WorldWideScience

Sample records for photosynthetic carbon incorporation

  1. Photosynthetic incorporation of 14C by Stevia rebaudiana

    International Nuclear Information System (INIS)

    Ferraresi, M. de L.; Ferraresi Filho, O.; Bracht, A.

    1985-01-01

    The photosynthetic incorporation of 14 by Stevia rebaudiana specimens was investigated. The 14 C incorporation, when the isotope was furnished to the plant in form of 14 CO 2 , was rapid. After 24 hours, the radioactivity has been incorporated into a great number of compounds including pigments, terpenes, glucose, cellulose and also stevioside and its derivatives. (M.A.C.) [pt

  2. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  3. Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S; Wetzel, R G

    1981-01-01

    Scirpus subterminalis Torr., a submerged angiosperm abundant in many hardwater lakes of the Great Lakes region, was investigated for various photosynthetic carbon fixation properties in relation to available inorganic carbon and levels of carbon fixing enzymes. Photosynthetic experiments were CO/sub 2/ and HCO/sub 3//sup -/ were supplied at various concentrations showed that Scirpus was able to utilize HCO/sub 3//sup -/ at those concentrations close to natural conditions. However, when CO/sub 2/ concentrations were increased above ambient, photosynthetic rates increased markedly. It was concluded that the photosynthetic potential of this plant in many natural situations may be limited by inorganic carbon uptake in the light. Phosphoenolpyruvate carboxylase (PEPcase)/ribulose-1,5-bisphosphate carboxylase (ruBPcase) ratios of the leaves varied between 0.5 and 0.9 depending on substrate concentration during assay. The significance of PEP-mediated carbon fixation of Scirpus (basically a C/sub 3/ plant) in the dark was investigated. Malate accumulated in the leaves during the dark period of a 24-h cycle and malate levels decreased significantly during the following light period. The accumulation was not due to transport of malate from the roots. Carbon uptake rates in the dark by the leaves of Scirpus were lower than malate accumulation rates. Therefore, part of the malate was likely derived from respired CO/sub 2/. Carbon uptake rates in the light were much higher than malate turnover rates. It was estimated that carbon fixation via malate could contribute up to 12% to net photosynthetic rates. The ecological significance of this type of metabolism in submerged aquatics is discussed.

  4. High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea

    Science.gov (United States)

    Lee, Sang H.; Kim, Hak-Jun; Whitledge, Terry E.

    2009-07-01

    High incorporation of carbon into proteins and low incorporation into lipids were a characteristic pattern of the photosynthetic allocations of phytoplankton throughout the euphotic zone in the Bering Strait and Chukchi Sea in 2004. According to earlier studies, this indicates that phytoplankton had no nitrogen limitation and a physiologically healthy condition, at least during the cruise period from mid-August to early September in 2004. This is an interesting result, especially for the phytoplankton in the Alaskan coastal water mass-dominated region in the Chukchi Sea which has been thought to be potentially nitrogen limited. The relatively high ammonium concentration is believed to have supported the nitrogen demand of the phytoplankton in the region where small cells (stress than large phytoplankton. If the high carbon incorporation into proteins by the phytoplankton in 2004 is a general pattern of the photosynthetic allocations in the Chukchi Sea, they could provide nitrogen-sufficient food for the highest benthic faunal biomass in the Arctic Ocean, sustaining large populations of benthic-feeding marine mammals and seabirds.

  5. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  6. Photosynthetic carbon fixation pathways in Zostera marina and three Florida seagrasses

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S.; Wetzel, R.G.

    1982-06-01

    The photosynthetic carbon fixation pathways of four seagrass species, Zostera marina L. from Alaska and Thalassia testudinum Banks ex Konig, Syringodium filiforme Kutz. and Halodule wrightii Aschers. from the Gulf of Mexico, were investigated with a /sup 14/C pulse-chase technique. All species were found to be principally of the C/sub 3/ type. However, Thalassia and Halodule had higher initial incorporation rates into organic acids than is typical for terrestrial C/sub 3/ plants. Of 11 seagrass species investigated thus far for C/sub 3/ or C/sub 4/ metabolism using this technique, 10 were found to be principally of the C/sub 3/ type while only one exhibited C/sub 4/ metabolism.

  7. DAILY BUDGETS OF PHOTOSYNTHETICALLY FIXED CARBON IN SYMBIOTIC ZOANTHIDS.

    Science.gov (United States)

    Steen, R Grant; Muscatine, L

    1984-10-01

    We tested the hypothesis that some zoanthids are able to meet a portion of their daily respiratory carbon requirement with photosynthetic carbon from symbiotic algal cells (= zooxanthellae). A daily budget was constructed for carbon (C) photosynthetically fixed by zooxanthellae of the Bermuda zoanthids Zoanthus sociatus and Palythoa variabilis. Zooxanthellae have an average net photosynthetic C fixation of 7.48 and 15.56 µgC·polyp -1 ·day -1 for Z. sociatus and P. variabilis respectively. The C-specific growth rate (µ c ) was 0.215·day -1 for Z. sociatus and 0.152·day -1 for P. variabilis. The specific growth rate (µ) of zooxanthellae in the zoanthids was measured to be 0.011 and 0.017·day -1 for Z. sociatus and P. variabilis zooxanthellae respectively. Z. sociatus zooxanthellae translocated 95.1% of the C assimilated in photosynthesis, while P. variabilis zooxanthellae translocated 88.8% of their fixed C. As the animal tissue of a polyp of Z. sociatus required 14.75 µgC·day -1 for respiration, and one of P. variabiis required 105.54 µgC·day -1 , the contribution of zooxanthellae to animal respiration (CZAR) was 48.2% for Z. sociatus and 13.1% for P. variabilis.

  8. Artificial vesicles with incorporated photosynthetic materials for potential solar energy conversion systems

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2009-07-01

    Full Text Available WITH INCORPORATED PHOTOSYNTHETIC MATERIALS FOR POTENTIAL SOLAR ENERGY CONVERSION SYSTEMS J E Smit1, A F Grobler2, A E Karsten1, R W Sparrow3 1 CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2 Unit for drug development and research, North...

  9. Quantitative Analysis of Carbon Flow into Photosynthetic Products Functioning as Carbon Storage in the Marine Coccolithophore, Emiliania huxleyi.

    Science.gov (United States)

    Tsuji, Yoshinori; Yamazaki, Masatoshi; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2015-08-01

    The bloom-forming coccolithophore Emiliania huxleyi (Haptophyta) is a dominant marine phytoplankton, cells of which are covered with calcareous plates (coccoliths). E. huxleyi produces unique lipids of C37-C40 long-chain ketones (alkenones) with two to four trans-unsaturated bonds, β-glucan (but not α-glucan) and acid polysaccharide (AP) associated with the morphogenesis of CaCO3 crystals in coccoliths. Despite such unique features, there is no detailed information on the patterns of carbon allocation into these compounds. Therefore, we performed quantitative estimation of carbon flow into various macromolecular products by conducting (14)C-radiotracer experiments using NaH(14)CO3 as a substrate. Photosynthetic (14)C incorporation into low molecular-mass compounds (LMC), extracellular AP, alkenones, and total lipids except alkenones was estimated to be 35, 13, 17, and 25 % of total (14)C fixation in logarithmic growth phase cells and 33, 19, 18, and 18 % in stationary growth phase cells, respectively. However, less than 1 % of (14)C was incorporated into β-glucan in both cells. (14)C-mannitol occupied ca. 5 % of total fixed (14)C as the most dominant LMC product. Levels of all (14)C compounds decreased in the dark. Therefore, alkenones and LMC (including mannitol), but not β-glucan, function in carbon/energy storage in E. huxleyi, irrespective of the growth phase. Compared with other algae, the low carbon flux into β-glucan is a unique feature of carbon metabolism in E. huxelyi.

  10. Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata.

    Science.gov (United States)

    Zavřel, Tomáš; Szabó, Milán; Tamburic, Bojan; Evenhuis, Christian; Kuzhiumparambil, Unnikrishnan; Literáková, Petra; Larkum, Anthony W D; Raven, John A; Červený, Jan; Ralph, Peter J

    2018-04-01

    This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P 700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO 2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod.

    Science.gov (United States)

    Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L

    2014-02-01

    Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.

  12. Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats

    International Nuclear Information System (INIS)

    Nilsen, E.T.; Sharifi, M.R.

    1997-01-01

    The carbon isotopic compositions of leaves and stems of woody legumes growing in coastal mediterranean and inland desert sites in California were compared. The overall goal was to determine what factors were most associated with the carbon isotope composition of photosynthetic stems in these habitats. The carbon isotope signature (delta 13C) of photosynthetic stems was less negative than that of leaves on the same plants by an average of 1.51 +/- 0.42 per thousand. The delta 13C of bark (cortical chlorenchyma and epidermis) was more negative than that of wood (vascular tissue and pith) from the same plant for all species studied on all dates. Desert woody legumes had a higher delta 13C (less negative) and a lower intercellular CO2 concentration (Ci) (for both photosynthetic tissues) than that of woody legumes from mediterranean climate sites. Differences in the delta 13C of stems among sites could be entirely accounted for by differences among site air temperatures. Thus, the delta 13C composition of stems did not indicate a difference in whole-plant integrated water use efficiency (WUE) among sites. In contrast, stems on all plants had a lower stem Ci and a higher delta 13C than leaves on the same plant, indicating that photosynthetic stems improve long-term, whole-plant water use efficiency in a diversity of species

  13. Evolution and Adaptation of Phytoplankton Photosynthetic Pathways to perturbations of the geological carbon system

    Science.gov (United States)

    Rickaby, R. E.; Young, J. N.; Hermoso, M.; Heureux, A.; McCLelland, H.; Lee, R.; Eason Hubbard, M.

    2012-12-01

    The ocean and atmosphere carbon system has varied greatly over geological history both in response to initial evolutionary innovation, and as a driver of adaptive change. Here we establish that positive selection in Rubisco, the most abundant enzyme on the Earth responsible for all photosynthetic carbon fixation, occurred early in Earth's history, and basal to the radiation of the modern marine algal groups. Our signals of positive selection appear to be triggered by changing intracellular concentrations of carbon dioxide (CO2) due to the emergence of carbon concentrating mechanisms between 1.56 and 0.41 Ba in response to declining atmospheric CO2 . We contend that, at least in terms of carbon, phytoplankton generally were well poised to manage subsequent abrupt carbon cycle perturbations. The physiological pathways for optimising carbon acquisition across a wide range of ambient carbon dioxide concentrations had already been established and were genetically widespread across open ocean phytoplankton groups. We will further investigate some case studies from the Mesozoic and Cenozoic abrupt carbon cycle excursions using isotopic tools to probe the community photosynthetic response and demonstrate the flexibility of phytoplankton photosynthesis in the face of major perturbations. In particular, an unprecedented resolution record across the Toarcian (Early Jurassic) carbon isotope excursion in the Paris Basin reveals a selection and evolution towards a community reliant solely on diffusive carbon dioxide supply for photosynthesis at the height of the excursion at 1500-2500 ppm CO2. The continued flourishing of the phytoplankton biological pump throughout this excursion was able to remove the excess carbon injected into the water column in less than 45 kyrs.

  14. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity.

    Science.gov (United States)

    Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M

    2018-06-01

    Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress

    Directory of Open Access Journals (Sweden)

    Zhiyu Zuo

    2017-10-01

    Full Text Available The release of nanoparticles into the environment is inevitable, which has raised global environmental concern. Melatonin is involved in various stress responses in plants. The present study investigated the effects of melatonin on photosynthetic carbon (C assimilation and plant growth in nano-ZnO stressed plants. It was found that melatonin improved the photosynthetic C assimilation in nano-ZnO stressed wheat plants, mainly due to the enhanced photosynthetic energy transport efficiency, higher chlorophyll concentration and higher activities of Rubisco and ATPases. In addition, melatonin enhanced the activities of antioxidant enzymes to protect the photosynthetic electron transport system in wheat leaves against the oxidative burst caused by nano-ZnO stress. These results suggest that melatonin could improve the tolerance of wheat plants to nano-ZnO stress.

  16. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton

    International Nuclear Information System (INIS)

    Coveney, M.F.

    1982-01-01

    Microheterotrophic uptake of algal extracellular products was studied in two eutrophic lakes in southern Sweden. Size fractionation was used in H 14 CO 3 uptake experiments to measure 14 C fixation in total particulate, small particulate and dissolved organic fractions. Carbon fixed in algal photosynthesis was recovered as dissolved and small particulate 14 C, representing excretion and bacterial uptake of algal products. Estimated gross extracellular release was low in these eutrophic systems, 1 to 7% of total 14 C uptake per m 2 lake surface. From 28 to 80 % of 14 C released was recovered in the small particulate fraction after ca. 4h incubation.This percentage was uniform within each depth profile, but varied directly with in situ water temperature. Laboratory time-series incubations indicated steady state for the pool of algal extracellular products on one occasion, while increasing pool size was indicated in the remaining two experiments. Uptake of photosynthetic carbon to small particles in situ was 32 to 95% of estimted heterotrophic bacterial production (as dark 14 CO 2 uptake) on four occasions. While excretion apparently was not an important loss of cabon for phytoplankton, it may have represented an important carbon source for planktonic bacteria. (author)

  17. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tabita, Fred Robert [The Ohio State Univ., Columbus, OH (United States)

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  18. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms: Particle-attached bacteria incorporating organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mayali, Xavier [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, Benjamin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mabery, Shalini [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, Peter K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    Here, we investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks.

  19. Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    D. G. Williams

    2009-01-01

    Full Text Available In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax was used to trace the inputs of vent CO2 and quantify assimilation-weighted CO2 concentrations experienced by individual plants near vents and in comparable locations with no geologic CO2 exposure. The carbon and oxygen isotopic composition and nitrogen percent of leaf biomass from the same plants was used to investigate photosynthetic responses of these plants to naturally elevated atmospheric CO2 concentrations. The coupled shifts in carbon and oxygen isotope values suggest that dalmation toadflax responded to elevated CO2 exposure by increasing stomatal conductance with no change in photosynthetic capacity and lodgepole pine apparently responded by decreasing stomatal conductance and photosynthetic capacity. Lodgepole pine saplings exposed to elevated levels of CO2 likewise had reduced leaf nitrogen concentrations compared to plants with no enhanced CO2 exposure, further suggesting widespread and dominant conifer down-regulated photosynthetic capacity under elevated CO2 levels near geologic vents.

  20. Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana.

    Science.gov (United States)

    Otori, Kumi; Tanabe, Noriaki; Maruyama, Toshiki; Sato, Shigeru; Yanagisawa, Shuichi; Tamoi, Masahiro; Shigeoka, Shigeru

    2017-09-01

    Plant growth and productivity depend on interactions between the metabolism of carbon and nitrogen. The sensing ability of internal carbon and nitrogen metabolites (the C/N balance) enables plants to regulate metabolism and development. In order to investigate the effects of an enhanced photosynthetic capacity on the metabolism of carbon and nitrogen in photosynthetically active tissus (source leaves), we herein generated transgenic Arabidopsis thaliana plants (ApFS) that expressed cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in their chloroplasts. The phenotype of ApFS plants was indistinguishable from that of wild-type plants at the immature stage. However, as plants matured, the growth of ApFS plants was superior to that of wild-type plants. Starch levels were higher in ApFS plants than in wild-type plants at 2 and 5 weeks. Sucrose levels were also higher in ApFS plants than in wild-type plants, but only at 5 weeks. On the other hand, the contents of various free amino acids were lower in ApFS plants than in wild-type plants at 2 weeks, but were similar at 5 weeks. The total C/N ratio was the same in ApFS plants and wild-type plants, whereas nitrite levels increased in parallel with elevations in nitrate reductase activity at 5 weeks in ApFS plants. These results suggest that increases in the contents of photosynthetic intermediates at the early growth stage caused a temporary imbalance in the free-C/free-N ratio and, thus, the feedback inhibition of the expression of genes involved in the Calvin cycle and induction of the expression of those involved in nitrogen metabolism due to supply deficient free amino acids for maintenance of the C/N balance in source leaves of ApFS plants.

  1. Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris

    International Nuclear Information System (INIS)

    Savitch, L.V.; Maxwell, D.P.; Huner, N.P.A.

    1996-01-01

    Chlorella vulgaris grown at 5 degrees C/150 micromoles m -2 s -1 mimics cells grown under high irradiance (27 degrees C/2200 micromoles m -2 s -1 ). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feedback mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6 phosphate and sucrose/starch indicated that cells grown at 27 degrees C/2200 micromoles m -2 s -1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5 degrees C/150 micromoles-1 m -2 s -1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feedback on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed

  2. Morning reduction of photosynthetic capacity before midday depression.

    Science.gov (United States)

    Koyama, Kohei; Takemoto, Shuhei

    2014-03-17

    Midday depression of photosynthesis has important consequences for ecosystem carbon exchange. Recent studies of forest trees have demonstrated that latent reduction of photosynthetic capacity can begin in the early morning, preceding the midday depression. We investigated whether such early morning reduction also occurs in an herbaceous species, Oenothera biennis. Diurnal changes of the photosynthetic light response curve (measured using a light-emitting diode) and incident sunlight intensity were measured under field conditions. The following results were obtained: (1) the light-saturated photosynthetic rate decreased beginning at sunrise; (2) the incident sunlight intensity on the leaves increased from sunrise; and (3) combining (1) and (2), the net photosynthetic rate under natural sunlight intensity increased from sunrise, reached a maximum at mid-morning, and then showed midday depression. Our results demonstrate that the latent morning reduction of photosynthetic capacity begins at sunrise, preceding the apparent midday depression, in agreement with previous studies of forest trees.

  3. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    International Nuclear Information System (INIS)

    Nilsson, Eva

    2001-06-01

    In the work of finding a place for long time storage of radioactive waste it is of importance to understand the surrounding ecosystems. The storage is supposed to keep the radioactive waste away from humans and nature for some hundreds of thousands of years. It is important to be able to make risk assessments for a hypothetical release and understand by which ways the radionuclides could find their way into the biota. In lakes, released radionuclides would most probably find their way into the biota through heterotrophic bacteria or auto trophic microorganisms. Therefore, it is important to investigate how large the biomass and production of heterotrophic bacteria and photosynthetic organisms in lakes are. This report is an overview of methods that are commonly used today for measuring biomass and production of bacteria and photosynthetic microorganisms in lakes. It elucidates advantages and drawbacks of the different methods. Some results from studies on illuminated lake sediment habitats are given. Biomass of bacteria is commonly measured in microscope after colouring the bacteria with a dye. Dyes commonly used are acridine orange and 4',6-diamino-2-phenylindole (DAPI). Biomass of photosynthetic microorganisms is also commonly measured in microscope but can also be determined by the amount of chlorophyll 'a' and other pigments. An advantage with measuring the biomass photosynthetic microorganisms in microscope is that a good resolution of the community is achieved. A disadvantage with determining the biomass by measuring the chlorophyll 'a' concentrations is that the concentrations may vary with light climate and nutrients even though the carbon biomass is constant. Methods for measuring bacterial production discussed in this report are the thymidine incorporation method, the leucine incorporation method and the frequency of dividing cell method (FDC). Methods for primary production discussed in this report are the 14 CO 2 -incorporation method, the O 2

  4. Methods to measure biomass and production of bacteria and photosynthetic microbiota and their application on illuminated lake sediments. A literature study

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    In the work of finding a place for long time storage of radioactive waste it is of importance to understand the surrounding ecosystems. The storage is supposed to keep the radioactive waste away from humans and nature for some hundreds of thousands of years. It is important to be able to make risk assessments for a hypothetical release and understand by which ways the radionuclides could find their way into the biota. In lakes, released radionuclides would most probably find their way into the biota through heterotrophic bacteria or auto trophic microorganisms. Therefore, it is important to investigate how large the biomass and production of heterotrophic bacteria and photosynthetic organisms in lakes are. This report is an overview of methods that are commonly used today for measuring biomass and production of bacteria and photosynthetic microorganisms in lakes. It elucidates advantages and drawbacks of the different methods. Some results from studies on illuminated lake sediment habitats are given. Biomass of bacteria is commonly measured in microscope after colouring the bacteria with a dye. Dyes commonly used are acridine orange and 4',6-diamino-2-phenylindole (DAPI). Biomass of photosynthetic microorganisms is also commonly measured in microscope but can also be determined by the amount of chlorophyll 'a' and other pigments. An advantage with measuring the biomass photosynthetic microorganisms in microscope is that a good resolution of the community is achieved. A disadvantage with determining the biomass by measuring the chlorophyll 'a' concentrations is that the concentrations may vary with light climate and nutrients even though the carbon biomass is constant. Methods for measuring bacterial production discussed in this report are the thymidine incorporation method, the leucine incorporation method and the frequency of dividing cell method (FDC). Methods for primary production discussed in this report are the {sup 14}CO{sub 2

  5. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  6. A Conceptual Model for Projecting Coccolithophorid Growth, Calcification and Photosynthetic Carbon Fixation Rates in Response to Global Ocean Change

    Directory of Open Access Journals (Sweden)

    Natasha A. Gafar

    2018-01-01

    Full Text Available Temperature, light and carbonate chemistry all influence the growth, calcification and photosynthetic rates of coccolithophores to a similar degree. There have been multiple attempts to project the responses of coccolithophores to changes in carbonate chemistry, but the interaction with light and temperature remains elusive. Here we devise a simple conceptual model to derive a fit equation for coccolithophorid growth, photosynthetic and calcification rates in response to simultaneous changes in carbonate chemistry, temperature and light conditions. The fit equation is able to account for up to 88% of the variability in measured metabolic rates. Equation projections indicate that temperature, light and carbonate chemistry all have different modulating effects on both optimal growth conditions and the sensitivity of responses to extreme environmental conditions. Calculations suggest that a single extreme environmental condition (CO2, temperature, light will reduce maximum rates regardless of how optimal the other environmental conditions may be. Thus, while the response of coccolithophores to ocean change depends on multiple variables, the one which is least optimal will have the most impact on overall rates. Finally, responses to ocean change are usually reported in terms of cellular rates. However, changes in cellular rates can be a poor predictor for assessing changes in production at the community level. We therefore introduce a new metric, the calcium carbonate production potential (CCPP, which combines the independent effects of changes in growth rate and cellular calcium carbonate content to assess how environmental changes will impact coccolith production. Direct comparison of CO2 impacts on cellular CaCO3 production rates and CCPP shows that while the former is still at 45% of its pre-industrial capacity at 1,000 μatm, the latter is reduced to 10%.

  7. Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating ultraviolet and visible radiation.

    Science.gov (United States)

    Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter

    2013-08-01

    Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 μatm) and low, current (390 μatm) CO₂ levels, under regimes of fluctuating irradiances with or without UVR. Under both CO₂ levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO₂ showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO₂-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.

  8. Path of Carbon in Photosynthesis III.

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  9. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    Science.gov (United States)

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  10. Drivers of leaf carbon exchange capacity across biomes at the continental scale.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2018-04-29

    Realistic representations of plant carbon exchange processes are necessary to reliably simulate biosphere-atmosphere feedbacks. These processes are known to vary over time and space, though the drivers of the underlying rates are still widely debated in the literature. Here, we measured leaf carbon exchange in >500 individuals of 98 species from the neotropics to high boreal biomes to determine the drivers of photosynthetic and dark respiration capacity. Covariate abiotic (long- and short-term climate) and biotic (plant type, plant size, ontogeny, water status) data were used to explore significant drivers of temperature-standardized leaf carbon exchange rates. Using model selection, we found the previous week's temperature and soil moisture at the time of measurement to be a better predictor of photosynthetic capacity than long-term climate, with the combination of high recent temperatures and low soil moisture tending to decrease photosynthetic capacity. Non-trees (annual and perennials) tended to have greater photosynthetic capacity than trees, and, within trees, adults tended to have greater photosynthetic capacity than juveniles, possibly as a result of differences in light availability. Dark respiration capacity was less responsive to the assessed drivers than photosynthetic capacity, with rates best predicted by multi-year average site temperature alone. Our results suggest that, across large spatial scales, photosynthetic capacity quickly adjusts to changing environmental conditions, namely light, temperature, and soil moisture. Respiratory capacity is more conservative and most responsive to longer-term conditions. Our results provide a framework for incorporating these processes into large-scale models and a dataset to benchmark such models. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    Science.gov (United States)

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin; Li, Wei; Huang, Zhanhua; Liu, Shouxin, E-mail: chemist@126.com, E-mail: liushouxin@126.com [Northeast Forestry University, College of Material Science and Engineering (China)

    2015-11-15

    Ni-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO{sub 3}){sub 2} into the liquefied larch using liquefied larch sawdust as precursors and F127 as the soft template. The porous structure can be tailored by the amount of Ni(NO{sub 3}){sub 2}, and the Ni and NiO nanoparticles with a size of 10 nm incorporated in the carbon frameworks. The increase in Ni(NO{sub 3}){sub 2} content can lead to the formation of disordered porous structure and shrinkage of carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation for N{sub 2}, CO{sub 2}, and O{sub 2} of 37.5, 19.8, and 55.5 m{sup 3} cm/m{sup 2} h kPa, which is larger than that of the pure carbon membranes, respectively. However, the poor ordered porous structure caused by adding large amount of Ni(NO{sub 3}){sub 2} can reduce the gas separation performance, which is attributed to the weaken of the molecular sieve function. The results indicate that the incorporation of few nanoparticles into larch-based carbon membranes can improve molecular sieve function.Graphical abstractNi-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO{sub 3}){sub 2} into the liquefied larch. The porous structure can be tailored by the amount of Ni(NO{sub 3}){sub 2}, and the Ni and NiO nanoparticles incorporated in the carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation and gas permseparation.

  13. Progress of CRISPR-Cas based genome editing in Photosynthetic microbes

    NARCIS (Netherlands)

    Naduthodi, M.I.S.; Barbosa, M.J.; Oost, van der J.

    2018-01-01

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been

  14. Relationship of photosynthetic carbon fixation with environmental changes in the Jiulong River estuary of the South China Sea, with special reference to the effects of solar UV radiation

    International Nuclear Information System (INIS)

    Li Gang; Gao Kunshan; Yuan Dongxing; Zheng Ying; Yang Guiyuan

    2011-01-01

    Highlights: → C-fixation is the highest in turbidity front, though UV resulted in higher inhibition. → Increased availability of CO 2 appeared to stimulate photosynthetic machinery. → Osmotic stress made phytoplankton more sensitive to UV. - Abstract: Phytoplankton cells in estuary waters usually experience drastic changes in chemical and physical environments due to mixing of fresh and seawaters. In order to see their photosynthetic performance in such dynamic waters, we measured the photosynthetic carbon fixation by natural phytoplankton assemblages in the Jiulong River estuary of the South China Sea during April 24-26 and July 24-26 of 2008, and investigated its relationship with environmental changes in the presence or the absence of UV radiation. Phytoplankton biomass (Chl a) decreased sharply from the river-mouth to seawards (17.3-2.1 μg L -1 ), with the dominant species changed from chlorophytes to diatoms. The photosynthetic rate based on Chl a at noon time under PAR-alone increased from 1.9 μg C (μg Chl a) -1 L -1 in low salinity zone (SSS -1 L -1 in turbidity front (SSS within 10-20), and then decreased to 2.1 μg C (μg Chl a) -1 L -1 in mixohaline zone (SSS > 20); accordingly, the carbon fixation per volume of seawater increased from 12.8 to 149 μg C L -1 h -1 , and decreased to 14.3 μg C L -1 h -1 . Solar UVR caused the inhibition of carbon fixation in surface water of all the investigated zones, by 39% in turbidity area and 7-10% in freshwater or mixohaline zones. In the turbidity zone, higher availability of CO 2 could have enhanced the photosynthetic performance; while osmotic stress might be responsible for the higher sensitivity of phytoplankton assemblages to solar UV radiation.

  15. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  16. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    Science.gov (United States)

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  17. Geographic variation in the photosynthetic responses and life history of Mastocarpus papillatus

    International Nuclear Information System (INIS)

    Zupan, J.R.

    1985-01-01

    Population differentiation in Mastocarpus papillatus, a red alga occurring from Baja California to Alaska, was assessed by (1) characterizing the geographic pattern of variation in reproductive behavior and (2) determining the range of variation in photosynthesis and respiration. Examining these two aspects of the biology of M. papillatus yielded different estimates of population differentiation. Carpospores of females collected from 8 locations between Baja California and northern California were grown in laboratory culture and their subsequent development followed. The 8 locations could be divided into 3 groups based on life history patterns. Photosynthetic responses to temperature and photon flux density were measured foliose gametophytes and crustose tetrasporophytes from 4 locations. Gametophytes had maximal net photosynthetic rates 4-5 times higher than tetrasporophytes. Tetrasporophyte populations were uniform in photosynthetic responses to temperature. Maximal rates occurred at 15 0 C Gametophyte populations appeared to be slightly differentiated. The photosynthetic temperature optima were between 20 0 C and 25 0 C for 3 populations and between 15 0 C and 20 0 C for 1 population. A preliminary study of carbon metabolism in M. papillatus gametophytes was conducted using 14 C. Partitioning of early products of photosynthetic carbon fixation between low molecular weight and polymeric, high molecular weight compounds appeared to differ under emerged and submerged conditions

  18. Photosynthetic carbon assimilation in the coccolithophorid Emiliania huxleyi (Haptophyta): Evidence for the predominant operation of the c3 cycle and the contribution of {beta}-carboxylases to the active anaplerotic reaction.

    Science.gov (United States)

    Tsuji, Yoshinori; Suzuki, Iwane; Shiraiwa, Yoshihiro

    2009-02-01

    The coccolithophorid Emiliania huxleyi (Haptophyta) is a representative and unique marine phytoplankton species that fixes inorganic carbon by photosynthesis and calci-fication. We examined the initial process of photosynthetic carbon assimilation by analyses of metabolites, enzymes and genes. When the cells were incubated with a radioactive substrate (2.3 mM NaH(14)CO(3)) for 10 s under illumination, 70% of the (14)C was incorporated into the 80% methanol-soluble fraction. Eighty-five and 15% of (14)C in the soluble fraction was incorporated into phosphate esters (P-esters), including the C(3) cycle intermediates and a C(4) compound, aspartate, respectively. A pulse-chase experiment showed that (14)C in P-esters was mainly transferred into lipids, while [(14)C]aspartate, [(14)C]alanine and [(14)C]glutamate levels remained almost constant. These results indicate that the C(3) cycle functions as the initial pathway of carbon assimilation and that beta-carboxylation contributes to the production of amino acids in subsequent metabolism. Transcriptional analysis of beta-carboxylases such as pyruvate carboxylase (PYC), phosphoenolpyruvate carboxylase (PEPC) and phosphoenolpyruvate carboxykinase (PEPCK) revealed that PYC and PEPC transcripts were greatly increased under illumination, whereas the PEPCK transcript decreased remarkably. PEPC activity was higher in light-grown cells than in dark-adapted cells. PYC activity was detected in isolated chloroplasts of light-grown cells. According to analysis of their deduced N-terminal sequence, PYC and PEPC are predicted to be located in the chloroplasts and mitochondria, respectively. These results suggest that E. huxleyi possesses unique carbon assimila-tion mechanisms in which beta-carboxylation by both PYC and PEPC plays important roles in different organelles.

  19. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    OpenAIRE

    Gamon, John A.

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks ever...

  20. Synthesis and characterization of boron incorporated diamond-like carbon thin films

    International Nuclear Information System (INIS)

    Zhang, L.L.; Yang, Q.; Tang, Y.; Yang, L.; Zhang, C.; Hu, Y.; Cui, X.

    2015-01-01

    Boron incorporated diamond-like carbon (B-DLC) (up to 8 wt.% boron) thin films were synthesized on silicon wafers using biased target ion beam deposition technique, where diamond-like carbon (DLC) was deposited by ion beam deposition and boron (B) was simultaneously incorporated by biased target sputtering of a boron carbide (B 4 C) target under different conditions. Pure DLC films and B–C films were also synthesized by ion beam deposition and biased target sputtering of B 4 C under similar conditions, respectively, as reference samples. The microstructure and mechanical properties of the synthesized films have been characterized by various technologies. It has been found that B exists in different states in B-DLC, including carbon-rich and B-rich boron carbides, boron suboxide and boron oxide, and the oxidation of B probably occurs during the film deposition. The incorporation of B into DLC leads to the increase of sp 3 bonded carbon in the films, the increase of both film hardness and elastic modulus, and the decrease of both surface roughness and friction coefficient. Furthermore, the content of sp 3 bonded carbon, film hardness and elastic modulus increase, and the film surface roughness and friction coefficient decrease with the increase of B-rich carbide in the B-DLC films. - Highlights: • Biased target ion beam deposition technique is promising to produce high quality DLC based thin films; • Boron exists in different states in B-DLC thin films; • The incorporation of B to DLC with different levels leads to improved film properties; • The fraction of sp 3 bonded C in B-DLC thin films increase with the increase of B-rich carbide content in the films

  1. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  2. Synthesis of nickel-incorporated larch-based carbon membranes with controllable porous structure for gas separation

    Science.gov (United States)

    Zhao, Xin; Li, Wei; Huang, Zhanhua; Liu, Shouxin

    2015-11-01

    Ni-incorporated larch-based carbon membranes have been synthesized by introducing the Ni(NO3)2 into the liquefied larch using liquefied larch sawdust as precursors and F127 as the soft template. The porous structure can be tailored by the amount of Ni(NO3)2, and the Ni and NiO nanoparticles with a size of 10 nm incorporated in the carbon frameworks. The increase in Ni(NO3)2 content can lead to the formation of disordered porous structure and shrinkage of carbon frameworks. The Ni-incorporated carbon membranes with largest pores possess highest gas permeation for N2, CO2, and O2 of 37.5, 19.8, and 55.5 m3 cm/m2 h kPa, which is larger than that of the pure carbon membranes, respectively. However, the poor ordered porous structure caused by adding large amount of Ni(NO3)2 can reduce the gas separation performance, which is attributed to the weaken of the molecular sieve function. The results indicate that the incorporation of few nanoparticles into larch-based carbon membranes can improve molecular sieve function.

  3. Spring photosynthetic onset and net CO2 uptake in Alaska triggered by landscape thawing.

    Science.gov (United States)

    Parazoo, Nicholas C; Arneth, Almut; Pugh, Thomas A M; Smith, Ben; Steiner, Nicholas; Luus, Kristina; Commane, Roisin; Benmergui, Josh; Stofferahn, Eric; Liu, Junjie; Rödenbeck, Christian; Kawa, Randy; Euskirchen, Eugenie; Zona, Donatella; Arndt, Kyle; Oechel, Walt; Miller, Charles

    2018-04-24

    The springtime transition to regional-scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze-thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO 2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO 2 inversions using a CASA-GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic-onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO 2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO 2 inversions, with better correlation to above-freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over

  4. Climate controls photosynthetic capacity more than leaf nitrogen contents

    Science.gov (United States)

    Ali, A. A.; Xu, C.; McDowell, N. G.

    2013-12-01

    Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.

  5. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    Science.gov (United States)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  6. Abscisic acid as a factor in regulation of photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Maria Faltynowicz

    2014-01-01

    Full Text Available The influence of abscisic acid (ABA on carbon metabolism and the activity of ribulosebisphosphate (RuBP and phosphoenolpyruvate (PEP carboxylases in 8-day-old pea seedlings was investigated. It was endeavoured to correlate the changes observed in metabolic processes with the endogenous ABA level. In plants treated with ABA incorporation of labeled carbon into sucrose, glucose, fructose and sugar phosphates was depressed, while 14C incorporation into starch, ribulose and malic acid was enhanced. The activity of RuBP carboxylase was considerably lowered, whereas that of PEP carboxylase was slightly increased. It is considered that inhibition of photosynthesis due to the action of ABA is caused to a great extent by the obstruction of the C-3 pathway and reduced activity of RuBP carboxylase, whereas (β-carboxylation was not blocked.

  7. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevat e carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  8. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.

    Science.gov (United States)

    Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Andrew Black, T; Yan, Wende; Goulden, Mike L; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo

    2014-06-26

    The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.

  9. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome

    Science.gov (United States)

    Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Black, T. Andrew; Yan, Wende; Goulden, Michael; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A.; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo

    2014-01-01

    The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.

  10. Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems

    Directory of Open Access Journals (Sweden)

    Félix L Figueroa

    2013-11-01

    Full Text Available In vivo chlorophyll fluorescence associated to Photosystem II is being used to evaluate photosynthetic activity of microalgae grown in different types of photobioreactors; however, controversy on methodology is usual. Several recommendations on the use of chlorophyll fluorescence to estimate electron transport rate and productivity of microalgae grown in thin-layer cascade cultivators and methacrylate cylindrical vessels are included. Different methodologies related to the measure of photosynthetic activity in microalgae are discussed: (1 measurement of light absorption, (2 determination of electron transport rates versus irradiance and (3 use of simplified devices based on pulse amplitude modulated (PAM fluorescence as Junior PAM or Pocket PAM with optical fiber and optical head as measuring units, respectively. Data comparisons of in vivo chlorophyll fluorescence by using these devices and other PAM fluorometers as Water-PAM in the microalga Chlorella sp. (Chlorophyta are presented. Estimations of carbon production and productivity by transforming electron transport rate to gross photosynthetic rate (as oxygen evolution using reported oxygen produced per photons absorbed values and carbon photosynthetic yield based on reported oxygen/carbon ratio are also shown. The limitation of ETR as estimator of photosynthetic and biomass productivity is discussed. Low cost:quality PAMs can promote monitoring of chlorophyll fluorescence in algal biotechnology to estimate the photosynthetic activity and biomass productivity.

  11. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    Science.gov (United States)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  12. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ma, Jan [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Chunzhong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2012-08-08

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production

    OpenAIRE

    Lai, Martin C.; Lan, Ethan I.

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO2 into various chemicals. This review discusses the d...

  14. The importance of the photosynthetic Gibbs effect in the elucidation of the Calvin-Benson-Bassham cycle.

    Science.gov (United States)

    Ebenhöh, Oliver; Spelberg, Stephanie

    2018-02-19

    The photosynthetic carbon reduction cycle, or Calvin-Benson-Bassham (CBB) cycle, is now contained in every standard biochemistry textbook. Although the cycle was already proposed in 1954, it is still the subject of intense research, and even the structure of the cycle, i.e. the exact series of reactions, is still under debate. The controversy about the cycle's structure was fuelled by the findings of Gibbs and Kandler in 1956 and 1957, when they observed that radioactive 14 CO 2 was dynamically incorporated in hexoses in a very atypical and asymmetrical way, a phenomenon later termed the 'photosynthetic Gibbs effect'. Now, it is widely accepted that the photosynthetic Gibbs effect is not in contradiction to the reaction scheme proposed by CBB, but the arguments given have been largely qualitative and hand-waving. To fully appreciate the controversy and to understand the difficulties in interpreting the Gibbs effect, it is illustrative to illuminate the history of the discovery of the CBB cycle. We here give an account of central scientific advances and discoveries, which were essential prerequisites for the elucidation of the cycle. Placing the historic discoveries in the context of the modern textbook pathway scheme illustrates the complexity of the cycle and demonstrates why especially dynamic labelling experiments are far from easy to interpret. We conclude by arguing that it requires sound theoretical approaches to resolve conflicting interpretations and to provide consistent quantitative explanations. © 2018 The Author(s).

  15. Possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves

    International Nuclear Information System (INIS)

    Popova, L.P.; Tsonev, T.D.; Vaklinova, S.G.

    1987-01-01

    The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14 CO 2 into glycolic acid, glycine, and serine, while 14 C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO -6 molar while the CO 2 -compensation point increased 46% and stomatal resistance increased more than twofold over control plants

  16. Different Metabolomic Responses to Carbon Starvation between Light and Dark Conditions in the Purple Photosynthetic Bacterium, Rhodopseudomonas palustris.

    Science.gov (United States)

    Kanno, Nanako; Matsuura, Katsumi; Haruta, Shin

    2018-03-29

    Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD + /NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.

  17. Needle age and season influence photosynthetic temperature response and total annual carbon uptake in mature Picea mariana trees

    Science.gov (United States)

    Jensen, Anna M.; Warren, Jeffrey M.; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.

    2015-01-01

    Background and Aims The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA. Methods Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years. The results were applied to a simple model of canopy photosynthesis in order to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios. Key Results Temperature responses of key photosynthetic parameters [i.e. light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax) and electron transport rate (Jmax)] were dependent on season and generally less responsive in the developing current-year (Y0) needles compared with 1-year-old (Y1) or 2-year-old (Y2) foliage. Temperature optimums ranged from 18·7 to 23·7, 31·3 to 38·3 and 28·7 to 36·7 °C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64 % of modelled annual stand C uptake from Y1&2 cohorts (LAI 0·67 m2 m−2) and just 36 % from Y0 cohorts (LAI 0·52 m2 m−2). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g. 31 % of annual C uptake for a modelled 9 °C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts. Conclusions Collectively, this study illustrates the physiological and

  18. Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species

    OpenAIRE

    Hidaka, Amane; Kitayama, Kanehiro

    2013-01-01

    How plants develop adaptive strategies to efficiently use nutrients on infertile soils is an important topic in plant ecology. It has been suggested that, with decreasing phosphorus (P) availability, plants increase photosynthetic P-use efficiency (PPUE) (i.e., the ratio of instantaneous photosynthetic carbon assimilation rate per unit foliar P). However, the mechanism to increase PPUE remains unclear. In this study, we tested whether high PPUE is explained by an optimized allocation of P in ...

  19. Effects of gibberellic acid on growth and photosynthetic pigments of ...

    African Journals Online (AJOL)

    The aim of this study was to improve growth performance by enhancing the photosynthetic pigments and enzyme carbonic anhydrase (CA) activity of Hibiscus sabdariffa L. (cv. Sabahia 17) under NaCl stress. Under non-saline condition, application of GA3 enhanced growth parameters (shoot length, shoot fresh weight (FW) ...

  20. Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs.

    Science.gov (United States)

    Watanabe, K; Imase, M; Aoyagi, H; Ohmura, N; Saiki, H; Tanaka, H

    2008-09-01

    (i) Quantitative and qualitative analyses of photosynthetic metabolites of Chlorella sorokiniana and elucidation of the mechanism of their utilization by algal symbionts. (ii) Development of artificial medium that imitates photoautotroph-heterotroph interaction and investigation of its suitability for isolation of novel microbes from the environment. Various components, including free dissolved carbohydrates, nitrogenous compounds and vitamin, were detected and together contributed 11.1% (as carbon content) of the total photosynthetic metabolites in the medium. Utilization of these photosynthetic metabolites in algal culture broth by algal symbionts was studied. Many symbionts showed specific utilization patterns. A novel artificial extracellular released organic carbon medium, which imitated the nutritional conditions surrounding algae, was developed based on the pattern of utilization of the algal metabolites by the symbiotic heterotrophs. About 42.9% of the isolates were closely related to photoautotrophic-dependent and oligotrophic bacteria. With the novel artificial medium, it was possible to selectively isolate some bacterial strains. Synthetic bacterial growth medium is an important and basic tool for bacterial isolation from environmental samples. The current study shows that preferential separation of typical bacterial subset can be achieved by using artificial medium that mimics photosynthetic metabolites.

  1. Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production

    Science.gov (United States)

    Adolfsson, Lisa; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area. PMID:25615871

  2. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Directory of Open Access Journals (Sweden)

    Lisa Adolfsson

    Full Text Available Arbuscular mycorrhizal (AM fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi, and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM, mock inoculum (control or with P(i fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  3. Post photosynthetic carbon partitioning to sugar alcohols and consequences for plant growth.

    Science.gov (United States)

    Dumschott, Kathryn; Richter, Andreas; Loescher, Wayne; Merchant, Andrew

    2017-12-01

    The occurrence of sugar alcohols is ubiquitous among plants. Physiochemical properties of sugar alcohols suggest numerous primary and secondary functions in plant tissues and are often well documented. In addition to functions arising from physiochemical properties, the synthesis of sugar alcohols may have significant influence over photosynthetic, respiratory, and developmental processes owing to their function as a large sink for photosynthates. Sink strength is demonstrated by the high concentrations of sugar alcohols found in plant tissues and their ability to be readily transported. The plant scale distribution and physiochemical function of these compounds renders them strong candidates for functioning as stress metabolites. Despite this, several aspects of sugar alcohol biosynthesis and function are poorly characterised namely: 1) the quantitative characterisation of carbon flux into the sugar alcohol pool; 2) the molecular control governing sugar alcohol biosynthesis on a quantitative basis; 3) the role of sugar alcohols in plant growth and ecology; and 4) consequences of sugar alcohol synthesis for yield production and yield quality. We highlight the need to adopt new approaches to investigating sugar alcohol biosynthesis using modern technologies in gene expression, metabolic flux analysis and agronomy. Combined, these approaches will elucidate the impact of sugar alcohol biosynthesis on growth, stress tolerance, yield and yield quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. METHANE INCORPORATION BY PROCARYOTIC PHOTOSYNTHETICMICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Charles J.; Kirk, Martha; Calvin, Melvin

    1970-08-01

    The procaryotic photosynthetic microorganisms Anacystis nidulans, Nostoc and Rhodospirillum rubrum have cell walls and membranes that are resistant to the solution of methane in their lipid components and intracellular fluids. But Anacystis nidulans, possesses a limited bioxidant system, a portion of which may be extracellularly secreted, which rapidly oxidizes methane to carbon dioxide. Small C{sup 14} activities derived from CH{sub 4} in excess of experimental error are detected in all the major biochemical fractions of Anacystis nidulans and Nostoc. This limited capacity to metabolize methane appears to be a vestigial potentiality that originated over two billion years ago in the early evolution of photosynthetic bacteria and blue-green algae.

  5. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  6. The effects of lead on the gaseous exchange and photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Jerzy W. Poskuta

    2014-01-01

    Full Text Available Roots of whole 3 week-old pea seedlings (Pisum sativum L. var. "Bordi" were immersed for 24 h in solutions of lead chloride at Pb copcentrations of 200, 400, 800,12000 mg dm3. Accumulation of lead in roots was independent of the Pb concentration, whereas the accumulation of Pb in shoots was an almost linear function of the concentration of this element in the root medium. This treatment caused Pb concentration-dependent inhibition of apparent photosynthesis (APS, photorespiration (PR, 14CO2 uptake, stomatal opening and transpiration of shoots and also germination of seeds. The most sensitive to Pb contamination was CO2 exchange, then transpiration and to a lesser degree germination of seeds. Lead caused a considerable alteration of photosynthetic and photorespiratory carbon metabolism, restricted the 14C-labeling of: phosphoglycerate, ribose+ribulose, sucrose, glycolate and glycine+serine. Under conditions of C02 uptake limited by lead, an enhancement of the 14C-labeling of malate+citrate, alanine and glucose was observed.

  7. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes.

    Science.gov (United States)

    Naduthodi, Mihris Ibnu Saleem; Barbosa, Maria J; van der Oost, John

    2018-02-03

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been regarded as environmentally friendly alternatives to reduce the usage of fossil fuels, thereby contributing to reducing the carbon footprint. This light-driven generation of green chemicals and biofuels has triggered the research for metabolic engineering of these photosynthetic microbes. CRISPR-Cas systems are successfully implemented across a wide range of prokaryotic and eukaryotic species for efficient genome editing. However, the inception of this genome editing tool in microalgal and cyanobacterial species took off rather slowly due to various complications. In this review, we elaborate on the established CRISPR-Cas based genome editing in various microalgal and cyanobacterial species. The complications associated with CRISPR-Cas based genome editing in these species are addressed along with possible strategies to overcome these issues. It is anticipated that in the near future this will result in improving and expanding the microalgal and cyanobacterial genome engineering toolbox. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang eTang

    2011-08-01

    Full Text Available Photosynthesis is the biological process that converts solar energy to biomass, bio-products and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and 13C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO2 assimilation pathways, acetate assimilation, carbohydrate catabolism, the TCA cycle and some key and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.

  9. Importance of structure and density of macroalgae communities (Fucus serratus) for photosynthetic production and light utilisation

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    at high light depended on community density. Therefore, while the determination of the production of individual algal thalli is useful for evaluating differences in acclimatisation and adaptation between species and stands, it is not useful for evaluating production rates for entire plants and communities......Determination of photosynthetic production in plant communities is essential for evaluating plant growth rates and carbon fluxes in ecosystems, but it cannot easily be derived from the photosynthetic response of individual leaves or thalli, which has been the focus of virtually all previous aquatic...... studies. To evaluate the regulation of aquatic community production, we measured the photosynthetic production of thallus parts and entire communities of Fucus serratus (L.) of different density and spatial structure exposed to varying photon flux density and dissolved CO2 concentration. Photosynthetic...

  10. Photosynthetic capacities of mature tropical forest trees in Rwanda are linked to successional group identity rather than to leaf nutrient content

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Adolfsson, Lisa; Niyonzima, Felix; Nsabimana, Donat; Uddling, Johan

    2014-05-01

    Tropical forests are crucial in the global carbon balance, yet information required to estimate how much carbon that enter these ecosystems through photosynthesis is very limited, in particular for Africa and for tropical montane forests. In order to increases the knowledge of natural variability of photosynthetic capacities in tropical tree species in tropical Africa, measurements of leaf traits and gas exchange were conducted on sun and shade leaves of ten tree species growing in two tropical forests in Rwanda in central Africa. Seven species were studied in Ruhande Arboretum, a forest plantation at mid altitude (1700 m), and six species in Nyungwe National Park, a cooler and higher altitude (at 2500 m) montane rainforest. Three species were common to both sites. At Nyungwe, three species each belonged to the successional groups pioneer and climax species. Climax species had considerably lower maximum rates of photosynthetic carboxylation (Vcmax) and electron transport (Jmax) than pioneer species. This difference was not related to leaf nutrient content, but rather seemed to be caused by differences in within-leaf N allocation between the two successional groups. With respect to N, leaves of climax species invested less N into photosynthetic enzymes (as judged by lower Vcmax and Jmax values) and more N into chlorophyll (as judged by higher SPAD values). Photosynthetic capacities, (i.e., Jmax and Vcmax), Jmax to Vcmax ratio and P content were significantly higher in Nyungwe than in Arboretum. Sun leaves had higher photosynthetic capacities and nutrient content than shade leaves. Across the entire dataset, variation in photosynthetic capacities among species was not related to leaf nutrient content, although significant relationships were found within individual species. This study contributes critical tropical data for global carbon models and suggests that, for montane rainforest trees of different functional types, successional group identity is a better

  11. Biological processing of carbon dioxide. ; Photosynthetic function of plants, and carbon dioxide fixing function of marine organisms. Nisanka tanso no seibutsuteki shori. ; Shokubutsu no kogosei kino to kaiyo seibutsu no nisanka tanso kotei kino

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, M [National Research Inst. for Pollution and Resources, Tsukuba (Japan)

    1991-02-15

    This paper describes photosynthetic function of plants, and CO {sub 2} fixing function of marine organisms. Among the photosythetic reaction systems, the C {sub 3} type reaction carries out CO {sub 2} fixation using the Calvin cycle, and takes out the carbon dioxide out of the system through enzymatic reactions of 3-phosphoglycerate {yields} fructose-6-phosphate. The C {sub 4} type reaction has a special cycle to supply CO {sub 2} to the Calvin cycle, i. e. C {sub 4} dicarboxylic acid cycle. The CAM type reaction enables the photosynthetic type to be converted according to variations in the growing environment. The majority of the surace agricultural crops are from C {sub 3} plants, of which yield may be increased when grown in a high CO {sub 2} atmosphere. On the one hand, gene engineering may make possible breeding of plants having high CO {sub 2} fixing capability. In the area of marine organisms, lime algae growing in clusters around coral reefs form and deposit CaCO {sub 3}. Reef creating corals have symbiotically in their stomach layer brown algae having photosynthetic function to build CaCO {sub 3} skeleton. The corals calcify algae quickly and in a large quantity, hence play an important role in fixing underwater CO {sub 2}. 2 tabs.

  12. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  13. BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  14. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    International Nuclear Information System (INIS)

    Marciano, F.R.; Bonetti, L.F.; Pessoa, R.S.; Massi, M.; Santos, L.V.; Trava-Airoldi, V.J.

    2009-01-01

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  15. Oxygen plasma etching of silver-incorporated diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, F.R., E-mail: fernanda@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil); Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Bonetti, L.F. [Clorovale Diamantes Industria e Comercio Ltda, Estr. do Torrao de Ouro, 500-Sao Jose dos Campos, 12229-390, SP (Brazil); Pessoa, R.S.; Massi, M. [Instituto Tecnologico de Aeronautica (ITA), Centro Tecnico Aeroespacial (CTA), Pca. Marechal Eduardo Gomes, 50-Sao Jose dos Campos, 12228-900, SP (Brazil); Santos, L.V.; Trava-Airoldi, V.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), Av. dos Astronautas 1758, Sao Jose dos Campos, 12227-010, SP (Brazil)

    2009-08-03

    Diamond-like carbon (DLC) film as a solid lubricant coating represents an important area of investigation related to space devices. The environment for such devices involves high vacuum and high concentration of atomic oxygen. The purpose of this paper is to study the behavior of silver-incorporated DLC thin films against oxygen plasma etching. Silver nanoparticles were produced through an electrochemical process and incorporated into DLC bulk during the deposition process using plasma enhanced chemical vapor deposition technique. The presence of silver does not affect significantly DLC quality and reduces by more than 50% the oxygen plasma etching. Our results demonstrated that silver nanoparticles protect DLC films against etching process, which may increase their lifetime in low earth orbit environment.

  16. Photosynthetic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  17. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  18. Comparison of calculated and experimental isotope edited FTIR difference spectra for purple bacterial photosynthetic reaction centers with different quinones incorporated into the QA binding site.

    Directory of Open Access Journals (Sweden)

    Nan eZhao

    2013-08-01

    Full Text Available Previously we have shown that ONIOM type (QM/MM calculations can be used to simulate isotope edited FTIR difference spectra for neutral ubiquinone in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. Here we considerably extend upon this previous work by calculating isotope edited FTIR difference spectra for reaction centers with a variety of unlabeled and 18O labeled foreign quinones incorporated into the QA binding site. Isotope edited spectra were calculated for reaction centers with 2,3-dimethoxy-5,6-dimethyl-1,4-benzoquinone (MQ0, 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ, and 2,3-dimethyl-l,4-naphthoquinone (DMNQ incorporated, and compared to corresponding experimental spectra. The calculated and experimental spectra agree well, further demonstrating the utility and applicability of our ONIOM approach for calculating the vibrational properties of pigments in protein binding sites.The normal modes that contribute to the bands in the calculated spectra, their composition, frequency and intensity, and how these quantities are modified upon 18O labeling, are presented. This computed information leads to a new and more detailed understanding/interpretation of the experimental FTIR difference spectra. Hydrogen bonding to the carbonyl groups of the incorporated quinones is shown to be relatively weak. It is also shown that there is some asymmetry in hydrogen bonding, accounting for 10-13 cm-1 separation in the frequencies of the carbonyl vibrational modes of the incorporated quinones. The extent of asymmetry H-bonding could only be established by considering the spectra for various types of quinones incorporated into the QA binding site. The quinones listed above are tail-less. Spectra were also calculated for reaction centers with corresponding tail containing quinones incorporated, and it is found that replacement of the quinone methyl group by a phytyl or prenyl chain does not alter ONIOM calculated s

  19. Photosynthetic control of electron transport and the regulation of gene expression.

    Science.gov (United States)

    Foyer, Christine H; Neukermans, Jenny; Queval, Guillaume; Noctor, Graham; Harbinson, Jeremy

    2012-02-01

    The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.

  20. Structural Modification in Carbon Nanotubes by Boron Incorporation

    Directory of Open Access Journals (Sweden)

    Handuja Sangeeta

    2009-01-01

    Full Text Available Abstract We have synthesized boron-incorporated carbon nanotubes (CNTs by decomposition of ferrocene and xylene in a thermal chemical vapor deposition set up using boric acid as the boron source. Scanning and transmission electron microscopy studies of the synthesized CNT samples showed that there was deterioration in crystallinity and improvement in alignment of the CNTs as the boron content in precursor solution increased from 0% to 15%. Raman analysis of these samples showed a shift of ~7 cm−1in wave number to higher side and broadening of the G band with increasing boron concentration along with an increase in intensity of the G band. Furthermore, there was an increase in the intensity of the D band along with a decrease in its wave number position with increase in boron content. We speculate that these structural modifications in the morphology and microstructure of CNTs might be due to the charge transfer from boron to the graphite matrix, resulting in shortening of the carbon–carbon bonds.

  1. Photosynthetic metabolism of malate and aspartate in Flaveria trinervia a C4 dicot

    International Nuclear Information System (INIS)

    Moore, B.A.

    1986-01-01

    C 4 species are known to vary in their apparent relative use of malate and aspartate to mediate carbon flux through the C 4 cycle. These studies investigate some of the adjustments in photosynthetic carbon metabolism that occur during a dark to light transition and during expansion of leaves of Flaveria trinervia, a C 4 dicot. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts, indicated that both C 4 acids are formed in the mesophyll chloroplast, and that aspartate is metabolized to malate in the bundle sheath chloroplast prior to decaroxylation there. During photosynthetic induction, the partitioning of 14 CO 2 between malate and aspartate showed a single oscillation of increased aspartate labelling after 5 min of illumination. Turnover of [4-14C] (malate plus aspartate) was slow initially during illumination, prior to establishment of active pools of C 4 cycle metabolites

  2. Managing the Microbial Ecology of a Cyanobacteria-Based Photosynthetic Factory Direct!, Final Report for EE0006100

    Energy Technology Data Exchange (ETDEWEB)

    Rittmann, Bruce [Arizona State Univ., Tempe, AZ (United States); Krajmalnik‐Brown, Rosa [Arizona State Univ., Tempe, AZ (United States); Zevin, Alexander [Arizona State Univ., Tempe, AZ (United States); Nguyen, Binh [Arizona State Univ., Tempe, AZ (United States); Patel, Megha [Arizona State Univ., Tempe, AZ (United States)

    2015-02-28

    The grandest challenge facing human society today is providing large amounts of energy and industrial chemicals that are renewable and carbon-neutral. An outstanding opportunity lies in employing photosynthetic microorganisms, which have the potential to generate energy and chemical feedstock from sunlight and CO2 at rates 10 to 100 times greater than plants. Major challenges for solar-powered production using photosynthetic microorganisms are associated with the harvesting and downstream processing of biomass to yield the usable energy or material feedstock e.g. The technical challenges and costs of downstream processing could be avoided if, powered by solar energy, the photosynthetic microorganisms were to convert CO2 directly to the desired product, which they release for direct harvesting. This approach creates a true photosynthetic factory, our goal for Photosynthetic Factory Direct! Our team is able to genetically modify the cyanobacterium Synechocystis sp. PCC 6803 so that it produces and excretes a range of renewable energy and chemical products directly from CO2 and sunlight. Essential to realizing the potential of the photosynthetic factory is an engineered Advanced Photobioreactor (APBR) for reliable synthesis and harvest of the products.

  3. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater

    Directory of Open Access Journals (Sweden)

    Mieko Higuchi-Takeuchi

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2 showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  4. Photosynthetic pathways of some aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Hough, R A [Wayne State Univ., Detroit; Wetzel, R G

    1977-12-01

    Over 40 species of aquatic angiosperms, including submersed, floating and emergent types, have been examined for photosynthetic status as part of a search for possible aquatic C/sub 4/ species. The C/sub 4/ system is viewed as potentially of adaptive value in certain aquatic situations, although evidence for its occurrence there is not conclusive. Emphasis was on plants from North-temperate softwater and hardwater lakes to explore both possibilities of CO/sub 2/ limitation, i.e., low total inorganic carbon in softwater vs. low free CO/sub 2/ in hardwater lakes. On the basis of leaf cross-section anatomy, all plants examined, with one exception, clearly did not show evidence of C/sub 4/ ''Krantz anatomy.'' In the submersed plant Potamogeton praelongus Wulf, large starch-producing chloroplasts were concentrated in cells surrounding vascular bundles and in a narrow band of cells between vascular bundles. The in situ photosynthetic rate of this plant was twice that of a related species, but other evidence including PEP carboxylase content and photorespiratory response to high O/sub 2/ did not confirm the presence of the C/sub 4/ photosynthesis.

  5. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  6. Impact of global climate change on ecosystem-level interactions among sympatric plants from all three photosynthetic pathways. Terminal report

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1997-12-17

    The proposed research will determine biochemical and physiological responses to variations in environmental factors for plants of all three photosynthetic pathways under competitive situations in the field. These responses will be used to predict the effects of global climatic change on an ecosystem in the northwestern Sonoran Desert where the C{sub 3} subshrub Encelia farinosa, the C{sub 4} bunchgrass Hilaria rigida, and the CAM succulent Agave deserti are co-dominants. These perennials are relatively short with overlapping shallow roots facilitating the experimental measurements as well as leading to competition for soil water. Net CO{sub 2} uptake over 24-h periods measured in the laboratory will be analyzed using an environmental productivity index (EPI) that can incorporate simultaneous effects of soil water, air temperature, and light. Based on EPI, net CO{sub 2} uptake and hence plant productivity will be predicted for the three species in the field under various treatments. Activity of the two CO{sub 2} fixation enzymes, Rubisco and PEPCase, will be determined for these various environmental conditions; also, partitioning of carbon to various organs will be measured based on {sup 14}CO{sub 2} labeling and dry weight analysis. Thus, enzymatic and partitioning controls on competition among sympatric model plants representing all three photosynthetic pathways will be investigated.

  7. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  8. Effects of water stress on photosynthetic electron transport, photophosphorylation, and metabolite levels of Xanthium strumarium mesophyll cells.

    Science.gov (United States)

    Sharkey, T D; Badger, M R

    1982-12-01

    Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.

  9. New Environmentalconditions Responsible for the amount of mg Incorporated in Biogenic Carbonates

    Science.gov (United States)

    Zuddas, P.; Cherchi, A.; DeGiudici, G. B.; Buosi, C.

    2012-12-01

    The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. Several kinetic laboratory investigations have suggested that the temperature is kinetically responsible for the amount of Mg incorporated in both abiotic and biogenic calcites and that variation of kinetic reaction mechanism resulting from the temperature changes are correlated with the variable amount of Mg incorporated in calcites. These results explain why in present-day marine carbonates low-Mg calcite cements are mainly associated with cool water while high-Mg carbonates are dominantly found in warm-water environments. An apparent inverse relationship between the global average paleo-temperature and the Mg/Ca ratio is however observed in the past formed marine carbonate. This apparent contradiction has been interpreted as resulting from a possible changing in the relative seawater geochemical cycles of these cations. Recent monitoring of costal areas in presence of heavy metals and CO2 released from industrial polluted area reveals the presence of porcelanaceous miliolids infested by microscopic boring microflora (cyanobacteria, algae and fungi). Here, benthonic foraminifera have Mg/Ca molar ratio by one order of magnitude higher when compared to the average value of the same genus living under uncontaminated environments. A similar behaviour has been found for Zn, Cd and Pb. In these contaminated environments, temperature and average major seawater composition remain constant, while PCO2 partial pressure (estimated by pH and alkalinity using the ion pairing model) is 3-5 times higher than the average for the open sea nearby. Geochemical models predicts that CO2 increase is affecting carbonate saturation state of surface water in the twenty-first century indicating that calcareous organisms may have difficulty calcifying leading to production of weaker skeletons and greater vulnerability to erosion. The

  10. Response of photosynthetic carbon gain to ecosystem retrogression of vascular plants and mosses in the boreal forest.

    Science.gov (United States)

    Bansal, Sheel; Nilsson, Marie-Charlotte; Wardle, David A

    2012-07-01

    In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.

  11. The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa

    International Nuclear Information System (INIS)

    Naidoo, G.; Chirkoot, D.

    2004-01-01

    Richards Bay, on the northern KwaZulu-Natal coast, is the largest coal exporting port in South Africa. The coal is stored at the Richards Bay Coal Terminal (RBCT) prior to export. Dust from coal operations is a major problem in the Richards Bay area. In this study, we tested the hypothesis that coal dust adversely affects photosynthetic performance of Avicennia marina (Forssk.) Vierh., the dominant mangrove species in the harbour. Photosynthetic performance was determined on 10 trees by measuring carbon dioxide uptake and chlorophyll fluorescence parameters at two elevation sites and on upper and lower leaf surfaces that were covered or uncovered with coal dust. Measurements were made on five clear, sunny days at saturating light (>1000 μmol m -2 s -1 ) and high temperature (28-30 deg. C). Coal dust significantly reduced carbon dioxide exchange of upper and lower leaf surfaces by 17-39%, the reduction being generally greater on the lower leaf surface that is covered by a dense mat of trichomes and salt glands. The reduction in carbon dioxide exchange by coal dust was higher at the high elevation site that supported isolated dwarfed trees. The chlorophyll fluorescence data indicated that leaves coated with dust exhibited significantly lower photosystem II (PS II) quantum yield, lower electron transport rate (ETR) through PSII and reduced quantum efficiency of PSII (F v F m ). The chlorophyll fluorescence data supported the gas exchange measurements and are consistent with reduced photosynthetic performance of leaves coated with coal dust. - Coal dust reduced photosynthetic performance of the mangrove, Avicennia marina

  12. Engineering cyanobacteria as photosynthetic feedstock factories.

    Science.gov (United States)

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  13. Soil carbon and soil physical properties response to incorporating mulched forest slash

    Science.gov (United States)

    Felipe G. Sanchez; Emily A. Carter; John. F. Klepac

    2000-01-01

    A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...

  14. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, Ted A.; Burdett, Jim; Whelan, Joseph F.; Paull, Charles K.

    1997-02-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO 2/O 2 ratios appear to be the major controlling variable. Atmospheric CO 2/O 2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO 2 in the course of obtaining 0 2. Tissue CO 2 therefore, does not isotopically equilibrate with environmental CO 2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO 2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO 2 uptake is several times faster than respiratory CO 2 release. Photosynthesis, therefore, affects skeletal δ13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects.

  15. Inter and intra-specific variation in photosynthetic acclimation response to long term exposure of elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M. [Univ. of Essex, Colchester (United Kingdom)]|[Writtle Coll. (United Kingdom)

    1996-08-01

    The response of intra and interspecific variation in photosynthetic acclimation to growth at elevated atmospheric CO{sub 2} concentration (600{micro}mol mol-l) in six important grassland species was investigated. Plants were grown in a background sward of Lolium perenne and measurements were made after four years of growth at elevated C{sub a}. Elevated CO{sub 2} was maintained using a FACE (Free-Air Carbon Enrichment) system. Significant intra and interspecific variation in acclimation response was demonstrated. The response of adaxial and abaxial stomatal conductance to elevated CO{sub 2} was also investigated. The stomatal conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated C{sub a}. Significant asymmetric responses in stomatal conductance was demonstrated in D. glomerata and T. pratense. Analysis of stomatal indices and densities indicated that the observed reductions in stomatal conductance were probably the result of changes in stomatal aperture.

  16. Nitrogen deposition's role in determining forest photosynthetic capacity; a FLUXNET synthesis

    Science.gov (United States)

    Fleischer, K.; Rebel, K.; van der Molen, M.; Erisman, J.; Wassen, M.; Dolman, H.

    2011-12-01

    There is growing evidence that nitrogen (N) deposition stimulates forest growth, as many forest ecosystems are N-limited. However, the significance of N deposition in determining the strength of the present and future terrestrial carbon sink is strongly debated. We investigated and quantified the effect of N deposition on ecosystem photosynthetic capacity (Amax) with the FLUXNET database, including 80 forest sites, covering the major forest types and climates of the world. The relative effect of climate and N deposition on photosynthesis was assessed with regression models. We found a significant positive correlation of Amax and N deposition for evergreen needleleaf forests in our dataset. We further found indications that foliar N and LAI scale positively with N deposition, reflecting the 2 mechanisms at which N is believed to cause an increase in carbon gain. We can support the hypothesis that foliar N is the principal scaling factor for canopy Amax across all forest types. Deciduous forests are less diverse in terms of climate and nutritional conditions for the included sites and these forests exhibited weak to no correlations with the included climate and N predictor variables. Quantifying the effect of N deposition on photosynthetic rates at the canopy level is an essential step for quantifying its contribution to the terrestrial carbon sink and for predicting vegetation response to N fertilization and global change in the future. The approach shows that eddy-covariance measurements of carbon fluxes at the canopy scale allow us to test hypotheses with respect to the expected nitrogen-photosynthesis relationships at the canopy scale.

  17. Non-linear mixed-effects modeling for photosynthetic response of Rosa hybrida L. under elevated CO2 in greenhouses - Short communication

    DEFF Research Database (Denmark)

    Öztürk, I.; Ottosen, C.O.; Ritz, C.

    2011-01-01

    Photosynthetic response to light was measured on the leaves of two cultivars of Rosa hybrida L. (Escimo and Mercedes) in the greenhouse to obtain light-response curves and their parameters. Th e aim was to use a model to simulate leaf photosynthetic carbon gain with respect to environmental condi...

  18. Simulation of Forest Carbon Fluxes Using Model Incorporation and Data Assimilation

    OpenAIRE

    Min Yan; Xin Tian; Zengyuan Li; Erxue Chen; Xufeng Wang; Zongtao Han; Hong Sun

    2016-01-01

    This study improved simulation of forest carbon fluxes in the Changbai Mountains with a process-based model (Biome-BGC) using incorporation and data assimilation. Firstly, the original remote sensing-based MODIS MOD_17 GPP (MOD_17) model was optimized using refined input data and biome-specific parameters. The key ecophysiological parameters of the Biome-BGC model were determined through the Extended Fourier Amplitude Sensitivity Test (EFAST) sensitivity analysis. Then the optimized MOD_17 mo...

  19. Photoperiodic controls on ecosystem-level photosynthetic capacity

    Science.gov (United States)

    Stoy, P. C.; Trowbridge, A. M.; Bauerle, W.

    2012-12-01

    Most models of photosynthesis at the leaf or canopy level assume that temperature is the dominant control on the variability of photosynthetic parameters. Recent studies, however, have found that photoperiod is a better descriptor of the seasonal variability of photosynthetic function at the leaf and plant scale, and that spectral indices of leaf functionality are poor descriptors of this seasonality. We explored the variability of photosynthesic parameters at the ecosystem scale using over 100 site-years of air temperature and gross primary productivity (GPP) data from non-tropical forested sites in the Free/Fair Use LaThuille FLUXNET database (www.fluxdata.org), excluding sites that were classified as dry and/or with savanna vegetation, where we expected GPP to be driven by moisture availability. Both GPP and GPP normalized by daily photosynthetic photon flux density (GPPn) were considered, and photoperiod was calculated from eddy covariance tower coordinates. We performed a Granger causality analysis, a method based on the understanding that causes precede effects, on both the GPP and GPPn. Photoperiod Granger-caused GPP (GPPn) in 95% (87%) of all site-years. While temperature Granger-caused GPP in a mere 23% of site years, it Granger-caused GPPn 73% of the time. Both temperature values are significantly less than the percent of cases in which day length Granger-caused GPP (p<0.05, Student's t-test). An inverse analysis was performed for completeness, and it was found that GPP Granger-caused photoperiod (temperature) in 39% (78%) of all site years. Results demonstrate that incorporating simple photoperiod controls may be a logical step in improving ecosystem and global model output.

  20. Photosynthetic assimilation of 14C in isolated chloroplasts in the presence of NO3-, SO4- and NH4+

    International Nuclear Information System (INIS)

    Tsenova, M.

    1977-01-01

    Quantitative changes in carbon photosynthesis assimilation occurring as an effect of varying nitrate, sulfate and ammonia ions in the incubation medium were studied in isolated chloroplasts of spinach. Carbon photosynthetic assimilation is enhanced under the influence of rising nitrate anion concentrations to a certain level. The percentage of 14 C concent in the insoluble products is also raised while in glycolic acid it is reduced. The nitrate anion has an effect similar to that of the bicarbonic anion the same processes. Ammonium and sulfate ions have the opposite effect. It can be assumed that the established effect of the ions studied is due to the influence they have on photosynthetic phosphorylation. (author)

  1. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain.

    Science.gov (United States)

    Wang, Hui; Lin, Apeng; Gu, Wenhui; Huan, Li; Gao, Shan; Wang, Guangce

    2016-04-22

    Sporulation and spore release are essential phases of the life cycle in algae and land plants. Ulva prolifera, which is an ideal organism for studying sporulation and spore release, was used as the experimental material in the present study. The determination of photosynthetic parameters, combined with microscopic observation, treatment with photosynthetic inhibitors, limitation of carbon acquisition, and protein mass spectrometry, was employed in this experiment. Cycle electron transport (CEF) was found enhanced at the onset of sporangia formation. The inhibition effect of dibromothymoquinone (DBMIB) towards sporulation was always strong during the sporulation process whereas the inhibition effect of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) was continuously declined accompanied with the progress of sporulation. The changes of photosynthesis resulted from the limitation of CO2 acquisition could stimulate sporulation onset. Quantitative protein analysis showed that enzymes involved in carbon fixation, including RUBISCO and pyruvate orthophosphate dikinase, declined during sporogenesis, while proteins involved in sporulation, including tubulin and centrin, increased. These results suggest that enhanced cyclic electron flow (CEF) and oxidation of the plastoquinone pool are essential for sporangia formation onset, and changes in photosynthetic electron transport chain have significant impacts on sporulation of the green algae.

  2. Direct measurement of carbon substrate oxidation and incorporation patterns in RuMP-type methylotrophs: chemostatic cultures of Methylomonas L3

    International Nuclear Information System (INIS)

    Chu, I.M.; Bussineau, C.M.; Papoutsakis, E.T.

    1985-01-01

    A technique using C-14 isotope tracers to probe the branching of carbon flow in methylotrophic bacteria has been devised and applied to continuous steady-state cultures. Methylomonas L3, a strain which utilizes the KDPG/TA variant of the ribulose monophosphate cycle for carbon fixation, was employed in the experimental studies. The actual in vivo rates of substrate-carbon incorporation into biomass, both direct and via CO 2 , and of the two carbon oxidation schemes were determined in three different steady-state cultures. The results show that the carbon substrate is oxidized predominantly via formate (the linear oxidation scheme), and that the cyclic scheme of oxidation is minimally, if at all, utilized. The carbon incorporation and oxidation patterns appear to vary considerably with the dilution rate and the inoculum history. The experimental accuracy of the new technique is discussed in detail

  3. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs

    Directory of Open Access Journals (Sweden)

    Sun HY

    2017-04-01

    Full Text Available Hongyu Sun,* Jing Zhou,* Zhu Huang,* Linlin Qu,* Ning Lin,* Chengxiao Liang, Ruiwu Dai, Lijun Tang, Fuzhou Tian General Surgery Center, Chengdu Military General Hospital, Chengdu, China *These authors contributed equally to this work Abstract: Carbon nanotubes (CNTs provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell–cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt% exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future. Keywords: carbon nanotubes, collagen hydrogel, cardiac constructs, cell alignment, tissue functionality

  4. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  5. Fabrication of single-walled carbon nanohorns incorporated a monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Zhao, Hongyan; Wang, Yizhou; Cheng, Heyong; Wang, Yuanchao

    2017-08-01

    Single-walled carbon nanohorns have received great interest for their unique properties and diverse potential applications. Herein, we demonstrated the feasibility of single-walled carbon nanohorns incorporated poly(styrene-divinylbenzene) monolith as the stationary phase for capillary electrochromatography, which were prepared by one-step in situ copolymerization. Single-walled carbon nanohorns were dispersed in styrene to give a stable and homogeneous suspension. The monolithic column gave effective separation for a wide range of aromatic compounds, which was based on hydrophobicity and π-π electrostatic stacking of single-walled carbon nanohorns. The precisions of migration time and peak area varied in the ranges of 1.4-1.9% for intraday trials and 1.7-3.5% for interday trials, and 3.2-6.7% for intraday trials and 4.1-7.4% for interday trials, and 3.6-7.2% for inter-column trials and 5.2-21.3% for inter-column trials, respectively, indicating the good reproducibility of single-walled carbon nanohorns embedded monolithic columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Interface for Light-Driven Electron Transfer by Photosynthetic Complexes Across Block Copolymer Membranes.

    Science.gov (United States)

    Kuang, Liangju; Olson, Tien L; Lin, Su; Flores, Marco; Jiang, Yunjiang; Zheng, Wan; Williams, JoAnn C; Allen, James P; Liang, Hongjun

    2014-03-06

    Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism. Once incorporated, the RCs are fully active for prolonged periods based upon a variety of spectroscopic measurements, underscoring preservation of their 3D pigment configuration critical for light-driven charge transfer. This result provides a strategy to construct solar conversion devices using structurally versatile proteopolymer membranes with integrated RC functions to harvest broad regions of the solar spectrum.

  7. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Nicolás, Emilio; Fernández, José Enrique

    2007-08-01

    capacity of olive leaves. This work highlights the need for models of plant growth and ecosystem function to incorporate new parameters affecting the distribution of photosynthetic capacity in canopies.

  8. Temperature acclimation of photosynthesis and respiration: A key uncertainty in the carbon cycle-climate feedback

    Science.gov (United States)

    Lombardozzi, Danica L.; Bonan, Gordon B.; Smith, Nicholas G.; Dukes, Jeffrey S.; Fisher, Rosie A.

    2015-10-01

    Earth System Models typically use static responses to temperature to calculate photosynthesis and respiration, but experimental evidence suggests that many plants acclimate to prevailing temperatures. We incorporated representations of photosynthetic and leaf respiratory temperature acclimation into the Community Land Model, the terrestrial component of the Community Earth System Model. These processes increased terrestrial carbon pools by 20 Pg C (22%) at the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) climate scenario. Including the less certain estimates of stem and root respiration acclimation increased terrestrial carbon pools by an additional 17 Pg C (~40% overall increase). High latitudes gained the most carbon with acclimation, and tropical carbon pools increased least. However, results from both of these regions remain uncertain; few relevant data exist for tropical and boreal plants or for extreme temperatures. Constraining these uncertainties will produce more realistic estimates of land carbon feedbacks throughout the 21st century.

  9. Photoelectrochemical cells based on photosynthetic systems: a review

    Directory of Open Access Journals (Sweden)

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  10. Primary photosynthetic processes: from supercomplex to leaf

    NARCIS (Netherlands)

    Broess, K.

    2009-01-01

    This thesis describes fluorescence spectroscopy experiments on photosynthetic complexes that cover the primary photosynthetic processes, from the absorption of light by photosynthetic pigments to a charge separation (CS) in the reaction center (RC). Fluorescence spectroscopy is a useful tool in

  11. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Dahoumane, Si Amar [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France); Djediat, Chakib; Yepremian, Claude; Coute, Alain [Museum National d' Histoire Naturelle, Departement RDDM, FRE 3206, USM 505 (France); Fievet, Fernand [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France); Coradin, Thibaud, E-mail: thibaud.coradin@upmc.fr [UPMC Universites Paris 06, CNRS, Chimie de la Matiere Condensee de Paris (LCMCP), College de France (France); Brayner, Roberta, E-mail: roberta.brayner@univ-paris-diderot.fr [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France)

    2012-06-15

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au{sup 3+} incorporation, intracellular reduction, and Au{sup 0} nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos-aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  12. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    International Nuclear Information System (INIS)

    Dahoumane, Si Amar; Djediat, Chakib; Yéprémian, Claude; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2012-01-01

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au 3+ incorporation, intracellular reduction, and Au 0 nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos-aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  13. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    Science.gov (United States)

    Dahoumane, Si Amar; Djediat, Chakib; Yéprémian, Claude; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2012-06-01

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au3+ incorporation, intracellular reduction, and Au0 nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos- aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  14. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  15. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats.

    Science.gov (United States)

    Houghton, J; Fike, D; Druschel, G; Orphan, V; Hoehler, T M; Des Marais, D J

    2014-11-01

    Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate

  16. Photosynthetic characteristics of Lycoris aurea and monthly ...

    African Journals Online (AJOL)

    The leaf photosynthetic characteristics of Lycoris aurea, the monthly dynamics in lycorine and galantamine contents in its bulb and the correlation among the photosynthetic characteristics and the lycorine and galantamine during the annual growth period were studied by using LI-6400 portable photosynthetic measurement ...

  17. Effect of ammonia and nitrate on photosynthetic CO2 fixation of Bellerochea yucatanensis v. Stosch

    International Nuclear Information System (INIS)

    Rosslenbroich, H.J.; Doehler, G.

    1982-01-01

    The marine diatom Bellerochea yucatanensis v. Stosch was grown in a synthetic marine medium (pH 8.0) at + 20 0 C with different nitrogen sources (1 mM ammonia or nitrate) under normal air conditions (0.03 vol% CO 2 ). Ammonia (1-5 mM) caused a to 20% higher carbon assimilation rate and nitrate (1-10 mM) an inhibition of 25%. Kinetics of 14 C incorporation into several photosynthetic products showed a strong labelling of amino acids, mainly of aspartate, alanine, glutamate, glutamine and glycine/serine. Adding ammonia (1 mM) to nitrate-grown cells an enhanced 14 C label in aspartate and glutamine and a decrease of 14 C label in polysaccharids, fructosebisphosphate and sedoheptulosebisphosphate was found. Excretion of several 14 C-labelled amino acids during photosynthesis was studied in relation to nitrogen source. In ammonia-grown cells activity of phosphoenolpyruvate (PEP) carboxykinase was higher than in nitrate-grown cells. No PEP carboxylase activity could be detected. Results were discussed with reference to operating of β-carboxylation in marine diatoms. (author)

  18. How closely does stem growth of adult beech (Fagus sylvatica) relate to net carbon gain under experimentally enhanced ozone stress?

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Winkler, J. Barbro; Löw, Markus; Nunn, Angela J.; Kuptz, Daniel; Häberle, Karl-Heinz; Reiter, Ilja M.; Matyssek, Rainer

    2012-01-01

    The hypothesis was tested that O 3 -induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O 3 regime, as prevailing at the forest site (control), or under an experimental twice-ambient O 3 regime (elevated O 3 ), as released through a free-air canopy O 3 fumigation system. Gross carbon gain at the canopy-level declined by 1.7%, while respiratory carbon loss increased by 4.6% under elevated O 3 . As this outcome only partly accounts for the decline in stem growth, O 3 -induced changes in allocation are referred to and discussed as crucial in quantitatively linking carbon gain with stem growth. - Highlights: ► We model O 3 -induced changes in the photosynthetic carbon gain of adult beech trees. ► Elevated O 3 decreases gross carbon gain but increases respiratory carbon loss. ► Reduction in net carbon gain only partly accounts for the decline in stem growth. ► O 3 effects on the whole-tree allocation is crucial in addition to carbon gains. - Reduction in net carbon gain at the canopy level only partly accounts for the decline in stem growth under elevated ozone.

  19. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    Science.gov (United States)

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants

    Directory of Open Access Journals (Sweden)

    Pascal eREY

    2013-10-01

    Full Text Available Plants display a remarkable diversity of thioredoxins (Trxs, reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.

  1. Predicting Phenologic Response to Water Stress and Implications for Carbon Uptake across the Southeast U.S.

    Science.gov (United States)

    Lowman, L.; Barros, A. P.

    2016-12-01

    Representation of plant photosynthesis in modeling studies requires phenologic indicators to scale carbon assimilation by plants. These indicators are typically the fraction of photosynthetically active radiation (FPAR) and leaf area index (LAI) which represent plant responses to light and water availability, as well as temperature constraints. In this study, a prognostic phenology model based on the growing season index is adapted to determine the phenologic indicators of LAI and FPAR at the sub-daily scale based on meteorological and soil conditions. Specifically, we directly model vegetation green-up and die-off responses to temperature, vapor pressure deficit, soil water potential, and incoming solar radiation. The indices are based on the properties of individual plant functional types, driven by observational data and prior modeling applications. First, we describe and test the sensitivity of the carbon uptake response to predicted phenology for different vegetation types. Second, the prognostic phenology model is incorporated into a land-surface hydrology model, the Duke Coupled Hydrology Model with Prognostic Vegetation (DCHM-PV), to demonstrate the impact of dynamic phenology on modeled carbon assimilation rates and hydrologic feedbacks. Preliminary results show reduced carbon uptake rates when incorporating a prognostic phenology model that match well against the eddy-covariance flux tower observations. Additionally, grassland vegetation shows the most variability in LAI and FPAR tied to meteorological and soil conditions. These results highlight the need to incorporate vegetation-specific responses to water limitation in order to accurately estimate the terrestrial carbon storage component of the global carbon budget.

  2. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  3. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?

    Science.gov (United States)

    Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2009-01-01

    * Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.

  4. What does optimization theory actually predict about crown profiles of photosynthetic capacity when models incorporate greater realism?

    Science.gov (United States)

    Buckley, Thomas N; Cescatti, Alessandro; Farquhar, Graham D

    2013-08-01

    Measured profiles of photosynthetic capacity in plant crowns typically do not match those of average irradiance: the ratio of capacity to irradiance decreases as irradiance increases. This differs from optimal profiles inferred from simple models. To determine whether this could be explained by omission of physiological or physical details from such models, we performed a series of thought experiments using a new model that included more realism than previous models. We used ray-tracing to simulate irradiance for 8000 leaves in a horizontally uniform canopy. For a subsample of 500 leaves, we simultaneously optimized both nitrogen allocation (among pools representing carboxylation, electron transport and light capture) and stomatal conductance using a transdermally explicit photosynthesis model. Few model features caused the capacity/irradiance ratio to vary systematically with irradiance. However, when leaf absorptance varied as needed to optimize distribution of light-capture N, the capacity/irradiance ratio increased up through the crown - that is, opposite to the observed pattern. This tendency was counteracted by constraints on stomatal or mesophyll conductance, which caused chloroplastic CO(2) concentration to decline systematically with increasing irradiance. Our results suggest that height-related constraints on stomatal conductance can help to reconcile observations with the hypothesis that photosynthetic N is allocated optimally. © 2013 John Wiley & Sons Ltd.

  5. Impact of UV-B radiation on photosynthetic assimilation of 14C-bicarbonate and inorganic 15N-compounds by cyanobacteria

    International Nuclear Information System (INIS)

    Doehler, G.; Biermann, I.; Zink, J.

    1986-01-01

    The cyanobacteria Anabaena cylindrica and Synechococcus leopoliensis (=Anacystis nidulans) were grown at different levels of UV-B radiation (439, 717, 1230 and 1405 J m -2 d -1 , weighted according Caldwell, 1971) for 2 days. Dry weight was hardly affected but phycocyanin content of both species decreased linearly to the level of UV-B radiation. Contents of protein, carotenoids and chlorophyll a were reduced only after exposure to high doses (1230 J m -2 d -1 ) of UV-B radiation. Photosynthetic 14 CO 2 fixation of Anabaena cells was reduced linearly with increasing UV-B dose whereas no effect could be observed in Synechococcus. A depression of photosynthetic 15 N-nitrate uptake was found after UV-B stress in both species. UV-B irradiance caused an increase of 15 N-incorporation into glutamine, but no effect was noted for incorporation into alanine or aspartic acid. An increase of 15 N-excess in glutamic acid linear with the UV-B dose was observed in Synechococcus, only. Patterns of 14 C-labelled photosynthetic products were either less affected by UV-B radiation (Anabaena) or an enhancement of 14 C-label in total amino acids was detected (Synechococcus). The amount of total free amino acids increased parallel to the level of UV-B radiation. Only, the high dose of UV-B (1405 J m -2 d -1 , weighted) results in a decrease of the glutamine pool. Our results indicate an inhibition of glutamate synthase by UV-B irradiation in Anabaena, only. Results were discussed with reference to the damage of the photosynthetic apparatus. (orig.)

  6. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    Science.gov (United States)

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  7. Stabilization and incorporation into biomass of specific plant carbons during biodegradation in soil

    International Nuclear Information System (INIS)

    Stott, D.E.; Kassim, G.; Jarrell, W.M.; Martin, J.P.; Haider, K.; Bundesforschungsanstalt fuer Landwirtschaft, Braunschweig

    1983-01-01

    The effect of soil type and incubation period on the biodegradation, incorporation into biomass, and stabilization in humus of 14 C-labeled cornstalk and/or wheat straw lignin, polysaccharide, and protein fractions were followed for one year. After 6 months, 56-68%, 6-21%, 71-81%, 63-75%, and 56-68% from wheat straw and from the lignin, polysaccharide, and protein fraction of wheat straw had been lost as CO 2 , respectively. Loss of CO 2 increased only slightly with further incubation. Greater amounts of CO 2 , especially during the early incubation stages, were evolved from neutral and alkaline soils (pH 7.0, 7.4, 7.8) than from acid soils (pH 5.0, 5.5). After one year, a major portion of the residual C from lignin was recovered in the humic acid fraction, relatively small amounts, 5 to 17% were lost upon acid hydrolysis, and generally <1% was found present in the biomass. Lesser amounts of the polysaccharide and protein carbons were incorporated into the humic acid, 17-20% and 16-27% respectively. Relatively greater amounts of the residual carbons of the polysaccharide and protein were incorporated into the biomass, 4.9-7.8% and 4.6-13.4%, respectively and higher percentages were lost upon acid hydrolysis, 56 to 81%. The results for the whole wheat straw were very similar to those of the protein fraction. Overall, more residual C was stabilized into humic acid in the acid soils than in the neutral soils. (orig.)

  8. Photosynthetic adaptation to light intensity in plants native to shaded and exposed habitats. [Rumex acetosa; Geum rivale; Lamium galeobdolon; Plantago lanceolata

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerkman, O; Holmgren, P

    1966-01-01

    Photosynthetic adaptation to light intensity has been studied in clones of populations from shaded and exposed habitats of Rumex acetosa and Geum rivale. Clones of the shade species Lamium galeobdolon and the sun species Plantago lanceolata were also included for comparison. The plants were grown under controlled conditions at a high and a low light intensity. The capacity of photosynthetic carbon dioxide uptake at low as well as at saturating light intensities was determined on single attached leaves. As was previously demonstrated in Solidago virgaurea, clones of populations native to shaded and to exposed environments show differences in the photosynthetic response to light intensity during growth. The data provide evidence that populations of the same species native to habitats with contrasting light intensities differ in their photosynthetic properties in an adaptive manner in a similar mode as sun and shade species. 1 reference, 1 figure, 2 tables.

  9. Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotopic disequilibrium

    International Nuclear Information System (INIS)

    Espie, G.S.; Owttrim, G.W.; Colman, B.

    1986-01-01

    The species of inorganic carbon (CO 2 or HCO 3 - ) taken up as a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO 2 or HCO 3 - transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14 C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO 2 or HCO 3 - transport) and experimental time-courses of 14 C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO 2 , rather than HCO 3 - , is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO 2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO 3 - transport, as the incorporation of 14 C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO 2 uptake alone. The contribution of HCO 3 - to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO 3 - concentration. The evidence for direct HCO 3 - transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14 C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO 2 , which is partially alleviated by a high extracellular concentration of HCO 3 -

  10. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    Science.gov (United States)

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  11. Rewiring the Carbon Economy: Engineered Carbon Reduction Listening Day Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Illing, Lauren [BCS Inc., Laurel, MD (United States); Natelson, Robert [BCS Inc., Laurel, MD (United States); Resch, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rowe, Ian [USDOE Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States). Bioenergy Technologies Office (EE-3B); Babson, David [USDOE Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States). Bioenergy Technologies Office (EE-3B)

    2018-02-01

    On July 8, 2017, the U.S. Department of Energy’s Bioenergy Technologies Office (BETO) sponsored the Engineered Carbon Reduction Listening Day: Advanced Strategies to Bypass Land Use for the Emerging Bioeconomy in La Jolla, California. This event explored non-photosynthetic carbon dioxide–reduction technologies, including electrocatalytic, thermocatalytic, photocatalytic, and biocatalytic approaches. BETO has summarized stakeholder input from the listening day in a summary report.

  12. Physiological ecology of heterotrophic bacteria in two Indiana lakes

    International Nuclear Information System (INIS)

    Lovell, C.R.

    1984-01-01

    Rates of bacterial production of particulate organic carbon in two hardwater Indiana lakes were studied. Primary production rates were calculated from rates of photosynthetic H 14 CO 3 - incorporation and bacterial (secondary) production from rates of 3 H-(methyl)-thymidine incorporation by natural samples. The relationship of thymidine incorporation to rates of bacterial growth in diluted natural samples was used to calculate the conversion factor 2.2 x 10 18 cells produced (mole thymidine incorporated) -1 . Bacteria in Little Crooked Lake were found to be growing at suboptimal temperatures throughout most of the water column, even during the summer months. Even rapidly growing metalimnetic populations displayed no noticable adaptation to low environmental temperatures. This indicates that temperature could have limited the growth of bacteria in this lake throughout the period of thermal stratification. The extracellular release of photosynthetically fixed organic carbon by healthy phytoplankton was not found to be an important carbon source for planktonic bacteria. Slow carbon release mechanisms, such as algal decomposition, seem to have been more important

  13. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  14. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P transpiration rate also presented single-peak type, with the daily average value in late June and early August being (3.10 +/- 0.34) mmol H2O x m(-2) x s(-1) and (1.60 +/- 0.26) mmol H2O x m(-2) x s(-1), respectively, and differed significantly (P efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  15. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)

    Science.gov (United States)

    2011-01-01

    Background Biochemical models predict that photosynthesis in C3 plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (Vc,max), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO2] levels Rubisco is not saturated; consequently, elevating [CO2] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO2] is predicted to exceed 550 ppm by 2050. The C3 cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation. Results We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO2] (585 ppm) under fully open air fumigation. Growth under elevated [CO2] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO2] via downregulation of Vc,max in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and Jmax) for transformants led to greater yield increases than WT at elevated [CO2] compared to ambient grown plants. Conclusion These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C3 crops grown at [CO2] expected by the middle of the 21st century. PMID:21884586

  16. Spring photosynthetic recovery of boreal Norway spruce under conditions of elevated [CO(2)] and air temperature.

    Science.gov (United States)

    Wallin, Göran; Hall, Marianne; Slaney, Michelle; Räntfors, Mats; Medhurst, Jane; Linder, Sune

    2013-11-01

    Accumulated carbon uptake, apparent quantum yield (AQY) and light-saturated net CO2 assimilation (Asat) were used to assess the responses of photosynthesis to environmental conditions during spring for three consecutive years. Whole-tree chambers were used to expose 40-year-old field-grown Norway spruce trees in northern Sweden to an elevated atmospheric CO2 concentration, [CO2], of 700 μmol CO2 mol(-1) (CE) and an air temperature (T) between 2.8 and 5.6 °C above ambient T (TE), during summer and winter. Net shoot CO2 exchange (Anet) was measured continuously on 1-year-old shoots and was used to calculate the accumulated carbon uptake and daily Asat and AQY. The accumulated carbon uptake, from 1 March to 30 June, was stimulated by 33, 44 and 61% when trees were exposed to CE, TE, and CE and TE combined, respectively. Air temperature strongly influenced the timing and extent of photosynthetic recovery expressed as AQY and Asat during the spring. Under elevated T (TE), the recovery of AQY and Asat commenced ∼10 days earlier and the activity of these parameters was significantly higher throughout the recovery period. In the absence of frost events, the photosynthetic recovery period was less than a week. However, frost events during spring slowed recovery so that full recovery could take up to 60 days to complete. Elevated [CO2] stimulated AQY and Asat on average by ∼10 and ∼50%, respectively, throughout the recovery period, but had minimal or no effect on the onset and length of the photosynthetic recovery period during the spring. However, AQY, Asat and Anet all recovered at significantly higher T (average +2.2 °C) in TE than in TA, possibly caused by acclimation or by shorter days and lower light levels during the early part of the recovery in TE compared with TA. The results suggest that predicted future climate changes will cause prominent stimulation of photosynthetic CO2 uptake in boreal Norway spruce forest during spring, mainly caused by elevated T

  17. Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues

    Science.gov (United States)

    Matt D. Busse; Felipe G. Sanchez; Alice W. Ratcliff; John R. Butnor; Emily A. Carter; Robert F. Powers

    2009-01-01

    Sequestering carbon (C) in forest soils can benefit site fertility and help offset greenhouse gas emissions. However, identifying soil conditions and forest management practices which best promote C accumulation remains a challenging task. We tested whether soil incorporation of masticated woody residues alters short-term C storage at forested sites in western and...

  18. Characterization of Active Packaging Films Made from Poly(Lactic Acid)/Poly(Trimethylene Carbonate) Incorporated with Oregano Essential Oil

    OpenAIRE

    Dong Liu; Hongli Li; Lin Jiang; Yongming Chuan; Minglong Yuan; Haiyun Chen

    2016-01-01

    Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differ...

  19. Incorporating seeds in activated carbon pellets limits herbicide effects to seeded bunchgrasses when controlling exotic annuals

    Science.gov (United States)

    Revegetation of exotic annual grass-invaded rangeland with pre-emergent herbicides is challenging because seeding is delayed until herbicide toxicity has diminished, but at this time, exotic annuals can be re-invading. Incorporating seeds into activated carbon pellets may allow seeding to occur at t...

  20. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits

    Czech Academy of Sciences Publication Activity Database

    Musavi, T.; Migliavacca, M.; van de Weg, M. J.; Kattge, J.; Wohlfahrt, G.; van Bodegom, P. M.; Reichstein, M.; Bahn, M.; Carrara, A.; Domingues, T. F.; Gavazzi, M.; Gianelle, D.; Gimeno, C.; Granier, A.; Gruening, C.; Havránková, Kateřina; Herbst, M.; Hrynkiw, Ch.; Kalhori, A.; Kaminski, T.; Klumpp, K.; Kolari, P.; Longdoz, B.; Minerbi, S.; Montagnani, L.; Moors, E.; Oechel, W.; Reich, P. B.; Rohatyn, S.; Rossi, A.; Rotenberg, E.; Varlagin, A.; Wilkinson, M.; Wirth, C.; Mahecha, M. D.

    2016-01-01

    Roč. 6, č. 20 (2016), s. 7352-7366 ISSN 2045-7758 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : gross primary production * cross-biome analysis * relative growth-rate * plant traits * carbon-dioxide * forest productivity * wide-range * environmental variation * nutrient concentrations * terrestrial biosphere * ecosystem functional property * eddy covariance * fluxnet * interannual variability * photosynthetic capacity * plant traits * spatiotemporal variability * TRY database Subject RIV: EH - Ecology, Behaviour Impact factor: 2.440, year: 2016

  1. On the use of phloem sap δ13C to estimate canopy carbon discrimination

    Science.gov (United States)

    Rascher, Katherine; Máguas, Cristina; Werner, Christiane

    2010-05-01

    Although the carbon stable isotope composition (d13C) of bulk leaf material is a good integrative parameter of photosynthetic discrimination and can be used as a reliable ecological index of plant functioning; it is not a good tracer of short-term changes in photosynthetic discrimination. In contrast, d13C of phloem sap is potentially useful as an indicator of short-term changes in canopy photosynthetic discrimination. However, recent research indicates that d13C signatures may be substantially altered by metabolic processes downstream of initial leaf-level carbon fixation (e.g. post-photosynthetic fractionation). Accordingly, before phloem sap d13C can be used as a proxy for canopy level carbon discrimination an understanding of factors influencing the degree and magnitude of post-photosynthetic fractionation and how these vary between species is of paramount importance. In this study, we measured the d13C signature along the basipetal transport pathway in two co-occurring tree species in the field - an understory invasive exotic legume, Acacia longifolia, and a native pine, Pinus pinaster. We measured d13C of bulk leaf and leaf water soluble organic matter (WSOM), phloem sap sampled at two points along the plant axis and leaf and root dark respiration. In general, species differences in photosynthetic discrimination resulted in more enriched d13C values in the water-conserving P. pinaster relative to the water-spending A. longifolia. Post-photosynthetic fractionation led to differences in d13C of carbon pools along the plant axis with progressively more depleted d13C from the canopy to the trunk (~6.5 per mil depletion in A. longifolia and ~0.8per mil depletion in P. pinaster). Leaf and root respiration, d13C, were consistently enriched relative to putative substrates. We hypothesize that the pronounced enrichment of leaf respired CO2 relative to leaf WSOM may have left behind relatively depleted carbon to be loaded into the phloem resulting in d13C depletion

  2. Characterization of photosynthetic gas exchange in leaves under simulated adaxial and abaxial surfaces alternant irradiation.

    Science.gov (United States)

    Zhang, Zi-Shan; Li, Yu-Ting; Gao, Hui-Yuan; Yang, Cheng; Meng, Qing-Wei

    2016-07-05

    Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight. To simulate adaxial and abaxial surfaces alternant irradiation (ad-ab-alt irradiation), the adaxial or abaxial surface of leaves were exposed to light regimes that fluctuated between 100 and 1,000 μmol m(-2) s(-1). Compared with constant adaxial irradiation, simulated ad-ab-alt irradiation suppressed net photosynthetic rate (Pn) and transpiration (E) but not water use efficiency. These suppressions were aggravated by an increase in alternant frequency of the light intensity. When leaves were transferred from constant light to simulated ad-ab-alt irradiation, the maximum Pn and E during the high light period decreased, but the rate of photosynthetic induction during this period remained constant. The sensitivity of photosynthetic gas exchange to simulated ad-ab-alt irradiation was lower on abaxial surface than adaxial surface. Under simulated ad-ab-alt irradiation, higher Pn and E were measured on abaxial surface compared with adaxial surface. Therefore, bifacial leaves can fix more carbon than leaves with two "sun-leaf-like" surfaces under ad-ab-alt irradiation. Photosynthetic research should be conducted under dynamic conditions that better mimic nature.

  3. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  4. Integrated biofuel facility, with carbon dioxide consumption and power generation

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.E.; Hill, G.A. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering

    2009-07-01

    This presentation provided details of an economical design for a large-scale integrated biofuel facility for coupled production of bioethanol and biodiesel, with carbon dioxide capture and power generation. Several designs were suggested for both batch and continuous culture operations, taking into account all costs and revenues associated with the complete plant integration. The microalgae species Chlorella vulgaris was cultivated in a novel photobioreactor (PBR) in order to consume industrial carbon dioxide (CO{sub 2}). This photosynthetic culture can also act as a biocathode in a microbial fuel cell (MFC), which when coupled to a typical yeast anodic half cell, results in a complete biological MFC. The photosynthetic MFC produces electricity as well as valuable biomass and by-products. The use of this novel photosynthetic microalgae cathodic half cell in an integrated biofuel facility was discussed. A series of novel PBRs for continuous operation can be integrated into a large-scale bioethanol facility, where the PBRs serve as cathodic half cells and are coupled to the existing yeast fermentation tanks which act as anodic half cells. These coupled MFCs generate electricity for use within the biofuel facility. The microalgae growth provides oil for biodiesel production, in addition to the bioethanol from the yeast fermentation. The photosynthetic cultivation in the cathodic PBR also requires carbon dioxide, resulting in consumption of carbon dioxide from bioethanol production. The paper also discussed the effect of plant design on net present worth and internal rate of return. tabs., figs.

  5. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs

    Science.gov (United States)

    Sun, Hongyu; Zhou, Jing; Huang, Zhu; Qu, Linlin; Lin, Ning; Liang, Chengxiao; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2017-01-01

    Carbon nanotubes (CNTs) provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell–cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col) hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt%) exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future. PMID:28450785

  6. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Kottmeier, Dorothee M; Rokitta, Sebastian D; Rost, Björn

    2016-07-01

    A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Leaf Characteristics and Photosynthetic Performance of Floating, Emergent and Terrestrial Leaves of Marsilea quadrifolia

    Directory of Open Access Journals (Sweden)

    Chia-Hong Lin

    2007-09-01

    Full Text Available Individuals of Marsilea quadrifolia, an amphibious fern, experiencing extreme variation in environment develop heterophyll. In this study, we compared stomatal and trichome density on upper and lower surfaces, leaf and petiole area mass ratio, spectral properties and photosynthetic performance of floating, emergent and terrestrial leaves of M. quadrifolia, to explore the ecological advantages of producing different leaf types. Morphological measurement reveals that these three types of leaf display highly differences in stomatal density on lower epidermis, trichome density on both surfaces and petiole dry mass per length, and reflectance coefficient between 500 and 650 nm. In contrast, no significant difference was found in the PSII electron transport rate of the three types of leaves. The analysis of stable carbon isotope ratio of the three types of leaves indicates that they all use C3 photosynthetic pathway.

  8. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    Science.gov (United States)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  9. Incorporation of 14CO2 by illuminated intact leaves of bean (PHASEOLUS VULGARIS) plants

    International Nuclear Information System (INIS)

    Andrade, A.G. de

    1980-01-01

    Bean plants were grown in hydroponic nutrient solution, maintained in controlled environment. Measurements of the photosynthetic activity using the method of 14 CO 2 incorporation in intact leaves with portable equipment were made on the central leaflet of the first trifoliate leaf except when the effect of leaf age was studied in which case all central leaflets of the same branch were used. The data obtained indicated differences in the photosynthetic efficiency of bean (Phaseolus vulgaris) cultivars. Relative differences in RuDP carboxylase activity in the crude extracts of leaves, leaf area and leaf chlorophyll content were also observed. Rates of 14 CO 2 incorporation at saturating light varied from 14.94 to 22.96 mg CO 2 .dm -2 .h and the 6 studied cultivars could be divided into two classes: Classe 1 (above 20 mg CO 2 .dm -2 .h): Pirata-1, Rosinha G-2, and Pintadinho Precoce; Classe 2 (below 20 mg CO 2 .dm - 2 .h): Carioca, Rosinha Precoce and Pintado. Plants of the same cultivar showed a relatively high variability and a strong dependence in relation to environmental conditions. Differences among cultivars in relation to RuDP carboxylase activity, leaf area and leaf age were correlated to photosynthetic rate. (Author) [pt

  10. Photosynthate consumption and carbon turnover in the rhizosphere depending on plant species and growth conditions

    International Nuclear Information System (INIS)

    Sauerbeck, D.R.; Helal, H.M.; Nonnen, S.; Allard, J.-l.

    1982-01-01

    The root tissue which can be isolated from soils represents only part of the total plant carbon incorporation. Between 20 and 40% of the photosynthetic production of plants is expended for root growth and root metabolism. This indicates a striking turnover of energy in the rhizosphere, because relatively litle root-derived organic matter remains there until harvest time. Plant species and variety, soil conditions and temperature were shown to be the most decisive factors governing the assimilate consumption of plant root systems. A special technique is described which enables to study how this extensive turnover affects the surrounding soil depending on its proximity to the roots. Plant-derived carbon can be detected up to 20mm away from the roots. A priming effect has been found on the decomposition of soil organic matter. This explains why, in spite of the rhizo-deposition mentioned, no net-accumulation of carbon in the rhizosphere has been found. (Author) [pt

  11. Transcriptome-based analysis on carbon metabolism of Haematococcus pluvialis mutant under 15% CO2.

    Science.gov (United States)

    Li, Ke; Cheng, Jun; Lu, Hongxiang; Yang, Weijuan; Zhou, Junhu; Cen, Kefa

    2017-06-01

    To elucidate the mechanism underlying the enhanced growth rate in the Haematococcus pluvialis mutated with 60 Co-γ rays and domesticated with 15% CO 2 , transcriptome sequencing was conducted to clarify the carbon metabolic pathways of mutant cells. The CO 2 fixation rate of mutant cells increased to 2.57gL -1 d -1 under 15% CO 2 due to the enhanced photosynthesis, carbon fixation, glycolysis pathways. The upregulation of PetH, ATPF0A and PetJ related to photosynthetic electron transport, ATP synthase and NADPH generation promoted the photosynthesis. The upregulation of genes related to Calvin cycle and ppdK promoted carbon fixation in both C3 and C4 photosynthetic pathways. The reallocation of carbon was also enhanced under 15% CO 2 . The 19-, 14- and 3.5-fold upregulation of FBA, TPI and PK genes, respectively, remarkably promoted the glycolysis pathways. This accelerated the conversion of photosynthetic carbon to pyruvate, which was an essential precursor for astaxanthin and lipids biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries.

    Science.gov (United States)

    Kim, Chanhoon; Choi, Sinho; Yoo, Seungmin; Kwon, Dohyoung; Ko, Seunghee; Kim, Ju-Myung; Lee, Sang-Young; Kim, Il-Doo; Park, Soojin

    2015-07-14

    Conductive agent incorporating Si anodes consisting of directly grown carbon nanotubes on hard carbon encapsulating Si nanoparticles were prepared by a one-pot chemical vapour deposition process. Owing to this fabulous structure, Si-based anodes exhibit excellent cycle retention and rate capability with a high-mass-loading of 3.5 mg cm(-2).

  13. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    International Nuclear Information System (INIS)

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  14. [THE EFFECT OF ACID RAIN ON ULTRASTRUCTURE AND FUNCTIONAL PARAMETERS OF PHOTOSYNTHETIC APPARATUS OF PEA LEAVES].

    Science.gov (United States)

    Polishchuk, A V; Vodka, M V; Belyavskaya, N A; Khomochkin, A P; Zolotareva, E K

    2016-01-01

    The effects of simulated acid rain (SAR) on the ultrastructure and functional parameters of the photosynthetic apparatus were studied using 14-day-old pea leaves as test system. Pea plants were sprayed with an aqueous solution containing NaNO₃(0.2 mM) and Na₂SO₄(0.2 mM) (pH 5.6, a control variant), or with the same solution, which was acidified to pH 2.5 (acid variant). Functional characteristics were determined by chlorophyll fluorescence analysis. Acid rain application caused reduction in the efficiency of the photosynthetic electron transport by 25%, which was accompanied by an increase by 85% in the quantum yield of thermal dissipation of excess light quanta. Ultrastructural changes in chloroplast were registered by transmission electron microscopy (TEM) after two days of the SAR-treatment of pea leaves. In this case, the changes in the structure of grana, heterogeneity of thylakoids packaging in granum, namely, the increase of intra-thylakoid gaps and thickness of granal thylakoids compared to the control were found. The migration of protein complexes in thylakoid membranes of chloroplasts isolated from leaves treated with SAR was suppressed. It was shown also that carbonic anhydrase activity was inhibited in chloroplast preparations isolated from SAR-treated pea leaves. We proposed a hypothesis on the possible inactivation of thylakoid carbonic anhydrase under SAR and its involvement in the inhibition of photochemical activity of chloroplasts. The data obtained allows to suggest that acid rains negatively affect the photosynthetic apparatus disrupting the membrane system of chloroplast.

  15. The effect of cutting on carbon dioxide absorption and carbohydrate ...

    African Journals Online (AJOL)

    grass) and Osteospermun sinuatum (Karoo-bush) plants during the flag leaf and flower bud stages respectively resulted in a sharp decline in net carbon dioxide absorption. As new photosynthetic material was produced the total carbon ...

  16. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  17. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  18. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    Science.gov (United States)

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. © 2014 The American Society of Photobiology.

  19. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  20. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    Science.gov (United States)

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  1. Understanding Seasonal Dynamics of the Photo-Protective Xanthophyll Cycle Improves Remote Detection of Photosynthetic Phenology in Deciduous Trees and Evergreen Conifers

    Science.gov (United States)

    Ensminger, I.; Wong, C. Y.; Junker, L. V.; Bathena, Y.; Arain, M. A.; D'Odorico, P.

    2017-12-01

    The ability of plants to sequester carbon is highly variable over the course of the year and reflects seasonal variation in photosynthetic efficiency. This seasonal variation is most prominent during autumn, when leaves of deciduous tree species undergo senescence, which is associated with the downregulation of photosynthesis and a change of leaf color and leaf optical properties. Vegetation indices derived from remote sensing of leaf optical properties using e.g. spectral reflectance measurements are increasingly used to monitor and predict growing season length and seasonal variation in carbon sequestration. Here we compare leaf-level, canopy-level and drone based observations of leaf spectral reflectance measurements. We demonstrate that some of the widely used vegetation indices such as the normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) vary in their ability to adequately track the seasonal variation in photosynthetic efficiency and chlorophyll content. We further show that monitoring seasonal variation of photosynthesis using NDVI or PRI is particularly challenging in evergreen conifers, due to little seasonal variation in foliage. However, there is remarkable seasonal variation in leaf optical properties associated with changes in pools of xanthophyll cycle pigments and carotenoids that provide a promising way of monitoring photosynthetic phenology in evergreen conifers via leaf reflectance measurements.

  2. A greenhouse-scale photosynthetic microbial bioreactor for carbon sequestration in magnesium carbonate minerals.

    Science.gov (United States)

    McCutcheon, Jenine; Power, Ian M; Harrison, Anna L; Dipple, Gregory M; Southam, Gordon

    2014-08-19

    A cyanobacteria dominated consortium collected from an alkaline wetland located near Atlin, British Columbia, Canada accelerated the precipitation of platy hydromagnesite [Mg5(CO3)4(OH)2·4H2O] in a linear flow-through experimental model wetland. The concentration of magnesium decreased rapidly within 2 m of the inflow point of the 10-m-long (∼1.5 m(2)) bioreactor. The change in water chemistry was monitored over two months along the length of the channel. Carbonate mineralization was associated with extra-cellular polymeric substances in the nutrient-rich upstream portion of the bioreactor, while the lower part of the system, which lacked essential nutrients, did not exhibit any hydromagnesite precipitation. A mass balance calculation using the water chemistry data produced a carbon sequestration rate of 33.34 t of C/ha per year. Amendment of the nutrient deficiency would intuitively allow for increased carbonation activity. Optimization of this process will have application as a sustainable mining practice by mediating magnesium carbonate precipitation in ultramafic mine tailings storage facilities.

  3. Impact of substrate temperature on the incorporation of carbon-related defects and mechanism for semi-insulating behavior in GaN grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Armstrong, A.; Poblenz, C.; Green, D.S.; Mishra, U.K.; Speck, J.S.; Ringel, S.A.

    2006-01-01

    The electrical conductivity and deep level spectrum of GaN grown by molecular beam epitaxy and codoped with carbon and silicon were investigated for substrate temperatures T s of 650 and 720 deg. C as a function relative carbon and silicon doping levels. With sufficiently high carbon doping, semi-insulating behavior was observed for films grown at both temperatures, and growth at T s =720 deg. C enhanced the carbon compensation ratio. Similar carbon-related band gap states were observed via deep level optical spectroscopy for films grown at both substrate temperatures. Due to the semi-insulating nature of the films, a lighted capacitance-voltage technique was required to determine individual deep level concentrations. Carbon-related band gap states underwent substantial redistribution between deep level and shallow acceptor configurations with change in T s . In light of a T s dependence for the preferential site of carbon incorporation, a model of semi-insulating behavior in terms of carbon impurity state incorporation mediated by substrate temperature is proposed

  4. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    Science.gov (United States)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  5. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species.

    Science.gov (United States)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M; Dusenge, Mirindi Eric; Medlyn, Belinda E; Hasper, Thomas B; Nsabimana, Donat; Uddling, Johan

    2015-05-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2 ) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status.

    Science.gov (United States)

    Meinzer, Frederick C; Smith, Duncan D; Woodruff, David R; Marias, Danielle E; McCulloh, Katherine A; Howard, Ava R; Magedman, Alicia L

    2017-08-01

    Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed. © 2017 John Wiley & Sons Ltd.

  7. ;Every dogma has its day': a personal look at carbon metabolism in photosynthetic bacteria.

    Science.gov (United States)

    Ormerod, John

    2003-01-01

    Dogmas are unscientific. What is perhaps the greatest biological dogma of all time, the 'unity of biochemistry' is, in the main, still having its day. According to present knowledge, the exceptions to this dogma are mere details when seen in relation to the biosystem as a whole. Nevertheless the exceptions are scientifically interesting and the understanding of them has led to a better comprehension of photosynthesis and ecology. Until the discovery of (14)C, photosynthetic CO(2) fixation was like a slightly opened black box. With (14)C in hand scientists mapped out the path of carbon in green plant photosynthesis in the course of a few years. The impressive reductive pentose phosphate cycle was almost immediately assumed to be universal in autotrophs, including anoxygenic phototrophs, in spite of the odd observation to the contrary. A new dogma was born and held the field for about two decades. Events began to turn when green sulfur bacteria were found to contain ferredoxin-coupled ketoacid-oxidoreductases. This led to the formulation of a novel CO(2)-fixing pathway, the reductive citric acid cycle, but its general acceptance required much work by many investigators. However, the ice had now been broken and after some years a third mechanism of CO(2) fixation was discovered, this time in Chloroflexus,and then a fourth in the same genus. One consequence of these discoveries is that it has become apparent that oxygen is an important factor that determines the kind of CO(2)-fixing mechanism an organism uses. With the prospect of the characterization of hordes of novel bacteria forecast by molecular ecologists we can expect further distinctive CO(2) fixation mechanisms to turn up.

  8. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    NARCIS (Netherlands)

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  9. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    International Nuclear Information System (INIS)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes

    2013-01-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α ETR ). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination

  10. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rovai, André Scarlate, E-mail: rovaias@hotmail.com [Universidade Federal de Santa Catarina, Departamento de Ecologia e Zoologia, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Barufi, José Bonomi, E-mail: jose.bonomi@gmail.com [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Pagliosa, Paulo Roberto, E-mail: paulo.pagliosa@ufsc.br [Universidade Federal de Santa Catarina, Departamento de Geociências, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Scherner, Fernando [Universidade Federal Rural de Pernambuco, Laboratório de Ficologia, Campus Universitário, Dois Irmãos, 52171-900 Recife, PE (Brazil); Torres, Moacir Aluísio, E-mail: moatorres@cav.udesc.br [Universidade do Estado de Santa Catarina, Departamento de Engenharia Ambiental, Centro de Ciências Agroveterinárias, Av Luiz de Camões 2090, Conta Dinheiro, 88520-000 Lages, SC (Brazil); Horta, Paulo Antunes, E-mail: pahorta@ccb.ufsc.br [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); others, and

    2013-10-15

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α{sub ETR}). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination.

  11. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency.

    Directory of Open Access Journals (Sweden)

    Chunlai Li

    2011-07-01

    Full Text Available Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield production named photoassimilate defective1 (phd1. Molecular and biochemical analyses revealed that PHD1 encodes a novel chloroplast-localized UDP-glucose epimerase (UGE, which is conserved in the plant kingdom. The chloroplast localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts, which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG, a major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass, and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid membranes for proper chloroplast biogenesis and photosynthetic activity. These

  12. Photosynthetic light reactions at the gold interface

    NARCIS (Netherlands)

    Kamran, Muhammad

    2014-01-01

    In the project described in this thesis we studied a simple bio-electronic device for solar energy conversion by surface-assembly of photosynthetic pigment-protein complexes on a bare gold-electrode. Optical excitation of the photosynthetic pigments gives rise to charge separation in the so-called

  13. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zeng, Q.; Xie, Z.; Tang, H.; Zhu, C. (Chinese Academy of Sciences. State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing (China)); Hasegawa, T. (National Institute for Agro-Environmental Sciences. Agro-Meteorology Div., Tsukuba (Japan)); Ziska, L. (Crop Systems and Global Change Lab., Beltsville, MD (United States)); Jia, X. (Chinese Academic of Sciences/Nanjing Botanical Garden Memorial Sun Yat-Sen. Jiangsu Institute of Botany, Nanjing (China))

    2012-07-15

    In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, g{sub s}, g{sub m}, C{sub i}/C{sub a}, C{sub i}/C{sub c}, V{sub cmax}, J{sub max}, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid-anthesis and the late grain-filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid-anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO{sub 2}]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non-structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO{sub 2}] appeared to enhance the rate of N degradation and senescence so that by late-grain fill, photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO{sub 2}] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation. (Author)

  14. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  15. Evolving a photosynthetic organelle.

    Science.gov (United States)

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  16. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  17. Photosynthetic production of diterpenoids in chloroplasts and cyanobacteria

    DEFF Research Database (Denmark)

    Vavitsas, Konstantinos

    Terpenoids are one of the largest classes of chemical compounds, some of them with industrial interest as nutraceuticals, biofuels, or chemical feedstocks. Diterpenoids are a large terpenoid subclass, and their chemical structure consists of a core skeleton of 20 carbon atoms. This skeleton can...... be further modified by cyclizing enzymes, and be decorated by the addition of chemical groups. Even though they are mainly plant-derived compounds, diterpenoid production in photosynthetic organisms is rather unexplored, with a few successful studies reported in the literature. In this thesis, I elaborate...... on the potential of using plant chloroplasts and cyanobacteria as biosynthetic vessels, with a focus on diterpenoid production, and on the potential direct linking of photosynthesis to drive electron-consuming enzymes, such as the monooxygenases cytochrome P450s. I subsequently present the full localization...

  18. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.

    Science.gov (United States)

    Hadariová, Lucia; Vesteg, Matej; Hampl, Vladimír; Krajčovič, Juraj

    2018-04-01

    Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.

  19. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers.

    Science.gov (United States)

    Wong, Christopher Y S; Gamon, John A

    2015-04-01

    In evergreens, the seasonal down-regulation and reactivation of photosynthesis is largely invisible and difficult to assess with remote sensing. This invisible phenology may be changing as a result of climate change. To better understand the mechanism and timing of these hidden physiological transitions, we explored several assays and optical indicators of spring photosynthetic activation in conifers exposed to a boreal climate. The photochemical reflectance index (PRI), chlorophyll fluorescence, and leaf pigments for evergreen conifer seedlings were monitored over 1 yr of a boreal climate with the addition of gas exchange during the spring. PRI, electron transport rate, pigment levels, light-use efficiency and photosynthesis all exhibited striking seasonal changes, with varying kinetics and strengths of correlation, which were used to evaluate the mechanisms and timing of spring activation. PRI and pigment pools were closely timed with photosynthetic reactivation measured by gas exchange. The PRI provided a clear optical indicator of spring photosynthetic activation that was detectable at leaf and stand scales in conifers. We propose that PRI might provide a useful metric of effective growing season length amenable to remote sensing and could improve remote-sensing-driven models of carbon uptake in evergreen ecosystems. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    International Nuclear Information System (INIS)

    Veroustraete, F.; Patyn, J.; Myneni, R.B.

    1996-01-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (feAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-A VHRR / 2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid. (NEE). Complex ecosystem models with a highly predictive value for a specific ecosystem are generally not suitable for global or regional applications, since they require a substantial set of ancillary data becoming increasingly larger with increasing complexity of the model. The ideal model for our purpose is one that is simple enough to be used in global scale modeling, and which can be adapted for different ecosystems or vegetation types. The fraction of absorbed photosynthetically active radiation (fPAR) during the growing season determines in part net photosynthesis and phytomass production (Ruimy, 1995). Remotely measured red and near-infrared spectral reflectances can be used to estimate fPAR. Therefore, a possible approach is to estimate net photosynthesis, phytomass, and NEE from a combination of satellite data and an ecosystem model that includes carbon dynamics. It has to be stated that some parts of the work presented in this

  1. Short Communication Evidence of carbon transport between shelf ...

    African Journals Online (AJOL)

    The world ocean is pivotal in the global carbon cycle and, subsequent to anthropogenic loading of the atmosphere with CO2, its ability to sequestrate photosynthetically-fixed carbon is important with respect to our ability to predict climate change. A study of the Benguela Edge Exchange Processes was carried out to better ...

  2. Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest

    Science.gov (United States)

    David Medvigy; Su-Jong Jeong; Kenneth L. Clark; Nicholas S. Skowronski; Karina V. R. Schäfer

    2013-01-01

    Seasonal variation in photosynthetic capacity is an important part of the overall seasonal variability of temperate deciduous forests. However, it has only recently been introduced in a few terrestrial biosphere models, and many models still do not include it. The biases that result from this omission are not well understood. In this study, we use the Ecosystem...

  3. Fracture toughness and failure mechanism of high performance concrete incorporating carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A. Khitab

    2017-10-01

    Full Text Available Cement and concrete composites are inherently brittle and exhibit very less tensile/flexural strength capacity as compared to their compressive strength. Use of thoroughly dispersed carbon nanotubes in the concrete matrix is one of the possible solution for enhancing mechanical properties in tension/flexure. In the present research work, small fractions of multiwall carbon nanotube (MWCNTs i.e. 0.05 and 0.10 wt% of cement have been integrated into the cement concrete to study their effect on the mechanical properties of the resultant concrete mixtures. The enhanced performance of the whole mix lies on a single point that MWCNTs must be thoroughly disperse in the mixture. Hence, special arrangement through usage of high energy sonication along with amended acrylic based polymer (performing as a surfactant was made to have a uniform dispersion of MWCNTs in the concrete mix. The testing of concrete samples includes i.e., flexure, splitting tensile and compressive strengths after 3, 7, 28 and 56 days of curing. After having comparison with the control mix cured for 28 days, it was observed that the addition of 0.05 wt% MWCNTs increased the splitting tensile strength by 20.58%, flexural strength by 26.29% and compressive strength by 15.60%. Through above results, which verify the increase in concrete mix strength after adding MWCNTs, these MWCNTs may be incorporated in the treatment of Nano/micro cracks completed through process of connecting, branching and pinning. Similarly, as proved in threepoint bending tests, MWCNTs also enhances the breaking strains as well as the fracture energy of the concrete mixes, besides, imparting increase to the strength. The investigations have shown that incorporating lesser amounts of MWCNTs i.e., 0.05 and 0.10 wt% of cement to the concrete mixes after insuring there complete dispersion, unusually improve their properties like mechanical strengths and fracture behavior

  4. Molecular mechanisms behind the adjustment of phototrophic light-harvesting and mixotrophic utilization of cellulosic carbon sources in Chlamydomonas reinhardtii

    OpenAIRE

    Blifernez-Klassen, Olga

    2012-01-01

    Plants, green algae and cyanobacteria perform photosynthetic conversion of sunlight into chemical energy in a permanently changing natural environment, where the efficient utilization of light and inorganic carbon represent the most critical factors. Photosynthetic organisms have developed different acclimation strategies to adapt changing light conditions and insufficient carbon source supply in order to survive and to assure optimal growth and protection. This thesis provides further insigh...

  5. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  6. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  7. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  8. Oxygen concentration inside a functioning photosynthetic cell.

    Science.gov (United States)

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae.

    Science.gov (United States)

    Christin, Pascal-Antoine; Wallace, Mark J; Clayton, Harmony; Edwards, Erika J; Furbank, Robert T; Hattersley, Paul W; Sage, Rowan F; Macfarlane, Terry D; Ludwig, Martha

    2012-10-01

    The Neurachninae is the only grass lineage known to contain C(3), C(4), and C(3)-C(4) intermediate species, and as such has been suggested as a model system for studies of photosynthetic pathway evolution in the Poaceae; however, a lack of a robust phylogenetic framework has hindered this possibility. In this study, plastid and nuclear markers were used to reconstruct evolutionary relationships among Neurachninae species. In addition, photosynthetic types were determined with carbon isotope ratios, and genome sizes with flow cytometry. A high frequency of autopolyploidy was found in the Neurachninae, including in Neurachne munroi F.Muell. and Paraneurachne muelleri S.T.Blake, which independently evolved C(4) photosynthesis. Phylogenetic analyses also showed that following their separate C(4) origins, these two taxa exchanged a gene encoding the C(4) form of phosphoenolpyruvate carboxylase. The C(3)-C(4) intermediate Neurachne minor S.T.Blake is phylogenetically distinct from the two C(4) lineages, indicating that intermediacy in this species evolved separately from transitional stages preceding C(4) origins. The Neurachninae shows a substantial capacity to evolve new photosynthetic pathways repeatedly. Enablers of these transitions might include anatomical pre-conditions in the C(3) ancestor, and frequent autopolyploidization. Transfer of key C(4) genetic elements between independently evolved C(4) taxa may have also facilitated a rapid adaptation of photosynthesis in these grasses that had to survive in the harsh climate appearing during the late Pliocene in Australia.

  10. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species

    DEFF Research Database (Denmark)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz

    2016-01-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential...... responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 -. Net photosynthesis of all species except Zostera polychlamys were limited...... at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 - users through acidification of diffusive boundary layers, production of extracellular carbonic...

  11. Use of carbonates for biological and chemical synthesis

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  12. Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs.

    Science.gov (United States)

    Schilder, Jos; van Hardenbroek, Maarten; Bodelier, Paul; Kirilova, Emiliya P; Leuenberger, Markus; Lotter, André F; Heiri, Oliver

    2017-06-28

    Methane-derived carbon, incorporated by methane-oxidizing bacteria, has been identified as a significant source of carbon in food webs of many lakes. By measuring the stable carbon isotopic composition (δ 13 C values) of particulate organic matter, Chironomidae and Daphnia spp. and their resting eggs (ephippia), we show that methane-derived carbon presently plays a relevant role in the food web of hypertrophic Lake De Waay, The Netherlands. Sediment geochemistry, diatom analyses and δ 13 C measurements of chironomid and Daphnia remains in the lake sediments indicate that oligotrophication and re-eutrophication of the lake during the twentieth century had a strong impact on in-lake oxygen availability. This, in turn, influenced the relevance of methane-derived carbon in the diet of aquatic invertebrates. Our results show that, contrary to expectations, methane-derived relative to photosynthetically produced organic carbon became more relevant for at least some invertebrates during periods with higher nutrient availability for algal growth, indicating a proportionally higher use of methane-derived carbon in the lake's food web during peak eutrophication phases. Contributions of methane-derived carbon to the diet of the investigated invertebrates are estimated to have ranged from 0-11% during the phase with the lowest nutrient availability to 13-20% during the peak eutrophication phase. © 2017 The Author(s).

  13. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  14. Excitons in intact cells of photosynthetic bacteria.

    Science.gov (United States)

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  15. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Science.gov (United States)

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  16. Spontaneous Synthesis and Electrochemical Characterization of Nanostructured MnO2 on Nitrogen-Incorporated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Ying-Chu Chen

    2012-01-01

    Full Text Available This paper investigated the layered manganese dioxide with hydrate (MnO2⋅xH2O deposits onto nitrogen-containing carbon nanotube (CNxNTs as a hierarchical electrode for an energy-storage device. The dense and entangled CNxNTs were directly grown by microwave plasma-enhanced chemical vapor deposition (MPECVD on a carbon cloth (CC, and subsequently used as a current collector. By controlling the pH value of KMnO4 precursor solution, and incorporating nitrogen into CNTs as a reducing agent, the MnO2 thin layer was uniformly fabricated on the CNxNTs at room temperature by using a spontaneous reduction method. The role of incorporation nitrogen is not only capable of creating active sites on the CNT surface, but can also donate electrons to reduce MnO4- to MnO2 spontaneously. From the measurements of cyclic voltammograms and galvanostatic charge/discharge, MnO2/CNxNTs/CC composite electrodes illustrated excellent specific capacitance of 589.1 Fg-1. The key factor for high performance could be attributed to the thin-layered MnO2 nanostructure, which resulted in the full utilization of MnO2 deposits. Hence, the hierarchically porous MnO2/CNxNTs/CC electrodes exhibited excellent capacitive behavior for electrochemical capacitor application.

  17. Nanodeserts: A Conjecture in Nanotechnology to Enhance Quasi-Photosynthetic CO2 Absorption

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2016-01-01

    Full Text Available This paper advances “nanodeserts” as a conjecture on the possibility of developing the hierarchical structured polymeric nanomaterials for enhancing abiotic CO2 fixation in the soil-groundwater system beneath deserts (termed as quasi-photosynthetic CO2 absorption. Arid and semiarid deserts ecosystems approximately characterize one-third of the Earth’s land surface but play an unsung role in the carbon cycling, considering the huge potentials of such CO2 absorption to expand insights to the long-sought missing CO2 sink and the naturally unneglectable turbulence in temperature sensitivities of soil respiration it produced. “Nanodeserts” as a reconciled concept not only indicate a conjecture in nanotechnology to enhance quasi-photosynthetic CO2 absorption, but also aim to present to the desert researchers a better understanding of the footprints of abiotic CO2 transport, conversion, and assignment in the soil-groundwater system beneath deserts. Meanwhile, nanodeserts allow a stable temperature sensitivity of soil respiration in deserts by largely reducing the CO2 release above the deserts surface and highlighting the abiotic CO2 fixation beneath deserts. This may be no longer a novelty in the future.

  18. Carbon dioxide fixation in isolated Kalanchoe chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Levi, C.; Gibbs, M.

    1975-07-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 ..mu..moles of CO/sub 2/ per milligram of chlorophyll per hour. The dark rate of fixation was about 1 percent of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1, 6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO/sub 2/ fixation were primarily those of the photosynthetic carbon reduction cycle. (auth)

  19. Carbon paste electrode incorporating multi-walled carbon nanotube ...

    Indian Academy of Sciences (India)

    The preparation and electrochemical performance of the carbon nanotube paste electrode modified with ferrocene (FCMCNPE) was investigated for electrocatalytic behaviour toward oxidation of -acetyl--cysteine (NAC) in the presence of tryptophan (Trp) using cyclic voltammetry (CV) and differential pulse voltammetry ...

  20. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  1. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  2. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Tan Zhenghong; Zhang Yiping; Zhang Yongjiang; Song Qinhai; Cao Kunfang; Schaefer, D A; Liu Yuhong; Liang Naishen; Hsia, Yue-Joe; Zhou Guoyi; Li Yuelin; Yan Junhua; Juang, Jehn-Yih; Chu Housen; Yu Guirui; Sun Xiaomin

    2012-01-01

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  3. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    Science.gov (United States)

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  4. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    Directory of Open Access Journals (Sweden)

    André Navarro de Miranda

    2011-12-01

    Full Text Available Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/epoxy composites were molded and electrical conductivity was measured. Also, the CF/CNF/epoxy composites were tested under flexure and interlaminar shear. The results showed an overall reduction in mechanical properties as a function of added nanofiber, although electrical conductivity increased up to 74% with the addition of nanofibers. Thus CF/CNF/epoxy composites can be used as electrical dissipation discharge materials.

  5. Carbon Dioxide Fixation in Isolated Kalanchoe Chloroplasts 1

    Science.gov (United States)

    Levi, Carolyn; Gibbs, Martin

    1975-01-01

    Chloroplasts isolated from Kalanchoe diagremontiana leaves were capable of photosynthesizing at a rate of 5.4 μmoles of CO2 per milligram of chlorophyll per hour. The dark rate of fixation was about 1% of the light rate. A high photosynthetic rate was associated with low starch content of the leaves. Ribose 5-phosphate, fructose 1,6-diphosphate, and dithiothreitol stimulated fixation, whereas phosphoenolpyruvate and azide were inhibitors. The products of CO2 fixation were primarily those of the photosynthetic carbon reduction cycle. PMID:16659249

  6. Photosynthetic performance of restored and natural mangroves under different environmental constraints.

    Science.gov (United States)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan

    2013-10-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  8. Incorporation of glucose carbons into rat lung lipids after exposure to 0.6 ppm ozone

    International Nuclear Information System (INIS)

    Bassett, D.J.; Rabinowitz, J.L.

    1985-01-01

    Continuous exposure to low concentrations of ozone has previously been associated with proliferation of lung alveolar type II epithelial cells. In this study, 14 C incorporation into tissue lipids was determined in isolated rat lungs by perfusion with [U- 14 C]glucose, at a time of maximal hyperplasia brought about by 3 days continuous exposure to 0.6 ppm ozone. Ozone exposed lungs exhibited increased rates of glycolytic energy production, indicated by an 89% increase in 3 H 2 O generation on perfusion with [5-3H]glucose. Ozone exposure resulted in enhanced 14 C incorporations into glyceride-glycerol and fatty acid moieties of lung lipids of 95 and 180%, respectively, with a greater proportion of label being recovered in shorter chain fatty acids. Although increased labeling was observed in both neutral and phospholipids, the pattern of 14 C recovery suggested a relative increased glucose carbon incorporation into lung free fatty acids, phosphatidic acid, and such membrane associated lipids as phosphatidylinositol and those containing sphingosine. These results are consistent with the needs of a dividing cell population for enhanced energy production and synthesis of new lipids

  9. What Drives Carbon Isotope Fractionation by the Terrestrial Biosphere?

    Science.gov (United States)

    Still, Christopher; Rastogi, Bharat

    2017-11-01

    During photosynthesis, terrestrial plants preferentially assimilate the lighter and much more abundant form of carbon, 12C, which accounts for roughly 99% of naturally occurring forms of this element. This photosynthetic preference for lighter carbon is driven principally by differences in molecular diffusion of carbon dioxide with differing 13C/12C across stomatal pores on leaves, followed by differences in carboxylation rates by the Rubisco enzyme that is central to the process of photosynthesis. As a result of these slight preferences, which work out to about a 2% difference in the fixation rates of 12CO2 versus 13CO2 by C3 vegetation, plant tissues are depleted in the heavier form of carbon (13C) relative to atmospheric CO2. This difference has been exploited in a wide range of scientific applications, as the photosynthetic isotope signature is passed to ecosystem carbon pools and through ecological food webs. What is less appreciated is the signature that terrestrial carbon exchanges leave on atmospheric CO2, as the net uptake of carbon by land plants during their growing season not only draws down the local CO2 concentration, it also leaves behind relatively more CO2 molecules containing 13C. The converse happens outside the growing season, when autotrophic and heterotrophic respiration predominate. During these periods, atmospheric CO2 concentration increases and its corresponding carbon isotope composition becomes relatively depleted in 13C as the products of photosynthesis are respired, along with some small isotope fractionation that happen downstream of the initial photosynthetic assimilation. Similar phenomena were first observed at shorter time scales by the eminent carbon cycle scientist, Charles (Dave) Keeling. Keeling collected samples of air in glass flasks from sites along the Big Sur coast that he later measured for CO2 concentration and carbon isotope composition (δ13C) in his lab (Keeling, 1998). From these samples, Keeling observed increasing

  10. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  11. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.

    Science.gov (United States)

    Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten

    2012-01-01

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.

  12. Design, Engineering, and Construction of Photosynthetic Microbial Cell Factories for Renewable Solar Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Peter; Lindberg, Pia; Stensjoe, Karin (Photochemistry and Molecular Science, Dept. of Chemistry-Aangstroem Laboratory, Uppsala Univ., Uppsala (Sweden)), E-mail: Peter.Lindblad@kemi.uu.se; Oliveira, Paulo (Instituto de Biologia Molecular e Celular, Porto (Portugal)); Heidorn, Thorsten (Bioforsk-Norwegian Inst. for Agricultural and Environmental Research, Aas Oslo, (Norway))

    2012-03-15

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H{sub 2} production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted

  13. Diurnal changes of net photosynthetic rate (NPR) in leaves of Lonicera japonica Thunb. and the responding mathematical model of NPR to photosynthetic valid radiation

    International Nuclear Information System (INIS)

    Wu Dafu; Zhang Shengli; Li Dongfang

    2009-01-01

    [Objective] The study provided theoretical basis for production practice . [Method] With Lonicera japonica Thunb .as material, diurnal changes of net photosynthetic rate (NPR) in leaves of the plant and the responding mathematical model of NPR to photosynthetic valid radiation were studied using portable photosynthetic determinator system. [Result] Like most of C3 plants, the diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, but there were time difference in reaching the peak value between the study and previous ones . The responding mathematical model of NPR to photosynthetic valid radiation could be described by three mathematic functions, such as logarithm, linearity and binomial, but binomial function was more precise than the others. Light saturation point of Lonicera japonica Thunb. was figured out by binomial equation deduced in the study , and light saturation point was 1 086 .3 μmol/ (m2•s) . [Conclusion] The diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, and the responding mathematical model of NPR to photosynthetic valid radiation could be described by binomial functions

  14. Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum

    International Nuclear Information System (INIS)

    Pflugmacher, S.; Pietsch, C.; Rieger, W.; Steinberg, C.E.W.

    2006-01-01

    Dissolved natural organic matter (NOM) is dead organic matter exceeding, in freshwater systems, the concentration of organic carbon in all living organisms by far. 80-90% (w/w) of the NOM is made up of humic substances (HS). Although NOM possesses several functional groups, a potential effect on aquatic organisms has not been studied. In this study, direct effects of NOM from various origins on physiological and biochemical functions in the aquatic plant Ceratophyllum demersum are presented. Environmentally relevant concentrations of NOM cause inhibitory effects on the photosynthetic oxygen production of C. demersum. Various NOM sources and the synthetic humic substance HS1500 inhibit the photosynthetic oxygen production of the plant as observed with 1-amino-anthraquinone, a known inhibitor of plant photosynthesis. 1-Aminoanthraquinone may serve as an analogue for the quinoid structures in NOM and HS. Most likely, the effects of NOM may be related to quinoid structures and work downstream of photosynthesis at photosystem (PS) II

  15. Parameterization of Leaf-Level Gas Exchange for Plant Functional Groups From Amazonian Seasonal Tropical Rain Forest

    Science.gov (United States)

    Domingues, T. F.; Berry, J. A.; Ometto, J. P.; Martinelli, L. A.; Ehleringer, J. R.

    2004-12-01

    Plant communities exert strong influence over the magnitude of carbon and water cycling through ecosystems by controlling photosynthetic gas exchange and respiratory processes. Leaf-level gas exchange fluxes result from a combination of physiological properties, such as carboxylation capacity, respiration rates and hydraulic conductivity, interacting with environmental drivers such as water and light availability, leaf-to-air vapor pressure deficit, and temperature. Carbon balance models concerned with ecosystem-scale responses have as a common feature the description of eco-physiological properties of vegetation. Here we focus on the parameterization of ecophysiological gas-exchange properties of plant functional groups from a pristine Amazonian seasonally dry tropical rain forest ecosystem (FLONA-Tapajós, Santarém, PA, Brazil). The parameters were specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, photosynthetic carboxylation capacity, dark respiration rates, and stomatal conductance to water vapor. Our plant functional groupings were lianas at the top of the canopy, trees at the top of the canopy, mid-canopy trees and undestory trees. Within the functional groups, we found no evidence that leaves acclimated to seasonal changes in precipitation. However, there were life-form dependent distinctions when a combination of parameters was included. Top-canopy lianas were statistically different from top-canopy trees for leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and stomatal conductance to water vapor, suggesting that lianas are more conservative in the use of water, causing a stomatal limitation on photosynthetic assimilation. Top-canopy, mid canopy and understory groupings were distinct for specific leaf weight, leaf nitrogen content, leaf carbon isotope ratio, maximum photosynthetic assimilation rate, and photosynthetic carboxylation capacity. The recognition that plant

  16. Coral bleaching independent of photosynthetic activity.

    Science.gov (United States)

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nitrogen control of photosynthetic protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1986-09-01

    Plant growth is severely affected by impaired photosynthesis resulting from nitrogen deficiency. The molecular aspects of this effect are being studied in the green alga Chlamydomonas grown in continuous culture systems. Photosynthetic membranes of nitrogen-limited cells are dramatically depleted in chlorophylls, xanthophylls and proteins of the light-harvesting complexes. In contrast, enzymes of the reductive pentose phosphate cycle and electron transport chain complexes are reduced only 40 to 65% on a per cell basis comparison with nitrogen-sufficient cultures. From analyses of mRNA levels by in vitro translation and hybridization analyses with cloned DNA sequences for photosynthetic proteins, we have found there are rather minor effects of nitrogen deficiency on nuclear or chloroplast gene transcription. Maturation of a transcript of the nuclear-encoded small subunit of ribulose 1,5-bisphosphate carboxylase is inhibited in nitrogen-deficient cells and causes accumulation of large amounts of mRNA precursors. Most of the effects of nitrogen deficiency on photosynthetic proteins appear to result from posttranscriptional regulatory processes: light-harvesting protein synthesis may be sustained but their import into chloroplasts or translocation to photosynthetic membranes is impaired. Nitrogen-deficient cells lack violaxanthin, a pigment that is essential for the structure, function and biogenesis of the major antenna complexes. The absence of this pigment may be a causative factor for the deficiency of light harvesting complexes. Finally, the accumulation of massive amounts of starch and triglycerides in nitrogen-limited cells indicate there are some genes whose maximal expression is dependent upon nitrogen-limiting conditions. 10 refs.

  18. Characterization of Active Packaging Films Made from Poly(Lactic Acid/Poly(Trimethylene Carbonate Incorporated with Oregano Essential Oil

    Directory of Open Access Journals (Sweden)

    Dong Liu

    2016-05-01

    Full Text Available Antimicromial and antioxidant bioactive films based on poly(lactic acid/poly(trimenthylene carbonate films incorporated with different concentrations of oregano essential oil (OEO were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05. The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends.

  19. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Directory of Open Access Journals (Sweden)

    Irene Criscuoli

    Full Text Available The addition of pyrogenic carbon (C in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2 with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2. After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  20. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil.

    Science.gov (United States)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m(-2)) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m(-2)). After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study.

  1. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  2. Effect of space mutation on photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiaonan; Liu Qi

    2011-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photosynthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soybean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 > SP 3 > SP 4 > CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  3. Utilisation of total solar radiation energy in the photosynthetic production of radish, red beet and bean

    Directory of Open Access Journals (Sweden)

    Wiesław Nowakowski

    2014-01-01

    Full Text Available Utilisation of total solar radiation energy in the photosynthetic production of radish, red beet and bean is expressed as per cent of solar radiation accumulated in the carbon of -the dry mass per 1 cm2 of the assimilation surface area. Utilisation of this energy ranges from 2.6 to 8.4 per cent in radish, from 1.7 to 7.5 per cent in beet and from 1.9 to 4.9 per cent in bean.

  4. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest.

    Science.gov (United States)

    Sperlich, D; Chang, C T; Peñuelas, J; Gracia, C; Sabaté, S

    2015-05-01

    The Mediterranean region is a hot spot of climate change vulnerable to increased droughts and heat waves. Scaling carbon fluxes from leaf to landscape levels is particularly challenging under drought conditions. We aimed to improve the mechanistic understanding of the seasonal acclimation of photosynthesis and morphology in sunlit and shaded leaves of four Mediterranean trees (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.) under natural conditions. Vc,max and Jmax were not constant, and mesophyll conductance was not infinite, as assumed in most terrestrial biosphere models, but varied significantly between seasons, tree species and leaf position. Favourable conditions in winter led to photosynthetic recovery and growth in the evergreens. Under moderate drought, adjustments in the photo/biochemistry and stomatal/mesophyllic diffusion behaviour effectively protected the photosynthetic machineries. Severe drought, however, induced early leaf senescence mostly in A. unedo and Q. pubescens, and significantly increased leaf mass per area in Q. ilex and P. halepensis. Shaded leaves had lower photosynthetic potentials but cushioned negative effects during stress periods. Species-specificity, seasonal variations and leaf position are key factors to explain vegetation responses to abiotic stress and hold great potential to reduce uncertainties in terrestrial biosphere models especially under drought conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with Bipolaris oryzae

    Directory of Open Access Journals (Sweden)

    Wiler Ribas Moreira

    2015-08-01

    Full Text Available Brown spot (BS, caused by the fungus Bipolaris oryzae, is one of the most important diseases contracted by rice. We investigated the effect of magnesium (Mg on the development of BS, caused by Bipolaris oryzae, and the effects of disease development on the photosynthetic performance of rice (Oryza sativa L. plants (cv. Metica-1 grown in nutrient solutions containing 0.25 or 4.0 mM of Mg. Assessments of BS severity, leaf Mg and pigment concentrations (total chlorophylls and carotenoids, were carried out at 120 h after inoculation, in addition to gas exchange parameters,. Higher leaf concentration of Mg was observed in plants supplied with 4.0 mM Mg than in those supplied with 0.25 mM. The increase in leaf Mg was accompanied by a decrease in BS severity, higher concentration of total chlorophyll and better photosynthetic performance. Plants supplied with 4.0 mM Mg had higher average values for carbon assimilation, stomatal conductance and internal leaf CO2 concentration when compared with plants supplied with 0.25 mM Mg. Conversely, the concentration of carotenoids was lower in plants supplied with the higher Mg rate. These results suggest that Mg suppresses disease severity and preserves photosynthetic performance by allowing for better stomatal conductance and, consequently, greater availability of CO2 at the carboxylation sites.

  6. Simulation of the Unexpected Photosynthetic Seasonality in Amazonian Evergreen Forests by Using an Improved Diffuse Fraction-Based Light Use Efficiency Model

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; da Rocha, Humberto R.; Rap, Alexandru; Bonal, Damien; Butt, Nathalie; Coupe, Natalia Restrepo; Shugart, Herman H.

    2017-11-01

    Understanding the mechanism of photosynthetic seasonality in Amazonian evergreen forests is critical for its formulation in global climate and carbon cycle models. However, the control of the unexpected photosynthetic seasonality is highly uncertain. Here we use eddy-covariance data across a network of Amazonian research sites and a novel evapotranspiration (E) and two-leaf-photosynthesis-coupled model to investigate links between photosynthetic seasonality and climate factors on monthly scales. It reproduces the GPP seasonality (R2 = 0.45-0.69) with a root-mean-square error (RMSE) of 0.67-1.25 g C m-2 d-1 and a Bias of -0.03-1.04 g C m-2 d-1 for four evergreen forest sites. We find that the proportion of diffuse and direct sunlight governs the photosynthetic seasonality via their interaction with sunlit and shaded leaves, supported by a proof that canopy light use efficiency (LUE) has a strong linear relationship with the fraction of diffuse sunlight for Amazonian evergreen forests. In the transition from dry season to rainy season, incident total radiation (Q) decreased while LUE and diffuse fraction increased, which produced the large seasonal increase ( 34%) in GPP of evergreen forests. We conclude that diffuse radiation is an important environmental driver of the photosynthetic seasonality in tropical Amazon forests yet depending on light utilization by sunlit and shaded leaves. Besides, the GPP model simulates the precipitation-dominated GPP seasonality (R2 = 0.40-0.69) at pasture and savanna sites. These findings present an improved physiological method to relate light components with GPP in tropical Amazon.

  7. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy.

    Science.gov (United States)

    Zhu, Zhi; Luan, Guodong; Tan, Xiaoming; Zhang, Haocui; Lu, Xuefeng

    2017-01-01

    Ethanol photosynthetic production based on cyanobacteria cell factories utilizing CO 2 and solar energy provides an attractive solution for sustainable production of green fuels. However, the scaling up processes of cyanobacteria cell factories were usually threatened or even devastated by biocontaminations, which restricted biomass or products accumulations of cyanobacteria cells. Thus it is of great significance to develop reliable biocontamination-controlling strategies for promoting ethanol photosynthetic production in large scales. The scaling up process of a previously developed Synechocystis strain Syn-HZ24 for ethanol synthesis was severely inhibited and devastated by a specific contaminant, Pannonibacter phragmitetus , which overcame the growths of cyanobacteria cells and completely consumed the ethanol accumulation in the cultivation systems. Physiological analysis revealed that growths and ethanol-consuming activities of the contaminant were sensitive to alkaline conditions, while ethanol-synthesizing cyanobacteria strain Syn-HZ24 could tolerate alkaline pH conditions as high as 11.0, indicating that pH-increasing strategy might be a feasible approach for rescuing ethanol photosynthetic production in outdoor cultivation systems. Thus, we designed and evaluated a Bicarbonate-based Integrated Carbon Capture System (BICCS) derived pH-rising strategy to rescue the ethanol photosynthetic production in non-sterilized conditions. In lab scale artificially simulated systems, pH values of BG11 culture medium were maintained around 11.0 by 180 mM NaHCO 3 and air steam, under which the infection of Pannonibacter phragmitetus was significantly restricted, recovering ethanol production of Syn-HZ24 by about 80%. As for outdoor cultivations, ethanol photosynthetic production of Syn-HZ24 was also successfully rescued by the BICCS-derived pH-rising strategy, obtaining a final ethanol concentration of 0.9 g/L after 10 days cultivation. In this work, a novel product

  8. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective.

    Science.gov (United States)

    Gudmundsson, Steinn; Nogales, Juan

    2015-01-01

    The increasing need to replace oil-based products and to address global climate change concerns has triggered considerable interest in photosynthetic microorganisms. Cyanobacteria, in particular, have great potential as biocatalysts for fuels and fine-chemicals. During the last few years the biotechnological applications of cyanobacteria have experienced an unprecedented increase and the use of these photosynthetic organisms for chemical production is becoming a tangible reality. However, the field is still immature and many concerns about the economic feasibility of the biotechnological potential of cyanobacteria remain. In this review we describe recent successes in biofuel and fine-chemical production using cyanobacteria. We discuss the role of the photosynthetic metabolism and highlight the need for systems-level metabolic optimization in order to achieve the true potential of cyanobacterial biocatalysts.

  9. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  10. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    Science.gov (United States)

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. © 2015 John Wiley & Sons Ltd.

  11. Low-macroscopic field emission from silicon-incorporated diamond-like carbon film synthesized by dc PECVD

    International Nuclear Information System (INIS)

    Ahmed, Sk.F.; Mitra, M.K.; Chattopadhyay, K.K.

    2007-01-01

    Silicon-incorporated diamond-like carbon (Si-DLC) films were deposited via dc plasma-enhanced chemical vapor deposition (PECVD), on glass and alumina substrates at a substrate temperature 300 deg. C. The precursor gas used was acetylene and for Si incorporation, tetraethyl orthosilicate dissolved in methanol was used. Si atomic percentage in the films was varied from 0% to 19.3% as measured from energy-dispersive X-ray analysis (EDX). The binding energies of C 1s, Si 2s and Si 2p were determined from X-ray photoelectron spectroscopic studies. We have observed low-macroscopic field electron emission from Si-DLC thin films deposited on glass substrates. The emission properties have been studied for a fixed anode-sample separation of 80 μm for different Si atomic percentages in the films. The turn-on field was also found to vary from 16.19 to 3.61 V/μm for a fixed anode-sample separation of 80 μm with a variation of silicon atomic percentage in the films 0% to 19.3%. The turn-on field and approximate work function are calculated and we have tried to explain the emission mechanism there from. It was found that the turn-on field and effective emission barrier were reduced by Si incorporation than undoped DLC

  12. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  13. Recent development in artificial photosynthetic model; Jinko kogosei no moderu ka kenkyu saikin no shinpo

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M [Ibaraki Univ., Ibaraki (Japan). Faculty of Engineering

    1996-03-01

    In the conversion from solar energy into chemical energy (fuels) by photochemical conversion, an electron donor is necessary since all the fuels are reductive compounds. From the viewpoint of economic profit, water is the only one candidate as a cheap compound and existing impartially. In this paper, photosynthesis as well as the realization of its artificial model, and the relevant basic research executed recently aiming at the construction of an artificial photosynthetic system are explained. The main reaction of photosynthesis is the generation of carbohydrates by the reduction reaction of carbon dioxide with water as an electron donor and solar visual light as an energy resource. As a special example thereof, the UV photolysis of water due to the photocatalysis of a micro-particle system is introduced. The method of using a semiconductor and the method of using sensitizes are described as the photo excitation system when designing the artificial model. Additionally, as the research with respect to the construction of an artificial photosynthetic system, a photo-exciting charge transfer system is introduced. 27 refs., 1 fig.

  14. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    Science.gov (United States)

    Striegl, Robert G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  15. Study on improvement of continuous hydrogen production by photosynthetic biofilm in interior illuminant reactor.

    Science.gov (United States)

    Liu, Wenhui; Yuan, Linjiang; Wei, Bo

    2016-09-01

    In the present study, a new type of interior optical fiber illuminating reactor was developed for H2 production to solve the problem of luminous intensity attenuation at the center portion of a reactor, and an immobilization technique was used to enhance the stability of a continuous hydrogen production process with attached photosynthetic bacteria, using glucose as a sole carbon substrate for the indigenous photosynthetic bacteria (PSB) Rhodopseudomonas palustris SP-6. Results of the experiments showed that the interior optical fiber illuminating reactor produces H2 more efficiently and productively than the exterior light source reactor, with the cumulative H2 production, the maximum H2 production rate and H2 yield increased by 813ml, 11.3ml l-1 h-1 and 22.3%, respectively. The stability of the product of continuous hydrogen was realized by immobilizing PSB on the surface of powder active carbon(PAC). After adding the dosage of 2.0g l-1 PAC, the continuous steady operation of H2 production gave a high H2 yield of 1.398 mol H2 mol-1 glucose and an average H2 production rate of 35.1ml l-1 h-1 illuminating with a single interior optical fiber light source. Meanwhile, a higher H2 yield of 1.495 mol H2 mol-1 glucose and an average H2 production rate of 38.7ml l-1 h-1 were attained illuminating with a compound lamp in the continuous H2 production for 20 days.

  16. Interactions between heavy metals and photosynthetic materials studied by optical techniques.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Piletska, Elena; Piletsky, Sergey; Agostiano, Angela

    2009-11-01

    In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.

  17. Phylogeny and photosynthetic pathway distribution in Anticharis Endl. (Scrophulariaceae).

    Science.gov (United States)

    Khoshravesh, Roxana; Hossein, Akhani; Sage, Tammy L; Nordenstam, Bertil; Sage, Rowan F

    2012-09-01

    C(4) photosynthesis independently evolved >62 times, with the majority of origins within 16 dicot families. One origin occurs in the poorly studied genus Anticharis Endl. (Scrophulariaceae), which consists of ~10 species from arid regions of Africa and southwest Asia. Here, the photosynthetic pathway of 10 Anticharis species and one species from each of the sister genera Aptosimum and Peliostomum was identified using carbon isotope ratios (δ(13)C). The photosynthetic pathway was then mapped onto an internal transcribed spacer (ITS) phylogeny of Anticharis and its sister genera. Leaf anatomy was examined for nine Anticharis species and plants from Aptosimum and Peliostomum. Leaf ultrastructure, gas exchange, and enzyme distributions were assessed in Anticharis glandulosa collected in SE Iran. The results demonstrate that C(3) photosynthesis is the ancestral condition, with C(4) photosynthesis occurring in one clade containing four species. C(4) Anticharis species exhibit the atriplicoid type of C(4) leaf anatomy and the NAD-malic enzyme biochemical subtype. Six Anticharis species had C(3) or C(3)-C(4) δ(13)C values and branched at phylogenetic nodes that were sister to the C(4) clade. The rest of Anticharis species had enlarged bundle sheath cells, close vein spacing, and clusters of chloroplasts along the centripetal (inner) bundle sheath walls. These traits indicate that basal-branching Anticharis species are evolutionary intermediates between the C(3) and C(4) conditions. Anticharis appears to be an important new group in which to study the dynamics of C(4) evolution.

  18. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  19. Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs.

    Science.gov (United States)

    Palmroth, Sari; Bach, Lisbet Holm; Nordin, Annika; Palmqvist, Kristin

    2014-06-01

    Boreal coniferous forests are characterized by fairly open canopies where understory vegetation is an important component of ecosystem C and N cycling. We used an ecophysiological approach to study the effects of N additions on uptake and partitioning of C and N in two dominant understory shrubs: deciduous Vaccinium myrtillus in a Picea abies stand and evergreen Vaccinium vitis-idaea in a Pinus sylvestris stand in northern Sweden. N was added to these stands for 16 and 8 years, respectively, at rates of 0, 12.5, and 50 kg N ha(-1) year(-1). N addition at the highest rate increased foliar N and chlorophyll concentrations in both understory species. Canopy cover of P. abies also increased, decreasing light availability and leaf mass per area of V. myrtillus. Among leaves of either shrub, foliar N content did not explain variation in light-saturated CO2 exchange rates. Instead photosynthetic capacity varied with stomatal conductance possibly reflecting plant hydraulic properties and within-site variation in water availability. Moreover, likely due to increased shading under P. abies and due to water limitations in the sandy soil under P. sylvestris, individuals of the two shrubs did not increase their biomass or shift their allocation between above- and belowground parts in response to N additions. Altogether, our results indicate that the understory shrubs in these systems show little response to N additions in terms of photosynthetic physiology or growth and that changes in their performance are mostly associated with responses of the tree canopy.

  20. Multilayer models of photosynthetic membranes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brocklehurst, J R; Flanagan, M T

    1982-01-01

    The primary aim of this project has been to build an artificial membrane in which is incorporated, in a functional state, the protein bacteriorhodopsin responsible for generating an electrical potential difference across the membrane of the photosynthetic bacterium, halobacterium halobium, and to investigate the use of this artificial system as the basis of a solar cell. the bacteriorhodopsin has been incorporated into Langmuir-Blodgett multilayers. If ths supporting filter is then illuminated, a potential difference is generated between the two compartments. The lipid in the filter appears to act as a charge carrier for protons, the charge species that forms the electrochemical gradient generated by the bacteriorhodopsin when this molecule absorbs light. The internal resistances of such solar cells were determined and found to be so high that the cells could not be seriously considered as competitors with classical semiconductor cells. Multilayerswere deposited onto filters in which ion carriers that make the filters permeable to sodium ions had been dissolved in the paraffin. The photovoltage obtained indicated that protons transferred from one side of the filter to the other by the action of the bacteriorhodopsin were bing exchanged for sodium ions. A secondary aim of the project has been to examine the possibility of depositing mixed multilayers of a dye and a long chain quinone onto a semiconductor surface. A sensitizing multilayer has been prepared and the mobility of long chain quinones within the layers is high enough to warrant further research. However, it was found that, with the dyes and quinones used, quenched complexes were formed which would not act as sensitizers.

  1. Photosynthetic carbon fixation characteristics of fruiting structures of Brassica campestris L

    International Nuclear Information System (INIS)

    Singal, H.R.; Sheoran, I.S.; Singh, R.

    1987-01-01

    Activities of key enzymes of the Calvin cycle and C 4 metabolism, rates of CO 2 fixation, and the initial products of photosynthetic 14 CO 2 fixation were determined in the podwall, seed coat (fruiting structures), and the subtending leaf (leaf below a receme) of Brassica campestris L. cv Toria. Compared to activities of ribulose-1,5-bisphosphate carboxylase and other Calvin cycle enzymes, e.g. NADP-glyceraldehyde-3-phosphate-dehydrogenase and ribulose-5-phosphate kinase, the activities of phosphoenol pyruvate carboxylase and other enzymes of C 4 metabolism, viz. NADP-malate dehydrogenase, NADP-malic enzyme, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, were generally much higher in seed than in podwall and leaf. Podwall and leaf were comparable to each other. Pulse-chase experiments showed that in seed the major product of 14 CO 2 assimilation was malate (in short time), whereas in podwall and leaf, the label initially appeared in 3-PGA. With time, the label moved to sucrose. In contrast to legumes, Brassica pods were able to fix net CO 2 during light. However, respiratory losses were very high during the dark period

  2. Application of vanadium incorporated phosphomolybdate supported on the modified kaolinin synthesis of diphenyl carbonate by oxidative carbonylation with phenol

    Directory of Open Access Journals (Sweden)

    Peng Meng

    2017-01-01

    Full Text Available Keggin-type molybdophosphoric acid, molybdophosphoric salt and vanadium incorporated molybdophosphoric salt supported on the modified kaolin (MK were investigated as redox co-catalysts for the oxidative carbonylation of phenol to diphenyl carbonate (DPC in the absence of solvent. The 20 wt.% of MnAMPV5 (one kind of vanadium incorporated molybdophosphoric salt loaded on MK showed the highest catalytic activity with the yield of 24.68% and a TON of 306, while the selectivity amounts to nearly 100% in all the carbonylation reactions. The catalysts were characterized by XRD, BET, XPS and H2-TPR. The reusability study showed that the catalysts were stable and active.

  3. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  4. Enzymatic regulation of photosynthetic and light-independent carbon fixation in Laminaria setchellii (Phaeophyta, Ulva lactuca (Chlorophyta and Iridaea cordata (Rhodophyta Regulación enzimática de la fotosíntesis y la fijación de carbono en obscuridad por Laminaria setchellii (Phaeophyta, Ulva lactuca (Chlorophyta e Iridaea cordata (Rhodophyta

    Directory of Open Access Journals (Sweden)

    ALEJANDRO CABELLO-PASINI

    2001-06-01

    Full Text Available Carbon is acquired through photosynthetic and non-photosynthetic processes in marine algae. However, little is known about the biochemical regulation of these metabolic pathways along the thallus of seaweeds. Consequently, the objective of this study was to assess the distribution of in vivo carboxylation pathways and to relate them to the in vitro activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO, phosphoenolpyruvate carboxykinase (PEPCK, and phosphoenolpyruvate carboxylase (PEPC in the Phaeophyte Laminaria setchellii, the Chlorophyte Ulva lactuca, and the Rhodophyte Iridaea cordata. Chlorophyll-a levels did not vary in U. lactuca and I. cordata. However, pigment levels were significantly lower in the meristematic region of L. setchellii probably as a result of a lack of differentiation of the chloroplasts in this region. Similarly, net photosynthesis did not vary in the thallus of U. lactuca and I. cordata, while it increased from the stipe and meristem towards the lamina of L. setchellii. In contrast to photosynthesis, light-independent carbon fixation rates were significantly greater in the meristematic region of L. setchellii suggesting a compensating mechanism for carbon incorporation in photosynthetically limited tissue. The activity of RUBISCO and PEPCK followed a pattern similar to that of in vivo carboxylation processes indicating that in vivo carbon assimilation is regulated by the activity of the carboxylating enzymes throughout the thallus of L. setchelliiLa incorporación de carbono en algas marinas se lleva a cabo mediante procesos fotosintéticos y no-fotosintéticos. Sin embargo, poco se sabe sobre la regulación bioquímica de estas rutas metabólicas en el tejido de algas marinas. En consecuencia, el objetivo de este estudio fue el de evaluar la distribución de la carboxilación in vivo y relacionarlas a la actividad in vitro de ribulosa 1,5-bisfosfato carboxilasa/oxigenasa (RUBISCO, fosfoenolpiruvato

  5. Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries

    Science.gov (United States)

    Zou, Mingzhong; Li, Jiaxin; Wen, WeiWei; Chen, Luzhuo; Guan, Lunhui; Lai, Heng; Huang, Zhigao

    2014-12-01

    Composites of Ag-incorporated carbon nanofibers (CNFs) confined with Fe2O3 nanoparticles (Ag-Fe2O3/CNFs) have been synthesized through an electrospinning method and evaluated as anodes for lithium batteries (LIBs). The obtained Ag-Fe2O3/CNF anodes show good LIB performance with a capacity of 630 mAh g-1 tested at 800 mA g-1 after 150 cycles with almost no capacity loss and superb rate performance. The obtained properties for Ag-Fe2O3/CNF anodes are much better than Fe2O3/CNF anodes without Ag-incorporating. In addition, the low-temperature LIB performances for Ag-Fe2O3/CNF anodes have been investigated for revealing the enhanced mechanism of Ag-incorporating. The superior electrochemical performances of the Ag-Fe2O3/CNFs are associated with a synergistic effect of the CNF matrix and the highly conducting Ag incorporating. This unique configuration not only facilitates electron conduction especially at a relative temperature, but also maintains the structural integrity of active materials. Meanwhile, the related analysis of the AC impedance spectroscopy and the corresponding hypothesis for DC impedance confirm that such configuration can effectively enhance the charge-transfer efficiency and the lithium diffusion coefficient. Therefore, CNF-supported coupled with Ag incorporating synthesis supplied a promising route to obtain Fe2O3 based anodes with high-performance LIBs especially at low temperature.

  6. Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans.

    Directory of Open Access Journals (Sweden)

    Maya S deVries

    Full Text Available Stable isotope analysis has provided insights into the trophic ecology of a wide diversity of animals. Knowledge about isotopic incorporation rates and isotopic discrimination between the consumer and its diet for different tissue types is essential for interpreting stable isotope data, but these parameters remain understudied in many animal taxa and particularly in aquatic invertebrates. We performed a 292-day diet shift experiment on 92 individuals of the predatory mantis shrimp, Neogonodactylus bredini, to quantify carbon and nitrogen incorporation rates and isotope discrimination factors in muscle and hemolymph tissues. Average isotopic discrimination factors between mantis shrimp muscle and the new diet were 3.0 ± 0.6 ‰ and 0.9 ± 0.3 ‰ for carbon and nitrogen, respectively, which is contrary to what is seen in many other animals (e.g. C and N discrimination is generally 0-1 ‰ and 3-4 ‰, respectively. Surprisingly, the average residence time of nitrogen in hemolymph (28.9 ± 8.3 days was over 8 times longer than that of carbon (3.4 ± 1.4 days. In muscle, the average residence times of carbon and nitrogen were of the same magnitude (89.3 ± 44.4 and 72.8 ± 18.8 days, respectively. We compared the mantis shrimps' incorporation rates, along with rates from four other invertebrate taxa from the literature, to those predicted by an allometric equation relating carbon incorporation rate to body mass that was developed for teleost fishes and sharks. The rate of carbon incorporation into muscle was consistent with rates predicted by this equation. Our findings provide new insight into isotopic discrimination factors and incorporation rates in invertebrates with the former showing a different trend than what is commonly observed in other animals.

  7. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  8. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Science.gov (United States)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  9. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  10. Improving Delivery of Photosynthetic Reducing Power to Cytochrome P450s

    DEFF Research Database (Denmark)

    Mellor, Silas Busck

    at sustainable production of high-value and commodity products. Cytochrome P450 enzymes play key roles in the biosynthesis of important natural products. The electron carrier ferredoxin can couple P450s non-natively to photosynthetic electron supply, providing ample reducing power for catalysis. However......, photosynthetic reducing power feeds into both central and specialized metabolism, which leads to a fiercely competitive system from which to siphon reductant. This thesis explores the optimization of light-driven P450 activity, and proposes strategies to overcome the limitations imposed by competition...... for photosynthetic reducing power. Photosynthetic electron carrier proteins interact with widely different partners because they use relatively non-specific interactions. The mechanistic basis of these interactions and its impact on natural electron transfer complexes is discussed. This particular type...

  11. Temperature responses of photosynthetic capacity parameters were not affected by foliar nitrogen content in mature Pinus sylvestris.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2018-03-01

    A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (V cmax ) and electron transport (J max ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that V cmax and J max exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of V cmax and J max in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of V cmax or J max when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability. © 2017 Scandinavian Plant Physiology Society.

  12. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties.

    Science.gov (United States)

    Yao, Fang; LeGeros, John P; LeGeros, Racquel Z

    2009-07-01

    The mineral in bone is an impure hydroxyapatite, with carbonate as the chief minor substituent. Fluoride has been shown to stimulate osteoblastic activity and inhibit osteoclastic resorption in vitro. CO(3)- and F-substituted apatite (CFA) has been considered as potential bone graft material for orthopedic and dental applications. The objective of this study was to determine the effects of simultaneously incorporated CO(3) and F on the crystallographic physico-chemical properties of apatite. The results showed that increasing CO(3) and Na content in apatites with relatively constant F concentration caused a decrease in crystallite size and an increase in the extent of calcium release; increasing F content in apatites with relatively constant CO(3) concentration caused an increase in crystallite size and a decrease in the extent of Ca release. These findings suggest that CFAs as bone graft materials of desired solubility can be prepared by manipulating the relative concentrations of CO(3) and F incorporated in the apatite.

  13. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in

  14. The effect of nitrogen on the development and photosynthetic activity ...

    African Journals Online (AJOL)

    Whole plant net photosynthetic rates appeared to vary according to the units in which the activity is expressed. The optimum levels of photosynthetic activity differed with the stage of development, depending on the basis of expression. The form and concentration of nitrogen applied influenced morphological development ...

  15. Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Chang Tian-gen

    2017-01-01

    Full Text Available Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system (HAPS, and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.

  16. Reduction of chalcogen oxyanions and generation of nanoprecipitates by the photosynthetic bacterium Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Roberto, E-mail: roberto.borghese@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Baccolini, Chiara; Francia, Francesco [Department of Pharmacy and Biotechnology, University of Bologna (Italy); Sabatino, Piera [Department of Chemistry G. Ciamician, University of Bologna (Italy); Turner, Raymond J. [Department of Biological Sciences, University of Calgary, Calgary, Alberta (Canada); Zannoni, Davide, E-mail: davide.zannoni@unibo.it [Department of Pharmacy and Biotechnology, University of Bologna (Italy)

    2014-03-01

    Graphical abstract: - Highlights: • R. capsulatus cells produce extracellular chalcogens nanoprecipitates when lawsone is present. • Lawsone acts as a redox mediator from reducing equivalents to tellurite and selenite. • Nanoprecipitates production depends on carbon source and requires metabolically active cells. • Te{sup 0} and Se{sup 0} nanoprecipitates are identified by X-ray diffraction (XRD) spectroscopy. - Abstract: The facultative photosynthetic bacterium Rhodobacter capsulatus is characterized in its interaction with the toxic oxyanions tellurite (Te{sup IV}) and selenite (Se{sup IV}) by a highly variable level of resistance that is dependent on the growth mode making this bacterium an ideal organism for the study of the microbial interaction with chalcogens. As we have reported in the past, while the oxyanion tellurite is taken up by R. capsulatus cells via acetate permease and it is reduced to Te{sup 0} in the cytoplasm in the form of splinter-like black intracellular deposits no clear mechanism was described for Se{sup 0} precipitation. Here, we present the first report on the biotransformation of tellurium and selenium oxyanions into extracellular Te{sup 0} and Se{sup 0}nanoprecipitates (NPs) by anaerobic photosynthetically growing cultures of R. capsulatus as a function of exogenously added redox-mediator lawsone, i.e. 2-hydroxy-1,4-naphthoquinone. The NPs formation was dependent on the carbon source used for the bacterial growth and the rate of chalcogen reduction was constant at different lawsone concentrations, in line with a catalytic role for the redox mediator. X-ray diffraction (XRD) analysis demonstrated the Te{sup 0} and Se{sup 0} nature of the nanoparticles.

  17. Seasonal response of photosynthetic electron transport and energy dissipation in the eighth year of exposure to elevated atmospheric CO2 (FACE) in Pinus taeda (loblolly pine)

    International Nuclear Information System (INIS)

    Logan, B.A.; Combs, A.; Kent, R.; Stanley, L.; Myers, K.; Tissue, D.T.; Western Sydney Univ., Richmond, NSW

    2009-01-01

    This study investigated the biological adaptation of loblolly pine following long-term seasonal exposure to elevated carbon dioxide (CO 2 ) partial pressures (pCO 2 ). Exposure to elevated atmospheric CO 2 (pCO 2 ) usually results in significant stimulation in light-saturated rates of photosynthetic CO 2 assimilation. Plants are protected against photoinhibition by biochemical processes known as photoprotection, including energy dissipation, which converts excess absorbed light energy into heat. This study was conducted in the eighth year of exposure to elevated pCO 2 at the Duke FACE site. The effect of elevated pCO 2 on electron transport and energy dissipation in the pine trees was examined by coupling the analyses of the capacity for photosynthetic oxygen (O 2 ) evolution, chlorophyll fluorescence emission and photosynthetic pigment composition with measurements of net photosynthetic CO 2 assimilation (Asat). During the summer growing season, Asat was 50 per cent higher in current-year needles and 24 per cent higher in year-old needles in elevated pCO 2 in comparison with needles of the same age cohort in ambient pCO 2 . Thus, older needles exhibited greater photosynthetic down-regulation than younger needles in elevated pCO 2 . In the winter, Asat was not significantly affected by growth pCO 2 . Asat was lower in winter than in summer. Growth at elevated pCO 2 had no significant effect on the capacity for photosynthetic oxygen evolution, photosystem 2 efficiencies, chlorophyll content or the size and conversion state of the xanthophyll cycle, regardless of season or needle age. There was no evidence that photosynthetic electron transport or photoprotective energy dissipation responded to compensate for the effects of elevated pCO 2 on Calvin cycle activity. 73 refs., 4 figs

  18. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties.

    Science.gov (United States)

    Ormsby, Ross; McNally, Tony; Mitchell, Christina; Dunne, Nicholas

    2010-02-01

    Polymethyl methacrylate (PMMA) bone cement-multiwalled carbon nanotube (MWCNT) nanocomposites with a weight loading of 0.1% were prepared using 3 different methods of MWCNT incorporation. The mechanical and thermal properties of the resultant nanocomposite cements were characterised in accordance with the international standard for acrylic resin cements. The mechanical properties of the resultant nanocomposite cements were influenced by the type of MWCNT and method of incorporation used. The exothermic polymerisation reaction for the PMMA bone cement was significantly reduced when thermally conductive functionalised MWCNTs were added. This reduction in exotherm translated in a decrease in thermal necrosis index value of the respective nanocomposite cements, which potentially could reduce the hyperthermia experienced in vivo. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analysed using scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect into the wake of the crack, normal to the direction of crack growth. MWCNT agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the method used to incorporate the MWCNTs into the cement. Copyright 2009. Published by Elsevier Ltd.

  19. A new empirical model to estimate hourly diffuse photosynthetic photon flux density

    Science.gov (United States)

    Foyo-Moreno, I.; Alados, I.; Alados-Arboledas, L.

    2018-05-01

    Knowledge of the photosynthetic photon flux density (Qp) is critical in different applications dealing with climate change, plant physiology, biomass production, and natural illumination in greenhouses. This is particularly true regarding its diffuse component (Qpd), which can enhance canopy light-use efficiency and thereby boost carbon uptake. Therefore, diffuse photosynthetic photon flux density is a key driving factor of ecosystem-productivity models. In this work, we propose a model to estimate this component, using a previous model to calculate Qp and furthermore divide it into its components. We have used measurements in urban Granada (southern Spain), of global solar radiation (Rs) to study relationships between the ratio Qpd/Rs with different parameters accounting for solar position, water-vapour absorption and sky conditions. The model performance has been validated with experimental measurements from sites having varied climatic conditions. The model provides acceptable results, with the mean bias error and root mean square error varying between - 0.3 and - 8.8% and between 9.6 and 20.4%, respectively. Direct measurements of this flux are very scarce so that modelling simulations are needed, this is particularly true regarding its diffuse component. We propose a new parameterization to estimate this component using only measured data of solar global irradiance, which facilitates its use for the construction of long-term data series of PAR in regions where continuous measurements of PAR are not yet performed.

  20. Special issue of photosynthetic research

    NARCIS (Netherlands)

    Okamura, M.; Wraight, C.A.; van Grondelle, R.

    2014-01-01

    This Special Issue of Photosynthesis Research honors Louis M. N. Duysens, Roderick K. Clayton, and George Feher, three pioneering researchers whose work on bacterial photosynthesis laid much of the groundwork for our understanding of the role of the reaction center in photosynthetic light energy

  1. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  2. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Science.gov (United States)

    Pandey, B.; Das, D.; Kar, A. K.

    2015-05-01

    Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current-voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp2 content in DLC matrix. The magnetic moment vs. magnetic field (m-H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  3. Photosynthetic rate, dry matter accumulation and yield inter-relationships jn genotypes of rice

    International Nuclear Information System (INIS)

    Devendra, R.; Udaya Kumar, M.; Krishna Sastry, K.S.

    1980-01-01

    The relationship between photosynthetic efficiency, dry matter accumulation and yield in five genotypes of paddy derived from a single cross between Jaya X Halubbalu was studied. Photosynthetic efficiency of younger leaves, on the main tiller was higher than in the older leaves. A significant positive correlation between RuDPcase activity and photosynthetic efficiency was observed in these genotypes. Also a similar positive correlation between dry matter production and photosynthetic efficiency during vegetative period but not during post-anthesis period was observed. Genotypes with high photosynthetic efficiency and also the genotypes with high LAD produced higher dry matter. A reduction in LAD or in photosynthetic efficiency during the post-anthesis period and thus a reduction in source capacity which occurred specially in late types resulted in a lesser ratio between productive and total tillers and also higher percent sterility. Differences in yield amongst the genotypes were not significant, since in the late types MR. 333 and MR. 335, the post-anthesis dry matter production was low due to lesser source capacity. But in the early types, though the total dry matter was less, the post-anthesis source capacity was high. The importance of post-anthesis leaf area of photo-synthetic efficiency in productivity in genotypes of rice is highlighted. (author)

  4. An evaluation of the effects of exogenous ethephon, an ethylene releasing compound, on photosynthesis of mustard (Brassica juncea cultivars that differ in photosynthetic capacity

    Directory of Open Access Journals (Sweden)

    Khan NA

    2004-12-01

    Full Text Available Abstract Background The stimulatory effect of CO2 on ethylene evolution in plants is known, but the extent to which ethylene controls photosynthesis is not clear. Studies on the effects of ethylene on CO2 metabolism have shown conflicting results. Increase or inhibition of photosynthesis by ethylene has been reported. To understand the physiological processes responsible for ethylene-mediated changes in photosynthesis, stomatal and mesophyll effects on photosynthesis and ethylene biosynthesis in response to ethephon treatment in mustard (Brassica juncea cultivars differing in photosynthetic capacity were studied. Results The effects of ethephon on photosynthetic rate (PN, stomatal conductance (gS, carbonic anhydrase (CA activity, 1-aminocyclopropane carboxylic acid synthase (ACS activity and ethylene evolution were similar in both the cultivars. Increasing ethephon concentration up to 1.5 mM increased PN, gS and CA maximally, whereas 3.0 mM ethephon proved inhibitory. ACS activity and ethylene evolution increased with increasing concentrations of ethephon. The corresponding changes in gs and CA activity suggest that the changes in photosynthesis in response to ethephon were triggered by altered stomatal and mesophyll processes. Stomatal conductance changed in parallel with changes in mesophyll photosynthetic properties. In both the cultivars ACS activity and ethylene increased up to 3.0 mM ethephon, but 1.5 mM ethephon caused maximum effects on photosynthetic parameters. Conclusion These results suggest that ethephon affects foliar gas exchange responses. The changes in photosynthesis in response to ethephon were due to stomatal and mesophyll effects. The changes in gS were a response maintaining stable intercellular CO2 concentration (Ci under the given treatment in both the cultivars. Also, the high photosynthetic capacity cultivar, Varuna responded less to ethephon than the low photosynthetic capacity cultivar, RH30. The photosynthetic

  5. Inorganic Carbon Utilization of the Freshwater Red Alga Compsopogon coeruleus (Balbis Montagne (Compsopogonaceae, Rhodophyta Evaluated by in situ Measurement of Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Shao-Lun Liu

    2004-09-01

    Full Text Available To explore the inorganic carbon utilization of the freshwater red alga Compsopogon coeruleus, photosynthetic rates in response to increasing of bicarbonate concentration, the addition of alkaline HEPES buffer (pH 8.8, acid HEPES buffer (pH 4.0 and the extracellular carbonic anhydrase inhibitor (acetazolamide, AZ, respectively, were examined in situ by using a submersible pulse amplitude modulated (PAM fluorometer. Among the treatments, adding acid HEPES buffer significantly reduced photosynthetic rates of the alga, while others showed no effect. Accordingly, we concluded that C. coeruleus had less or no inorganic carbon (Ci limitation in its natural habitat. The alga might have higher affinity for bicarbonate and directly uptake bicarbonate as main Ci source without the aid of extracellular carbonic anhydrase.

  6. Stereoselective synthesis of organosulfur compounds incorporating N-aromatic heterocyclic motifs and quaternary carbon centers via a sulfa-Michael triggered tandem reaction.

    Science.gov (United States)

    Qin, Tianyou; Cheng, Lu; Zhang, Sean Xiao-An; Liao, Weiwei

    2015-06-14

    A novel sulfa-Michael addition (SMA)-triggered tandem reaction was developed by combining a SMA reaction with a simultaneous rearomatization process utilizing a less reactive carbonyl group as an intramolecular electrophile partner, which provided a unique synthetic route to access various organosulfur compounds incorporating an N-aromatic heterocyclic motif and quaternary carbon centers.

  7. Aspen SUCROSE TRANSPORTER3 Allocates Carbon into Wood Fibers1[C][W

    Science.gov (United States)

    Mahboubi, Amir; Ratke, Christine; Gorzsás, András; Kumar, Manoj; Mellerowicz, Ewa J.; Niittylä, Totte

    2013-01-01

    Wood formation in trees requires carbon import from the photosynthetic tissues. In several tree species, including Populus species, the majority of this carbon is derived from sucrose (Suc) transported in the phloem. The mechanism of radial Suc transport from phloem to developing wood is not well understood. We investigated the role of active Suc transport during secondary cell wall formation in hybrid aspen (Populus tremula × Populus tremuloides). We show that RNA interference-mediated reduction of PttSUT3 (for Suc/H+ symporter) during secondary cell wall formation in developing wood caused thinner wood fiber walls accompanied by a reduction in cellulose and an increase in lignin. Suc content in the phloem and developing wood was not significantly changed. However, after 13CO2 assimilation, the SUT3RNAi lines contained more 13C than the wild type in the Suc-containing extract of developing wood. Hence, Suc was transported into developing wood, but the Suc-derived carbon was not efficiently incorporated to wood fiber walls. A yellow fluorescent protein:PttSUT3 fusion localized to plasma membrane, suggesting that reduced Suc import into developing wood fibers was the cause of the observed cell wall phenotype. The results show the importance of active Suc transport for wood formation in a symplasmically phloem-loading tree species and identify PttSUT3 as a principal transporter for carbon delivery into secondary cell wall-forming wood fibers. PMID:24170204

  8. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  9. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  10. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  11. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    Science.gov (United States)

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  12. The Incorporation of Lithium Alloying Metals into Carbon Matrices for Lithium Ion Battery Anodes

    Science.gov (United States)

    Hays, Kevin A.

    An increased interest in renewable energies and alternative fuels has led to recognition of the necessity of wide scale adoption of the electric vehicle. Automotive manufacturers have striven to produce an electric vehicle that can match the range of their petroleum-fueled counterparts. However, the state-of-the-art lithium ion batteries used to power the current offerings still do not come close to the necessary energy density. The energy and power densities of the lithium ion batteries must be increased significantly if they are going to make electric vehicles a viable option. The chemistry of the lithium ion battery, based on lithium cobalt oxide cathodes and graphite anodes, is limited by the amount of lithium the cathode can provide and the anode will accept. While these materials have proven themselves in portable electronics over the past two decades, plausible higher energy alternatives do exist. The focus is of this study is on anode materials that could achieve a capacity of more than 3 times greater than that of graphite anodes. The lithium alloying anode materials investigated and reported herein include tin, arsenic, and gallium arsenide. These metals were synthesized with nanoscale dimensions, improving their electrochemical and mechanical properties. Each exhibits their own benefits and challenges, but all display opportunities for incorporation in lithium ion batteries. Tin is incorporated in multilayer graphene nanoshells by introducing small amounts of metal in the core and, separately, on the outside of these spheres. Electrolyte decomposition on the anode limits cycle life of the tin cores, however, tin vii oxides introduced outside of the multilayer graphene nanoshells have greatly improved long term battery performance. Arsenic is a lithium alloying metal that has largely been ignored by the research community to date. One of the first long term battery performance tests of arsenic is reported in this thesis. Anodes were made from nanoscale

  13. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Directory of Open Access Journals (Sweden)

    X. Cai

    2017-10-01

    Full Text Available Biological effects of ultraviolet radiation (UVR; 280–400 nm on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280–320 nm and UV-A (320–400 nm on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101 using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs. After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %, MAA content was higher, and average trichome length was shorter (by up to 22 % in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR alone treatment (400–700 nm. These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  14. [Engineering photosynthetic cyanobacterial chassis: a review].

    Science.gov (United States)

    Wu, Qin; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2013-08-01

    Photosynthetic cyanobacteria possess a series of good properties, such as their abilities to capture solar energy for CO2 fixation, low nutritional requirements for growth, high growth rate, and relatively simple genetic background. Due to the high oil price and increased concern of the global warming in recent years, cyanobacteria have attracted widespread attention because they can serve as an 'autotrophic microbial factory' for producing renewable biofuels and fine chemicals directly from CO2. Particularly, significant progress has been made in applying synthetic biology techniques and strategies to construct and optimize cyanobacteria chassis. In this article, we critically summarized recent advances in developing new methods to optimize cyanobacteria chassis, improving cyanobacteria photosynthetic efficiency, and in constructing cyanobacteria chassis tolerant to products or environmental stresses. In addition, various industrial applications of cyanobacteria chassis are also discussed.

  15. Incorporation of [h]leucine and [h]valine into protein of freshwater bacteria: field applications.

    Science.gov (United States)

    Jørgensen, N O

    1992-11-01

    Incorporation of leucine and valine into proteins of freshwater bacteria as a measure of bacterial production was tested in two eutrophic Danish lakes and was related to bacterial production measured by thymidine incorporation. In a depth profile (0 to 8 m) in Frederiksborg Castle Lake, incorporation of 100 nM leucine and valine gave similar rates of protein production. In terms of carbon, this production was about 50% lower than incorporation of 10 nM thymidine. In another depth profile in the same lake, incorporations of 10 nM valine and 100 nM leucine were identical, but differed from incorporations of 10 nM leucine and 100 nM valine. Bacterial carbon production calculated from incorporations of 10 nM thymidine and 10 nM leucine was similar, whereas 10 nM valine and 100 nM leucine and valine indicated an up to 2.4-fold-higher rate of carbon production. In a diel study in Lake Bagsvaerd, incorporation of 100 nM leucine and valine indicated a similar protein production, but the calculated carbon production was about 1.9-fold higher than the production based on uptake of 10 nM thymidine. Different diel changes in incorporation of the two amino acids and in incorporation of thymidine were observed. In both lakes, concentrations of naturally occurring leucine and valine were activity of a H isotope added at a concentration of 100 nM usually was diluted a maximum of 5%. Net assimilation of natural free amino acids in the lakes sustained 8 to 69% of the net bacterial carbon requirement, estimated from incorporation of leucine, valine, or thymidine. The present results indicate that incorporation of leucine and valine permits realistic measurements of bacterial production in freshwater environments.

  16. Effect of Photosynthetic Photon Flux Density on Carboxylation Efficiency 1

    Science.gov (United States)

    Weber, James A.; Tenhunen, John D.; Gates, David M.; Lange, Otto L.

    1987-01-01

    The effect of photosynthetic photon flux density (PPFD) on photosynthetic response (A) to CO2 partial pressures between 35 pascals and CO2 compensation point (Γ) was investigated, especially below PPFD saturation. Spinacia oleracea cv `Atlanta,' Glycine max cv `Clark,' and Arbutus unedo were studied in detail. The initial slope of the photosynthetic response to CO2 (∂A/∂C[Γ]) was constant above a PPFD of about 500 to 600 micromoles per square meter per second for all three species; but declined rapidly with PPFD below this critical level. For Γ there was also a critical PPFD (approximately 200 micromoles per square meter per second for S. oleracea and G. max; 100 for A. unedo) above which Γ was essentially constant, but below which Γ increased with decreasing PPFD. All three species showed a dependence of ∂A/∂C(Γ) on PPFD at low PPFD. Simulated photosynthetic responses obtained with a biochemically based model of whole-leaf photosynthesis were similar to measured responses. PMID:16665640

  17. Non-photosynthetic plastids as hosts for metabolic engineering.

    Science.gov (United States)

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  19. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    Science.gov (United States)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  20. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    International Nuclear Information System (INIS)

    Pham, Gia Vu; Trinh, Anh Truc; Hang To, Thi Xuan; Nguyen, Thuy Duong; Nguyen, Thu Trang; Nguyen, Xuan Hoan

    2014-01-01

    In this study Fe 3 O 4 /CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe 3 O 4 ) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe 3 O 4 /CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe 3 O 4 /CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe 3 O 4 /CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe 3 O 4 /CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe 3 O 4 /CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe 3 O 4 /CNTs composite in the epoxy matrix. (paper)

  1. Ionophore-based optical nanosensors incorporating hydrophobic carbon dots and a pH-sensitive quencher dye for sodium detection.

    Science.gov (United States)

    Galyean, A A; Behr, M R; Cash, K J

    2018-01-21

    Nanosensors present a biological monitoring method that is biocompatible, reversible, and nano-scale, and they offer many advantages over traditional organic indicators. Typical ionophore-based nanosensors incorporate nile-blue derivative pH indicators but suffer from photobleaching while quantum dot alternatives pose a potential toxicity risk. In order to address this challenge, sodium selective nanosensors containing carbon dots and a pH-sensitive quencher molecule were developed based on an ion-exchange theory and a decoupled recognition element from the pH indicator. Carbon dots were synthesized and integrated into nanosensors containing a pH-indicator, an analyte-binding ligand (ionophore), and a charge-balancing additive. These nanosensors are ion-selective against potassium (selectivity coefficient of 0.4) and lithium (selectivity coefficient of 0.9). Reversible nanosensor response to sodium is also demonstrated. The carbon dot nanosensors are resistant to changes in optical properties for at least 12 h and display stable selectivity to physiologically-relevant sodium (alpha = 0.5 of 200 mM NaCl) for a minimum of 6 days.

  2. Energy transfer in real and artificial photosynthetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hindman, J.C.; Hunt, J.E.; Katz, J.J.

    1995-02-01

    Fluorescence emission from the photosynthetic organisms Tribonema aequale, Anacystis nidulau, and Chlorelia vulgais and from some chlorophyll model systems have been recorded as a function of excitation wavelength and temperature. Considerable similarity was observed in the effects of excitation wavelength and temperature on the fluorescence from intact photosynthetic organisms and the model systems. The parallelism in behavior suggest that self-assembly processes may occur in both the in vivo and in vitro systems that give rise to chlorophyll species at low temperature that may differ significantly from those present at ambient temperatures.

  3. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra

    Science.gov (United States)

    S.M. Natali; E.A.G. Schuur; C. Trucco; C.E. Hicks Pries; K.G. Crummer; A.F. Baron Lopez

    2011-01-01

    The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (C02) uptake may, in part, offset respiratory losses. To determine...

  4. Photosynthetic traits of five neotropical rainforest tree species: interactions between light response curves and leaf-to-air vapour pressure deficit

    Directory of Open Access Journals (Sweden)

    Marcelo Schramm Mielke

    2005-09-01

    Full Text Available Measurements of leaf gas exchange at different photosynthetic photon flux density (PPFD levels were conducted in order to compare the photosynthetic traits of five neotropical rainforest tree species, with a special emphasis on empirical mathematical models to estimate the light response curve parameters incorporating the effects of leaf-to-air vapour pressure deficit (D on the saturated photosynthetic rate (Amax. All empirical mathematical models seemed to provide a good estimation of the light response parameters. Comparisons of the leaf photosynthetic traits between different species needed to select an appropriate model and indicated the microenvironmental conditions when the data were collected. When the vapour pressure deficit inside the chamber was not controlled, the incorporation of linear or exponencial functions that explained the effects of D on leaf gas exchange, was a very good method to enhance the performance of the models.Medições das trocas gasosas foliares em diferentes níveis do densidade de fluxo de fótons fotossintéticamente ativos (PPFD foram realizadas com o objetivo de comparar as características fotossintéticas de cinco espécies arbóreas de florestas úmidas neotropicais, com especial ênfase em modelos matemáticos empíricos para estimativa de parâmetros derivados das curvas de resposta à radiação luminosa e dos efeitos da diferença de pressão de vapor entre a folha e o ar (D na taxa fotossintética em saturação luminosa (Amax. Os modelos analisados proporcionaram boas estimativas para os parâmetros derivados das curvas de resposta à radiação luminosa. Comparações entre as características fotossintéticas de diferentes espécies devem sempre considerar os modelos utilizados, seguidas de indicações pormenorizadas das condições microambientais no momento em que os dados foram coletados. Quando a diferença de pressão de vapor não for controlada artificialmente durante as medições, a

  5. Separation, identification and quantification of photosynthetic ...

    African Journals Online (AJOL)

    Thirty one photosynthetic pigments (chlorophylls, carotenoids and degradation products) from the seaweeds, Codium dwarkense, (Chlorophyta), , Laurencia obtusa , (Rhodophyta) and , Lobophora variegata, (Phaeophyta), were separated in a single-step procedure by reversed phase high-performance liquid ...

  6. Sun and Shade leaves, SIF, and Photosynthetic Capacity

    Science.gov (United States)

    Berry, J. A.; Badgley, G.

    2016-12-01

    Recent advances in retrieval of solar induced chlorophyll fluorescence (SIF) have opened up new possibilities for remote sensing of canopy physiology and structure. To date most of the emphasis has been placed on SIF as an indicator of stress and photosynthetic capacity. However, it is clear that canopy structure can also have an influence. To this point, simulations of SIF in land surface models tend to under predict observed variation in SIF. Also, large, systematic differences in SIF from different canopy types seem to correlate well with the photosynthetic capacity of these canopies. SIF emissions from pampered crops can be several-fold that from evergreen, needle-leaf forests. Yet, these may have similar vegetation indices and absorb a similar fraction of incident PAR. SIF photons produced in a conifer canopy do have a lower probability of escaping its dense, clumped foliage. However, this does not explain the correlated differences in photosynthetic rate and SIF. It is useful, in this regard, to consider the separate contributions of sun and shade leaves to the SIF emitted by a canopy. Sun leaves tend to be displayed to intercept the direct solar beam, and these highly illuminated leaves are often visible from above the canopy. Sun leaves produce more SIF and a large fraction of it escapes. Therefore, the intensity of SIF may be a sensitive indicator of the partitioning of absorbed PAR to sun and shade leaves. Many models account tor the different photosynthetic capacity of sun and shade leaves in calculating canopy responses. However, the fraction of leaves in each category is usually parameterized by an assumed leaf angle distribution (e.g. spherical). In reality, the sun/shade fraction can vary over a wide range, and it has been difficult to measure. SIF and possibly near-IR reflectance of canopies can be used to specify this key parameter with obvious importance to understanding photosynthetic rate.

  7. Joint Toxicity of Cadmium and Ionizing Radiation on Zooplankton Carbon Incorporation, Growth and Mobility.

    Science.gov (United States)

    Nascimento, Francisco J A; Svendsen, Claus; Bradshaw, Clare

    2016-02-02

    The risk of exposure to radioactive elements is seldom assessed considering mixture toxicity, potentially over- or underestimating biological and ecological effects on ecosystems. This study investigated how three end points, carbon transfer between phytoplankton and Daphnia magna, D. magna mobility and growth, responded to exposure to γ-radiation in combination with the heavy metal cadmium (Cd), using the MIXTOX approach. Observed effects were compared with mixture effects predicted by concentration addition (CA) and independent action (IA) models and with deviations for synergistic/antagonistic (S/A), dose-level (DL), and dose-ratio (DR) dependency interactions. Several patterns of response were observed depending on the end point tested. DL-dependent deviation from the IA model was observed for carbon incorporation with antagonism switching to synergism at higher doses, while the CA model indicated synergism, mainly driven by effects at high doses of γ-radiation. CA detected antagonism regarding acute immobilization, while IA predicted DR-dependency. Both CA and IA also identified antagonism for daphnid growth. In general, effects of combinations of γ-radiation and Cd seem to be antagonistic at lower doses, but synergistic at the higher range of the doses tested. Our results highlight the importance of investigating the effects of exposure to γ-radiation in a multistressor context.

  8. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Schwarz, Florian P.

    2010-01-01

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  9. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process-level differences in acclimation capacity among plant types. We assessed short-term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and foliar dark respiration (R d ) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C 3 and C 4 ), and climate of origin (tropical and nontropical) grown under fertilized, well-watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C 3 species tending to preferentially accelerate CO 2 -limited photosynthetic processes and respiration and C 4 species tending to preferentially accelerate light-limited photosynthetic processes under warmer conditions. R d acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. R d acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting. © 2017 John Wiley & Sons Ltd.

  10. Photosynthetic control of electron transport and the regulation of gene expression

    NARCIS (Netherlands)

    Foyer, C.H.; Neukermans, J.; Queval, G.; Noctor, G.; Harbinson, J.

    2012-01-01

    The term ‘photosynthetic control’ describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these

  11. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  12. Photosynthetic Pigments in Diatoms

    OpenAIRE

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvestin...

  13. Effect of space mutation of photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiao'nan; Liu Qi

    2012-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photo synthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soy bean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 >SP 3 >SP 4 >CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  14. Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests

    International Nuclear Information System (INIS)

    Bi, Jian; Knyazikhin, Yuri; Choi, Sungho; Park, Taejin; Barichivich, Jonathan; Ciais, Philippe; Fu, Rong; Ganguly, Sangram; Hall, Forrest; Hilker, Thomas; Huete, Alfredo; Jones, Matthew; Kimball, John; Lyapustin, Alexei I; Mõttus, Matti; Nemani, Ramakrishna R; Piao, Shilong; Poulter, Benjamin; Saleska, Scott R

    2015-01-01

    Resolving the debate surrounding the nature and controls of seasonal variation in the structure and metabolism of Amazonian rainforests is critical to understanding their response to climate change. In situ studies have observed higher photosynthetic and evapotranspiration rates, increased litterfall and leaf flushing during the Sunlight-rich dry season. Satellite data also indicated higher greenness level, a proven surrogate of photosynthetic carbon fixation, and leaf area during the dry season relative to the wet season. Some recent reports suggest that rainforests display no seasonal variations and the previous results were satellite measurement artefacts. Therefore, here we re-examine several years of data from three sensors on two satellites under a range of sun positions and satellite measurement geometries and document robust evidence for a seasonal cycle in structure and greenness of wet equatorial Amazonian rainforests. This seasonal cycle is concordant with independent observations of solar radiation. We attribute alternative conclusions to an incomplete study of the seasonal cycle, i.e. the dry season only, and to prognostications based on a biased radiative transfer model. Consequently, evidence of dry season greening in geometry corrected satellite data was ignored and the absence of evidence for seasonal variation in lidar data due to noisy and saturated signals was misinterpreted as evidence of the absence of changes during the dry season. Our results, grounded in the physics of radiative transfer, buttress previous reports of dry season increases in leaf flushing, litterfall, photosynthesis and evapotranspiration in well-hydrated Amazonian rainforests. (letter)

  15. Effect of light and nutrient availability on the release of dissolved organic carbon (DOC) by Caribbean turf algae

    NARCIS (Netherlands)

    Mueller, B.; den Haan, J.; Visser, P.M.; Vermeij, M.J.A.; van Duyl, F.C.

    2016-01-01

    Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not

  16. Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn

    Science.gov (United States)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Petya K. E.; Huemmrich, K. Fred; Cheng, Yen-Ben; Daughtry, Craig S. T.

    2009-08-01

    Patterns of change in vegetation growth and condition are one of the primary indicators of the present and future ecological status of the globe. Nitrogen (N) is involved in photochemical processes and is one of the primary resources regulating plant growth. As a result, biological carbon (C) sequestration is driven by N availability. Large scale monitoring of photosynthetic processes are currently possible only with remote sensing systems that rely heavily on passive reflectance (R) information. Unlike R, fluorescence (F) emitted from chlorophyll is directly related to photochemical reactions and has been extensively used for the elucidation of the photosynthetic pathways. Recent advances in passive fluorescence instrumentation have made the remote acquisition of solar-induced fluorescence possible. The goal of this effort is to evaluate existing reflectance and emerging fluorescence methodologies for determining vegetation parameters related to photosynthetic function and carbon sequestration dynamics in plants. Field corn N treatment levels of 280, 140, 70, and 0 kg N / ha were sampled from an intensive test site for a multi-disciplinary project, Optimizing Production Inputs for Economic and Environmental Enhancement (OPE). Aircraft, near-ground, and leaf-level measurements were used to compare and contrast treatment effects within this experiment site assessed with both reflectance and fluorescence approaches. A number of spectral indices including the R derivative index D730/D705, the normalized difference of R750 vs. R705, and simple ratio R800/R750 differentiated three of the four N fertilization rates and yielded high correlations to three important carbon parameters: C:N, light use efficiency, and grain yield. These results advocate the application of hyperspectral sensors for remotely monitoring carbon cycle dynamics in terrestrial ecosystems.

  17. Carbon translocation from symbiont to host depends on irradiance and food availability in the tropical coral Stylophora pistillata

    Science.gov (United States)

    Tremblay, P.; Grover, R.; Maguer, J. F.; Hoogenboom, M.; Ferrier-Pagès, C.

    2014-03-01

    Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m-2 s-1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 --enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral-dinoflagellate symbioses depend critically on environmental conditions.

  18. A Mechanistically Informed User-Friendly Model to Predict Greenhouse Gas (GHG) Fluxes and Carbon Storage from Coastal Wetlands

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ishtiaq, K. S.

    2015-12-01

    We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.

  19. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    Science.gov (United States)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers

  20. Incorporation of 14C-succinate in Synechococcus

    International Nuclear Information System (INIS)

    Doehler, G.

    1983-01-01

    The cyanobacterium Synechococcus (= Anacystis nidulans) was grown under normal air conditions (0.03 vol.% CO 2 ) and in low white light (0.5 x 10 3 μW/cm 2 ) at 37 0 C. Kinetics of 14 C incorporation into several soluble products and pigments were studied after adding 14 C-succinate during photosynthesis and in the dark using the autoradiographic method. Radioactivity was found mainly in glutamate and aspartate during the photosynthetic period independent on 3-(3',4'-dichlorphenyl)-1,1-dimethylurea preincubation. In the dark period 14 C label could also be detected in malate. Short-term kinetics experiments showed a decrease in 14 C label of glutamate and a parallel increase of aspartate. Results were discussed in respect to the interrupted tricarboxylic acid cycle. (author)

  1. Boreal forests and atmosphere - Biosphere exchange of carbon dioxide

    Science.gov (United States)

    D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.

    1987-01-01

    Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.

  2. Influence of stomatic aperture on photosynthetic activity of bean-seedlings leaves

    International Nuclear Information System (INIS)

    Suarez Moya, J.; Fernandez Gonzalez, J.

    1984-01-01

    The present paper contains the data of photosynthetic activity and stomatic aperture of bean-seedlings Ieaves, and the relations obtained with both results. It has been observed that the product of photosynthetic activity by the resistance; to transpiration measured by a promoter ia a constant, between some limits. (Author) 45 refs

  3. On the photosynthetic potential in the very Early Archean oceans.

    Science.gov (United States)

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  4. Carbon recycling by cyanobacteria: improving CO2 fixation through chemical production.

    Science.gov (United States)

    Zhang, Angela; Carroll, Austin L; Atsumi, Shota

    2017-09-01

    Atmospheric CO2 levels have reached an alarming level due to industrialization and the burning of fossil fuels. In order to lower the level of atmospheric carbon, strategies to sequester excess carbon need to be implemented. The CO2-fixing mechanism in photosynthetic organisms enables integration of atmospheric CO2 into biomass. Additionally, through exogenous metabolic pathways in these photosynthetic organisms, fixed CO2 can be routed to produce various commodity chemicals that are currently produced from petroleum. This review will highlight studies and modifications to different components of cyanobacterial CO2-fixing systems, as well as the application of these systems toward CO2-derived chemical production. 2,3-Butanediol is given particular focus as one of the most thoroughly studied systems for conversion of CO2 to a bioproduct. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Quantum-Mechanical Methods for Quantifying Incorporation of Contaminants in Proximal Minerals

    Directory of Open Access Journals (Sweden)

    Lindsay C. Shuller-Nickles

    2014-07-01

    Full Text Available Incorporation reactions play an important role in dictating immobilization and release pathways for chemical species in low-temperature geologic environments. Quantum-mechanical investigations of incorporation seek to characterize the stability and geometry of incorporated structures, as well as the thermodynamics and kinetics of the reactions themselves. For a thermodynamic treatment of incorporation reactions, a source of the incorporated ion and a sink for the released ion is necessary. These sources/sinks in a real geochemical system can be solids, but more commonly, they are charged aqueous species. In this contribution, we review the current methods for ab initio calculations of incorporation reactions, many of which do not consider incorporation from aqueous species. We detail a recently-developed approach for the calculation of incorporation reactions and expand on the part that is modeling the interaction of periodic solids with aqueous source and sink phases and present new research using this approach. To model these interactions, a systematic series of calculations must be done to transform periodic solid source and sink phases to aqueous-phase clusters. Examples of this process are provided for three case studies: (1 neptunyl incorporation into studtite and boltwoodite: for the layered boltwoodite, the incorporation energies are smaller (more favorable for reactions using environmentally relevant source and sink phases (i.e., ΔErxn(oxides > ΔErxn(silicates > ΔErxn(aqueous. Estimates of the solid-solution behavior of Np5+/P5+- and U6+/Si4+-boltwoodite and Np5+/Ca2+- and U6+/K+-boltwoodite solid solutions are used to predict the limit of Np-incorporation into boltwoodite (172 and 768 ppm at 300 °C, respectively; (2 uranyl and neptunyl incorporation into carbonates and sulfates: for both carbonates and sulfates, it was found that actinyl incorporation into a defect site is more favorable than incorporation into defect-free periodic

  6. Unusual carbon partitioning during phosphate deficiency in celery, a mannitol-synthesizing species

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, R.H.; Loescher, W.H. (Washington State Univ., Pullman (USA))

    1989-04-01

    Mannitol and sucrose are the main photosynthetic products and translocated carbon compounds in celery (Apium graveolens L.). Carbon partitioning was studied in greenhouse-grown celery plants supplied with a nutrient solution containing or lacking phosphate (P). P-deficient plants developed new leaves at about the same rate as control plants, but showed greatly reduced growth of leaves and petioles; root growth was apparently unaffected. P-deficient leaves contained less mannitol and more sucrose than control leaves. Starch content increased with P-deficiency only in mature (the most photosynthetically-active) leaves, and then amounted to less than 10 mg/g fresh weight. Similarly, when {sup 14}CO{sub 2} was supplied to intact plants, P-deficient leaves contained less label in mannitol and more in sucrose than did control leaves; labeling of starch changed little. The P-status of celery leaves apparently affects the partitioning of carbon between mannitol and sucrose more than it affects starch accumulation. This is in marked contrast to the large increase in starch content commonly observed during P-deficiency in species that produce and translocate predominantly sucrose.

  7. Photosynthetic metabolism and quality of Eugenia pyriformis Cambess. seedlings on substrate function and water levels.

    Science.gov (United States)

    Scalon, Silvana P Q; Jeromini, Tatiane S; Mussury, Rosilda M; Dresch, Daiane M

    2014-12-01

    The aim of this research was to evaluate the quality and photosynthetic metabolism of "uvaia" seedlings (Eugenia pyriformis Cambess.) on different substrates and water regimes. The seeds were sown in tubes of 50 x 190 mm in the following substrates: Sand (S), Latosol + Sand (L + S) (1:1), Latosol + Sand + Semi Decomposed Poultry Litter (L + S1 + PL) ( 1:1:0.5), Latosol + Sand + Semi Decomposed Poultry Litter (L + S2 + PL) (1:2:0.5), Latosol + Bioplant® (L + B) (1:1), and the water levels assessed were 50, 75 and 100% of water retention capacity. At 60, 90, 120 and 150 days the seedlings were evaluated according to their chlorophyll index, leaf area (cm2) and Dickson Quality Index (DQI) and at 150 days their internal concentration of carbon (mol m-2 s-1), stomatal conductance (mol m-2 s-1), transpiration rate (mmol m-2 s-1), photosynthesis (µmol m-2 s-1) and efficiency of water use (µmol de CO2 / mmol de H2O). Until their 150th days, the seedlings had higher quality and photosynthetic metabolism when cultured with substrates containing latosol + sand + poultry litter on the two variations assessed and water retention capacity of 50%.

  8. Photosynthetic metabolism and quality of Eugenia pyriformis Cambess. seedlings on substrate function and water levels

    Directory of Open Access Journals (Sweden)

    SILVANA P.Q. SCALON

    2014-12-01

    Full Text Available The aim of this research was to evaluate the quality and photosynthetic metabolism of “uvaia” seedlings (Eugenia pyriformis Cambess. on different substrates and water regimes. The seeds were sown in tubes of 50 x 190 mm in the following substrates: Sand (S, Latosol + Sand (L + S (1:1, Latosol + Sand + Semi Decomposed Poultry Litter (L + S1 + PL ( 1:1:0.5, Latosol + Sand + Semi Decomposed Poultry Litter (L + S2 + PL (1:2:0.5, Latosol + Bioplant® (L + B (1:1, and the water levels assessed were 50, 75 and 100% of water retention capacity. At 60, 90, 120 and 150 days the seedlings were evaluated according to their chlorophyll index, leaf area (cm2 and Dickson Quality Index (DQI and at 150 days their internal concentration of carbon (mol m–2 s–1, stomatal conductance (mol m–2 s–1, transpiration rate (mmol m–2 s–1, photosynthesis (µmol m–2 s–1 and efficiency of water use (µmol de CO2 / mmol de H2O. Until their 150th days, the seedlings had higher quality and photosynthetic metabolism when cultured with substrates containing latosol + sand + poultry litter on the two variations assessed and water retention capacity of 50%.

  9. Quantum transport in the FMO photosynthetic light-harvesting complex.

    Science.gov (United States)

    Karafyllidis, Ioannis G

    2017-06-01

    The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.

  10. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    KAUST Repository

    Bredas, Jean-Luc

    2016-12-20

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder-structural and energetic-and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  11. How well do growing season dynamics of photosynthetic capacity correlate with leaf biochemistry and climate fluctuations?

    Science.gov (United States)

    Way, Danielle A; Stinziano, Joseph R; Berghoff, Henry; Oren, Ram

    2017-07-01

    Accurate values of photosynthetic capacity are needed in Earth System Models to predict gross primary productivity. Seasonal changes in photosynthetic capacity in these models are primarily driven by temperature, but recent work has suggested that photoperiod may be a better predictor of seasonal photosynthetic capacity. Using field-grown kudzu (Pueraria lobata (Willd.) Ohwi), a nitrogen-fixing vine species, we took weekly measurements of photosynthetic capacity, leaf nitrogen, and pigment and photosynthetic protein concentrations and correlated these with temperature, irradiance and photoperiod over the growing season. Photosynthetic capacity was more strongly correlated with photoperiod than with temperature or daily irradiance, while the growing season pattern in photosynthetic capacity was uncoupled from changes in leaf nitrogen, chlorophyll and Rubisco. Daily estimates of the maximum carboxylation rate of Rubisco (Vcmax) based on either photoperiod or temperature were correlated in a non-linear manner, but Vcmax estimates from both approaches that also accounted for diurnal temperature fluctuations were similar, indicating that differences between these models depend on the relevant time step. We advocate for considering photoperiod, and not just temperature, when estimating photosynthetic capacity across the year, particularly as climate change alters temperatures but not photoperiod. We also caution that the use of leaf biochemical traits as proxies for estimating photosynthetic capacity may be unreliable when the underlying relationships between proxy leaf traits and photosynthetic capacity are established outside of a seasonal framework. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas

    Science.gov (United States)

    Zhang, Rui; White, Andrew T.; Pour Biazar, Arastoo; McNider, Richard T.; Cohan, Daniel S.

    2018-01-01

    This study examines the influence of insolation and cloud retrieval products from the Geostationary Operational Environmental Satellite (GOES) system on biogenic emission estimates and ozone simulations in Texas. Compared to surface pyranometer observations, satellite-retrieved insolation and photosynthetically active radiation (PAR) values tend to systematically correct the overestimation of downwelling shortwave radiation in the Weather Research and Forecasting (WRF) model. The correlation coefficient increases from 0.93 to 0.97, and the normalized mean error decreases from 36% to 21%. The isoprene and monoterpene emissions estimated by the Model of Emissions of Gases and Aerosols from Nature are on average 20% and 5% less, respectively, when PAR from the direct satellite retrieval is used rather than the control WRF run. The reduction in biogenic emission rates using satellite PAR reduced the predicted maximum daily 8 h ozone concentration by up to 5.3 ppbV over the Dallas-Fort Worth (DFW) region on some days. However, episode average ozone response is less sensitive, with a 0.6 ppbV decrease near DFW and 0.3 ppbV increase over East Texas. The systematic overestimation of isoprene concentrations in a WRF control case is partially corrected by using satellite PAR, which observes more clouds than are simulated by WRF. Further, assimilation of GOES-derived cloud fields in WRF improved CAMx model performance for ground-level ozone over Texas. Additionally, it was found that using satellite PAR improved the model's ability to replicate the spatial pattern of satellite-derived formaldehyde columns and aircraft-observed vertical profiles of isoprene.

  13. Calculation of the radiative properties of photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-01-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers–Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  14. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  15. Seasonal variation of microzooplankton (20-200 mu m) and its possible implications on the vertical carbon flux in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothibabu, R; Madhu, N.V.; Maheswaran, P.A.; Jayalakshmy, K.V.; Nair, K.K.C.; Achuthankutty, C.T.

    Synechococcus-HDS associations. The high abundance of smaller phytoplankton favors microbial food webs where photosynthetic carbon is channeled to higher trophic levels through MZP. This causes less efficient transfer of primary organic carbon to higher trophic...

  16. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G. [Edinburgh Univ., Inst. of Ecology and Resource Management, Edinburgh (United Kingdom); Grayston, S. J. [Macaulay Land Use Research Inst., Plant-Soil Interaction Group, Aberdeen (United Kingdom)

    2003-10-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs.

  17. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment

    International Nuclear Information System (INIS)

    Temperton, V. M.; Jackson, G.; Barton, C. V. M.; Jarvis, P. G.; Grayston, S. J.

    2003-01-01

    Total biomass, relative growth rate, net assimilation rate, leaf area and net photosynthetic rate of nitrogen-fixing were measured in common alder trees, grown for three years in open-top chambers in the presence of either ambient or elevated atmospheric carbon dioxide, and in two soil nitrogen regimes: i.e. full nutrient solution or no fertilizer. The objective was to clarify the relationship between elevated carbon dioxide and the rate of nitrogen fixation of nodulated trees growing under field conditions. Results showed that growth in elevated carbon dioxide stimulated net photosynthesis and total biomass accumulation. However, relative growth rate was not significantly affected by elevated carbon dioxide. Leaf area and leaf phosphorus concentration were also unaffected. Nodule mass on roots of unfertilized trees exposed to elevated carbon dioxide increased, compared with fertilized trees exposed to ambient carbon dioxide levels. Since neither in the fertilized, nor the unfertilized trees was there any evidence of effects on growth, biomass and photosynthesis that could be attributed to the interaction of fertilizer and elevated carbon dioxide interaction, it was concluded that both types exhibit similar carbon dioxide-induced growth and photosynthetic enhancements. 40 refs., 5 tabs., 3 figs

  18. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis.

    Science.gov (United States)

    Warren, Charles R; Adams, Mark A

    2006-02-01

    Central paradigms of ecophysiology are that there are recognizable and even explicit and predictable patterns among species, genera, and life forms in the economics of water and nitrogen use in photosynthesis and in carbon isotope discrimination (delta). However most previous examinations have implicitly assumed an infinite internal conductance (gi) and/or that internal conductance scales with the biochemical capacity for photosynthesis. Examination of published data for 54 species and a detailed examination for three well-characterized species--Eucalyptus globulus, Pseudotsuga menziesii and Phaseolus vulgaris--show these assumptions to be incorrect. The reduction in concentration of CO2 between the substomatal cavity (Ci) and the site of carbon fixation (Cc) varies greatly among species. Photosynthesis does not scale perfectly with gi and there is a general trend for plants with low gi to have a larger draw-down from Ci to Cc, further confounding efforts to scale photosynthesis and other attributes with gi. Variation in the gi-photosynthesis relationship contributes to variation in photosynthetic 'use' efficiency of N (PNUE) and water (WUE). Delta is an information-rich signal, but for many species only about two-thirds of this information relates to A/gs with the remaining one-third related to A/gi. Using data for three well-studied species we demonstrate that at common WUE, delta may vary by up to 3 per thousand. This is as large or larger than is commonly reported in many interspecific comparisons of delta, and adds to previous warnings about simplistic interpretations of WUE based on delta. A priority for future research should be elucidation of relationships between gi and gs and how these vary in response to environmental conditions (e.g. soil water, leaf-to-air vapour pressure deficit, temperature) and among species.

  19. Diurnal Change of Soil Carbon Flux of Binhai New District

    Science.gov (United States)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(Pequations (Pquadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  20. Effect of temperature and light intensity on growth and photosynthetic activity of Chlamydomonas Reinhardtii

    International Nuclear Information System (INIS)

    Alfonsel, M.; Fernandez Gonzalez, J.

    1986-01-01

    The effect of five temperatures (15, 20, 25, 30 and 35 0 C) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhardtii has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of CO 2 labelled with C 14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 0 C for the lower lavel of illumination (2400 lux) and at 35 0 C for the higher one (13200 lux). These results suggest an interacton of temperature and illumination on photosynthetic activity. (author)

  1. [Correlation research of photosynthetic characteristics and medicinal materials production with 4 Uncariae Cum Uncis].

    Science.gov (United States)

    Luo, Min; Song, Zhi-Qin; Yang, Ping-Fei; Liu, Hai; Yang, Zai-Gang; Wu, Ming-Kai

    2017-01-01

    Using four Uncariae Cum Uncis materials including Uncaria sinensis (HGT), U. hirsutea (MGT), Jianhe U. rhynchophylla (JHGT) and U. rhynchophylla(GT) as the research objects, the correlations between medicinal materials' yield and photosynthetic ecophysiology-factors in the plant exuberant growth period were studied. Results showed that the Uncaria plants net photosynthetic rate (Pn) changed by unimodal curve. There was not "midday depression" phenomenon. There was a different relationship among the photosynthetic ecophysiology-factors and between photosynthetic ecophysiology-factors and medicinal materials' yield. Pn,Tl,Gs had a significant correlation with medicinal materials' yield(M)and were the most important factors of growth. Copyright© by the Chinese Pharmaceutical Association.

  2. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; LaFountain, Amy M; Kelsh, Rhiannon M; Gardiner, Alastair T; Cogdell, Richard J; Frank, Harry A

    2008-08-28

    Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the

  3. Isoprenoids emission in Stipa tenacissima L.: Photosynthetic control and the effect of UV light

    International Nuclear Information System (INIS)

    Guidolotti, Gabriele; Rey, Ana; Medori, Mauro; Calfapietra, Carlo

    2016-01-01

    Fluxes of CO_2 and isoprenoids were measured for the first time in Stipa tenacissima L (alfa grass), a perennial tussock grass dominant in the driest areas of Europe. In addition, we studied how those fluxes were influenced by environmental conditions, leaf ontogeny and UV radiation and compared emission rates in two contrasting seasons: summer when plants are mostly inactive and autumn, the growing season in this region. Leaf ontogeny significantly affected both photosynthesis and isoprenoids emission. Isoprene emission was positively correlated with photosynthesis, although a low isoprene emission was detected in brown leaves with a net carbon loss. Moreover, leaves with a significant lower photosynthesis emitted only monoterpenes, while at higher photosynthetic rates also isoprene was produced. Ambient UV radiation uncoupled photosynthesis and isoprene emission. It is speculated that alfa grass represent an exception from the general rules governing plant isoprenoid emitters. - Highlights: • Stipa tenacissima L. is a grass emitting either monoterpenes and isoprene. • The emission has reasonable rates even in senescent leaves. • Isoprene emission is positively correlated with CO_2 assimilation. • Ambient UV radiation uncouples photosynthesis and isoprene emission. • Leaves with lower photosynthetic rates emit only monoterpenes. - We proved for the first time that alfa grass emit both isoprene and monoterpene, and we provide some innovative aspects about the UV effect and the behavior of Stipa tenacissima.

  4. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  5. Effect of applied environmental stress on growth, photosynthesis, carbon allocation, and hydrocarbon production in Euphorbia lathyris

    International Nuclear Information System (INIS)

    Taylor, S.E.; Calvin, M.

    1988-01-01

    Photosynthetic activity was reduced by salinity stress, but is was found to be less sensitive than growth. Salinity stress also caused changes in the concentrations of specific cations. Moderate water stress had little effect on growth, but large changes in hydrocarbon production were still observed. Carbon allocation experiments with radiolabeled carbon indicated that carbon for latex production was supplied by nearby leaves, with some translocation down the stem also occurring

  6. Correlation between substrate bias, growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon films

    International Nuclear Information System (INIS)

    Liu Aiping; Zhu Jiaqi; Han Jiecai; Wu Huaping; Jia Zechun

    2007-01-01

    We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH 3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about -80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH 3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp 2 sites dispersed in sp 3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films

  7. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.

    Science.gov (United States)

    Borum, Jens; Pedersen, Ole; Kotula, Lukasz; Fraser, Matthew W; Statton, John; Colmer, Timothy D; Kendrick, Gary A

    2016-06-01

    Photosynthesis of most seagrass species seems to be limited by present concentrations of dissolved inorganic carbon (DIC). Therefore, the ongoing increase in atmospheric CO2 could enhance seagrass photosynthesis and internal O2 supply, and potentially change species competition through differential responses to increasing CO2 availability among species. We used short-term photosynthetic responses of nine seagrass species from the south-west of Australia to test species-specific responses to enhanced CO2 and changes in HCO3 (-) . Net photosynthesis of all species except Zostera polychlamys were limited at pre-industrial compared to saturating CO2 levels at light saturation, suggesting that enhanced CO2 availability will enhance seagrass performance. Seven out of the nine species were efficient HCO3 (-) users through acidification of diffusive boundary layers, production of extracellular carbonic anhydrase, or uptake and internal conversion of HCO3 (-) . Species responded differently to near saturating CO2 implying that increasing atmospheric CO2 may change competition among seagrass species if co-occurring in mixed beds. Increasing CO2 availability also enhanced internal aeration in the one species assessed. We expect that future increases in atmospheric CO2 will have the strongest impact on seagrass recruits and sparsely vegetated beds, because densely vegetated seagrass beds are most often limited by light and not by inorganic carbon. © 2015 John Wiley & Sons Ltd.

  8. Respiratory processes in non-photosynthetic plastids

    Science.gov (United States)

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  9. Respiratory processes in non-photosynthetic plastids

    Directory of Open Access Journals (Sweden)

    Marta eRenato

    2015-07-01

    Full Text Available Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(PH to oxygen. This respiratory chain involves the NAD(PH dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX, and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

  10. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry.

    Science.gov (United States)

    Petryshyn, V A; Lim, D; Laval, B L; Brady, A; Slater, G; Tripati, A K

    2015-01-01

    Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the (18)O/(16)O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water (18)O/(16)O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters. © 2014 John

  12. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    OpenAIRE

    Xiaosong Li; Guoxiong Zheng; Jinying Wang; Cuicui Ji; Bin Sun; Zhihai Gao

    2016-01-01

    Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv) and NPV (fnpv) using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wi...

  13. Natural strategies for photosynthetic light harvesting

    NARCIS (Netherlands)

    Croce, R.; van Amerongen, H.

    2014-01-01

    Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation

  14. Gadolinium DTPA-monoamide complexes incorporated into mixed micelles as possible MRI contrast agents

    OpenAIRE

    Parac-Vogt, Tatjana; Kimpe, Kristof; Laurent, Sophie; Pierart, Corinne; Vander Elst, Luce; Muller, Robert N.; Binnemans, Koen

    2004-01-01

    Four monoamide derivatives of Gd-DTPA with alkyl chains consisting of 12, 14, 16, or 18 carbon atoms were synthesized. The gadolinium(III) complexes with chain lengths of 14, 16 or 18 carbon atoms were efficiently incorporated into mixed micelles whereas the complex with a chain length of 12 carbon atoms was not incorporated into a micellar structure. The size distribution of the micelles was measured by photon correlation spectroscopy. The mean sizes of the micelles for all the complexes lay...

  15. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  16. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  17. Cu incorporated amorphous diamond like carbon (DLC) composites: An efficient electron field emitter over a wide range of temperature

    Science.gov (United States)

    Ahmed, Sk Faruque; Alam, Md Shahbaz; Mukherjee, Nillohit

    2018-03-01

    The effect of temperature on the electron field emission properties of copper incorporated amorphous diamond like carbon (a-Cu:DLC) thin films have been reported. The a-Cu:DLC thin films have been deposited on indium tin oxide (ITO) coated glass and silicon substrate by the radio frequency sputtering process. The chemical composition of the films was investigated using X-ray photoelectron spectroscopy and the micro structure was established using high resolution transmission electron microscopy. The sp2 and sp3 bonding ratio in the a-Cu:DLC have been analyzed by the Fourier transformed infrared spectroscopy studies. The material showed excellent electron field emission properties; which was optimized by varying the copper atomic percentage and temperature of the films. It was found that the threshold field and effective emission barrier were reduced significantly by copper incorporation as well as temperature and a detailed explanation towards emission mechanism has been provided.

  18. Environmental science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes.

    Science.gov (United States)

    Worden, Alexandra Z; Follows, Michael J; Giovannoni, Stephen J; Wilken, Susanne; Zimmerman, Amy E; Keeling, Patrick J

    2015-02-13

    The profound influence of marine plankton on the global carbon cycle has been recognized for decades, particularly for photosynthetic microbes that form the base of ocean food chains. However, a comprehensive model of the carbon cycle is challenged by unicellular eukaryotes (protists) having evolved complex behavioral strategies and organismal interactions that extend far beyond photosynthetic lifestyles. As is also true for multicellular eukaryotes, these strategies and their associated physiological changes are difficult to deduce from genome sequences or gene repertoires—a problem compounded by numerous unknown function proteins. Here, we explore protistan trophic modes in marine food webs and broader biogeochemical influences. We also evaluate approaches that could resolve their activities, link them to biotic and abiotic factors, and integrate them into an ecosystems biology framework. Copyright © 2015, American Association for the Advancement of Science.

  19. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available As an important successional stage and main type of biological soil crusts (BSCs in Shapotou region of China (southeastern edge of Tengger Desert, lichen soil crusts (LSCs often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs.

  20. Seasonal changes in photosynthetic capacity of leaves of kiwifruit (Actinidia deliciosa) vines

    International Nuclear Information System (INIS)

    Buwalda, J.G.; Meekings, J.S.; Smith, G.S.

    1991-01-01

    The seasonal trend of photosynthetic capacity of leaves of kiwifruit (Actinidia deliciosa var. deliciosa) vines growing in the field was examined, by measuring the response of net photosynthesis (A) to irradiance (PAR) at monthly intervals for leaves that emerged at different stages of the growing season. A climate controlled minicuvette system was used, to ensure constant environmental conditions, apart from the controlled changes in leaf irradiance. Responses of A to irradiance were described using asymptotic exponential curves, providing estimates of the radiation saturated rate of A (A sat ), and the response of A to increasing incident PAR at low PAR levels (ϕ i ). The change in photosynthetic capacity with leaf age was similar for leaves emerging 1, 2, 3 or 4 months after bud burst. At 1 month after leaf emergence, when leaves were fully expanded, Asat was 9–11 μmol CO 2 m −2 s −1 . Maximum photosynthetic capacity was not attained until 3–5 months after leaf emergence, when Asat was 16–17 μmol CO 2 m −2 s −1 . The increasing photosynthetic capacity during 3–5 months after leaf emergence was closely related to concomitant changes in leaf N and chlorophyll contents. The possibility that N import to the leaf was a significant factor limiting the development of photosynthetic capacity is discussed. (author)

  1. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  2. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  3. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius "Diabolo".

    Science.gov (United States)

    Zhang, Huihui; Zhong, Haixiu; Wang, Jifeng; Sui, Xin; Xu, Nan

    2016-01-01

    The present study aims to investigate the differences in leaf pigment content and the photosynthetic characteristics under natural and low light intensities between the Chinese native Physocarpus amurensis Maxim and the imported Physocarpus opulifolius "Diabolo" from North America. We aim to discuss the responses and the adaptive mechanism of these two cultivars of Physocarpus to a low light environment. The results show that the specific leaf area (SLA) and the chlorophyll content were significantly increased in the leaves of both Physocarpus cultivars in response to a low light intensity, and the SLA and chlorophyll content were higher in the leaves of low light-treated P. opulifolius "Diabolo" compared with the leaves of low light-treated P. amurensis Maxim. Moreover, the content of anthocyanin was markedly reduced in the leaves of P. opulifolius "Diabolo" under low light intensity, which allowed for a greater capacity of photon capture under the low light condition. Under natural light, the photosynthetic carbon assimilation capacity was greater in the leaves of P. amurensis Maxim compared with the leaves of P. opulifolius "Diabolo" that were rich with anthocyanin. However, in response to low light, AQY, P max, LCP and LSP decreased to a lesser extent in the leaves of P. opulifolius "Diabolo" compared with the leaves of P. amurensis Maxim. These results suggest that P. opulifolius "Diabolo" exhibits a greater ability in adaption to low light, and it is probably related to the relatively higher chlorophyll content and the smaller SLA in the leaves of P. opulifolius "Diabolo." In addition, the low light intensity resulted in a reduced photochemical activity of photosystem (PS) II in the leaves of both Physocarpus, as evidenced by increased values of the relative variable fluorescence at point J and point I on the OJIP curve. This result suggests that the electron acceptor in PS II was the major responsive site to the low light stress in the leaves of both

  4. Effect of maize seed laser irradiation on plant photosynthetic activity

    International Nuclear Information System (INIS)

    Antonov, M.; Stanev, V.; Velichkov, D.; Tsonev, Ts.

    1986-01-01

    Investigations were made with the two hybrids, H-708 and P x -20. The seeds were irradiated by a helium-neon quantum generator (L'vov-1 Electronica) with output power of 24 MW and 632.8 nm wave length. Once and twice irradiated seeds were sown on the 2nd, 5th and 10th day post irradiation. Changes in leaf area, chlorophyll content in the leaves, photosynthetic rate and its dependence on temperature and light, transpiration, stomatal resistance to CO 2 and total dry matter of the overground plant part were traced. Seed irradiation with laser rays did not affect the chlorophyll content of the leaves. The photosynthetic rate did not depend on the cultivar characteristics of the crop. Single and repeated irradiation of the hybrid H-708 in most case enhanced photosynthetic rate, but a similar effect was not observed in P x -20. Transpiration and CO 2 stomatal resistance were not equally affected by radiation. Laser rays enhanced the ability of the photosynthetic apparatus of the entire plants to use more efficiently high light intensities. The leaf area and the total plant dry matter increased in case of sowing on the 2nd and 5th day and a single irradiation and in case of sowing on the 5th and 10th day and twice repeated irradiations

  5. Characterization of xanthophyll pigments, photosynthetic performance, photon energy dissipation, reactive oxygen species generation and carbon isotope discrimination during artemisinin-induced stress in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    M Iftikhar Hussain

    Full Text Available Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0 seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40-160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.

  6. Photosynthetic Reaction Centres-from Basic Research to Application

    Directory of Open Access Journals (Sweden)

    László NAGY

    2010-06-01

    Full Text Available There is no doubt that studying the photosynthetic conversion of light into chemical energy is extremely important in many points of view; e.g., 1 technical-in order to improve the utilization of the solar energy; 2 food production-to improve the photosynthetic production of plants in agriculture; 3 ecology-keeping the primer production in ecosystems in the biosphere balanced, etc. In the photosynthetic reaction centre protein, RC, light energy is converted by a quantum yield of almost unity. There is no such a system designed by human which is able to do that. The RC purified from purple bacteria provides an extremely unique system for studying the requirements for high efficiency conversion of light into electrochemical energy. Thanks to the recent structural (e.g. crystallography (Nobel prize to Michel, Deisenhofer, Huber and functional (Nobel prize to Marcus results together with the works of molecular biology, computer- and electro-techniques, a wealth of information made a relatively clear picture about the kinetics, energetics and stabilization of electron transport within this protein that opens possibilities for new generation practical applications. In this paper we provide a short summary of fields in which the reaction centre protein can be important from practical points of view.

  7. Plants modify biological processes to ensure survival following carbon depletion: a Lolium perenne model.

    Directory of Open Access Journals (Sweden)

    Julia M Lee

    Full Text Available BACKGROUND: Plants, due to their immobility, have evolved mechanisms allowing them to adapt to multiple environmental and management conditions. Short-term undesirable conditions (e.g. moisture deficit, cold temperatures generally reduce photosynthetic carbon supply while increasing soluble carbohydrate accumulation. It is not known, however, what strategies plants may use in the long-term to adapt to situations resulting in net carbon depletion (i.e. reduced photosynthetic carbon supply and carbohydrate accumulation. In addition, many transcriptomic experiments have typically been undertaken under laboratory conditions; therefore, long-term acclimation strategies that plants use in natural environments are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Perennial ryegrass (Lolium perenne L. was used as a model plant to define whether plants adapt to repetitive carbon depletion and to further elucidate their long-term acclimation mechanisms. Transcriptome changes in both lamina and stubble tissues of field-grown plants with depleted carbon reserves were characterised using reverse transcription-quantitative polymerase chain reaction (RT-qPCR. The RT-qPCR data for select key genes indicated that plants reduced fructan degradation, and increased photosynthesis and fructan synthesis capacities following carbon depletion. This acclimatory response was not sufficient to prevent a reduction (P<0.001 in net biomass accumulation, but ensured that the plant survived. CONCLUSIONS: Adaptations of plants with depleted carbon reserves resulted in reduced post-defoliation carbon mobilization and earlier replenishment of carbon reserves, thereby ensuring survival and continued growth. These findings will help pave the way to improve plant biomass production, for either grazing livestock or biofuel purposes.

  8. Effect of Severe Winter Cold on the Photosynthetic Potentials of Three Co-occurring Evergreen Woody Species in a Mediterranean Forest, Catalonia (Spain)

    Science.gov (United States)

    Sperlich, Dominik; Gracia, Carlos; Peñuelas, Josep; Sabaté, Santi

    2013-04-01

    Evergreen tree species in the Mediterranean region have to cope with a wide range of environmental stress conditions from summer drought to winter cold. The winter period can lead to photoinhibition due to a combination of high solar irradiances and chilling temperatures which can reduce the light saturation point. However, Mediterranean winter mildness can lead periodically to favourable environmental conditions above the threshold for positive carbon balance benefitting evergreen woody species in contrast to winter deciduous species. The advantage of being able to photosynthesis all year round with a significant fraction in the winter month is compensating for the lower photosynthetic potentials during spring and summer in comparison to deciduous species. In this work, we investigated the physiological behaviour of three evergreen tree species (Quercus ilex, Pinus halepensis, Arbutus undeo) co-occurring in a natural and mature Mediterranean forest after a period of mild winter conditions and their response to a sudden period of intense cold weather. Therefore, we examined in each period the photosynthetic potentials by estimating the maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) through gas exchange measurements. The results indicate that all species exhibited extraordinary high photosynthetic potentials during the first period of measurement as a response to the mild conditions. However, the sudden cold period affected negatively the photosynthetic potentials of Quercus ilex and A. unedo with reduction ranging between 37 to 45 %, whereas they were observed to be only insignificantly reduced in Pinus halepensis. Our results can be explained by previous classifications into photoinhibition-avoiding (P. halpensis) and photoinhibition-tolerant (Q. ilex, A. undeo) species on the basis of their susceptibility to dynamic photoinhibition (Martinez Ferri 2000). Photoinhibition tolerant species are characterised with a more dynamic

  9. Contributions of leaf photosynthetic capacity, leaf angle and self-shading to the maximization of net photosynthesis in Acer saccharum: a modelling assessment.

    Science.gov (United States)

    Posada, Juan M; Sievänen, Risto; Messier, Christian; Perttunen, Jari; Nikinmaa, Eero; Lechowicz, Martin J

    2012-08-01

    Plants are expected to maximize their net photosynthetic gains and efficiently use available resources, but the fundamental principles governing trade-offs in suites of traits related to resource-use optimization remain uncertain. This study investigated whether Acer saccharum (sugar maple) saplings could maximize their net photosynthetic gains through a combination of crown structure and foliar characteristics that let all leaves maximize their photosynthetic light-use efficiency (ε). A functional-structural model, LIGNUM, was used to simulate individuals of different leaf area index (LAI(ind)) together with a genetic algorithm to find distributions of leaf angle (L(A)) and leaf photosynthetic capacity (A(max)) that maximized net carbon gain at the whole-plant level. Saplings grown in either the open or in a forest gap were simulated with A(max) either unconstrained or constrained to an upper value consistent with reported values for A(max) in A. saccharum. It was found that total net photosynthetic gain was highest when whole-plant PPFD absorption and leaf ε were simultaneously maximized. Maximization of ε required simultaneous adjustments in L(A) and A(max) along gradients of PPFD in the plants. When A(max) was constrained to a maximum, plants growing in the open maximized their PPFD absorption but not ε because PPFD incident on leaves was higher than the PPFD at which ε(max) was attainable. Average leaf ε in constrained plants nonetheless improved with increasing LAI(ind) because of an increase in self-shading. It is concluded that there are selective pressures for plants to simultaneously maximize both PPFD absorption at the scale of the whole individual and ε at the scale of leaves, which requires a highly integrated response between L(A), A(max) and LAI(ind). The results also suggest that to maximize ε plants have evolved mechanisms that co-ordinate the L(A) and A(max) of individual leaves with PPFD availability.

  10. BOREAS TE-9 NSA Photosynthetic Response Data

    Science.gov (United States)

    Hall, Forrest G.; Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves. This data set describes: (1) the response of leaf and shoot-level photosynthesis to ambient and intercellular CO2 concentration, temperature, and incident photosynthetically active radiation (PAR) for black spruce, jack pine, and aspen during the three intensive field campaigns (IFCs) in 1994 in the Northern Study Area (NSA); (2) the response of stomatal conductance to vapor pressure difference throughout the growing season of 1994; and (3) a range of shoot water potentials (controlled in the laboratory) for black spruce and jack pine. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. Electrochemical sensing platforms based on the different carbon derivative incorporated interface.

    Science.gov (United States)

    Dervisevic, Muamer; Çevik, Emre; Durmuş, Zehra; Şenel, Mehmet

    2016-01-01

    their effects on the properties of these biosensors. Biosensors were prepared by Horseradish peroxidase (HRP) immobilization on the composite electrodes composed of carbon black, carbon nanofiber (CNF), extended graphite, multiwalled carbon nanotube (MWCNT), reduced graphene oxide (REGO) and poly(glycidyl methacrylateco-vinylferrocene) (P(GMA-co-VFc)) as mediator, covalent linker, and host matrix for carbon derivatives. The modified pencil graphite electrode (PGE) was used for the detection of hydrogen peroxide and to follow electrochemical behavior of different carbon derivatives which were recorded. The electrochemical characterization was investigated by cyclic voltammetry and electrochemical impedance spectroscopy methods. Amperometric measurements showed that the REGO and MWCNT modified electrodes have excellent performance in comparison with other carbon derivatives studied.

  12. Effect of fasting and different diets on 14C incorporation from U-14C glucose into glycogen and carbon dioxide by cerebral cortical slices of rats

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Sinha, A.P.; Suraiya, A.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    There are some reports regarding change in the glycogen level due to fasting. Here an attempt is made by keeping the albino rats under fasting or feeding different diets on the rate of 14 C incorporation into glycogen and carbon dioxide from U- 14 C glucose. Our study reveals that the above conditions do not alter any significant change in the glycogen and carbon dioxide in the cerebral cortical slices of albino rats. (author). 8 refs., 1 tab

  13. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  14. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata.

    Directory of Open Access Journals (Sweden)

    Gwang Hoon Kim

    Full Text Available The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses to renew photosynthetic function.

  15. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata).

    Science.gov (United States)

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function.

  16. The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern.

    Directory of Open Access Journals (Sweden)

    Anne Jungandreas

    Full Text Available Diatoms are major contributors to the aquatic primary productivity and show an efficient acclimation ability to changing light intensities. Here, we investigated the acclimation of Phaeodactylum tricornutum to different light quality with respect to growth rate, photosynthesis rate, macromolecular composition and the metabolic profile by shifting the light quality from red light (RL to blue light (BL and vice versa. Our results show that cultures pre-acclimated to BL and RL exhibited similar growth performance, photosynthesis rates and metabolite profiles. However, light shift experiments revealed rapid and severe changes in the metabolite profile within 15 min as the initial reaction of light acclimation. Thus, during the shift from RL to BL, increased concentrations of amino acids and TCA cycle intermediates were observed whereas during the BL to RL shift the levels of amino acids were decreased and intermediates of glycolysis accumulated. Accordingly, on the time scale of hours the RL to BL shift led to a redirection of carbon into the synthesis of proteins, whereas during the BL to RL shift an accumulation of carbohydrates occurred. Thus, a vast metabolic reorganization of the cells was observed as the initial reaction to changes in light quality. The results are discussed with respect to a putative direct regulation of cellular enzymes by light quality and by transcriptional regulation. Interestingly, the short-term changes in the metabolome were accompanied by changes in the degree of reduction of the plastoquinone pool. Surprisingly, the RL to BL shift led to a severe inhibition of growth within the first 48 h which was not observed during the BL to RL shift. Furthermore, during the phase of growth arrest the photosynthetic performance did not change. We propose arguments that the growth arrest could have been caused by the reorganization of intracellular carbon partitioning.

  17. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species.

    Science.gov (United States)

    Zhou, Shuang-Xi; Medlyn, Belinda E; Prentice, Iain Colin

    2016-01-01

    Experimental drought is well documented to induce a decline in photosynthetic capacity. However, if given time to acclimate to low water availability, the photosynthetic responses of plants to low soil moisture content may differ from those found in short-term experiments. This study aims to test whether plants acclimate to long-term water stress by modifying the functional relationships between photosynthetic traits and water stress, and whether species of contrasting habitat differ in their degree of acclimation. Three Eucalyptus taxa from xeric and riparian habitats were compared with regard to their gas exchange responses under short- and long-term drought. Photosynthetic parameters were measured after 2 and 4 months of watering treatments, namely field capacity or partial drought. At 4 months, all plants were watered to field capacity, then watering was stopped. Further measurements were made during the subsequent 'drying-down', continuing until stomata were closed. Two months of partial drought consistently reduced assimilation rate, stomatal sensitivity parameters (g1), apparent maximum Rubisco activity (V'(cmax)) and maximum electron transport rate (J'(max)). Eucalyptus occidentalis from the xeric habitat showed the smallest decline in V'(cmax) and J'(max); however, after 4 months, V'(cmax) and J'(max) had recovered. Species differed in their degree of V'(cmax) acclimation. Eucalyptus occidentalis showed significant acclimation of the pre-dawn leaf water potential at which the V'(cmax) and 'true' V(cmax) (accounting for mesophyll conductance) declined most steeply during drying-down. The findings indicate carbon loss under prolonged drought could be over-estimated without accounting for acclimation. In particular, (1) species from contrasting habitats differed in the magnitude of V'(cmax) reduction in short-term drought; (2) long-term drought allowed the possibility of acclimation, such that V'(cmax) reduction was mitigated; (3) xeric species showed a

  18. Improving the representation of radiation interception and photosynthesis for climate model applications

    International Nuclear Information System (INIS)

    Mercado, Lina M.; Huntingford, Chris; Gash, John H.C.; Cox, Peter M.; Jogireddy, Venkata

    2007-01-01

    The Joint UK Land Environment Simulator (JULES) (which is based on Met Office Surface Exchange Scheme MOSES), the land surface scheme of the Hadley Centre General Circulation Models (GCM) has been improved to contain an explicit description of light interception for different canopy levels, which consequently leads to a multilayer approach to scaling from leaf to canopy level photosynthesis. We test the improved JULES model at a site in the Amazonian rainforest by comparing against measurements of vertical profiles of radiation through the canopy, eddy covariance measurements of carbon and energy fluxes, and also measurements of carbon isotopic fractionation from top canopy leaves. Overall, the new light interception formulation improves modelled photosynthetic carbon uptake compared to the standard big leaf approach used in the original JULES formulation. Additional model improvement was not significant when incorporating more realistic vertical variation of photosynthetic capacity. Even with the improved representation of radiation interception, JULES simulations of net carbon uptake underestimate eddy covariance measurements by 14%. This discrepancy can be removed by either increasing the photosynthetic capacity throughout the canopy or by explicitly including light inhibition of leaf respiration. Along with published evidence of such inhibition of leaf respiration, our study suggests this effect should be considered for inclusion in other GCMs

  19. Assessing Ecosystem Drought Response in CLM 4.5 Using Site-Level Flux and Carbon-Isotope Measurements: Results From a Pacific Northwest Coniferous Forest

    Science.gov (United States)

    Duarte, H.; Raczka, B. M.; Koven, C. D.; Ricciuto, D. M.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    The frequency, extent, and severity of droughts are expected to increase in the western United States as climate changes occur. The combination of warmer temperature, larger vapor pressure deficit, reduced snowfall and snow pack, earlier snow melt, and extended growing seasons is expected to lead to an intensification of summer droughts, with a direct impact on ecosystem productivity and therefore on the carbon budget of the region. In this scenario, an accurate representation of ecosystem drought response in land models becomes fundamental, but the task is challenging, especially in regards to stomatal response to drought. In this study we used the most recent release of the Community Land Model (CLM 4.5), which now includes photosynthetic carbon isotope discrimination and revised photosynthesis and hydrology schemes, among an extensive list of updates. We evaluated the model's performance at a coniferous forest site in the Pacific northwest (Wind River AmeriFlux Site), characterized by a climate that has a strong winter precipitation component followed by a summer drought. We ran the model in offline mode (i.e., decoupled from an atmospheric model), forced by observed meteorological data, and used site observations (e.g., surface fluxes, biomass values, and carbon isotope data) to assess the model. Previous field observations indicated a significant negative correlation between soil water content and the carbon isotope ratio of ecosystem respiration (δ13CR), suggesting that δ13CR was closely related to the photosynthetic discrimination against 13CO2 as controlled by stomatal conductance. We used these observations and latent-heat flux measurements to assess the modeled stomatal conductance values and their responses to extended summer drought. We first present the model results, followed by a discussion of potential CLM model improvements in stomatal conductance responses and in the representation of soil water stress (parameter βt) that would more precisely

  20. Detecting in-field variation in photosynthetic capacity of trangenically modifed plants with hyperspectral imaging.

    Science.gov (United States)

    Meacham, K.; Montes, C.; Pederson, T.; Wu, J.; Guan, K.; Bernacchi, C.

    2017-12-01

    Improved photosynthetic rates have been shown to increase crop biomass, making improved photosynthesis a focus for driving future grain yield increases. Improving the photosynthetic pathway offers opportunity to meet food demand, but requires high throughput measurement techniques to detect photosynthetic variation in natural accessions and transgenically modified plants. Gas exchange measurements are the most widely used method of measuring photosynthesis in field trials but this process is laborious and slow, and requires further modeling to estimate meaningful parameters and to upscale to the plot or canopy level. In field trials of tobacco with modifications made to the photosynthetic pathway, we infer the maximum carboxylation rate of Rubisco (Vcmax) and maximum electron transport rate (Jmax) and detect photosynthetic variation from hyperspectral imaging with a partial least squares regression technique. Ground-truth measurements from photosynthetic gas exchange, a full-range (400-2500nm) handheld spectroadiometer with leaf clip, hyperspectral indices, and extractions of leaf pigments support the model. The results from a range of wild-type cultivars and from genetically modified germplasm suggest that the opportunity for rapid selection of top performing genotypes from among thousands of plots. This research creates the opportunity to extend agroecosystem models from simplified "one-cultivar" generic parameterization to better represent a full suite of current and future crop cultivars for a wider range of environmental conditions.

  1. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    Science.gov (United States)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  2. Spring hydrology determines summer net carbon uptake in northern ecosystems

    International Nuclear Information System (INIS)

    Yi, Yonghong; Kimball, John S; Reichle, Rolf H

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO 2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the normalized difference vegetation index; NDVI) and atmospheric CO 2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (⩾50° N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO 2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO 2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends. (letters)

  3. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    Science.gov (United States)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced seasonal CO2 exchange of northern ecosystems have been observed from a variety of sources including satellite vegetation indices (such as the Normalized Difference Vegetation Index; NDVI) and atmospheric CO2 measurements. Most of these changes have been attributed to strong warming trends in the northern high latitudes (greater than or equal to 50N). Here we analyze the interannual variation of summer net carbon uptake derived from atmospheric CO2 measurements and satellite NDVI in relation to surface meteorology from regional observational records. We find that increases in spring precipitation and snow pack promote summer net carbon uptake of northern ecosystems independent of air temperature effects. However, satellite NDVI measurements still show an overall benefit of summer photosynthetic activity from regional warming and limited impact of spring precipitation. This discrepancy is attributed to a similar response of photosynthesis and respiration to warming and thus reduced sensitivity of net ecosystem carbon uptake to temperature. Further analysis of boreal tower eddy covariance CO2 flux measurements indicates that summer net carbon uptake is positively correlated with early growing-season surface soil moisture, which is also strongly affected by spring precipitation and snow pack based on analysis of satellite soil moisture retrievals. This is attributed to strong regulation of spring hydrology on soil respiration in relatively wet boreal and arctic ecosystems. These results document the important role of spring hydrology in determining summer net carbon uptake and contrast with prevailing assumptions of dominant cold temperature limitations to high-latitude ecosystems. Our results indicate potentially stronger coupling of boreal/arctic water and carbon cycles with continued regional warming trends.

  4. Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants

    Directory of Open Access Journals (Sweden)

    Minobu Kasai

    2012-01-01

    Full Text Available Despite the wide uses of potted plants, information on how pot size affects plant photosynthetic matter production is still considerably limited. This study investigated with soybean plants how transplantation into larger pots affects various characteristics related to photosynthetic matter production. The transplantation was analyzed to increase leaf photosynthetic rate, transpiration rate, and stomatal conductance without affecting significantly leaf intercellular CO2 concentration, implicating that the transplantation induced equal increases in the rate of CO2 diffusion via leaf stomata and the rate of CO2 fixation in leaf photosynthetic cells. Analyses of Rubisco activity and contents of a substrate (ribulose-1,5-bisphosphate (RuBP for Rubisco and total protein in leaf suggested that an increase in leaf Rubisco activity, which is likely to result from an increase in leaf Rubisco content, could contribute to the transplantation-induced increase in leaf photosynthetic rate. Analyses of leaf major photosynthetic carbohydrates and dry weights of source and sink organs revealed that transplantation increased plant sink capacity that uses leaf starch, inducing a decrease in leaf starch content and an increase in whole plant growth, particularly, growth of sink organs. Previously, in the same soybean species, it was demonstrated that negative correlation exists between leaf starch content and photosynthetic rate and that accumulation of starch in leaf decreases the rate of CO2 diffusion within leaf. Thus, it was suggested that the transplantation-induced increase in plant sink capacity decreasing leaf starch content could cause the transplantation-induced increase in leaf photosynthetic rate by inducing an increase in the rate of CO2 diffusion within leaf and thereby substantiating an increase in leaf Rubisco activity in vivo. It was therefore concluded that transplantation of soybean plants into larger pots attempted in this study increased the

  5. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in the seawater carbonate chemistry

    DEFF Research Database (Denmark)

    Trimborn, S; Lundholm, Nina; Thoms, S

    2008-01-01

    . In terms of carbon source, all species took up both CO2 and HCO3-. K-1/2 values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3- to net fixation was more than 85% in S. stellaris......The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C-i) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo...... activities of carbonic anhydrase (CA), photosynthetic O-2 evolution and CO2 and HCO3- uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (e...

  6. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-07-25

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimental procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.

  7. Analysis of trehalose-6-phosphate control over carbon allocation and growth in plants

    NARCIS (Netherlands)

    Aghdasi, M.

    2007-01-01

    Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesic precursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth, carbon utilization and alters photosynthetic capacity but its mode of action is not underestood. This thesis

  8. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    Science.gov (United States)

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Non-photosynthetic plastids as hosts for metabolic engineering

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Behrendorff, James Bruce Yarnton H; Nielsen, Agnieszka Janina Zygadlo

    2018-01-01

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive......, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most...... in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis...

  10. 2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.

    Science.gov (United States)

    Deng, Zongnan; Jiang, Hao; Li, Chunzhong

    2018-05-01

    2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photosynthetic capacity of 'Niagara Rosada' grapes grown under transparent plastic covering

    Directory of Open Access Journals (Sweden)

    Bruna Corrêa da Silva de Deus

    2016-06-01

    Full Text Available ABSTRACT: New techniques in tropical regions such as use of transparent plastic covering (TPC, have been employed in grapes to avoid the wetting leaves and fruits, which can reduce the occurrence of fungal diseases, reduce the use of sprays, and reduce damage caused by hail and high winds. TPC may significantly affect the photosynthetic rates of grapevines cultivated in tropical regions, and thus have strong effects on plant productivity and improve fruit quality. However, in the North of Rio de Janeiro region there are lacks of studies related to TPC effects on photosynthetic capacity. The objective of this study was to evaluate the photosynthetic capacity in 'Niagara Rosada' vines grown under TPC and without transparent plastic covering (WTPC. The experiment was conducted between April and June 2013, on Tabuinha farm, located in the 3rd district of São Fidélis, Rio de Janeiro State, Brazil. A completely randomized block design was used with two treatments (TPC and WTPC and twelve replications. Evaluations consisted of climatological variables, gas exchange and maximum quantum efficiency of open photosystem II centers-quantum yield (Fv/Fm It was possible to observe that under TPC maximum temperature increase of 2.3°C, relative humidity reduced 1.5%, vapor pressure deficit increase 0.4kPa, and light intensity reduced 47.7%. These changes did not cause photochemical damage to the leaves. The TPC promoted higher net photosynthetic rate at 800h, which was associated with higher stomatal conductance. Thus, the TPC used in the northern region of Rio de Janeiro State did not impair the photosynthetic capacity of 'Niagara Rosada' vines.

  12. The effect of temperature on the photosynthesis and 14C-photosynthetic products transportation and distribution in cucumber

    International Nuclear Information System (INIS)

    Shi Yuelin; Sun Yiezhi; Xu Guimin; Cai Qiyun

    1991-01-01

    The optimum temperature of photosynthesis tended to become higher following the growth of cucumber. The optimum temperature was 30 deg C at the early growth stage and 35 deg C at the late growth stage. Stomatal resistance decreased and transpiration rate increased with increasing of the temperature. Most of the 14 C-photosynthetic products in leaves were transported out at 30 deg C during the day. After one night, more photosynthetic products were transported out under higher temperature. From the early to the middle growth stage, most of the 14 C-photosynthetic products were transported to fruits at 30 deg C. But caulis, leaves and apical point obtained most of the photosynthetic products at 35 deg C. At the late growth stage, most of the 14 C-photosynthetic products were transported to fruits at 35 deg c. At 25 deg C, caulis and leaves got more 14 C-photosynthetic products

  13. Distribution of 14C-photosynthetate in the shoot of Vitis vinifera L. cv Cabernet Sauvignon: Pt. I

    International Nuclear Information System (INIS)

    Hunter, J.J.; Visser, J.H.

    1988-01-01

    The distribution of photosynthetates, originating in leaves of different parts of the shoot of Vitis vinifera L. cv Cabernet Sauvignon at berry set, pea size, veraison and ripeness stages, was investigated. Specific photosynthetic activity of the 14 CO 2 -treated leaves gradually decreased during the season. Photosynthetates were hoarded in the leaves at berry set, but were increasingly diverted to the bunches after that. The apical leaves displayed the highest photosynthesis. The leaves opposite and below the bunches accumulated very little photosynthetates, especially from veraison to ripeness. Redistribution of photosynthetates among the basal, middle and apical leaves was generally very restricted at all stages. Multidirectional distribution from the site of application of 14 CO 2 occurred at berry set stage, while from pea size to ripeness photosynthetates were mainly translocated basipetally. Highest accumulation in the bunches occurred at veraison, while the basal leaves were primarily used to nourish the bunch

  14. On the photosynthetic and devlopmental responses of leaves to the spectral composition of light

    NARCIS (Netherlands)

    Hogewoning, S.W.

    2010-01-01

    Key words: action spectrum, artificial solar spectrum, blue light, Cucumis sativus, gas-exchange, light-emitting diodes (LEDs), light interception, light quality, non-photosynthetic pigments, photo-synthetic capacity, photomorphogenesis, photosystem excitation balance, quantum yield, red light.

  15. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  16. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  17. Effects of irradiance and prey deprivation on growth, cell carbon and photosynthetic activity of the freshwater kleptoplastidic dinoflagellate Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae).

    Science.gov (United States)

    Drumm, Kirstine; Liebst-Olsen, Mette; Daugbjerg, Niels; Moestrup, Øjvind; Hansen, Per Juel

    2017-01-01

    The freshwater dinoflagellate Nusuttodinium aeruginosum lacks permanent chloroplasts. Rather it sequesters chloroplasts as well as other cell organelles, like mitochondria and nuclei, from ingested cryptophyte prey. In the present study, growth rates, cell production and photosynthesis were measured at seven irradiances, ranging from 10 to 140 μmol photons m-2s-1, when fed the cryptophyte Chroomonas sp. Growth rates were positively influenced by irradiance and increased from 0.025 d-1 at 10 μmol photons m-2s-1 to maximum growth rates of ~0.3 d-1 at irradiances ≥ 40 μmol photons m-2s-1. Similarly, photosynthesis ranged from 1.84 to 36.9 pg C cell-1 h-1 at 10 and 140 μmol photons m-2s-1, respectively. The highest rates of photosynthesis in N. aeruginosum only corresponded to ~25% of its own cell carbon content and estimated biomass production. The measured rates of photosynthesis could not explain the observed growth rates at high irradiances. Cultures of N. aeruginosum subjected to prey starvation were able to survive for at least 27 days in the light. The sequestered chloroplasts maintained their photosynthetic activity during the entire period of starvation, during which the population underwent 4 cell divisions. This indicates that N. aeruginosum has some control of the chloroplasts, which may be able to replicate. In conclusion, N. aeruginosum seems to be in an early stage of chloroplast acquisition with some control of its ingested chloroplasts.

  18. The impact of increased atmospheric carbon dioxide on microbial community dynamics in the rhizosphere

    NARCIS (Netherlands)

    Drigo, Barbara

    2009-01-01

    Rising atmospheric CO2 levels are predicted to have major consequences upon carbon cycle feedbacks and the overall functioning of terrestrial ecosystems. Photosynthetic activity and the structure of terrestrial macrophytes is expected to change, but it remains uncertain how this will affect

  19. Enhancement of sp3 hybridized C in amorphous carbon films by Ar ion bombardment and Si incorporation

    International Nuclear Information System (INIS)

    Jung, Hae-Suk; Park, Hyung-Ho; Mendieta, I.R.; Smith, D.A.

    2003-01-01

    We report an effective method of increasing the sp 3 hybridization fraction in sputtered amorphous carbon (a-C) film by the combination of Ar ion bombardment and Si incorporation. In the deposition of an a-C film, Ar ion bombardment by controlling the applied bias voltage plays a role in creating high stress in film and causes the local bonding configuration to change to a sp 3 hybridized bond. Simultaneously, the incorporated Si in an a-C network breaks the sp 2 hybridized bonded ring and promotes the formation of a sp 3 hybridized bond. This enhancement of the sp 3 hybridized bonding characteristic is maximized for an a-C film with 23 at. % of Si and 100-150 V of applied bias voltage. In this region, the increase of resistivity, optical band gap, and mechanical hardness of a-C is attributed to the reduction of the sp 2 hybridized bonded ring and increased fraction of the sp 3 hybridized bond. However, at a higher bias voltage above 150 V, the enhancement effect is reduced due to the resputtering and thermally activated reconversion of a sp 3 to a sp 2 hybridized bond

  20. Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms.

    Science.gov (United States)

    González-López, C V; Acién Fernández, F G; Fernández-Sevilla, J M; Sánchez Fernández, J F; Molina Grima, E

    2012-07-01

    A new methodology to use efficiently flue gases as CO(2) source in the production of photosynthetic microorganisms is proposed. The CO(2) is absorbed in an aqueous phase that is then regenerated by microalgae. Carbonated solutions could absorb up to 80% of the CO(2) from diluted gas reaching total inorganic carbon (TIC) concentrations up to 2.0 g/L. The pH of the solution was maintained at 8.0-10.0 by the bicarbonate/carbonate buffer, so it is compatible with biological regeneration. The absorption process was modeled and the kinetic parameters were determined. Anabaena sp. demonstrated to tolerate pH (8.0-10.0) and TIC (up to 2.0 g/L) conditions imposed by the absorption step. Experiments of regeneration of the liquid phase demonstrated the feasibility of the overall process, converting CO(2) into organic matter. The developed process avoids heating to regenerate the liquid whereas maximizing the efficiency of CO(2) use, which is relevant to achieve the commercial production of biofuels from microalgae. Copyright © 2012 Wiley Periodicals, Inc.

  1. A theoretical framework for whole-plant carbon assimilation efficiency based on metabolic scaling theory: a test case using Picea seedlings.

    Science.gov (United States)

    Wang, Zhiqiang; Ji, Mingfei; Deng, Jianming; Milne, Richard I; Ran, Jinzhi; Zhang, Qiang; Fan, Zhexuan; Zhang, Xiaowei; Li, Jiangtao; Huang, Heng; Cheng, Dongliang; Niklas, Karl J

    2015-06-01

    Simultaneous and accurate measurements of whole-plant instantaneous carbon-use efficiency (ICUE) and annual total carbon-use efficiency (TCUE) are difficult to make, especially for trees. One usually estimates ICUE based on the net photosynthetic rate or the assumed proportional relationship between growth efficiency and ICUE. However, thus far, protocols for easily estimating annual TCUE remain problematic. Here, we present a theoretical framework (based on the metabolic scaling theory) to predict whole-plant annual TCUE by directly measuring instantaneous net photosynthetic and respiratory rates. This framework makes four predictions, which were evaluated empirically using seedlings of nine Picea taxa: (i) the flux rates of CO(2) and energy will scale isometrically as a function of plant size, (ii) whole-plant net and gross photosynthetic rates and the net primary productivity will scale isometrically with respect to total leaf mass, (iii) these scaling relationships will be independent of ambient temperature and humidity fluctuations (as measured within an experimental chamber) regardless of the instantaneous net photosynthetic rate or dark respiratory rate, or overall growth rate and (iv) TCUE will scale isometrically with respect to instantaneous efficiency of carbon use (i.e., the latter can be used to predict the former) across diverse species. These predictions were experimentally verified. We also found that the ranking of the nine taxa based on net photosynthetic rates differed from ranking based on either ICUE or TCUE. In addition, the absolute values of ICUE and TCUE significantly differed among the nine taxa, with both ICUE and temperature-corrected ICUE being highest for Picea abies and lowest for Picea schrenkiana. Nevertheless, the data are consistent with the predictions of our general theoretical framework, which can be used to access annual carbon-use efficiency of different species at the level of an individual plant based on simple, direct

  2. Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis

    KAUST Repository

    Jin, Peng; Duarte, Carlos M.; Agusti, Susana

    2017-01-01

    artificial lamps. We found that marine photosynthetic organisms tend to be more sensitive than freshwater photosynthetic organisms to UVB radiation; responses to either decreased or increased UVB radiation vary among taxa; the mortality rate is the most

  3. Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor Scots pine trees

    Directory of Open Access Journals (Sweden)

    Lasse Tarvainen

    2016-07-01

    Full Text Available Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N availability. However, few studies have provided a detailed account of how carbon (C acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modelling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar P deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute towards lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises

  4. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  5. Difference in photosynthetic performance among three peach ...

    African Journals Online (AJOL)

    The effects of low photosynthetic photon flux density (PPFD) on greenhouse grown peach trees ('Qingfeng': Prunus persica L. Batsch, 'NJN76': Prunus persica L. Batsch and 'Maixiang': P. persica var. nectarine) were investigated. Difference in photosynthesis rate (Pn) and stoma morphology among cultivars were studied.

  6. An electricity generation planning model incorporating demand response

    International Nuclear Information System (INIS)

    Choi, Dong Gu; Thomas, Valerie M.

    2012-01-01

    Energy policies that aim to reduce carbon emissions and change the mix of electricity generation sources, such as carbon cap-and-trade systems and renewable electricity standards, can affect not only the source of electricity generation, but also the price of electricity and, consequently, demand. We develop an optimization model to determine the lowest cost investment and operation plan for the generating capacity of an electric power system. The model incorporates demand response to price change. In a case study for a U.S. state, we show the price, demand, and generation mix implications of a renewable electricity standard, and of a carbon cap-and-trade policy with and without initial free allocation of carbon allowances. This study shows that both the demand moderating effects and the generation mix changing effects of the policies can be the sources of carbon emissions reductions, and also shows that the share of the sources could differ with different policy designs. The case study provides different results when demand elasticity is excluded, underscoring the importance of incorporating demand response in the evaluation of electricity generation policies. - Highlights: ► We develop an electric power system optimization model including demand elasticity. ► Both renewable electricity and carbon cap-and-trade policies can moderate demand. ► Both policies affect the generation mix, price, and demand for electricity. ► Moderated demand can be a significant source of carbon emission reduction. ► For cap-and-trade policies, initial free allowances change outcomes significantly.

  7. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2.

    Science.gov (United States)

    Kiyota, Hiroshi; Okuda, Yukiko; Ito, Michiho; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-09-20

    Isoprenoids, major secondary metabolites in many organisms, are utilized in various applications. We constructed a model photosynthetic production system for limonene, a volatile isoprenoid, using a unicellular cyanobacterium that expresses the plant limonene synthase. This system produces limonene photosynthetically at a nearly constant rate and that can be efficiently recovered using a gas-stripping method. This production does not affect the growth of the cyanobacteria and is markedly enhanced by overexpression of three enzymes in the intrinsic pathway to provide the precursor of limonene, geranyl pyrophosphate. The photosynthetic production of limonene in our system is more or less sustained from the linear to stationary phase of cyanobacterial growth for up to 1 month. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Diel tuning of photosynthetic systems in ice algae at Saroma-ko Lagoon, Hokkaido, Japan

    Science.gov (United States)

    Aikawa, Shimpei; Hattori, Hiroshi; Gomi, Yasushi; Watanabe, Kentaro; Kudoh, Sakae; Kashino, Yasuhiro; Satoh, Kazuhiko

    Ice algae are the major primary producers in seasonally ice-covered oceans during the cold season. Diurnal change in solar radiation is inevitable for ice algae, even beneath seasonal sea ice in lower-latitude regions. In this work, we focused on the photosynthetic response of ice algae under diurnally changing irradiance in Saroma-ko Lagoon, Japan. Photosynthetic properties were assessed by pulse-amplitude modulation (PAM) fluorometry. The species composition remained almost the same throughout the investigation. The maximum electron transport rate ( rETRmax), which indicates the capacity of photosynthetic electron transport, increased from sunrise until around noon and decreased toward sunset, with no sign of the afternoon depression commonly observed in other photosynthetic organisms. The level of non-photochemical quenching, which indicates photoprotection activity by dissipating excess light energy via thermal processes, changed with diurnal variations in irradiance. The pigment composition appeared constant, except for xanthophyll cycle pigments, which changed irrespective of irradiance. These results indicate that ice algae tune their photosynthetic system harmonically to achieve efficient photosynthesis under diurnally changing irradiance, while avoiding damage to photosystems. This regulation system may be essential for productive photosynthesis in ice algae.

  9. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B., E-mail: pandey.beauty@yahoo.com [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India); Das, D. [UGC-DAE CSR, Sector III/LB-8, Bidhan Nagar, Kolkata 700098 (India); Kar, A.K. [Department of Applied Physics, Indian School of Mines, Dhanbad 826004 (India)

    2015-05-15

    Highlights: • Electrical and magnetic properties of DLC and Ni-DLC thin films are studied. • The ohmicity and conductivity of DLC films rise with nickel addition. • The ohmicity of Ni-DLC is enhanced with increase in dilution of electrolyte. • Dielectric loss is high for Ni-DLC and decreases with frequency till 100 kHz. • (m–H) and (m–T) curves of Ni-DLC indicate superparamagnetic behavior. - Abstract: Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current–voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp{sup 2} content in DLC matrix. The magnetic moment vs. magnetic field (m–H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  10. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary 13 C metabolic flux analysis.

    Science.gov (United States)

    Hendry, John I; Prasannan, Charulata; Ma, Fangfang; Möllers, K Benedikt; Jaiswal, Damini; Digmurti, Madhuri; Allen, Doug K; Frigaard, Niels-Ulrik; Dasgupta, Santanu; Wangikar, Pramod P

    2017-10-01

    Cyanobacteria, which constitute a quantitatively dominant phylum, have attracted attention in biofuel applications due to favorable physiological characteristics, high photosynthetic efficiency and amenability to genetic manipulations. However, quantitative aspects of cyanobacterial metabolism have received limited attention. In the present study, we have performed isotopically non-stationary 13 C metabolic flux analysis (INST- 13 C-MFA) to analyze rerouting of carbon in a glycogen synthase deficient mutant strain (glgA-I glgA-II) of the model cyanobacterium Synechococcus sp. PCC 7002. During balanced photoautotrophic growth, 10-20% of the fixed carbon is stored in the form of glycogen via a pathway that is conserved across the cyanobacterial phylum. Our results show that deletion of glycogen synthase gene orchestrates cascading effects on carbon distribution in various parts of the metabolic network. Carbon that was originally destined to be incorporated into glycogen gets partially diverted toward alternate storage molecules such as glucosylglycerol and sucrose. The rest is partitioned within the metabolic network, primarily via glycolysis and tricarboxylic acid cycle. A lowered flux toward carbohydrate synthesis and an altered distribution at the glucose-1-phosphate node indicate flexibility in the network. Further, reversibility of glycogen biosynthesis reactions points toward the presence of futile cycles. Similar redistribution of carbon was also predicted by Flux Balance Analysis. The results are significant to metabolic engineering efforts with cyanobacteria where fixed carbon needs to be re-routed to products of interest. Biotechnol. Bioeng. 2017;114: 2298-2308. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  12. Incorporation of plasma-functionalized carbon nanostructures in composite laminates for interlaminar reinforcement and delamination crack monitoring

    Science.gov (United States)

    Kravchenko, O. G.; Pedrazzoli, D.; Kovtun, D.; Qian, X.; Manas-Zloczower, I.

    2018-01-01

    A new approach employing carbon nanostructure (CNS) buckypapers (BP) was used to prepare glass fiber/epoxy composite materials with enhanced resistance to delamination along with damage monitoring capability. The CNS-BP was subjected to plasma treatment to improve its wettability by epoxy and to promote stronger interfacial bonding. An increase up to 20% in interlaminar fracture toughness in mode I and mode II was observed in composite laminates incorporating CNS BP. Morphological analysis of the fracture surfaces indicated that failure in the conductive CNS layer provided a more effective energy dissipation mechanism, resulting in interlaminar fracture toughness increase. Moreover, fracture of the conductive CNS layer enabled damage monitoring of the composite by electrical resistance measurements upon delamination. The proposed approach provides multifunctional ply interphases, allowing to couple damage monitoring with interlaminar reinforcement of composite laminates.

  13. Effect of Temperature and light intensity on growth and Photosynthetic Activity of Chlamydomonas reinhard II

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Fernandez Gonzalez, J.

    1985-01-01

    The effect of five temperatures (15,20,25,30 and 35 degree centigree) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhard II has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of C0 2 labelled with C-14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 degree centigree for the lower level of illumination (2400 lux) and at 35 degree centigree for the higher one (13200 lux) and at 35 degree centigree for the higher ono (13200 lux). These results suggest an interaction of temperature and illumination on photosynthetic activity. (Author) 37 refs

  14. Variability of photosynthetic pigments in the Colombian Pacific ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Picture series of surface chlorophyll,. SST, wind ... photosynthetic pigments during the time of inten- sification of ... calculation of Ekman pumping (We) using finite- differencing to ..... Legeckis R 1986 A satellite time series sea surface tempera-.

  15. Photosynthetic Rates of Citronella and Lemongrass 1

    Science.gov (United States)

    Herath, H. M. Walter; Ormrod, Douglas P.

    1979-01-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737

  16. [Effects of low-light stress on photosynthetic characteristics of Paris polyphylla var. chinensis in artificial domestication cultivation].

    Science.gov (United States)

    Zheng, Shun-lin; Tian, Meng-liang; Liu, Jin-liang; Zhao, Ting-ting; Zhang, Zhong

    2014-09-01

    To decide on the optimum artificial domestication cultivation light environment for Paris polyphylla var. chinensis through investigating the effect of light intensity on leaf's gas exchange parameters, photosynthetic parameters, light saturation point and compensation point of Paris polyphylla var. chinensis. Different low-light stress gradients' effect on the growth of Paris polyphylla var. chinensis was compared with no low-light stress treatment through calculating leaf's gas exchange parameters, photosynthetic parameters, light saturation point and compensation point, and then all these parameters were statistically analyzed. Light intensity had significant influence on the photosynthetic characteristics of Paris polyphylla var. chinensis. With the strengthening of the low-light stress, chlorophyll content, gas exchange parameters, photosynthetic parameters P., AQY and light saturation point all gradually increased at first, and then decreased. However, both photosynthetic parameters Rd and light compensation point firstly decreased and then rose again. These results showed that too strong or too weak light intensity affected the optimization of photosynthetic parameters of Paris polyphylla var. chinensis. The optimal illuminance for each parameter was not completely same, but they could all reach a relative ideal state when the shading ranges between 40% and 60%. However, photosynthetic parameters deteriorated rapidly when the shading surpass 80%. For artificially cultivating Paris polyphylla var. chinensis in Baoxing,Sichuan or the similar ecological region, shading 40%-60% is the optimal light environment, which can enhance the photosynthesis of Paris polyphylla var. chinensis and promote the accumulation of photosynthetic products.

  17. Effect of Elevated Carbon Dioxide on Two Scleractinian Corals: Porites cylindrica (Dana, 1846 and Galaxea fascicularis (Linnaeus, 1767

    Directory of Open Access Journals (Sweden)

    Yii-Siang Hii

    2009-01-01

    Full Text Available This study reveals the effect of elevated pCO2 on Porites cylindrica and Galaxea fascicularis. The corals responded differently under elevated pCO2. Zooxanthellae cell density, cell mitotic index, and photosynthesis rate of P. cylindrica decreased drastically under the elevated pCO2. At the end of the experiment, P. cylindrica suffered from a declining calcium carbonate precipitation rate. G. fascicularis increased its respiration rate and expelled 71% of its symbiotic zooxanthellae algae under elevated pCO2. Photosynthetic pigments in the remaining zooxanthellae algae increased from 1.85 to 11.5 times to sustain its photosynthetic outputs. At the end of the experiment, G. fascicularis managed to increase the rate of its calcium carbonate precipitation. Increase pCO2 in the atmosphere may affect species diversity of coral reefs.

  18. Intrinsic stress modulation in diamond like carbon films with incorporation of gold nanoparticles by PLA

    Science.gov (United States)

    Panda, Madhusmita; Krishnan, R.; Krishna, Nanda Gopala; Madapu, Kishore K.; Kamruddin, M.

    2018-04-01

    Intrinsic stress modulation in the diamond-like carbon (DLC) coatings with incorporation of gold nanoparticles was studied qualitatively from Raman shift. The films were deposited on Si (1 0 0) substrates by using Pulsed laser ablation (PLA) of pure pyrolytic graphite target and with a gold foil on it. Films compositional and chemical behavior was studied by X-ray photoelectron spectroscopy (XPS) and Visible Raman spectroscopy, respectively. The sp3 content obtained from XPS shows dramatic variation in DLC, DLC-Au(100), DLC-Au(200) and DLC-Au(300) as 39%, 41%, 47% and 66% with various gold contentsas 0%, 12%, 7.3% and 4.7%, respectively. The Raman spectra of DLC/Au films showed G-peak shift towards lower wavenumber indicating the reduction of intrinsic stress (internal compressive stress). The sp2, sp3 fraction in the films are also determined from FWHM (G-Peak).

  19. A Study on Photosynthetic Physiological Characteristics of Six Rare and Endangered Species

    Institute of Scientific and Technical Information of China (English)

    Tailin ZHONG; Guangwu ZHAO; Jiamiao CHU; Xiaomin GUO; Genyou LI

    2014-01-01

    The parameters of gas exchange and chlorophyl fluorescence in leaves of six rare and endangered species Neolitsea sericea, Cinnamomum japonicum var. cheni , Sinojackia microcarpa, Discocleidion glabrum var. trichocarpum, Parrotia sub-aequalis, Cercidiphyl um japonicum were measured in fields. The results showed that there were significant differences in photosynthetic capacity, intrinsic water use effi-ciency (WUEi ), the efficiency of primary conversion of light energy of PSⅡ and its potential activity, the quantum yield of PSⅡ electron transport, and the potential ca-pacity of heat dissipation among the six species. However, there was no significant difference in WUE. The highest values of net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (gs) occurred in D. glabrum var. trichocarpum and the lowest in S. microcarpa. On the contrary, D. glabrum var. trichocarpum had the lowest WUE, intrinsic water use efficiency (WUEi ) and S. microcarpa had the highest. The results indicated that D. glabrum var. trichocarpum had higher photo-synthetic capacity and poorer WUE, while S. microcarpa had lower photosynthetic capacity and greater WUE. Furthermore, the mean values of maximal fluorescence (Fm), potential efficiency of primary conversion of light energy of PSⅡ (Fv/Fm),ΦPSⅡ, actual efficiency of primary conversion of light energy of PSⅡ (F′v/F′m) and non-photochemical quenching coefficient (NPQ) were the highest in S. micro-carpa, indicating that its PSⅡ had higher capacity of heat dissipation and could prevent photosynthetic apparatus from damage by excessive light energy. Correlation analysis showed that there were significant correlations among photosynthetic physi-ological parameters. However, the initial fluorescence (Fo) was not significantly cor-related with any other parameters. This study also revealed the extremely significant positive correlations between Pn and Tr, gs, apparent quantum yield (AQY), be-tween Tr and

  20. Photosynthetic limitations in two Antarctic vascular plants: importance of leaf anatomical traits and Rubisco kinetic parameters.

    Science.gov (United States)

    Sáez, Patricia L; Bravo, León A; Cavieres, Lohengrin A; Vallejos, Valentina; Sanhueza, Carolina; Font-Carrascosa, Marcel; Gil-Pelegrín, Eustaquio; Javier Peguero-Pina, José; Galmés, Jeroni

    2017-05-17

    Particular physiological traits allow the vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl. to inhabit Antarctica. The photosynthetic performance of these species was evaluated in situ, focusing on diffusive and biochemical constraints to CO2 assimilation. Leaf gas exchange, Chl a fluorescence, leaf ultrastructure, and Rubisco catalytic properties were examined in plants growing on King George and Lagotellerie islands. In spite of the species- and population-specific effects of the measurement temperature on the main photosynthetic parameters, CO2 assimilation was highly limited by CO2 diffusion. In particular, the mesophyll conductance (gm)-estimated from both gas exchange and leaf chlorophyll fluorescence and modeled from leaf anatomy-was remarkably low, restricting CO2 diffusion and imposing the strongest constraint to CO2 acquisition. Rubisco presented a high specificity for CO2 as determined in vitro, suggesting a tight co-ordination between CO2 diffusion and leaf biochemistry that may be critical ultimately to optimize carbon balance in these species. Interestingly, both anatomical and biochemical traits resembled those described in plants from arid environments, providing a new insight into plant functional acclimation to extreme conditions. Understanding what actually limits photosynthesis in these species is important to anticipate their responses to the ongoing and predicted rapid warming in the Antarctic Peninsula. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Comparative studies on the photosynthesis of higher plants, 4. Further studies on the photosynthetic sugar formation pathway in C/sub 4/-plants

    Energy Technology Data Exchange (ETDEWEB)

    Imai, H [National Inst. of Agricultural Sciences, Tokyo (Japan); Iwai, Sumio; Yamada, Yoshio

    1975-03-01

    In this paper, studies were carried out to confirm whether carbon atoms except C-4 of C/sub 4/-compounds were involved in the photosynthetic sugar formation in C/sub 4/ plants. In feeding of uniformly-labeled malate to maize leaves, sugar formation under aerobic conditions was 3 times as large as that under anaerobic conditions. There was no detectable difference in the amount of activity in the sugar formed from ..beta..-carboxyl-labeled malate between aerobic and anaerobic conditions; however. Under anaerobic conditions, sugar was formed from alanine-1-/sup 14/C in maize but not in rice leaves. Sugar formation of this case might have occurred by the direct conversion of pyruvate to sugar via PEP and PGA. From these results, we assume that the following three pathways function cooperatively in the photosynthetic sugar formation in C/sub 4/-plants. 1) One carbon atom at number 4 in C/sub 4/-dicarboxylic acid is transferred to RuDP, resulting in the formation of PGA and this is metabolized into sugar. 2) After transferring C-4 of C/sub 4/-dicarboxylic acid, the remaining C/sub 3/-compound is introduced into the TCA cycle and completely degradated there, and thus-produced CO/sub 2/ is refixed by PEP carboxylase in the mesophyll and metabolized into sugar the same pathway as in atmospheric CO/sub 2/ fixation. 3) The remaining C/sub 3/-compound is directly converted to PEP and then to sugar via PGA.

  2. Biosequestration of carbon dioxide, biomass, calorific value and biodiesel precursors production using a novel flask culture photobioreactor

    Digital Repository Service at National Institute of Oceanography (India)

    Fulke, A.B.; Krishnamurthi, K.; Giripunje, M.D.; Devi, S.S.; Chakrabarti, T.

    Renewable, carbon neutral, economically viable alternative fuels are urgently needed to turn away the consequences of climate change Photosynthetic capability of microalgae with respect to CO2 fixation at various CO2 partial...

  3. Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

    Science.gov (United States)

    Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua

    2013-01-01

    The development of an “artificial photosynthetic system” (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as “architecture-directing agents” for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle. PMID:23588925

  4. Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert.

    Science.gov (United States)

    Kemp, Paul R; Gardetto, Pietra E

    1982-11-01

    Diurnal patterns of CO 2 exchange and titratable acidity were monitored in six species of evergreen rosette plants growing in controlled environment chambers and under outdoor environmental conditions. These patterns indicated that two of the species, Yucca baccata and Y. torreyi, were constituitive CAM plants while the other species, Y. elata, Y. campestris, Nolina microcarpa and Dasylirion wheeleri, were C 3 plants. The C 3 species did not exhibit CAM when grown in any of several different temperature, photoperiod, and moisture regimes. Both photosynthetic pathway types appear adapted to desert environments and all species show environmentally induced changes in their photosynthetic responses consistent with desert adaptation. The results of this study do not indicate that changes in the photosynthetic pathway type are an adaptation in any of these species.

  5. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.

    Science.gov (United States)

    Xiong, Wei; Lee, Tai-Chi; Rommelfanger, Sarah; Gjersing, Erica; Cano, Melissa; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-12-07

    Central carbon metabolism in cyanobacteria comprises the Calvin-Benson-Bassham (CBB) cycle, glycolysis, the pentose phosphate (PP) pathway and the tricarboxylic acid (TCA) cycle. Redundancy in this complex metabolic network renders the rational engineering of cyanobacterial metabolism for the generation of biomass, biofuels and chemicals a challenge. Here we report the presence of a functional phosphoketolase pathway, which splits xylulose-5-phosphate (or fructose-6-phosphate) to acetate precursor acetyl phosphate, in an engineered strain of the model cyanobacterium Synechocystis (ΔglgC/xylAB), in which glycogen synthesis is blocked, and xylose catabolism enabled through the introduction of xylose isomerase and xylulokinase. We show that this mutant strain is able to metabolise xylose to acetate on nitrogen starvation. To see whether acetate production in the mutant is linked to the activity of phosphoketolase, we disrupted a putative phosphoketolase gene (slr0453) in the ΔglgC/xylAB strain, and monitored metabolic flux using (13)C labelling; acetate and 2-oxoglutarate production was reduced in the light. A metabolic flux analysis, based on isotopic data, suggests that the phosphoketolase pathway metabolises over 30% of the carbon consumed by ΔglgC/xylAB during photomixotrophic growth on xylose and CO2. Disruption of the putative phosphoketolase gene in wild-type Synechocystis also led to a deficiency in acetate production in the dark, indicative of a contribution of the phosphoketolase pathway to heterotrophic metabolism. We suggest that the phosphoketolase pathway, previously uncharacterized in photosynthetic organisms, confers flexibility in energy and carbon metabolism in cyanobacteria, and could be exploited to increase the efficiency of cyanobacterial carbon metabolism and photosynthetic productivity.

  6. .i.Utricularia./i. carnivory revisited: plants supply photosynthetic carbon to traps

    Czech Academy of Sciences Publication Activity Database

    Sirová, Dagmara; Borovec, Jakub; Šantrůčková, H.; Šantrůček, J.; Vrba, Jaroslav; Adamec, Lubomír

    2010-01-01

    Roč. 61, č. 1 (2010), s. 99-103 ISSN 0022-0957 R&D Projects: GA MZe(CZ) QH81012 Institutional research plan: CEZ:AV0Z60170517; CEZ:AV0Z60050516 Keywords : aquatic carnivorous plants * stable isotope labelling * carbon exudation * microbial community * Utricularia australis * Utricularia vulgaris Subject RIV: EH - Ecology, Behaviour Impact factor: 4.818, year: 2010

  7. Measuring Photosynthetic Response to Drought Stress using Active and Passive Fluorescence

    Science.gov (United States)

    Helm, L.; Lerdau, M.; Wang, W.; Yang, X.

    2017-12-01

    Photosynthesis, the endothermic reactions involving the absorption of light and fixation and reduction of carbon dioxide by plants, plays important roles in carbon and water cycles, food security, and even weather and climate patterns. Solar radiation provides the energy for photosynthesis, but often plants absorb more solar energy than they can use to reduce carbon dioxide. This excess energy, which is briefly stored as high-energy electrons in the chloroplast, must be removed or damage to the leaf's photosynthetic machinery will occur. One important energy dissipation pathway is for the high energy electrons to return to their lower valance state and, in doing so, release radiation (fluorescence). This fluorescence (known as solar induced fluorescence (SIF) has been found to strongly correlate with gross photosynthesis. Recent advances in the remote sensing of SIF allow for large-scale real-time estimation of photosynthesis. In a warming climate with more frequent stress, remote sensing is necessary for measuring the spatial and temporal variability of photosynthesis. However, the mechanisms that link SIF and photosynthesis are unclear, particularly how the relationship may or may not change under stress. We present data from leaf-level measurements of gas exchange, pulse amplitude modulation (PAM) fluorescence, and SIF in two major tree species in North America. Water-stressed and well-watered plants were compared to determine how SIF and carbon dioxide exchange are modulated by drought diurnally and seasonally. Secondly, photosynthesis and fluorescence under high and low oxygen concentrations were compared to determine how photorespiration alters the relationship between SIF and gross photosynthesis. We find a strong correlation between SIF and steady-state fluorescence measured with conventional PAM fluorometry. Our results also indicate that drought-stress modulates the SIF-photosynthesis relationship, and this may be driven by drought-induced changes in

  8. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic

  9. Photorespiration and carbon limitation determine productivity in temperate seagrasses.

    Science.gov (United States)

    Buapet, Pimchanok; Rasmusson, Lina M; Gullström, Martin; Björk, Mats

    2013-01-01

    The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio) at both natural and low O2 concentrations (adjusted by N2 bubbling). The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime) and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH). The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow waters.

  10. Photorespiration and carbon limitation determine productivity in temperate seagrasses.

    Directory of Open Access Journals (Sweden)

    Pimchanok Buapet

    Full Text Available The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8-9.8; high to low DIC:O2 ratio at both natural and low O2 concentrations (adjusted by N2 bubbling. The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH. The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow

  11. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    International Nuclear Information System (INIS)

    Zhang, C.Z.; Tang, Y.; Li, Y.S.; Yang, Q.

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking

  12. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.Z.; Tang, Y. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada); Li, Y.S. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK, Canada S7N 5E2 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada)

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking.

  13. Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether/polystyrene – Processing and characterization

    Directory of Open Access Journals (Sweden)

    G. Olowojoba

    2013-07-01

    Full Text Available 4 wt% multiwalled carbon nanotubes (MWCNTs were incorporated into a miscible blend of polyphenylenether/polystyrene (PPE/PS on a twin-screw extruder at a screw speed of 600 rpm. The masterbatch obtained was diluted at 400 and 600 rpm to obtain lower MWCNT loadings in PPE/PS. Electron microscopy & optical microscopy images show very good MWCNT dispersion even at high filler loadings of 4 wt%, but slightly larger agglomerate size fractions are observable at higher screw speeds. While MWCNT addition enhanced the thermal stability of PPE/PS, a small change in glass transition was observed on the composites at different filler concentrations compared to PPE/PS. The specific heat capacity at glass transition decreases considerably until 2 wt% MWCNT and levels down thereafter for both processing conditions pointing to enhanced filler-matrix interaction at lower loadings. Storage modulus of the nanocomposites was enhanced significantly on MWCNT incorporation with reinforcing effect dropping considerably as a function of temperature, especially at lower filler contents. The modulus and the tensile strength of PPE/PS were only marginally enhanced in spite of excellent MWCNT dispersion in the matrix. Electrical percolation occurs at 0.4 wt% MWCNT content, and the electrical conductivity of 0.5 wt% MWCNT reinforced PPE/PS was close to 12 orders in magnitude higher compared to PPE/PS.

  14. Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection.

    Science.gov (United States)

    Siqueira, José R; Molinnus, Denise; Beging, Stefan; Schöning, Michael J

    2014-06-03

    The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor's surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance-voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (~18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform.

  15. The global distribution of leaf chlorophyll content and seasonal controls on carbon uptake

    Science.gov (United States)

    Croft, H.; Chen, J. M.; Luo, X.; Bartlett, P. A.; Staebler, R. M.; He, L.; Mo, G.; Luo, S.; Simic, A.; Arabian, J.; He, Y.; Zhang, Y.; Beringer, J.; Hutley, L. B.; Noland, T. L.; Arellano, P.; Stahl, C.; Homolová, L.; Bonal, D.; Malenovský, Z.; Yi, Q.; Amiri, R.

    2017-12-01

    Leaf chlorophyll (ChlLeaf) is crucial to biosphere-atmosphere exchanges of carbon and water, and the functioning of terrestrial ecosystems. Improving the accuracy of modelled photosynthetic carbon uptake is a central priority for understanding ecosystem response to a changing climate. A source of uncertainty within gross primary productivity (GPP) estimates is the failure to explicitly consider seasonal controls on leaf photosynthetic potential. Whilst the inclusion of ChlLeafinto carbon models has shown potential to provide a physiological constraint, progress has been hampered by the absence of a spatially-gridded, global chlorophyll product. Here, we present the first spatially-continuous, global view of terrestrial ChlLeaf, at weekly intervals. Satellite-derived ChlLeaf was modelled using a physically-based radiative transfer modelling approach, with a two stage model inversion method. 4-Scale and SAIL canopy models were first used to model leaf-level reflectance from ENIVSAT MERIS 300m satellite data. The PROSPECT leaf model was then used to derive ChlLeaf from the modelled leaf reflectance. This algorithm was validated using measured ChlLeaf data from 248 measurements within 26 field locations, covering six plant functional types (PFTs). Modelled results show very good relationships with measured data, particularly for deciduous broadleaf forests (R2 = 0.67; pmake an important step towards improving the accuracy of global carbon budgets.

  16. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt

    International Nuclear Information System (INIS)

    Gong, Xiaobo; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2016-01-01

    Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures. (paper)

  17. Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

    Science.gov (United States)

    Boyd, Philip W.

    The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

  18. Distribution of 14C-photosynthetate in the shoot of Vitis vinifera L. cv Cabernet Sauvignon: Pt. II

    International Nuclear Information System (INIS)

    Hunter, J.J.; Visser, J.H.

    1988-01-01

    The effect of partial defoliation of Vitis vinifera L. cv Cabernet Sauvignon on the distribution of photosynthetates, originating in leaves in different positions on the shoot at berry set, pea size, veraison and ripeness stages, was investigated. Partial defoliation (33% and 66%) resulted in a higher apparent photosynthetic effectivity for all the remaining leaves on the shoot. The pattern of distribution of photosynthetates would seem to stay the same between the defoliation treatments. The control vines were found to carry excess foliage. Optimal photosynthetic activity of all the leaves on the vine was therefore not reached

  19. Photosynthetic Responses of Seedlings of two Indigenous Plants ...

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia, Munessa-Shashemene forest, by examining photosynthetic responses of Bersamaabyssinica Fres. and Croton macrostachyusDel. seedlings naturally grown inside ...

  20. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Development of a Method to Isolate Glutamic Acid from Foodstuffs for a Precise Determination of Their Stable Carbon Isotope Ratio.

    Science.gov (United States)

    Kobayashi, Kazuhiro; Tanaka, Masaharu; Yatsukawa, Yoichi; Tanabe, Soichi; Tanaka, Mitsuru; Ohkouchi, Naohiko

    2018-01-01

    Recent growing health awareness is leading to increasingly conscious decisions by consumers regarding the production and traceability of food. Stable isotopic compositions provide useful information for tracing the origin of foodstuffs and processes of food production. Plants exhibit different ratios of stable carbon isotopes (δ 13 C) because they utilized different photosynthetic (carbon fixation) pathways and grow in various environments. The origins of glutamic acid in foodstuffs can be differentiated on the basis of these photosynthetic characteristics. Here, we have developed a method to isolate glutamic acid in foodstuffs for determining the δ 13 C value by elemental analyzer-isotope-ratio mass spectrometry (EA/IRMS) without unintended isotopic fractionation. Briefly, following acid-hydrolysis, samples were defatted and passed through activated carbon and a cation-exchange column. Then, glutamic acid was isolated using preparative HPLC. This method is applicable to measuring, with a low standard deviation, the δ 13 C values of glutamic acid from foodstuffs derived from C3 and C4 plants and marine algae.

  2. Monoolein lipid phases as incorporation and enrichment materials for membrane protein crystallization.

    Directory of Open Access Journals (Sweden)

    Ellen Wallace

    Full Text Available The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive

  3. Photosynthetic Performance of the Red Alga Pyropia haitanensis During Emersion, With Special Reference to Effects of Solar UV Radiation, Dehydration and Elevated CO2 Concentration.

    Science.gov (United States)

    Xu, Juntian; Gao, Kunshan

    2015-11-01

    Macroalgae distributed in intertidal zones experience a series of environmental changes, such as periodical desiccation associated with tidal cycles, increasing CO2 concentration and solar UVB (280-315 nm) irradiance in the context of climate change. We investigated how the economic red macroalga, Pyropia haitanensis, perform its photosynthesis under elevated atmospheric CO2 concentration and in the presence of solar UV radiation (280-400 nm) during emersion. Our results showed that the elevated CO2 (800 ppmv) significantly increased the photosynthetic carbon fixation rate of P. haitanensis by about 100% when the alga was dehydrated. Solar UV radiation had insignificant effects on the net photosynthesis without desiccation stress and under low levels of sunlight, but significantly inhibited it with increased levels of desiccation and sunlight intensity, to the highest extent at the highest levels of water loss and solar radiation. Presence of UV radiation and the elevated CO2 acted synergistically to cause higher inhibition of the photosynthetic carbon fixation, which exacerbated at higher levels of desiccation and sunlight. While P. haitanensis can benefit from increasing atmospheric CO2 concentration during emersion under low and moderate levels of solar radiation, combined effects of elevated CO2 and UV radiation acted synergistically to reduce its photosynthesis under high solar radiation levels during noon periods. © 2015 The American Society of Photobiology.

  4. Dynamics of photosynthetic activity of cyanobacteria after gut ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... carp and goldfish, whereas there was a significant stimulation of photosynthetic activity of diatom and green algae following the depressed cyanobacteria during cultivation. The mainly stimulated eukaryotic algae species were Fragilariaceae and Scenedesmus obliquus by microscopy.

  5. Counting viruses and bacteria in photosynthetic microbial mats

    NARCIS (Netherlands)

    Carreira, C; Staal, M.; Middelboe, M.; Brussaard, C.P.D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures

  6. A custom-made mouthpiece incorporating tongue depressors and elevators to reduce radiation-induced tongue mucositis during carbon-ion radiation therapy for head and neck cancer.

    Science.gov (United States)

    Ikawa, Hiroaki; Koto, Masashi; Ebner, Daniel K; Takagi, Ryo; Hayashi, Kazuhiko; Tsuji, Hiroshi; Kamada, Tadashi

    We introduce a custom-made mouthpiece for carbon-ion radiation therapy for head and neck malignancy. The mouthpiece incorporates either a tongue depressor or elevator depending on tumor location. The risk of tongue mucositis may be reduced without compromising therapeutic efficacy through mouthpiece shaping. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean

    Science.gov (United States)

    Vaillancourt, Robert D.; Marra, John; Seki, Michael P.; Parsons, Michael L.; Bidigare, Robert R.

    2003-07-01

    A synoptic spatial examination of the eddy Haulani (17-20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m -3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria ( Prochlorococcus and Synechococcus) and small (3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.

  8. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Ning; Hua, Hanbai; Eneji, A Egrinya; Li, Zhaohu; Duan, Liusheng; Tian, Xiaoli

    2012-05-02

    A hydroponic culture experiment was conducted to determine genotypic variation in photosynthetic rate and the associated physiological changes in response to potassium (K) deficiency in cotton (Gossypium hirsutum L.) seedlings with contrasting two cotton cultivars in K efficiency. The K-efficient Liaomian18 produced 66.7% more biomass than the K-inefficient NuCOTN99(B) under K deficiency, despite their similar biomass under K sufficiency. Compared with NuCOTN99(B), Liaomian18 showed 19.4% higher net photosynthetic rate (P(n), per unit leaf area) under K deficient solutions and this was associated with higher photochemical efficiency and faster export of soluble sugars from the phloem. The lower net P(n) of NuCOTN99(B) was attributed to higher capacity for nitrate assimilation and lower export of soluble sugars. Furthermore, NuCOTN99(B) showed 38.4% greater ETR/P(n) than Liaomian18 under K deficiency, indicating that more electrons were driven to other sinks. Higher superoxide dismutase (SOD) and lower catalase (CAT) and ascorbate peroxidase (APX) activities resulted in higher levels of reactive oxygen species (ROS; e.g. O(2)(-)and H(2)O(2)) in NuCOTN99(B) relative to Liaomian18. Thus, the K inefficiency of NuCOTN99(B), indicated by lower biomass and net P(n) under K deficiency, was associated with excessively high nitrogen assimilation, lower export of carbon assimilates, and greater ROS accumulation in the leaf. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  10. Isotopic exchange between CO2 and H2O and labelling kinetics of photosynthetic oxygen

    International Nuclear Information System (INIS)

    Gerster, Richard

    1971-01-01

    The reaction of carbon dioxide with water has been studied by measuring the rate of oxygen exchange between C 18 O 2 and H 2 16 O. The mathematical treatment of the kinetics allows to determine with accuracy the diffusion flow between the gas and the liquid phase, in the same way as the CO 2 hydration rate. The velocity constant of this last process, whose value gives the in situ enzymatic activity of carbonic anhydrase, has been established in the case of chloroplast and Euglena suspensions and of aerial leaves. The study of the isotopic exchange between C 18 O 2 and a vegetable submitted to alternations of dark and light has allowed to calculate the isotopic abundance of the metabolized CO 2 whose value has been compared to that of the intracellular water and that of photosynthetic oxygen. In addition, a new method using 13 C 18 O 2 gives the means to measure with accuracy eventual isotopic effects. The labelling kinetics of the oxygen evolved by Euglena suspensions whose water has been enriched with 18 O have been established at different temperatures. (author) [fr

  11. Effects of irradiance and prey deprivation on growth, cell carbon and photosynthetic activity of the freshwater kleptoplastidic dinoflagellate Nusuttodinium (= Gymnodinium aeruginosum (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Kirstine Drumm

    Full Text Available The freshwater dinoflagellate Nusuttodinium aeruginosum lacks permanent chloroplasts. Rather it sequesters chloroplasts as well as other cell organelles, like mitochondria and nuclei, from ingested cryptophyte prey. In the present study, growth rates, cell production and photosynthesis were measured at seven irradiances, ranging from 10 to 140 μmol photons m-2s-1, when fed the cryptophyte Chroomonas sp. Growth rates were positively influenced by irradiance and increased from 0.025 d-1 at 10 μmol photons m-2s-1 to maximum growth rates of ~0.3 d-1 at irradiances ≥ 40 μmol photons m-2s-1. Similarly, photosynthesis ranged from 1.84 to 36.9 pg C cell-1 h-1 at 10 and 140 μmol photons m-2s-1, respectively. The highest rates of photosynthesis in N. aeruginosum only corresponded to ~25% of its own cell carbon content and estimated biomass production. The measured rates of photosynthesis could not explain the observed growth rates at high irradiances. Cultures of N. aeruginosum subjected to prey starvation were able to survive for at least 27 days in the light. The sequestered chloroplasts maintained their photosynthetic activity during the entire period of starvation, during which the population underwent 4 cell divisions. This indicates that N. aeruginosum has some control of the chloroplasts, which may be able to replicate. In conclusion, N. aeruginosum seems to be in an early stage of chloroplast acquisition with some control of its ingested chloroplasts.

  12. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit

    DEFF Research Database (Denmark)

    Zhou, Qin; Ravnskov, Sabine; Jiang, Dong

    2015-01-01

    Drought is a major abiotic factor limiting agricultural crop production. One of the effective ways to increase drought resistance in plants could be to optimize the exploitation of symbiosis with arbuscular mycorrhizal fungi (AMF). Hypothesizing that alleviation of water deficits by AMF in wheat...... will help maintain photosynthetic carbon-use, we studied the role of AMF on gas-exchange, light-use efficiencies, carbon/nitrogen ratios and growth and yield parameters in the contrasting wheat (Triticum aestivum L.) cultivars ‘Vinjett’ and ‘1110’ grown with/without AMF symbiosis. Water deficits applied...... at the floret initiation stage significantly decreased rates of photosynthetic carbon gain, transpiration and stomatal conductance in the two wheat cultivars. AMF increased the rates of photosynthesis, transpiration and stomatal conductance under drought conditions. Water deficits decreased electron transport...

  13. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    Science.gov (United States)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  14. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    Science.gov (United States)

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, A. David; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong

    2015-01-01

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4–0.6) in the simulated spatial pattern of soil RHwith both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = −0.43 to −0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  15. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    Energy Technology Data Exchange (ETDEWEB)

    He, Yujie [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Yang, Jinyan [Univ. of Georgia, Athens, GA (United States). Warnell School of Forestry and Natural Resources; Northeast Forestry Univ., Harbin (China). Center for Ecological Research; Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy; Harden, Jennifer W. [U.S. Geological Survey, Menlo Park, CA (United States); McGuire, Anthony D. [Alaska Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Univ. of Alaska, Fairbanks, AK (United States). U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit; Liu, Yaling [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Wang, Gangsheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst. and Environmental Sciences Division; Gu, Lianhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2015-11-20

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here in this study we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 PgCyr-1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  16. Ethylene and carbon dioxide exchange in leaves and whole plants

    Energy Technology Data Exchange (ETDEWEB)

    Woodrow, L

    1989-01-01

    This investigation addresses the interactions between CO{sub 2}, ethylene, and photosynthetic carbon metabolism in Lycopersicon esculentum Mill. and Xanthium strumarium L. Rates of ethylene release were examined at alternate leaf positions on vegetative tomato plants. The rates of endogenous and ACC-stimulated ethylene release per unit leaf area were highest in the young, rapidly expanding leaves. When plants were grown under CO{sub 2} enrichment rates of ethylene release from the leaf tissue were consistently higher than from tissue grown at ambient levels. Elevated CO{sub 2} concentrations during short-term incubations further enhanced the rates of ethylene release. Ethylene release from ethephon (2-chloroethylphosphonic acid) applied to intact tomato plants provided a model system in which to study the effects of ethylene on photosynthetic metabolism and carbon partitioning. The ethephon treated plants exhibited leaf epinasty, flower bud abscission, inhibition of leaf expansion, adventitious root development, and reduction of dry matter accumulation and growth over time. Rates of steady state photosynthesis, respiration, photorespiration, transpiration, and partitioning of recently fixed {sup 14}C into neutral, acidic, basic, and insoluble leaf fractions were unaltered 24 h after ethephon application.

  17. Photosynthetic efficiency of Pedunculate oak seedlings under simulated water stress

    Directory of Open Access Journals (Sweden)

    Popović Zorica

    2010-01-01

    Full Text Available Photosynthetic performance of seedlings of Quercus robur exposed to short-term water stress in the laboratory conditions was assessed through the method of induced fluorometry. The substrate for seedlings was clayey loam, with the dominant texture fraction made of silt, followed by clay and fine sand, with total porosity 68.2%. Seedlings were separated in two groups: control (C (soil water regime in pots was maintained at the level of field water capacity and treated (water-stressed, WS (soil water regime was maintained in the range of wilting point and lentocapillary capacity. The photosynthetic efficiency was 0.642±0.25 and 0.522±0.024 (WS and C, respectively, which was mostly due to transplantation disturbances and sporadic leaf chlorosis. During the experiment Fv/Fm decreased in both groups (0.551±0.0100 and 0.427±0.018 in C and WS, respectively. Our results showed significant differences between stressed and control group, in regard to both observed parameters (Fv/Fm and T½. Photosynthetic efficiency of pedunculate oak seedlings was significantly affected by short-term water stress, but to a lesser extent than by sufficient watering.

  18. Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film

    Energy Technology Data Exchange (ETDEWEB)

    Tang Ching; Yogeswaran, Umasankar [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2009-03-16

    A composite film (MWCNTs-PNF) which contains multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(new fuchsin) (PNF) has been synthesized on glassy carbon electrode (GCE), gold (Au) and indium tin oxide (ITO) by potentiostatic methods. The presence of MWCNTs in the composite film enhances surface coverage concentration ({gamma}) of PNF to {approx}176.5%, and increases the electron transfer rate constant (k{sub s}) to {approx}346%. The composite film also exhibits promising enhanced electrocatalytic activity towards the mixture of biochemical compounds such as adenine (AD), guanine (GU) and thymine (THY). The surface morphology of the composite film deposited on ITO has been studied using scanning electron microscopy and atomic force microscopy. These two techniques reveal that the PNF incorporated on MWCNTs. Electrochemical quartz crystal microbalance study reveals the enhancement in the functional properties of MWCNTs and PNF. The electrocatalytic responses of analytes at MWCNTs and MWCNTs-PNF films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electrocatalysis studies, well separated voltammetric peaks have been obtained at the composite film for AD, GU and THY, with the peak separation of 320.3 and 132.7 mV between GU-AD and AD-THY respectively. The sensitivity of the composite film towards AD, GU and THY in DPV technique is 218.18, 12.62 and 78.22 mA M{sup -1} cm{sup -2} respectively, which are higher than MWCNTs film. Further, electroanalytical studies of AD, GU and THY present in single-strand deoxyribonucleic acid (ssDNA) have been carried out using semi-derivative CV and DPV.

  19. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: determination of specific growth rates

    International Nuclear Information System (INIS)

    Welschmeyer, N.A.; Lorenzen, C.J.

    1984-01-01

    The pattern of photosynthetic 14 C labeling over time is described for phytoplankton. The carbon-specific growth rate (d -1 ) is defined explicitly by changes in the specific activity (dpm μg -1 C) of the algae. For Skeletonema costatum, growing in axenic batch culture, the specific activities of both total cellular carbon and chlorophyll carbon increase at equal rates and the change in specific activity with time follows the predicted pattern. The specific activity of 14 C-labeled chlorophyll a was used to estimate phytoplankton growth rates and C:Chl ratios of field samples in Dabob Bay (Puget Sound), Washington. Growth rates decreased with depth and C:Chl ratios were higher for samples incubated under high light intensity. In several instances the C:Chl ratio increased from the beginning to the end of the incubation; this trend was most conspicuous near surface light intensities and for days of high total incident radiation. On these occasions, Chl a was actively 14 C labeled, yet little (or even negative) change was noted in the concentration of Chl a. These results suggest that some process (or processes) of chlorophyll degradation must be active at the same time that chlorophyll is being synthesized

  20. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P 336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae.

  1. Lipid-rich and protein-poor carbon allocation patterns of phytoplankton in the northern Chukchi Sea, 2011

    Science.gov (United States)

    Yun, Mi Sun; Joo, Hui Tae; Park, Jung Woo; Kang, Jae Joong; Kang, Sung-Ho; Lee, Sang H.

    2018-04-01

    The carbon allocations of phytoplankton into different photosynthetic end products (lipids, LMWM, polysaccharides, and proteins) were determined to understand physiological conditions of phytoplankton in the northern Chukchi Sea during the Korean Arctic expedition, 2011, using the 13C isotope tracer technique. The carbon allocation rates of lipids, LMWM, polysaccharides, and proteins were 0.00009-0.00062 h-1, 0.00001-0.00049 h-1, 0.00001-0.00025 h-1, and 0.00001-0.00062 h-1 within the euphotic depths from surface to 1% light depths during our cruise period, respectively. Significant relationships between protein production rates and chlorophyll a concentrations (large and total) were found in this study. Moreover, we found a significant negative relationship between lipid production rates and ammonium concentrations. These relationships match well with the previous results for environmental/physiological conditions for phytoplankton growth. Overall, phytoplankton allocated more photosynthetic carbon into lipids (42.5 ± 17.7%) whereas relatively lower to proteins (20.4 ± 15.5%) in this study. The lipid-rich and protein-poor allocation patterns in this study suggest that phytoplankton in the northern Chukchi Sea were in a stationary growth phase under nutrient deficient condition based on biological and environmental conditions observed during our study period. Based on comparison with the previous studies in the northern Bering Sea and southern Chukchi Sea, we found that the photosynthetic carbon allocation patterns depending on physiological status of phytoplankton under the different growth and/or nutrient conditions could be largely vary at different regions in the Arctic Ocean. More intensive research on the physiological status of phytoplankton is further required to determine how phytoplankton response to the changing environmental conditions and consequently how they impact on higher trophic levels in marine ecosystems in the Arctic Ocean.

  2. Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1.

    Science.gov (United States)

    Fujii, Ritsuko; Shimonaka, Shozo; Uchida, Naoko; Gardiner, Alastair T; Cogdell, Richard J; Sugisaki, Mitsuru; Hashimoto, Hideki

    2008-01-01

    Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.

  3. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    Science.gov (United States)

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  4. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  5. Mesoporous carbon materials

    Science.gov (United States)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  6. The dynamics of CO2 fixation in the Southern Ocean as indicated by carboxylase activities and organic carbon isotopic ratios

    International Nuclear Information System (INIS)

    Fontugne, M.

    1991-01-01

    Recent studies have suggested a direct relationship between the dissolved CO 2 concentration and carbon isotopic composition of phytoplankton in surface ocean. Thus, measurement of δ 13 C of planktonic organic matter in deep-sea ocean cores can potentially yield a record of the past atmospheric CO 2 variations. However, results are presented from 3 cruises in Indian and Atlantic sectors of the Southern Ocean (between 40-66degS) in which biochemical and physiological factors associated with photosynthetic processes lead to carbon isotopic fractionation by phytoplankton which cannot be directly related to variations within the mineral carbon pool. Simultaneous measurements of the carboxylase activities in the 13 C/ 12 C ratio of particulate organic carbon show that there is a large variability in phytoplankton carbon metabolism, especially on a seasonal scale, in spite of a relative uniformity of the environmental conditions. Phytoplankton carbon metabolism is clearly a main factor governing variations in the stable isotopic composition of organic matter in the euphotic layer. Interrelationships between light, Rubiso activity and δ 13 C are clearly shown by the data. Heterotrophic processes may also influence the carbon isotope mass balance, especially during the break-up of the ice pack. In addition to the influence of photosynthetic metabolism, the effect of the meridoneal temperature gradient is also verified by the data set. (author). 24 refs.; 5 figs

  7. Nitrous oxide emissions from yellow brown soil as affected by incorporation of crop residues with different carbon-to-nitrogen ratios: a case study in central China.

    Science.gov (United States)

    Lin, Shan; Iqbal, Javed; Hu, Ronggui; Shaaban, Muhammad; Cai, Jianbo; Chen, Xi

    2013-08-01

    To investigate the influence of crop residues decomposition on nitrous oxide (N2O) emission, a field study was performed with application of crop residues with different C:N ratios in a bare yellow brown soil at the experimental station of Zhangjiachong at Zigui, China. We set up six experimental treatments: no crop residue (CK), rapeseed cake (RC), potato stalk (PS), rice straw (RS), wheat straw (WS), and corn straw (CS). The carbon (C) to nitrogen (N) ratios of these crop residues were 7.5, 32.9, 40.4, 65.7, and 90.9, respectively. Nitrous oxide fluxes were measured using a static closed chamber method. N2O emissions were significantly enhanced by incorporation of crop residues. Cumulative N2O emissions negatively correlated with C:N ratio (R (2) = 0.9821) of the crop residue, but they were positively correlated with average concentrations of dissolved organic carbon and microbial biomass carbon. Nitrogen emission fraction, calculated as N2O-N emissions originated from the crop residues N, positively correlated with C:N ratio of the residues (P emissions because a significant correlation (P emissions in all treatments except the control. In contrast, a significant relationship between soil moisture and N2O emissions was found in the control only. Furthermore, N2O emission significantly correlated (P carbon and nitrogen contents can significantly alter soil N2O flux rates; and (2) soil biotic as well as abiotic variables are critical in determining soil-atmospheric N2O emissions after crop residue incorporation into soil.

  8. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery

    International Nuclear Information System (INIS)

    Nicolardi, Valentina; Cai, Giampiero; Parrotta, Luigi; Puglia, Michele; Bianchi, Laura; Bini, Luca; Gaggi, Carlo

    2012-01-01

    Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy. - Highlights: ► Lichens exposed to Hg° vapors accumulate this metal irreversibly. ► Hg° interferes with physiological processes of the epiphytic lichen Evernia prunastri. ► Hg° promotes changes in the concentration of photosynthetic pigments. ► Hg° treatment causes changes in the ultrastructure of the photobiont plastids. ► Hg° induces changes in the protein machinery involved in the photosynthesis pathway. - Mercury affects the photosynthetic protein machinery of lichens.

  9. Communicating soil carbon science to farmers: Incorporating credibility, salience and legitimacy

    DEFF Research Database (Denmark)

    Ingram, Julie; Mills, Jane; Dibari, Camilla

    2016-01-01

    A key narrative within climate change science is that conserving and improving soil carbon through agricultural practices can contribute to agricultural productivity and is a promising option for mitigating carbon loss through sequestration. This paper examines the potential disconnect between...... science and practice in the context of communicating information about soil carbon management. It focuses on the information producing process and on stakeholder (adviser, farmer representative, policy maker etc) assessment of the attributes credibility, salience and legitimacy. In doing this it draws...... on results from consultations with stakeholders in the SmartSOIL project which aimed to provide decision support guidelines about practices that optimise carbon mitigation and crop productivity. An iterative methodology, used to engage stakeholders in developing, testing and validating a range of decision...

  10. Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers

    International Nuclear Information System (INIS)

    Rahmanian, S.; Suraya, A.R.; Shazed, M.A.; Zahari, R.; Zainudin, E.S.

    2014-01-01

    Highlights: • Multiscale composite was prepared by incorporation of carbon nanotubes and fibers. • Carbon nanotubes were also grown on short carbon fibers to enhance stress transfer. • Significant improvements were achieved in mechanical properties of composites. • Synergic effect of carbon nanotubes and fibers was demonstrated. - Abstract: Carbon nanotubes (CNT) and short carbon fibers were incorporated into an epoxy matrix to fabricate a high performance multiscale composite. To improve the stress transfer between epoxy and carbon fibers, CNT were also grown on fibers through chemical vapor deposition (CVD) method to produce CNT grown short carbon fibers (CSCF). Mechanical characterization of composites was performed to investigate the synergy effects of CNT and CSCF in the epoxy matrix. The multiscale composites revealed significant improvement in elastic and storage modulus, strength as well as impact resistance in comparison to CNT–epoxy or CSCF–epoxy composites. An optimum content of CNT was found which provided the maximum stiffness and strength. The synergic reinforcing effects of combined fillers were analyzed on the fracture surface of composites through optical and scanning electron microscopy (SEM)

  11. Influence of thermal light correlations on photosynthetic structures

    Science.gov (United States)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  12. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana

    2015-07-09

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  13. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana; Gonzá lez-Gordillo, J. I.; Vaqué , D.; Estrada, M.; Cerezo, M. I.; Salazar, G.; Gasol, J. M.; Duarte, Carlos M.

    2015-01-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  14. Fiber-optic fluorometer for microscale mapping of photosynthetic pigments in microbial communities

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael; Holst, Gerhard

    2001-01-01

    Microscale fluorescence measurements were performed in photosynthetic biofilms at a spatial resolution of 100 to 200 µm with a new fiber-optic fluorometer which allowed four different excitation and emission wavelengths and was configured for measuring phycobiliproteins, chlorophylls, and bacteri......Microscale fluorescence measurements were performed in photosynthetic biofilms at a spatial resolution of 100 to 200 µm with a new fiber-optic fluorometer which allowed four different excitation and emission wavelengths and was configured for measuring phycobiliproteins, chlorophylls...

  15. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”

    Science.gov (United States)

    Zhang, Huihui; Zhong, Haixiu; Wang, JIfeng; Sui, Xin

    2016-01-01

    The present study aims to investigate the differences in leaf pigment content and the photosynthetic characteristics under natural and low light intensities between the Chinese native Physocarpus amurensis Maxim and the imported Physocarpus opulifolius “Diabolo” from North America. We aim to discuss the responses and the adaptive mechanism of these two cultivars of Physocarpus to a low light environment. The results show that the specific leaf area (SLA) and the chlorophyll content were significantly increased in the leaves of both Physocarpus cultivars in response to a low light intensity, and the SLA and chlorophyll content were higher in the leaves of low light-treated P. opulifolius “Diabolo” compared with the leaves of low light-treated P. amurensis Maxim. Moreover, the content of anthocyanin was markedly reduced in the leaves of P. opulifolius “Diabolo” under low light intensity, which allowed for a greater capacity of photon capture under the low light condition. Under natural light, the photosynthetic carbon assimilation capacity was greater in the leaves of P. amurensis Maxim compared with the leaves of P. opulifolius “Diabolo” that were rich with anthocyanin. However, in response to low light, AQY, Pmax, LCP and LSP decreased to a lesser extent in the leaves of P. opulifolius “Diabolo” compared with the leaves of P. amurensis Maxim. These results suggest that P. opulifolius “Diabolo” exhibits a greater ability in adaption to low light, and it is probably related to the relatively higher chlorophyll content and the smaller SLA in the leaves of P. opulifolius “Diabolo.” In addition, the low light intensity resulted in a reduced photochemical activity of photosystem (PS) II in the leaves of both Physocarpus, as evidenced by increased values of the relative variable fluorescence at point J and point I on the OJIP curve. This result suggests that the electron acceptor in PS II was the major responsive site to the low light stress in

  16. Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo”

    Directory of Open Access Journals (Sweden)

    Huihui Zhang

    2016-06-01

    Full Text Available The present study aims to investigate the differences in leaf pigment content and the photosynthetic characteristics under natural and low light intensities between the Chinese native Physocarpus amurensis Maxim and the imported Physocarpus opulifolius “Diabolo” from North America. We aim to discuss the responses and the adaptive mechanism of these two cultivars of Physocarpus to a low light environment. The results show that the specific leaf area (SLA and the chlorophyll content were significantly increased in the leaves of both Physocarpus cultivars in response to a low light intensity, and the SLA and chlorophyll content were higher in the leaves of low light-treated P. opulifolius “Diabolo” compared with the leaves of low light-treated P. amurensis Maxim. Moreover, the content of anthocyanin was markedly reduced in the leaves of P. opulifolius “Diabolo” under low light intensity, which allowed for a greater capacity of photon capture under the low light condition. Under natural light, the photosynthetic carbon assimilation capacity was greater in the leaves of P. amurensis Maxim compared with the leaves of P. opulifolius “Diabolo” that were rich with anthocyanin. However, in response to low light, AQY, Pmax, LCP and LSP decreased to a lesser extent in the leaves of P. opulifolius “Diabolo” compared with the leaves of P. amurensis Maxim. These results suggest that P. opulifolius “Diabolo” exhibits a greater ability in adaption to low light, and it is probably related to the relatively higher chlorophyll content and the smaller SLA in the leaves of P. opulifolius “Diabolo.” In addition, the low light intensity resulted in a reduced photochemical activity of photosystem (PS II in the leaves of both Physocarpus, as evidenced by increased values of the relative variable fluorescence at point J and point I on the OJIP curve. This result suggests that the electron acceptor in PS II was the major responsive site to the

  17. [Potential Carbon Fixation Capability of Non-photosynthetic Microbial Community at Different Depth of the South China Sea and Its Response to Different Electron Donors].

    Science.gov (United States)

    Fang, Feng; Wang, Lei; Xi, Xue-fei; Hu, Jia-jun; Fu, Xiao-hua; Lu, Bing; Xu, Dian-sheng

    2015-05-01

    The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth. The result showed that the PCFCs of NPMC in seawater with different depth were generally low and had no significant difference when using NaNO2 as the electron donor. The PCFC of NPMC in surface seawater was higher than that in deep seawater when using H2 as the electron donor, on the contrary, the PCFC of NPMC in deep seawater was higher than that in surface seawater when using Na2S2O3 as the electron donor. The abundance of the main CO2 fixation gene cbbL in surface seawater was higher than that in deep seawater while the cbbM gene abundance in deep seawater was higher than that in surface seawater. Most hydrogen-oxidizing bacteria had the cbbL gene, and most sulfur bacteria had the cbbM gene. The tendency of seawater cbbL/cbbM gene abundance with the change of depth revealed that there were different kinds of bacteria accounting for the majority in NPMC fixing CO2 at different depth of ocean, which led to different response of PCFC of NPMC at different depth of the sea to different electron donors. The distributions of dissolved oxygen and inorganic carbon concentration with the change of the depth of the sea might be an important reason leading to the difference of NPMC structure and even the difference of PCFC at different depth of the sea.

  18. Spectral Indices to Monitor Nitrogen-Driven Carbon Uptake in Field Corn

    Science.gov (United States)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Peya E.; Huemmrich, K. Fred; Daughtry, Craig S. T.; Russ, Andrew; Cheng, Yen-Ben

    2010-01-01

    Climate change is heavily impacted by changing vegetation cover and productivity with large scale monitoring of vegetation only possible with remote sensing techniques. The goal of this effort was to evaluate existing reflectance (R) spectroscopic methods for determining vegetation parameters related to photosynthetic function and carbon (C) dynamics in plants. Since nitrogen (N) is a key constituent of photosynthetic pigments and C fixing enzymes, biological C sequestration is regulated in part by N availability. Spectral R information was obtained from field corn grown at four N application rates (0, 70, 140, 280 kg N/ha). A hierarchy of spectral observations were obtained: leaf and canopy with a spectral radiometer; aircraft with the AISA sensor; and satellite with EO-1 Hyperion. A number of spectral R indices were calculated from these hyperspectral observations and compared to geo-located biophysical measures of plant growth and physiological condition. Top performing indices included the R derivative index D730/D705 and the normalized difference of R750 vs. R705 (ND705), both of which differentiated three of the four N fertilization rates at multiple observation levels and yielded high correlations to these carbon parameters: light use efficiency (LUE); C:N ratio; and crop grain yield. These results advocate the use of hyperspectral sensors for remotely monitoring carbon cycle dynamics in managed terrestrial ecosystems.

  19. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Stojmenović, Marija; Momčilović, Milan; Gavrilov, Nemanja; Pašti, Igor A.; Mentus, Slavko; Jokić, Bojan; Babić, Biljana

    2015-01-01

    Ordered mesoporous carbon, volume-doped up to 3 w.% with Pt, Ru and Pt-Ru nanoparticles was synthesized by evaporation-induced self-assembly method, under acidic conditions. The content of incorporated metal was determined by EDX analysis. The X-ray diffractometry confirmed the existence of highly dispersed metallic phases in doped samples. Specific surface area was determined by N 2 -physisorption measurements to range between 452 and 545 m 2 g −1 . Raman spectroscopy of investigated materials indicated highly disordered carbon structure with crystallite sizes around 1.4 nm. In a form of thin-layer electrode on glassy carbon support, in 0.1 M KOH solution, the prepared materials displayed high activity toward oxygen reduction reaction (ORR) in alkaline media, with onset potentials more positive than −0.10 V vs. SCE. The kinetics of O 2 reduction was found to be affected by both the specific surface area and the concentration of metal dopants. The ethanol tolerance of (Pt, Ru)-doped OMCs was found to be higher than that of common Pt/C ORR catalysts. Presented study provides a new route for the synthesis of active and selective ORR catalysts in alkaline media, being competitive with, or superior to, the existing ones in terms of performance and price

  20. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  1. Non-destructive determination of photosynthetic rates of eight varieties of cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Amadu, A. A.

    2015-07-01

    Cassava is an important food security crop in Ghana and in the wake of climate change there is the need for plant breeders to develop varieties with high water use efficiency as well as high photosynthetic rate in order to adapt to the changing climate. Thus, the photosynthetic rates of eight cassava (Manihot esculenta Crantz) varieties were non-destructively evaluated using photosynthesis meter miniPPM300, from June 2014 to May 2015, with the aim of selecting varieties with high photosynthetic rate for future breeding programmes. The mean photosynthetic rate varied depending on the varieties ranging from 40.5 μmol/m 2 s in Bosom nsia to 45.2 μmol/m 2 s in Gbenze. However, the presence of African cassava mosaic disease (ACMD) marginally reduced the photosynthetic rate to below 40 μmol/m 2 s in all the varieties. Similarly, the chlorophyll content index (CCI) as measured by chlorophyll meter and spectrophotometer also varied from one variety to another; it was low in Nandom (17.9 CCI) and high in Gbenze (39.93 CCI) using the chlorophyll meter and was also reduced by the presence of the virus. Although, the stomatal density varied between the varieties it was not influenced by virus infection. Furthermore, ACMD significantly decreased the leaf surface area from 5705.8mm 2 in uninfected plants to 1251.6mm 2 in infected plants, consequently reducing the number and weight of tubers produced 11 month after planting (MAP). Molecular Testing of the viruses using virus specific primers JSP001/JSP002, EAB555F/EAB555R, EACMV1e/EACMV2e at 6 MAP and 11MAP, showed that the mosaic symptoms were caused by African Cassava Mosaic virus disease. Cassava varieties with high photosynthetic efficiency and low virus infection can be used in cassava improvement programmes in Ghana. (au)

  2. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species.

    Science.gov (United States)

    Benavente-Valdés, Juan Roberto; Aguilar, Cristóbal; Contreras-Esquivel, Juan Carlos; Méndez-Zavala, Alejandro; Montañez, Julio

    2016-06-01

    Microalgae are a major natural source for a vast array of valuable compounds as lipids, proteins, carbohydrates, pigments among others. Despite many applications, only a few species of microalgae are cultured commercially because of poorly developed of cultivation process. Nowadays some strategies of culture have been used for enhancing biomass and value compounds yield. The most strategies applied to microalgae are classified into two groups: nutrimental and physical. The nutrimental are considered as change in media composition as nitrogen and phosphorous limitation and changes in carbon source, while physical are described as manipulation in operational conditions and external factors such as application of high-light intensities, medium salinity and electromagnetic fields. The exposition to electromagnetic field is a promising technique that can improve the pigments and biomass yield in microalgae culture. Therefore, is important to describe the advantages and applications of the overall process. The aim of this review was to describe the main culture strategies used to improve the photosynthetic and lipids content in chlorophyceae species.

  3. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil.

    Science.gov (United States)

    Xie, Zhiming; Song, Fengbin; Xu, Hongwen; Shao, Hongbo; Song, Ri

    2014-01-01

    The objectives of the study were to determine the effects of silicon on photosynthetic characteristics of maize on alluvial soil, including total chlorophyll contents, photosynthetic rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i ) using the method of field experiment, in which there were five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of silicon supplying. The results showed that certain doses of silicon fertilizers can be used successfully in increasing the values of total chlorophyll contents, P n, and g s and decreasing the values of E and C i of maize leaves, which meant that photosynthetic efficiency of maize was significantly increased in different growth stages by proper doses of Si application on alluvial soil, and the optimal dose of Si application was 150 kg · ha(-1). Our results indicated that silicon in proper amounts can be beneficial in increasing the photosynthetic ability of maize, which would be helpful for the grain yield and growth of maize.

  4. Linking root hydraulic properties to carbon allocation patterns in annual plant

    Science.gov (United States)

    Hosseini, A.; Ewers, B. E.; Adjesiwor, A. T.; Kniss, A. R.

    2017-12-01

    Incorporation of root structure and function into biophysical models is an important tool to predict plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils. Most of the models describing root water uptake (RWU) are based on semi-empirical (i.e. built on physiological hypotheses, but still combined with empirical functions) approaches and hydraulic parameters involved are hardly available. Root conductance is essential to define the interaction between soil-to-root and canopy-to-atmosphere. Also root hydraulic limitations to water flow can impact gas exchange rates and plant biomass partitioning. In this study, sugar beet (B. vulgaris) seeds under two treatments, grass (Kentucky bluegrass) and no grass (control), were planted in 19 L plastic buckets in June 2016. Photosynthetic characteristics (e.g. gas exchange and chlorophyll fluorescence), leaf morphology and anatomy, root morphology and above and below ground biomass of the plants was monitored at 15, 30, 50, 70 and 90 days after planting (DAP). Further emphasis was placed on the limits to water flow by coupling of hydraulic conductance (k) whole root-system with water relation parameters and gas exchange rates in fully established plants.

  5. Carbon substituting for oxygen in silicates: A novel mechanism for carbon incorporation in the deep Earth

    Science.gov (United States)

    Armentrout, M. M.; Tavakoli, A.; Ionescu, E.; Mera, G.; Riedel, R.; Navrotsky, A.

    2013-12-01

    Traditionally, carbon in the deep Earth has been thought of in terms of either carbonate at high oxygen fugacities or graphite or diamond under more reducing conditions. However, material science studies of amorphous Si-O-C polymer derived ceramics have demonstrated that carbon can be accommodated as an anion substituting for oxygen in mixed silica tetrahedra. Furthermore these structures are energetically favorable relative to a mixture of crystalline silica, silicon carbide, and graphite by ten or more kJ/g.atom. Thermodynamic stability suggests that these nano-structured composites are a potentially important storage mechanism for carbon under moderately reducing conditions. Here we expand the scope of the previous work by examining the compositional effect of geologically relevant cations (calcium and magnesium) on the thermodynamic stability, nanostructure, and ability to accommodate carbon of these composites. Silicon oxy-carbides doped with magnesium, magnesium and calcium or undoped resisted crystallization at 1100 C under inert atmosphere. 29Si NMR of the samples shows a similar distribution of silicon between end-member and mixed sites (Table 1). Results are presented from studies utilizing NMR, high temperature solution calorimetry, and microprobe. Table 1. Percentages of Si species in each material as determined by 29Si NMR.

  6. Variability of photosynthetic pigments in the Colombian Pacific ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3. Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. Efrain Rodriguez-Rubio Jose Stuardo. Volume 111 Issue 3 September 2002 pp 227-236 ...

  7. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    International Nuclear Information System (INIS)

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz–Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW + as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production. -- Highlights: ► Retrieval of optical properties from average absorption and scattering cross-sections. ► Inverse method based on Lorentz–Mie theory and genetic algorithm. ► Refraction and absorption indices of selected microalgae between 400 and 750 nm. ► Determination of pigment concentrations from absorption index. ► Good agreement between T

  8. Selective incorporation of various C-22 polyunsaturated fatty acids in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Masuzawa, Y.; Okano, S.; Waku, K.; Sprecher, H.; Lands, W.E.

    1986-01-01

    Three 14 C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-[ 14 C]docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-[ 14 C]docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-[ 14 C]docosahexaenoic acid (22:6(n-3)), were compared with [ 3 H]arachidonic acid (20:4(n-6] and [14C]linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids

  9. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    OpenAIRE

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-01-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural liveliho...

  10. Modelling the role of algae in rice crop nutrition and soil organic carbon maintenance

    NARCIS (Netherlands)

    Gaydon, D.S.; Probert, M.E.; Buresh, R.J.; Meinke, H.B.; Timsina, J.

    2012-01-01

    Photosynthetic aquatic biomass (PAB – algae and other floodwater flora) is a significant source of organic carbon (C) in rice-based cropping systems. A portion of PAB is capable of fixing nitrogen (N), and is hence a