava; Schlagnitweit, J.; Wohlschlager, Ch.; Ettrich, Rüdiger; Fiala, R.; Schoefberger, W.; Müller, N.

    2011-01-01

    Roč. 5, č. 2 (2011), s. 169-175 ISSN 1874-2718 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z60870520 Keywords : Photosystem II * PsbQ * Missing link * NMR resonance assignment * Protein-protein interaction Subject RIV: BO - Biophysics Impact factor: 0.720, year: 2011 http://www.springerlink.com/content/3n38075w5h1l1082/fulltext.pdf

  5. Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    OpenAIRE

    Ruban, AV; Wentworth, M; Yakushevska, AE; Andersson, J; Lee, PJ; Keegstra, W; Dekker, JP; Boekema, EJ; Jansson, S; Horton, P

    2003-01-01

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts(1). Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII)(2) that bind 70% of PSII chlorophyll and three minor monomeric complexes(3)-which together form PSII supercomplexes(4-6). The antenna comple...

  6. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Sobotka, Roman; Nixon, P. J.

    2012-01-01

    Roč. 15, č. 3 (2012), s. 245-2051 ISSN 1369-5266 R&D Projects: GA ČR GAP501/10/1000; GA ČR(CZ) GAP501/11/0377; GA MŠk(CZ) ED2.1.00/03.0110; GA AV ČR IAA400200801 Institutional support: RVO:61388971 Keywords : alga * cyanobacteria * Photosystem II Subject RIV: EE - Microbiology, Virology Impact factor: 8.455, year: 2012

  7. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    OpenAIRE

    Adam D. Wilkinson; Catherine J. Collier; Florita Flores; Andrew P. Negri

    2015-01-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ...

  8. Editorial: Assembly of the Photosystem II Membrane-Protein Complex of Oxygenic Photosynthesis

    Czech Academy of Sciences Publication Activity Database

    Eaton-Rye, J.J.; Sobotka, Roman

    2017-01-01

    Roč. 8, May 26 (2017), s. 1-4, č. článku 884. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392 Institutional support: RVO:61388971 Keywords : Photosystem II * photosynthetic electron transport * cyanobacteria Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.298, year: 2016

  9. Stoichiometry of photosystem I, photosystem II, and phycobilisomes in the red alga Porphyridium cruentum as a function of growth irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, F.X. Jr.; Mustardy, L.; Gantt, E. (Univ. of Maryland, College Park (USA)); Dennenberg, R.J.; Jursinic, P.A. (Department of Agriculture, Peoria, IL (USA))

    1989-11-01

    Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light LL), 35 (medium light, ML), 180 (high light, HL), and 280 (very high light, VHL) microeinsteins per square meter per second and sampled in the exponential phase of growth. Ratios of PSII to PSI ranged between 0.43 and 0.54. About three PSII centers per phycobilisome were found, regardless of growth irradiance. The phycoerythrin content of phycobilisomes decreased by about 25% for HL and VHL compared to LL and ML cultures. The unit sizes of PSI (chlorophyll/P{sub 700}) and PSII (chlorophyll/Q{sub A}) decreased by about 20% with increase in photon flux density from 6 to 280 microeinsteins per square meter per second. A threefold reduction in cell content of chlorophyll at the higher photon flux densities was accompanied by a twofold reduction in {beta}-carotene, and a drastic reduction in thylakoid membrane area. Cell content of zeaxanthin, the major carotenoid in P. cruentum, did not vary with growth irradiance, suggesting a role other than light-harvesting. HL cultures had a growth rate twice that of ML, eight times that of LL, and slightly greater than that of VHL cultures. Cell volume increased threefold from LL to VHL, but volume of the single chloroplast did not change. From this study it is evident that a relatively fixed stoichiometry of PSI, PSII, and phycobilisomes is maintained in the photosynthetic apparatus of this red alga over a wide range of growth irradiance.

  10. Two roles of thylakoid lipids in modifying the activity of herbicides which inhibit photosystem II

    International Nuclear Information System (INIS)

    Kupatt, C.C. Jr.

    1985-01-01

    Thylakoid lipids may modify the activity of herbicides which inhibit electron transport at the Q/sub B/ protein of photosystem II in two ways: (1) lipids can act as a hydrophobic barrier to a binding site localized close to the loculus of the membrane, and (2) changes in lipid composition can reduce the ability of inhibitors to block electron transport, possibly due to a change in the conformation of the Q/sub B/ protein. The herbicide binding site was localized close to the locular side of the thylakoid membrane by determining the activity of a number of substituted phenylurea and s-triazine herbicides in inverted and non-inverted thylakoids. Quantitative structure-activity relationship analysis showed that inversion of thylakoids reduced the requirement of molecular lipophilicity deemed necessary for phenylurea activity in non-inverted membranes, whereas s-triazines exhibited no differences in the lipophilicity requirement in thylakoid membranes of either orientation. The binding affinity of 14 C-diuron was reduced in bicarbonate-depleted thylakoids relative to reconstituted or control membranes, as is the case with atrazine binding. These observations support a model of the herbicide binding site containing both common and herbicide family specific binding domains. Thylakoids isolated either from detached lambs quarters (Chenopodium album L.) leaves, treated with SAN 6706, or from soybean (Glycine max L.), with norflurazon or pyrazon applied preemergence, exhibited decreased susceptibility to atrazine. The ability of lipid-modifying treatments to decrease the atrazine susceptibility of field-grown soybeans was also investigated

  11. Photosystem II heterogeneity of in hospite zooxanthellae in scleractinian corals exposed to bleaching conditions.

    Science.gov (United States)

    Hill, Ross; PeterJ, Ralph

    2006-01-01

    Increased ocean temperatures are thought to be triggering mass coral bleaching events around the world. The intracellular symbiotic zooxanthellae (genus Symbiodinium) are expelled from the coral host, which is believed to be a response to photosynthetic damage within these symbionts. Several sites of impact have been proposed, and here we probe the functional heterogeneity of Photosystem II (PSII) in three coral species exposed to bleaching conditions. As length of exposure to bleaching conditions (32 degrees C and 350 micromol photons m(-2) s(-1)) increased, the QA- reoxidation kinetics showed a rise in the proportion of inactive PSII centers (PSIIx), where QB was unable to accept electrons. PSIIx contributed up to 20% of the total PSII centers in Pocillopora damicornis, 35% in Acropora nobilis and 14% in Cyphastrea serailia. Changes in Fv/Fm and amplitude of the J step along fast induction curves were found to be highly dependent upon the proportion of PSIIx centers within the total pool of PSII reaction centers. Determination of PSII antenna size revealed that under control conditions in the three coral species up to 60% of PSII centers were lacking peripheral light-harvesting complexes (PSIIbeta). In P. damicornis, the proportion of PSIIbeta increased under bleaching conditions and this could be a photoprotective mechanism in response to excess light. The rapid increases in PSIIx and PSIIbeta observed in these corals under bleaching conditions indicates these physiological processes are involved in the initial photochemical damage to zooxanthellae.

  12. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  13. Freezing cytorrhysis and critical temperature thresholds for photosystem II in the peat moss Sphagnum capillifolium.

    Science.gov (United States)

    Buchner, Othmar; Neuner, Gilbert

    2010-07-01

    Leaflets of Sphagnum capillifolium were exposed to temperatures from -5 degrees C to +60 degrees C under controlled conditions while mounted on a microscope stage. The resultant cytological response to these temperature treatments was successfully monitored using a light and fluorescence microscope. In addition to the observable cytological changes during freezing cytorrhysis and heat exposure on the leaflets, the concomitant critical temperature thresholds for inactivation of photosystem II (PS II) were studied using a micro fibre optic and a chlorophyll fluorometer mounted to the microscope stage. Chlorophyllous cells of S. capillifolium showed extended freezing cytorrhysis immediately after ice nucleation at -1.1 degrees C in the water in which the leaflets were submersed during the measurement. The occurrence of freezing cytorrhysis, which was visually manifested by cell shrinkage, was highly dynamic and was completed within 2 s. A total reduction of the mean projected diameter of the chloroplast containing area during freezing cytorrhysis from 8.9 to 3.8 microm indicates a cell volume reduction of approximately -82%. Simultaneous measurement of chlorophyll fluorescence of PS II was possible even through the frozen water in which the leaf samples were submersed. Freezing cytorrhysis was accompanied by a sudden rise of basic chlorophyll fluorescence. The critical freezing temperature threshold of PS II was identical to the ice nucleation temperature (-1.1 degrees C). This is significantly above the temperature threshold at which frost damage to S. capillifolium leaflets occurs (-16.1 degrees C; LT(50)) which is higher than observed in most higher plants from the European Alps during summer. High temperature thresholds of PS II were 44.5 degrees C which is significantly below the heat tolerance of chlorophyllous cells (49.9 degrees C; LT(50)). It is demonstrated that light and fluorescence microscopic techniques combined with simultaneous chlorophyll fluorescence

  14. Two photon absorption energy transfer in the light-harvesting complex of photosystem II (LHC-II) modified with organic boron dye

    Science.gov (United States)

    Chen, Li; Liu, Cheng; Hu, Rui; Feng, Jiao; Wang, Shuangqing; Li, Shayu; Yang, Chunhong; Yang, Guoqiang

    2014-07-01

    The plant light-harvesting complexes of photosystem II (LHC-II) play important roles in collecting solar energy and transferring the energy to the reaction centers of photosystems I and II. A two photon absorption compound, 4-(bromomethyl)-N-(4-(dimesitylboryl)phenyl)-N-phenylaniline (DMDP-CH2Br), was synthesized and covalently linked to the LHC-II in formation of a LHC-II-dye complex, which still maintained the biological activity of LHC-II system. Under irradiation with femtosecond laser pulses at 754 nm, the LHC-II-dye complex can absorb two photons of the laser light effectively compared with the wild type LHC-II. The absorbed excitation energy is then transferred to chlorophyll a with an obvious fluorescence enhancement. The results may be interesting and give potentials for developing hybrid photosystems.

  15. A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29.

    Science.gov (United States)

    Testi, M G; Croce, R; Polverino-De Laureto, P; Bassi, R

    1996-12-16

    Protein phosphorylation is a major mechanism in the regulation of protein function. In chloroplast thylakoids several photosystem II subunits, including the major antenna light-harvesting complex II and several core complex components, are reversibly phosphorylated depending on the redox state of the electron carriers. A previously unknown reversible phosphorylation event has recently been described on the CP29 subunit which leads to conformational changes and protection from cold stress (Bergantino, E., Dainese, P., Cerovic, Z. Sechi, S. and Bassi, R. (1995) J. Biol Chem. 270, 8474-8481). In this study, we have identified the phosphorylation site on the N-terminal, stroma-exposed domain, showing that it is located in a sequence not homologous to the other members of the Lhc family. The phosphorylated sequence is unique in chloroplast membranes since it meets the requirements for CK2 (casein kinase II) kinases. The possibility that this phosphorylation is involved in a signal transduction pathway is discussed.

  16. Flash photolysis ESR study of photosystem II signal II/sub vf/, the physiological donor to P-680/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Warden, J T [Rensselaer Polytechnic Inst., Troy, NY; Blankenship, R E; Sauer, K

    1976-01-01

    In flash-illuminated, oxygen-evolving spinach chloroplasts and green algae, a free radical transient has been observed with spectral parameters similar to those of Signal II (g approx. = 2.0045, ..delta..H/sub pp/ approx. = 19 G). However, in contrast with ESR Signal II, the transient radical does not readily saturate even at microwave power levels of 200 mW. This species is formed most efficiently with ''red'' illumination (lambda < 680 nm) and occurs stoichiometrically in a 1:1 ratio with P-700/sup +/. The Photosystem II transient is formed in less than 100 ..mu..s and decays via first-order kinetics with a halftime of 400-900 ..mu..s. Additionally, the t/sub /sup 1///sub 2// for radical decay is temperature independent between 20 and 4/sup 0/C; however, below 4/sup 0/C the transient signal exhibits Arrhenius behavior with an activation energy of approx. 10 kcal . mol/sup -1/. Inhibition of electron transport through Photosystem II by o-phenanthroline, 3-(3,4-dichlorophenyl)-1,1-dimethylurea or reduced 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone suppresses the formation of the light-induced transient. At low concentrations (0.2 mM), 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone partially inhibits the free radical formation, however, the decay kinetics are unaltered. High concentrations of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (1-5 mM) restore both the transient signal and electron flow through Photosystem II. These findings suggest that this ''quinoidal'' type ESR transient functions as the physiological donor to the oxidized reaction center chlorophyll, P-680/sup +/.

  17. Photosystem II functionality in barley responds dynamically to changes in leaf manganese status

    Directory of Open Access Journals (Sweden)

    Sidsel Birkelund Schmidt

    2016-11-01

    Full Text Available A catalytic manganese (Mn cluster is required for the oxidation of water in the oxygen-evolving complex (OEC of photosystem II (PSII in plants. Despite this essential role of Mn in generating the electrons driving photosynthesis, limited information is available on how Mn deficiency affects PSII functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients, non-photochemical quenching and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn deficiency caused dramatic reductions in the quantum yield of PSII and led to the appearance of two new inflection points, the K step and the D dip, in the OJIP fluorescence transients, indicating severe damage to the OEC. In addition, Mn deficiency decreased the ability to induce non-photochemical quenching (NPQ in the light, rendering the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher non-photochemical quenching than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes growing under conditions with mild Mn deficiency.

  18. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    International Nuclear Information System (INIS)

    Brose, K.; Zouni, A.; Müh, F.; Mroginski, M.A.; Maultzsch, J.

    2013-01-01

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A g in the C 2h group is assigned to the β-Car modes ν 66 and ν 67 . Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue

  19. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brose, K., E-mail: katharina.brose@gmx.net [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Zouni, A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Müh, F. [Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz (Austria); Mroginski, M.A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Maultzsch, J. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2013-06-03

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A{sub g} in the C{sub 2h} group is assigned to the β-Car modes ν{sub 66} and ν{sub 67}. Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue.

  20. Photosystem II electron flow as a measure for phytoplankton gross primary production = [Fotosysteem II elektronentransport als een maat voor de bruto primaire produktie van fytoplankton

    NARCIS (Netherlands)

    Geel, C.

    1997-01-01

    Saturating pulse fluorescence measurements, well known from studies of higher plants for determination of photosystem II (PS II) characteristics, were applied to cultures of the green alga Dunaliella teitiolecta (Chapter 2). The actual efficiency of PS IIPS

  1. Photosystem I shows a higher tolerance to sorbitol-induced osmotic stress than photosystem II in the intertidal macro-algae Ulva prolifera (Chlorophyta).

    Science.gov (United States)

    Gao, Shan; Zheng, Zhenbing; Gu, Wenhui; Xie, Xiujun; Huan, Li; Pan, Guanghua; Wang, Guangce

    2014-10-01

    The photosynthetic performance of the desiccation-tolerant, intertidal macro-algae Ulva prolifera was significantly affected by sorbitol-induced osmotic stress. Our results showed that photosynthetic activity decreased significantly with increases in sorbitol concentration. Although the partial activity of both photosystem I (PS I) and photosystem II (PS II) was able to recover after 30 min of rehydration, the activity of PS II decreased more rapidly than PS I. At 4 M sorbitol concentration, the activity of PS II was almost 0 while that of PS I was still at about one third of normal levels. Following prolonged treatment with 1 and 2 M sorbitol, the activity of PS I and PS II decreased slowly, suggesting that the effects of moderate concentrations of sorbitol on PS I and PS II were gradual. Interestingly, an increase in non-photochemical quenching occurred under these conditions in response to moderate osmotic stress, whereas it declined significantly under severe osmotic stress. These results suggest that photoprotection in U. prolifera could also be induced by moderate osmotic stress. In addition, the oxidation of PS I was significantly affected by osmotic stress. P700(+) in the thalli treated with high concentrations of sorbitol could still be reduced, as PS II was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but it could not be fully oxidized. This observation may be caused by the higher quantum yield of non-photochemical energy dissipation in PS I due to acceptor-side limitation (Y(NA)) during rehydration in seawater containing DCMU. © 2014 Scandinavian Plant Physiology Society.

  2. Cyclic Electron Flow around Photosystem I Promotes ATP Synthesis Possibly Helping the Rapid Repair of Photodamaged Photosystem II at Low Light

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2018-02-01

    Full Text Available In higher plants, moderate photoinhibition of photosystem II (PSII leads to a stimulation of cyclic electron flow (CEF at low light, which is accompanied by an increase in the P700 oxidation ratio. However, the specific role of CEF stimulation at low light is not well known. Furthermore, the mechanism underlying this increase in P700 oxidation ratio at low light is unclear. To address these questions, intact leaves of the shade-adapted plant Panax notoginseng were treated at 2258 μmol photons m-2 s-1 for 30 min to induce PSII photoinhibition. Before and after this high-light treatment, PSI and PSII activity, the energy quenching in PSII, the redox state of PSI and proton motive force (pmf at a low light of 54 μmol photons m-2 s-1 were determined at the steady state. After high-light treatment, electron flow through PSII (ETRII significantly decreased but CEF was remarkably stimulated. The P700 oxidation ratio significantly increased but non-photochemical quenching changed negligibly. Concomitantly, the total pmf decreased significantly and the proton gradient (ΔpH across the thylakoid membrane remained stable. Furthermore, the P700 oxidation ratio was negatively correlated with the value of ETRII. These results suggest that upon PSII photoinhibition, CEF is stimulated to increase the ATP synthesis, facilitating the rapid repair of photodamaged PSII. The increase in P700 oxidation ratio at low light cannot be explained by the change in pmf, but is primarily controlled by electron transfer from PSII.

  3. The interaction of quinones, herbicides and bicarbonate with their binding environment at the acceptor side of photosystem II in photosynthesis

    NARCIS (Netherlands)

    Vermaas, W.F.J.

    1984-01-01

    In this thesis experiments are described which are directed towards a further characterization of the interaction of the native bound plastoquinone Q B , artificial quinones, herbicides and bicarbonate with their binding environment at the acceptor side of Photosystem II in

  4. Purification and spectroscopic characterization of photosystem II reaction center complexes isolated with or without Triton X-100.

    NARCIS (Netherlands)

    Eijckelhoff, C.; van Roon, H.; Groot, M.L.; van Grondelle, R.; Dekker, J.P.

    1996-01-01

    The pigment composition of the isolated photosystem II reaction center complex in its most stable and pure form currently is a matter of considerable debate. In this contribution, we present a new method based on a combination of gel filtration chromatography and diode array detection to analyze the

  5. Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, K.; Trinkunas, G.; Hoek, van A.; Croce, R.; Amerongen, van H.

    2008-01-01

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  6. Determination of the excitation migration time in Photosystem II - Consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, Koen; Trinkunas, Gediminas; van Hoek, Arie; Croce, Roberta; van Amerongen, Herbert

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  7. Determination of the excitation migration time in Photosystem II. Consequences for the membrane organization and charge separation parameters

    NARCIS (Netherlands)

    Broess, Koen; Trinkunas, Gediminas; van Hoek, Arie; Croce, Roberta; van Amerongen, Herbert

    The fluorescence decay kinetics of Photosystem II (PSII) membranes from spinach with open reaction centers (RCs), were compared after exciting at 420 and 484 nm. These wavelengths lead to preferential excitation of chlorophyll (Chl) a and Chl b, respectively, which causes different initial

  8. Photosystem II Assembly Steps Take Place in the Thylakoid Membrane of the Cyanobacterium Synechocystis sp PCC6803

    Czech Academy of Sciences Publication Activity Database

    Sealo, T.T.; Zhang, L.; Knoppová, Jana; Komenda, Josef; Norling, B.

    2016-01-01

    Roč. 57, č. 1 (2016), s. 95-104 ISSN 0032-0781 R&D Projects: GA ČR GBP501/12/G055; GA MŠk LO1416 Institutional support: RVO:61388971 Keywords : Aqueous two-phase partitioning * Cyanobacteria * Photosystem II biogenesis Subject RIV: EE - Microbiology, Virology Impact factor: 4.760, year: 2016

  9. Characterization of the alterations of the chlorophyll a fluorescence induction curve after addition of Photosystem II inhibiting herbicides

    NARCIS (Netherlands)

    Hiraki, M.; Rensen, van J.J.S.; Vredenberg, W.J.; Wakabayashi, K.

    2003-01-01

    The effects of Photosystem II inhibiting herbicides, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron), atrazine and two novel 2-benzylamino-1,3,5-triazine compounds, on photosynthetic oxygen evolution and chlorophyll a fluorescence induction were measured in thylakoids isolated from Chenopodium

  10. A modified fluorometric method to quantify the concentration effect (pI50) of photosystem II-inhibiting herbicides

    NARCIS (Netherlands)

    Hiraki, M.; Vredenberg, W.J.; Rensen, van J.J.S.; Wakabayashi, K.

    2004-01-01

    Chlorophyll fluorescence induction curves of isolated thylakoids were measured in the absence and in the presence of various concentrations of photosystem II-inhibiting herbicides. A mathematical program was applied to simulate the curves. Based on these simulated curves a new method is developed to

  11. Perioxidases play important roles in abscisic acid (ABA)-simulating photosystem II (PSII) thermostabilty of apple tree rootstock leaves

    Czech Academy of Sciences Publication Activity Database

    Brestic, M.; Shao, H. B.; Ferus, P.; Malbeck, Jiří

    2011-01-01

    Roč. 10, č. 71 (2011), s. 15891-15900 ISSN 1684-5315 Institutional research plan: CEZ:AV0Z50380511 Keywords : Photosystem II thermostability * antioxidant activity * phytohormones Subject RIV: EF - Botanics Impact factor: 0.573, year: 2010

  12. Cyanobacterial photosystem II at 2.9-A resolution and the role of quinones, lipids, channels and chloride

    NARCIS (Netherlands)

    Guskov, Albert; Kern, Jan; Gabdulkhakov, Azat; Broser, Matthias; Zouni, Athina; Saenger, Wolfram

    Photosystem II (PSII) is a large homodimeric protein-cofactor complex located in the photosynthetic thylakoid membrane that acts as light-driven water:plastoquinone oxidoreductase. The crystal structure of PSII from Thermosynechococcus elongatus at 2.9-A resolution allowed the unambiguous assignment

  13. Degradation and Movement in Soil of the Herbicide Isoproturon Analyzed by a Photosystem II-Based Biosensor

    Czech Academy of Sciences Publication Activity Database

    Malý, Jan; Klem, K.; Lukavská, Alena; Masojídek, Jiří

    2005-01-01

    Roč. 34, - (2005), s. 1780-1788 ISSN 0047-2425 R&D Projects: GA ČR GA522/03/0659; GA MPO FT-TA/089 Institutional research plan: CEZ:AV0Z50200510 Keywords : Photosystem II * Herbicide-detection Subject RIV: EE - Microbiology, Virology Impact factor: 2.121, year: 2005

  14. Does Parmelina tiliacea lichen photosystem II survive at liquid nitrogen temperatures?

    Science.gov (United States)

    Oukarroum, Abdallah; El Gharous, Mohamed; Strasser, Reto J

    2017-02-01

    Parmelina tiliacea lichens kept in the wet and dry state were stored in liquid nitrogen for 1 week and the subsequent recovery of their photosynthetic apparatus was followed. The chlorophyll a fluorescence rise and the maximum quantum yield of primary photochemistry φ Po (F V /F M ) were analysed for this purpose. Storage of wet thalli for 1 week in liquid nitrogen led to an impairment of photosystem II and probably the photosynthetic apparatus as a whole, from which the thalli did not recover over time. Thalli exposed in the dry state thalli were far less affected by the treatment and recovered well. These results indicate that the thalli are extremely tolerant to liquid nitrogen temperatures only in the dry state. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth......, and eventually substantial yield losses. It is well known, that genotypes within plant species differ considerably in tolerance to growth under Mn limiting conditions, a phenomenon designated as Mn efficiency. However, the physiological responses reflecting the underlying mechanisms of Mn efficiency are still...... not fully understood. In this PhD study, a new method for determination and characterization of metal binding in size-fractionated photosynthetic protein complexes from barley thylakoids was established. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two...

  16. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes.

    Science.gov (United States)

    Akhtar, Parveen; Lingvay, Mónika; Kiss, Teréz; Deák, Róbert; Bóta, Attila; Ughy, Bettina; Garab, Győző; Lambrev, Petar H

    2016-04-01

    Light-harvesting complex II (LHCII), the major peripheral antenna of Photosystem II in plants, participates in several concerted mechanisms for regulation of the excitation energy and electron fluxes in thylakoid membranes. In part, these include interaction of LHCII with Photosystem I (PSI) enhancing the latter's absorption cross-section - for example in the well-known state 1 - state 2 transitions or as a long-term acclimation to high light. In this work we examined the capability of LHCII to deliver excitations to PSI in reconstituted membranes in vitro. Proteoliposomes with native plant thylakoid membrane lipids and different stoichiometric ratios of LHCII:PSI were reconstituted and studied by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission from LHCII was strongly decreased in PSI-LHCII membranes due to trapping of excitations by PSI. Kinetic modelling of the time-resolved fluorescence data revealed the existence of separate pools of LHCII distinguished by the time scale of energy transfer. A strongly coupled pool, equivalent to one LHCII trimer per PSI, transferred excitations to PSI with near-unity efficiency on a time scale of less than 10ps but extra LHCIIs also contributed significantly to the effective antenna size of PSI, which could be increased by up to 47% in membranes containing 3 LHCII trimers per PSI. The results demonstrate a remarkable competence of LHCII to increase the absorption cross-section of PSI, given the opportunity that the two types of complexes interact in the membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanism of interaction of Al3+ with the proteins composition of photosystem II.

    Directory of Open Access Journals (Sweden)

    Imed Hasni

    Full Text Available The inhibitory effect of Al3+on photosystem II (PSII electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII. The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K, increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.

  18. Photosystem II function and dynamics in three widely used Arabidopsis thaliana accessions.

    Directory of Open Access Journals (Sweden)

    Lan Yin

    Full Text Available Columbia-0 (Col-0, Wassilewskija-4 (Ws-4, and Landsberg erecta-0 (Ler-0 are used as background lines for many public Arabidopsis mutant collections, and for investigation in laboratory conditions of plant processes, including photosynthesis and response to high-intensity light (HL. The photosystem II (PSII complex is sensitive to HL and requires repair to sustain its function. PSII repair is a multistep process controlled by numerous factors, including protein phosphorylation and thylakoid membrane stacking. Here we have characterized the function and dynamics of PSII complex under growth-light and HL conditions. Ws-4 displayed 30% more thylakoid lipids per chlorophyll and 40% less chlorophyll per carotenoid than Col-0 and Ler-0. There were no large differences in thylakoid stacking, photoprotection and relative levels of photosynthetic complexes among the three accessions. An increased efficiency of PSII closure was found in Ws-4 following illumination with saturation flashes or continuous light. Phosphorylation of the PSII D1/D2 proteins was reduced by 50% in Ws-4 as compared to Col-0 and Ler-0. An increase in abundance of the responsible STN8 kinase in response to HL treatment was found in all three accessions, but Ws-4 displayed 50% lower levels than Col-0 and Ler-0. Despite this, the HL treatment caused in Ws-4 the lagest extent of PSII inactivation, disassembly, D1 protein degradation, and the largest decrease in the size of stacked thylakoids. The dilution of chlorophyll-protein complexes with additional lipids and carotenoids in Ws-4 may represent a mechanism to facilitate lateral protein traffic in the membrane, thus compensating for the lack of a full complement of STN8 kinase. Nevertheless, additional PSII damage occurs in Ws-4, which exceeds the D1 protein synthesis capacity, thus leading to enhanced photoinhibition. Our findings are valuable for selection of appropriate background line for PSII characterization in Arabidopsis

  19. HERBICIDAS INIBIDORES DO FOTOSSISTEMA II – PARTE II / PHOTOSYSTEM II INHIBITOR HERBICIDES - PART

    Directory of Open Access Journals (Sweden)

    ILCA P. DE F. E SILVA

    2013-11-01

    Full Text Available Os herbicidas inibidores do fotossistema II (PSII ligam-se ao sítio da QB localizado na proteína D1 o qual se localiza na membrana dos tilacóides dos cloroplastos, causando, o bloqueia do transporte de elétrons da QA para QB, tendo como consequência, a peroxidação dos lipídios. Os principais fatores que afetam a evolução da resistência de plantas daninhas aos herbicidas têm sido agrupados em: genéticos, bioecológicos e agronômicos. A resistência de plantas daninhas a herbicidas é definida como a habilidade de uma planta sobreviver e reproduzir, após exposição a uma dose de herbicida normalmente letal para um biótipo normal da planta. A seletividade de um herbicida está relacionada à capacidade de eliminar plantas daninhas sem interferir na qualidade da planta de interesse econômico.

  20. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J.; Glatzel, Pieter; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; McQueen, Trevor A.; DiFiore, Dörte; Fry, Alan R.; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W.; Seibert, M. Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Messinger, Johannes; Sauter, Nicholas K.; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2012-01-01

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation. PMID:22665786

  1. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    Directory of Open Access Journals (Sweden)

    Vinay Pathak

    Full Text Available Singlet oxygen (1O2 is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII. Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  2. Heat-induced reorganization of the structure of photosystem II membranes: role of oxygen evolving complex.

    Science.gov (United States)

    Busheva, Mira; Tzonova, Iren; Stoitchkova, Katerina; Andreeva, Atanaska

    2012-12-05

    The sensitivity of the green plants' photosystem II (PSII) to high temperatures is investigated in PSII enriched membranes and in membranes, from which the oxygen evolving complex is removed. Using steady-state 77 K fluorescence and resonance Raman spectroscopy we analyze the interdependency between the temperature-driven changes in structure and energy distribution in the PSII supercomplex. The results show that the heat treatment induces different reduction of the 77 K fluorescence emission in both types of investigated membranes: (i) an additional considerable decrease of the overall fluorescence emission in Tris-washed membranes as compared to the native membranes; (ii) a transition point at 42°C(,) observed only in native membranes; (iii) a sharp reduction of the PSII core fluorescence in Tris-washed membranes at temperatures higher than 50°C; (iv) a 3 nm red-shift of F700 band's maximum in Tris-washed membranes already at 20°C and its further shift by 1 nm at temperature increase. Both treatments intensified their action by increasing the aggregation and dissociation of the peripheral light harvesting complexes. The oxygen-evolving complex, in addition to its main function to produce O(2), increases the thermal stability of PSII core by strengthening the connection between the core and the peripheral antenna proteins and by keeping their structural integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Spectroscopic properties of reaction center pigments in photosystem II core complexes: revision of the multimer model.

    Science.gov (United States)

    Raszewski, Grzegorz; Diner, Bruce A; Schlodder, Eberhard; Renger, Thomas

    2008-07-01

    Absorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g., P(+)Pheo(-),P(+)Q(A)(-),(3)P) are described quantitatively in the framework of exciton theory. In addition, effects are analyzed of site-directed mutations of D1-His(198), the axial ligand of the special-pair chlorophyll P(D1), and D1-Thr(179), an amino-acid residue nearest to the accessory chlorophyll Chl(D1), on the spectral properties of the reaction center pigments. Using pigment transition energies (site energies) determined previously from independent experiments on D1-D2-cytb559 complexes, good agreement between calculated and experimental spectra is obtained. The only difference in site energies of the reaction center pigments in D1-D2-cytb559 and photosystem II core complexes concerns Chl(D1). Compared to isolated reaction centers, the site energy of Chl(D1) is red-shifted by 4 nm and less inhomogeneously distributed in core complexes. The site energies cause primary electron transfer at cryogenic temperatures to be initiated by an excited state that is strongly localized on Chl(D1) rather than from a delocalized state as assumed in the previously described multimer model. This result is consistent with earlier experimental data on special-pair mutants and with our previous calculations on D1-D2-cytb559 complexes. The calculations show that at 5 K the lowest excited state of the reaction center is lower by approximately 10 nm than the low-energy exciton state of the two special-pair chlorophylls P(D1) and P(D2) which form an excitonic dimer. The experimental temperature dependence of the wild-type difference spectra can only be understood in this model if temperature-dependent site energies are assumed for Chl(D1) and P(D1), reducing the above energy gap from 10 to 6 nm upon increasing the temperature from 5 to 300 K. At physiological temperature, there are

  4. Amorphous manganese-calcium oxides as a possible evolutionary origin for the CaMn₄ cluster in photosystem II.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi

    2011-06-01

    In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.

  5. Resistance to the photosystem II herbicide diuron is dominant to sensitivity in the cyanobacterium Synechococcus sp. PCC7942

    OpenAIRE

    Brusslan, Judy; Haselkorn, Robert

    1989-01-01

    The transformable cyanobacterium, Synechococcus sp. PCC7942, was used to study the genetics of resistance to the herbicide diuron. In wild-type cells, diuron binds to one of the core proteins, called D1, of photosystem II reaction centres. This binding prevents the transfer of electrons from QA, the primary quinone acceptor, to QB, which is necessary to create the charge separation that drives ATP synthesis. A single amino acid substitution in the D1 protein reduces diuron binding and confers...

  6. Subunit Organization of a Synechocystis Hetero-Oligomeric Thylakoid FtsH Complex Involved in Photosystem II Repair

    Czech Academy of Sciences Publication Activity Database

    Boehm, M.; Yu, J.; Krynická, Vendula; Barker, M.; Tichý, Martin; Komenda, Josef; Nixon, P. J.; Nield, J.

    2012-01-01

    Roč. 24, č. 9 (2012), s. 3669-3683 ISSN 1040-4651 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0110; GA ČR GBP501/12/G055 Institutional support: RVO:61388971 Keywords : photosystem II * FtsH metalloproteases * subunit Subject RIV: EE - Microbiology, Virology Impact factor: 9.251, year: 2012

  7. Photosystem II Photochemistry and Phycobiliprotein of the Red Algae Kappaphycus alvarezii and Their Implications for Light Adaptation

    OpenAIRE

    Guan, Xiangyu; Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng

    2013-01-01

    Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ -carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (I k ) of this algal species was less than 115  μ mol m−2 s−1. Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200  μ mol m−2 s−1. Under dim light, yield II declined at first and then increas...

  8. The role of calcium in the oxygen evolving center of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Latimer, Matthew John [Univ. of California, Berkeley, CA (United States)

    1995-05-01

    The photosynthetic oxygen evolving complex (OEC) contains a cluster of four manganese atoms and requires both Ca and Cl for activity. Ca can be replaced by Sr with retention of activity. The role of Ca in the OEC has been investigated by performing Mn X-ray absorption experiments on Ca-depleted samples of photosystem II (PS II) and on PS II samples depleted of Ca and reconstituted by either Ca or Sr. Mn X-ray K-edge spectra exhibit no significant differences in oxidation state or symmetry between Ca- and Sr-reactivated preparations, but differences are observed in the extended X-ray absorption fine structure (EXAFS). The amplitude of a Fourier transform peak arising from scatterers at distances greater than 3 A is larger for samples reactivated with strontium relative to calcium. Curve-fitting analyses of the EXAFS data using FEFF 5-calculated parameters favor a model where both manganese and calcium (or strontium) scatterers contribute to the ~3 Å Fourier peak (Mn-Mn at 3.3Å and Mn-Ca(Sr) at 3.4--3.5 Å). Possible structural arrangements for a calcium binding site are discussed. Analysis of Mn K-edge spectra from Ca-depleted samples in the S1, S2, and S3 states shows an edge shift on the S1-S2 transition, but no edge shift on the S2-S3 transition, supporting a model where the oxidizing equivalent from the S2 to S3 transition is stored on a ligand or nearby protein residue rather than on the Mn cluster. Parallels between Ca-depleted and native samples are discussed.

  9. Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities.

    Science.gov (United States)

    Vinyard, David J; Gimpel, Javier; Ananyev, Gennady M; Mayfield, Stephen P; Dismukes, G Charles

    2014-03-12

    The D1 protein of Photosystem II (PSII) provides most of the ligating amino acid residues for the Mn4CaO5 water-oxidizing complex (WOC) and half of the reaction center cofactors, and it is present as two isoforms in the cyanobacterium Synechococcus elongatus PCC 7942. These isoforms, D1:1 and D1:2, confer functional advantages for photosynthetic growth at low and high light intensities, respectively. D1:1, D1:2, and seven point mutations in the D1:2 background that are native to D1:1 were expressed in the green alga Chlamydomonas reinhardtii. We used these nine strains to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions (where charge recombination is significant) have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period. Conversely, these same strains under light saturation (where charge recombination does not compete) confer a correspondingly faster O2 evolution rate and greater protection against photoinhibition. Taken together, the data clearly establish that PSII primary charge separation is a trade-off between photochemical productivity (water oxidation and plastoquinone reduction) and charge recombination (photoprotection). These trade-offs add up to a significant growth advantage for the two natural isoforms. These insights provide fundamental design principles for engineering of PSII reaction centers with optimal photochemical efficiencies for growth at low versus high light intensities.

  10. Plants lacking the main light-harvesting complex retain photosystem II macro-organization.

    Science.gov (United States)

    Ruban, A V; Wentworth, M; Yakushevska, A E; Andersson, J; Lee, P J; Keegstra, W; Dekker, J P; Boekema, E J; Jansson, S; Horton, P

    2003-02-06

    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure-the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes-which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function.

  11. Artificial Photosystem I and II: Highly Selective solar fuels and tandem photocatalysis

    Science.gov (United States)

    Ding, Yuchen; Castellanos, Ignacio; Cerkovnik, Logan; Nagpal, Prashant

    2014-03-01

    Artificial photosynthesis, or generation of solar fuels from CO2/H2O, can provide an important alternative for rising CO2 emission and renewable energy generation. In our recent work, composite photocatalysts (CPCs) made from widebandgap nanotubes and different QDs were used to mimic Photosystem II (PS680) and I (PS700), respectively. By tuning the redox potentials using the size, composition and energy band alignment of QDs, we demonstrate highly selective (>90%) and efficient production of ethane, ethanol and acetaldehyde as solar fuels with different wavelengths of light. We also show that this selectivity is a result of precise energy band alignments (using cationic/anionic doping of nanotubes, QD size etc.), confirmed using measurements of electronic density of states, and alignment of higher redox potentials with hot-carriers can also lead to hot-carrier photocatalysis. This wavelength-selective CPCs can have important implications for inexpensive production of solar fuels including alkanes, alcohols, aldehydes and hydrogen, and making tandem structures (red, green, blue) with three CPCs, allowing almost full visible spectrum (410 ~ 730nm) utilization with different fuels produced simultaneously.

  12. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1987-01-01

    Thylakoid membranes were phosphorylated with [γ- 32 P]ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed

  13. Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures.

    Science.gov (United States)

    Ibrahim, Mohamed; Chatterjee, Ruchira; Hellmich, Julia; Tran, Rosalie; Bommer, Martin; Yachandra, Vittal K; Yano, Junko; Kern, Jan; Zouni, Athina

    In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup that requires microcrystals less than 40 μ m in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5Å, using crystals grown without the micro seeding approach, to 4.5Å using crystals generated with the new method.

  14. Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures

    International Nuclear Information System (INIS)

    Ibrahim, Mohamed; Yachandra, Vittal K.; Yano, Junko; Kern, Jan; Zouni, Athina; Technische Univ. Berlin

    2015-01-01

    In photosynthesis, photosystem II (PSII) is the multi-subunit membrane protein complex that catalyzes photo-oxidation of water into dioxygen through the oxygen evolving complex (OEC). To understand the water oxidation reaction, it is important to get structural information about the transient and intermediate states of the OEC in the dimeric PSII core complex (dPSIIcc). In recent times, femtosecond X-ray pulses from the free electron laser (XFEL) are being used to obtain X-ray diffraction (XRD) data of dPSIIcc microcrystals at room temperature that are free of radiation damage. In our experiments at the XFEL, we used an electrospun liquid microjet setup that requires microcrystals less than 40 μm in size. In this study, we explored various microseeding techniques to get a high yield of monodisperse uniform-sized microcrystals. Monodisperse microcrystals of dPSIIcc of uniform size were a key to improve the stability of the jet and the quality of XRD data obtained at the XFEL. This was evident by an improvement of the quality of the datasets obtained, from 6.5 Å, using crystals grown without the micro seeding approach, to 4.5 Å using crystals generated with the new method

  15. Acute and additive toxicity of ten photosystem-II herbicides to seagrass.

    Science.gov (United States)

    Wilkinson, Adam D; Collier, Catherine J; Flores, Florita; Negri, Andrew P

    2015-11-30

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/F(m)') by 50% at concentrations ranging from 3.5 μg l(-1) (ametryn) to 132 μg l(-1) (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/F(m)'.

  16. Acute and additive toxicity of ten photosystem-II herbicides to seagrass

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Negri, Andrew P.

    2015-11-01

    Photosystem II herbicides are transported to inshore marine waters, including those of the Great Barrier Reef, and are usually detected in complex mixtures. These herbicides inhibit photosynthesis, which can deplete energy reserves and reduce growth in seagrass, but the toxicity of some of these herbicides to seagrass is unknown and combined effects of multiple herbicides on seagrass has not been tested. Here we assessed the acute phytotoxicity of 10 PSII herbicides to the seagrass Halophila ovalis over 24 and/or 48 h. Individual herbicides exhibited a broad range of toxicities with inhibition of photosynthetic activity (∆F/Fm‧) by 50% at concentrations ranging from 3.5 μg l-1 (ametryn) to 132 μg l-1 (fluometuron). We assessed potential additivity using the Concentration Addition model of joint action for binary mixtures of diuron and atrazine as well as complex mixtures of all 10 herbicides. The effects of both mixture types were largely additive, validating the application of additive effects models for calculating the risk posed by multiple PSII herbicides to seagrasses. This study extends seagrass ecotoxicological data to ametryn, metribuzin, bromacil, prometryn and fluometuron and demonstrates that low concentrations of PSII herbicide mixtures have the potential to impact ecologically relevant endpoints in seagrass, including ∆F/Fm‧.

  17. Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris

    International Nuclear Information System (INIS)

    Savitch, L.V.; Maxwell, D.P.; Huner, N.P.A.

    1996-01-01

    Chlorella vulgaris grown at 5 degrees C/150 micromoles m -2 s -1 mimics cells grown under high irradiance (27 degrees C/2200 micromoles m -2 s -1 ). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feedback mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6 phosphate and sucrose/starch indicated that cells grown at 27 degrees C/2200 micromoles m -2 s -1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5 degrees C/150 micromoles-1 m -2 s -1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feedback on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed

  18. HERBICIDAS INIBIDORES DO FOTOSSISTEMA II – PARTE I /\tPHOTOSYSTEM II INHIBITOR HERBICIDES - PART I

    Directory of Open Access Journals (Sweden)

    ILCA P. DE F. E SILVA

    2013-11-01

    Full Text Available O controle químico tem sido o mais utilizado em grandes áreas de plantio, principalmente por ser um método rápido e eficiente. Os herbicidas inibidores do fotossistema II (PSII são fundamentais para o manejo integrado de plantas daninhas e práticas conservacionista de solo. A aplicação é realizada em pré-emergência ou pós-emergência inicial das plantas daninhas. A absorção é pelas raízes, tendo como barreira as estrias de Caspari, sendo a translocação realizada pelo xilema. O processo de absorção e translocação também são dependentes das próprias características do produto, como as propriedades lipofílicas e hidrofílicas, as quais podem ser medidas através do coeficiente de partição octanol-água (Kow. A inibição da fotossíntese acontece pela ligação dos herbicidas deste grupo ao sítio de ligação da QB, na proteína D1 do fotossistema II, o qual se localiza na membrana dos tilacóides dos cloroplastos, causando, o bloqueia do transporte de elétrons da QA para QB, interrompendo a fixação do CO2 e a produção de ATP e NAPH2.

  19. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Jibiao eFan

    2015-11-01

    Full Text Available As a typical warm-season grass, Bermudagrass [Cynodon dactylon (L.Pers.] is widely applied in turf systems and animal husbandry. However, cold temperature is a key factor limiting resource utilization for Bermudagrass. Therefore, it is relevant to study the mechanisms by which Burmudagrass responds to cold. Melatonin is a crucial animal and plant hormone that is responsible for plant abiotic stress responses. The objective of this study was to investigate the role of melatonin in cold stress response of Bermudagrass. Wild Bermudagrass pre-treated with 100 μM melatonin was subjected to different cold stress treatments (-5 °C for 8 h with or without cold acclimation. The results showed lower malondialdehyde (MDA and electrolyte leakage (EL values, higher levels of chlorophyll, and greater superoxide dismutase and peroxidase activities after melatonin treatment than those in non-melatonin treatment under cold stress. Analysis of chlorophyll a revealed that the chlorophyll fluorescence transient (OJIP curves were higher after treatment with melatonin than that of non-melatonin treated plants under cold stress. The values of photosynthetic fluorescence parameters increased after treatment with melatonin under cold stress. The analysis of metabolism showed alterations in 46 metabolites in cold-stressed plants after melatonin treatment. Among the measured metabolites, five sugars (arabinose, mannose, glucopyranose, maltose, turanose and one organic acid (propanoic acid were significantly increased. However, valine and threonic acid contents were reduced in melatonin-treated plants. In summary, melatonin maintained cell membrane stability, increased antioxidant enzymes activities, improved the process of photosystem II, and induced alterations in Bermudagrass metabolism under cold stress.

  20. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: lessons from simple models.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi

    2011-01-01

    The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Variations in constitutive and inducible UV-B tolerance; dissecting photosystem II protection in Arabidopsis thaliana accessions.

    Science.gov (United States)

    Jansen, Marcel A K; Martret, Bénedicte Le; Koornneef, Maarten

    2010-01-01

    The rise in ultraviolet-B (UV-B) (280-315 nm) radiation levels, that is a consequence of stratospheric ozone layer depletion, has triggered extensive research on the effects of UV-B on plants. Plants raised under natural sunlight conditions are generally well protected from the potentially harmful effects of UV-B radiation. However, it is mostly unknown to which extent UV protection is constitutive and/or induced. In this study, we have analysed the role of constitutive and inducible protection responses in avoiding UV-B damage to photosystem II of photosynthesis. We have assayed the UV susceptibility of photosystem II in 224 Arabidopsis thaliana accessions from across the Northern hemisphere, and found a continuum of constitutive UV-protection levels, with some accessions being UV sensitive and others UV tolerant. Statistical analysis showed only very weak associations between constitutive UV tolerance and the geographic origin of accessions. Instead, most of the variance in constitutive UV-B protection of photosynthesis is present at the level of local Arabidopsis populations originating in the same geographic and climatic area. The variance in constitutive UV protection is, however, small compared to the amplitude of environmentally induced changes in UV protection. Thus, our data emphasise the importance of inducible responses for the protection of photosystem II against UV-B. Remarkably, the conditions that induce UV-protective responses vary; accessions from lower latitudes were found to switch-on UV defences more readily than those of higher latitudes. Such altered regulation of induction may comprise a suitable adaptation response when levels of a stressor are fluctuating in the short term, but predictable over longer periods.

  2. Discovery of a Chllorophyll Binding Protein Complex Involved in the Early Steps of Photosystem II Assembly in Synechocystis

    Czech Academy of Sciences Publication Activity Database

    Knoppová, Jana; Sobotka, Roman; Tichý, Martin; Jianfeng, Yu; Koník, P.; Halada, Petr; Nixon, P. J.; Komenda, Josef

    2014-01-01

    Roč. 26, č. 4 (2014), s. 1200-1212 ISSN 1040-4651 R&D Projects: GA ČR P501/11/0377; GA MŠk ED2.1.00/03.0110 Grant - others:UK Biotechnology and Biological Sciences Research Council(GB) BB/F020554/1; UK Biotechnology and Biological Sciences Research Council(GB) BB/L003260/1; Magistrát hl. m. Prahy(CZ) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Synechocystis * photosystem II * assembly * proteins Subject RIV: EE - Microbiology, Virology Impact factor: 9.338, year: 2014

  3. Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy

    International Nuclear Information System (INIS)

    Gelzinis, Andrius; Valkunas, Leonas; Abramavicius, Darius; Fuller, Franklin D; Ogilvie, Jennifer P; Mukamel, Shaul

    2013-01-01

    We propose an optimized tight-binding electron–hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments. (paper)

  4. Tight-binding model of the photosystem II reaction center: application to two-dimensional electronic spectroscopy

    Science.gov (United States)

    Gelzinis, Andrius; Valkunas, Leonas; Fuller, Franklin D.; Ogilvie, Jennifer P.; Mukamel, Shaul; Abramavicius, Darius

    2013-07-01

    We propose an optimized tight-binding electron-hole model of the photosystem II (PSII) reaction center (RC). Our model incorporates two charge separation pathways and spatial correlations of both static disorder and fast fluctuations of energy levels. It captures the main experimental features observed in time-resolved two-dimensional (2D) optical spectra at 77 K: peak pattern, lineshapes and time traces. Analysis of 2D spectra kinetics reveals that specific regions of the 2D spectra of the PSII RC are sensitive to the charge transfer states. We find that the energy disorder of two peripheral chlorophylls is four times larger than the other RC pigments.

  5. The evolutionary pathway from anoxygenic to oxygenic photosynthesis examined by comparison of the properties of photosystem II and bacterial reaction centers.

    Science.gov (United States)

    Allen, J P; Williams, J C

    2011-01-01

    In photosynthetic organisms, such as purple bacteria, cyanobacteria, and plants, light is captured and converted into energy to create energy-rich compounds. The primary process of energy conversion involves the transfer of electrons from an excited donor molecule to a series of electron acceptors in pigment-protein complexes. Two of these complexes, the bacterial reaction center and photosystem II, are evolutionarily related and structurally similar. However, only photosystem II is capable of performing the unique reaction of water oxidation. An understanding of the evolutionary process that lead to the development of oxygenic photosynthesis can be found by comparison of these two complexes. In this review, we summarize how insight is being gained by examination of the differences in critical functional properties of these complexes and by experimental efforts to alter pigment-protein interactions of the bacterial reaction center in order to enable it to perform reactions, such as amino acid and metal oxidation, observable in photosystem II.

  6. Ascorbic Acid Alleviates Damage from Heat Stress in the Photosystem II of Tall Fescue in Both the Photochemical and Thermal Phases

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2017-08-01

    Full Text Available L-Ascorbate (Asc plays important roles in plant development, hormone signaling, the cell cycle and cellular redox system, etc. The higher content of Asc in plant chloroplasts indicates its important role in the photosystem. The objective of this study was to study the roles of Asc in tall fescue leaves against heat stress. After a heat stress treatment, we observed a lower value of the maximum quantum yield for primary photochemistry (φPo, which reflects the inhibited activity of the photochemical phase of photosystem II (PSII. Moreover, we observed a higher value of efficiency of electron transfer from QB to photosystem I acceptors (δR0, which reflects elevated activity of the thermal phase of the photosystem of the tall fescue. The addition of Asc facilitate the behavior of the photochemical phase of the PSII by lowering the ROS content as well as that of the alternative electron donor to provide electron to the tyrosine residue of the D1 protein. Additionally, exogenous Asc reduces the activity of the thermal phase of the photosystem, which could contribute to the limitation of energy input into the photosystem in tall fescue against heat stress. Synthesis of the Asc increased under heat stress treatment. However, under heat stress this regulation does not occur at the transcription level and requires further study.

  7. Field-acclimated Gossypium hirsutum cultivars exhibit genotypic and seasonal differences in photosystem II thermostability.

    Science.gov (United States)

    Snider, John L; Oosterhuis, Derrick M; Collins, Guy D; Pilon, Cristiane; Fitzsimons, Toby R

    2013-03-15

    Previous investigations have demonstrated that photosystem II (PSII) thermostability acclimates to prior exposure to heat and drought, but contrasting results have been reported for cotton (Gossypium hirsutum). We hypothesized that PSII thermotolerance in G. hirsutum would acclimate to environmental conditions during the growing season and that there would be differences in PSII thermotolerance between commercially-available U.S. cultivars. To this end, three cotton cultivars were grown under dryland conditions in Tifton Georgia, and two under irrigated conditions in Marianna Arkansas. At Tifton, measurements included PSII thermotolerance (T15, the temperature causing a 15% decline in maximum quantum yield), leaf temperatures, air temperatures, midday (1200 to 1400h) leaf water potentials (ΨMD), leaf-air vapor pressure deficit (VPD), actual quantum yield (ΦPSII) and electron transport rate through PSII (ETR) on three sample dates. At Marianna, T15 was measured on two sample dates. Optimal air and leaf temperatures were observed on all sample dates in Tifton, but PSII thermotolerance increased with water deficit conditions (ΨMD=-3.1MPa), and ETR was either unaffected or increased under water-stress. Additionally, T15 for PHY 499 was ∼5°C higher than for the other cultivars examined (DP 0912 and DP 1050). The Marianna site experienced more extreme high temperature conditions (20-30 days Tmax≥35°C), and showed an increase in T15 with higher average Tmax. When average T15 values for each location and sample date were plotted versus average daily Tmax, strong, positive relationships (r(2) from .954 to .714) were observed between Tmax and T15. For all locations T15 was substantially higher than actual field temperature conditions. We conclude that PSII thermostability in G. hirsutum acclimates to pre-existing environmental conditions; PSII is extremely tolerant to high temperature and water-deficit stress; and differences in PSII thermotolerance exist between

  8. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenchuan [Univ. of California, Berkeley, CA (United States)

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S2 state with the g~4 electron paramagnetic resonance (EPR) signal (S2-g4 state) was compared with that in the S2 state with multiline signal (S2-MLS state) and the S1 state. The S2-g4 state has a higher XAS inflection point energy than that of the S1 state, indicating the oxidation of Mn in the advance from the S1 to the S2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S2-g4 state is different from that in the S2-MLS or the S1 state. In the S2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S1 or S2-MLS states. The third shell of the S2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S2-MLS or the S1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S1 → S2 transition.

  9. 'Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere'.

    Science.gov (United States)

    Barber, James

    2016-01-01

    About 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of reducing equivalents needed to convert carbon dioxide into the organic molecules of life while at the same time produced oxygen to transform our planetary atmosphere from an anaerobic to an aerobic state. The enzyme which facilitates this reaction and therefore underpins virtually all life on our planet is known as Photosystem II (PSII). It is a pigment-binding, multisubunit protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Today we have detailed understanding of the structure and functioning of this key and unique enzyme. The journey to this level of knowledge can be traced back to the discovery of oxygen itself in the 18th-century. Since then there has been a sequence of mile stone discoveries which makes a fascinating story, stretching over 200 years. But it is the last few years that have provided the level of detail necessary to reveal the chemistry of water oxidation and O-O bond formation. In particular, the crystal structure of the isolated PSII enzyme has been reported with ever increasing improvement in resolution. Thus the organisational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino-acid side chains, of which seven provide direct ligands to the metals. The metal cluster is organised as a cubane structure composed of three Mn ions and a Ca2+ linked by oxo-bonds with the fourth Mn ion attached to the cubane. This structure has now been synthesised in a non-protein environment suggesting that it is a totally

  10. Crystallization and preliminary crystallographic characterization of the extrinsic PsbP protein of photosystem II from Spinacia oleracea

    International Nuclear Information System (INIS)

    Kohoutová, J.; Kutá Smatanová, I.; Brynda, J.; Lapkouski, M.; Revuelta, J. L.; Arellano, J. B.; Ettrich, R.

    2009-01-01

    Degradation-free crystalization of thrombin-digested recombinant His-tagged PsbP protein of photosystem II from Spinacia oleracea resulting in crystals diffracting to 2.06 Å. Preliminary X-ray diffraction analysis of the extrinsic PsbP protein of photosystem II from spinach (Spinacia oleracea) was performed using N-terminally His-tagged recombinant PsbP protein overexpressed in Escherichia coli. Recombinant PsbP protein (thrombin-digested recombinant His-tagged PsbP) stored in bis-Tris buffer pH 6.00 was crystallized using the sitting-drop vapour-diffusion technique with PEG 550 MME as a precipitant and zinc sulfate as an additive. SDS–PAGE analysis of a dissolved crystal showed that the crystals did not contain the degradation products of recombinant PsbP protein. PsbP crystals diffracted to 2.06 Å resolution in space group P2 1 2 1 2 1 , with unit-cell parameters a = 38.68, b = 46.73, c = 88.9 Å

  11. Heat stress and recovery of photosystem II efficiency in wheat (Triticum aestivum L.) cultivars acclimated to different growth temperatures

    DEFF Research Database (Denmark)

    Haque, Sabibul; Kjær, Katrine Heinsvig; Rosenqvist, Eva

    2014-01-01

    The effect of heat stress on photosystem II (PS II) efficiency and post-stress recovery was studied in four wheat cultivars using chlorophyll fluorescence. The main aim was to examine the cultivar differences in relation to inhibition and recovery of PSII functionality after heat stress...... and 25 °C) and subjected to heat stress (40 °C) for two days at early tillering and three days at anthesis and early grain development stages. The plants were returned to their original growth conditions after heat stress and recovery was observed for three days. The maximum photochemical efficiency (Fv...... heat tolerance characteristics as compared to the other three cultivars. The largest decrease in Fv/Fm and F′q/F′m after heat stress occurred in the cultivar PWS7, which did not recover completely after 72 h. All cultivars grown at 25 °C had a slightly increased heat tolerance and better recovery...

  12. Femtosecond visible/visible and visible/mid-IR pump-probe study of the photosystem II core antenna complex CP47

    NARCIS (Netherlands)

    Groot, M.L.; Breton, J.; van Wilderen, L.; Dekker, J.P.; van Grondelle, R.

    2004-01-01

    CP47 is one of the two core antenna proteins of Photosystem II involved in the transfer of solar energy toward the photochemically active reaction center, the D1D2cytb559 complex. We have performed vis/vis and vis/mid-IR pump-probe experiments at room temperature as a first step in linking the

  13. Induction of Efficient Energy Dissipation in the Isolated Light-harvesting Complex of Photosystem II in the Absence of Protein Aggregation

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Horton, P.; Ruban, A.V.

    2008-01-01

    Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by

  14. Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Andrizhiyevskaya, E.G.; Dekker, J.P.; van Grondelle, R.

    2005-01-01

    We model the dynamics of energy transfer and primary charge separation in isolated photosystem II (PSII) reaction centers. Different exciton models with specific site energies of the six core pigments and two peripheral chlorophylls (Chls) in combination with different charge transfer schemes have

  15. Photosynthetic alterations of pea leaves infected systemically by pea enation mosaic virus: A coordinated decrease in efficiencies of CO(2) assimilation and photosystem II photochemistry

    Czech Academy of Sciences Publication Activity Database

    Kyseláková, H.; Prokopová, J.; Nauš, J.; Novák, Ondřej; Navrátil, M.; Šafářová, D.; Špundová, M.; Ilík, P.

    2011-01-01

    Roč. 49, č. 11 (2011), s. 1279-1289 ISSN 0981-9428 R&D Projects: GA ČR GA301/08/1649; GA MŠk ED0007/01/01 Keywords : Chlorophyll fluorescence * Pea enation mosaic virus * Pea * Photosynthesis * Photosystem II * Senescence Subject RIV: EF - Botanics Impact factor: 2.838, year: 2011

  16. The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp. PCC 6803, during Photosystem II assembly and repair

    Directory of Open Access Journals (Sweden)

    Anna eRast

    2016-05-01

    Full Text Available The assembly and repair of photosystem II (PSII is facilitated by a variety of assembly factors. Among those, the tetratricopeptide repeat (TPR protein Slr0151 from Synechocystis sp. PCC 6803 (hereafter Synechocystis has previously been assigned a repair function under high light conditions (Yang et al., 2014, J. Integr. Plant Biol. 56, 1136-50. Here, we show that inactivation of Slr0151 affects thylakoid membrane ultrastructure even under normal light conditions. Moreover, the level and localization of Slr0151 are affected in a variety of PSII-related mutants. In particular, the data suggest a close functional relationship between Slr0151 and Sll0933, which interacts with Ycf48 during PSII assembly and is homologous to PAM68 in Arabidopsis thaliana. Immunofluorescence analysis revealed a punctate distribution of Slr0151 within several different membrane types in Synechocystis cells.

  17. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit.

    Science.gov (United States)

    Lima, J V; Lobato, A K S

    2017-01-01

    Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in Φ PSII , q P and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N , E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a , Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a , Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in Φ PSII , q P and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea

  18. A fluorescence detected magnetic resonance investigation of the carotenoid triplet states associated with Photosystem II of isolated spinach thylakoid membranes

    CERN Document Server

    Santabarbara, S; Carbonera, D; Heathcote, P

    2005-01-01

    The carotenoid triplet populations associated with the fluorescence emission chlorophyll forms of Photosystem II have been investigated in isolated spinach thylakoid membranes by means of fluorescence detected magnetic resonance in zero field (FDMR). The spectra collected in the 680-690 nm emission range, have been fitted by a global analysis procedure. At least five different carotenoid triplet states coupled to the terminal emitting chlorophyll forms of PS II, peaking at 682 nm, 687 nm and 692 nm, have been characterised. The triplets associated with the outer antenna emission forms, at 682 nm, have zero field splitting parameters D = 0.0385 cm/sup -1/, E = 0.00367 cm/sup -1/; D = 0.0404 cm/sup -1/, E = 0.00379 cm/sup -1/ and D = 0.0386 cm/sup -1/, E = 0.00406 cm/sup -1/ which are very similar to those previously reported for the xanthophylls of the isolated LHC II complex. Therefore the FDMR spectra recorded in this work provide insights into the organisation of the LHC II complex in the unperturbed enviro...

  19. Photosystem II Photochemistry and Phycobiliprotein of the Red Algae Kappaphycus alvarezii and Their Implications for Light Adaptation

    Directory of Open Access Journals (Sweden)

    Xiangyu Guan

    2013-01-01

    Full Text Available Photosystem II photochemistry and phycobiliprotein (PBP genes of red algae Kappaphycus alvarezii, raw material of κ-carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (Ik of this algal species was less than 115 μmol m−2 s−1. Its actual PSII efficiency (yield II increased when light intensity enhanced and decreased when light intensity reached 200 μmol m−2 s−1. Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption.

  20. Photosystem II photochemistry and phycobiliprotein of the red algae Kappaphycus alvarezii and their implications for light adaptation.

    Science.gov (United States)

    Guan, Xiangyu; Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng

    2013-01-01

    Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ -carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (I k) of this algal species was less than 115 μmol m(-2) s(-1). Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200 μmol m(-2) s(-1). Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption.

  1. Low-energy absorption and luminescence of higher plant photosystem II core samples

    International Nuclear Information System (INIS)

    Hughes, Joseph L.; Smith, Paul J.; Pace, Ron J.; Krausz, Elmars

    2007-01-01

    The charge-separating state of PSII has been recently assigned as a homogeneously broadened band peaking at 705 nm. The possibility of observing emission due to luminescence from the charge-separating state was investigated. Emission from the charge-separating state is predicted to be both broad and substantially Stokes shifted. Our PSII cores show an easily observable and broad emission peaking near 735 nm when excited at 707 nm and beyond for temperatures below 100 K as well as the well-known F685 and F695 nm emission when excited at 633 nm. However, the 735 nm emission bears a close correspondence to that previously reported for the light harvesting pigment of photosystem I (PSI), LHCI-730, and we attribute our observed emission to a minor contamination of our sample with this protein. High sensitivity circular dichroism (CD) spectra establish that LHCI and/or PSI contamination of our samples does not contribute significantly to the absorption seen in the 700-730 nm region. Furthermore, systematic illumination-induced absorption changes seen in this region are shown to quantitatively track with charge separation and the subsequent secondary acceptor plastoquinone (Q A ) acceptor anion formation. These results confirm that absorption in the 700-730 nm region is associated with the reaction centre of active PSII

  2. Loss of Functional Photosystem II Reaction Centres in Zooxanthellae of Corals Exposed to Bleaching Conditions: Using Fluorescence Rise Kinetics.

    Science.gov (United States)

    Hill, R; Larkum, A W D; Frankart, C; Kühl, M; Ralph, P J

    2004-01-01

    Mass coral bleaching is linked to elevated sea surface temperatures, 1-2 degrees C above average, during periods of intense light. These conditions induce the expulsion of zooxanthellae from the coral host in response to photosynthetic damage in the algal symbionts. The mechanism that triggers this release has not been clearly established and to further our knowledge of this process, fluorescence rise kinetics have been studied for the first time. Corals that were exposed to elevated temperature (33 degrees C) and light (280 mumol photons m(-2) s(-1)), showed distinct changes in the fast polyphasic induction of chlorophyll-a fluorescence, indicating biophysical changes in the photochemical processes. The fluorescence rise over the first 2000ms was monitored in three species of corals for up to 8 h, with a PEA fluorometer and an imaging-PAM. Pocillopora damicornis showed the least impact on photosynthetic apparatus, while Acropora nobilis was the most sensitive, with Cyphastrea serailia intermediate between the other two species. A. nobilis showed a remarkable capacity for recovery from bleaching conditions. For all three species, a steady decline in the slope of the initial rise and the height of the J-transient was observed, indicating the loss of functional Photosystem II (PS II) centres under elevated-temperature conditions. A significant loss of PS II centres was confirmed by a decline in photochemical quenching when exposed to bleaching stress. Non-photochemical quenching was identified as a significant mechanism for dissipating excess energy as heat under the bleaching conditions. Photophosphorylation could explain this decline in PS II activity. State transitions, a component of non-photochemical quenching, was a probable cause of the high non-photochemical quenching during bleaching and this mechanism is associated with the phosphorylation-induced dissociation of the light harvesting complexes from the PS II reaction centres. This reversible process may

  3. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation.

    Science.gov (United States)

    Wagner, Heiko; Jakob, Torsten; Lavaud, Johann; Wilhelm, Christian

    2016-05-01

    Alternative electron sinks are an important regulatory mechanism to dissipate excessively absorbed light energy particularly under fast changing dynamic light conditions. In diatoms, the cyclic electron transport (CET) around Photosystem II (PS II) is an alternative electron transport pathway (AET) that contributes to avoidance of overexcitation under high light illumination. The combination of nitrogen limitation and high-intensity irradiance regularly occurs under natural conditions and is expected to force the imbalance between light absorption and the metabolic use of light energy. The present study demonstrates that under N limitation, the amount of AET and the activity of CETPSII in the diatom Phaeodactylum tricornutum were increased. Thereby, the activity of CETPSII was linearly correlated with the amount of AET rates. It is concluded that CETPSII significantly contributes to AET in P. tricornutum. Surprisingly, CETPSII was found to be activated already at the end of the dark period under N-limited conditions. This coincided with a significantly increased degree of reduction of the plastoquinone (PQ) pool. The analysis of the macromolecular composition of cells of P. tricornutum under N-limited conditions revealed a carbon allocation in favor of carbohydrates during the light period and their degradation during the dark phase. A possible linkage between the activity of CETPSII and degree of reduction of the PQ pool on the one side and the macromolecular changes on the other is discussed.

  4. Combined effect of diuron and simazine on photosystem II photochemistry in a sandy soil and soil amended with solid olive-mill waste.

    Science.gov (United States)

    Redondo-Gómez, Susana; Cox, Lucía; Cornejo, Juan; Figueroa, Enrique

    2007-01-01

    Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.

  5. The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during Photosystem II repair in Synechocystis sp

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Tichý, Martin; Prášil, Ondřej; Knoppová, Jana; Kuviková, Stanislava; de Vries, R.; Nixon, P. J.

    2007-01-01

    Roč. 19, - (2007), s. 2839-2854 ISSN 1040-4651 R&D Projects: GA MŠk LN00A141; GA ČR GA203/04/0800; GA ČR GA206/06/0322 Institutional research plan: CEZ:AV0Z50200510 Keywords : photosystem II * cyanobacterium * synechocystis sp. pcc 6803 Subject RIV: EE - Microbiology, Virology Impact factor: 9.653, year: 2007

  6. Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available We studied the interactive effects of pCO(2 and growth light on the coastal marine diatom Thalassiosira pseudonana CCMP 1335 growing under ambient and expected end-of-the-century pCO(2 (750 ppmv, and a range of growth light from 30 to 380 µmol photons·m(-2·s(-1. Elevated pCO(2 significantly stimulated the growth of T. pseudonana under sub-saturating growth light, but not under saturating to super-saturating growth light. Under ambient pCO(2 susceptibility to photoinactivation of photosystem II (σ(i increased with increasing growth rate, but cells growing under elevated pCO(2 showed no dependence between growth rate and σ(i, so under high growth light cells under elevated pCO(2 were less susceptible to photoinactivation of photosystem II, and thus incurred a lower running cost to maintain photosystem II function. Growth light altered the contents of RbcL (RUBISCO and PsaC (PSI protein subunits, and the ratios among the subunits, but there were only limited effects on these and other protein pools between cells grown under ambient and elevated pCO(2.

  7. Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series.

    Science.gov (United States)

    Marchand, Lilian; Lamy, Pierre; Bert, Valerie; Quintela-Sabaris, Celestino; Mench, Michel

    2016-02-01

    Foliar ionome, photosystem II activity, and leaf growth parameters of Ranunculus acris L., a potential biomonitor of trace element (TE) contamination and phytoavailability, were assessed using two riverbank soil series. R. acris was cultivated on two potted soil series obtained by mixing a TE (Cd, Cu, Pb, and Zn)-contaminated technosol with either an uncontaminated sandy riverbank soil (A) or a silty clay one slightly contaminated by TE (B). Trace elements concentrations in the soil-pore water and the leaves, leaf dry weight (DW) yield, total leaf area (TLA), specific leaf area (SLA), and photosystem II activity were measured for both soil series after a 50-day growth period. As soil contamination increased, changes in soluble TE concentrations depended on soil texture. Increase in total soil TE did not affect the leaf DW yield, the TLA, the SLA, and the photosystem II activity of R. acris over the 50-day exposure. The foliar ionome did not reflect the total and soluble TE concentrations in both soil series. Foliar ionome of R. acris was only effective to biomonitor total and soluble soil Na concentrations in both soil series and total and soluble soil Mo concentrations in the soil series B.

  8. Mixture toxicity of three photosystem II inhibitors (atrazine, isoproturon, and diuron) toward photosynthesis of freshwater phytoplankton studied in outdoor mesocosms.

    Science.gov (United States)

    Knauert, Stefanie; Escher, Beate; Singer, Heinz; Hollender, Juliane; Knauer, Katja

    2008-09-01

    Mixture toxicity of three herbicides with the same mode of action was studied in a long-term outdoor mesocosm study. Photosynthetic activity of phytoplankton as the direct target site of the herbicides was chosen as physiological response parameter. The three photosystem II (PSII) inhibitors atrazine, isoproturon, and diuron were applied as 30% hazardous concentrations (HC30), which we derived from species sensitivity distributions calculated on the basis of EC50 growth inhibition data. The respective herbicide mixture comprised 1/3 of the HC30 of each herbicide. Short-term laboratory experiments revealed that the HC30 values corresponded to EC40 values when regarding photosynthetic activity as the response parameter. In the outdoor mesocosm experiment, effects of atrazine, isoproturon, diuron and their mixture on the photosynthetic activity of phytoplankton were investigated during a five-week period with constant exposure and a subsequent five-month postexposure period when the herbicides dissipated. The results demonstrated that mixture effects determined at the beginning of constant exposure can be described by concentration addition since the mixture elicited a phytotoxic effect comparable to the single herbicides. Declining effects on photosynthetic activity during the experiment might be explained by both a decrease in water herbicide concentrations and by the induction of community tolerance.

  9. Combined effects of temperature and the herbicide diuron on Photosystem II activity of the tropical seagrass Halophila ovalis

    Science.gov (United States)

    Wilkinson, Adam D.; Collier, Catherine J.; Flores, Florita; Langlois, Lucas; Ralph, Peter J.; Negri, Andrew P.

    2017-03-01

    Tropical seagrasses are at their highest risk of exposure to photosystem II (PSII) herbicides when elevated rainfall and runoff from farms transports these toxicants into coastal habitats during summer, coinciding with periods of elevated temperature. PSII herbicides, such as diuron, can increase the sensitivity of corals to thermal stress, but little is known of the potential for herbicides to impact the thermal optima of tropical seagrass. Here we employed a well-plate approach to experimentally assess the effects of diuron on the photosynthetic performance of Halophila ovalis leaves across a 25 °C temperature range (36 combinations of these stressors across 15-40 °C). The thermal optimum for photosynthetic efficiency (▵) in H. ovalis was 31 °C while lower and higher temperatures reduced ▵ as did all elevated concentrations of diuron. There were significant interactions between the effects of temperature and diuron, with a majority of the combined stresses causing sub-additive (antagonistic) effects. However, both stressors caused negative responses and the sum of the responses was greater than that caused by temperature or diuron alone. These results indicate that improving water quality (reducing herbicide in runoff) is likely to maximise seagrass health during extreme temperature events that will become more common as the climate changes.

  10. Cyanobacterial flv4-2 Operon-Encoded Proteins Optimize Light Harvesting and Charge Separation in Photosystem II.

    Science.gov (United States)

    Chukhutsina, Volha; Bersanini, Luca; Aro, Eva-Mari; van Amerongen, Herbert

    2015-05-01

    Photosystem II (PSII) complexes drive the water-splitting reaction necessary to transform sunlight into chemical energy. However, too much light can damage and disrupt PSII. In cyanobacteria, the flv4-2 operon encodes three proteins (Flv2, Flv4, and Sll0218), which safeguard PSII activity under air-level CO2 and in high light conditions. However, the exact mechanism of action of these proteins has not been clarified yet. We demonstrate that the PSII electron transfer properties are influenced by the flv4-2 operon-encoded proteins. Accelerated secondary charge separation kinetics was observed upon expression/overexpression of the flv4-2 operon. This is likely induced by docking of the Flv2/Flv4 heterodimer in the vicinity of the QB pocket of PSII, which, in turn, increases the QB redox potential and consequently stabilizes forward electron transfer. The alternative electron transfer route constituted by Flv2/Flv4 sequesters electrons from QB(-) guaranteeing the dissipation of excess excitation energy in PSII under stressful conditions. In addition, we demonstrate that in the absence of the flv4-2 operon-encoded proteins, about 20% of the phycobilisome antenna becomes detached from the reaction centers, thus decreasing light harvesting. Phycobilisome detachment is a consequence of a decreased relative content of PSII dimers, a feature observed in the absence of the Sll0218 protein. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  11. Chemical Equilibrium Models for the S3 State of the Oxygen-Evolving Complex of Photosystem II.

    Science.gov (United States)

    Isobe, Hiroshi; Shoji, Mitsuo; Shen, Jian-Ren; Yamaguchi, Kizashi

    2016-01-19

    We have performed hybrid density functional theory (DFT) calculations to investigate how chemical equilibria can be described in the S3 state of the oxygen-evolving complex in photosystem II. For a chosen 340-atom model, 1 stable and 11 metastable intermediates have been identified within the range of 13 kcal mol(-1) that differ in protonation, charge, spin, and conformational states. The results imply that reversible interconversion of these intermediates gives rise to dynamic equilibria that involve processes with relocations of protons and electrons residing in the Mn4CaO5 cluster, as well as bound water ligands, with concomitant large changes in the cluster geometry. Such proton tautomerism and redox isomerism are responsible for reversible activation/deactivation processes of substrate oxygen species, through which Mn-O and O-O bonds are transiently ruptured and formed. These results may allow for a tentative interpretation of kinetic data on substrate water exchange on the order of seconds at room temperature, as measured by time-resolved mass spectrometry. The reliability of the hybrid DFT method for the multielectron redox reaction in such an intricate system is also addressed.

  12. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    Science.gov (United States)

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Spectral properties of chlorines and electron transfer with their participation in the photosynthetic reaction center of photosystem II

    Science.gov (United States)

    Shchupak, E. E.; Ivashin, N. V.

    2014-02-01

    Structural factors that provide localization of excited states and determine the properties of primary donor and acceptor of electron in the reaction center of photosystem II (PSII RC) are studied. The results of calculations using stationary and time-dependent density functional theory indicate an important role of protein environments of chlorophylls PA, PB, BA, and BB and pheophytins HA and HB in the area with a radius of no greater than ≤10 Å in the formation of excitonic states of PSII RC. When the neighboring elements are taken into account, the wavelength of long-wavelength Q y transition of chlorophyll molecules is varied by about 10 nm. The effect is less developed for pheophytin molecules (Δλ ≅ 2 nm). The following elements strongly affect energy of the transition: HisA198 and HisD197 amino-acid residues that serve as ligands of magnesium atoms affect PA and PB, respectively; MetA183 affects PA; MetA172 and MetD198 affect BA; water molecules that are located above the planes of the BA and BB macrocycles form H bonds with carbonyl groups; and phytol chains of PA and PB affect BA, BB, HA, and HB. The analysis of excitonic states, mutual positions of molecular orbitals of electron donors and acceptors, and matrix elements of electron transfer reaction shows that (i) charge separation between BA and HA and PB and BA is possible in the active A branch of cofactors of PSII RC and (ii) electron transfer is blocked at the BB - HB fragment in inactive B branch of PSII RC.

  14. The mechanism of photosystem-II inactivation during sulphur deprivation-induced H2 production in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Nagy, Valéria; Vidal-Meireles, André; Podmaniczki, Anna; Szentmihályi, Klára; Rákhely, Gábor; Zsigmond, Laura; Kovács, László; Tóth, Szilvia Z

    2018-05-01

    Sulphur limitation may restrain cell growth and viability. In the green alga Chlamydomonas reinhardtii, sulphur limitation may induce H 2 production lasting for several days, which can be exploited as a renewable energy source. Sulphur limitation causes a large number of physiological changes, including the inactivation of photosystem II (PSII), leading to the establishment of hypoxia, essential for the increase in hydrogenase expression and activity. The inactivation of PSII has long been assumed to be caused by the sulphur-limited turnover of its reaction center protein PsbA. Here we reinvestigated this issue in detail and show that: (i) upon transferring Chlamydomonas cells to sulphur-free media, the cellular sulphur content decreases only by about 25%; (ii) as demonstrated by lincomycin treatments, PsbA has a significant turnover, and other photosynthetic subunits, namely RbcL and CP43, are degraded more rapidly than PsbA. On the other hand, sulphur limitation imposes oxidative stress early on, most probably involving the formation of singlet oxygen in PSII, which leads to an increase in the expression of GDP-L-galactose phosphorylase, playing an essential role in ascorbate biosynthesis. When accumulated to the millimolar concentration range, ascorbate may inactivate the oxygen-evolving complex and provide electrons to PSII, albeit at a low rate. In the absence of a functional donor side and sufficient electron transport, PSII reaction centers are inactivated and degraded. We therefore demonstrate that the inactivation of PSII is a complex and multistep process, which may serve to mitigate the damaging effects of sulphur limitation. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  15. Degradation and movement in soil of the herbicide isoproturon analyzed by a Photosystem II-based biosensor.

    Science.gov (United States)

    Malý, J; Klem, K; Lukavská, A; Masojídek, J

    2005-01-01

    We have examined the persistence and movement of a urea-type herbicide, isoproturon [IPU; 3-(4-isopropylphenyl)-1,1'-dimethylurea], in soil using a novel herbicide-detection device, the prototype of a portable electrochemical biosensor based on Photosystem II particles immobilized on printed electrodes, and evaluated its results against two other methods: (i) chlorophyll-fluorescence bioassay based on polyphasic induction curves, and (ii) standard analysis represented by liquid chromatography. The data of the herbicide's content determined in soil extracts from field experiments correlated in all three methods. The biosensor assay was effective in determining the herbicide's concentration to as low as 10(-7) M. The results of our experiments also showed the kinetics of movement, degradation, and persistence of isoproturon in various depths of soil. After 6 to 9 wk, almost half of the isoproturon was still actively present in the upper soil layers (0-10 and 10-20 cm) and only 5 to 10% of biological activity was inhibited in the deeper soil layer tested (20-30 cm). Thus, inhibition within the limit of detection of both bioassays could be observed up to 9 wk after application in all profiles (0-30 cm), whereas inhibition persisted for up to 11 wk in the upper soil profile (0-10 cm). The use of the biosensor demonstrated its possibility for making rapid and cheap phytotoxicity tests. Our biosensor can give preliminary information about the biological activity of isoproturon in hours--much faster than growth biotests that may take several days or more.

  16. Photochemical reactions in dehydrated photosynthetic organisms, leaves, chloroplasts and photosystem II particles: reversible reduction of pheophytin and chlorophyll and oxidation of {beta}-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Shuvalov, Vladimir A.; Heber, Ulrich

    2003-11-01

    Photoreactions of dehydrated leaves, isolated broken chloroplasts and PSII membrane fragments of spinach (Spinacia oleracea) were studied at different air humidities and compared with photoreactions of dry fronds of a fern, Polypodium vulgare, and a dry lichen, Parmelia sulcata, which in contrast to spinach are insensitive to photoinactivation in the dry state. Even in very dry air, P700 in the reaction center of photosystem I of dry leaves was oxidized, and the primary quinone acceptor Q{sub A} in the reaction center of photosystem II was photoreduced by low light. These reactions were only very slowly reversed in the dark and saturated under low light intensity. Light-minus-dark difference absorption spectra of the dry leaves, isolated chloroplasts and PSII membrane fragments measured at higher light intensities revealed absorbance changes of {beta}-carotene at 500 nm (light-dependent bleaching) and 980 nm (light-dependent band formation) and bleaching of chlorophyll at 436 and 680 nm with appearance of bands at 450 and 800 nm. Decrease of chlorophyll fluorescence upon strong illumination indicated photoaccumulation of a quencher. All these changes were kinetically related and readily reversible. They are interpreted to show light-induced oxidation of {beta}-carotene (Car) and reduction of chlorophyll-680 (Chl-680) in the reaction center of photosystem II of the dried leaves, chloroplasts and photosystem II particles. The fluorescence quencher was suggested to be Chl-680{sup -} or Car{sup +} in close proximity to P680, the primary electron donor. Appreciable photoaccumulation of reduced pheophytin was only observed in dry leaves after Q{sub A} reduction had been lost during heat treatment of hydrated leaves prior to dehydration. The observations are interpreted to show light-dependent cyclic electron flow within the reaction center of photosystem II in which Chl-680 (or Pheo) is reduced by P680* and Car is oxidized by P680{sup +} with consequent recombination of

  17. Photochemical reactions in dehydrated photosynthetic organisms, leaves, chloroplasts and photosystem II particles: reversible reduction of pheophytin and chlorophyll and oxidation of β-carotene

    International Nuclear Information System (INIS)

    Shuvalov, Vladimir A.; Heber, Ulrich

    2003-01-01

    Photoreactions of dehydrated leaves, isolated broken chloroplasts and PSII membrane fragments of spinach (Spinacia oleracea) were studied at different air humidities and compared with photoreactions of dry fronds of a fern, Polypodium vulgare, and a dry lichen, Parmelia sulcata, which in contrast to spinach are insensitive to photoinactivation in the dry state. Even in very dry air, P700 in the reaction center of photosystem I of dry leaves was oxidized, and the primary quinone acceptor Q A in the reaction center of photosystem II was photoreduced by low light. These reactions were only very slowly reversed in the dark and saturated under low light intensity. Light-minus-dark difference absorption spectra of the dry leaves, isolated chloroplasts and PSII membrane fragments measured at higher light intensities revealed absorbance changes of β-carotene at 500 nm (light-dependent bleaching) and 980 nm (light-dependent band formation) and bleaching of chlorophyll at 436 and 680 nm with appearance of bands at 450 and 800 nm. Decrease of chlorophyll fluorescence upon strong illumination indicated photoaccumulation of a quencher. All these changes were kinetically related and readily reversible. They are interpreted to show light-induced oxidation of β-carotene (Car) and reduction of chlorophyll-680 (Chl-680) in the reaction center of photosystem II of the dried leaves, chloroplasts and photosystem II particles. The fluorescence quencher was suggested to be Chl-680 - or Car + in close proximity to P680, the primary electron donor. Appreciable photoaccumulation of reduced pheophytin was only observed in dry leaves after Q A reduction had been lost during heat treatment of hydrated leaves prior to dehydration. The observations are interpreted to show light-dependent cyclic electron flow within the reaction center of photosystem II in which Chl-680 (or Pheo) is reduced by P680* and Car is oxidized by P680 + with consequent recombination of Car + and Chl-680 - (or Pheo

  18. Photoinhibition of photosynthesis in higher plants : From photosystem II paricticle to intact leaf

    NARCIS (Netherlands)

    van Wijk, Klaas Jan

    1992-01-01

    In this thesis several aspects of photoinhibition have been studied. Photoinhibition of PS II was studied, both on a basic (biophysical and biochemical) level and on a more integrated (eco)physiological level. The results of the different approaches were integrated and discussed with respect to the

  19. Studies on femtosecond fluorescence dynamics of photosystem II Particle complex at low temperature

    CERN Document Server

    Liu Xiao; He, Jun Fang; Cai, Xia; Peng Jun Fang; Kuang Ting Yun

    2004-01-01

    In order to understanding the diversity of energy transfer in PS II at different temperatures, PS II particle complex purified from spinach was investigated with femtosecond time-resolved fluorescence spectroscopy in the case of excitation 507 nm at 83 K, 160 K, 273 K. The data were analyzed by Gauss analysis and fluorescence decay time- fitting. Some results were achieved. (1) Increase of the temperature results in a broadening of the fluorescence emission spectra due to the temperature-dependent expressions for nonradiative transitions between two electronic states. (2) There are at least several characteristic Chl molecules exist in PS II particle complex, i.e. Chl b/sub 639//sup 640/, Chl b/sub 640//sup 645/, Chl a/sub 660//sup 663/, Chl a/sub 667//sup 668/, Chl a/sub 673//sup 676/, Chl a/sub 680 //sup 681/, Chl a/sub 680/681//sup 682/, Chl a/sub 684,685//sup 668 /689/, Chl a/sub 688//sup 698/, (Chl a/b/sub a//sup e/: a represents the peak of absorption, e represents the peak of emission). (3) Though the ...

  20. Photosystem II repair and plant immunity: Lessons learned from Arabidopsis mutant lacking the THYLAKOID LUMEN PROTEIN 18.3

    Directory of Open Access Journals (Sweden)

    Sari eJärvi

    2016-03-01

    Full Text Available Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425. Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.

  1. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii.

    Science.gov (United States)

    Ananyev, Gennady; Gates, Colin; Kaplan, Aaron; Dismukes, G Charles

    2017-11-01

    The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O 2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m 2 /s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O 2 (a high O 2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH 2 ) B with PQ pool and reoxidation of (PQH 2 ) pool were determined. Copyright © 2017. Published by Elsevier B.V.

  2. Endophytic infection alleviates Pb{sup 2+} stress effects on photosystem II functioning of Oryza sativa leaves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuemei, E-mail: lxmls132@163.com [College of Chemistry and Life Science, Shenyang Normal University, Shenyang 110034 (China); Zhang, Lihong, E-mail: lihongzhang132@163.com [Environmental Science Department of Liaoning University,Shenyang 110036 (China)

    2015-09-15

    Highlights: • Chl fluorescence parameters of endophyte-infected rice under Pb{sup 2+} stress were tested. • The efficiency and stability of PSII are markedly affected by Pb{sup 2+} stress. • Endophyte infection improved photosynthetic system activity under Pb{sup 2+} stress. • JIP-test is a suitable tool for monitoring of Pb{sup 2+} stress. • Endophyte infection may increase tolerance to Pb{sup 2+} in rice. - Abstract: The aims of this study were to examine the effect of Pb{sup 2+} stress on the primary reaction of photosynthesis and to assess the potential benefits of endophytic infection on the Pb{sup 2+} tolerance of rice seedlings. Rice inoculated with an endophytic fungus (E+) and non-inoculated (E−) were subjected to 0, 50, 100, 150 and 200 μM Pb{sup 2+}. The responses to Pb{sup 2+} stress were characterized by the analysis of Chl a fluorescence. A comparison of E− with E+ rice seedlings, as evaluated by their performance index (PI{sub ABS} and PI{sub tot}), revealed the inhibitory effects of Pb{sup 2+} on photosystem II (PSII) connectivity, the oxygen evolving complex (OEC), and on the J step of the induction curves, which is associated with an inhibition of electron transport from the quinone acceptor Q{sub A} to Q{sub B}. Furthermore, the changes of the donor and the acceptor parameters of PSII were greater in E− than in E+ under Pb{sup 2+} stress. These observations suggest that the efficiency and stability of PSII are markedly affected by Pb{sup 2+} stress, and the photosynthetic energy conservation in E+ was more effective than in E−. We showed that endophytic infection plays an important role in enhancing the photosynthetic mechanism of rice seedlings exposed to Pb{sup 2+} stress.

  3. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue

    Directory of Open Access Journals (Sweden)

    Liang Zhang

    2017-10-01

    Full Text Available Tall fescue (Festuca arundinacea Schreb is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition or 44°C (heat stress for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H2O2 and O2⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PIABS and PItotal and the quantum yields and efficiencies (φP0, δR0, φR0, and γRC. Exogenous Spd could also reduce the specific energy fluxes per QA- reducing PSII reaction center (RC (TP0/RC and ET0/RC. Additionally, exogenous Spd improved the expression level of psbA and psbB, which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.

  4. The Alleviation of Heat Damage to Photosystem II and Enzymatic Antioxidants by Exogenous Spermidine in Tall Fescue.

    Science.gov (United States)

    Zhang, Liang; Hu, Tao; Amombo, Erick; Wang, Guangyang; Xie, Yan; Fu, Jinmin

    2017-01-01

    Tall fescue ( Festuca arundinacea Schreb) is a typical cool-season grass that is widely used in turf and pasture. However, high temperature as an abiotic stress seriously affects its utilization. The objective of this study was to explore the effect of spermidine (Spd) on heat stress response of tall fescue. The samples were exposed to 22°C (normal condition) or 44°C (heat stress) for 4 h. The results showed that exogenous Spd partially improved the quality of tall fescue leaves under normal temperature conditions. Nevertheless, after heat stress treatment, exogenous Spd significantly decreased the electrolyte leakage of tall fescue leaves. Spd also profoundly reduced the H 2 O 2 and O 2 ⋅- content and increased antioxidant enzymes activities. In addition, PAs can also regulate antioxidant enzymes activities including SOD, POD, and APX which could help to scavenge ROS. Moreover, application of Spd could also remarkably increase the chlorophyll content and had a positive effect on the chlorophyll α fluorescence transients under high temperature. The Spd reagent enhanced the performance of photosystem II (PSII) as observed by the JIP-test. Under heat stress, the Spd profoundly improved the partial potentials at the steps of energy bifurcations (PI ABS and PI total ) and the quantum yields and efficiencies (φP 0 , δR 0 , φR 0 , and γRC). Exogenous Spd could also reduce the specific energy fluxes per Q A - reducing PSII reaction center (RC) (TP 0 /RC and ET 0 /RC). Additionally, exogenous Spd improved the expression level of psbA and psbB , which encoded the proteins of PSII core reaction center complex. We infer that PAs can stabilize the structure of nucleic acids and protect RNA from the degradation of ribonuclease. In brief, our study indicates that exogenous Spd enhances the heat tolerance of tall fescue by maintaining cell membrane stability, increasing antioxidant enzymes activities, improving PSII, and relevant gene expression.

  5. The protonation state around TyrD/TyrD• in photosystem II is reflected in its biphasic oxidation kinetics.

    Science.gov (United States)

    Sjöholm, Johannes; Ho, Felix; Ahmadova, Nigar; Brinkert, Katharina; Hammarström, Leif; Mamedov, Fikret; Styring, Stenbjörn

    2017-02-01

    The tyrosine residue D2-Tyr160 (Tyr D ) in photosystem II (PSII) can be oxidized through charge equilibrium with the oxygen evolving complex in PSII. The kinetics of the electron transfer from Tyr D has been followed using time-resolved EPR spectroscopy after triggering the oxidation of pre-reduced Tyr D by a short laser flash. After its oxidation Tyr D is observed as a neutral radical (Tyr D • ) indicating that the oxidation is coupled to a deprotonation event. The redox state of Tyr D was reported to be determined by the two water positions identified in the crystal structure of PSII [Saito et al. (2013) Proc. Natl. Acad. Sci. USA 110, 7690]. To assess the mechanism of the proton coupled electron transfer of Tyr D the oxidation kinetics has been followed in the presence of deuterated buffers, thereby resolving the kinetic isotope effect (KIE) of Tyr D oxidation at different H/D concentrations. Two kinetic phases of Tyr D oxidation - the fast phase (msec-sec time range) and the slow phase (tens of seconds time range) were resolved as was previously reported [Vass and Styring (1991) Biochemistry 30, 830]. In the presence of deuterated buffers the kinetics was significantly slower compared to normal buffers. Furthermore, although the kinetics were faster at both high pH and pD values the observed KIE was found to be similar (~2.4) over the whole pL range investigated. We assign the fast and slow oxidation phases to two populations of PSII centers with different water positions, proximal and distal respectively, and discuss possible deprotonation events in the vicinity of Tyr D . Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    Science.gov (United States)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  7. Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro.

    Science.gov (United States)

    Bonente, Giulia; Howes, Barry D; Caffarri, Stefano; Smulevich, Giulietta; Bassi, Roberto

    2008-03-28

    The photosystem II subunit PsbS is essential for excess energy dissipation (qE); however, both lutein and zeaxanthin are needed for its full activation. Based on previous work, two models can be proposed in which PsbS is either 1) the gene product where the quenching activity is located or 2) a proton-sensing trigger that activates the quencher molecules. The first hypothesis requires xanthophyll binding to two PsbS-binding sites, each activated by the protonation of a dicyclohexylcarbodiimide-binding lumen-exposed glutamic acid residue. To assess the existence and properties of these xanthophyll-binding sites, PsbS point mutants on each of the two Glu residues PsbS E122Q and PsbS E226Q were crossed with the npq1/npq4 and lut2/npq4 mutants lacking zeaxanthin and lutein, respectively. Double mutants E122Q/npq1 and E226Q/npq1 had no qE, whereas E122Q/lut2 and E226Q/lut2 showed a strong qE reduction with respect to both lut2 and single glutamate mutants. These findings exclude a specific interaction between lutein or zeaxanthin and a dicyclohexylcarbodiimide-binding site and suggest that the dependence of nonphotochemical quenching on xanthophyll composition is not due to pigment binding to PsbS. To verify, in vitro, the capacity of xanthophylls to bind PsbS, we have produced recombinant PsbS refolded with purified pigments and shown that Raman signals, previously attributed to PsbS-zeaxanthin interactions, are in fact due to xanthophyll aggregation. We conclude that the xanthophyll dependence of qE is not due to PsbS but to other pigment-binding proteins, probably of the Lhcb type.

  8. Interactions between the Photosystem II Subunit PsbS and Xanthophylls Studied in Vivo and in Vitro*

    Science.gov (United States)

    Bonente, Giulia; Howes, Barry D.; Caffarri, Stefano; Smulevich, Giulietta; Bassi, Roberto

    2008-01-01

    The photosystem II subunit PsbS is essential for excess energy dissipation (qE); however, both lutein and zeaxanthin are needed for its full activation. Based on previous work, two models can be proposed in which PsbS is either 1) the gene product where the quenching activity is located or 2) a proton-sensing trigger that activates the quencher molecules. The first hypothesis requires xanthophyll binding to two PsbS-binding sites, each activated by the protonation of a dicyclohexylcarbodiimide-binding lumen-exposed glutamic acid residue. To assess the existence and properties of these xanthophyll-binding sites, PsbS point mutants on each of the two Glu residues PsbS E122Q and PsbS E226Q were crossed with the npq1/npq4 and lut2/npq4 mutants lacking zeaxanthin and lutein, respectively. Double mutants E122Q/npq1 and E226Q/npq1 had no qE, whereas E122Q/lut2 and E226Q/lut2 showed a strong qE reduction with respect to both lut2 and single glutamate mutants. These findings exclude a specific interaction between lutein or zeaxanthin and a dicyclohexylcarbodiimide-binding site and suggest that the dependence of nonphotochemical quenching on xanthophyll composition is not due to pigment binding to PsbS. To verify, in vitro, the capacity of xanthophylls to bind PsbS, we have produced recombinant PsbS refolded with purified pigments and shown that Raman signals, previously attributed to PsbS-zeaxanthin interactions, are in fact due to xanthophyll aggregation. We conclude that the xanthophyll dependence of qE is not due to PsbS but to other pigment-binding proteins, probably of the Lhcb type. PMID:18070876

  9. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

    Directory of Open Access Journals (Sweden)

    Tomas Gonec

    2017-10-01

    Full Text Available Series of seventeen new multihalogenated 1-hydroxynaphthalene-2-carboxanilides was prepared and characterized. All the compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. 1-Hydroxy-N-phenylnaphthalene-2-carboxamides substituted in the anilide part by 3,5-dichloro-, 4-bromo-3-chloro-, 2,5-dibromo- and 3,4,5-trichloro atoms were the most potent PET inhibitors (IC50 = 5.2, 6.7, 7.6 and 8.0 µM, respectively. The inhibitory activity of these compounds depends on the position and the type of halogen substituents, i.e., on lipophilicity and electronic properties of individual substituents of the anilide part of the molecule. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB in the PET chain occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. The structure-activity relationships are discussed.

  10. Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses

    Directory of Open Access Journals (Sweden)

    Aoyue eBi

    2016-04-01

    Full Text Available Quality inferiority in cool-season turfgrass due to drought, heat and a combination of both stresses is predicted to be more prevalent in the future. Understanding the various response to heat and drought stress will assist in the selection and breeding of tolerant grass varieties. The objective of this study was to investigate the behavior of antioxidant metabolism and photosystem II (PSII photochemistry in two tall fescue genotypes (PI 234881 and PI 578718 with various thermotolerance capacities. Wide variations were found between heat-tolerant PI 578718 and heat-sensitive PI 234881 for leaf relative water content, malondialdehyde and electrolyte leakage under drought, high-temperature or a combination of both stresses. The sensitivity of PI 234881 exposed to combined stresses was associated with lower superoxide dismutase activity and higher H2O2 accumulation than that in PI 578718. Various antioxidant enzymes displayed positive correlation with chlorophyll content, but negative with membrane injury index at most of the stages in both tall fescue genotypes. The JIP-test analysis in PI 578718 indicated a significant improvement in ABS/RC, TR0/RC, RE0/RC, RE0/ABS values as compared to the control regime, which indicated that PI 578718 had a high potential to protect the PSII system under drought and high temperature stress. And the PS II photochemistry in PI 234881 was damaged significantly compared with PI578718. Moreover, quantitative RT-PCR revealed that heat and drought stresses deduced the gene expression of psbB and psbC, but induced the expression of psbA. These findings to some extent confirmed that the various adaptations of physiological traits may contribute to breeding in cold-season turfgrass in response to drought, high-temperature and a combination of both stresses.

  11. Crystallization and preliminary crystallographic characterization of the extrinsic PsbP protein of photosystem II from Spinacia oleracea

    Czech Academy of Sciences Publication Activity Database

    Kohoutová, Jaroslava; Kutá-Smatanová, Ivana; Brynda, Jiří; Lapkouski, Mikalai; Revuelta, J. L.; Arellano, J.B.; Ettrich, Rüdiger

    F65, č. 2 (2009), s. 111-115 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60870520 Keywords : photosystem protein * crystallization * X-ray analysis Subject RIV: CC - Organic Chemistry Impact factor: 0.551, year: 2009

  12. Photoprotection vs. Photoinhibition of Photosystem II in Transplastomic Lettuce (Lactuca sativa) Dominantly Accumulating Astaxanthin.

    Science.gov (United States)

    Fujii, Ritsuko; Yamano, Nami; Hashimoto, Hideki; Misawa, Norihiko; Ifuku, Kentaro

    2016-07-01

    Transplastomic (chloroplast genome-modified; CGM) lettuce that dominantly accumulates astaxanthin grows similarly to a non-transgenic control with almost no accumulation of naturally occurring photosynthetic carotenoids. In this study, we evaluated the activity and assembly of PSII in CGM lettuce. The maximum quantum yield of PSII in CGM lettuce was <0.6; however, the quantum yield of PSII was comparable with that in control leaves under higher light intensity. CGM lettuce showed a lower ability to induce non-photochemical quenching (NPQ) than the control under various light intensities. The fraction of slowly recovering NPQ in CGM lettuce, which is considered to be photoinhibitory quenching (qI), was less than half that of the control. In fact, 1 O 2 generation was lower in CGM than in control leaves under high light intensity. CGM lettuce contained less PSII, accumulated mostly as a monomer in thylakoid membranes. The PSII monomers purified from the CGM thylakoids bound echinenone and canthaxanthin in addition to β-carotene, suggesting that a shortage of β-carotene and/or the binding of carbonyl carotenoids would interfere with the photophysical function as well as normal assembly of PSII. In contrast, high accumulation of astaxanthin and other carbonyl carotenoids was found within the thylakoid membranes. This finding would be associated with the suppression of photo-oxidative stress in the thylakoid membranes. Our observation suggests the importance of a specific balance between photoprotection and photoinhibition that can support normal photosynthesis in CGM lettuce producing astaxanthin. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. XANES, EXAFS and Kbeta spectroscopic studies of the oxygen-evolving complex in Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Robblee, John Henry [Univ. of California, Berkeley, CA (United States)

    2000-12-01

    possible oxidation states of Mn in the S0 state. The dichroic nature of X-rays from synchrotron radiation and single-crystal Mn complexes have been exploited to selectively probe Mn-ligand bonds using XANES and EXAFS spectroscopy. The results from single-crystal Mn complexes show that dramatic dichroism exists in these complexes, and are suggestive of a promising future for single-crystal studies of PS II.

  14. Photosystem II functionality in barley responds dynamically to changes in leaf manganese status

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Powikrowska, Marta; Krogholm, Ken Suszkiewicz

    2016-01-01

    functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients), non-photochemical quenching (NPQ) and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn...... the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher NPQ...... decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes...

  15. Site Energies of Active and Inactive Pheophytins in the Reaction Center of Photosystem II from Chlamydomonas Reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, K.; Neupane, B.; Zazubovich, V.; Sayre, R. T.; Picorel, R.; Seibert, M.; Jankowiak, R.

    2012-03-29

    It is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction center (RC) preparations is pheophytin {alpha} (Pheo {alpha}) within the D1 protein (Pheo{sub D1}), while Pheo{sub D2} (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the past two decades placed the Q{sub y}-states of Pheo{sub D1} and Pheo{sub D2} bands near 678-684 and 668-672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986-998; Cox et al. J. Phys. Chem. B 2009, 113, 12364-12374] of the electronic structure of the PSII RC reversed the assignment of the active and inactive Pheos, suggesting that the mean site energy of Pheo{sub D1} is near 672 nm, whereas Pheo{sub D2} ({approx}677.5 nm) and Chl{sub D1} ({approx}680 nm) have the lowest energies (i.e., the Pheo{sub D2}-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Q{sub y} absorption maxima at 676-680 nm [Germano et al. Biochemistry 2001, 40, 11472-11482; Germano et al. Biophys. J. 2004, 86, 1664-1672]. To provide more insight into the site energies of both Pheo{sub D1} and Pheo{sub D2} (including the corresponding Q{sub x} transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch Pheo{sub D1} is genetically replaced with chlorophyll {alpha} (Chl {alpha}). We show that the Q{sub x}-/Q{sub y}-region site energies of Pheo{sub D1} and Pheo{sub D2} are {approx}545/680 nm and {approx}541.5/670 nm, respectively, in good agreement with our previous assignment

  16. Unraveling photosystems. Progress report

    International Nuclear Information System (INIS)

    1984-01-01

    Each of the three cyanobacteria examined contains two or more genes for the B protein of photosystem II of photosynthesis. One of these genes from the cyanobacterium Fremyella diplosiphon has been sequenced. Synthetic oliogopeptides were used to raise antibodies to two ten amino acid-long sequences of the 32 kilodalton B protein. To examine whether chloroplast promoter sequences (and hence possibly chloroplast genes) can function in cyanobacteria, we have used a series of plasmids containing the chloramphenicol acetyl transferase (CAT) gene minus its bacterial promoter. It appears that chloroplast promoters are recognized in cyanobacteria and act efficiently

  17. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue.

    Science.gov (United States)

    Wang, Guangyang; Bi, Aoyue; Amombo, Erick; Li, Huiying; Zhang, Liang; Cheng, Cheng; Hu, Tao; Fu, Jinmin

    2017-01-01

    Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue ( Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until F m is reached), ψE 0 , or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from Q A to Q B or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca 2+ , and K + in the SC regime than S regime. Interrelated analysis indicated that ψE 0 , δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca 2+ and K + content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role

  18. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue

    Directory of Open Access Journals (Sweden)

    Guangyang Wang

    2017-11-01

    Full Text Available Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype “TF133” were subjected to the control (CK, salinity (S, salinity + calcium nitrate (SC, and salinity + ethylene glycol tetraacetic acid (SE. Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size, N (number of QA- redox turnovers until Fm is reached, ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors, ABS/RC (Absorbed photon flux per RC. All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond QA- and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall

  19. Damage to photosystem II due to heat stress without light-driven electron flow: involvement of enhanced introduction of reducing power into thylakoid membranes.

    Science.gov (United States)

    Marutani, Yoko; Yamauchi, Yasuo; Kimura, Yukihiro; Mizutani, Masaharu; Sugimoto, Yukihiro

    2012-08-01

    Under a moderately heat-stressed condition, the photosystems of higher plants are damaged in the dark more easily than they are in the presence of light. To obtain a better understanding of this heat-derived damage mechanism that occurs in the dark, we focused on the involvement of the light-independent electron flow that occurs at 40 °C during the damage. In various plant species, the maximal photochemical quantum yield of photosystem (PS) II (Fv/Fm) decreased as a result of heat treatment in the dark. In the case of wheat, the most sensitive plant species tested, both Fv/Fm and oxygen evolution rapidly decreased by heat treatment at 40 °C for 30 min in the dark. In the damage, specific degradation of D1 protein was involved, as shown by immunochemical analysis of major proteins in the photosystem. Because light canceled the damage to PSII, the light-driven electron flow may play a protective role against PSII damage without light. Light-independent incorporation of reducing power from stroma was enhanced at 40 °C but not below 35 °C. Arabidopsis mutants that have a deficit of enzymes which mediate the incorporation of stromal reducing power into thylakoid membranes were tolerant against heat treatment at 40 °C in the dark, suggesting that the reduction of the plastoquinone pool may be involved in the damage. In conclusion, the enhanced introduction of reducing power from stroma into thylakoid membranes that occurs around 40 °C causes over-reduction of plastoquinone, resulting in the damage to D1 protein under heat stress without linear electron flow.

  20. Oxidized amino acid residues in the vicinity of Q(A and Pheo(D1 of the photosystem II reaction center: putative generation sites of reducing-side reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Laurie K Frankel

    Full Text Available Under a variety of stress conditions, Photosystem II produces reactive oxygen species on both the reducing and oxidizing sides of the photosystem. A number of different sites including the Mn4O5Ca cluster, P680, PheoD1, QA, QB and cytochrome b559 have been hypothesized to produce reactive oxygen species in the photosystem. In this communication using Fourier-transform ion cyclotron resonance mass spectrometry we have identified several residues on the D1 and D2 proteins from spinach which are oxidatively modified and in close proximity to QA (D1 residues (239F, (241Q, (242E and the D2 residues (238P, (239T, (242E and (247M and PheoD1 (D1 residues (130E, (133L and (135F. These residues may be associated with reactive oxygen species exit pathways located on the reducing side of the photosystem, and their modification may indicate that both QA and PheoD1 are sources of reactive oxygen species on the reducing side of Photosystem II.

  1. Fluorescence F 0 of photosystems II and I in developing C3 and C 4 leaves, and implications on regulation of excitation balance.

    Science.gov (United States)

    Peterson, Richard B; Oja, Vello; Eichelmann, Hillar; Bichele, Irina; Dall'Osto, Luca; Laisk, Agu

    2014-10-01

    This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two

  2. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii[C][W

    Science.gov (United States)

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D’Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H.; Bassi, Roberto; Kruse, Olaf

    2014-01-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  3. Photosystem II excitation pressure and development of resistance to photoinhibition. II. Adjustment of photosynthetic capacity in winter wheat and winter rye

    International Nuclear Information System (INIS)

    Gray, G.R.; Savitch, L.V.; Ivanov, A.G.; Huner, N.P.A.

    1996-01-01

    Winter wheat (Triticum aestivum L. cv Monopol), spring wheat (Triticum aestivum L. cv Katepwa), and winter rye (Secale cereale L. cv Musketeer) grown at 5 degrees C and moderate irradiance (250 micromoles m -2 s -1 ) (5/250) exhibit an increased tolerance to photoinhibition at low temperature in comparison to plants grown at 20 degrees C and 250 micromoles m -2 s -1 (20/250). However, 5/250 plants exhibited a higher photosystem II (PSII) excitation pressure (0.32-0.63) than 20/250 plants (0.18-0.21), measured as 1 - q p , the coefficient of photochemical quenching. Plants grown at 20 degrees C and a high irradiance (800 micromoles m -2 s -1 ) (20/800) also exhibited a high PSII excitation pressure (0.32-0.48). Similarly, plants grown at 20/800 exhibited a comparable tolerance to photoinhibition relative to plants grown at 5/250. In contrast to a recent report for Chlorella vulgaris (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694), this tolerance to photoinhibition occurs in winter rye with minimal adjustment to polypeptides of the PSII light-harvesting complex, chlorophyll a/b ratios, or xanthophyll cycle carotenoids. However, Monopol winter wheat exhibited a 2.5-fold stimulation of sucrose-phosphate synthase activity upon growth at 5/250, in comparison to Katepwa spring wheat. We demonstrate that low-temperature-induced tolerance to photoinhibition is not a low-temperature-growth effect per se but, instead, reflects increased photosynthetic capacity in response to elevated PSII excitation pressure, which may be modulated by either temperature or irradiance

  4. Characterization of mutants expressing thermostable D1 and D2 polypeptides of photosystem II in the cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Haraguchi, Norihisa; Kaseda, Jun; Nakayama, Yasumune; Nagahama, Kazuhiro; Ogawa, Takahira; Matsuoka, Masayoshi

    2018-06-08

    Photosystem II complex embedded in thylakoid membrane performs oxygenic photosynthesis where the reaction center D1/D2 heterodimer accommodates all components of the electron transport chain. To express thermostable D1/D2 heterodimer in a cyanobacterium Synechococcus elongatus PCC 7942, we constructed a series of mutant strains whose psbA1 and psbD1 genes encoding, respectively, the most highly expressed D1 and D2 polypeptides were replaced with those of a thermophilic strain, Thermosynechococcus vulcanus. Because the C-terminal 16 amino acid sequences of D1 polypeptides should be processed prior to maturation but diverge from each other, we also constructed the psbA1ΔC-replaced strain expressing a thermostable D1 polypeptide devoid of the C-terminal extension. The psbA1/psbD1-replaced strain showed decreased growth rate and oxygen evolution rate, suggesting inefficient photosystem II. Immunoblot analyses for thermostable D1, D2 polypeptides revealed that the heterologous D1 protein was absent in thylakoid membrane from any mutant strains with psbA1, psbA1ΔC, and psbA1/psbD1-replacements, whereas the heterologous D2 protein was present in thylakoid membrane as well as purified photosystem II complex from the psbA1/psbD1-replaced strain. In the latter strain, the compensatory expression of psbA3 and psbD2 genes was elevated. These data suggest that heterologous D2 polypeptide could be combined with the host D1 polypeptide to form chimeric D1/D2 heterodimer, whereas heterologous D1 polypeptide even without the C-terminal extension was unable to make complex with the host D2 polypeptide. Since the heterologous D1 could not be detected even in the whole cells of psbA1/psbD1-replaced strain, the rapid degradation of unprocessed or unassembled heterologous D1 was implicated. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29 : Pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms

    NARCIS (Netherlands)

    Giuffra, Elisabetta; Zucchelli, Giuseppe; Sandona, Dorianna; Croce, Roberta; Cugini, Daniela; Garlaschi, Flavio M.; Bassi, Roberto; Jennings, Robert C.

    1997-01-01

    The minor photosystem II antenna complex CP29(Lhcb-4) has been reconstituted in vitro with the Lhcb-4 apoprotein, overexpressed in Escherichia coli, and the native pigments. Modulation of the pigment composition during reconstitution yields binding products with markedly different chlorophyll a/b

  6. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Costa, Cristina Henning da; Perreault, François; Oukarroum, Abdallah; Melegari, Sílvia Pedroso; Popovic, Radovan; Matias, William Gerson

    2016-01-01

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr_2O_3-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr_2O_3-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr_2O_3-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L"−"1 Cr_2O_3-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L"−"1 Cr_2O_3-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr_2O_3-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr_2O_3-NP after 24 h of treatment. - Highlights: • Cr_2O_3 nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L"−"1 at 72 h. • Cr_2O_3 nanoparticles increase ROS levels at 10 g L"−"1. • Cr_2O_3 nanoparticles affect photosynthetic electron transport.

  7. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Cristina Henning da [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Perreault, François [School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005 (United States); Oukarroum, Abdallah [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Melegari, Sílvia Pedroso [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil); Center of Marine Studies, Federal University of Parana, Beira-mar Avenue, 83255-976, Pontal do Parana, PR (Brazil); Popovic, Radovan [Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6 (Canada); Matias, William Gerson, E-mail: william.g.matias@ufsc.br [Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC (Brazil)

    2016-09-15

    With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr{sub 2}O{sub 3}-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr{sub 2}O{sub 3}-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr{sub 2}O{sub 3}-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05 ± 0.20 and 1.35 ± 0.06 g L{sup −1} Cr{sub 2}O{sub 3}-NP were obtained after 24 and 72 h of exposure, respectively. In addition, ROS levels were increased to 160.24 ± 2.47% and 59.91 ± 0.15% of the control value after 24 and 72 h of exposition to 10 g L{sup −1} Cr{sub 2}O{sub 3}-NP. At 24 h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr{sub 2}O{sub 3}-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr{sub 2}O{sub 3}-NP after 24 h of treatment. - Highlights: • Cr{sub 2}O{sub 3} nanoparticles are unstable and form large aggregates in the medium. • EC50 for growth inhibition of C. reinhardtii is 1.35 g L{sup −1} at 72 h. • Cr{sub 2}O{sub 3} nanoparticles increase ROS levels at 10 g L{sup −1}. • Cr{sub 2}O{sub 3} nanoparticles affect photosynthetic electron transport.

  8. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions

    International Nuclear Information System (INIS)

    Greenberg, B.M.; Gaba, V.; Canaani, O.; Malkin, S.; Mattoo, A.K.; Edelman, M.

    1989-01-01

    A component of the photosystem II reaction center, the 32-kDa protein, is rapidly turned over in the light. The mechanism of its light-dependent metabolism is largely unknown. We quantified the rate of 32-kDa protein degradation over a broad spectral range (UV, visible, and far red). The quantum yield for degradation was highest in the UVB (280-320 nm) region. Spectral evidence demonstrates two distinctly different photosensitizers for 32-kDa protein degradation. The data implicate the bulk photosynthetic pigments (primarily chlorophyll) in the visible and far red regions, and plastoquinone (in one or more of its redox states) in the UV region. A significant portion of 32-kDa protein degradation in sunlight is attributed to UVB irradiance

  9. Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests

    International Nuclear Information System (INIS)

    Pan Xiangliang; Deng Chunnuan; Zhang Daoyong; Wang Jianlong; Mu Guijin; Chen Ying

    2008-01-01

    Amoxicillin is one of the widely used antibiotics of environmental concern. This study shows that amoxicillin has toxic effects on the photosynthesis of Synechocystis sp. Its inhibitory effects on photosystem II (PSII) of Synechocystis sp. were investigated by using a variety of in vivo chlorophyll fluorescence tests. The inhibitory effects of amoxicillin on PSII activity of Synechocystis sp. are concentration-dependent. Amoxicillin exposure leads to slowing down of electron transport on both donor side and acceptor side and causes accumulation of P680 + . Q A - reoxidation test revealed that amoxicillin hinders electron transfer from Q A - to Q B /Q B - and more Q A - is oxidized through S 2 (Q A Q B ) - charge recombination. Analysis of PSII heterogeneity demonstrated that an exposure to amoxicillin increases the proportion of inactive PSII (PSII X ) centers and the proportion of PSII centers with small antenna (PSIIβ). These changes finally result in deterioration of full photosynthesis performance

  10. Study of the Mn-binding sites in photosystem II using antibodies raised against lumenal regions of the D1 and D2 reaction center proteins

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, Enrique Agustin [Univ. of California, Berkeley, CA (United States)

    1992-04-01

    The experiments discussed in this thesis focus on identifying the protein segments or specific amino acids which provide ligands to the Mn cluster of photosystem II (PS II). This Mn cluster plays a central role in the oxygen-evolving complex (OEC) of PS II. The Mn cluster is thought to be bound by lumenal regions of the PS II reaction center proteins known as D1 and D2. First, several peptides were synthesized which correspond to specific lumenal segments of the D1 and D2 proteins. Next, polyclonal antibodies were successfully elicited using three of these peptides. The peptides recognized by these antibodies correspond to protein segments of the spinach reaction center proteins: Ile-321 to Ala-344 of D1 (D1-a), Asp-319 to Arg-334 of D1 (D1-b), and Val-300 to Asn-319 of D2 (D2-a). These antibodies were then used in assays which were developed to structurally or functionally probe the potential Mn-binding regions of the D1 and D2 proteins.

  11. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress.

    Science.gov (United States)

    Porcel, Rosa; Redondo-Gómez, Susana; Mateos-Naranjo, Enrique; Aroca, Ricardo; Garcia, Rosalva; Ruiz-Lozano, Juan Manuel

    2015-08-01

    Rice is the most important food crop in the world and is a primary source of food for more than half of the world population. However, salinity is considered the most common abiotic stress reducing its productivity. Soil salinity inhibits photosynthetic processes, which can induce an over-reduction of the reaction centres in photosystem II (PSII), damaging the photosynthetic machinery. The arbuscular mycorrhizal (AM) symbiosis may improve host plant tolerance to salinity, but it is not clear how the AM symbiosis affects the plant photosynthetic capacity, particularly the efficiency of PSII. This study aimed at determining the influence of the AM symbiosis on the performance of PSII in rice plants subjected to salinity. Photosynthetic activity, plant gas-exchange parameters, accumulation of photosynthetic pigments and rubisco activity and gene expression were also measured in order to analyse comprehensively the response of the photosynthetic processes to AM symbiosis and salinity. Results showed that the AM symbiosis enhanced the actual quantum yield of PSII photochemistry and reduced the quantum yield of non-photochemical quenching in rice plants subjected to salinity. AM rice plants maintained higher net photosynthetic rate, stomatal conductance and transpiration rate than nonAM plants. Thus, we propose that AM rice plants had a higher photochemical efficiency for CO2 fixation and solar energy utilization and this increases plant salt tolerance by preventing the injury to the photosystems reaction centres and by allowing a better utilization of light energy in photochemical processes. All these processes translated into higher photosynthetic and rubisco activities in AM rice plants and improved plant biomass production under salinity. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Antenna complexes protect Photosystem I from Photoinhibition

    Science.gov (United States)

    Alboresi, Alessandro; Ballottari, Matteo; Hienerwadel, Rainer; Giacometti, Giorgio M; Morosinotto, Tomas

    2009-01-01

    Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed. PMID:19508723

  13. Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosystem II: comparison of aggregates with trimers

    Science.gov (United States)

    Naqvi, K. Razi; Melø, T. B.; Raju, B. Bangar; Jávorfi, Tamás; Simidjiev, Ilian; Garab, Gyözö

    1997-12-01

    Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/ b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (Δ A) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet-triplet absorption band (Δ A>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chl a) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chl a, is shown to cause a parallel decline in the triplet formation yield of Chl a; on the other hand, the efficiency (100%) of Chl a-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chl a by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.

  14. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II.

    Science.gov (United States)

    Zhang, Miao; Bommer, Martin; Chatterjee, Ruchira; Hussein, Rana; Yano, Junko; Dau, Holger; Kern, Jan; Dobbek, Holger; Zouni, Athina

    2017-07-18

    In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn 4 CaO 5 -cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn 4 CaO 5 -cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn 4 CaO 5 -cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn 4 CaO 5 -cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate.

  15. Design and combinatorial library generation of 1H 1,4 benzodiazepine 2,5 diones as photosystem-II inhibitors: A public QSAR approach

    Directory of Open Access Journals (Sweden)

    Purusottam Banjare

    2017-09-01

    Full Text Available Exponential rise in the population around the word increased the demand of food grains/crops with limited expansion of the agricultural land. To meet the demand, generation of new herbicidal agents is of primary need for the manufacturing firm. In silico tool like QSAR is one of the regularly used in designing newer compounds along with wet experiment. Photosystem-II (PS-II regarded as one of the major target for the herbicidal agents. With this aim in the present study a series of 1H, 1,4 benzodiazepine 2,5-dione analogues as herbicidal (PS-II inhibitors agents were subjected to QSAR analysis using 2D PaDEL descriptors (open source. Two different splitting techniques namely, kennard stone based and k-means clustering splitting were used to divide the whole data set and GFA based on MAE criteria was used a statistical method to develop a model to investigate the physicochemical and structural requirement of potential PS-II inhibitors. All the models are statistically robust both internally and externally (Q2: 0.540–0.693, R2pred: 0.722–0.810. The activity is mostly affected by polarizabilities, electro negativities as well as substituents at the phenyl ring. Based on the results, a library of compounds was generated using SmiLib v2.0 tool (open source and better predicted inside applicability domain compounds were identified by applying three different applicability domain (AD approaches. Therefore the developed public QSAR models may be helpful for the scientific community for the further research.

  16. Role of phosphatidylglycerol in the function and assembly of Photosystem II reaction center, studied in a cdsA-inactivated PAL mutant strain of Synechocystis sp. PCC6803 that lacks phycobilisomes

    Czech Academy of Sciences Publication Activity Database

    Laczkó-Dobos, H.; Ughy, B.; Tóth, S. Z.; Komenda, Josef; Zsiros, O.; Domonkos, I.; Párducz, A.; Bogos, B.; Komura, M.; Itoh, S.; Gombos, Z.

    2008-01-01

    Roč. 1777, č. 9 (2008), s. 1184-1194 ISSN 0005-2728 R&D Projects: GA AV ČR IAA400200801 Grant - others:HU(HU) OTKA T60109; HU(HU) OTKA T68692 Institutional research plan: CEZ:AV0Z50200510 Keywords : synechocystis sp. pcc6803 * phosphatidylglycerol * photosystem II Subject RIV: EE - Microbiology, Virology Impact factor: 4.447, year: 2008

  17. Molecular modeling and computational simulation of the photosystem-II reaction center to address isoproturon resistance in Phalaris minor.

    Science.gov (United States)

    Singh, Durg Vijay; Agarwal, Shikha; Kesharwani, Rajesh Kumar; Misra, Krishna

    2012-08-01

    Isoproturon is the only herbicide that can control Phalaris minor, a competitive weed of wheat that developed resistance in 1992. Resistance against isoproturon was reported to be due to a mutation in the psbA gene that encodes the isoproturon-binding D1 protein. Previously in our laboratory, a triazole derivative of isoproturon (TDI) was synthesized and found to be active against both susceptible and resistant biotypes at 0.5 kg/ha but has shown poor specificity. In the present study, both susceptible D1((S)), resistant D1((R)) and D2 proteins of the PS-II reaction center of P. minor have been modeled and simulated, selecting the crystal structure of PS-II from Thermosynechococcus elongatus (2AXT.pdb) as template. Loop regions were refined, and the complete reaction center D1/D2 was simulated with GROMACS in lipid (1-palmitoyl-2-oleoylglycero-3-phosphoglycerol, POPG) environment along with ligands and cofactor. Both S and R models were energy minimized using steepest decent equilibrated with isotropic pressure coupling and temperature coupling using a Berendsen protocol, and subjected to 1,000 ps of MD simulation. As a result of MD simulation, the best model obtained in lipid environment had five chlorophylls, two plastoquinones, two phenophytins and a bicarbonate ion along with cofactor Fe and oxygen evolving center (OEC). The triazole derivative of isoproturon was used as lead molecule for docking. The best worked out conformation of TDI was chosen for receptor-based de novo ligand design. In silico designed molecules were screened and, as a result, only those molecules that show higher docking and binding energies in comparison to isoproturon and its triazole derivative were proposed for synthesis in order to get more potent, non-resistant and more selective TDI analogs.

  18. Salt-induced variation in some potential physiochemical attributes of two genetically diverse spring wheat (triticum aestivum L.) cultivars: photosynthesis and photosystem II efficiency

    International Nuclear Information System (INIS)

    Ashraf, M.A.; Ashraf, M.

    2011-01-01

    Variation in salt tolerance potential of two contrasting wheat cultivars (salt tolerant S-24 and moderately salt sensitive MH-97) at different growth stages was observed when these wheat cultivars were exposed to salinity stress in hydroponic culture. Salinity caused a marked reduction in photosynthetic pigments, transpiration and photos synthetic rates, and stomatal conductance at early growth stages in both wheat cultivars, being more prominent in cv. MH-97. In addition, a marked salt-induced alteration was observed in different attributes of chlorophyll fluorescence. On the basis of physiological characterization of these two wheat cultivars at different growth stages, it was inferred that cv. S-24 exhibited higher salinity tolerance at all growth stages in terms of less salinity-induced degradation of photosynthetic pigments, higher photosynthetic rates, maintenance of photosystem II under salinity stress as compared to that in cv. MH-97. In view of the results presented here, it is evident that wheat plants were prone to adverse effects of salinity at early growth stages as compared to later growth stages. (author)

  19. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models.

    Science.gov (United States)

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-02-10

    Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.

  20. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem II.

    Science.gov (United States)

    Nakamura, Shin; Noguchi, Takumi

    2016-10-11

    During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO 2 , in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn 4 CaO 5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S 1 to S 2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III) 2 Mn(IV) 2 , satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

  1. Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation

    International Nuclear Information System (INIS)

    Nogues, S.; Baker, N.R.

    1995-01-01

    Mature pea (Pisum sativum L., cv. Meteor) leaves were exposed to two levels of UV-B radiation, with and without supplementary UV-C radiation, during 15 h photoperiods. Simultaneous measurements of CO 2 assimilation and modulated chlorophyll fluorescence parameters demonstrated that irradiation with UV-B resulted in decreases in CO 2 assimilation that are not accompanied by decreases in the maximum quantum efficiency of photosystem II (PSII) primary photochemistry. Increased exposure to UV-B resulted in a further loss of CO 2 assimilation and decreases in the maximum quantum efficiency of PSII primary photochemistry, which were accompanied by a loss of the capacity of thylakoids isolated from the leaves to bind atrazine, thus demonstrating that photodamage to PSII reaction centres had occurred. Addition of UV-C to the UV-B treatments increased markedly the rate of inhibition of photosynthesis, but the relationships between CO 2 assimilation and PSII characteristics remained the same, indicating that UV-B and UV-C inhibit leaf photosynthesis by a similar mechanism. It is concluded that PSII is not the primary target site involved in the onset of the inhibition of photosynthesis in pea leaves induced by irradiation with UV-B. (author)

  2. Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N

    International Nuclear Information System (INIS)

    DeRose, V.J.; Yachandra, V.K.; McDermott, A.E.; Britt, R.D.; Sauer, K.; Klein, M.P.

    1991-01-01

    The possibility of nitrogen ligation to the Mn in the oxygen-evolving complex from photosystem II was investigated with electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) spectroscopies using 14 N- and 15 N-labeled preparations. Oxygen-evolving preparations were isolated from a thermophilic cyanobacterium, Synechococcus sp., grown on a medium containing either 14 NO 3 - or 15 NO - 3 as the sole source of nitrogen. The substructure on the multiline EPR signal, which arises from Mn in the S 2 state of the enzyme, was measured with continuous-wave EPR. No changes were detected in the substructure peak positions upon substitution of 15 N for 14 N, indicating that this substructure is not due to superhyperfine coupling from nitrogen ligands. To detect potential nitrogen ligands with superhyperfine couplings of lesser magnitude than could be observed with conventional EPR methods, electron spin-echo envelope modulation experiments were also performed on the multiline EPR signal. The Fourier transform of the light-minus-dark time domain ESEEM data shows a peak at 4.8 MHz in 14 N samples which is absent upon substitution with 15 N. This gives unambiguous evidence for weak hyperfine coupling of nitrogen to the Mn of the oxygen-evolving complex. Possible origins of this nitrogen interaction are discussed

  3. Identification of the roles of individual amino acid residues of the helix E of the major antenna of photosystem II (LHCII) by alanine scanning mutagenesis.

    Science.gov (United States)

    Liu, Cheng; Rao, Yan; Zhang, Lei; Yang, Chunhong

    2014-10-01

    The functions of the helix E (W97-F105), an amphiphilic lumenal 310 helix of the major antenna of photosystem II (LHCII), are still unidentified. To elucidate the roles of individual amino acid residue of the helix E, alanine scanning mutagenesis has been performed to mutate every residue of this domain to alanine. The influence of every alanine substitution on the structure and function of LHCII has been investigated biochemically and spectroscopically. The results show that all mutations have little impact on the pigment binding and configuration. However, many mutants presented decreased thermo- or photo-stability compared with the wild type, highlighting the significance of this helix to the stability of LHCII. The most critical residue for stability is W97. The mutant W97A yielded very fragile trimeric pigment protein complexes. The structural analysis revealed that the hydrogen bonding and aromatic interactions between W97, F195, F194 and a water molecule contributed greatly to the stability of LHCII. Moreover, Q103A and F105A have been identified to be able to reinforce the tendency of aggregation in vitro. The structural analysis suggested that the enhancement in aggregation formation for Q103A and F105A might be attributed to the changing hydrophobicity of the region. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Polarized X-ray absorption spectroscopy of single-crystal Mn(V) complexes relevant to the oxygen-evolving complex of photosystem II

    DEFF Research Database (Denmark)

    Yano, Junko; Robblee, John; Pushkar, Yulia

    2007-01-01

    High-valent Mn-oxo species have been suggested to have a catalytically important role in the water splitting reaction which occurs in the Photosystem II membrane protein. In this study, five- and six-coordinate mononuclear Mn(V) compounds were investigated by polarized X-ray absorption spectroscopy...... structure of the metal site was then studied by measuring the polarization dependence of X-ray absorption near-edge spectroscopy (XANES) pre-edge spectra (1s to 3d transition) and comparing with the results of density functional theory (DFT) calculations. The Mn(V)-nitrido compound, in which the manganese......-edge peak. This component was interpreted as a 1s to 3d(xz,yz) transition with 4px,y mixing, due to the displacement of the Mn atom out of the equatorial plane. The XANES results have been correlated to DFT calculations, and the spectra have been simulated using a TD (time-dependent)-DFT approach...

  5. Quantum mechanical calculations of xanthophyll-chlorophyll electronic coupling in the light-harvesting antenna of photosystem II of higher plants.

    Science.gov (United States)

    Duffy, C D P; Valkunas, L; Ruban, A V

    2013-06-27

    Light-harvesting by the xanthophylls in the antenna of photosystem II (PSII) is a very efficient process (with 80% of the absorbed energy being transfer to chlorophyll). However, the efficiencies of the individual xanthophylls vary considerably, with violaxanthin in LHCII contributing very little to light-harvesting. To investigate the origin of the variation we used Time Dependent Density Functional Theory to model the Coulombic interactions between the xanthophyll 1(1)B(u)(+) states and the chlorophyll Soret band states in the LHCII and CP29 antenna complexes. The results show that the central L1 and L2 binding sites in both complexes favored close cofacial associations between the bound xanthophylls and chlorophyll a, implying efficient energy transfer, consistent with previously reported experimental evidence. Additionally, we found that the peripheral V1 binding site in LHCII did not favor close xanthophyll-chlorophyll associations, confirming observations that violaxanthin in LHCII is not an effective light-harvester. Finally, violaxanthin bound into the L2 site of the CP29 complex was found to be very strongly coupled to its neighboring chlorophylls.

  6. Characterization of the Sr(2+)- and Cd(2+)-Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-09-29

    The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.

  7. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots.

    Science.gov (United States)

    Sylak-Glassman, Emily J; Malnoë, Alizée; De Re, Eleonora; Brooks, Matthew D; Fischer, Alexandra Lee; Niyogi, Krishna K; Fleming, Graham R

    2014-12-09

    The photosystem II (PSII) protein PsbS and the enzyme violaxanthin deepoxidase (VDE) are known to influence the dynamics of energy-dependent quenching (qE), the component of nonphotochemical quenching (NPQ) that allows plants to respond to fast fluctuations in light intensity. Although the absence of PsbS and VDE has been shown to change the amount of quenching, there have not been any measurements that can detect whether the presence of these proteins alters the type of quenching that occurs. The chlorophyll fluorescence lifetime probes the excited-state chlorophyll relaxation dynamics and can be used to determine the amount of quenching as well as whether two different genotypes with the same amount of NPQ have similar dynamics of excited-state chlorophyll relaxation. We measured the fluorescence lifetimes on whole leaves of Arabidopsis thaliana throughout the induction and relaxation of NPQ for wild type and the qE mutants, npq4, which lacks PsbS; npq1, which lacks VDE and cannot convert violaxanthin to zeaxanthin; and npq1 npq4, which lacks both VDE and PsbS. These measurements show that although PsbS changes the amount of quenching and the rate at which quenching turns on, it does not affect the relaxation dynamics of excited chlorophyll during quenching. In addition, the data suggest that PsbS responds not only to ΔpH but also to the Δψ across the thylakoid membrane. In contrast, the presence of VDE, which is necessary for the accumulation of zeaxanthin, affects the excited-state chlorophyll relaxation dynamics.

  9. Dissecting the Photoprotective Mechanism Encoded by the flv4-2 Operon: a Distinct Contribution of Sll0218 in Photosystem II Stabilization.

    Science.gov (United States)

    Bersanini, Luca; Allahverdiyeva, Yagut; Battchikova, Natalia; Heinz, Steffen; Lespinasse, Maija; Ruohisto, Essi; Mustila, Henna; Nickelsen, Jörg; Vass, Imre; Aro, Eva-Mari

    2017-03-01

    In Synechocystis sp. PCC 6803, the flv4-2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4-2 operon mutants. In the ∆sll0218 mutant, the presence of Flv2/Flv4 rescued PSII functionality as compared with ∆sll0218-flv2, where neither Sll0218 nor the Flv2/Flv4 heterodimer are expressed. Nevertheless, both the ∆sll0218 and ∆sll0218-flv2 mutants demonstrated deficiency in accumulation of PSII proteins suggesting a role for Sll0218 in PSII stabilization, which was further supported by photoinhibition experiments. Moreover, the accumulation of PSII assembly intermediates occurred in Sll0218-lacking mutants. The YFP-tagged Sll0218 protein localized in a few spots per cell at the external side of the thylakoid membrane, and biochemical membrane fractionation revealed clear enrichment of Sll0218 in the PratA-defined membranes, where the early biogenesis steps of PSII occur. Further, the characteristic antenna uncoupling feature of the ∆flv4-2 operon mutants is shown to be related to PSII destabilization in the absence of Sll0218. It is concluded that the Flv2/Flv4 heterodimer supports PSII functionality, while the Sll0218 protein assists PSII assembly and stabilization, including optimization of light harvesting. © 2016 The Authors. Plant, Cell & Enviroment Published by John Wiley & Sons Ltd.

  10. Evidence for a Role of Chloroplastic m-Type Thioredoxins in the Biogenesis of Photosystem II in Arabidopsis1[C][W][OPEN

    Science.gov (United States)

    Wang, Peng; Liu, Jun; Liu, Bing; Feng, Dongru; Da, Qingen; Wang, Peng; Shu, Shengying; Su, Jianbin; Zhang, Yang; Wang, Jinfa; Wang, Hong-Bin

    2013-01-01

    Chloroplastic m-type thioredoxins (TRX m) are essential redox regulators in the light regulation of photosynthetic metabolism. However, recent genetic studies have revealed novel functions for TRX m in meristem development, chloroplast morphology, cyclic electron flow, and tetrapyrrole synthesis. The focus of this study is on the putative role of TRX m1, TRX m2, and TRX m4 in the biogenesis of the photosynthetic apparatus in Arabidopsis (Arabidopsis thaliana). To that end, we investigated the impact of single, double, and triple TRX m deficiency on chloroplast development and the accumulation of thylakoid protein complexes. Intriguingly, only inactivation of three TRX m genes led to pale-green leaves and specifically reduced stability of the photosystem II (PSII) complex, implying functional redundancy between three TRX m isoforms. In addition, plants silenced for three TRX m genes displayed elevated levels of reactive oxygen species, which in turn interrupted the transcription of photosynthesis-related nuclear genes but not the expression of chloroplast-encoded PSII core proteins. To dissect the function of TRX m in PSII biogenesis, we showed that TRX m1, TRX m2, and TRX m4 interact physically with minor PSII assembly intermediates as well as with PSII core subunits D1, D2, and CP47. Furthermore, silencing three TRX m genes disrupted the redox status of intermolecular disulfide bonds in PSII core proteins, most notably resulting in elevated accumulation of oxidized CP47 oligomers. Taken together, our results suggest an important role for TRX m1, TRX m2, and TRX m4 proteins in the biogenesis of PSII, and they appear to assist the assembly of CP47 into PSII. PMID:24151299

  11. Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb. in response to high-temperature stress

    Directory of Open Access Journals (Sweden)

    Tao eHu

    2015-06-01

    Full Text Available When plants are pre-exposed to stress, they can produce some stable signals and physiological reactions that may be carried forward as ‘stress memory’. However, there is insufficient information about is known about plants’ stress memory responses mechanisms. Here, two tall fescue genotypes, heat-tolerant PI 574522 and heat-sensitive PI 512315, were subjected to recurring high-temperature pre-acclimation treatment. Two heat shock protein (HSP genes, LMW-HSP and HMW-HSP, exhibited transcriptional memory for their higher transcript abundance during one or more subsequent stresses (S2, S3, S4 relative to the first stress (S1, and basal transcript levels during the recovery states (R1, R2 and R3. Activated transcriptional memory from two trainable genes could persist up to 4 days, and induce higher thermotolerance in tall fescue. This was confirmed by greater turf quality and lower electrolyte leakage. Pre-acclimation treatment inhibited the decline at steps of O-J-I-P and energy transport fluxes in active Photosystem II reaction center (PSII RC for both tall fescue genotypes. The heat stress memory was associated with major shifts in leaf metabolite profiles. Furthermore, there was an exclusive increase in leaf organic acids (citric acid, malic acid, tris phosphoric acid, threonic acid, sugars (sucrose, glucose, idose, allose, talose, glucoheptose, tagatose, psicose, amino acids (serine, proline, pyroglutamic acid, glycine, alanine and one fatty acid (butanoic acid in pre-acclimated plants. These discoveries involved in transcriptional memory, PSII RC energy transport and metabolite profiles could provide new insights into the plant high–temperature response process.

  12. Protein-protein interactions within photosystem II under photoprotection: the synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution.

    Science.gov (United States)

    Daskalakis, Vangelis

    2018-05-07

    The assembly and disassembly of protein complexes within cells are crucial life-sustaining processes. In photosystem II (PSII) of higher plants, there is a delicate yet obscure balance between light harvesting and photo-protection under fluctuating light conditions, that involves protein-protein complexes. Recent breakthroughs in molecular dynamics (MD) simulations are combined with new approaches herein to provide structural and energetic insight into such a complex between the CP29 minor antenna and the PSII subunit S (PsbS). The microscopic model involves extensive sampling of bound and dissociated states at atomic resolution in the presence of photo-protective zeaxanthin (Zea), and reveals well defined protein-protein cross-sections. The complex is placed within PSII, and macroscopic connections are emerging (PsbS-CP29-CP24-CP47) along the energy transfer pathways from the antenna to the PSII core. These connections explain macroscopic observations in the literature, while the previously obscured atomic scale details are now revealed. The implications of these findings are discussed in the context of the Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence, the down-regulatory mechanism of photosynthesis, that enables the protection of PSII against excess excitation load. Zea is found at the PsbS-CP29 cross-section and a pH-dependent equilibrium between PsbS dimer/monomers and the PsbS-CP29 dissociation/association is identified as the target for engineering tolerant plants with increased crop and biomass yields. Finally, the new MD based approaches can be used to probe protein-protein interactions in general, and the PSII structure provided can initiate large scale molecular simulations of the photosynthetic apparatus, under NPQ conditions.

  13. Langmuir-Blodgett and X-ray diffraction studies of isolated photosystem II reaction centers in monolayers and multilayers: physical dimensions of the complex.

    Science.gov (United States)

    Uphaus, R A; Fang, J Y; Picorel, R; Chumanov, G; Wang, J Y; Cotton, T M; Seibert, M

    1997-04-01

    The photosystem II (PSII) reaction center (RC) is a hydrophobic intrinsic protein complex that drives the water-oxidation process of photosynthesis. Unlike the bacterial RC complex, an X-ray crystal structure of the PSII RC is not available. In order to determine the physical dimensions of the isolated PSII RC complex, we applied Langmuir techniques to determine the cross-sectional area of an isolated RC in a condensed monolayer film. Low-angle X-ray diffraction results obtained by examining Langmuir-Blodgett multilayer films of alternating PSII RC/Cd stearate monolayers were used to determine the length (or height; z-direction, perpendicular to the plane of the original membrane) of the complex. The values obtained for a PSII RC monomer were 26 nm2 and 4.8 nm, respectively, and the structural integrity of the RC in the multilayer film was confirmed by several approaches. Assuming a cylindrical-type RC structure, the above dimensions lead to a predicted volume of about 125 nm3. This value is very close to the expected volume of 118 nm3, calculated from the known molecular weight and partial specific volume of the PSII RC proteins. This same type of comparison was also made with the Rhodobacter sphaeroides RC based on published data, and we conclude that the PSII RC is much shorter in length and has a more regular solid geometric structure than the bacterial RC. Furthermore, the above dimensions of the PSII RC and those of PSII core (RC plus proximal antenna) proteins protruding outside the plane of the PSII membrane into the lumenal space as imaged by scanning tunneling microscopy (Seibert, Aust. J. Pl. Physiol. 22, 161-166, 1995) fit easily into the known dimensions of the PSII core complex visualized by others as electron-density projection maps. From this we conclude that the in situ PSII core complex is a dimeric structure containing two copies of the PSII RC.

  14. Pigment organization and their interactions in reaction centers of photosystem II: optical spectroscopy at 6 K of reaction centers with modified pheophytin composition.

    Science.gov (United States)

    Germano, M; Shkuropatov, A Y; Permentier, H; de Wijn, R; Hoff, A J; Shuvalov, V A; van Gorkom, H J

    2001-09-25

    Photosystem II reaction centers (RC) with selectively exchanged pheophytin (Pheo) molecules as described in [Germano, M., Shkuropatov, A. Ya., Permentier, H., Khatypov, R. A., Shuvalov, V. A., Hoff, A. J., and van Gorkom, H. J. (2000) Photosynth. Res. 64, 189-198] were studied by low-temperature absorption, linear and circular dichroism, and triplet-minus-singlet absorption-difference spectroscopy. The ratio of extinction coefficients epsilon(Pheo)/epsilon(Chl) for Q(Y) absorption in the RC is approximately 0.40 at 6 K and approximately 0.45 at room temperature. The presence of 2 beta-carotenes, one parallel and one perpendicular to the membrane plane, is confirmed. Absorption at 670 nm is due to the perpendicular Q(Y) transitions of the two peripheral chlorophylls (Chl) and not to either Pheo. The "core" pigments, two Pheo and four Chl absorb in the 676-685 nm range. Delocalized excited states as predicted by the "multimer model" are seen in the active branch. The inactive Pheo and the nearby Chl, however, mainly contribute localized transitions at 676 and 680 nm, respectively, although large CD changes indicate that exciton interactions are present on both branches. Replacement of the active Pheo prevents triplet formation, causes an LD increase at 676 and 681 nm, a blue-shift of 680 nm absorbance, and a bleach of the 685 nm exciton band. The triplet state is mainly localized on the Chl corresponding to B(A) in purple bacteria. Both Pheo Q(Y) transitions are oriented out of the membrane plane. Their Q(X) transitions are parallel to that plane, so that the Pheos in PSII are structurally similar to their homologues in purple bacteria.

  15. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale.

    Science.gov (United States)

    Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A

    2016-02-25

    Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.

  16. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  17. The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I

    DEFF Research Database (Denmark)

    Plöchinger, Magdalena; Torabi, Salar; Rantala, Marjaana

    2016-01-01

    PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of Psa......I destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated...

  18. Calcium EXAFS establishes the Mn-Ca cluster in the oxygen-evolving complex of Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Cinco, Roehl M.; McFarlane Holman, Karen L.; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.

    2002-08-02

    The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 angstroms, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is {approx}; 3.5 angstroms distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster.

  19. Photoprotection in Plants Involves a Change in Lutein 1 Binding Domain in the Major Light-harvesting Complex of Photosystem II

    NARCIS (Netherlands)

    Ilioaia, C.; Johnson, M.P.; Liao, P.N.; Pascal, A.A.; van Grondelle, R.; Walla, P.J.; Ruban, A.V.; Robert, B.

    2011-01-01

    Nonphotochemical quenching (NPQ) is the fundamental process by which plants exposed to high light intensities dissipate the potentially harmful excess energy as heat. Recently, it has been shown that efficient energy dissipation can be induced in the major light-harvesting complexes of photosystem

  20. HYDROGEN PRODUCTION BY THE CYANOBACTERIUM PLECTONEMA BORYANUM: EFFECTS OF INITIAL NITRATE CONCENTRATION, LIGHT INTENSITY, AND INHIBITION OF PHOTOSYSTEM II BY DCMU

    Energy Technology Data Exchange (ETDEWEB)

    Carter, B.; Huesemann, M.

    2008-01-01

    The alarming rate at which atmospheric carbon dioxide levels are increasing due to the burning of fossil fuels will have incalculable consequences if disregarded. Fuel cells, a source of energy that does not add to carbon dioxide emissions, have become an important topic of study. Although signifi cant advances have been made related to fuel cells, the problem of cheap and renewable hydrogen production still remains. The cyanobacterium Plectonema boryanum has demonstrated potential as a resolution to this problem by producing hydrogen under nitrogen defi cient growing conditions. Plectonema boryanum cultures were tested in a series of experiments to determine the effects of light intensity, initial nitrate concentration, and photosystem II inhibitor DCMU (3-(3,4- dichlorophenyl)-1,1-dimethylurea) upon hydrogen production. Cultures were grown in sterile Chu. No. 10 medium within photobioreactors constantly illuminated by halogen lights. Because the enzyme responsible for hydrogen production is sensitive to oxygen, the medium was continuously sparged with argon/CO2 (99.7%/0.3% vol/vol) by gas dispersion tubes immersed in the culture. Hydrogen production was monitored by using a gas chromatograph equipped with a thermal conductivity detector. In the initial experiment, the effects of initial nitrate concentration were tested and results revealed cumulative hydrogen production was maximum at an initial nitrate concentration of 1 mM. A second experiment was then conducted at an initial nitrate concentration of 1 mM to determine the effects of light intensity at 50, 100, and 200 μmole m-2 s-1. Cumulative hydrogen production increased with increasing light intensity. A fi nal experiment, conducted at an initial nitrate concentration of 2 mM, tested the effects of high light intensity at 200 and 400 μmole m-2 s-1. Excessive light at 400 μmole m-2 s-1 decreased cumulative hydrogen production. Based upon all experiments, cumulative hydrogen production rates were optimal

  1. Participation of Glutamate-354 of the CP43 Polypeptide in the Ligation of Mn and the Binding of Substrate Water in Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Service, Rachel; Yano, Junko; McConnell, Iain; Hwang, Hong Jin; Niks, Dimitri; Hille, Russ; Wydrzynski, Tom; Burnap, Robert; Hillier, Warwick; Debus, Richard

    2010-09-30

    In the current X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is the only amino acid ligand of the oxygen-evolving Mn4Ca cluster that is not provided by the D1 polypeptide. To further explore the influence of this structurally unique residue on the properties of the Mn4Ca cluster, the CP43-E354Q mutant of the cyanobacterium Synechocystis sp. PCC 6803 was characterized with a variety of biophysical and spectroscopic methods, including polarography, EPR, X-ray Absorption, FTIR, and mass spectrometry. The kinetics of oxygen release in the mutant were essentially unchanged from those in wild-type. In addition, the oxygen flash-yields exhibited normal period-four oscillations having normal S state parameters, although the yields were lower, correlating with the mutant?s lower steady-state rate (approx. 20percent compared to wild-type). Experiments conducted with H218O showed that the fast and slow phases of substrate water exchange in CP43-E354Q thylakoid membranes were accelerated 8.5- and 1.8-fold, respectively, in the S3 state compared to wild-type. Purified oxygen-evolving CP43-E354Q PSII core complexes exhibited a slightly altered S1 state Mn-EXAFS spectrum, a slightly altered S2 state multiline EPR signal, a substantially altered S2-minus-S1 FTIR difference spectrum, and an unusually long lifetime for the S2 state (> 10 hours) in a substantial fraction of reaction centers. In contrast, the S2 state Mn-EXAFS spectrum was nearly indistinguishable from that of wild-type. The S2-minus-S1 FTIR difference spectrum showed alterations throughout the amide and carboxylate stretching regions. Global labeling with 15N and specific labeling with L-[1-13C]alanine revealed that the mutation perturbs both amide II and carboxylate stretching modes and shifts the symmetric carboxylate stretching modes of the ?-COO? group of D1-Ala344 (the C-terminus of the D1 polypeptide) to higher frequencies by 3 ? 4 cm-1 in both the S1 and S2 states

  2. How exciton-vibrational coherences control charge separation in the photosystem II reaction center

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Romero Mesa, E.; van Grondelle, R.

    2015-01-01

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary

  3. Accessibility controls selective degradation of photosystem II subunits by FtsH protease

    Czech Academy of Sciences Publication Activity Database

    Krynická, Vendula; Shao, S.; Nixon, P.J.; Komenda, Josef

    2015-01-01

    Roč. 1, č. 12 (2015), UNSP 15168 ISSN 2055-026X R&D Projects: GA MŠk(CZ) LO1416; GA ČR GBP501/12/G055 Institutional support: RVO:61388971 Keywords : SYNECHOCYSTIS SP PCC-6803 * DRIVEN SYNTHESIS * COMPLEX Subject RIV: EE - Microbiology, Virology

  4. Brevetoxin, the Dinoflagellate Neurotoxin, Localizes to Thylakoid Membranes and Interacts with the Light-Harvesting Complex II (LHCII) of Photosystem II.

    Science.gov (United States)

    Cassell, Ryan T; Chen, Wei; Thomas, Serge; Liu, Li; Rein, Kathleen S

    2015-05-04

    The brevetoxins are neurotoxins that are produced by the "Florida red tide" dinoflagellate Karenia brevis. They bind to and activate the voltage-gated sodium channels in higher organisms, specifically the Nav 1.4 and Nav 1.5 channel subtypes. However, the native physiological function that the brevetoxins perform for K. brevis is unknown. By using fluorescent and photoactivatable derivatives, brevetoxin was shown to localize to the chloroplast of K. brevis where it binds to the light-harvesting complex II (LHCII) and thioredoxin. The LHCII is essential to non-photochemical quenching (NPQ), whereas thioredoxins are critical to the maintenance of redox homeostasis within the chloroplast and contribute to the scavenging of reactive oxygen. A culture of K. brevis producing low levels of toxin was shown to be deficient in NPQ and produced reactive oxygen species at twice the rate of the toxic culture, implicating a role in NPQ for the brevetoxins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Decreased Photochemical Efficiency of Photosystem II following Sunlight Exposure of Shade-Grown Leaves of Avocado: Because of, or in Spite of, Two Kinetically Distinct Xanthophyll Cycles?1[W

    Science.gov (United States)

    Jia, Husen; Förster, Britta; Chow, Wah Soon; Pogson, Barry James; Osmond, C. Barry

    2013-01-01

    This study resolved correlations between changes in xanthophyll pigments and photosynthetic properties in attached and detached shade-grown avocado (Persea americana) leaves upon sun exposure. Lutein epoxide (Lx) was deepoxidized to lutein (L), increasing the total pool by ΔL over 5 h, whereas violaxanthin (V) conversion to antheraxanthin (A) and zeaxanthin (Z) ceased after 1 h. During subsequent dark or shade recovery, de novo synthesis of L and Z continued, followed by epoxidation of A and Z but not of L. Light-saturated nonphotochemical quenching (NPQ) was strongly and linearly correlated with decreasing [Lx] and increasing [∆L] but showed a biphasic correlation with declining [V] and increasing [A+Z] separated when V deepoxidation ceased. When considering [ΔL+∆Z], the monophasic linear correlation was restored. Photochemical efficiency of photosystem II (PSII) and photosystem (PSI; deduced from the delivery of electrons to PSI in saturating single-turnover flashes) showed a strong correlation in their continuous decline in sunlight and an increase in NPQ capacity. This decrease was also reflected in the initial reduction of the slope of photosynthetic electron transport versus photon flux density. Generally longer, stronger sun exposures enhanced declines in both slope and maximum photosynthetic electron transport rates as well as photochemical efficiency of PSII and PSII/PSI more severely and prevented full recovery. Interestingly, increased NPQ capacity was accompanied by slower relaxation. This was more prominent in detached leaves with closed stomata, indicating that photorespiratory recycling of CO2 provided little photoprotection to avocado shade leaves. Sun exposure of these shade leaves initiates a continuum of photoprotection, beyond full engagement of the Lx and V cycle in the antenna, but ultimately photoinactivated PSII reaction centers. PMID:23213134

  6. Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal.

    Science.gov (United States)

    Demmig-Adams, B; Adams, W W; Winter, K; Meyer, A; Schreiber, U; Pereira, J S; Krüger, A; Czygan, F C; Lange, O L

    1989-03-01

    During the "midday depression" of net CO2 exchange in the mediterranean sclerophyllous shrub Arbutus unedo, examined in the field in Portugal during August of 1987, several parameters indicative of photosynthetic competence were strongly and reversibly affected. These were the photochemical efficiency of photosystem (PS) II, measured as the ratio of variable to maximum chlorophyll fluorescence, as well as the photon yield and the capacity of photosynthetic O2 evolution at 10% CO2, of which the apparent photon yield of O2 evolution was most depressed. Furthermore, there was a strong and reversible increase in the content of the carotenoid zeaxanthin in the leaves that occurred at the expense of both violaxanthin and β-carotene. Diurnal changes in fluorescence characteristics were interpreted to indicate three concurrent effects on the photochemical system. First, an increase in the rate of radiationless energy dissipation in the antenna chlorophyll, reflected by changes in 77K fluorescence of PSII and PSI as well as in chlorophyll a fluorescence at ambient temperature. Second, a state shift characterized by an increase in the proportion of energy distributed to PSI as reflected by changes in PSI fluorescence. Third, an effect lowering the photon yield of O2 evolution and PSII fluorescence at ambient temperature without affecting PSII fluorescence at 77K which would be expected from a decrease in the activity of the water splitting enzyme system, i.e. a donor side limitation.

  7. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. pH-Dependent Regulation of the Relaxation Rate of the Radical Anion of the Secondary Quinone Electron Acceptor QB in Photosystem II As Revealed by Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Nozawa, Yosuke; Noguchi, Takumi

    2018-05-15

    Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, Q B , and upon double reduction, Q B is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the Q B - radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of Q B - by charge recombination with the S 2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of Q A - examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the Q B - and Q A - decays using fluorescence detection. The accelerated relaxation of Q B - was explained by the shift of a redox equilibrium between Q A - and Q B - to the Q A - side due to the decrease in the redox potential of Q B at higher pH, which is induced by deprotonation of a single amino acid residue near Q B . It is proposed that this pH-dependent Q B - relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.

  9. Generalized approximate spin projection calculations of effective exchange integrals of the CaMn4O5 cluster in the S1 and S3 states of the oxygen evolving complex of photosystem II.

    Science.gov (United States)

    Isobe, H; Shoji, M; Yamanaka, S; Mino, H; Umena, Y; Kawakami, K; Kamiya, N; Shen, J-R; Yamaguchi, K

    2014-06-28

    Full geometry optimizations followed by the vibrational analysis were performed for eight spin configurations of the CaMn4O4X(H2O)3Y (X = O, OH; Y = H2O, OH) cluster in the S1 and S3 states of the oxygen evolution complex (OEC) of photosystem II (PSII). The energy gaps among these configurations obtained by vertical, adiabatic and adiabatic plus zero-point-energy (ZPE) correction procedures have been used for computation of the effective exchange integrals (J) in the spin Hamiltonian model. The J values are calculated by the (1) analytical method and the (2) generalized approximate spin projection (AP) method that eliminates the spin contamination errors of UB3LYP solutions. Using J values derived from these methods, exact diagonalization of the spin Hamiltonian matrix was carried out, yielding excitation energies and spin densities of the ground and lower-excited states of the cluster. The obtained results for the right (R)- and left (L)-opened structures in the S1 and S3 states are found to be consistent with available optical and magnetic experimental results. Implications of the computational results are discussed in relation to (a) the necessity of the exact diagonalization for computations of reliable energy levels, (b) magneto-structural correlations in the CaMn4O5 cluster of the OEC of PSII, (c) structural symmetry breaking in the S1 and S3 states, and (d) the right- and left-handed scenarios for the O-O bond formation for water oxidation.

  10. Water oxidation by photosystem II: H(2)O-D(2)O exchange and the influence of pH support formation of an intermediate by removal of a proton before dioxygen creation.

    Science.gov (United States)

    Gerencsér, László; Dau, Holger

    2010-11-30

    Understanding the chemistry of photosynthetic water oxidation requires deeper insight into the interrelation between electron transfer (ET) and proton relocations. In photosystem II membrane particles, the redox transitions of the water-oxidizing Mn complex were initiated by nanosecond laser flashes and monitored by absorption spectroscopy at 360 nm (A(360)). In the oxygen evolution transition (S(3) + hν → S(0) + O(2)), an exponential decrease in A(360) (τ(O(2)) = 1.6 ms) can be assigned to Mn reduction and O(2) formation. The corresponding rate-determining step is the ET from the Mn complex to a tyrosine radical (Y(Z)(ox)). We find that this A(360) decrease is preceded by a lag phase with a duration of 170 ± 40 μs (τ(lag) at pH 6.2), indicating formation of an intermediate before ET and O-O bond formation and corroborating results obtained by time-resolved X-ray spectroscopy. Whereas τ(O(2)) exhibits a minor kinetic isotope effect and negligible pH dependence, formation of the intermediate is slowed significantly both in D(2)O (τ(lag) increase of ∼140% in D(2)O) and at low pH (τ(lag) of 30 ± 20 μs at pH 7.0 vs τ(lag) of 470 ± 80 μs at pH 5.5). These findings support the fact that in the oxygen evolution transition an intermediate is created by deprotonation and removal of a proton from the Mn complex, after Y(Z)(ox) formation but before the onset of electron transfer and O-O bond formation.

  11. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity.

    Science.gov (United States)

    Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B

    2018-01-01

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes

  12. Antenna entropy in plant photosystems does not reduce the free energy for primary charge separation.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-12-01

    We have investigated the concept of the so-called "antenna entropy" of higher plant photosystems. Several interesting points emerge: 1. In the case of a photosystemwhich harbours an excited state, the “antenna entropy” is equivalent to the configurational (mixing) entropy of a thermodynamic canonical ensemble. The energy associated with this parameter has been calculated for a hypothetical isoenergetic photosystem, photosystem I and photosystem II, and comes out in the range of 3.5 - 8% of the photon energy considering 680 nm. 2. The “antenna entropy” seems to be a rather unique thermodynamic phenomenon, in as much as it does not modify the free energy available for primary photochemistry, as has been previously suggested. 3. It is underlined that this configurational (mixing) entropy, unlike heat dispersal in a thermal system, does not involve energy dilution. This points out an important difference between thermal and electronic energy dispersal. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Using the quantum yields of photosystem II and the rate of net photosynthesis to moniter high irradiance and temperature stress in chrysanthemum (Dendrantherma grandiflora)

    DEFF Research Database (Denmark)

    Janka, Eshetu; Körner, Oliver; Rosenqvist, Eva

    2015-01-01

    and quantum yield of PSII remaining low until the temperature reaches 28 °C and 2) the integration of online measurements to monitor photosynthesis and PSII operating efficiency may be used to optimise dynamic greenhouse control regimes by detecting plant stress caused by extreme microclimatic conditions.......Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting...... irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes...

  14. [Growth and photochemical efficiency of photosystem ii in seedlings of two varieties of Capsicum annuum L. inoculated with rhizobacteria and arbuscular mycorrhizal fungi].

    Science.gov (United States)

    Angulo-Castro, Azareel; Ferrera-Cerrato, Ronald; Alarcón, Alejandro; Almaraz-Suárez, Juan José; Delgadillo-Martínez, Julián; Jiménez-Fernández, Maribel; García-Barradas, Oscar

    Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are a biological alternative for the sustainable management of Capsicum annuum L. This research work evaluated the effects of both PGPR and AMF on bell pepper and jalapeno pepper plants. Five bacterial strains isolated from several locations in Estado de Mexico were used: [P61 (Pseudomonas tolaasii), A46 (P. tolaasii), R44 (Bacillus pumilus), BSP1.1 (Paenibacillus sp.), and OLs-Sf5 (Pseudomonas sp.)], and three treatments with AMF [H1 (consortium isolated from pepper crops in the State of Puebla), H2 (Rhizophagus intraradices), and H3 (consortium isolated from the rhizosphere of lemon trees, State of Tabasco)]. In addition, a fertilized treatment (Steiner nutrient solution at 25%) and an unfertilized control were included. Seedlings of "Caloro" jalapeno pepper and "California Wonder" bell pepper were inoculated with AMF at seed sowing, and PGPR were inoculated after 15 days of seedling emergence; seedlings were grown under plant growth chamber conditions. P61 bacterium and H1 AMF consortia were the most effective microorganisms for jalapeno pepper whereas R44 bacterium and AMF H3 and H1 were the most effective for bell peppers, when compared to the unfertilized control. Furthermore, P61 and R44 bacteria showed beneficial effects on PSII efficiency. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Silver Biocide Analysis & Control Device, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid, accurate measurement and process control of silver ion biocide concentrations in future space missions is needed. The purpose of the Phase II program is to...

  16. PEP-II injection timing and controls

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Browne, M.; Crane, M.; Gromme, T.; Himel, T.; Ross, M.; Stanek, M.; Ronan, M.

    1997-07-01

    Hardware has been built and software written and incorporated in the existing SLC accelerator control system to control injection of beam pulses from the accelerator into the PEP-II storage rings currently under construction. Hardware includes a CAMAC module to delay the machine timing fiducial in order that a beam pulse extracted from a damping ring will be injected into a selected group of four 476 MHz buckets in a PEP-II ring. Further timing control is accomplished by shifting the phase of the bunches stored in the damping rings before extraction while leaving the phase of the PEP-II stored beam unchanged. The software which drives timing devices on a pulse-to-pulse basis relies on a dedicated communication link on which one scheduling microprocessor broadcasts a 128-bit message to all distributed control microprocessors at 360 Hz. PEP-II injection will be driven by the scheduling microprocessor according to lists specifying bucket numbers in arbitrary order, and according to scheduling constraints maximizing the useful beam delivered to the SLC collider currently in operation. These lists will be generated by a microprocessor monitoring the current stored per bucket in each of the PEP-II rings

  17. The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data.

    Science.gov (United States)

    Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-01-17

    Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4 O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S 1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal

  18. Remote Control of TJ-II Diagnostics

    International Nuclear Information System (INIS)

    Lopez Sanchez, A.; Vega, J.; Montoro, A.; Encabo, J.

    2001-01-01

    The present paper is about the design and development of ten remote control diagnostic systems used in the study of plasma fusion in the TJ-II device installed at CIEMAT. This development goes from the definition of sensors and devices necessary in carrying out these remote controls, to its assembly, wiring, development of electronic circuits inserted between sensors and PLC, development of programs for these PLC, connections and administration of the real time automation network, and later development of the necessary programs via the appropriate software tools for web access through a navigator to a specific web page, allowing visual and real time access over the auxiliary systems that make up all the diagnostics. (Author)

  19. Consequences of Modification of Photosystem Stoichiometry and Amount in Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Vermaas, Willem [Arizona State Univ., Tempe, AZ (United States)

    2016-12-13

    The proposed research seeks to address two interconnected, important questions that impact photosynthetic processes and that reflect key differences between the photosynthetic systems of cyanobacteria and plants or algae. The first question is what are the reasons and consequences of the high photosystem I / photosystem II (PS I/PS II) ratio in many cyanobacteria, vs. a ratio that is close to unity in many plants and algae. The corresponding hypothesis is that most of PS I functions in cyclic electron transport, and that reduction in PS I will result primarily in a shortage of ATP rather than reducing power. This hypothesis will be tested by reducing the amount of PS I by changing the promoter region of the psaAB operon in the cyanobacterium Synechocystis sp. PCC 6803 and generating a range of mutants with different PS I content and thereby different PS I/PS II ratios, with some of the mutants having a PS II/PS I ratio closer to that in plants. The resulting mutants will be probed in terms of their growth rates, electron transfer rates, and P700 redox kinetics. A second question relates to a Mehler-type reaction catalyzed by two flavoproteins, Flv1 and Flv3, that accept electrons from PS I and that potentially function as an electron safety valve leading to no useful purpose of the photosynthesis-generated electrons. The hypothesis to be tested is that Flv1 and Flv3 use the electrons for useful purposes such as cyclic electron flow around PS I. This hypothesis will be tested by analysis of a mutant strain lacking flv3, the gene for one of the flavoproteins. This research is important for a more detailed understanding of the consequences of photosystem stoichiometry and amounts in a living system. Such an understanding is critical for not only insights in the regulatory systems of the organism but also to guide the development of biological or bio-hybrid systems for solar energy conversion into fuels.

  20. Photosystem I electron donor or fluorescence quencher

    NARCIS (Netherlands)

    Wientjes, I.E.; Croce, R.

    2012-01-01

    Light energy harvested by the pigments in Photosystem I (PSI) is used for charge separation in the reaction center (RC), after which the positive charge resides on a special chlorophyll dimer called P700. In studies on the PSI trapping kinetics, P700

  1. Software Quality Control at Belle II

    Science.gov (United States)

    Ritter, M.; Kuhr, T.; Hauth, T.; Gebard, T.; Kristof, M.; Pulvermacher, C.; Belle Software Group, II

    2017-10-01

    Over the last seven years the software stack of the next generation B factory experiment Belle II has grown to over one million lines of C++ and Python code, counting only the part included in offline software releases. There are several thousand commits to the central repository by about 100 individual developers per year. To keep a coherent software stack of high quality that it can be sustained and used efficiently for data acquisition, simulation, reconstruction, and analysis over the lifetime of the Belle II experiment is a challenge. A set of tools is employed to monitor the quality of the software and provide fast feedback to the developers. They are integrated in a machinery that is controlled by a buildbot master and automates the quality checks. The tools include different compilers, cppcheck, the clang static analyzer, valgrind memcheck, doxygen, a geometry overlap checker, a check for missing or extra library links, unit tests, steering file level tests, a sophisticated high-level validation suite, and an issue tracker. The technological development infrastructure is complemented by organizational means to coordinate the development.

  2. EBR-II high-ramp transients under computer control

    International Nuclear Information System (INIS)

    Forrester, R.J.; Larson, H.A.; Christensen, L.J.; Booty, W.F.; Dean, E.M.

    1983-01-01

    During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients

  3. Consequences of state transitions on the structural and functional organization of Photosystem I in the green alga Chlamydomonas reinhardtii

    NARCIS (Netherlands)

    Drop, Bartlomiej; Yadav K.N., Sathish; Boekema, Egbert J.; Croce, Roberta

    State transitions represent a photoacclimation process that regulates the light-driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light-harvesting complex of green algae

  4. [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(OH2)](NO3)3 (terpy = 2,2′:6,2″-terpyridine) and its relevance to the oxygen-evolving complex of photosystem II examined through pH dependent cyclic voltametry

    Science.gov (United States)

    Cady, Clyde W.; Shinopoulos, Katherine E.; Crabtree, Robert H.; Brudvig, Gary W.

    2010-01-01

    Photosynthetic water oxidation occurs naturally at a tetranuclear manganese center in the photosystem II protein complex. Synthetically mimicking this tetramanganese center, known as the oxygen-evolving complex (OEC), has been an ongoing challenge of bioinorganic chemistry. Most past efforts have centered on water-oxidation catalysis using chemical oxidants. However, solar energy applications have drawn attention to electrochemical methods. In this paper, we examine the electrochemical behavior of the biomimetic water-oxidation catalyst [(H2O)(terpy)Mn(μ-O)2Mn(terpy)(H2O)](NO3)3 [terpy = 2,2′:6′,2″-terpyridine] (1) in water under a variety of pH and buffered conditions and in the presence of acetate that binds to 1 in place of one of the terminal water ligands. These experiments will show that 1 not only exhibits proton-coupled electron-transfer reactivity analogous to the OEC, but also may be capable of electrochemical oxidation of water to oxygen. PMID:20372724

  5. Data handling at EBR-II [Experimental Breeder Reactor II] for advanced diagnostics and control work

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Schorzman, L.W.

    1988-01-01

    Improved control and diagnostics systems are being developed for nuclear and other applications. The Experimental Breeder Reactor II (EBR-II) Division of Argonne National Laboratory has embarked on a project to upgrade the EBR-II control and data handling systems. The nature of the work at EBR-II requires that reactor plant data be readily available for experimenters, and that the plant control systems be flexible to accommodate testing and development needs. In addition, operational concerns require that improved operator interfaces and computerized diagnostics be included in the reactor plant control system. The EBR-II systems have been upgraded to incorporate new data handling computers, new digital plant process controllers, and new displays and diagnostics are being developed and tested for permanent use. In addition, improved engineering surveillance will be possible with the new systems

  6. Different roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection.

    Science.gov (United States)

    Dall'Osto, Luca; Fiore, Alessia; Cazzaniga, Stefano; Giuliano, Giovanni; Bassi, Roberto

    2007-11-30

    Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynthesis containing exclusively alpha-branch (chy1chy2lut5) or beta-branch (chy1chy2lut2) xanthophylls. Both mutants show complete lack of qE, the rapidly reversible component of nonphotochemical quenching, and high levels of photoinhibition and lipid peroxidation under photooxidative stress. Both mutants are much more photosensitive than npq1lut2, which contains high levels of viola- and neoxanthin and a higher stoichiometry of light-harvesting proteins with respect to photosystem II core complexes, suggesting that the content in light-harvesting complexes plays an important role in photoprotection. In addition, chy1chy2lut5, which has lutein as the only xanthophyll, shows unprecedented photosensitivity even in low light conditions, reduced electron transport rate, enhanced photobleaching of isolated LHCII complexes, and a selective loss of CP26 with respect to chy1chy2lut2, highlighting a specific role of beta-branch xanthophylls in photoprotection and in qE mechanism. The stronger photosystem II photoinhibition of both mutants correlates with the higher rate of singlet oxygen production from thylakoids and isolated light-harvesting complexes, whereas carotenoid composition of photosystem II core complex was not influential. In depth analysis of the mutant phenotypes suggests that alpha-branch (lutein) and beta-branch (zeaxanthin, violaxanthin, and neoxanthin) xanthophylls have distinct and complementary roles in antenna protein assembly and in the mechanisms of photoprotection.

  7. Component configuration control system development at EBR-II

    International Nuclear Information System (INIS)

    Monson, L.R.; Stratton, R.C.

    1984-01-01

    One ofthe major programs being pursued by the EBR-II Division of Argonne National Laboratory is to improve the reliability of plant control and protection systems. This effort involves looking closely at the present state of the art and needs associated with plant diagnostic, control and protection systems. One of the areas of development at EBR-II involves a component configuration control system (CCCS). This system is a computerized control and planning aid for the nuclear power operator

  8. Remote Control of TJ-II Diagnostics; Control Remoto de Diagnosticos del Dispositivo TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Sanchez, A.; Vega, J.; Montoro, A.; Encabo, J.

    2001-07-01

    The present paper is about the design and development of ten remote control diagnostic systems used in the study of plasma fusion in the TJ-II device installed at CIEMAT. This development goes from the definition of sensors and devices necessary in carrying out these remote controls, to its assembly, wiring, development of electronic circuits inserted between sensors and PLC, development of programs for these PLC, connections and administration of the real time automation network, and later development of the necessary programs via the appropriate software tools for web access through a navigator to a specific web page, allowing visual and real time access over the auxiliary systems that make up all the diagnostics. (Author)

  9. Resonant power processors. II - Methods of control

    Science.gov (United States)

    Oruganti, R.; Lee, F. C.

    1984-01-01

    The nature of resonant converter control is discussed. Employing the state-portrait, different control methods for series resonant converter are identified and their performance evaluated based on their stability, response to control and load changes and range of operation. A new control method, optimal-trajectory control, is proposed which, by utilizing the state trajectories as control laws, continuously monitors the energy level of the resonant tank. The method is shown to have superior control properties especially under transient operation.

  10. Comparative kinetic and energetic modelling of phyllosemiquinone oxidation in Photosystem I.

    Science.gov (United States)

    Santabarbara, Stefano; Zucchelli, Giuseppe

    2016-04-14

    The oxidation kinetics of phyllo(semi)quinone (PhQ), which acts as an electron transfer (ET) intermediate in the Photosystem I reaction centre, are described by a minimum of two exponential phases, characterised by lifetimes in the 10-30 ns and 150-300 ns ranges. The fastest phase is considered to be dominated by the oxidation of the PhQ molecule coordinated by the PsaB reaction centre subunit (PhQB), and the slowest phase is dominated by the oxidation of the PsaA coordinated PhQ (PhQA). Testing different energetic schemes within a unified theory-based kinetic modelling approach provides reliable limit-values for some of the physical-chemical parameters controlling these ET reactions: (i) the value of ΔG(0) associated with PhQA oxidation is smaller than ∼+30 meV; (ii) the value of the total reorganisation energy (λt) likely exceeds 0.7 eV; (iii) different mean nuclear modes are coupled to PhQB and PhQA oxidation, the former being larger, and both being ≥100 cm(-1).

  11. Airborne radioactive emission control technology. Volume II

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, including uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking, a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  12. Experience with automatic reactor control at EBR-II

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Christensen, L.J.

    1985-01-01

    Satisfactory operation of the ACRDS has extended the capabilities of EBR-II to a transient test facility, achieving automatic transient control. Test assemblies can now be irradiated in transient conditions overlapping the slower transient capability of the TREAT reactor

  13. NOAA Ship Delaware II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Delaware II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  14. NOAA Ship Oregon II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  15. Differential Roles of Carotenes and Xanthophylls in Photosystem I Photoprotection.

    Science.gov (United States)

    Cazzaniga, Stefano; Bressan, Mauro; Carbonera, Donatella; Agostini, Alessandro; Dall'Osto, Luca

    2016-07-05

    Carotenes and their oxygenated derivatives, xanthophylls, are structural elements of the photosynthetic apparatus and contribute to increasing both the light-harvesting and photoprotective capacity of the photosystems. β-Carotene is present in both the core complexes and light-harvesting system (LHCI) of Photosystem (PS) I, while xanthophylls lutein and violaxanthin bind exclusively to its antenna moiety; another xanthophyll, zeaxanthin, which protects chloroplasts against photooxidative damage, binds to the LHCI complexes under conditions of excess light. We functionally dissected various components of the xanthophyll- and carotene-dependent photoprotection mechanism of PSI by analyzing two Arabidopsis mutants: szl1 plants, with a carotene content lower than that of the wild type, and npq1, with suppressed zeaxanthin formation. When exposed to excess light, the szl1 genotype displayed PSI photoinhibition stronger than that of wild-type plants, while removing zeaxanthin had no such effect. The PSI-LHCI complex purified from szl1 was more photosensitive than the corresponding wild-type and npq1 complexes, as is evident from its faster photobleaching and increased rate of singlet oxygen release, suggesting that β-carotene is crucial in controlling chlorophyll triplet formation. Accordingly, fluorescence-detected magnetic resonance analysis showed an increase in the amplitude of signals assigned to chlorophyll triplets in β-carotene-depleted complexes. When PSI was fractioned into its functional moieties, it was revealed that the boost in the rate of singlet oxygen release caused by β-carotene depletion was greater in LHCI than in the core complex. We conclude that PSI-LHCI complex-bound β-carotene elicits a protective response, consisting of a reduction in the yield of harmful triplet excited states, while accumulation of zeaxanthin plays a minor role in restoring phototolerance.

  16. Light-harvesting features revealed by the structure of plant Photosystem I

    CERN Document Server

    Ben-Shem, A; Nelson, N; 10.1023/B:PRES.0000036881.23512.42

    2004-01-01

    Oxygenic photosynthesis is driven by two multi-subunit membrane protein complexes, Photosystem I and Photosystem II. In plants and green algae, both complexes are composed of two moieties: a reaction center (RC), where light-induced charge translocation occurs, and a peripheral antenna that absorbs light and funnels its energy to the reaction center. The peripheral antenna of PS I (LHC I) is composed of four gene products (Lhca 1-4) that are unique among the chlorophyll a/b binding proteins in their pronounced long-wavelength absorbance and in their assembly into dimers. The recently determined structure of plant Photosystem I provides the first relatively high- resolution structural model of a super-complex containing a reaction center and its peripheral antenna. We describe some of the structural features responsible for the unique properties of LHC I and discuss the advantages of the particular LHC I dimerization mode over monomeric or trimeric forms. In addition, we delineate some of the interactions betw...

  17. Adaptive robust control of the EBR-II reactor

    International Nuclear Information System (INIS)

    Power, M.A.; Edwards, R.M.

    1996-01-01

    Simulation results are presented for an adaptive H ∞ controller, a fixed H ∞ controller, and a classical controller. The controllers are applied to a simulation of the Experimental Breeder Reactor II primary system. The controllers are tested for the best robustness and performance by step-changing the demanded reactor power and by varying the combined uncertainty in initial reactor power and control rod worth. The adaptive H ∞ controller shows the fastest settling time, fastest rise time and smallest peak overshoot when compared to the fixed H ∞ and classical controllers. This makes for a superior and more robust controller

  18. Pressure Controlled Heat Pipe for Precise Temperature Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The principal Phase II objective is to refine and further develop the prototype PCHP into a useful thermal management tool. The Phase I program established the...

  19. Robust photosystem I activity by Cyanothece sp. (Cyanobacteria) and its role in prolonged bloom persistence in lake St Lucia, South Africa.

    Science.gov (United States)

    du Plooy, Schalk J; Anandraj, Akash; White, Sarah; Perissinotto, Renzo; du Preez, Derek R

    2018-04-12

    Worldwide, cyanobacterial blooms are becoming more frequent, exacerbated by eutrophication, anthropogenic effects, and global climate change. Environmental factors play a direct role in photosynthesis of cyanobacteria and subsequent cellular changes, growth, and bloom dynamics. This study investigated the photosynthetic functioning of a persistent bloom-forming (18 months) cyanobacterium, Cyanothece sp., isolated from Lake St Lucia, South Africa. DUAL-PAM fluorometric methods were used to observe physiological responses in Cyanothece sp. photosystems I and II. Results show that photosystem I activity was maintained under all environmental conditions tested, while photosystem II activity was not observed at all. Out of the environmental factors tested (temperature, salinity, and nitrogen presence), only temperature significantly influenced photosystem I activity. In particular, high temperature (40 °C) facilitated faster electron transport rates, while effects of salinity and nitrogen were variable. Cyanothece sp. has shown to sustain bloom status for long periods largely because of the essential role of photosystem I activity during highly dynamic and even extreme (e.g., salinities higher than 200) environmental conditions. This ensures the continual supply of cellular energy (e.g. ATP) to important processes such as nitrogen assimilation, which is essential for protein synthesis, cell growth and, therefore, bloom maintenance.

  20. Quality assurance guidance for TRUPACT-II [Transuranic Package Transporter-II] payload control

    International Nuclear Information System (INIS)

    1989-10-01

    The Transuranic Package Transporter-II (TRUPACT-II) Safety Analysis Report for Packaging (SARP) approved by the Nuclear Regulatory Commission (NRC), discusses authorized methods for payload control in Appendix 1.3.7 and the Quality Assurance (QA) requirements in Section 9.3. Subsection 9.3.2.1 covers maintenance and use of the TRUPACT-II and the specific QA requirements are given in DOE/WIPP 89-012. Subsection 9.3.2.2 covers payload compliance, for which this document was written. 6 refs

  1. Material science lesson from the biological photosystem.

    Science.gov (United States)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  2. NSLS-II Digital RF Controller Logic and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Holub, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gao, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kulpin, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marques, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Oliva, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rose, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Towne, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) accelerator consists of the Storage Ring, the Booster Ring and Linac along with their associated cavities. Given the number, types and variety of functions of these cavities, we sought to limit the logic development effort by reuse of parameterized code on one hardware platform. Currently there are six controllers installed in the NSLS-II system. There are two in the Storage ring, two in the Booster ring, one in the Linac and one in the Master Oscillator Distribution system.

  3. Population control II: The population establishment today.

    Science.gov (United States)

    Hartmann, B

    1997-01-01

    Although population assistance represents a relatively small share of official development assistance, it influences many other aspects of development planning. The organizations that comprise the population establishment have a common purpose--the reduction of population growth in the Third World--but they are not homogeneous and sometimes have conflicting goals and strategies. National governments, multilateral agencies, nongovernmental organizations, foundations, academic centers, and pressure groups all contribute to creating and sustaining what has become a virtual population control industry. Through scholarships, travel grants, awards, and favorable publicity, Third World elites have been encouraged to join the population establishment. The World Bank, the U.S. Agency for International Development, and the U.N. Fund for Population Activities have pursued explicit strategies for pressuring Third World governments to design and implement population policies, most recently in Africa.

  4. Control system for the Spanish Stellarator TJ-II

    International Nuclear Information System (INIS)

    Pacios, L.; Blaumoser, M.; Pena, A. de la; Carrasco, R.; Labrador, I.; Lapayese, F.; Diaz, J.C.; Laso, L.M.

    1995-01-01

    We describe the distributed control and monitoring system for the Spanish Stellarator TJ-II, which is under construction at CIEMAT in Madrid. It consists of one central UNIX workstation and several autonomous subsystems based on VME crates with embedded processors under OS-9 real-time operating system and PLCs. The system integrates the machine and discharge control. An operator can perform the control and plasma discharge by means of a user-friendly graphic interface. (orig.)

  5. The Vitamin B12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters

    Directory of Open Access Journals (Sweden)

    Mingxu Fang

    2017-03-01

    Full Text Available Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq and ChIP-seq and exonuclease digestion (ChIP-exo studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2 and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function.

  6. The NASA F-15 Intelligent Flight Control Systems: Generation II

    Science.gov (United States)

    Buschbacher, Mark; Bosworth, John

    2006-01-01

    The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.

  7. Photobiological hydrogen production with switchable photosystem-II designer algae

    Science.gov (United States)

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  8. Inhibition of photosystem II by UV-B-radiation

    International Nuclear Information System (INIS)

    Tevini, M.; Pfister, K.

    1985-01-01

    The effect of UV-B-radiation on PSII activity of spinach chloroplasts was analyzed by measuring the integrity of the herbicide-binding protein (HBP 32), by measurement of fluorescence induction in the presence of Diuron (DCMU), and by mathematical analysis of the fluorescence induction curves. It was shown that UV-B inactivates the PSII α-centers but not PSII β-centers. However, the possibility cannot be excluded that in addition the donor site of PSII near the reaction center is attacked by UV-B-radiation. (orig.)

  9. Regulation of Photosystem II Electron transport by Bicarbonate

    NARCIS (Netherlands)

    Rensen, van J.J.S.

    2012-01-01

    In oxygenic photosynthesis, carbon dioxide is fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and further reduced to carbohydrates. However, CO2, in the form of carbonate or bicarbonate, is also directly involved in the “light reactions” through structural and regulatory roles

  10. Photochemical and photoelectrochemical quenching of chlorophyll fluorescence in photosystem II

    NARCIS (Netherlands)

    Vredenberg, W.J.; Durchan, M.; Prasil, O.

    2009-01-01

    This paper deals with kinetics and properties of variable fluorescence in leaves and thylakoids upon excitation with low intensity multi-turnover actinic light pulses corresponding with an excitation rate of about 10 Hz. These show a relatively small and amply documented rise in the sub-s time range

  11. Isolation of plant Photosystem II complexes by fractional solubilization

    Directory of Open Access Journals (Sweden)

    Patrycja eHaniewicz

    2015-12-01

    Full Text Available PSII occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield.

  12. Isolated photosystem I reaction centers on a functionalized gated high electron mobility transistor.

    Science.gov (United States)

    Eliza, Sazia A; Lee, Ida; Tulip, Fahmida S; Mostafa, Salwa; Greenbaum, Elias; Ericson, M Nance; Islam, Syed K

    2011-09-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale (~6 nm) reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs. © 2011 IEEE

  13. Isolated Photosystem I Reaction Centers on a Functionalized Gated High Electron Mobility Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Eliza, Sazia A. [University of Tennessee, Knoxville (UTK); Lee, Ida [ORNL; Tulip, Fahmida S [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); Mostafa, Salwa [University of Tennessee, Knoxville (UTK); Greenbaum, Elias [ORNL; Ericson, Milton Nance [ORNL

    2011-01-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale nm reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs.

  14. The optimal control of ITU TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Can, Burhanettin

    2008-01-01

    In this study, optimal control of ITU TRIGA Mark-II Reactor is discussed. A new controller has been designed for ITU TRIGA Mark-II Reactor. The controller consists of main and auxiliary controllers. The form is based on Pontragyn's Maximum Principle and the latter is based on PID approach. For the desired power program, a cubic function is chosen. Integral Performance Index includes the mean square of error function and the effect of selected period on the power variation. YAVCAN2 Neutronic - Thermal -Hydraulic code is used to solve the equations, namely 11 equations, dealing with neutronic - thermal - hydraulic behavior of the reactor. For the controller design, a new code, KONTCAN, is written. In the application of the code, it is seen that the controller controls the reactor power to follow the desired power program. The overshoot value alters between 100 W and 500 W depending on the selected period. There is no undershoot. The controller rapidly increases reactivity, then decreases, after that increases it until the effect of temperature feedback is compensated. Error function varies between 0-1 kW. (author)

  15. Changes in activities of both photosystems and the regulatory effect of cyclic electron flow in field-grown cotton (Gossypium hirsutum L) under water deficit.

    Science.gov (United States)

    Yi, Xiao-Ping; Zhang, Ya-Li; Yao, He-Sheng; Han, Ji-Mei; Chow, Wah Soon; Fan, Da-Yong; Zhang, Wang-Feng

    2018-01-01

    To clarify the influence of water deficit on the functionality of the photosynthetic apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 45. In addition, we measured changes in the P515 signal and analyzed the activity of ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water deficit, the net CO 2 assimilation rate (A N ) and stomatal conductance (g s ) significantly decreased, but the maximum quantum efficiency of PSII photochemistry (F v /F m ) did not change. The photochemical activity of photosystem II (PSII) was reflected by the photochemical quenching coefficient (qP), quantum efficiency of photosystem II [Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] and the electron transport rate through PSI [ETR(I)]. Both activities were maintained under mild water deficit, but were slightly decreased under moderate water deficit. Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. Our results suggest that the activities of both photosystems are stable under mild water deficit and decrease only slightly under moderate water deficit. Moderate water deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and PSII against photoinhibition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. A Femtosecond Visible/Visible and Visible/Mid-Infrared Transient Absorption Study of the Light Harvesting Complex II

    NARCIS (Netherlands)

    Stahl, A.D.; Di Donato, M.; van Stokkum, I.H.M.; van Grondelle, R.; Groot, M.L.

    2009-01-01

    Light harvesting complex II (LHCII) is the most abundant protein in the thylakoid membrane of higher plants and green algae. LHCII acts to collect solar radiation, transferring this energy mainly toward photosystem II, with a smaller amount going to photosystem I; it is then converted into a

  17. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging.

    Science.gov (United States)

    Yan, Kun; Zhao, Shijie; Cui, Mingxing; Han, Guangxuan; Wen, Pei

    2018-04-01

    Jerusalem artichoke (Helianthus tuberosus L.) is an important energy crop for utilizing coastal marginal land. This study was to investigate waterlogging tolerance of Jerusalem artichoke through photosynthetic diagnose with emphasis on photosystem II (PSII) and photosystem I (PSI) performance. Potted plants were subjected to severe (liquid level 5 cm above vermiculite surface) and moderate (liquid level 5 cm below vermiculite surface) waterlogging for 9 days. Large decreased photosynthetic rate suggested photosynthesis vulnerability upon waterlogging. After 7 days of severe waterlogging, PSII and PSI photoinhibition arose, indicated by significant decrease in the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (△MR/MR 0 ), and PSI seemed more vulnerable because of greater decrease in △MR/MR 0 than Fv/Fm. In line with decreased △MR/MR 0 and unchanged Fv/Fm after 9 days of moderate waterlogging, the amount of PSI reaction center protein rather than PSII reaction center protein was lowered, confirming greater PSI vulnerability. According to positive correlation between △MR/MR 0 and efficiency that an electron moves beyond primary quinone and negative correlation between △MR/MR 0 and PSII excitation pressure, PSI inactivation elevated PSII excitation pressure by depressing electron transport at PSII acceptor side. Thus, PSI vulnerability induced PSII photoinhibition and endangered the stability of whole photosynthetic apparatus under waterlogging. In agreement with photosystems photoinhibition, elevated H 2 O 2 concentration and lipid peroxidation in the leaves corroborated waterlogging-induced oxidative stress. In conclusion, Jerusalem artichoke is a waterlogging sensitive species in terms of photosynthesis and PSI vulnerability. Consistently, tuber yield was tremendously reduced by waterlogging, confirming waterlogging sensitivity of Jerusalem artichoke. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. CDF run II run control and online monitor

    International Nuclear Information System (INIS)

    Arisawa, T.; Ikado, K.; Badgett, W.; Chlebana, F.; Maeshima, K.; McCrory, E.; Meyer, A.; Patrick, J.; Wenzel, H.; Stadie, H.; Wagner, W.; Veramendi, G.

    2001-01-01

    The authors discuss the CDF Run II Run Control and online event monitoring system. Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes. Run Control is a real-time multi-threaded application implemented in Java with flexible state machines, using JDBC database connections to configure clients, and including a user friendly and powerful graphical user interface. The CDF online event monitoring system consists of several parts: the event monitoring programs, the display to browse their results, the server program which communicates with the display via socket connections, the error receiver which displays error messages and communicates with Run Control, and the state manager which monitors the state of the monitor programs

  19. The NBI control system for the TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, R. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: ricardo.carrasco@ciemat.es; Liniers, M. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Pacios, L. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); De la Pena, A. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Lapayese, F. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Wolfers, G. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Alonso, J. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Marcon, G. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Fuentes, C. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain)

    2006-07-15

    A description of the control system software and hardware architecture for the TJ-II Neutral Beam Injectors is given. The platform chosen is VMEbus, with controller boards running OS9 (Microware) real-time operating system. Three VME crates house several boards for performing analogue signal acquisition, signal conditioning, analogue voltage generation, digital input detection and digital output generation. A specific timing system for the injectors has been developed. At present, a user interface for monitoring and programming purposes is provided by html pages, using a web server running under the OS9 operating system. A few subsystems are now using a graphical user interface built using the Java programming language.

  20. The NBI control system for the TJ-II

    International Nuclear Information System (INIS)

    Carrasco, R.; Liniers, M.; Pacios, L.; De la Pena, A.; Lapayese, F.; Wolfers, G.; Alonso, J.; Marcon, G.; Fuentes, C.

    2006-01-01

    A description of the control system software and hardware architecture for the TJ-II Neutral Beam Injectors is given. The platform chosen is VMEbus, with controller boards running OS9 (Microware) real-time operating system. Three VME crates house several boards for performing analogue signal acquisition, signal conditioning, analogue voltage generation, digital input detection and digital output generation. A specific timing system for the injectors has been developed. At present, a user interface for monitoring and programming purposes is provided by html pages, using a web server running under the OS9 operating system. A few subsystems are now using a graphical user interface built using the Java programming language

  1. Postural control deficit in acute QTF grade II whiplash injuries.

    Science.gov (United States)

    Dehner, Christoph; Heym, Birgit; Maier, Dirk; Sander, Silvia; Arand, Markus; Elbel, Martin; Hartwig, Erich; Kramer, Michael

    2008-07-01

    Experimental in vivo study. The objective was to investigate the balance control in patients with acute QTF grade II whiplash injuries of the cervical spine. Tetra-ataxiametric posturography in chronic pain patients after whiplash injuries of the cervical spine has revealed an impaired regulation of balance. However, so far it is unclear if this is caused by the accident or other factors that are associated with the pain chronification process. 40 patients with acute QTF grade II whiplash injuries and 40 healthy matched controls were examined on a posturography platform. The stability index ST(Sigma) and the Fourier analysis FA(Sigma) (0.10-1.00Hz) were established for eight standing positions and sum scores were calculated. The pain index was established using a visual analog scale ranging from 0 to 100. A follow-up examination was conducted for the patients after 2 months. The patients with acute whiplash injuries of the cervical spine achieved significantly poorer results for both ST(Sigma) and FA(Sigma) than the healthy controls. There were no differences between the eight standing positions for both ST(Sigma) and FA(Sigma). After 2 months, 17 patients had no change in the pain development, 21 patients showed an improvement in pain intensity and 2 patients had deteriorated. The subgroup of patients with improvement in pain intensity showed a significant improvement in balance control concerning the FA(Sigma) compared to patients with unchanged pain intensity. Patients with acute whiplash injuries have a reduced balance control as compared to matched controls. This study gives an indication that post-traumatic neck pain is associated with impairments of postural control.

  2. The Arabidopsis nox mutant lacking carotene hydroxylase activity reveals a critical role for xanthophylls in photosystem I biogenesis.

    Science.gov (United States)

    Dall'Osto, Luca; Piques, Maria; Ronzani, Michela; Molesini, Barbara; Alboresi, Alessandro; Cazzaniga, Stefano; Bassi, Roberto

    2013-02-01

    Carotenes, and their oxygenated derivatives xanthophylls, are essential components of the photosynthetic apparatus. They contribute to the assembly of photosynthetic complexes and participate in light absorption and chloroplast photoprotection. Here, we studied the role of xanthophylls, as distinct from that of carotenes, by characterizing a no xanthophylls (nox) mutant of Arabidopsis thaliana, which was obtained by combining mutations targeting the four carotenoid hydroxylase genes. nox plants retained α- and β-carotenes but were devoid in xanthophylls. The phenotype included depletion of light-harvesting complex (LHC) subunits and impairment of nonphotochemical quenching, two effects consistent with the location of xanthophylls in photosystem II antenna, but also a decreased efficiency of photosynthetic electron transfer, photosensitivity, and lethality in soil. Biochemical analysis revealed that the nox mutant was specifically depleted in photosystem I function due to a severe deficiency in PsaA/B subunits. While the stationary level of psaA/B transcripts showed no major differences between genotypes, the stability of newly synthesized PsaA/B proteins was decreased and translation of psaA/B mRNA was impaired in nox with respect to wild-type plants. We conclude that xanthophylls, besides their role in photoprotection and LHC assembly, are also needed for photosystem I core translation and stability, thus making these compounds indispensable for autotrophic growth.

  3. The structure of spinach Photosystem I studied by electron microscopy

    NARCIS (Netherlands)

    Boekema, Egbert J.; Wynn, R. Max; Malkin, Richard

    1990-01-01

    The structure of three types of Photosystem I (PS I) complex isolated from spinach chloroplasts was studied by electron microscopy and computer image analysis. Molecular projections (top views and side views) of a native PS I complex (PSI-200), an antenna-depleted PS I complex (PSI-100) and the PS I

  4. Photosystem I-​based Biophotovoltaics on Nanostructured Hematite

    NARCIS (Netherlands)

    Ocakoglu, K.; Krupnik, T.; van den Bosch, B.; Harputlu, E.; Gullo, M.P.; Olmos, J.D.J.; Yildirimcan, S.; Gupta, R.K.; Yakuphanoglu, F.; Barbieri, A.; Reek, J.N.H.; Kargul, J.

    2014-01-01

    The electronic coupling between a robust red algal photosystem I (PSI) associated with its light harvesting antenna (LHCI) and nanocrystalline n-​type semiconductors, TiO2 and hematite (α-​Fe2O3) is utilized for fabrication of the biohybrid dye-​sensitized solar cells (DSSC)​. PSI-​LHCI is

  5. PMS : Photosystem I electron donor or fluorescence quencher

    NARCIS (Netherlands)

    Wientjes, Emilie; Croce, Roberta

    Light energy harvested by the pigments in Photosystem I (PSI) is used for charge separation in the reaction center (RC), after which the positive charge resides on a special chlorophyll dimer called P700. In studies on the PSI trapping kinetics, P700(+) is usually chemically reduced to re-open the

  6. Structure, function and regulation of plant photosystem I

    NARCIS (Netherlands)

    Jensen, Poul Erik; Bassi, Roberto; Boekema, Egbert J.; Dekker, Jan P.; Jansson, Stefan; Leister, Dario; Robinson, Colin; Scheller, Henrik Vibe

    Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the

  7. Structure, function and regulation of plant photosystem I

    NARCIS (Netherlands)

    Jensen, P.E.; Bassi, R.; Boekema, E.J.; Dekker, J.P.; Jansson, S.; Leister, D.; Robinson, C.; Scheller, H.V.

    2007-01-01

    Photosystem I (PSI) is a multisubunit protein complex located in the thylakoid membranes of green plants and algae, where it initiates one of the first steps of solar energy conversion by light-driven electron transport. In this review, we discuss recent progress on several topics related to the

  8. Intelligent control of HVAC systems. Part II: perceptron performance analysis

    Directory of Open Access Journals (Sweden)

    Ioan URSU

    2013-09-01

    Full Text Available This is the second part of a paper on intelligent type control of Heating, Ventilating, and Air-Conditioning (HVAC systems. The whole study proposes a unified approach in the design of intelligent control for such systems, to ensure high energy efficiency and air quality improving. In the first part of the study it is considered as benchmark system a single thermal space HVAC system, for which it is assigned a mathematical model of the controlled system and a mathematical model(algorithm of intelligent control synthesis. The conception of the intelligent control is of switching type, between a simple neural network, a perceptron, which aims to decrease (optimize a cost index,and a fuzzy logic component, having supervisory antisaturating role for neuro-control. Based on numerical simulations, this Part II focuses on the analysis of system operation in the presence only ofthe neural control component. Working of the entire neuro-fuzzy system will be reported in a third part of the study.

  9. The control equipment of the Melusine II reactor

    International Nuclear Information System (INIS)

    Cordelle, M.; Delcroix, V.; Denis, P.; Gariod, R.

    1963-01-01

    Melusine II, low-power reactor, used for the study of Siloe core has diverged at the CEA Grenoble, the 23. May 1962; its monitoring board studied and carried out in this center is the first in France to be entirely transistorized. The first months of running have justified the hope put in the new electronics to improve the stability and the safety of running. The article describes the design of the control and gives the main characteristics of the measurement chains and of the actions on reactivity. (O.M.) [fr

  10. The control equipment of the Melusine II reactor; L'equipement de controle du reacteur Melusine II

    Energy Technology Data Exchange (ETDEWEB)

    Cordelle, M; Delcroix, V; Denis, P; Gariod, R

    1963-07-01

    Melusine II, low-power reactor, used for the study of Siloe core has diverged at the CEA Grenoble, the 23. May 1962; its monitoring board studied and carried out in this center is the first in France to be entirely transistorized. The first months of running have justified the hope put in the new electronics to improve the stability and the safety of running. The article describes the design of the control and gives the main characteristics of the measurement chains and of the actions on reactivity. (O.M.) [French] Melusine II, reacteur de faible puissance destine a l'etude du coeur de Siloe a diverge au Centre d'Etudes Nucleaires de Grenoble, le 23 mai 1962, son tableau de controle etudie et realise dans ce Centre est le premier en France a etre entierement transistorise. Les premiers mois de fonctionnement ont justifie l'espoir mis dans la nouvelle electronique pour ameliorer la stabilite et la surete de fonctionnement. L'article decrit la conception du controle et donne les principales caracteristiques des chaines de mesure et des actions sur la reactivite. (auteurs)

  11. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra; van den Hoorn, Tineke; Jongsma, Marlieke L. M.; Bakker, Mark J.; Hengeveld, Rutger; Janssen, Lennert; Cresswell, Peter; Egan, David A.; van Ham, Marieke; ten Brinke, Anja; Ovaa, Huib; Beijersbergen, Roderick L.; Kuijl, Coenraad; Neefjes, Jacques

    2011-01-01

    MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and

  12. Adaptive control method for core power control in TRIGA Mark II reactor

    Science.gov (United States)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  13. Effect of Cytokinin and Auxin Treatments on Morphogenesis, Terpenoid Biosynthesis, Photosystem Structural Organization, and Endogenous Isoprenoid Cytokinin Profile in Artemisia alba Turra In Vitro

    Czech Academy of Sciences Publication Activity Database

    Danova, K.; Motyka, Václav; Todorova, M.; Trendafilova, A.; Krumova, S.; Dobrev, Petre; Andreeva, T.; Oreshkova, T.; Taneva, S.; Evstatieva, L.

    2018-01-01

    Roč. 37, č. 2 (2018), s. 403-418 ISSN 0721-7595 R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : Artemisia alba Turra in vitro * Cis- and trans-zeatin * Endogenous cytokinins * Photosystem II and thylakoid morphology * Plant growth regulators * Terpenoid profile of the essential oil Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.073, year: 2016

  14. Beam control in the ETA-II linear induction accelerator

    International Nuclear Information System (INIS)

    Chen, Y.J.

    1992-01-01

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-II induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused by a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 2π. (Author) 5 figs., 11 refs

  15. Biomass accumulation, photochemical efficiency of photosystem II, nutrient contents and nitrate reductase activity in young rosewood plants (Aniba rosaeodora Ducke submitted to different NO3-:NH4+ ratios Acúmulo de biomassa, eficiência fotoquímica do fotossistema II, conteúdo de nutrientes e atividade da redutase do nitrato em plantas jovens de pau-rosa (Aniba rosaeodora Ducke submetidas a diferentes relações NO3-:NH4+

    Directory of Open Access Journals (Sweden)

    Denize Caranhas de Sousa Barreto

    2007-01-01

    Full Text Available The rosewood (Aniba rosaeodora Ducke is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+ may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII, and nitrate redutase activity (RN, E.C.1.6.6.1 on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%. The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.O pau-rosa (Aniba rosaeodora Ducke habita, naturalmente, solos florestais ácidos com potencial redox reduzido. No entanto, estas espécies têm sido encontradas também em clareiras que, teoricamente, apresentam solos mais oxidados. Nestas diferentes

  16. Embedded computer systems for control applications in EBR-II

    International Nuclear Information System (INIS)

    Carlson, R.B.; Start, S.E.

    1993-01-01

    The purpose of this paper is to describe the embedded computer systems approach taken at Experimental Breeder Reactor II (EBR-II) for non-safety related systems. The hardware and software structures for typical embedded systems are presented The embedded systems development process is described. Three examples are given which illustrate typical embedded computer applications in EBR-II

  17. Large photovoltages generated by plant photosystem I crystals

    Energy Technology Data Exchange (ETDEWEB)

    Toporik, Hila; Carmeli, Chanoch; Nelson, Nathan [Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Carmeli, Itai [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Volotsenko, Irina; Molotskii, Michel; Rosenwaks, Yossi [Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2012-06-12

    Micrometer-thick plant photosystem I crystals made of up to 1000 layers of serially arranged protein complexes generate unprecedented high photovoltages when placed on a conducting solid surface and measured using Kelvin probe force microscopy. The successive layers form serially photoinduced dipoles in the crystal that give rise to electric fields as large as 100 kV cm{sup -1}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. 40 CFR 82.19 - Apportionment of baseline consumption allowances for class II controlled substances.

    Science.gov (United States)

    2010-07-01

    ... allowances for class II controlled substances. 82.19 Section 82.19 Protection of Environment ENVIRONMENTAL... Consumption Controls § 82.19 Apportionment of baseline consumption allowances for class II controlled... Ineos Fluor Americas HCFC-22 2,546,305 Kivlan & Company HCFC-22 2,081,018 MDA Manufacturing HCFC-22 2...

  19. 40 CFR 82.17 - Apportionment of baseline production allowances for class II controlled substances.

    Science.gov (United States)

    2010-07-01

    ... allowances for class II controlled substances. 82.17 Section 82.17 Protection of Environment ENVIRONMENTAL... Consumption Controls § 82.17 Apportionment of baseline production allowances for class II controlled... 1,759,681 MDA Manufacturing HCFC-22 2,383,835 Solvay Solexis HCFC-142b 6,541,764 [ 74 FR 66446, Dec...

  20. 78 FR 55099 - Established Aggregate Production Quotas for Schedule I and II Controlled Substances and...

    Science.gov (United States)

    2013-09-09

    ... aggregate production quotas, an additional 25% of the estimated medical, scientific, and research needs as... Production Quotas for Schedule I and II Controlled Substances and Established Assessment of Annual Needs for... initial 2014 aggregate production quotas for controlled substances in Schedules I and II of the Controlled...

  1. Different microprocessor controlled devices for ITU TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    Can, B.; Omuz, S.; Uzun, S.; Apan, H.

    1990-01-01

    In this paper the design of a period meter and multichannel thermometer, which are controlled by a microprocessor, in order to be used at ITU TRIGA Mark-II Reactor is presented. The system works as a simple microcomputer, which includes a CPU, a EPROM, a RAM, a CTC, a PIO, a PIA a keyboard and displays, using the assembly language. The period meter can work either with pulse signal or with analog signal depending on demand of the user. The period is calculated by software and its range is -99,9 sec, to +2.1 sec. When the period drops +3 sec, the system gives alarm illuminating a LED. The multichannel thermometer has eight temperature channels. Temperature channels can manually or automatically be selected. The channel selection time can be adjusted. The thermometer gives alarm illuminating a LED, when the temperature rises to 600 C. Temperature data is stored in the RAM and is shown on a display. This system provides us to use four spare thermocouples in the reactor. (orig.)

  2. 78 FR 37237 - Proposed Adjustments to the Aggregate Production Quotas for Schedule I and II Controlled...

    Science.gov (United States)

    2013-06-20

    ... class of controlled substance listed in schedules I and II and for ephedrine, pseudoephedrine, and... disposal by the registrants holding individual manufacturing quotas for the class; (2) whether any... the Aggregate Production Quotas for Schedule I and II Controlled Substances and Assessment of Annual...

  3. The optoelectronic properties of a photosystem I-carbon nanotube hybrid system

    International Nuclear Information System (INIS)

    Kaniber, Simone M; Holleitner, Alexander W; Simmel, Friedrich C; Carmeli, Itai

    2009-01-01

    The photoconductance properties of photosystem I (PSI) covalently bound to carbon nanotubes (CNTs) are measured. We demonstrate that the PSI forms active electronic junctions with the CNTs, enabling control of the CNTs' photoconductance by the PSI. In order to electrically contact the photoactive proteins, a cysteine mutant is generated at one end of the PSI by genetic engineering. The CNTs are covalently bound to this reactive group using carbodiimide chemistry. We detect an enhanced photoconductance signal of the hybrid material at photon wavelengths resonant to the absorption maxima of the PSI compared to non-resonant wavelengths. The measurements prove that it is feasible to integrate photosynthetic proteins into optoelectronic circuits at the nanoscale.

  4. The optoelectronic properties of a photosystem I-carbon nanotube hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Kaniber, Simone M; Holleitner, Alexander W [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Simmel, Friedrich C [LMU Munich, Geschwister-Scholl-Platz 1, D-80539 Muenchen (Germany); Carmeli, Itai, E-mail: holleitner@wsi.tum.d, E-mail: itai@post.tau.ac.i [Chemistry Department and NIBN, Ben Gurion University, 84105 Be' er Sheva (Israel)

    2009-08-26

    The photoconductance properties of photosystem I (PSI) covalently bound to carbon nanotubes (CNTs) are measured. We demonstrate that the PSI forms active electronic junctions with the CNTs, enabling control of the CNTs' photoconductance by the PSI. In order to electrically contact the photoactive proteins, a cysteine mutant is generated at one end of the PSI by genetic engineering. The CNTs are covalently bound to this reactive group using carbodiimide chemistry. We detect an enhanced photoconductance signal of the hybrid material at photon wavelengths resonant to the absorption maxima of the PSI compared to non-resonant wavelengths. The measurements prove that it is feasible to integrate photosynthetic proteins into optoelectronic circuits at the nanoscale.

  5. Autonomous acquisition systems for TJ-II: controlling instrumentation with a fourth generation language

    International Nuclear Information System (INIS)

    Sanchez, E.; Portas, A.B.; Vega, J.; Agudo, J.M.; McCarthy, K.J.; Ruiz, M.; Barrera, E.; Lopez, S.

    2004-01-01

    Recently, 536 new acquisition channels, made-up of three different channel types, have been incorporated into the TJ-II data acquisition system (DAQ). Dedicated software has also been developed to permit experimentalists to program and control the data acquisition in these systems. The software has been developed using LabView and runs under the Windows 2000 operating system in both personal computer (PC) and PXI controllers. In addition, LabView software has been developed to control TJ-II VXI channels from a PC using a MXI connection. This new software environment will also aid future integration of acquisition channels into the TJ-II remote participation system. All of these acquisition devices work autonomously and are connected to the TJ-II central server via a local area network. In addition, they can be remotely controlled from the TJ-II control-room using Virtual Network Computing (VNC) software

  6. Computer control system of the cooler-synchrotron TARN-II

    International Nuclear Information System (INIS)

    Watanabe, S.; Watanabe, T.; Yoshizawa, M.; Katayama, T.

    1993-11-01

    The client-server model enables us to develop the flexible control system such as a TARN-II computer control system. The system forms a single machine including a message bus to communicate between them. An auxiliary control path in the client-server model serves a high speed device control. The configuration and performance of that control system are described. (author)

  7. Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L. [Colorado State U.; Biedron, S. G.; Milton, S. V.; Bowring, D.; Chase, B. E.; Edelen, J. P.; Nicklaus, D.; Steimel, J.

    2016-12-16

    For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.

  8. Field Operations and Enforcement Manual for Air Pollution Control. Volume II: Control Technology and General Source Inspection.

    Science.gov (United States)

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume II, explains in detail the following: technology of source control, modification of operations, particulate control equipment, sulfur dioxide removal systems for power plants, and control equipment for gases and vapors; inspection procedures for general sources, fuel…

  9. EBR-II Cover Gas Cleanup System upgrade process control system structure

    International Nuclear Information System (INIS)

    Carlson, R.B.; Staffon, J.D.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; describes the main control computer hardware and system software features in more detail; and, then, describes the real-time control tasks, and how they interact with each other, and how they interact with the operator interface task

  10. EBR-II Cover Gas Cleanup System upgrade distributed control and front end computer systems

    International Nuclear Information System (INIS)

    Carlson, R.B.

    1992-01-01

    The Experimental Breeder Reactor II (EBR-II) Cover Gas Cleanup System (CGCS) control system was upgraded in 1991 to improve control and provide a graphical operator interface. The upgrade consisted of a main control computer, a distributed control computer, a front end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper briefly describes the Cover Gas Cleanup System and the overall control system; gives reasons behind the computer system structure; and then gives a detailed description of the distributed control computer, the front end computer, and how these computers interact with the main control computer. The descriptions cover both hardware and software

  11. The Arabidopsis nox Mutant Lacking Carotene Hydroxylase Activity Reveals a Critical Role for Xanthophylls in Photosystem I Biogenesis[C][W

    Science.gov (United States)

    Dall’Osto, Luca; Piques, Maria; Ronzani, Michela; Molesini, Barbara; Alboresi, Alessandro; Cazzaniga, Stefano; Bassi, Roberto

    2013-01-01

    Carotenes, and their oxygenated derivatives xanthophylls, are essential components of the photosynthetic apparatus. They contribute to the assembly of photosynthetic complexes and participate in light absorption and chloroplast photoprotection. Here, we studied the role of xanthophylls, as distinct from that of carotenes, by characterizing a no xanthophylls (nox) mutant of Arabidopsis thaliana, which was obtained by combining mutations targeting the four carotenoid hydroxylase genes. nox plants retained α- and β-carotenes but were devoid in xanthophylls. The phenotype included depletion of light-harvesting complex (LHC) subunits and impairment of nonphotochemical quenching, two effects consistent with the location of xanthophylls in photosystem II antenna, but also a decreased efficiency of photosynthetic electron transfer, photosensitivity, and lethality in soil. Biochemical analysis revealed that the nox mutant was specifically depleted in photosystem I function due to a severe deficiency in PsaA/B subunits. While the stationary level of psaA/B transcripts showed no major differences between genotypes, the stability of newly synthesized PsaA/B proteins was decreased and translation of psaA/B mRNA was impaired in nox with respect to wild-type plants. We conclude that xanthophylls, besides their role in photoprotection and LHC assembly, are also needed for photosystem I core translation and stability, thus making these compounds indispensable for autotrophic growth. PMID:23396829

  12. Automated System for Control of the Vacuum Diagnostic System for the TJ-II

    International Nuclear Information System (INIS)

    Lopez Sanchez, A.; Montoro Peinado, A.; Encabo Fernandez, J.; Gama de la Serrano, J.; Sanchez Sarabia, E.

    1999-12-01

    This report describes the monitoring and remote control systems belonging to the high vacuum systems of the TJ-II diagnostics. These systems are part of each diagnostic and their control has been integrated into the automata that carries out this task. All the controllers are connected through a Profibus network, so as to interchange data between themselves as well as between the general system of TJ-II. (Author)

  13. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  14. 238Pu sources for cardiac pacemakers. II. Control

    International Nuclear Information System (INIS)

    Pottier, R.; Merigot, S.

    1976-01-01

    The method and the apparatus used for thermal (power) and radioactive control of radioisotopic sources for pacemakers are briefly described. The cybernetic system is also presented, which assumes almost automatically the monitoring of control, mechanical and electronic works, data processing, the measurements and computations, and the works related to quality control [fr

  15. Subunit stoichiometry of the chloroplast photosystem I complex

    International Nuclear Information System (INIS)

    Bruce, B.D.; Malkin, R.

    1988-01-01

    A native photosystem I (PS I) complex and a PS I core complex depleted of antenna subunits has been isolated from the uniformly 14 C-labeled aquatic higher plant, Lemna. These complexes have been analyzed for their subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results for both preparations indicate that one copy of each high molecular mass subunit is present per PS I complex and that a single copy of most low molecular mass subunits is also present. These results suggest that iron-sulfur center X, an early PS I electron acceptor proposed to bind to the high molecular mass subunits, contains a single [4Fe-4S] cluster which is bound to a dimeric structure of high molecular mass subunits, each providing 2 cysteine residues to coordinate this cluster

  16. ABWR-II Core Design with Spectral Shift Rods for Operation with All Control Rods Withdrawn

    International Nuclear Information System (INIS)

    Moriwaki, Masanao; Aoyama, Motoo; Anegawa, Takafumi; Okada, Hiroyuki; Sakurada, Koichi; Tanabe, Akira

    2004-01-01

    An innovative reactor core concept applying spectral shift rods (SSRs) is proposed to improve the plant economy and the operability of the 1700-MW(electric) Advanced Boiling Water Reactor II (ABWR-II). The SSR is a new type of water rod in which a water level is naturally developed during operation and changed according to the coolant flow rate through the channel. By taking advantage of the large size of the ABWR-II bundle, the enhanced spectral shift operation by eight SSRs allows operation of the ABWR-II with all control rods withdrawn. In addition, the uranium-saving factor of 6 to 7% relative to the reference ABWR-II core with conventional water rods can be expected due to the greater effect of spectral shift. The combination of these advantages means the ABWR-II with SSRs should be an attractive alternative for the next-generation nuclear reactor

  17. NOAA Ship McArthurII Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship McArthur II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  18. Coordinated Control of Multi-Agent Systems in Rapidly Varying Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this Phase II STTR project is to develop advanced control algorithms that enable multiple autonomous agents to perform complex tasks in rapidly...

  19. 76 FR 24872 - California State Nonroad Engine and Vehicle Pollution Control Standards; Authorization of Tier II...

    Science.gov (United States)

    2011-05-03

    ... Pollution Control Standards; Authorization of Tier II Marine Inboard/Sterndrive Spark Ignition Engine... requirement relating to the control of emissions for certain new nonroad engines or vehicles.\\1\\ Section 209(e... control of emissions from either of the following new nonroad engines or nonroad vehicles subject to...

  20. CDK9-dependent RNA polymerase II pausing controls transcription initiation.

    Science.gov (United States)

    Gressel, Saskia; Schwalb, Björn; Decker, Tim Michael; Qin, Weihua; Leonhardt, Heinrich; Eick, Dirk; Cramer, Patrick

    2017-10-10

    Gene transcription can be activated by decreasing the duration of RNA polymerase II pausing in the promoter-proximal region, but how this is achieved remains unclear. Here we use a 'multi-omics' approach to demonstrate that the duration of polymerase pausing generally limits the productive frequency of transcription initiation in human cells ('pause-initiation limit'). We further engineer a human cell line to allow for specific and rapid inhibition of the P-TEFb kinase CDK9, which is implicated in polymerase pause release. CDK9 activity decreases the pause duration but also increases the productive initiation frequency. This shows that CDK9 stimulates release of paused polymerase and activates transcription by increasing the number of transcribing polymerases and thus the amount of mRNA synthesized per time. CDK9 activity is also associated with long-range chromatin interactions, suggesting that enhancers can influence the pause-initiation limit to regulate transcription.

  1. A shot parameter specification subsystem for automated control of PBFA II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The author reports on the shot parameter specification subsystem (SPSS), an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II). This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The author discusses how the PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III. This system is expected to meet the demands of most future machine changes

  2. Flexible and Safe Control of Mobile Surface Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary innovation of this work is a novel approach for flexible and safe control of highly capable mobile surface systems, such as long-duration science rovers,...

  3. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  4. Dual Axis Controller for Extreme Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dual Axis Controller for Extreme Environments (DACEE) addresses a critical need of NASA's future exploration plans to investigate extreme environments within our...

  5. Stability of position control system in JIPP T-II

    International Nuclear Information System (INIS)

    Sakurai, Keiichi; Tanahashi, Shygo

    1980-01-01

    Computations and experiments on the stability of a feedback control system for maintaining a plasma column in equilibrium are described. The time response of the displacement of the plasma to the desired position is examined by solving the equation of motion of the plasma column. We show that the stability of the feedback control system is improved by using an additional term which represents the shift velocity of the plasma column. (author)

  6. Title IV Quality Control Project, Stage II. Management Option II: Delivery System Quality Improvements.

    Science.gov (United States)

    Advanced Technology, Inc., Reston, VA.

    Stage Two of the Title IV Quality Control Project is an integrated study of quality in five related Federal financial aid programs for postsecondary students. Section 1 of the paper establishes a framework for defining quality improvements, in order to identify the types of changes that would tend to improve quality across all facets of the…

  7. Electronic Control Of Small Hydro-Generators Part II

    International Nuclear Information System (INIS)

    Diaz B, Pedro; Torres M, Carlos A.

    1994-01-01

    The present project arises for the Colombian population's necessity to overcome the underdevelopment, the poverty, the education and the level of life in rural areas of difficult access, for an economic rural electrification. The UIS, by means of the advisory committee of investigations of the ability of Physical-mechanical Sciences and the ability of Electricity and Electronic, it begins the process of developing in 1991 a study of economic and reliable control for the handling of small micro-centrals. Providing from electric power to the rural sector is a world problem, and have more than enough this some countries (China, Nepal, Peru, The islands of Papua, New Guinea), they have made investigations, outlining and building central micro controlled by microprocessor. The present study is developed with the objective of carrying out a load control that acts reliable and quickly. Traditionally they have been come using mechanical governors, which are those in charge of making the load control by means of valves that regulate the flow of water in the turbines, involving this way big retards characteristic of any mechanical control. In summary, the electronic governor of load presents on the mechanical governor, the advantage of acting to more speed and consequently to maintain stable the frequency of the system. To continue with the study, the objective that this project must develop, is an electronic control of load which presents to a small hydro generator, a relatively constant and independent electric load that the demanded consumption for the user varies from none to full load, given as initial parameters a constant flow in the turbine and a control in the line tension. This way it seeks to improve the energy quality given by isolated generators

  8. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    Science.gov (United States)

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A case control study of ophthalmia Neonatorum in Kaduna II ...

    African Journals Online (AJOL)

    Giemsa staining carried out in only 3 out of the 6 hospitals yielded 9 and 3 isolates of Chlamydia trachomatis in cases and controls respectively. The percentage sensitivity of Staphylococcus aureus to penicillin, chloramphenicol, tetracycline, erythromycin and gentamicin were 3, 73, 37, 59 and 77 respectively.

  10. Material control and accounting at Exxon Nuclear, II

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    In this session the measurements and the associated measurement control program used at the Model Plant are described. The procedures for evaluating MUF and sigma MUF are also discussed. The use of material composition codes and their role in IAEA safeguards under the US/IAEA Safeguards Agreement are described. In addition, the various accounting forms used at the plant are described and the use of tamper-indicating seals is discussed

  11. Reference methodologies for radioactive controlled discharges an activity within the IAEA's Program Environmental Modelling for Radiation Safety II (EMRAS II)

    International Nuclear Information System (INIS)

    Stocki, T.J.; Bergman, L.; Tellería, D.M.; Proehl, G.; Amado, V.; Curti, A.; Bonchuk, I.; Boyer, P.; Mourlon, C.; Chyly, P.; Heling, R.; Sági, L.; Kliaus, V.; Krajewski, P.; Latouche, G.; Lauria, D.C.; Newsome, L.; Smith, J.

    2011-01-01

    In January 2009, the IAEA EMRAS II (Environmental Modelling for Radiation Safety II) program was launched. The goal of the program is to develop, compare and test models for the assessment of radiological impacts to the public and the environment due to radionuclides being released or already existing in the environment; to help countries build and harmonize their capabilities; and to model the movement of radionuclides in the environment. Within EMRAS II, nine working groups are active; this paper will focus on the activities of Working Group 1: Reference Methodologies for Controlling Discharges of Routine Releases. Within this working group environmental transfer and dose assessment models are tested under different scenarios by participating countries and the results compared. This process allows each participating country to identify characteristics of their models that need to be refined. The goal of this working group is to identify reference methodologies for the assessment of exposures to the public due to routine discharges of radionuclides to the terrestrial and aquatic environments. Several different models are being applied to estimate the transfer of radionuclides in the environment for various scenarios. The first phase of the project involves a scenario of nuclear power reactor with a coastal location which routinely (continuously) discharges 60Co, 85Kr, 131I, and 137Cs to the atmosphere and 60Co, 137Cs, and 90Sr to the marine environment. In this scenario many of the parameters and characteristics of the representative group were given to the modelers and cannot be altered. Various models have been used by the different participants in this inter-comparison (PC-CREAM, CROM, IMPACT, CLRP POSEIDON, SYMBIOSE and others). This first scenario is to enable a comparison of the radionuclide transport and dose modelling. These scenarios will facilitate the development of reference methodologies for controlled discharges. (authors)

  12. Instrumentation and control improvements at Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Christensen, L.J.; Planchon, H.P.

    1993-01-01

    The purpose of this paper is to describe instrumentation and control (I ampersand C) system improvements at Experimental Breeder Reactor 11 (EBR-11). The improvements are focused on three objectives; to keep the reactor and balance of plant (BOP) I ampersand C systems at a high level of reliability, to provide diagnostic systems that can provide accurate information needed for analysis of fuel performance, and to provide systems that will be prototypic of I ampersand C systems of the next generation of liquid metal reactor (LMR) plants

  13. Tropospheric ozone and the environment II. Effects, modeling and control

    International Nuclear Information System (INIS)

    Berglund, R.L.

    1992-01-01

    This was the sixth International Specialty Conference on ozone for the Air ampersand Waste Management Association since 1978 and the first to be held in the Southeast. Of the preceding five conferences, three were held in Houston, one in New England, and one in Los Angeles. The changing location continues to support the understanding that tropospheric ozone is a nationwide problem, requiring understanding and participation by representatives of all regions. Yet, questions such as the following continue to be raised over all aspects of the nation's efforts to control ozone. Are the existing primary and secondary National Ambient Air Quality Standards (NAAQS) for ozone the appropriate targets for the ozone control strategy, or should they be modified to more effectively accommodate new health or ecological effects information, or better fit statistical analyses of ozone modeling data? Are the modeling tools presently available adequate to predict ozone concentrations for future precursor emission trends? What ozones attainment strategy will be the best means of meeting the ozone standard? To best answer these and other questions there needs to be a continued sharing of information among researchers working on these and other questions. While answers to these questions will often be qualitative and location specific, they will help focus future research programs and assist in developing future regulatory strategies

  14. [Scientific reductionism and social control of mind. Part II].

    Science.gov (United States)

    Viniegra Velázquez, Leonardo

    In the second part of this essay, the progressive subordination of scientific endeavor and knowledge of business and profit is pointed out. For instance, the way facts are prioritized over concepts and ideas in scientific knowledge can translate into technological innovation, central to enterprise competitiveness and key to social mechanisms of control (military, cybernetic, ideological). Overcoming the scientific reductionism approach indicates recognizing the need to define progress in another way, one that infuses scientific knowledge with real liberating and inquisitive power. Power is essential in the search for a more collaborative, inclusive and pluralistic society where respect for human dignity and care for the ecosystem that we live in are prioritized. Copyright © 2014 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  15. Operator interface for the PEP-II low level RF control system

    International Nuclear Information System (INIS)

    Allison, S.; Claus, R.

    1997-05-01

    This paper focuses on the operational aspects of the low level RF control system being built for the PEP-II storage rings at SLAC. Subsystems requiring major operational considerations include displays for monitor and control from UNIX workstations, slow feedback loops and control sequences residing on microprocessors, and various client applications in the existing SLAC Linear Collider (SLC) control system. Since commissioning of PEP-II RF is currently in-progress, only those parts of the control system used during this phase are discussed in detail. Based on past experience with the SLC control system, it is expected that effort expended during commissioning on a solid user interface will result in smoother transition to full reliable 24-hour-a-day operation

  16. Transforming criticality control methods for EBR-II fuel handling during reactor decommissioning

    International Nuclear Information System (INIS)

    Eberle, C.S.; Dean, E.M.; Angelo, P.L.

    1995-01-01

    A review of the Department of Energy (DOE) request to decommission the Experimental Breeder Reactor-II (EBR-II) was conducted in order to develop a scope of work and analysis method for performing the safety review of the facility. Evaluation of the current national standards, DOE orders, EBR-II nuclear safeguards and criticality control practices showed that a decommissioning policy for maintaining criticality safety during a long term fuel transfer process did not exist. The purpose of this research was to provide a technical basis for transforming the reactor from an instrumentation and measurement controlled system to a system that provides both physical constraint and administrative controls to prevent criticality accidents. Essentially, this was done by modifying the reactor core configuration, reactor operations procedures and system instrumentation to meet the safety practices of ANS-8.1-1983. Subcritical limits were determined by applying established liquid metal reactor methods for both the experimental and computational validations

  17. Isolation and characterization of oxygen-evolving photosystem II particles and photosystem II core complex from the filamentous cyanobacterium Spirulina platensis

    Czech Academy of Sciences Publication Activity Database

    Šetlíková, Eva; Sofrová, D.; Kovář, V.; Budáč, Petr

    2013-01-01

    Roč. 51, č. 4 (2013), s. 517-530 ISSN 0300-3604 R&D Projects: GA ČR GA206/08/1683; GA MŠk(CZ) ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : antibodies * fluorescence spectra * IMAC chromatography Subject RIV: EE - Microbiology, Virology Impact factor: 1.007, year: 2013

  18. A real-time current driving control system for the TJ-II coils

    International Nuclear Information System (INIS)

    Pena, Angel de la; Pacios, Luis; Carrasco, Ricardo; Lapayese, Fernando

    2009-01-01

    Since the start of plasma operation in the TJ-II stellarator, the required values of DC currents that are fed to its different coil sets have been controlled to high precision along the complete discharge flat-top. As a result each current configuration produced a highly stable magnetic-field configuration. Recently, the configurational flexibility of the TJ-II has been broadened by the commissioning of a new mode of operation that allows magnetic configurations to be varied dynamically during the discharge flat-top. In order to achieve this, new hardware and software features have been added to the TJ-II Control System. These new features may also provide new strategies for feedback control in accordance with parameters measured in one or more diagnostics. In this new set-up, coil current profiles are generated and controlled to millisecond timescales by a system based on VMEbus and OS9 real-time operating system. A new communication middleware architecture called XML-based Messages Distribution Service (X-MDS) has been designed to exchange XML-based data with calling clients. Furthermore, with this software, a fully functional Java application for supervision and for current profiles settings has been developed. This paper provides a detailed description of the complete TJ-II real-time current-profile control system and results obtained during its operation.

  19. A real-time current driving control system for the TJ-II coils

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Angel de la [Association EURATOM - CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: a.delapena@ciemat.es; Pacios, Luis; Carrasco, Ricardo; Lapayese, Fernando [Association EURATOM - CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain)

    2009-06-15

    Since the start of plasma operation in the TJ-II stellarator, the required values of DC currents that are fed to its different coil sets have been controlled to high precision along the complete discharge flat-top. As a result each current configuration produced a highly stable magnetic-field configuration. Recently, the configurational flexibility of the TJ-II has been broadened by the commissioning of a new mode of operation that allows magnetic configurations to be varied dynamically during the discharge flat-top. In order to achieve this, new hardware and software features have been added to the TJ-II Control System. These new features may also provide new strategies for feedback control in accordance with parameters measured in one or more diagnostics. In this new set-up, coil current profiles are generated and controlled to millisecond timescales by a system based on VMEbus and OS9 real-time operating system. A new communication middleware architecture called XML-based Messages Distribution Service (X-MDS) has been designed to exchange XML-based data with calling clients. Furthermore, with this software, a fully functional Java application for supervision and for current profiles settings has been developed. This paper provides a detailed description of the complete TJ-II real-time current-profile control system and results obtained during its operation.

  20. Risk factors for periodontal diseases among Yemeni type II diabetic patients. A case-control study.

    Directory of Open Access Journals (Sweden)

    Anas Shamala

    2017-08-01

    Full Text Available Background: Chronic periodontal diseases are one of diabetes mellitus complications. The present study aims to compare the periodontal status of type II diabetic patients to a control group and assess the role of risk factors in both groups. Materials and methods: A case-control study was conducted of 270 individuals (132 type II diabetics and 138 non-diabetics. Full mouth periodontal examination including plaque index, gingival bleeding, gingival recession, clinical attachment loss (CAL, tooth mobility, furcation involvement and the number of missing teeth. The case group was subdivided according to glycosylated hemoglobin (HbA1c status (poorly controlled HbA1c >8 and well controlled HbA1c≤8 Likewise, the duration of diabetes mellitus as short or long duration (DM≤10 or >10. The diabetic group was also subdivided according to smoking and Khat chewing habits. Result: The severity of periodontal disease among type II diabetic patients were significantly higher compared to the control group regarding the plaque index 2.6 (1.6-4.3, bleeding on probing 3.5 (2.3-13.0, gingival recession 2.0 (1.2-3.4, furcation involvement 4.0 (2.3-6.7, clinical attachment loss 5.7 (3.1-10.5, tooth mobility 2.0 (1.2-3.4, and number of missing teeth 4.4 (2.3-8.5. In addition, poorly controlled type II DM and long duration had higher CAL and number of missing teeth than well-controlled DM and short duration. No significant differences were found between smokers/nonsmokers and Khat chewers/non-chewers among the diabetic group. Conclusion: Type II diabetic patients have severe periodontal destruction and tooth loss compared to non-diabetic people and there were no differences within the diabetic group in regards to smoking and Khat chewing habits.

  1. On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Slavov, Chavdar Lyubomirov

    2009-07-09

    The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is

  2. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion.

    Science.gov (United States)

    Nguyen, Khoa; Bruce, Barry D

    2014-09-01

    Oxygenic photosynthesis is driven via sequential action of Photosystem II (PSII) and (PSI)reaction centers via the Z-scheme. Both of these pigment-membrane protein complexes are found in cyanobacteria, algae, and plants. Unlike PSII, PSI is remarkably stable and does not undergo limiting photo-damage. This stability, as well as other fundamental structural differences, makes PSI the most attractive reaction centers for applied photosynthetic applications. These applied applications exploit the efficient light harvesting and high quantum yield of PSI where the isolated PSI particles are redeployed providing electrons directly as a photocurrent or, via a coupled catalyst to yield H₂. Recent advances in molecular genetics, synthetic biology, and nanotechnology have merged to allow PSI to be integrated into a myriad of biohybrid devices. In photocurrent producing devices, PSI has been immobilized onto various electrode substrates with a continuously evolving toolkit of strategies and novel reagents. However, these innovative yet highly variable designs make it difficult to identify the rate-limiting steps and/or components that function as bottlenecks in PSI-biohybrid devices. In this study we aim to highlight these recent advances with a focus on identifying the similarities and differences in electrode surfaces, immobilization/orientation strategies, and artificial redox mediators. Collectively this work has been able to maintain an annual increase in photocurrent density (Acm⁻²) of ~10-fold over the past decade. The potential drawbacks and attractive features of some of these schemes are also discussed with their feasibility on a large-scale. As an environmentally benign and renewable resource, PSI may provide a new sustainable source of bioenergy. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2013. Published by Elsevier B.V.

  3. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.

    Science.gov (United States)

    Sun, Yongjiang; Geng, Qingwei; Du, Yuanpeng; Yang, Xinghong; Zhai, Heng

    2017-03-01

    Photosystem II (PSII) in plants is susceptible to high temperatures. The cyclic electron flow (CEF) around PSI is thought to protect both PSII and PSI from photodamage. However, the underlying physiological mechanisms of the photosynthetic electron transport process and the role of CEF in grape at high temperatures remain unclear. To investigate this issue, we examined the responses of PSII energy distribution, the P700 redox state and CEF to high temperatures in grape leaves. After exposing 'Cabernet Sauvignon' leaves to various temperatures (25, 30, 35, 40 and 45°C) in the light (600μmol photons m -2 s -1 ) for 4h, the maximum quantum yield of PSII (Fv/Fm) significantly decreased at high temperatures (40 and 45°C), while the maximum photo-oxidizable P700 (Pm) was not affected. As the temperature increased, higher initial rates of increase in post-illumination Chl fluorescence were detected, which were accompanied by an increase in high energy state quenching (qE). The chloroplast NAD(P)H dehydrogenase-dependent CEF (NDH-dependent CEF) activities were different among grape cultivators. 'Gold Finger' with greater susceptibility to photoinhibition, exhibited lower NDH-dependent CEF activities under acute heat stress than a more heat tolerant 'Cabernet Sauvignon'. These results suggest that overclosure of PSII reaction centers at high temperature resulted in the photoinhibition of PSII, while the stimulation of CEF in grape played an important role in the photoprotection of PSII and PSI at high temperatures through contributing to the generation of a proton gradient. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. 75 FR 55269 - Minimum Internal Control Standards for Class II Gaming

    Science.gov (United States)

    2010-09-10

    ... DEPARTMENT OF THE INTERIOR National Indian Gaming Commission 25 CFR Parts 542 and 543 RIN 3141-AA-37 Minimum Internal Control Standards for Class II Gaming AGENCY: National Indian Gaming Commission. ACTION: Delay of effective date of final rule; request for comments. SUMMARY: The National Indian Gaming...

  5. 76 FR 53817 - Minimum Internal Control Standards for Class II Gaming

    Science.gov (United States)

    2011-08-30

    ... DEPARTMENT OF THE INTERIOR National Indian Gaming Commission 25 CFR Parts 542 and 543 Minimum Internal Control Standards for Class II Gaming AGENCY: National Indian Gaming Commission, Interior. ACTION: Final rule; delay of effective date and request for comments. SUMMARY: The National Indian Gaming...

  6. 77 FR 60625 - Minimum Internal Control Standards for Class II Gaming

    Science.gov (United States)

    2012-10-04

    ... DEPARTMENT OF THE INTERIOR National Indian Gaming Commission 25 CFR Parts 542 and 543 RIN 3141-AA-37 Minimum Internal Control Standards for Class II Gaming AGENCY: National Indian Gaming Commission. ACTION: Final rule; delay of effective date; suspension. SUMMARY: The National Indian Gaming Commission...

  7. EBR-II secondary sodium loop Plugging Temperature Indicator control system upgrade

    International Nuclear Information System (INIS)

    Carlson, R.B.; Gehrman, R.L.

    1995-01-01

    The Experimental Breeder Reactor II (EBR-II) secondary sodium coolant loop Plugging Temperature Indicator (PTI) control system was upgraded in 1993 to a real-time computer based system. This was done to improve control, to remove obsolete and high maintenance equipment, and to provide a graphical CRT based operator interface. A goal was to accomplish this inexpensively using small, reliable computer and display hardware with a minimum of purchased software. This paper describes the PTI system, the upgraded control system and its operator interface, and development methods and tools. The paper then assesses how well the system met its goals, discusses lessons learned and operational improvements noted, and provides some recommendations and suggestions on applying small real-time control systems of this type

  8. Experimental Breeder Reactor-II automatic control-rod-drive system

    International Nuclear Information System (INIS)

    Christensen, L.J.

    1983-01-01

    A computer-controlled automatic control rod drive system (ACRDS) was designed and operated in EBR-II during reactor runs 121 and 122. The ACRDS was operated in a checkout mode during run 121 using a low worth control rod. During run 122 a high worth control rod was used to perform overpower transient tests as part of the LMFBR oxide fuels transient testing program. The testing program required an increase in power of 4 MW/s, a hold time of 12 minutes and a power decrease of 4 MW/s. During run 122, 13 power transients were performed

  9. Concept and structure of instrumentation and control of the Atucha II nuclear power plant

    International Nuclear Information System (INIS)

    Garzon, D.; Roca, J.L.

    1987-01-01

    The general structure of instrumentation and control of Atucha II nuclear power plant as well as the technologies used, are described: concepts of functional decentralization and physical centralization; concept of functional group and functional complex; description of the technologies used (physical support) in the project of plant instrumentation and control; description of the different automation levels on the basis of concepts of control interface, automatism, regulation, group and subgroup controls; principles of signal conditioning; concept of announcement of alarms and state: supervisory computer, description of HAS (Hard wired Alarm System) and CAS (Computer Alarm System); application of the above mentioned structure to the project of another type of plants. (Author)

  10. Control of uncertain systems by feedback linearization with neural networks augmentation. Part II. Controller validation by numerical simulation

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2010-09-01

    Full Text Available The paper was conceived in two parts. Part I, previously published in this journal, highlighted the main steps of adaptive output feedback control for non-affine uncertain systems, having a known relative degree. The main paradigm of this approach was the feedback linearization (dynamic inversion with neural network augmentation. Meanwhile, based on new contributions of the authors, a new paradigm, that of robust servomechanism problem solution, has been added to the controller architecture. The current Part II of the paper presents the validation of the controller hereby obtained by using the longitudinal channel of a hovering VTOL-type aircraft as mathematical model.

  11. Controlling Confinement with Induced Toroidal Current in the Flexible Heliac TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J A; Lopez-Bruna, D; Lopez-Fraguas, A; Ascasibar, E; TJ-II Team

    2002-07-01

    A method to control plasma particle an energy confinement in the TJ-II Heliac devices is reported A small toroidal current is induced in the plasma with the aid of a 0.2 Wb air core transformer. Plasma particle and energy confinement improve (degrade) with negative (positive) plasma current. For typical TJ-II discharges plasma density and temperature broaden considerably when plasma current is sufficiently negative, accounting for a 40% increase in stored energy. The experimental results agree qualitatively with the paradigm of instability growth rate modifications with magnetic shear. (Author) 18 refs.

  12. Controlling Confinement with Induced Toroidal Current in the Flexible Heliac TJ-II

    International Nuclear Information System (INIS)

    Romero, J. A.; Lopez-Bruna, D.; Lopez-Fraguas, A.; Ascasibar, E.; TJ-II Team

    2002-01-01

    A method to control plasma particle an energy confinement in the TJ-II Heliac devices is reported A small toroidal current is induced in the plasma with the aid of a 0.2 Wb air core transformer. Plasma particle and energy confinement improve (degrade) with negative (positive) plasma current. For typical TJ-II discharges plasma density and temperature broaden considerably when plasma current is sufficiently negative, accounting for a 40% increase in stored energy. The experimental results agree qualitatively with the paradigm of instability growth rate modifications with magnetic shear. (Author) 18 refs

  13. Resistance Torque Based Variable Duty-Cycle Control Method for a Stage II Compressor

    Science.gov (United States)

    Zhong, Meipeng; Zheng, Shuiying

    2017-07-01

    The resistance torque of a piston stage II compressor generates strenuous fluctuations in a rotational period, and this can lead to negative influences on the working performance of the compressor. To restrain the strenuous fluctuations in the piston stage II compressor, a variable duty-cycle control method based on the resistance torque is proposed. A dynamic model of a stage II compressor is set up, and the resistance torque and other characteristic parameters are acquired as the control targets. Then, a variable duty-cycle control method is applied to track the resistance torque, thereby improving the working performance of the compressor. Simulated results show that the compressor, driven by the proposed method, requires lower current, while the rotating speed and the output torque remain comparable to the traditional variable-frequency control methods. A variable duty-cycle control system is developed, and the experimental results prove that the proposed method can help reduce the specific power, input power, and working noise of the compressor to 0.97 kW·m-3·min-1, 0.09 kW and 3.10 dB, respectively, under the same conditions of discharge pressure of 2.00 MPa and a discharge volume of 0.095 m3/min. The proposed variable duty-cycle control method tracks the resistance torque dynamically, and improves the working performance of a Stage II Compressor. The proposed variable duty-cycle control method can be applied to other compressors, and can provide theoretical guidance for the compressor.

  14. Simulation and operation of the EBR-II automatic control rod drive system

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Dean, E.M.; Christensen, L.J.

    1985-01-01

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control-rod-drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE Operational Reliability Testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In addition, the ACRDS is used for steady-state operation and will be qualified to control power ascent from initial critical to full power

  15. Simulation and operation of the EBR-II automatic control rod drive system

    International Nuclear Information System (INIS)

    Lehto, W.K.; Larson, H.A.; Dean, E.M.; Christensen, L.J.

    1985-01-01

    An automatic control rod drive system (ACRDS) installed at EBR-II produces shaped power transients from 40% to full reactor power at a linear ramp rate of 4 MWt/s. A digital computer and modified control-rod-drive provides this capability. Simulation and analysis of ACRDS experiments establish the safety envelope for reactor transient operation. Tailored transients are required as part of USDOE Operational Reliability Testing program for prototypic fast reactor fuel cladding breach behavior studies. After initial EBR-II driver fuel testing and system checkout, test subassemblies were subjected to both slow and fast transients. In additions, the ACRDS is used for steady-state operation and will be qualified to control power ascent from initial critical to full power

  16. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  17. Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co–removal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huan [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Zhu, Baisheng [University of Science and Technology of China, Hefei 230026 (China); Ren, Xuemei, E-mail: renxm1985@163.com [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Shao, Dadong; Tan, Xiaoli; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)

    2016-08-15

    Highlights: • Five natroalunite samples with different morphologies were synthesized. • EG: water ratio controls the morphology and adsorption performance of natroalunite. • NMs show the best performance in Cd(II) and phosphate co-uptake. • Phosphate bridges NMs and Cd(II) in co–removal process and enhances Cd(II) uptake. - Abstract: Treatment of wastewater containing several kinds of contaminants poses great challenges, because heavy metal and inorganic anion contaminants possess different fate and transport mechanisms. Individual adsorption of Cd(II)/phosphate on clay or metallic oxides has been extensively investigated, but the mutual effects of these two species in co–existing systems have received little attention. In this study, five natroalunite samples with different morphologies were synthesized by a simple hydrothermal method with appropriate volume ratio of ethylene glycol (EG) to water. The volume ratio of EG to water plays a key role in the formation of natroalunite samples, and dramatically affects their adsorption capacities. The mutual effects of Cd(II) and phosphate on their interaction with natroalunite microtubes (NMs) were investigated by varying experimental conditions, such as pH, temperature and addition sequences. The results demonstrate that highly efficient co–removal of Cd(II) and phosphate can be accomplished using NMs, and the process is strongly dependent on solution pH and temperature via the formation of ternary surface complexes. This study implies that the hydrothermally synthesized NMs can be regarded as a potential promising material for the co–removal of Cd(II) and phosphate from large volumes of aqueous solutions in pollution management.

  18. Expression of the Arabidopsis Sigma Factor SIG5 Is Photoreceptor and Photosynthesis Controlled

    Directory of Open Access Journals (Sweden)

    Marina Mellenthin

    2014-08-01

    Full Text Available Two collections of Arabidopsis GAL4 enhancer trap lines were screened for light-intensity dependent reporter gene activation. Line N9313 was isolated for its strong light-intensity regulation. The T-DNA element trapped distant enhancers of the SIG5 promoter, which drives expression of a sigma factor involved in regulation of chloroplast genes for photosystem II core proteins. The T-DNA insertion 715 bp upstream of the transcription initiation site splits the promoter in a distal and proximal part. Both parts are sensitive to blue and red light and depend on photosynthetic electron transport activity between photosystem II and the plastoquinone pool. The mainblue-light sensitivity is localized within a 196-bp sequence (–887 to –691 bp in the proximal promoter region It is preferentially CRY1 and PHYB controlled. Type-I and type-II phytochromes mediate red-light sensitivity via various promoter elements spread over the proximal and distal upstream region. This work characterizes SIG5 as an anterograde control factor of chloroplast gene expression, which is controlled by chloroplast signals in a retrograde manner.

  19. Power train and emission control: allocation procedure by OBD-II system for automotive technology

    Science.gov (United States)

    Kalita, Porag

    2017-06-01

    OBD-II, systems were designed to maintain low emissions of in use vehicles, including light and medium duty vehicles. In 1989, the California code of Regulations (CCR) known as OBD - II was adopted by the California Air Resource Board (CARB) and the objective to reduce hydrocarbon (HC) emission caused by malfunction of the vehicles emission control systems. OBD-II provides additional information to engineer for diagnosis and repair of emissions related problems. OBD-II, standardizes on the amount of memory (Freeze Frame) it uses to store the readings of the vehicle sensor when it logs on emission related Intermittent Trouble code (IT). The intent of OBD-II, systems is to detect most vehicle malfunctions when performance of a power train component or system deteriorates to the point that the vehicle’s HC emission exceed standard. The vehicle operator is notified at the time when the vehicle begins to marginally exceed emission standards, by illuminating the Malfunctions Indicator Light (MIL).

  20. Control console conceptual design for sheet type fuels of Triga Mark-II reactor

    International Nuclear Information System (INIS)

    Eko Priyono; Kurnia Wibowo; Anang Susanto

    2016-01-01

    The control console conceptual design for sheet type fuel of TRIGA Mark-II reactor has been made. The control console conceptual design was made with refer study result of instrument and control system which is used in BATAN'S reactor i.e TRIGA-2000 Bandung, TRIGA Yogyakarta and MPR-30 Serpong. The control console conceptual design was made by using AutoCad software. The control console conceptual design reactor for sheet type fuel of TRIGA Mark-II reactor consist of 5 segments that is 3 segments for placing the computer monitors, 1 segment for placing bargraph displays and recorders and 1 segment for placing panel meters. There are the door on front and back position at each segment for enter and out devices in the console. The control console conceptual design is also equipped by the table along in front of console for placing reactor panel control and for writing, 3 drawers for 3 keyboards. The dimension of console will refer control room size and the components will be placed on console which will be detailed in detail design if this conceptual design has been approved. (author)

  1. Multi-Objective PID-Controller Tuning for a Magnetic Levitation System using NSGA-II

    DEFF Research Database (Denmark)

    Pedersen, Gerulf K. M.; Yang, Zhenyu

    2006-01-01

    This paper investigates the issue of PID-controller parameter tuning for a magnetic levitation system using the non-dominated sorting genetic algorithm (NSGA-II). The magnetic levitation system is inherently unstable and the PID-controller parameters are hard to find using conventional methods....... Based on four different performance measures, derived from the step response of the levitation system, the algorithm is used to find a set of non-dominated parameters for a PID-controller that can stabilize the system and minimize the performance measures....

  2. 75 FR 69089 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2010-11-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0514] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document... Administration (FDA) is announcing the availability of the guidance entitled ``Class II Special Controls Guidance...

  3. 77 FR 16123 - Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls...

    Science.gov (United States)

    2012-03-19

    ... Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document... Drug Administration 21 CFR Part 866 Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Nucleic Acid-Based In Vitro Diagnostic Devices for the...

  4. Growth inhibition and effect on photosystem by three imidazolium chloride ionic liquids in rice seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huijun, E-mail: lhj@mail.zjgsu.edu.cn [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province (China); Zhang, Shuxian [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province (China); Jiaxing University, Jiaxing 314001, Zhejiang Province (China); Zhang, Xiaoqiang; Chen, Caidong [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province (China)

    2015-04-09

    Highlights: • The three ILs have phytotoxic on rice growth. • The antioxidant enzyme activities increased first and then declined with ILs concentration increased. • The Hill reaction activity decreased and the PS II of leaves was damaged by ILs. • The toxicity of ILs increased as the alkyl chain length increased as the order: [OMIM]Cl < [DMIM]Cl < [C{sub 12}MIM]Cl. - Abstract: The effects of three imidazolium chloride ionic liquids (ILs) including 1-octyl-3-methylimidazolium chloride ionic liquid ([OMIM]Cl), 1-decyl-3-methylimidazolium chloride ionic liquid ([DMIM]Cl) and 1-dodecyl-3-methylimidazolium chloride ionic liquid ([C{sub 12}MIM]Cl) were studied in hydroponically grown rice seedlings. The growth inhibition rate increased and the Hill reaction activity of isolated rice chloroplasts decreased with increasing ILs concentrations. The IC{sub 50,5d} for stem length was 0.70 mg/L of [OMIM]Cl, 0.15 mg/L of [DMIM]Cl, and 0.055 mg/L of [C{sub 12}MIM]Cl, respectively. The SOD, POD and CAT activities of chloroplast exhibited initial increases followed by decreases in activity with increasing ILs concentrations. Chlorophyll fluorescence parameters such as the maximum effective quantum yield of PSII(F{sub v}/F{sub m}), the potential activity of PSII(F{sub v}/F{sub 0}), the yield of photochemical quantum [Y(II)], the photochemical quenching coefficient (qP), the non-photochemical quenching coefficient (NPQ) and the relative electron transport ratio (rETR) were affected, showing that ILs will damage the PSII. The results demonstrated that imidazolium chloride ILs are phytotoxic to rice growth and their photosystem, the toxicity increased as the alkyl chain length increased with the following order: [OMIM]Cl < [DMIM]Cl < [C{sub 12}MIM]Cl. The results will help to better understand the possible role of the defense mechanism in rice caused by ILs exposure.

  5. A Parallel Controls Software Approach for PEP II: AIDA and Matlab Middle Layer

    International Nuclear Information System (INIS)

    Wittmer, W.; Colocho, W.; White, G.

    2007-01-01

    The controls software in use at PEP II (Stanford Control Program - SCP) had originally been developed in the eighties. It is very successful in routine operation but due to its internal structure it is difficult and time consuming to extend its functionality. This is problematic during machine development and when solving operational issues. Routinely, data has to be exported from the system, analyzed offline, and calculated settings have to be reimported. Since this is a manual process, it is time consuming and error-prone. Setting up automated processes, as is done for MIA (Model Independent Analysis), is also time consuming and specific to each application. Recently, there has been a trend at light sources to use MATLAB as the platform to control accelerators using a 'MATLAB Middle Layer' (MML), and so called channel access (CA) programs to communicate with the low level control system (LLCS). This has proven very successful, especially during machine development time and trouble shooting. A special CA code, named AIDA (Accelerator Independent Data Access), was developed to handle the communication between MATLAB, modern software frameworks, and the SCP. The MML had to be adapted for implementation at PEP II. Colliders differ significantly in their designs compared to light sources, which poses a challenge. PEP II is the first collider at which this implementation is being done. We will report on this effort, which is still ongoing

  6. A survey on control schemes for distributed solar collector fields. Part II: Advanced control approaches

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, E.F.; Rubio, F.R. [Universidad de Sevilla, Escuela Superior de Ingenieros, Departamento de Ingenieria de Sistemas y Automatica, Camino de Los Descubrimientos s/n, E-41092 Sevilla (Spain); Berenguel, M. [Universidad de Almeria, Departamento de Lenguajes y Computacion, Area de Ingenieria de Sistemas y Automatica, Carretera Sacramento s/n, E-04120 La Canada, Almeria (Spain); Valenzuela, L. [Plataforma Solar de Almeria - CIEMAT, Carretera Senes s/n, P.O. Box 22, E-04200 Tabernas (Almeria) (Spain)

    2007-10-15

    This article presents a survey of the different advanced automatic control techniques that have been applied to control the outlet temperature of solar plants with distributed collectors during the last 25 years. A classification of the modeling and control approaches described in the first part of this survey is used to explain the main features of each strategy. The treated strategies range from classical advanced control strategies to those with few industrial applications. (author)

  7. Potential safety enhancements to nuclear plant control: proof testing at EBR-II

    International Nuclear Information System (INIS)

    Lindsay, R.W.; Chisholm, G.H.

    1984-01-01

    Future changes in nuclear plant control and protective systems will reflect an evolutionary improvement through increased use of computers coupled with a better integration of man and machine. Before improvements can be accepted into the licensed commercial plant environment, significant testing must be accomplished to answer safety questions and to prove the worth of new ideas. The Experimental Breeder Reactor-II (EBR-II) is being used as a test-bed for both in-house development and testing for others in a DOE sponsored Man-Machine Integration program. The ultimate result of the development and testing would be a control system for which safety credit could be taken in the licensing process

  8. Development of slow control system for the Belle II ARICH counter

    Science.gov (United States)

    Yonenaga, M.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yusa, Y.

    2017-12-01

    A slow control system (SCS) for the Aerogel Ring Imaging Cherenkov (ARICH) counter in the Belle II experiment was newly developed and coded in the development frameworks of the Belle II DAQ software. The ARICH is based on 420 Hybrid Avalanche Photo-Detectors (HAPDs). Each HAPD has 144 pixels to be readout and requires 6 power supply (PS) channels, therefore a total number of 2520 PS channels and 60,480 pixels have to be configured and controlled. Graphical User Interfaces (GUIs) with detector oriented view and device oriented view, were also implemented to ease the detector operation. The ARICH SCS is in operation for detector construction and cosmic rays tests. The paper describes the detailed features of the SCS and preliminary results of operation of a reduced set of hardware which confirm the scalability to the full detector.

  9. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    Science.gov (United States)

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. JC Polyomavirus Infection Is Strongly Controlled by Human Leucocyte Antigen Class II Variants

    DEFF Research Database (Denmark)

    Sundqvist, Emilie; Buck, Dorothea; Warnke, Clemens

    2014-01-01

    sequence-specific oligonucleotide (PCR-SSO) method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10(-15)) and controls (OR = 0.53, p = 2×10(-5)). In contrast...

  11. Design and verification of controllers for longitudinal oscillations using optimal control theory and numerical simulation: Predictions for PEP-II

    International Nuclear Information System (INIS)

    Hindi, H.; Prabhakar, S.; Fox, J.; Teytelman, D.

    1997-12-01

    The authors present a technique for the design and verification of efficient bunch-by-bunch controllers for damping longitudinal multibunch instabilities. The controllers attempt to optimize the use of available feedback amplifier power--one of the most expensive components of a feedback system--and define the limits of closed loop system performance. The design technique alternates between analytic computation of single bunch optimal controllers and verification on a multibunch numerical simulator. The simulator identifies unstable coupled bunch modes and predicts their growth and damping rates. The results from the simulator are shown to be in reasonable agreement with analytical calculations based on the single bunch model. The technique is then used to evaluate the performance of a variety of controllers proposed for PEP-II

  12. Complex dynamics of a Holling type II prey-predator system with state feedback control

    International Nuclear Information System (INIS)

    Jiang Guirong; Lu Qishao; Qian Linning

    2007-01-01

    The complex dynamics of a Holling type II prey-predator system with impulsive state feedback control is studied in both theoretical and numerical ways. The sufficient conditions for the existence and stability of semi-trivial and positive periodic solutions are obtained by using the Poincare map and the analogue of the Poincare criterion. The qualitative analysis shows that the positive periodic solution bifurcates from the semi-trivial solution through a fold bifurcation. The bifurcation diagrams, Lyapunov exponents, and phase portraits are illustrated by an example, in which the chaotic solutions appear via a cascade of period-doubling bifurcations. The superiority of the state feedback control strategy is also discussed

  13. Control of photon correlations in type II parametric down-conversion

    International Nuclear Information System (INIS)

    Andrews, R; Joseph, A T; Pike, E R; Sarkar, Sarben

    2005-01-01

    In this paper we describe theoretically quantum control of temporal correlations of entangled photons produced by collinear type II spontaneous parametric down-conversion. We examine the effect of spectral phase modulation of the signal or idler photons arriving at a 50/50 beam splitter on the temporal shape of the entangled-photon wavepacket. The coincidence count rate is calculated analytically for photon pairs in terms of the modulation depth applied to either the signal or idler beam with a spectral phase filter. It is found that the two-photon coincidence rate can be controlled by varying the modulation depth of the spectral filter

  14. EEG, HRV and Psychological Correlates while Playing Bejeweled II: A Randomized Controlled Study.

    Science.gov (United States)

    Russoniello, Carmen V; O'Brien, Kevin; Parks, Jennifer M

    2009-01-01

    Stress related medical disorders such as cardiovascular disease, diabetes, depression, and anxiety are serious medical issues that can cause disability and death. Interventions to prevent their development and exacerbation are needed. Casual video games (CVGs) are fun, easy to play, spontaneous and tremendously popular. People report that they play these games because they decrease their stress and improve their mood. This study tested this theory by comparing people playing Bejeweled II a popular CVG with control subjects measured under similar conditions. Electroencephalographic (EEG) changes after playing Bejeweled II were consistent with increased mood and corroborated with similar findings on psychological reports. Moreover, heart rate variability (HRV) changes consistent with autonomic nervous system relaxation or decreased physical stress were also recorded. It is concluded, therefore, that playing a CVG like Bejeweled II can increase mood and decrease stress. These finding have broad implications and include the potential development of prescriptive interventions using Bejeweled II to prevent and treat stress related medical disorders. Finally, these findings demonstrate a method using EEG, HRV and psychological correlates to understand the psychophysiological or cybernetic interconnection between participant and video game.

  15. The Mobile Limiters of TJ-II: Power and Particle Control

    International Nuclear Information System (INIS)

    Cal, E. de la

    1998-01-01

    For mobile limiters have been designed for the TJ-II stellerator to reduce thermal loads on the vacuum vessel and its protections at the region of the central hard core (groove) and to characterise the scrap off layer plasma. The role of the mobile limiters for particle and thermal load control is analysed for the different operating phases of TJ-II. The task of impurity control will be treated in a future report. A simplified model has been used to estimate the termal loads on the limiters. The conclusion is that a new design for the limiter heads will be necessary for the neutral beam injection (NBI)-phase at high power density, if acceptable efficiencies of thermal removal is desired. The rexperimental measurements which will be made in the first phase (ECH) with the temperature and Lagmuir probes installed in the diagnosed limiter-heads will be essential for the optimisation of the future limiter-shape. For particle control it will be absolutely necessary to use first wall conditioning techniques (e.g. boronization), since no active pumping method is foreseen for TJ-II. Again, this point will be more critical in the NBI-phase, due to the large particle fluxes to the first wall and due to possible thermal gas, desorption caused by local overheating of plasma-facing surfaces. The role of magnetic topology on plasma-wall interaction is finally analysed. A configuration has been found in which the limiters act as divertor plates (Natural Island Divertor). This inherent flexibility for changing the magnetic topology of TJ-II should be exploited in order to find the most favourable operating scenarios for the high powder injection phase

  16. A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Morgan-Fisher, Marie; Wait, Robin

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among...... nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two......-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions...

  17. New fuzzy EWMA control charts for monitoring phase II fuzzy profiles

    Directory of Open Access Journals (Sweden)

    Ghazale Moghadam

    2016-01-01

    Full Text Available In many quality control applications, the quality of a process or product is explained by the relationship between response variable and one or more explanatory variables, called a profile. In this paper, a new fuzzy EWMA control chart for phase II fuzzy profile monitoring is proposed. To this end, we extend EWMA control charts to its equivalent Fuzzy type and then implement fuzzy ranking methods to determine whether the process fuzzy profile is under or out of control. The proposed method is capable of identifying small changes in process under condition of process profile explaining parameters vagueness, roughness and uncertainty. Determining the source of changes, this method provides us with the possibility of recognizing the causes of process transition from stable mode, removing these causes and restoring the process stable mode.

  18. Exxon nuclear power distribution control for pressurized water reactors: Phase II

    International Nuclear Information System (INIS)

    Holm, J.S.; Burnside, R.J.

    1978-01-01

    The power distribution control procedure, denoted PDC-II, described in this report enables nuclear plants to manage core power distributions such that Technical Specification Limits on F/sub Q//sup T/ are not violated during normal operation and limits on MDNBR are not violated during steady-state, load-follow, and anticipated transients. The PDC-II data base described provides the means for predicting the maximum F/sub Q//sup T/(z) distribution anticipated during operation under the PDC-II procedure taking into account the incore measured equilibrium power distribution data for the reactor in question. A comparison of this distribution with the Technical Specification limit curve determines whether the Technical Specification limit can be protected by PDC-II procedure. If such protection can be confirmed for a given operating cycle interval, APDMS monitoring is not necessary over this interval and the excore monitored constant axial offset limits will protect the Technical Specification F/sub Q//sup T/ limits. This document describes the maximum possible variation in F/sub Q//sup T/(z) which can occur during operation when following the PDC-II procedures. This bounding variation in F/sub Q//sup T/(z) is referred to as V(z). This V(z) distribution represents the maximun variation in F/sub Q//sup T/(z) when the axial offset is maintained within the range defined in this report [+- 5% at full power condition

  19. Effect of emotional intelligence in glycemic control in patients with type II diabetes

    Directory of Open Access Journals (Sweden)

    Monireh Mehdizadeh

    2017-11-01

    Full Text Available Diabetes, in addition to adverse physical effects, is associated with many psychological problems. The correlation between physical health and emotional intelligence are acceptable. The aim of this study was to determine the effect of emotional intelligence training in glycemic control in patients with type II diabetes. The present study was a quasi-experimental research, which was conducted in Mashhad city, Iran. The participants included 20 patients referring to the diabetic centers. They were selected through convenience sampling and randomly divided into two groups of experiment (n=10 and control (n=10. To measure blood glucose, the level of HbA1c in patients was measured before and after training. The experimental group attended in a period of emotional intelligence training. The training sessions were held as group discussion during 8 weeks, one session of 120-min per week. The findings suggest that emotional intelligence training significantly reduced the level of blood glucose (HbA1c in the test group compared to the control group. Based on the results, emotional intelligence training, as a psychological intervention, by affecting understanding, interpretation, regulation and efficient use of excitement, is effective along with medication therapy in controlling blood glucose in type II diabetic patients.

  20. 76 FR 29251 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls; Guidance...

    Science.gov (United States)

    2011-05-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2006-D-0094] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls; Guidance Document... of the guidance entitled ``Guidance for Industry and Food and Drug Administration Staff; Class II...

  1. Thermal stability analysis and auxiliary power feedback control for the tokamak engineering test breeder (TETB-II)

    International Nuclear Information System (INIS)

    Sheng Guangzhao

    1993-01-01

    The thermal stability of TETB-II is analyzed using different methods, viz., POPCON, linear stability analysis and the time evolution calculation of plasma parameters. A thermal instability of the TETB-II is predicted. Auxiliary power feedback control for thermal stability appears feasible and efficient

  2. Economic Analysis of HPAI Control in the Netherlands II: Comparison of Control Strategies

    NARCIS (Netherlands)

    Longworth, N.J.; Mourits, Monique C.M.; Saatkamp, H.W.

    2014-01-01

    A combined epidemiological-economic modelling approach was used to analyse strategies for highly pathogenic avian influenza (HPAI) control for the Netherlands. The modelling framework used was InterSpread Plus (ISP), a spatially based, stochastic and dynamic simulation model. A total of eight

  3. Toward the crystallization of photosystem II core complex from Pisum sativum L

    Czech Academy of Sciences Publication Activity Database

    Prudnikova, T.; Gavira, J. A.; Řezáčová, Pavlína; Molina, E.P.; Hunalová, Ivana; Sviridova, E.; Schmidt, V.; Kohoutová, J.; Kutý, Michal; Kaftan, D.; Vácha, F.; Garcia-Ruiz, J. M.; Kutá-Smatanová, Ivana

    2010-01-01

    Roč. 10, č. 8 (2010), s. 3391-3396 ISSN 1528-7483 R&D Projects: GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50510513; CEZ:AV0Z60870520; CEZ:AV0Z40550506 Keywords : crystal-structure * cyanobacterial * elongatus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.390, year: 2010

  4. Experimental and theoretical studies on the excess capacity of Photosystem II

    Czech Academy of Sciences Publication Activity Database

    Kaňa, R.; Lazár, D.; Prášil, Ondřej; Nauš, J.

    2002-01-01

    Roč. 72, - (2002), s. 271-284 ISSN 0166-8595 R&D Projects: GA ČR GP204/02/P071; GA ČR GA206/98/P110 Institutional research plan: CEZ:AV0Z5020903; CEZ:MSM 153100010 Keywords : chlorella * model * photoinhibition Subject RIV: BO - Biophysics Impact factor: 1.567, year: 2002

  5. effet de l'interaction lumiere-salinite sur l'activite du photosysteme ii

    African Journals Online (AJOL)

    ACSS

    19 nov. 2015 ... effects on the photochemical activity of PSII driving, and to photoinhibition. ... It is quite sufficient to eliminate only one factor of the association light-salinity for the PSII ... a Creative Commons Attribution 3.0 Uganda License.

  6. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

    Czech Academy of Sciences Publication Activity Database

    Goněc, T.; Kos, J.; Pesko, M.; Dohanosová, J.; Oravec, Michal; Liptaj, T.; Králová, K.; Jampílek, J.

    2017-01-01

    Roč. 22, č. 10 (2017), č. článku 1709. ISSN 1420-3049 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : hydroxynaphthalene-carboxamides * photosynthetic electron transport ( PET ) inhibition * spinach chloroplasts * structure-activity relationships Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.861, year: 2016

  7. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    Science.gov (United States)

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.

  8. Combinatorial Development of Water Splitting Catalysts Based on the Oxygen Evolving Complex of Photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Woodbury, Neal [Arizona State University

    2010-03-31

    The use of methods to create large arrays of potential catalysts for the reaction H2O ½ O2 + 2H+ on the anode of an electrolysis system were investigated. This reaction is half of the overall reaction involved in the splitting of water into hydrogen and oxygen gas. This method consisted of starting with an array of electrodes and developing patterned electrochemical approaches for creating a different, defined peptide at each position in the array. Methods were also developed for measuring the rate of reaction at each point in the array. In this way, the goal was to create and then tests many thousands of possible catalysts simultaneously. This type of approach should lead to an ability to optimize catalytic activity systematically, by iteratively designing and testing new libraries of catalysts. Optimization is important to decrease energy losses (over-potentials) associated with the water splitting reaction and thus for the generation of hydrogen. Most of the efforts in this grant period were focused on developing the chemistry and analytical methods required to create pattern peptide formation either using a photolithography approach or an electrochemical approach for dictating the positions of peptide bond formation. This involved testing a large number of different reactions and conditions. We have been able to find conditions that have allowed us to pattern peptide bond formation on both glass slides using photolithographic methods and on electrode arrays made by the company Combimatrix. Part of this effort involved generating novel approaches for performing mass spectroscopy directly from the patterned arrays. We have also been able to demonstrate the ability to measure current at each electrode due to electrolysis of water. This was performed with customized instrumentation created in collaboration with Combimatrix. In addition, several different molecular designs for peptides that bound metals (primarily Mn) were developed and synthesized and metal binding was demonstrated. Finally, we investigated a number of methods. We have shown that we can create surfaces on glass slides appropriate for patterning peptide formation and have made arrays of peptides as large as 30,000 using photolithographic methods. However, side reactions with certain amino acid additions greatly limited the utility of the photolithographic approach. In addition, we found that transferring this patterned chemistry approach to large arrays was problematic. Thus, we turned to direct electrochemical patterning using the Combimatrix electrode arrays. Here we were also able to demonstrate patterned peptide bond forming chemistry, but yield and consistency of the reaction remains insufficient to create the quality of array required for realistic optimization of catalytic peptide sequences. We are currently exploring both new polymerization chemistries for generating catalysts on surface as well as adopting methods developed at Intel for creating peptide arrays directly on electronic substrates (silicon wafers).

  9. Photoprotection in the antenna complexes of photosystem II : Role of individual xanthophylls in chlorophyll triplet quenching

    NARCIS (Netherlands)

    Mozzo, Milena; Dall'Osto, Luca; Hienerwadel, Rainer; Bassi, Roberto; Croce, Roberta

    2008-01-01

    In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do

  10. Detection of photosynthetic herbicides: Algal growth inhibition test vs. electrochemical photosystem II biosensor

    Czech Academy of Sciences Publication Activity Database

    Masojídek, Jiří; Souček, Pavel; Máchová, J.; Frolík, Jan; Klem, Karel; Malý, J.

    2011-01-01

    Roč. 74, č. 1 (2011), s. 117-122 ISSN 0147-6513 R&D Projects: GA MPO FT-TA/089 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60870520 Keywords : PSII-biosensor * Biotest * Herbicide Subject RIV: EE - Microbiology, Virology Impact factor: 2.294, year: 2011

  11. Photochemical behavior of xanthophylls in the recombinant photosystem II antenna complex, CP26

    NARCIS (Netherlands)

    Frank, H.A.; Das, S. K.; Bautista, J.A.; Bruce, D.; Vasil' ev, S.; Crimi, M.; Croce, R.; Bassi, R.

    2001-01-01

    The steady state absorption and fluorescence spectroscopic properties of the xanthophylls, violaxanthin, zeaxanthin, and lutein, and the efficiencies of singlet energy transfer from the individual xanthophylls to chlorophyll have been investigated in recombinant CP26 protein overexpressed in

  12. Photoprotection in the antenna complexes of photosystem II: role of individual xanthophylls in chlorophyll triplet quenching.

    Science.gov (United States)

    Mozzo, Milena; Dall'Osto, Luca; Hienerwadel, Rainer; Bassi, Roberto; Croce, Roberta

    2008-03-07

    In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do not directly contribute to the chlorophyll triplet quenching. The largest part of the triplets is quenched by the lutein bound in site L1, which is located in close proximity to the chlorophylls responsible for the low energy state of the complex. The lutein in the L2 site is also active in triplet quenching, and it shows a longer triplet lifetime than the lutein in the L1 site. This lifetime difference depends on the occupancy of the N1 binding site, where neoxanthin acts as an oxygen barrier, limiting the access of O(2) to the inner domain of the Lhc complex, thereby strongly contributing to the photostability. The carotenoid triplet decay of monomeric Lhcb1, Lhcb4, and Lhcb5 is mono-exponential, with shorter lifetimes than observed for trimeric LHCII, suggesting that their inner domains are more accessible for O(2). As for trimeric LHCII, only the xanthophylls in sites L1 and L2 are active in triplet quenching. Although the chlorophyll to carotenoid triplet transfer is efficient (95%) in all complexes, it is not perfect, leaving 5% of the chlorophyll triplets unquenched. This effect appears to be intrinsically related to the molecular organization of the Lhcb proteins.

  13. Photoprotection in the antenna complexes of photosystem II - Role of individual xanthophylls in chlorophyll triplet quenching

    NARCIS (Netherlands)

    Mozzo, Milena; Dall'Osto, Luca; Hienerwadel, Rainer; Bassi, Roberto; Croce, Roberta; Osto, Luca Dall’

    2008-01-01

    In this work the photoprotective role of all xanthophylls in LHCII, Lhcb4, and Lhcb5 is investigated by laser-induced Triplet-minus-Singlet (TmS) spectroscopy. The comparison of native LHCII trimeric complexes with different carotenoid composition shows that the xanthophylls in sites V1 and N1 do

  14. Photosystem II Water Oxidation: Mechanism, Efficiency and Flux in Diverse Oxygenic Phototrophs

    Energy Technology Data Exchange (ETDEWEB)

    Dismukes, Gerard Charles [Rutgers Univ., Piscataway, NJ (United States); Ananyev, Gennady [Rutgers Univ., Piscataway, NJ (United States); Gates, Colin [Rutgers Univ., Piscataway, NJ (United States)

    2018-01-09

    In one year, we pursued four aims: 1) extend the VZAD model to allow analysis of PSII chlorophyll fluorescence emission as modulated by interaction with the WOC (partial success); 2) compare the solar energy conversion efficiencies of PSII-WOCs from intact cells, isolated thylakoid membranes and PSII core complexes and crystals from cyanobacterium Thermosynechococcus elongatus (collaboration with Lawrence Berkeley National Laboratory; some success after changing collaborator); 3) determine whether PSIIs can store light energy by pumping protons across the thylakoid membrane (PSII-cyclic electron flow) and how it is regulated within the green alga Chlorella ohadii (collaboration with the Hebrew University of Jerusalem; some success); and 4) genetically replace the native PSII-D1 protein subunit from a higher plant with two cyanobacterial D1 isoforms to test whether their functional advantages in growth and photoprotection can be transferred (collaboration with Rutgers University; success).

  15. Room temperature oxidation of the peripheral chlorophyll of photosystem II reaction centre

    Czech Academy of Sciences Publication Activity Database

    Litvín, R.; Vácha, František

    2004-01-01

    Roč. 26, - (2004), s. 98 ISSN 0137-5881. [FESPB Congress Book of Abstracts /14./. Cracow, 23.08.2004-27.08.2004] Keywords : plant physiology Subject RIV: CE - Biochemistry Impact factor: 0.433, year: 2004

  16. Control of the Superconducting Magnets current Power Supplies of the TJ-II Gyrotrons

    International Nuclear Information System (INIS)

    Ros, A.; Fernandez, A.; Tolkachev, A.; Catalan, G.

    2006-01-01

    The TJ-II ECRH heating system consists of two gyrotrons, which can deliver a maximum power of 300 kW at a frequency of 53.2 GHz. Another 28 GHz gyrotron is going to be used in the Bernstein waves heating system. In order to get the required frequency, the gyrotrons need and homogeneous magnetic field of several tesla, which is generated by a superconducting coil field by a current source. This document describes the current source control as well as the high precision ammeters control. These ammeters measure the current in the superconducting coils. The user interface and the programming of the control system are described. The communication between devices is also explained. (author) 9 Refs

  17. Phase II and III the next generation of CLS beamline control and data acquisition systems

    International Nuclear Information System (INIS)

    Matias, E.; Beauregard, D.; Berg, R.; Black, G.; Boots, M.J.; Dolton, W.; Hunter, D.; Igarashi, R.; Liu, D.; Maxwell, D.; Miller, C.D.; Wilson, T.; Wright, G.

    2012-01-01

    The Canadian Light Source (CLS) is nearing the completion of its suite of Phase II Beamlines and in detailed design of its Phase III Beamlines. The paper presents an overview of the overall approach adopted by CLS in the development of beamline control and data acquisition systems. Building on the experience of our first phase of beamlines the CLS has continued to make extensive use of EPICS with EDM and QT based user interfaces. Increasing interpretive languages such as Python are finding a place in the beamline control systems. Web based environment such as ScienceStudio have also found a prominent place in the control system architecture as we move to tighter integration between data acquisition, visualization and data analysis. (authors)

  18. CHIMERA II - A real-time multiprocessing environment for sensor-based robot control

    Science.gov (United States)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1989-01-01

    A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.

  19. A postsynaptic PI3K-cII dependent signaling controller for presynaptic homeostatic plasticity

    Science.gov (United States)

    Hauswirth, Anna G; Ford, Kevin J; Wang, Tingting; Fetter, Richard D; Tong, Amy

    2018-01-01

    Presynaptic homeostatic plasticity stabilizes information transfer at synaptic connections in organisms ranging from insect to human. By analogy with principles of engineering and control theory, the molecular implementation of PHP is thought to require postsynaptic signaling modules that encode homeostatic sensors, a set point, and a controller that regulates transsynaptic negative feedback. The molecular basis for these postsynaptic, homeostatic signaling elements remains unknown. Here, an electrophysiology-based screen of the Drosophila kinome and phosphatome defines a postsynaptic signaling platform that includes a required function for PI3K-cII, PI3K-cIII and the small GTPase Rab11 during the rapid and sustained expression of PHP. We present evidence that PI3K-cII localizes to Golgi-derived, clathrin-positive vesicles and is necessary to generate an endosomal pool of PI(3)P that recruits Rab11 to recycling endosomal membranes. A morphologically distinct subdivision of this platform concentrates postsynaptically where we propose it functions as a homeostatic controller for retrograde, trans-synaptic signaling. PMID:29303480

  20. JOYO coolant sodium and cover gas purity control database (MK-II core)

    International Nuclear Information System (INIS)

    Ito, Kazuhiro; Nemoto, Masaaki

    2000-03-01

    The experimental fast reactor 'JOYO' served as the MK-II irradiation bed core for testing fuel and material for FBR development for 15 years from 1982 to 1997. During the MK-II operation, impurities concentrations in the sodium and the argon gas were determined by 67 samples of primary sodium, 81 samples of secondary sodium, 75 samples of primary argon gas, 89 samples of secondary argon gas (the overflow tank) and 89 samples of secondary argon gas (the dump tank). The sodium and the argon gas purity control data were accumulated from in thirty-one duty operations, thirteen special test operations and eight annual inspections. These purity control results and related plant data were compiled into database, which were recorded on CD-ROM for user convenience. Purity control data include concentration of oxygen, carbon, hydrogen, nitrogen, chlorine, iron, nickel and chromium in sodium, concentration of oxygen, hydrogen, nitrogen, carbon dioxide, methane and helium in argon gas with the reactor condition. (author)

  1. Scalability of Robotic Controllers: An Evaluation of Controller Options-Experiment II

    Science.gov (United States)

    2011-09-01

    Army Research Laboratory ATTN: RDRL- HRM -DW Aberdeen Proving Ground, MD 21005 8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-5776 9...conditions can be specified in advance. However, if an input device is designed so that it is only practical in one environment, it may be completely...tablet that was carried in the Soldiers’ backpacks and connected to a Microsoft Xbox* 360 game controller (see figure 2) and a handheld Android phone with

  2. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  3. Controlled air incinerator for radioactive waste. Volume II. Engineering design references manual

    International Nuclear Information System (INIS)

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-11-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities

  4. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-10-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  5. Los Alamos Controlled Air Incinerator for radioactive waste. Volume II. Engineering design reference manual

    International Nuclear Information System (INIS)

    Koenig, R.A.; Draper, W.E.; Newmyer, J.M.; Warner, C.L.

    1982-10-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawings, specifications, calculations, and costs. It aids duplication of the process at other facilities

  6. Environmental control implications of generating electric power from coal. Technology status report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-12-01

    This is the first in a series of reports evaluating environmental control technologies applicable to the coal-to-electricity process. The technologies are described and evaluated from an engineering and cost perspective based upon the best available information obtained from utility experience and development work in progress. Environmental control regulations and the health effects of pollutants are also reviewed. Emphasis is placed primarily upon technologies that are now in use. For SO/sub 2/ control, these include the use of low sulfur coal, cleaned coal, or flue-gas desulfurization systems. Electrostatic precipitators and fabric filters used for the control of particulate matter are analyzed, and combustion modifications for NO/sub x/ control are described. In each area, advanced technologies still in the development stage are described briefly and evaluated on the basis of current knowledge. Fluidized-bed combustion (FBC) is a near-term technology that is discussed extensively in the report. The potential for control of SO/sub 2/ and NO/sub x/ emissions by use of FBC is analyzed, as are the resulting solid waste disposal problems, cost estimates, and its potential applicability to electric utility systems. Volume II presents the detailed technology analyses complete with reference citations. This same material is given in condensed form in Volume I without references. A brief executive summary is also given in Volume I.

  7. Prevalences of autoimmune diseases in schizophrenia, bipolar I and II disorder, and controls.

    Science.gov (United States)

    Cremaschi, Laura; Kardell, Mathias; Johansson, Viktoria; Isgren, Anniella; Sellgren, Carl M; Altamura, A Carlo; Hultman, Christina M; Landén, Mikael

    2017-12-01

    Previous studies on the relationship between autoimmune diseases, schizophrenia, and bipolar disorder are mainly based on hospital discharge registers with insufficient coverage of outpatient data. Furthermore, data is scant on the prevalence of autoimmune diseases in bipolar subgroups. Here we estimate the self-reported prevalences of autoimmune diseases in schizophrenia, bipolar disorder type I and II, and controls. Lifetime prevalence of autoimmune diseases was assessed through a structured interview in a sample of 9076 patients (schizophrenia N = 5278, bipolar disorder type I N = 1952, type II N = 1846) and 6485 controls. Comparative analyses were performed using logistic regressions. The prevalence of diabetes type 1 did not differ between groups. Hyperthyroidism, hypothyroidism regardless of lithium effects, rheumatoid arthritis, and polymyalgia rheumatica were most common in bipolar disorder. Systemic lupus erythematosus was less common in bipolar disorder than in the other groups. The rate of autoimmune diseases did not differ significantly between bipolar subgroups. We conclude that prevalences of autoimmune diseases show clear differences between schizophrenia and bipolar disorder, but not between the bipolar subgroups. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Remote Control System of the TJ-II Microwave Transmission Lines Mirrors

    International Nuclear Information System (INIS)

    Lopez Sanchez, A.; Fernandez, A.; Cappa, A.; Gama, J. de la; Olivares, J.; Garcia, R.; Chamorro, M.

    2007-01-01

    The ECRH system of the TJ-II stellarator has two gyrotrons, which deliver a maximum power of 300 kW each at a frequency of 53.2 GHz. Another 28 GHz gyrotron will be used to heat the plasma by electron Bernstein waves (EBWH). The microwave power is transmitted from the gyrotrons to the vacuum chamber by two quasi-optical transmission lines for ECRH and a corrugated waveguide for EBWH. All transmission lines have an internal movable mirror inside the vacuum chamber to focus the beam and to be able to change the launching angle. The control of the beam polarization is very important and the lines have two corrugated mirrors, which actuate as polarizers. In this report the control system of the position of these three internal mirrors and the polarizers of the EBWH transmission line is described. (Author) 20 refs

  9. Tunable, Flexible and Efficient Optimization of Control Pulses for Superconducting Qubits, part II - Applications

    Science.gov (United States)

    AsséMat, Elie; Machnes, Shai; Tannor, David; Wilhelm-Mauch, Frank

    In part I, we presented the theoretic foundations of the GOAT algorithm for the optimal control of quantum systems. Here in part II, we focus on several applications of GOAT to superconducting qubits architecture. First, we consider a control-Z gate on Xmons qubits with an Erf parametrization of the optimal pulse. We show that a fast and accurate gate can be obtained with only 16 parameters, as compared to hundreds of parameters required in other algorithms. We present numerical evidences that such parametrization should allow an efficient in-situ calibration of the pulse. Next, we consider the flux-tunable coupler by IBM. We show optimization can be carried out in a more realistic model of the system than was employed in the original study, which is expected to further simplify the calibration process. Moreover, GOAT reduced the complexity of the optimal pulse to only 6 Fourier components, composed with analytic wrappers.

  10. Posttraumatic stress in aging World War II survivors after a fireworks disaster: a controlled prospective study.

    Science.gov (United States)

    Bramsen, Inge; van der Ploeg, Henk M; Boers, Maarten

    2006-04-01

    Little is known about the effects of cumulative trauma and whether traumatized individuals are more vulnerable. In 2000, a fireworks disaster created the possibility to examine this issue among World War II survivors who were part of an ongoing longitudinal study. Between 1998 and 2000 posttraumatic stress increased in disaster exposed respondents as opposed to the control group. War-related reexperiencing and avoidance also increased. The strongest increase occurred in disaster-exposed respondents who had low levels of wartime stress and a slight decrease occurred in those who had high wartime exposure. This unique controlled observation suggests that disasters do increase the levels of posttraumatic stress, and that reactivation of previous traumatic events generally occurs. However, the vulnerability hypothesis was not supported.

  11. Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus.

    Science.gov (United States)

    Xia, Yilu; Liu, Dingdong; Dong, Ying; Chen, Jiazheng; Liu, Huijun

    2018-03-01

    The rapid increase in the production and practical application of ionic liquids (ILs) could pose potential threats to aquatic systems. In this study, we investigated the effects of four ILs with different cations and anions, including 1-hexyl-3-methylimidazolium nitrate ([HMIM]NO 3 ), 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), N-hexyl-3-metylpyridinium chloride ([HMPy]Cl), and N-hexyl-3-metylpyridinium bromide ([HMPy]Br), on photosystem and cellular structure of Scenedesmus obliquus. The results indicated that ILs are phytotoxic to S. obliquus. The contents of chlorophyll a, chlorophyll b and total chlorophyll decreased with increasing ILs concentrations. The chlorophyll fluorescence parameters of photosynthetic system II (PSII), including minimal fluorescence yield (F 0 ), potential efficiency of PSII (F v /F o ), maximum quantum efficiency of PSII photochemistry (F v /F m ), yield of photochemical quantum [Y(II)], and non-photochemical quenching coefficient without measuring F 0 ' (NPQ), were all affected. This indicates that ILs could damage PSII, inhibit the primary reaction of photosynthesis, interdict the process of electron-transfer and lead to loss of heat-dissipating ability. ILs also increased cell membrane permeability of S. obliquus, influenced the cellular ultrastructure, changed the morphology of algae cells and destroyed the cell wall, cell membrane and organelles. The results indicated that imidazolium ILs had greater effect than pyridinium ILs, NO 3 - -IL and Br - -IL had greater effect than Cl - -IL. To minimize threats to the environment, the structure of ILs should be taken into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Collapsin Response Mediator Protein 2 Isoform Controls Myosin II-Mediated Cell Migration and Matrix Assembly by Trapping ROCK II

    Science.gov (United States)

    Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514

  13. DACS II - A distributed thermal/mechanical loads data acquisition and control system

    Science.gov (United States)

    Zamanzadeh, Behzad; Trover, William F.; Anderson, Karl F.

    1987-01-01

    A distributed data acquisition and control system has been developed for the NASA Flight Loads Research Facility. The DACS II system is composed of seven computer systems and four array processors configured as a main computer system, three satellite computer systems, and 13 analog input/output systems interconnected through three independent data networks. Up to three independent heating and loading tests can be run concurrently on different test articles or the entire system can be used on a single large test such as a full scale hypersonic aircraft. Thermal tests can include up to 512 independent adaptive closed loop control channels. The control system can apply up to 20 MW of heating to a test specimen while simultaneously applying independent mechanical loads. Each thermal control loop is capable of heating a structure at rates of up to 150 F per second over a temperature range of -300 to +2500 F. Up to 64 independent mechanical load profiles can be commanded along with thermal control. Up to 1280 analog inputs monitor temperature, load, displacement and strain on the test specimens with real time data displayed on up to 15 terminals as color plots and tabular data displays. System setup and operation is accomplished with interactive menu-driver displays with extensive facilities to assist the users in all phases of system operation.

  14. COMDES-II: A Component-Based Framework for Generative Development of Distributed Real-Time Control Systems

    DEFF Research Database (Denmark)

    Ke, Xu; Sierszecki, Krzysztof; Angelov, Christo K.

    2007-01-01

    The paper presents a generative development methodology and component models of COMDES-II, a component-based software framework for distributed embedded control systems with real-time constraints. The adopted methodology allows for rapid modeling and validation of control software at a higher lev...... methodology for COMDES-II from a general perspective, describes the component models in details and demonstrates their application through a DC-Motor control system case study.......The paper presents a generative development methodology and component models of COMDES-II, a component-based software framework for distributed embedded control systems with real-time constraints. The adopted methodology allows for rapid modeling and validation of control software at a higher level...

  15. JC polyomavirus infection is strongly controlled by human leucocyte antigen class II variants.

    Directory of Open Access Journals (Sweden)

    Emilie Sundqvist

    2014-04-01

    Full Text Available JC polyomavirus (JCV carriers with a compromised immune system, such as in HIV, or subjects on immune-modulating therapies, such as anti VLA-4 therapy may develop progressive multifocal leukoencephalopathy (PML which is a lytic infection of oligodendrocytes in the brain. Serum antibodies to JCV mark infection occur only in 50-60% of infected individuals, and high JCV-antibody titers seem to increase the risk of developing PML. We here investigated the role of human leukocyte antigen (HLA, instrumental in immune defense in JCV antibody response. Anti-JCV antibody status, as a surrogate for JCV infection, were compared to HLA class I and II alleles in 1621 Scandinavian persons with MS and 1064 population-based Swedish controls and associations were replicated in 718 German persons with MS. HLA-alleles were determined by SNP imputation, sequence specific (SSP kits and a reverse PCR sequence-specific oligonucleotide (PCR-SSO method. An initial GWAS screen displayed a strong HLA class II region signal. The HLA-DRB1*15 haplotype was strongly negatively associated to JCV sero-status in Scandinavian MS cases (OR = 0.42, p = 7×10(-15 and controls (OR = 0.53, p = 2×10(-5. In contrast, the DQB1*06:03 haplotype was positively associated with JCV sero-status, in Scandinavian MS cases (OR = 1.63, p = 0.006, and controls (OR = 2.69, p = 1×10(-5. The German dataset confirmed these findings (OR = 0.54, p = 1×10(-4 and OR = 1.58, p = 0.03 respectively for these haplotypes. HLA class II restricted immune responses, and hence CD4+ T cell immunity is pivotal for JCV infection control. Alleles within the HLA-DR1*15 haplotype are associated with a protective effect on JCV infection. Alleles within the DQB1*06:03 haplotype show an opposite association. These associations between JC virus antibody response and human leucocyte antigens supports the notion that CD4+ T cells are crucial in the immune defence to JCV and

  16. Impact of gas puffing location on density control and plasma parameters in TJ-II

    International Nuclear Information System (INIS)

    Tabares, F.L.; Garcia-Cortes, I.; Estrada, T.; Tafalla, D.; Hidalgo, A.; Ferreira, J.A.; Pastor, I.; Herranz, J.; Ascasibar, E.

    2005-01-01

    Under pure Electron Cyclotron Resonance Heating (ECRH) conditions in TJ-II plasmas (P<300 kW, 53.2 GHz, 2nd harmonic X-mode, power density < 25 W/m''3), plasma start-up and good density control are obtained only by the proper combination of wall conditions and gas puffing characteristics. Such a control is particularly critical for the optimisation of the NBI power transfer to the target plasmas. The relatively low cut-off limit is easily reached due not only to the unfavourable wall/puffing-fuelling ratio but also due to the steep density profiles developed during the Enhanced Particle Confinement (EPC) modes. These modes are triggered by the gas puffing waveform, and they cannot be achieved for high iota magnetic configurations in TJ-II. Comparative experiments under metallic and boronised wall conditions have shown that the sensitivity of the EPC modes to the puffing rate is at least partially related to the energy balance at the plasma periphery under central heating scenarios. In this work, the impact of gas-fuelling location on the plasma parameters and density control is described. For that purpose, three different fuelling locations have been investigated; broad distribution from a side ports, localized injection from long tubes at different poloidal positions and highly localized injection through a movable limiter. Edge density and temperature profiles from a broad set of diagnostics (atomic beams, reflectometry, Thompson Scattering ECE, etc...) are analysed and compared. It has been found that preventing from transition to the EPC mode is achieved by using slow puffing rates, while neutral penetration into the plasma core can be enhanced for highly localized gas sources. Wall inventory, however, has been found to pl ay a dominant role in the fuelling of the plasma under most conditions. (author)

  17. NSGA-II based optimal control scheme of wind thermal power system for improvement of frequency regulation characteristics

    Directory of Open Access Journals (Sweden)

    S. Chaine

    2015-09-01

    Full Text Available This work presents a methodology to optimize the controller parameters of doubly fed induction generator modeled for frequency regulation in interconnected two-area wind power integrated thermal power system. The gains of integral controller of automatic generation control loop and the proportional and derivative controllers of doubly fed induction generator inertial control loop are optimized in a coordinated manner by employing the multi-objective non-dominated sorting genetic algorithm-II. To reduce the numbers of optimization parameters, a sensitivity analysis is done to determine that the above mentioned three controller parameters are the most sensitive among the rest others. Non-dominated sorting genetic algorithm-II has depicted better efficiency of optimization compared to the linear programming, genetic algorithm, particle swarm optimization, and cuckoo search algorithm. The performance of the designed optimal controller exhibits robust performance even with the variation in penetration levels of wind energy, disturbances, parameter and operating conditions in the system.

  18. Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control.

    Science.gov (United States)

    Satoh, Tadashi; Toshimori, Takayasu; Noda, Masanori; Uchiyama, Susumu; Kato, Koichi

    2016-11-01

    The glycoside hydrolase family 31 (GH31) α-glucosidases play vital roles in catabolic and regulated degradation, including the α-subunit of glucosidase II (GIIα), which catalyzes trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the endoplasmic reticulum (ER). Among the known GH31 enzymes, only GIIα functions with its binding partner, regulatory β-subunit (GIIβ), which harbors a lectin domain for substrate recognition. Although the structural data have been reported for GIIα and the GIIβ lectin domain, the interaction mode between GIIα and GIIβ remains unknown. Here, we determined the structure of a complex formed between GIIα and the GIIα-binding domain of GIIβ, thereby providing a structural basis underlying the functional extension of this unique GH31 enzyme. © 2016 The Protein Society.

  19. 3D effects on transport and plasma control in the TJ-II stellarator

    Science.gov (United States)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  20. Tobacco control and gender in south-east Asia. Part II: Singapore and Vietnam.

    Science.gov (United States)

    Morrow, Martha; Barraclough, Simon

    2003-12-01

    In the World Health Organization's Western Pacific Region, being born male is the single greatest risk marker for tobacco use. While the literature demonstrates that risks associated with tobacco use may vary according to sex, gender refers to the socially determined roles and responsibilities of men and women, who initiate, continue and quit using tobacco for complex and often different reasons. Cigarette advertising frequently appeals to gender roles. Yet tobacco control policy tends to be gender-blind. Using a broad, gender-sensitivity framework, this contradiction is explored in four Western Pacific countries. Part I of the study presented the rationale, methodology and design of the study, discussed issues surrounding gender and tobacco, and analysed developments in Malaysia and the Philippines (see the previous issue of this journal). Part II deals with Singapore and Vietnam. In all four countries gender was salient for the initiation and maintenance of smoking. Yet, with a few exceptions, gender was largely unrecognized in control policy. Suggestions for overcoming this weakness in order to enhance tobacco control are made.

  1. Changes in Photosystem Ⅱ Activity and Leaf Reflectance Features of Several Subtropical Woody Plants Under Simulated SO2 Treatment

    Institute of Scientific and Technical Information of China (English)

    Nan Liu; Chang-Lian Peng; Zhi-Fang Lin; Gui-Zhu Lin; Ling-Ling Zhang; Xiao-Ping Pan

    2006-01-01

    The effects of simulated SO2 treatment on the photosynthetic apparatus were investigated in five subtropical forest plants, namely Pinus massoniana Lamb., Schima superba Gardn. et Champ., Castanopsis fissa (Champ. ex Benth.) Rehd. et Wils., Acmena acuminatissima (BI.) Merr et Perry, and Cryptocarya concinna Hance. After leaf sections had been immersed in 0, 20, 50, and 100 mmol/L NaHSO3 for 20 h, total chlorophyll (Chl) content, Chl a/b, maximal photochemical efficiency, and the photochemical quantum yields of photosystem Ⅱ of all five woody plants were reduced to different degrees, whereas lutein content (Chl base) was increased. Two protective mechanisms, namely the xanthophyll cycle (de-epoxidation) and an anti-oxidant system (1,1-diphenyl-2-picrylhydrazyl radical-scavenging capacity), showed differences in the degree of modulation under simulated SO2 treatment. Compared with control (distilled water treatment), the revised normalized difference vegetation index, a leaf reflectance index, was lowered with increasing concentrations of NaHSO3. Cryptocarya concinna, a dominant species in the late succession stage of subtropical forests in South China, exhibited less sensitivity to NaHSO3. Conversely, Pinus massoniana, the pioneer heliophyte species, was most susceptible to NaHSO3 treatment. It is suggested that SO2 pollution may accelerate the succession of subtropical forest.

  2. Fusarium solani Infection Depressed Photosystem Performance by Inducing Foliage Wilting in Apple Seedlings

    Directory of Open Access Journals (Sweden)

    Kun Yan

    2018-05-01

    Full Text Available Fusarium fungi are soil-borne pathogens, and the pathological effects on plant photosystems remain unclear. This study aimed to deeply reveal pathological characterization in apple seedlings infected with Fusarium solani by investigating photosystems performance and interaction. Roots were immersed in conidial suspension for inoculation. Thereafter, prompt and delayed chlorophyll a fluorescence and modulated 820 nm reflection were simultaneously detected. After 30 days of infection, leaf relative water content and dry weight were remarkably decreased by 55.7 and 47.1%, suggesting that the infected seedlings were subjected to Fusarium-induced water deficit stress. PSI reaction center was more susceptible than PSII reaction center in infected seedlings due to greater decrease in the maximal photochemical efficiency of PSI than that of PSII, but PSI reaction center injury was aggravated slowly, as PSII injury could partly protect PSI by restricting electron donation. PSII donor and acceptor sides were also damaged after 20 days of infection, and the restricted electron donation induced PSII and PSI disconnection by blocking PSI re-reduction. In accordance with greater damage of PSI reaction center, PSI oxidation was also suppressed. Notably, significantly increased efficiency of electron transport from plastoquinone (PQ to PSI acceptors (REo/ETo after 20 days of infection suggested greater inhibition on PQ reduction than re-oxidation, and the protection for PSI acceptors might alleviate the reduction of electron transport efficiency beyond PQ upon damaged PSI reaction center. Lowered delayed fluorescence in microsecond domain verified PSII damage in infected seedlings, and elevated delayed fluorescence in sub-millisecond domain during PQ reduction process conformed to increased REo/ETo. In conclusion, F. solani infection depressed PSII and PSI performance and destroyed their coordination by inducing pathological wilting in apple seedlings. It may

  3. Má oclusão Classe II de Angle tratada sem extrações e com controle de crescimento Angle Class II malocclusion treated without extractions and with growth control

    Directory of Open Access Journals (Sweden)

    Flávia Artese

    2009-06-01

    Full Text Available A má oclusão Classe II de Angle é caracterizada por uma discrepância dentária anteroposterior, que geralmente está acompanhada por alterações esqueléticas. O tratamento ortodôntico precoce permite a correção da discrepância esquelética por controle de crescimento (primeira fase, o que favorece a correção do posicionamento dentário, mais tardiamente (segunda fase. Este relato descreve o tratamento de um caso de má oclusão Classe II, divisão 2, de Angle, em duas fases, e foi apresentado à Diretoria do Board Brasileiro de Ortodontia e Ortopedia Facial (BBO, como parte dos requisitos para a obtenção do título de Diplomado pelo BBO. O caso foi avaliado como representante da Categoria 1, ou seja, má oclusão Classe II de Angle tratada sem extrações dentárias e com controle de crescimento.Angle Class II malocclusion is characterized by an anteroposterior dental discrepancy which is generally accompanied by skeletal disharmonies. Early orthodontic treatment allows the correction of skeletal discrepancies using growth control (first phase which favors later correction of tooth positioning (second phase. This case report describes an Angle Class II, division 2, malocclusion treated in two phases and was presented to the Brazilian Board of Orthodontics and Facial Orthopedics (BBO as part of the requirements for BBO certification. It was evaluated as a Category 1 case, i.e., Class II malocclusion treated without extractions, with growth control.

  4. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.

    Science.gov (United States)

    Mori, Takefumi; Cowley, Allen W

    2004-04-01

    Renal perfusion pressure was servo-controlled chronically in rats to quantify the relative contribution of elevated arterial pressure versus angiotensin II (Ang II) on the induction of renal injury in Ang II-induced hypertension. Sprague-Dawley rats fed a 4% salt diet were administered Ang II for 14 days (25 ng/kg per minute IV; saline only for sham rats), and the renal perfusion pressure to the left kidney was continuously servo-controlled to maintain a normal pressure in that kidney throughout the period of hypertension. An aortic occluder was implanted around the aorta between the two renal arteries and carotid and femoral arterial pressure were measured continuously throughout the experiment to determine uncontrolled and controlled renal perfusion pressure, respectively. Renal perfusion pressure of uncontrolled, controlled, and sham kidneys over the period of Ang II or saline infusion averaged 152.6+/-7.0, 117.4+/-3.5, and 110.7+/-2.2 mm Hg, respectively. The high-pressure uncontrolled kidneys exhibited tubular necrosis and interstitial fibrosis, especially prominent in the outer medullary region. Regional glomerular sclerosis and interlobular artery injury were also pronounced. Controlled kidneys were significantly protected from interlobular artery injury, juxtamedullary glomeruli injury, tubular necrosis, and interstitial fibrosis as determined by comparing the level of injury. Glomerular injury was not prevented in the outer cortex. Transforming growth factor (TGF)-beta and active NF-kappaB proteins determined by immunohistochemistry were colocalized in the uncontrolled kidney in regions of interstitial fibrosis. We conclude that the preferential juxtamedullary injury found in Ang II hypertension is largely induced by pressure and is probably mediated through the TGF-beta and NF-kappaB pathway.

  5. The chloroplasts membrane phospholipids of Chlamydomonas reinhardii mutant not forming the Photosystem 2

    International Nuclear Information System (INIS)

    Trusova, V.M.; Ladygin, V.G.; Mezentsev, V.V.; Molchanov, M.I.

    1987-01-01

    Study on a component composition and physical state of photosynthetic membranes of Chlamydomonas chloroplasts of the wild type and mutant A-110 with disturbance of electron transfer chain in the photosystem 2 region permitted to conclude that 170 A diameter particles localized on the internal hydrophobic surface of membrane chips are deleted with respect to phosphatidylglycerin. The results obtained permit to suggest that the formation of protein-lipid complexes containing phosphatidylglycerins is suppressed in mutant A-110 which is not capable of the lamellar system differentation in

  6. Birth outcomes of cases with isolated atrial septal defect type II--a population-based case-control study.

    Science.gov (United States)

    Vereczkey, Attila; Kósa, Zsolt; Csáky-Szunyogh, Melinda; Urbán, Róbert; Czeizel, Andrew E

    2013-07-01

    In general, epidemiological studies have evaluated cases with congenital cardiovascular abnormalities together. The aim of this study is to describe the birth outcomes of cases with isolated/single atrial septal defect type II (ASD-II, i.e. only a fossa ovalis defect) after surgical correction or lethal outcome in the light of maternal sociodemographic data. Comparison of birth outcomes and maternal characteristics of cases with ASD-II and controls without defect. The population-based Hungarian Case-Control Surveillance of Congenital Abnormalities. Hungarian newborn infants with or without ASD-II. Medically recorded birth outcomes, maternal age and birth order were evaluated. Marital and employment status was based on maternal information. The lifestyle factors were analyzed in a subsample of mothers visited at home based on a personal interview with mothers and their close relatives, and the family consensus was accepted. Mean gestational age at delivery and birthweight, rate of preterm birth and low birthweight, maternal age, birth order, marital and employment status. The evaluation of 471 cases with ASD-II and 38,151 controls without any defects showed a female excess in cases with ASD-II, having shorter gestational age and lower mean birthweight, and thus a higher rate of preterm births and low birthweight. Intrauterine growth restriction and shorter gestational age were found in cases with ASD-II, particularly in female children. These factors may have a general developmental process in which there was not closure of the foramen ovale, thus echocardiographic screening of these babies might be of value. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica © 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  7. 77 FR 37058 - Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls...

    Science.gov (United States)

    2012-06-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA 2012-D-0304] Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance... Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the...

  8. 76 FR 20992 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2011-04-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0189] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Low Level Laser System for Aesthetic Use; Availability AGENCY: Food and Drug Administration, HHS...

  9. 75 FR 70271 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0515] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document...: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is...

  10. 75 FR 68364 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2010-11-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2008-D-0275] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Full-Field Digital Mammography System; Availability AGENCY: Food and Drug Administration, HHS. [[Page...

  11. 76 FR 16425 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2011-03-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0028] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Ovarian Adnexal Mass Assessment Score Test System; Availability AGENCY: Food and Drug Administration, HHS...

  12. 76 FR 6622 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0645] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Contact Cooling System for Aesthetic Use; Availability AGENCY: Food and Drug Administration, HHS. ACTION...

  13. 76 FR 22906 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2011-04-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2006-D-0094] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Topical Oxygen Chamber for Extremities; Availability AGENCY: Food and Drug Administration, HHS. ACTION...

  14. 76 FR 28688 - Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls...

    Science.gov (United States)

    2011-05-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 866 [Docket No. FDA-2011-D-0102] Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: In Vitro Diagnostic Devices for Bacillus Species Detection AGENCY: Food and...

  15. KIT/KPS of Qinshan phase-II and a discussion on integrated information management and automatic control

    International Nuclear Information System (INIS)

    Yan Changhui

    2001-01-01

    Centralized Data Processing and Safety Panel (KIT/KPS) of Qinshan Phase-II power project is described, and the necessity and engineering scheme is presented of integrated information management and automatic control that would achieve in power plant according to the technology scheme and technology trait of KIT/KPS

  16. 76 FR 43332 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2011-07-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-D-0500] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Focused Ultrasound Stimulator System for Aesthetic Use; Availability AGENCY: Food and Drug Administration...

  17. 76 FR 43690 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2011-07-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2007-D-0149] (Formerly 2007D-0309) Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Electrocardiograph Electrodes; Availability AGENCY: Food and Drug...

  18. 77 FR 14403 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2012-03-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-D-0167] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document: Norovirus Serological Reagents; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice...

  19. 76 FR 48870 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2011-08-09

    ... selection inclusion and exclusion criteria section. The revisions define and differentiate the required... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0428] Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance Document...

  20. 75 FR 59726 - Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls...

    Science.gov (United States)

    2010-09-28

    ... method comparison section and the sample selection inclusion and exclusion criteria section. The... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0428] Draft Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

  1. Prospective double blind randomized placebo-controlled clinical trial of the pectoral nerves (Pecs) block type II

    NARCIS (Netherlands)

    Versyck, B.; Geffen, G.J. van; Houwe, P. Van

    2017-01-01

    STUDY OBJECTIVE: The aim of this clinical trial was to test the hypothesis whether adding the pectoral nerves (Pecs) block type II to the anesthetic procedure reduces opioid consumption during and after breast surgery. DESIGN: A prospective randomized double blind placebo-controlled study. SETTING:

  2. 75 FR 54637 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls Guidance...

    Science.gov (United States)

    2010-09-08

    ... conferencing and electronic submissions, Mammography Matters, and other device-oriented information. The CDRH... approval) into class II (special controls). DATES: Submit written or electronic comments on this guidance... electronic access to the guidance. Submit electronic comments on the guidance to http://www.regulations.gov...

  3. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    Science.gov (United States)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  4. LLRF Control of High Loaded-Q Cavities for the LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Carlos [LBNL, Berkeley; Babel, Sandeep [SLAC; Bachimanchi, Ramakrishna [Jefferson Lab; Boyes, Matt [SLAC; Chase, Brian [Fermilab; Cullerton, Ed [Fermilab; Doolittle, Lawrence [LBNL, Berkeley; Einstein, Joshua [Fermilab; Hong, Bo [SLAC; Hovater, Curt [Jefferson Lab; Huang, Gang [LBNL, Berkeley; Ratti, Alessandro [LBNL, Berkeley

    2016-06-01

    The SLAC National Accelerator Laboratory is planning an upgrade (LCLS-II) to the Linear Coherent Light Source with a 4 GeV CW Superconducting Radio Frequency (SCRF) linac. The nature of the machine places stringent requirements in the Low-Level RF (LLRF) system, expected to control the cavity fields within 0.01 degrees in phase and 0.01% in amplitude, which is equivalent to a longitudinal motion of the cavity structure in the nanometer range. This stability has been achieved in the past but never for hundreds of superconducting cavities in Continuous-Wave (CW) operation. The difficulty resides in providing the ability to reject disturbances from the cryomodule, which is incompletely known as it depends on the cryomodule structure itself (currently under development at JLab and Fermilab) and the harsh accelerator environment. Previous experience in the field and an extrapolation to the cavity design parameters (relatively high Q_{L}c≈ 4×10⁷ , implying a half-bandwidth of around 16 Hz) suggest the use of strong RF feedback to reject the projected noise disturbances, which in turn demands careful engineering of the entire system.

  5. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    International Nuclear Information System (INIS)

    Longhi, E C; Bencok, P; Dobrynin, A; Rial, E C M; Rose, A; Steadman, P; Thompson, C; Thomson, A; Wang, H

    2013-01-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  6. Early loading of plalatal implants (ortho-type II a prospective multicenter randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Gedrange Tomasz

    2007-09-01

    Full Text Available Abstract Background In orthodontic treatment, anchorage control is a fundamental aspect. Usually conventional mechanism for orthodontic anchorage control can be either extraoral or intraoral that is headgear or intermaxillary elastics. Their use are combined with various side effects such as tipping of occlusal plane or undesirable movements of teeth. Especially in cases, where key-teeth are missing, conventional anchorage defined as tooth-borne anchorage will meet limitations. Therefore, the use of endosseous implants for anchorage purposes are increasingly used to achieve positional stability and maximum anchorage. Methods/Design The intended study is designed as a prospective, multicenter randomized controlled trial (RCT, comparing and contrasting the effect of early loading of palatal implant therapy versus implant loading after 12 weeks post implantation using the new ortho-implant type II anchor system device (Orthosystem Straumann, Basel, Switzerland. 124 participants, mainly adult males or females, whose diagnoses require temporary stationary implant-based anchorage treatment will be randomized 1:1 to one of two treatment groups: group 1 will receive a loading of implant standard therapy after a healing period of 12 week (gold standard, whereas group 2 will receive an early loading of orthodontic implants within 1 week after implant insertion. Participants will be at least followed for 12 months after implant placement. The primary endpoint is to investigate the behavior of early loaded palatal implants in order to find out if shorter healing periods might be justified to accelerate active orthodontic treatment. Secondary outcomes will focus e.g. on achievement of orthodontic treatment goals and quantity of direct implant-bone interface of removed bone specimens. As tertiary objective, a histologic and microtomography evaluation of all retrieved implants will be performed to obtain data on the performance of the SLA surface in human bone

  7. Comparison of the Light-Harvesting Networks of Plant and Cyanobacterial Photosystem I

    Science.gov (United States)

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    2005-01-01

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of ∼49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering. PMID:15994896

  8. Vascular Type 1A Angiotensin II Receptors Control BP by Regulating Renal Blood Flow and Urinary Sodium Excretion.

    Science.gov (United States)

    Sparks, Matthew A; Stegbauer, Johannes; Chen, Daian; Gomez, Jose A; Griffiths, Robert C; Azad, Hooman A; Herrera, Marcela; Gurley, Susan B; Coffman, Thomas M

    2015-12-01

    Inappropriate activation of the type 1A angiotensin (AT1A) receptor contributes to the pathogenesis of hypertension and its associated complications. To define the role for actions of vascular AT1A receptors in BP regulation and hypertension pathogenesis, we generated mice with cell-specific deletion of AT1A receptors in smooth muscle cells (SMKO mice) using Loxp technology and Cre transgenes with robust expression in both conductance and resistance arteries. We found that elimination of AT1A receptors from vascular smooth muscle cells (VSMCs) caused a modest (approximately 7 mmHg) yet significant reduction in baseline BP and exaggerated sodium sensitivity in mice. Additionally, the severity of angiotensin II (Ang II)-dependent hypertension was dramatically attenuated in SMKO mice, and this protection against hypertension was associated with enhanced urinary excretion of sodium. Despite the lower BP, acute vasoconstrictor responses to Ang II in the systemic vasculature were largely preserved (approximately 80% of control levels) in SMKO mice because of exaggerated activity of the sympathetic nervous system rather than residual actions of AT1B receptors. In contrast, Ang II-dependent responses in the renal circulation were almost completely eliminated in SMKO mice (approximately 5%-10% of control levels). These findings suggest that direct actions of AT1A receptors in VSMCs are essential for regulation of renal blood flow by Ang II and highlight the capacity of Ang II-dependent vascular responses in the kidney to effect natriuresis and BP control. Copyright © 2015 by the American Society of Nephrology.

  9. Thermodynamic controls on the kinetics of microbial low-pH Fe(II) oxidation.

    Science.gov (United States)

    Larson, Lance N; Sánchez-España, Javier; Kaley, Bradley; Sheng, Yizhi; Bibby, Kyle; Burgos, William D

    2014-08-19

    Acid mine drainage (AMD) is a major worldwide environmental threat to surface and groundwater quality. Microbial low-pH Fe(II) oxidation could be exploited for cost-effective AMD treatment; however, its use is limited because of uncertainties associated with its rate and ability to remove Fe from solution. We developed a thermodynamic-based framework to evaluate the kinetics of low-pH Fe(II) oxidation. We measured the kinetics of low-pH Fe(II) oxidation at five sites in the Appalachian Coal Basin in the US and three sites in the Iberian Pyrite Belt in Spain and found that the fastest rates of Fe(II) oxidation occurred at the sites with the lowest pH values. Thermodynamic calculations showed that the Gibbs free energy of Fe(II) oxidation (ΔG(oxidation)) was also most negative at the sites with the lowest pH values. We then conducted two series of microbial Fe(II) oxidation experiments in laboratory-scale chemostatic bioreactors operated through a series of pH values (2.1-4.2) and found the same relationships between Fe(II) oxidation kinetics, ΔG(oxidation), and pH. Conditions that favored the fastest rates of Fe(II) oxidation coincided with higher Fe(III) solubility. The solubility of Fe(III) minerals, thus plays an important role on Fe(II) oxidation kinetics. Methods to incorporate microbial low-pH Fe(II) oxidation into active and passive AMD treatment systems are discussed in the context of these findings. This study presents a simplified model that describes the relationship between free energy and microbial kinetics and should be broadly applicable to many biogeochemical systems.

  10. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Thomas; Bruce Hallbert

    2013-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a

  11. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Thomas

    2012-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a

  12. Long-Term Instrumentation, Information, and Control Systems (II and C) Modernization Future Vision and Strategy

    International Nuclear Information System (INIS)

    Thomas, Kenneth

    2012-01-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I and C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I and C system performance has not translated to bottom-line performance improvement for the fleet. Therefore, wide-scale modernization of the legacy I and C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II and C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II and C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant

  13. Phase I to II cross-induction of xenobiotic metabolizing enzymes: A feedforward control mechanism for potential hormetic responses

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2009-01-01

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  14. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses.

    Science.gov (United States)

    Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  15. Electric field effects on red chlorophylls, b-carotenes and P700 in cyanobacterial photosystem I complexes.

    NARCIS (Netherlands)

    Frese, R.N.; Palacios, M.A.; Azzizi, A.; van Stokkum, I.H.M.; Kruip, J.; Rögner, M.; Karapetyan, N.V.; Schlodder, E.; van Grondelle, R.; Dekker, J.P.

    2002-01-01

    We have probed the absorption changes due to an externally applied electric field (Stark effect) of Photosystem I (PSI) core complexes from the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus and Spirulina platensis. The results reveal that the so-called C719 chlorophylls in S.

  16. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem NN Contains Tandem Duplication of a Large Chromosomal Region

    Czech Academy of Sciences Publication Activity Database

    Tichý, Martin; Bečková, Martina; Kopečná, Jana; Noda, J.; Sobotka, Roman; Komenda, Josef

    2016-01-01

    Roč. 7, May 12 (2016), s. 648 ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : Synechocystis 6803 * chlorophyll * photosystem I Subject RIV: EE - Microbiology, Virology Impact factor: 4.298, year: 2016

  17. Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I

    Science.gov (United States)

    Trost, J. T.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in highly conserved region that is proposed to bind iron-sulfur center Fx in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%. Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n = 2 titration behavior. In membranes, the behavior is intermediate between n = 1 and n = 2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators. These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.

  18. Roux-en-Y or Billroth II Reconstruction After Radical Distal Gastrectomy for Gastric Cancer: A Multicenter Randomized Controlled Trial.

    Science.gov (United States)

    So, Jimmy Bok-Yan; Rao, Jaideepraj; Wong, Andrew Siang-Yih; Chan, Yiong-Huak; Pang, Ning Qi; Tay, Amy Yuh Ling; Yung, Man Yee; Su, Zheng; Phua, Janelle Niam Sin; Shabbir, Asim; Ng, Enders Kwok Wai

    2018-02-01

    The aim of the study was to compare the clinical symptoms between Billroth II (B-II) and Roux-en-Y (R-Y) reconstruction after distal subtotal gastrectomy (DG) for gastric cancer. Surgery is the mainstay of curative treatment for gastric cancer. The technique for reconstruction after DG remains controversial. Both B-II and R-Y are popular methods. This is a prospective multicenter randomized controlled trial. From October 2008 to October 2014, 162 patients who underwent DG were randomly allocated to B-II (n = 81) and R-Y (n = 81) groups. The primary endpoint is Gastrointestinal (GI) Symptoms Score 1 year after surgery. We also compared the nutritional status, extent of gastritis on endoscopy, and quality of life after surgery between the 2 procedures at 1 year. Operative time was significantly shorter for B-II than for R-Y [mean difference 21.5 minutes, 95% confidence interval (95% CI) 3.8-39.3, P = 0.019]. The B-II and R-Y groups had a peri-operative morbidity of 28.4% and 33.8%, respectively (P = 0.500) and a 30-day mortality of 2.5% and 1.2%, respectively (P = 0.500). GI symptoms score did not differ between R-Y versus B-II reconstruction (mean difference -0.45, 95% CI -1.21 to 0.31, P = 0.232). R-Y resulted in a lower median endoscopic grade for gastritis versus B-II (mean difference -1.32, 95% CI -1.67 to -0.98, P Y versus B-II mean difference -0.31, 95% CI -3.27 to 2.65, P = 0.837) and quality of life at 1 year between the 2 groups too. Although BII is associated with a higher incidence of heartburn symptom and higher median endoscopic grade for gastritis, BII and RY are similar in terms of overall GI symptom score and nutritional status at 1 year after distal gastrectomy.

  19. Tower Shielding Reactor II design and operation report. Vol. 3. Assembling and testing of the control mechanism assembly

    International Nuclear Information System (INIS)

    Ward, D.R.; Holland, L.B.

    1979-09-01

    The mechanisms that are operated to control the reactivity of the Tower Shielding Reactor II(TSR-II) are mounted on a Control Mechanism Housing (CMH) that is centered inside the reactor core. The information required to procure, fabricate, inspect, and assemble a CMH is contained in the ORNL engineering drawings listed in the appropriate sections. The components are fabricated and inspected from these drawings in accordance with a Quality Assurance Plan and a Manufacturing Plan. The material in this report describes the acceptance and performance tests of CMH subassemblies used ty the Tower Shielding Facility (TSF) staff but it can also be used by personnel fabricating the components. This information which was developed and used before the advent of the formalized QA Program and Manufacturing Plans evolved during the fabrication and testing of the first five CMHs

  20. The in vitro transcription of a rainbow trout (Salmo gairdnerii) protamine gene. II. Controlled mutation of the cap site region.

    Science.gov (United States)

    Jankowski, J M; Dixon, G H

    1985-02-01

    A series of plasmids containing new fusion genes in which the trout protamine gene is placed under the control of the complete herpes virus (HSV-1) tk promoter Pvu II-Bgl II fragment (pM8), or a shortened thymidine kinase (tk) promoter in which the region between the TATA box and the cap site is altered by using the Pvu II-Mlu I fragment (pM7), have been constructed. An additional recombinant plasmid was constructed in which the Bgl II-Ava II fragment of the protamine gene containing the entire protamine promoter but missing the protamine coding region was cloned into pBR322 between the Xho II 1666 and Hind III sites (pP5). For in vitro transcription, a HeLa cell lysate system was prepared and the RNA transcription products, after glyoxalation, were electrophoretically analyzed on 5% polyacrylamide gels. In constructing pM8 the DNA sequence between the tk promoter and the cap site was present while in pM7 it was deleted. Similar multiple transcripts were seen in both cases, indicating that the region between the promoter and the cap site has no effect upon transcription in vitro. The multiple transcripts appear to be due to the presence of a cryptic promoter in the complementary strand of the protamine gene. The activity of this cryptic promoter has been confirmed by comparison of the transcription of plasmid pP5, in which the protamine mRNA coding region has been deleted, with a previously described plasmid, pJBRP (Jankowski JM and Dixon GH (1984) Can. J. Biochem. Cell. Biol. 62, 291-300), containing the intact protamine gene.

  1. Chiral Plasma Pharmacokinetics of 3,4-Methylenedioxymethamphetamine and its Phase I and II Metabolites following Controlled Administration to Humans.

    OpenAIRE

    Steuer Andrea E; Schmidhauser Corina; Schmid Yasmin; Rickli Anna; Liechti Matthias E; Kraemer Thomas

    2015-01-01

    Generally, pharmacokinetic studies on 3,4-methylenedioxymethamphetamine (MDMA) in blood have been performed after conjugate cleavage, without taking into account that phase II metabolites represent distinct chemical entities with their own effects and stereoselective pharmacokinetics. The aim of the present study was to stereoselectively investigate the pharmacokinetics of intact glucuronide and sulfate metabolites of MDMA in blood plasma after a controlled single MDMA dose. Plasma samples fr...

  2. Molecular electronics of a single photosystem I reaction center: Studies with scanning tunneling microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, I.; Lee, J.W.; Warmack, R.J.; Allison, D.P.; Greenbaum, E. [Oak Ridge National Lab., TN (United States)

    1995-03-14

    Thylakoids and photosystem I (PSI) reaction centers were imaged by scanning tunneling microscopy. The thylakoids were isolated from spinach chloroplasts, and PSI reaction centers were extracted from thylakoid membranes. Because thylakoids are relatively thick nonconductors, they were sputter-coated with Pd/Au before imaging. PSI photosynthetic centers and chemically platinized PSI were investigated without sputter-coating. They were mounted on flat gold substrates that had been treated with mercaptoacetic acid to help bind the proteins. With tunneling spectroscopy, the PSI centers displayed a semiconductor-like response with a band gap of 1.8 eV. Lightly platinized (platinized for 1 hr) centers displayed diode-like conduction that resulted in dramatic contrast changes between images taken with opposite bias voltages. The electronic properties of this system were stable under long-term storage. 42 refs., 7 figs.

  3. Solar Photo Catalytic Hydrogen Production from water using a dual bed photosystem

    Energy Technology Data Exchange (ETDEWEB)

    Florida Solar Energy Center

    2003-03-30

    A body of work was performed in which the feasibility of photocatalytically decomposing water into its constituent elements using a dual bed, or modular photosystem, under solar radiation was investigated. The system envisioned consists of two modules, each consisting of a shallow, flat, sealed container, in which microscopic photocatalytic particles are immobilized. The photocatalysts absorb light, generating free electrons and lattice vacancy holes, which are capable of performing reductive and oxidative chemistry, respectively. The photocatalysts would be chosen as to whether they specifically promote H{sub 2} or O{sub 2} evolution in their respective containers. An aqueous solution containing a redox mediator is pumped between the two chambers in order to transfer electron equivalents from one reaction to the other.

  4. Contribution of vitamin K1 to the electron spin polarization in spinach photosystem I

    International Nuclear Information System (INIS)

    Rustandi, R.R.; Snyder, S.W.; Feezel, L.L.; Michalski, T.J.; Norris, J.R.; Thurnauer, M.C.; Biggins, J.

    1990-01-01

    The electron spin polarized (ESP) electron paramagnetic resonance (EPR) signal observed in spinach photosystem I (PSI) particles was examined in preparations depleted of vitamin K1 by solvent extraction and following biological reconstitution by the quinone. The ESP EPR signal was not detected in the solvent-extracted PSI sample but was restored upon reconstitution with either protonated or deuterated vitamin K1 under conditions that also restored electron transfer to the terminal PSI acceptors. Reconstitution using deuterated vitamin K1 resulted in a line narrowing of the ESP EPR signal, supporting the conclusion that the ESP EPR signals in the reconstituted samples arise from a radical pair consisting of the oxidized PSI primary donor, P700+, and reduced vitamin K1

  5. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    Science.gov (United States)

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  6. Effects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from Thermosynechococcus elongatus

    Directory of Open Access Journals (Sweden)

    Imran Ashraf

    2015-07-01

    Full Text Available The fluorescence of photosystem I (PSI trimers in proximity to bimetallic plasmonic nanostructures have been explored by single-molecule spectroscopy (SMS at cryogenic temperature (1.6 K. PSI serves as a model for biological multichromophore-coupled systems with high potential for biotechnological applications. Plasmonic nanostructures are fabricated by thermal annealing of thin metallic films. The fluorescence of PSI has been intensified due to the coupling with plasmonic nanostructures. Enhancement factors up to 22.9 and 5.1 are observed for individual PSI complexes coupled to Au/Au and Ag/Au samples, respectively. Additionally, a wavelength dependence of fluorescence enhancement is observed, which can be explained by the multichromophoric composition of PSI.

  7. Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sara Llufriu

    Full Text Available Uncontrolled studies of mesenchymal stem cells (MSCs in multiple sclerosis suggested some beneficial effect. In this randomized, double-blind, placebo-controlled, crossover phase II study we investigated their safety and efficacy in relapsing-remitting multiple sclerosis patients. Efficacy was evaluated in terms of cumulative number of gadolinium-enhancing lesions (GEL on magnetic resonance imaging (MRI at 6 months and at the end of the study.Patients unresponsive to conventional therapy, defined by at least 1 relapse and/or GEL on MRI scan in past 12 months, disease duration 2 to 10 years and Expanded Disability Status Scale (EDSS 3.0-6.5 were randomized to receive IV 1-2×10(6 bone-marrow-derived-MSCs/Kg or placebo. After 6 months, the treatment was reversed and patients were followed-up for another 6 months. Secondary endpoints were clinical outcomes (relapses and disability by EDSS and MS Functional Composite, and several brain MRI and optical coherence tomography measures. Immunological tests were explored to assess the immunomodulatory effects.At baseline 9 patients were randomized to receive MSCs (n = 5 or placebo (n = 4. One patient on placebo withdrew after having 3 relapses in the first 5 months. We did not identify any serious adverse events. At 6 months, patients treated with MSCs had a trend to lower mean cumulative number of GEL (3.1, 95% CI = 1.1-8.8 vs 12.3, 95% CI = 4.4-34.5, p = 0.064, and at the end of study to reduced mean GEL (-2.8±5.9 vs 3±5.4, p = 0.075. No significant treatment differences were detected in the secondary endpoints. We observed a non-significant decrease of the frequency of Th1 (CD4+ IFN-γ+ cells in blood of MSCs treated patients.Bone-marrow-MSCs are safe and may reduce inflammatory MRI parameters supporting their immunomodulatory properties. ClinicalTrials.gov NCT01228266.

  8. Trunk Exercises Improve Gait Symmetry in Parkinson Disease: A Blind Phase II Randomized Controlled Trial.

    Science.gov (United States)

    Hubble, Ryan P; Naughton, Geraldine; Silburn, Peter A; Cole, Michael H

    2018-03-01

    Deficits in step-to-step symmetry and trunk muscle activations have been linked to falls in Parkinson disease. Given such symptoms are poorly managed with anti-parkinsonian medications, alternate therapies are needed. This blind phase II randomized controlled trial sought to establish whether exercise can improve step-to-step symmetry in Parkinson disease. Twenty-four Parkinson disease patients with a falls history completed baseline assessments of symptom severity, balance confidence, mobility, and quality of life. Step-to-step symmetry was assessed by deriving harmonic ratios from three-dimensional accelerations collected for the head and trunk. Patients were randomly assigned to either 12 wks of exercise and falls prevention education or falls prevention education only. Both groups repeated the baseline tests 12 and 24 wks after the initial assessment. The Australian and New Zealand Clinical Trials Registry number is ACTRN12613001175763. At 12 wks, the exercise group had statistically significant and clinically relevant improvements in anterior-posterior step-to-step trunk symmetry. In contrast, the education group recorded statistically significant and clinically meaningful reductions in medial-lateral and vertical step-to-step trunk symmetry at 12 wks. Given that step-to-step symmetry improved for the exercise group and declined for the education group after intervention, active interventions seem more suited to increasing independence and quality of life for people with Parkinson disease. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to do the following: (1) Describe the effect deficits in trunk muscle function have on gait in individuals with Parkinson disease; (2) Identify the benefits of targeted trunk exercises on step-to-step symmetry; and (3) Discuss the benefits of improving step-to-step symmetry in individuals with Parkinson

  9. Controlled acrylate insertion regioselectivity in diazaphospholidine- sulfonato palladium(II) complexes

    KAUST Repository

    Wucher, Philipp

    2012-12-24

    Diazaphospholidine-sulfonato Pd(II) complexes [{κ2-P,O-(N- Ar2C2H4N2P)C6H 4SO3}PdMe(L)] 1-L (L = dmso, pyridine, lutidine, or μ-LiCl(solvent); 1a: Ar = Ph, 1b: Ar = 2-MeC6H4, 1c: Ar = 2-MeOC6H4, 1d: Ar = 2,4,6-Me3C 6H2, 1e: Ar = 2,6-iPr2C6H 3, 1f: Ar = 2,6-(p-tolyl)2C6H3) were prepared and structurally characterized. The regioselectivity of methyl acrylate (MA) insertion into the Pd-Me bond is entirely inverted from >93% 1,2-insertion for bulky substituents (1d-f, yielding the insertion products [(P̂O)Pd{κ2-C,O-CH2CHMeC(O)OMe], 12) to the usual electronically controlled 2,1-insertion (>95%) for the less bulky Ar = Ph (1a, yielding the insertion product [(P̂O)Pd{κ2-C,O- CHEtC(O)OMe], 11, and β-H elimination product methyl crotonate). DFT studies underline that this is due to a more favorable insertion transition state (2,1- favored by 12 kJ mol-1 over 1,2- for 1a) vs destabilization of the 2,1-insertion transition state in 1d,e. By contrast, MA insertion into the novel isolated and structurally characterized hydride and deuteride complexes [{κ2-P,O-(N-Ar2C 2H4N2P)C6H4SO 3}PdR(lutidine)] (Ar = 2,6-iPr2C6H3; 9e: R = H, 10e: R = D) occurs 2,1-selectively. This is due to the insertion occurring from the isomer with the P-donor and the olefin in trans arrangement, rather than the insertion into the alkyl from the cis isomer in which the olefin is in proximity to the bulky diazaphospholidine. 1a-f are precursors to active catalysts for ethylene polymerization to highly linear polyethylene with M n up to 35 000 g mol-1. In copolymerization experiments, norbornene was incorporated in up to 6.1 mol % into the polyethylene backbone. © 2012 American Chemical Society.

  10. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    International Nuclear Information System (INIS)

    Nezami, M; Gholami, B

    2016-01-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge–Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared. (paper)

  11. Cofactors involved in light-driven charge separation in photosystem I identified by subpicosecond infrared spectroscopy.

    Science.gov (United States)

    Di Donato, Mariangela; Stahl, Andreas D; van Stokkum, Ivo H M; van Grondelle, Rienk; Groot, Marie-Louise

    2011-02-01

    Photosystem I is one of the key players in the conversion of solar energy into chemical energy. While the chlorophyll dimer P(700) has long been identified as the primary electron donor, the components involved in the primary charge separation process in PSI remain undetermined. Here, we have studied the charge separation dynamics in Photosystem I trimers from Synechococcus elongatus by femtosecond vis-pump/mid-infrared-probe spectroscopy upon excitation at 700, 710, and 715 nm. Because of the high specificity of the infrared region for the redox state and small differences in the molecular structure of pigments, we were able to clearly identify specific marker bands indicating chlorophyll (Chl) oxidation. Magnitudes of chlorophyll cation signals are observed to increase faster than the time resolution of the experiment (~0.2 ps) upon both excitation conditions: 700 nm and selective red excitation. Two models, involving either ultrafast charge separation or charge transfer character of the red pigments in PSI, are discussed to explain this observation. A further increase in the magnitudes of cation signals on a subpicosecond time scale (0.8-1 ps) indicates the formation of the primary radical pair. Evolution in the cation region with time constants of 7 and 40 ps reveals the formation of the secondary radical pair, involving a secondary electron donor. Modeling of the data allows us to extract the spectra of the two radical pairs, which have IR signatures consistent with A+A₀- and P₇₀₀+A₁-. We conclude that the cofactor chlorophyll A acts as the primary donor in PSI. The existence of an equilibrium between the two radical pairs we interpret as concerted hole/electron transfer between the pairs of electron donors and acceptors, until after 40 ps, relaxation leads to a full population of the P₇₀₀+A₁. radical pair.

  12. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy.

    Science.gov (United States)

    Akhtar, Parveen; Zhang, Cheng; Liu, Zhengtang; Tan, Howe-Siang; Lambrev, Petar H

    2018-03-01

    Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P 700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.

  13. Control of horizontal plasma position by feedforward-feedback system with digital computer in JIPP T-II tokamak

    International Nuclear Information System (INIS)

    Toi, K.; Sakurai, K.; Itoh, S.; Matsuura, K.; Tanahashi, S.

    1980-01-01

    In the resistive shell tokamak, JIPP T-II, the control of horizontal plasma position is successfully carried out by calculating the equilibrium equation in a thin resistive shell from a large-aspect-ratio approximation every 1.39 msec with a digital computer. The iron core effect also is taken account by a simple form in the equation. The required strength of vertical field is determined by the control-demand composed of a ''feedback'' term with Proportion-Integration-Differentiation correction (PID-controller) and ''feedforward'' one in proportion to plasma current. The experimental results have a satisfactory agreement with the analysis of control system. By this control system, the horizontal displacement has been suppressed within 1 cm throughout a discharge for the plasma of 15 cm-radius with high density and low q(a)-value obtained by the second current rise and strong gas puffing. (author)

  14. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes.

    Science.gov (United States)

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang

    2017-12-01

    Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  15. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    International Nuclear Information System (INIS)

    Westervelt, Robert; Klein, William; Kroupa, Michael; Olsson, Eric; Rothrock, Rick

    1999-01-01

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms

  16. In vivo photosystem I reduction in thermophilic and mesophilic cyanobacteria: The thermal resistance of the process is limited by factors other than the unfolding of the partners

    International Nuclear Information System (INIS)

    Duran, Raul V.; Hervas, Manuel; Rosa, Miguel A. de la; Navarro, Jose A.

    2005-01-01

    Photosystem I reduction by plastocyanin and cytochrome c 6 in cyanobacteria has been extensively studied in vitro, but much less information is provided on this process inside the cell. Here, we report an analysis of the electron transfer from both plastocyanin and cytochrome c 6 to photosystem I in intact cells of several cyanobacterial species, including a comparative study of the temperature effect in mesophilic and thermophilic organisms. Our data show that cytochrome c 6 reduces photosystem I by following a reaction mechanism involving complex formation, whereas the copper-protein follows a simpler collisional mechanism. These results contrast with previous kinetic studies in vitro. The effect of temperature on photosystem I reduction leads us to conclude that the thermal resistance of this process is determined by factors other than the proper stability of the protein partners

  17. The impact of written information and counseling (WOMAN-PRO II Program) on symptom outcomes in women with vulvar neoplasia: A multicenter randomized controlled phase II study.

    Science.gov (United States)

    Raphaelis, Silvia; Mayer, Hanna; Ott, Stefan; Mueller, Michael D; Steiner, Enikö; Joura, Elmar; Senn, Beate

    2017-07-01

    To determine whether written information and/or counseling based on the WOMAN-PRO II Program decreases symptom prevalence in women with vulvar neoplasia by a clinically relevant degree, and to explore the differences between the 2 interventions in symptom prevalence, symptom distress prevalence, and symptom experience. A multicenter randomized controlled parallel-group phase II trial with 2 interventions provided to patients after the initial diagnosis was performed in Austria and Switzerland. Women randomized to written information received a predefined set of leaflets concerning wound care and available healthcare services. Women allocated to counseling were additionally provided with 5 consultations by an Advanced Practice Nurse (APN) between the initial diagnosis and 6months post-surgery that focused on symptom management, utilization of healthcare services, and health-related decision-making. Symptom outcomes were simultaneously measured 5 times to the counseling time points. A total of 49 women with vulvar neoplasia participated in the study. Symptom prevalence decreased in women with counseling by a clinically relevant degree, but not in women with written information. Sporadically, significant differences between the 2 interventions could be observed in individual items, but not in the total scales or subscales of the symptom outcomes. The results indicate that counseling may reduce symptom prevalence in women with vulvar neoplasia by a clinically relevant extent. The observed group differences between the 2 interventions slightly favor counseling over written information. The results justify testing the benefit of counseling thoroughly in a comparative phase III trial. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive

  19. Advanced Instrumentation, Information and Control (II and C) Research and Development Facility Buildout and Project Execution of LWRS II and C Pilot Projects 1 and 3

    International Nuclear Information System (INIS)

    Farris, Ronald; Oxstrand, Johanna; Weatherby, Gregory

    2011-01-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II and C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II and C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results

  20. High Temperature "Smart" P3 Sensors and Electronics for Distributed Engine Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current engine control architectures impose limitations on the insertion of new control capabilities due to weight penalties and reliability issues related to...

  1. Control of the Superconducting Magnets current Power Supplies of the TJ-II Gyrotrons; Control de las Fuentes de Corriente de las Bobinas Superconductoras de los Girotrones del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Ros, A; Fernandez, A; Tolkachev, A; Catalan, G

    2006-07-01

    The TJ-II ECRH heating system consists of two gyrotrons, which can deliver a maximum power of 300 kW at a frequency of 53.2 GHz. Another 28 GHz gyrotron is going to be used in the Bernstein waves heating system. In order to get the required frequency, the gyrotrons need and homogeneous magnetic field of several tesla, which is generated by a superconducting coil field by a current source. This document describes the current source control as well as the high precision ammeters control. These ammeters measure the current in the superconducting coils. The user interface and the programming of the control system are described. The communication between devices is also explained. (author) 9 Refs.

  2. Integration of autonomous systems for remote control of data acquisition and diagnostics in the TJ-II device

    International Nuclear Information System (INIS)

    Vega, J.; Mollinedo, A.; Lopez, A.; Pacios, L.; Dormido, S.

    1997-01-01

    The data acquisition system for TJ-II will consist of a central computer, containing the data base of the device, and a set of independent systems (personal computers, embedded ones, workstations, minicomputers, PLCs, and microprocessor systems among others), controlling data collection, and automated diagnostics. Each autonomous system can be used to isolate and manage specific problems in the most efficient manner. These problems are related to data acquisition, hard (μs endash ms) real time requirements, soft (ms endash s) real time requirements, remote control of diagnostics, etc. In the operation of TJ-II, the programming of systems will be carried out from the central computer. Coordination and synchronization will be performed by linking systems to local area networks. Several Ethernet segments and FDDI rings will be used for these purposes. Programmable logic controller devices (PLCs) used for diagnostic low level control will be linked among them through a fast serial link, the RS485 Profibus standard. One VME crate, running on the OS-9 real time operating system, will be assigned as a gateway, so as to connect the PLCs based systems with an Ethernet segment. copyright 1997 American Institute of Physics

  3. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    International Nuclear Information System (INIS)

    2013-01-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  4. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  5. Conceptional design of the vertical field control system in JIPP T-II

    International Nuclear Information System (INIS)

    Fujiwara, Masami; Itoh, Satoshi; Matsuoka, Keisuke; Matsuura, Kiyokata; Miyamoto, Kenro.

    1974-11-01

    Conceptional design of a system for feedback control of the plasma position in a toroidal discharge is described. It is expected that a resistive shell and an external vertical field controlled by a system consisting of a digital computer and phase-controlled thyristors can suppress the plasma displacement down to 10% of that in the case where the external control system is not operated. (auth.)

  6. CRAB-II: a computer program to predict hydraulics and scram dynamics of LMFBR control assemblies and its validation

    International Nuclear Information System (INIS)

    Carelli, M.D.; Baker, L.A.; Willis, J.M.; Engel, F.C.; Nee, D.Y.

    1982-01-01

    This paper presents an analytical method, the computer code CRAB-II, which calculates the hydraulics and scram dynamics of LMFBR control assemblies of the rod bundle type and its validation against prototypic data obtained for the Clinch River Breeder Reactor (CRBR) primary control assemblies. The physical-mathematical model of the code is presented, followed by a description of the testing of prototypic CRBR control assemblies in water and sodium to characterize, respectively, their hydraulic and scram dynamics behavior. Comparison of code predictions against the experimental data are presened in detail; excellent agreement was found. Also reported are experimental data and empirical correlations for the friction factor of the absorber bundle in the entire flow range (laminar to turbulent) which represent an extension of the state-of-the-art, since only fuel and blanket assemblies friction factor correlations were previously reported in the open literature

  7. Design electronic of manual control for cobalt unit Alcyon II of the National Center of Radiotherapy

    International Nuclear Information System (INIS)

    Morraz V, E.; Campos, X.

    2002-01-01

    A manual control for the cobalt unit, of French production, it was designed by the team of electronic of the national center of radiotherapy with materials found in the national trade. The control has the same characteristics that the original one and it is also adapted a switch from which you can control the lights of the room of the cobalt

  8. FdC1 and Leaf-Type Ferredoxins Channel Electrons From Photosystem I to Different Downstream Electron Acceptors.

    Science.gov (United States)

    Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L

    2018-01-01

    Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.

  9. Remote Control System of the TJ-II Microwave Transmission Lines Mirrors; Sistema de Control Remoto de los Espejos de las Lineas de Transmision de Microondas del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Sanchez, A.; Fernandez, A.; Cappa, A.; Gama, J. de la; Olivares, J.; Garcia, R.; Chamorro, M.

    2007-09-27

    The ECRH system of the TJ-II stellarator has two gyrotrons, which deliver a maximum power of 300 kW each at a frequency of 53.2 GHz. Another 28 GHz gyrotron will be used to heat the plasma by electron Bernstein waves (EBWH). The microwave power is transmitted from the gyrotrons to the vacuum chamber by two quasi-optical transmission lines for ECRH and a corrugated waveguide for EBWH. All transmission lines have an internal movable mirror inside the vacuum chamber to focus the beam and to be able to change the launching angle. The control of the beam polarization is very important and the lines have two corrugated mirrors, which actuate as polarizers. In this report the control system of the position of these three internal mirrors and the polarizers of the EBWH transmission line is described. (Author) 20 refs.

  10. Implementation of multivariable control techniques with application to Experimental Breeder Reactor II

    International Nuclear Information System (INIS)

    Berkan, R.C.

    1990-06-01

    After several successful applications to aerospace industry, the modern control theory methods have recently attracted many control engineers from other engineering disciplines. For advanced nuclear reactors, the modern control theory may provide major advantages in safety, availability, and economic aspects. This report is intended to illustrate the feasibility of applying the linear quadratic Gaussian (LQG) compensator in nuclear reactor applications. The LQG design is compared with the existing classical control schemes. Both approaches are tested using the Experimental Breeder Reactor 2 (EBR-2) as the system. The experiments are performed using a mathematical model of the EBR-2 plant. Despite the fact that the controller and plant models do not include all known physical constraints, the results are encouraging. This preliminary study provides an informative, introductory picture for future considerations of using modern control theory methods in nuclear industry. 10 refs., 25 figs

  11. Haptic control of a pneumatic muscle actuator to provide resistance for simulated isokinetic exercise; part II: control development and testing.

    Science.gov (United States)

    Hall, Kara L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Neidhard-Doll, Amy T

    2015-01-01

    Pneumatic muscle actuators (PMAs) have a high power to weight ratio and possess unique characteristics which make them ideal actuators for applications involving human interaction. PMAs are difficult to control due to nonlinear dynamics, presenting challenges in system implementation. Despite these challenges, PMAs have great potential as a source of resistance for strength training and rehabilitation. The objective of this work was to control a PMA for use in isokinetic exercise, potentially benefiting anyone in need of optimal strength training through a joint's range of motion. The controller, based on an inverse three-element phenomenological model and adaptive nonlinear control, allows the system to operate as a type of haptic device. A human quadriceps dynamic simulator was developed (as described in Part I of this work) so that control effectiveness and accommodation could be tested prior to human implementation. Tracking error results indicate that the control system is effective at producing PMA displacement and resistance necessary for a scaled, simulated neuromuscular actuator to maintain low-velocity isokinetic movement during simulated concentric and eccentric knee extension.

  12. Saturne II synchroton injector parameters operation and control: computerization and optimization

    International Nuclear Information System (INIS)

    Lagniel, J.M.

    1983-01-01

    The injector control system has been studied, aiming at the beam quality improvement, the increasing of the versatility, and a better machine availability. It has been choosen to realize the three following functions: - acquisition of the principal parameters of the process, so as to control them quickly and to be warned if one of them is wrong (monitoring); - the control of those parameters, one by one or by families (starting, operating point); - the research of an optimal control (on a model or on the process itself) [fr

  13. Study of a new automatic reactor power control for the TRIGA Mark II reactor at University of Pavia

    Energy Technology Data Exchange (ETDEWEB)

    Borio Di Tigliole, A.; Magrotti, G. [Laboratorio Energia Nucleare Applicata (L.E.N.A.), University of Pavia, Via Aselli 41, 27100 (Italy); Cammi, A.; Memoli, V. [Politecnico di Milano, Department of Energy, Nuclear Engineering Division (CeSNEF), Via Ponzio 34/3, 20133 Milano (Italy); Gadan, M. A. [Instrumentation and Control Department, National Atomic Energy Comission of Argentina, University of Pavia (Italy)

    2009-07-01

    The installation of a new Instrumentation and Control (IC) system for the TRIGA Mark-II reactor at University of Pavia has recently been completed in order to assure a safe and continuous reactor operation for the future. The intervention involved nearly the whole IC system and required a channel-by-channel component substitution. One of the most sensitive part of the intervention concerned the Automatic Reactor Power Controller (ARPC) which permits to keep the reactor at an operator-selected power level acting on the control rod devoted to the fine regulation of system reactivity. This controller installed can be set up using different control logics: currently the system is working in relay mode. The main goal of the work presented in this paper is to set up a Proportional-Integral-Derivative (PID) configuration of the new controller installed on the TRIGA reactor of Pavia so as to optimize the response to system perturbations. The analysis have shown that a continuous PID offers generally better results than the relay mode which causes power oscillations with an amplitude of 3% of the nominal power

  14. Electrical supervisory control and data acquisition system for Power Reactor Fuel Reprocessing Facility (PREFRE-II) at Tarapur

    International Nuclear Information System (INIS)

    Singh, V.K.; Kaushik, S.; Haneef, K.K.M.

    2014-01-01

    Power Reactor Fuel Reprocessing Facility (PREFRE II) is a radio-chemical plant located at Tarapur. The electric power supply to PREFRE-II plant has been provided from a 33 KV Sub-station located in PREFRE-II complex to meet the O and M requirement of plant. The major equipment of the substation includes HT switch board, dry type transformer, LT switch board, Diesel Generator (DG) set and Un-interrupted Power Supply (UPS) System. The power supply to the plant is provided at 415 V voltage level with the help of Power Distribution Boards (PDBs) and Motor Control Centres (MCCs) located at different floors of the plant. The parameters of the electrical equipment of substation and plant are recorded in each shift in the log-book, manually by the operator. To maintain the log-book, the operator needs to go closer to the individual equipment in radioactive area of the plant to read the parameters. The log-book method of monitoring is a cumbersome method and does not include fault event records, trends and diagnostic behavior of the equipment. Electrical Supervisory Control and Data Acquisition (E-SCADA) system has been increasingly used in Nuclear Power Plants (NPPs) for control and monitoring of electrical parameters of plant and switchyard equipment. E-SCADA system has been designed, developed and implemented for PREFRE-II plant for remote monitoring of parameters of electrical equipment. E-SCADA system provides monitoring of electrical equipment and renders complete guidance and information with the help of Graphical User Interface (GUI) to the operator to take necessary action during normal and abnormal conditions. E-SCADA with intelligent communication features helps in reducing cabling from field equipment which enhances the fire safety of plant. As a result engineering, operation and maintenance efforts for monitoring are reduced considerably in terms of requirement of skilled man power and accurate data logging of electrical parameters. This system also helps to

  15. National Waste Terminal Storage Program: planning and control plan. Volume II. Plan description

    International Nuclear Information System (INIS)

    1977-05-01

    Objective of the NWTS program planning and control plan is to provide the information necessary for timely and effective OWI management decisions. Purpose is to describe the concepts and techniques that will be utilized by OWI to establish structured, completely planned and controlled technical, cost, and schedule NWTS baselines from which performance or progress can be accurately measured

  16. Study on Patients with Poor Control of Type II Diabetes Mellitus at ...

    African Journals Online (AJOL)

    Background: Diabetes control is elusive so great effort is needed to keep blood glucose normal or near the required level. Various factors are suspected for poor glycemic control. These factors included: aging, sex, duration of diabetes, medication adherence, clinical inertia, physical inactivity, patient knowledge, comorbidity ...

  17. Unblinded randomized control trial on prophylactic antibiotic use in gustilo II open tibia fractures at Kenyatta National Hospital, Kenya.

    Science.gov (United States)

    Ondari, Joshua Nyaribari; Masika, Moses Muia; Ombachi, Richard Bwana; Ating'a, John Ernest

    2016-10-01

    To determine the difference in infection rate between 24h versus five days of prophylactic antibiotic use in management of Gustilo II open tibia fractures. Unblinded randomized control trial. Accident and Emergency, orthopedic wards and outpatient clinics at Kenyatta National Hospital (KNH). The study involved patients aged 18-80 years admitted through accident and emergency department with Gustilo II traumatic open tibia fractures. Patients were randomized into either 24hour or five day group and antibiotics started for 24hours or five days after surgical debridement. The wounds were exposed and scored using ASEPSIS wound scoring system for infection after 48h, 5days and at 14days. The main outcomes of interest were presence of infection at days 2, 5 and 14 and effect of duration to antibiotic administration on infection rate. There was no significant difference in infection rates between 24-hour and 5-day groups with infection rates of 23% (9/40) vs. 19% (7/37) respectively (p=0.699). The infection rate was significantly associated with time lapsed before administration of antibiotics (p=0.004). In the use of prophylactic antibiotics for the management of Gustilo II traumatic open tibia fractures, there is no difference in infection rate between 24hours and five days regimen but time to antibiotic administration correlates with infection rate. Antibiotic use for 24hours only has proven adequate prophylaxis against infection. This is underlined in our study which we hope shall inform practice in our setting. A larger, more appropriately controlled study would be useful. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Class II obese and healthy pregnant controls exhibit indistinguishable pro‐ and anti‐inflammatory immune responses to Caesarian section

    Science.gov (United States)

    Graham, Caroline; Thorleifson, Mullein; Stefura, William P.; Funk, Duane J.

    2017-01-01

    Abstract Introduction Obesity during pregnancy is associated with meta‐inflammation and an increased likelihood of clinical complications. Surgery results in intense, acute inflammatory responses in any individual. Because obese individuals exhibit constitutive inflammatory responses and high rates of Caesarian section, it is important to understand the impact of surgery in such populations. Whether more pronounced pro‐inflammatory cytokine responses and/or counterbalancing changes in anti‐inflammatory immune modulators occurs is unknown. Here we investigated innate immune capacity in vivo and in vitro in non‐obese, term‐pregnant controls versus healthy, term‐pregnant obese women (Class II, BMI 35–40). Methods Systemic in vivo induction of eleven pro‐ and anti‐inflammatory biomarkers and acute phase proteins was assessed in plasma immediately prior to and again following Caesarian section surgery. Independently, innate immune capacity was examined by stimulating freshly isolated PBMC in vitro with a panel of defined PRR‐ligands for TLR4, TLR8, TLR3, and RLR 24 h post‐surgery. Results The kinetics and magnitude of the in vivo inflammatory responses examined were indistinguishable in the two populations across the broad range of biomarkers examined, despite the fact that obese women had higher baseline inflammatory status. Deliberate in vitro stimulation with a range of PRR ligands also elicited pro‐ and anti‐inflammatory cytokine responses that were indistinguishable between control and obese mothers. Conclusions Acute in vivo innate immune responses to C‐section, as well as subsequent in vitro stimulation with a panel of microbial mimics, are not detectably altered in Class II obese women. The data argue that while Class II obesity is undesirable, it has minimal impact on the in vivo inflammatory response, or innate immunomodulatory capacity, in women selecting C‐section. PMID:28544689

  19. Policy issues on the control of major accident hazards and the new Seveso II directive

    International Nuclear Information System (INIS)

    Porter, S.; Wettig, J.

    1999-01-01

    No one wants a major accident to occur! This paper describes the development of EC policies to convert this simple and obvious fact into a coherent prevention strategy which can deliver a high level of protection throughout the European Community. The Seveso II Directive is described in detail, being the relevant Community Instrument which Member States must implement in their national laws. The need to achieve the correct balance between setting general goals and being over prescriptive is discussed, commensurate with the intent to be flexible but yet consistent and effective at the same time. The main changes from Seveso I are discussed, including requirements related to the operator's management systems, the competent authority's systems for inspection, and information and consultation arrangements with the public. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Optical investigations and control of spindynamics in Mn doped II-VI quantum dots

    International Nuclear Information System (INIS)

    Schmidt, Thomas

    2009-01-01

    The present thesis deals with the spin of charge carriers confined in CdSe/ZnSe quantum dots (QDs) closely linked to the polarization of emitted photons. II-VI material systems can be adequately mixed with the B-group element manganese. Such semimagnetic nanostructures offer a number of characteristic optical and electronic features. This is caused by an exchange interaction between the spin of optically excited carriers and the 3d electrons of the Mn ions. Within the framework of this thesis addressing of well defined spin states was realized by optical excitation of charge carriers. The occupation of different spin states was detected by the degree of polarization of the emitted photoluminescence (PL) light. For that purpose different optical methods of time-resolved and time-integrated spectroscopy as well as investigations in magnetic fields were applied. (orig.)

  1. Calcified carotid atherosclerotic plaques on digital panoramic radiographs in patients with Type II diabetes mellitus: A case control study

    Directory of Open Access Journals (Sweden)

    Neha Khambete

    2015-01-01

    Full Text Available Aim: Diabetes mellitus is associated with accelerated carotid artery atherosclerosis and increased risk of stroke. This study was conducted with the objective of determining the prevalence of calcified atherosclerotic plaques on panoramic radiographs of patients with Type II diabetes mellitus. Materials and Methods: Panoramic radiographs of 100 patients (age range 50-84 years with known history of type II diabetes mellitus, visiting the outpatient department were evaluated for the presence of calcified atherosclerotic plaques. Age- and sex-matched controls were evaluated in the same manner. Statistical comparison of prevalence rates was done. Results: The radiographs of diabetics (mean age: 64.45 years revealed that 26% had atheromatous plaques, whereas those of controls (mean age: 65.36 years revealed that 6% had atheromatous plaques. A statistically significant difference (P = 0.01410 was obtained using Yates′ Chi-square test. Conclusion: People with diabetes mellitus had a greater prevalence of calcified atherosclerotic plaques on panoramic radiographs than non-diabetics. Panoramic radiographs of diabetic patients should be screened for the presence of carotid artery atheromatous plaques for timely medical referral of asymptomatic patients and avoiding any further serious consequences like cerebrovascular accidents.

  2. Radioimmunoassay of serum group I and group II pepsinogens in normal controls and patients with various disorders

    International Nuclear Information System (INIS)

    Ichinose, M.; Miki, K.; Hayashi, R.; Niwa, H.; Oka, H.; Furihata, C.; Matsushima, T.; Kageyama, T.; Takahashi, K.

    1982-01-01

    A radioimmunoassay (RIA) for human group I pepsinogens (PgI) in serum was developed, using PgI purified from gastric mucosa. The sensitivity (0.7 μg/l) and reproducibility of the assay were satisfactory for clinical use. In normal controls total serum pepsinogen (T-Pg) level was 58.9 +- 31.7 μg/l (mean +- SD) (PgI, 43.6 +- 25.0 μg/l; PgII, 15.3 +- 11.1 μg/l). Peptic ulcer cases had elevated T-Pg levels (gastric ulcer, gastroduodenal ulcer and duodenal ulcer, in increasing order of magnitude). T-Pg levels were not useful for diagnosis of peptic ulcer because of a large overlap with normal controls. T-Pg levels were low in patients with gastric polyp and in aged subjects. In these groups, the decrease of PgI was more marked than that of PgII. (Auth.)

  3. Radioimmunoassay of serum group I and group II pepsinogens in normal controls and patients with various disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ichinose, M.; Miki, K.; Hayashi, R.; Niwa, H.; Oka, H. (Tokyo Univ. (Japan). Faculty of Medicine); Furihata, C.; Matsushima, T. (Tokyo Univ. (Japan). Inst. for Medical Science); Kageyama, T.; Takahashi, K. (Kyoto Univ., Inuyama (Japan). Primate Research Inst.)

    1982-12-09

    A radioimmunoassay (RIA) for human group I pepsinogens (PgI) in serum was developed, using PgI purified from gastric mucosa. The sensitivity (0.7 ..mu..g/l) and reproducibility of the assay were satisfactory for clinical use. In normal controls total serum pepsinogen (T-Pg) level was 58.9 +- 31.7 ..mu..g/l (mean +- SD) (PgI, 43.6 +- 25.0 ..mu..g/l; PgII, 15.3 +- 11.1 ..mu..g/l). Peptic ulcer cases had elevated T-Pg levels (gastric ulcer, gastroduodenal ulcer and duodenal ulcer, in increasing order of magnitude). T-Pg levels were not useful for diagnosis of peptic ulcer because of a large overlap with normal controls. T-Pg levels were low in patients with gastric polyp and in aged subjects. In these groups, the decrease of PgI was more marked than that of PgII.

  4. The role of ultrasound in controlling the liquid-liquid phase separation and nucleation of vanillin polymorphs I and II

    Science.gov (United States)

    Parimaladevi, P.; Supriya, S.; Srinivasan, K.

    2018-02-01

    The influence of ultrasound on liquid-liquid phase separation (LLPS) and polymorphism of vanillin in aqueous solution has been investigated for the first time by varying the ultrasonic parameters such as power, pulse rate and insonation time at ambient condition. Results reveal that the application of ultrasound controls the impact of LLPS and accelerates the nucleation of vanillin within a short period at lower levels of ultrasonic process parameters, and also enhances the quality of the nucleated crystals. Moreover, the application of ultrasound induces the nucleation of rare and metastable polymorph of vanillin Form II in aqueous solution. But, at higher levels of power, pulse rate and insonation time, the rate of LLPS is found increased and the quality of the crystals becomes deteriorated. Morphology of the nucleated polymorphs were identified through optical microscopy and confirmed by optical goniometry. The internal structure and thermal stability of the grown stable Form I and metastable Form II of vanillin were confirmed through powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) analyses. Further, results suggest that the ultrasound has profound effect in controlling the LLPS and nucleation of vanillin polymorphs in aqueous solution.

  5. Analysis of Light-Induced Transmembrane Ion Gradients and Membrane Potential in Photosystem I Proteoliposomes

    International Nuclear Information System (INIS)

    Pennisi, Cristian P.; Greenbaum, Elias; Yoshida, Ken

    2010-01-01

    Photosystem I (PSI) complexes can support a light-driven electrochemical gradient for protons, which is the driving force for energy-conserving reactions across biological membranes. In this work, a computational model that enables a quantitative description of the light-induced proton gradients across the membrane of PSI proteoliposomes is presented. Using a set of electrodiffusion equations, a compartmental model of a vesicle suspended in aqueous medium was studied. The light-mediated proton movement was modeled as a single proton pumping step with backpressure of the electric potential. The model fits determinations of pH obtained from PSI proteoliposomes illuminated in the presence of mediators of cyclic electron transport. The model also allows analysis of the proton gradients in relation to the transmembrane ion fluxes and electric potential. Sensitivity analysis enabled a determination of the parameters that have greater influence on steady-state levels and onset/decay rates of transmembrane pH and electric potential. This model could be used as a tool for optimizing PSI proteoliposomes for photo-electrochemical applications.

  6. Probing the conformational dynamics of photosystem I in unconfined and confined spaces.

    Science.gov (United States)

    Das, Gaurav; Chattoraj, Shyamtanu; Nandi, Somen; Mondal, Prasenjit; Saha, Abhijit; Bhattacharyya, Kankan; Ghosh, Surajit

    2017-12-20

    The fluorescence dynamics of Photosystem I (PSI) in bulk water and inside a confined environment like a liposome have been investigated using time resolved confocal microscopy. In bulk water, PSI exhibits a major emission peak at ∼680 nm, while in the liposome it exhibits a markedly blue shifted emission maximum at ∼485 nm. This is indicative of conformational changes due to entrapment and emergence of a stressed conformation of PSI inside the liposome. The observed time constants for the fluorescence lifetime of PSI inside the liposome are significantly high as opposed to PSI in bulk water. More interestingly, the fluorescence intensity of PSI in bulk water exhibits strong fluctuations with many high intensity jumps and these are anti-correlated with the fluorescence lifetime of PSI. In contrast, inside the liposome, no such anti-correlated behaviour is observed. We further demonstrated that PSI exhibits at least two conformational states in bulk water, whereas a single conformation is observed inside the liposome, indicating the conformational rigidity and locking of the PSI complex inside a liposome.

  7. Solar photocatalytic H{sub 2} production from water using a dual bed photosystem

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The authors are developing a dual stage, direct photoconversion scheme for water splitting. The overall system consists of an aqueous solution circulated through two modules, or beds, each of which contains a photochemically active surface layer below the solution. The idea is to divide the energy requirement for water decomposition between the two photosystems, so that more abundant, lower energy photons in the solar spectrum can be utilized, and that the H{sub 2} and O{sub 2} products can be evolved separately from each other. Catalyst-modified semiconductor powders, immobilized within a polymer binder are currently being employed as the photoactive layers. TiO{sub 2} and platinized-InP have been employed for the O{sub 2} and H{sub 2} evolution tasks, respectively. A major effort over the last year was identification of a suitable redox mediator that is responsible for transferring electron equivalents from one unit to the other. After testing more than a dozen candidates, spanning a wide range of electropotentials, under a variety of conditions, it was found that the bromide/bromate (Br{sup {minus}}/BrO{sub 3}{sup {minus}}) and iodide/iodate (I{sup {minus}}/IO{sub 3}{sup {minus}}) redox systems could function in both modules, necessary for closed cycle operation.

  8. Control of horizontal plasma position by feedforward-feedback system with digital computer in the JIPP T-II tokamak

    International Nuclear Information System (INIS)

    Toi, Kazuo; Sakurai, Keiichi; Itoh, Satoshi; Matsuura, Kiyokata; Tanashi, Shugo

    1980-01-01

    In the resistive shell tokamak, JIPP T-II, the control of horizontal plasma position is successfully carried out by calculating the equilibrium equation of a large-aspect-ratio tokamak plasma surrounded by a thin resistive shell of a skin time of 5.2 ms, every 1.39 ms with a digital computer. The iron core effect is also taken into account by a simple form in the equation. The required strenght of vertical field is determined by the control demand composed of two groups; one is a ''feedback'' term expressed by the deviation of plasma position from the desired one and proportion-integration-differentiation correction (PID-controller), and the other is a ''feedforward'' term which is in proportion to the plasma current. The experimental results in a quasi-constant phase of plasma current are in good agreement with the stability analysis of the control system by using the so-called Bode-diagram which is calculated on the assumption that the plasma current is independent of time. By this control system, the horizontal plasma displacement has been suppressed within 1 cm of the initiation of discharge to the termination in the high-density and low-q(a) plasma of 15 cm radius which is obtained by both strong gas puffing and second current rise. (author)

  9. Control of horizontal plasma position by feedforward-feedback system with digital computer in the JIPP T-II tokamak

    International Nuclear Information System (INIS)

    Toi, K.; Itoh, S.; Sakurai, K.; Matsuura, K.; Tanahashi, S.

    1980-02-01

    In the resistive shell tokamak, JIPP T-II, the control of horizontal plasma position is successfully carried out by calculating the equilibrium equation of a large-aspect-ratio tokamak plasma surrounded by a thin resistive shell of a skin time of 5.2 msec, every 1.39 msec with a digital computer. The iron core effect is also taken into account by a simple form in the equation. The required strength of vertical field is determined by the control demand composed of two groups; one is a ''feedback'' term expressed by the deviation of plasma position from the desired one and proportion-integration-differentiation correction (PID-controller), and the other is a ''feedforward'' term which is in proportion to the plasma current. The experimental results have a good agreement with the stability analysis of the control system by using the so-called Bode-diagram. By this control system, the horizontal displacement has been suppressed within 1 cm from the initiation of discharge to the termination in the high-density and low-q(a) plasma of 15 cm-radius which is obtained by both strong gas puffing and second current rise. (author)

  10. Controlled Nonlinear Stochastic Delay Equations: Part II: Approximations and Pipe-Flow Representations

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2012-01-01

    This is the second part of a work dealing with key issues that have not been addressed in the modeling and numerical optimization of nonlinear stochastic delay systems. We consider new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. Part I was concerned with issues concerning the class of admissible controls and their approximations, since the classical definitions are inadequate for our models. This part is concerned with transportation equation representations and their approximations. Such representations of nonlinear stochastic delay models have been crucial in the development of numerical algorithms with much reduced memory and computational requirements. The representations for the new models are not obvious and are developed. They also provide a template for the adaptation of the Markov chain approximation numerical methods.

  11. Miniature 70-W Brushless Motor-Controller for Compact Extraterrestrial-Based Actuation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will support rover locomotion and manipulation with a system of newly-developed penny-sized 70-W brushless servomotor controllers that are networked on a...

  12. Novel, Vacuum-Regenerable Trace Contaminant Control System for Advanced Spacesuit Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes a new material paradigm for the Trace Contaminant Control System (TCCS) based upon its novel adsorbent nanomaterials that...

  13. High Performance Flow Analysis and Control Tools for Aerial Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the project is to develop an open architecture, computer aided analysis and control design toolbox for distributed parameter systems, in particular,...

  14. Robust Aeroservoelastic Control Utilizing Physics-Based Aerodynamic Sensing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — New aircraft designs depend on an integrated active approach to flight control, flutter suppression and structural mode attenuation to meet desired handling quality...

  15. Command and Control Software for Single-Operator Multiple UAS Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing command and control (C2) paradigms for UAS platforms are extremely limited and cumbersome, requiring at least a single operator per UAS, if not more than...

  16. Intelligent, Semi-Automated Procedure Aid (ISAPA) for ISS Flight Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the Intelligent, Semi-Automated Procedure Aid (ISAPA) intended for use by International Space Station (ISS) ground controllers to increase the...

  17. Data Description Exchange Services for Heterogeneous Vehicle and Spaceport Control and Monitor Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CCT has designed and prototyped, as part of the Phase-1 SBIR, a generic platform independent software capability for exchange of semantic control and monitoring...

  18. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2, Thermal and Humidity Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MTSA technology specifically addresses the thermal, CO2 and humidity control challenges faced by Portable Life Support Systems (PLSS) to be used in NASA's...

  19. Bifurcation Tools for Flight Dynamics Analysis and Control System Design, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the project is the development of a computational package for bifurcation analysis and advanced flight control of aircraft. The development of...

  20. Part II - Effects of Cross-Sectional Partitioning on Active Noise Control in Round Ducts

    National Research Council Canada - National Science Library

    Slagley, Jeremy M; Guffey, Steven E

    2006-01-01

    .... Higher order mode waves are much more difficult to control Basic acoustic principles dictate that the cut-on frequency at which higher order modes will first begin to eclipse simple plane waves...