WorldWideScience

Sample records for photon processes opportunities

  1. High-flux solar photon processes: Opportunities for applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, J.I.; Coy, S.L.; Herzog, H.; Shorter, J.A.; Schlamp, M.; Tester, J.W.; Peters, W.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  2. Inverse photon-photon processes

    International Nuclear Information System (INIS)

    Carimalo, C.; Crozon, M.; Kesler, P.; Parisi, J.

    1981-12-01

    We here consider inverse photon-photon processes, i.e. AB → γγX (where A, B are hadrons, in particular protons or antiprotons), at high energies. As regards the production of a γγ continuum, we show that, under specific conditions the study of such processes might provide some information on the subprocess gg γγ, involving a quark box. It is also suggested to use those processes in order to systematically look for heavy C = + structures (quarkonium states, gluonia, etc.) showing up in the γγ channel. Inverse photon-photon processes might thus become a new and fertile area of investigation in high-energy physics, provided the difficult problem of discriminating between direct photons and indirect ones can be handled in a satisfactory way

  3. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  4. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  5. Inclusive hard processes in photon-photon and photon-proton interactions

    OpenAIRE

    Glasman, Claudia

    1999-01-01

    Measurements of jet, prompt photon, high-pT hadron and heavy quark production in photon-induced processes provide tests of QCD and are sensitive to the photon parton densities. A review of the latest experimental results in photon-photon and photon-proton interactions is presented. Next-to-leading-order QCD calculations for these measurements are discussed.

  6. Photon-photon and photon-hadron processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Baron, N.C.

    1993-11-01

    Photon-photon and photon-hadron interactions in relativistic heavy ion collisions are studied in the framework of the impact parameter dependent equivalent photon approximation. Improvements of this method, like formfactor inclusion and geometrical modifications are developed. In disruptive relativistic heavy ion collisions where the heavy ions overlapp during the collision, electromagnetic processes are an important background to other mechanisms. In peripheral (non-disruptive) relativistic heavy ion collisions where the ions pass each other without strong interactions, the electromagnetic processes can be studied in their pure form. The lepton pair production is an important diagnostic tool in relativistic heavy ion collisions. The coherent γγ lepton pair production is therefore extensively studied in disruptive but also in non-disruptive collisions. The effects of strong interactions on the coherent γγ lepton pair production in disruptive collisions are discussed in terms of a simple stopping model. Coherent γγ dielectron production contributes to the dilepton production in high energy hadron-hadron collisions. As an example, the coherent dielectron production in π - p collisions is studied in terms of the equivalent photon approximation. Peripheral ultrarelativistic heavy ion collisions open up new possibilities for γγ physics. Taking into account γA background reactions, typical γγ processes in the relevant invariant mass ranges are discussed. The extreme high energy part of the equivalent photon spectrum leads to hard photon-parton reactions. As a potential tool to investigate the gluon distribution function of nucleons, thee q anti q production via the γg fusion in ultrarelativistic heavy ion collisions is studied. It is the purpose of this work to investigate how photon-photon and photon-hadron reactions in relativistic heavy ion collisions may contribute to the understanding of QCD and the standard model. (orig.) [de

  7. Challenges and opportunities for the next generation of photon regeneration experiments

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2010-03-01

    Photon regeneration experiments searching for signatures of oscillations of photons into hypothetical very weakly interacting ultra-light particles, such as axions, axion-like and hiddensector particles, have improved their sensitivity considerably in recent years. Important progress in laser and detector technology as well as recycling of available magnets from accelerators may allow a big further step in sensitivity such that, for the first time, laser light shining through a wall experiments will explore territory in parameter space that has not been excluded yet by astrophysics and cosmology.We review these challenges and opportunities for the next generation experiments. (orig.)

  8. Hard processes in photon-photon interactions

    International Nuclear Information System (INIS)

    Duchovni, E.

    1985-03-01

    In this thesis, the existence of hard component in two-photon collisions is investigated. Due to the relative simplicity of the photon, such processes can be exactly calculated in QCD. Untagged (low Q 2 ) two-photon events are used. This leads to relatively high statistics, but to severe background problem due mainly to e + e - annihilation. The background contamination is reduced to a tolerable level using a special set of cuts. Moreover, the remaining contamination is shown to be calculable with a small systematic error. A large number of events of the hard ''γγ'' type is found. An attempt to explain these events using the simplest QCD diagram (the Born term) is done. This process is found to be capable of explaining only a 1/4 of the data. Other options like the constituent intercharge model, integer charged quarks, and higher order diagrams are therefore also discussed. The large cross-section for the production of ρ 0 ρ 0 pairs in ''γγ'' collisions has not been understood yet. Inorder to look at closely related processes, a search for φρ 0 and φφ was initiated. The cross-section for θπ + π - was found to be sizeable. Only upper limits for the production of φρ 0 and φφ are obtained

  9. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics.

    Science.gov (United States)

    Kolle, Mathias; Lee, Seungwoo

    2018-01-01

    Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Two-photon processes in highly charged ions

    International Nuclear Information System (INIS)

    Jahrsetz, Thorsten

    2015-01-01

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  11. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  12. Squeezing, photon bunching, photon antibunching and nonclassical photon statistics in degenerate hyper Raman processes

    International Nuclear Information System (INIS)

    Sen, Biswajit; Mandal, Swapan

    2007-01-01

    An initially prepared coherent state coupled to a second-order nonlinear medium is responsible for stimulated and spontaneous hyper Raman processes. By using an intuitive approach based on perturbation theory, the Hamiltonian corresponding to the hyper Raman processes is analytically solved to obtain the temporal development of the field operators. It is true that these analytical solutions are valid for small coupling constants. However, the interesting part is that these solutions are valid for reasonably large time. Hence, the present analytical solutions are quite general and are fresh compared to those solutions under short-time approximations. By exploiting the analytical solutions of field operators for various modes, we investigate the squeezing, photon antibunching and nonclassical photon statistics for pure modes of the input coherent light responsible for hyper Raman processes. At least in one instance (stimulated hyper Raman processes for vibration phonon mode), we report the simultaneous appearance of classical (photon bunching) and nonclassical (squeezing) effects of the radiation field responsible for hyper Raman processes

  13. Photonic Quantum Information Processing

    International Nuclear Information System (INIS)

    Walther, P.

    2012-01-01

    The advantage of the photon's mobility makes optical quantum system ideally suited for delegated quantum computation. I will present results for the realization for a measurement-based quantum network in a client-server environment, where quantum information is securely communicated and computed. Related to measurement-based quantum computing I will discuss a recent experiment showing that quantum discord can be used as resource for the remote state preparation, which might shine new light on the requirements for quantum-enhanced information processing. Finally, I will briefly review recent photonic quantum simulation experiments of four frustrated Heisenberg-interactions spins and present an outlook of feasible simulation experiments with more complex interactions or random walk structures. As outlook I will discuss the current status of new quantum technology for improving the scalability of photonic quantum systems by using superconducting single-photon detectors and tailored light-matter interactions. (author)

  14. Modification of equivalent photon approximation (EPA) for resolved photon processes

    International Nuclear Information System (INIS)

    Drees, M.; Godbole, R.M.

    1995-05-01

    The authors propose a modification of the equivalent photon approximation (EPA) for processes which involve the parton content of the photon, to take into account the suppression of the photonic parton fluxes due to the virtuality of the photon. They present simple, physically motivated ansaetze to model this suppression and show that even though the parton content of the electron no longer factorizes into an electron flux function and photon structure function, it is still possible to express it as a single integral. They also show that for the TRISTAN (transposable ring intersecting storage accelerators in Nippon) experiments its effects can be numerically of the same size as that of the NLO corrections. Further, it is discussed a possible measurements at HERA (hadron electron ring an large), which can be provide an experimental handle on the effect the authors model through their ansaetze

  15. Development of a multitechnology FPGA: a reconfigurable architecture for photonic information processing

    Science.gov (United States)

    Mal, Prosenjit; Toshniwal, Kavita; Hawk, Chris; Bhadri, Prashant R.; Beyette, Fred R., Jr.

    2004-06-01

    Over the years, Field Programmable Gate Arrays (FPGAs) have made a profound impact on the electronics industry with rapidly improving semiconductor-manufacturing technology ranging from sub-micron to deep sub-micron processes and equally innovative CAD tools. Though FPGA has revolutionized programmable/reconfigurable digital logic technology, one limitation of current FPGA"s is that the user is limited to strictly electronic designs. Thus, they are not suitable for applications that are not purely electronic, such as optical communications, photonic information processing systems and other multi-technology applications (ex. analog devices, MEMS devices and microwave components). Over recent years, the growing trend has been towards the incorporation of non-traditional device technologies into traditional CMOS VLSI systems. The integration of these technologies requires a new kind of FPGA that can merge conventional FPGA technology with photonic and other multi-technology devices. The proposed new class of field programmable device will extend the flexibility, rapid prototyping and reusability benefits associated with conventional electronic into photonic and multi-technology domain and give rise to the development of a wider class of programmable and embedded integrated systems. This new technology will create a tremendous opportunity for applying the conventional programmable/reconfigurable hardware concepts in other disciplines like photonic information processing. To substantiate this novel architectural concept, we have fabricated proof-of-the-concept CMOS VLSI Multi-technology FPGA (MT-FPGA) chips that include both digital field programmable logic blocks and threshold programmable photoreceivers which are suitable for sensing optical signals. Results from these chips strongly support the feasibility of this new optoelectronic device concept.

  16. Photon imaging using post-processed CMOS chips

    NARCIS (Netherlands)

    Melai, J.

    2010-01-01

    This thesis presents our work on an integrated photon detector made by post-processing of CMOS sensor arrays. The aim of the post-processing is to combine all elements of the detector into a single monolithic device. These elements include a photocathode to convert photon radiation into electronic

  17. Exotic Optical Fibers and Glasses: Innovative Material Processing Opportunities in Earth's Orbit.

    Science.gov (United States)

    Cozmuta, Ioana; Rasky, Daniel J

    2017-09-01

    Exotic optical fibers and glasses are the platform material for photonics applications, primarily due to their superior signal transmission (speed, low attenuation), with extending bandwidth deep into the infrared, exceeding that of silica fibers. Gravitational effects (convection sedimentation) have a direct impact on the phase diagram of these materials and influence melting properties, crystallization temperatures, and viscosity of the elemental mix during the manufacturing process. Such factors constitute limits to the yield, transmission quality, and strength and value of these fibers; they also constrain the range of applications. Manufacturing in a gravity-free environment such as the Earth's Orbit also helps with other aspects of the fabrication process (i.e., improved form factor of the manufacturing unit, sustainability). In this article, revolutionary developments in the field of photonics over the past decade merge with the paradigm shift in the privatization of government-owned capabilities supporting a more diverse infrastructure (parabolic, suborbital, orbital), reduced price, and increased frequency to access space and the microgravity environment. With the increased dependence on data (demand, bandwidth, efficiency), space and the microgravity environment provide opportunities for optimized performance of these exotic optical fibers and glasses underlying the development of enabling technologies to meet future data demand. Existing terrestrial markets (Internet, telecommunications, market transactions) and emerging space markets (on-orbit satellite servicing, space manufacturing, space resources, space communications, etc.) seem to converge, and this innovative material processing opportunity of exotic optical fibers and glasses might just be that "killer app": technologically competitive, economically viable, and with the ability to close the business case.

  18. Multiple photon infrared processes in polyatomic molecules

    International Nuclear Information System (INIS)

    Harrison, R.G.; Butcher, S.R.

    1980-01-01

    This paper reviews current understanding of the process of multiple photon excitation and dissociation of polyatomic molecules, whereby in the presence of an intense infrared laser field a molecule may absorb upwards of 30 photons. The application of this process to new photochemistry and in particular laser isotope separation is also discussed. (author)

  19. Recursive relations for processes with n photons of noncommutative QED

    International Nuclear Information System (INIS)

    Jafari, Abolfazl

    2007-01-01

    Recursion relations are derived in the sense of Berends-Giele for the multi-photon processes of noncommutative QED. The relations concern purely photonic processes as well as the processes with two fermions involved, both for arbitrary number of photons at tree level. It is shown that despite of the dependence of noncommutative vertices on momentum, in contrast to momentum-independent color factors of QCD, the recursion relation method can be employed for multi-photon processes of noncommutative QED

  20. Photons emission processes in electron scattering

    International Nuclear Information System (INIS)

    Soto Vargas, C.W.

    1996-01-01

    The investigations involving the scattering sections arising in virtual an real photon emission processes of electron and positron scattering by an atomic nucleus, have the need for thorough and complete calculations of the virtual photon spectrum and then introduce the distorted wave formulation, which is mathematically involved an numerically elaborated, but accessible to its use in experimental electron scattering facilities. (author) [es

  1. Monte Carlo simulation of two-photon processes

    International Nuclear Information System (INIS)

    Daverveldt, P.H.W.M.

    1985-01-01

    During the last two decades e + e - collider experiments provided physicists with a wealth of important discoveries concerning elementary particle physics. This thesis explains in detail how the Monte Carlo approach can be applied to establish the comparison between two-photon experiments and theory. The author describes the main motives for and objectives of two-photon research. He defines the kinematics and pays attention to some special kinematical regions. Also a popular approximation for the exact differential cross section is reviewed. Next he discusses the calculation of the complete lowest order cross section for processes with four leptons in the final state and for reactions such as e + e - →e + e - qanti q, e + e - →μ + μ - qanti q. Radiative corrections to the multiperipheral diagrams are considered. The author explains in detail the distinction between soft and hard photon corrections which turns out to be somewhat more tricky than in the case of radiative corrections to one-photon processes. Finally, he presents some results which were obtained by using the event generators. (Auth.)

  2. Simulation of neutron transport process, photons and charged particles within the Monte Carlo method

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Artamonov, S.N.; Bolonkina, G.V.; Lomtev, V.L.; Pupko, S.V.

    1991-01-01

    Description is given to the program system BRAND designed for the accurate solution of non-stationary transport equation of neutrons, photons and charged particles in the conditions of real three-dimensional geometry. An extensive set of local and non-local estimates provides an opportunity of calculating a great set of linear functionals normally being of interest in the calculation of reactors, radiation protection and experiment simulation. The process of particle interaction with substance is simulated on the basis of individual non-group data on each isotope of the composition. 24 refs

  3. Photon Production through Multi-step Processes Important in Nuclear Fluorescence Experiments

    International Nuclear Information System (INIS)

    Hagmann, C; Pruet, J

    2006-01-01

    The authors present calculations describing the production of photons through multi-step processes occurring when a beam of gamma rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of backscattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence

  4. Azimuthal asymmetry in processes of nonlinear QED for linearly polarized photon

    International Nuclear Information System (INIS)

    Bajer, V.N.; Mil'shtejn, A.I.

    1994-01-01

    Cross sections of nonlinear QED processes (photon-photon scattering, photon splitting in a Coulomb field, and Delbrueck scattering) are considered for linearly polarized initial photon. The cross sections have sizeable azimuthal asymmetry. 15 refs.; 3 figs

  5. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  6. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    Science.gov (United States)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  7. Photonics4All - Conduct photonics for investment in France and Slovakia

    OpenAIRE

    Gerente, Fiona; Chorvat, Dusan

    2017-01-01

    This project deliverable describes the organisation of different Photonics for Investment Events. “Photonics for investments” focuses on the support and investment in innovative ideas and photonics applications. The objective of this project task is to provide the opportunity for Photonics SMEs to present their products or services during pitch presentations to new customers and investors. The Photonics for Investment events have three main objectives. The first objective is to connect en...

  8. Opportunities and challenges for photonics in the automotive

    Science.gov (United States)

    Mounier, Eric; Eloy, Jean-Christophe; Jourdan, David

    2005-02-01

    In the future, photonics will enable the marketing of new functions in cars to make them more secure, more fuel-efficient with improved design. Today, there are already photonics devices used in cars such as HB LEDs for brake or interior lights, and optical rain sensors for automatic wipers. Moreover, optical multiplexing for multimedia applications and head-up displays are now starting to be implemented in high-end cars and some more complex devices are already at the prototyping level. This is the case for example for driver information flat panel displays or optical sensors for occupant sensing. This paper gives an overview of the current and future optical applications in cars. So far, applications of displays, lighting, security and datacom are driving the market for photonics in cars. Moreover, car design is also one of the most important market drivers in automobile. Then, photonics could also become a strategic imperative for a company in the design of new cars that will emphasize differentiation from existing competitors. Lighting could then become a signature of the car manufacturer thanks to photonics technology.

  9. FY 2000 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. R and D of the photon-aided instrumentation and processing technologies; 2000 nendo photon keisoku kako gijutsu seika hokokusho. Photon keisoku kako gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of the photon-aided instrumentation and processing technologies. The technological and R and D trends of the photon-aided instrumentation and processing technologies are surveyed, in order to clarify the directions of their impacts and ripple effects on creation of new industries and development of the existing industries. The survey committee is organized, for exchanging opinions and information, and collection of information. For the trends of the photon-aided processing technologies, information on the elementary and peripheral technologies is collected by literature survey and academic meetings for processing, applied instrumentation and analysis, and photon generation/controlling, to grasp, analyze and study the latest trends. For the photon-utilizing technologies, information is collected viewed from their application to wide industrial areas, e.g., medical, diagnostic, communication/transmission, multimedia and chemical areas, other than those for instrumentation and processing. Also surveyed and analyzed/studied are the technologies for environmental protection, sensing, information, and the new areas, e.g., terahertz photonics and agriculture. (NEDO)

  10. Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing

    DEFF Research Database (Denmark)

    Yu, Yi

    , membranization of InP/InGaAs structure and wet etching. Experimental investigation of the switching dynamics of InP photonic crystal nanocavity structures are carried out using short-pulse homodyne pump-probe techniques, both in the linear and nonlinear region where the cavity is perturbed by a relatively small......This thesis deals with the investigation of InP material based photonic crystal cavity membrane structures, both experimentally and theoretically. The work emphasizes on the understanding of the physics underlying the structures’ nonlinear properties and their applications for all-optical signal...... processing. Based on the previous fabrication recipe developed in our III-V platform, several processing techniques are developed and optimized for the fabrication of InP photonic crystal membrane structures. Several key issues are identified to ensure a good device quality such as air hole size control...

  11. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

    Energy Technology Data Exchange (ETDEWEB)

    Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice; Tomlin, Nathan A.; Fox, Anna E.; Linares, Antia Lamas; Mirin, Richard P.; Nam, Sae Woo [National Institute of Standards and Technology, Boulder, Colorado, 80305 (United States); Thomas-Peter, Nicholas; Metcalf, Benjamin J.; Spring, Justin B.; Langford, Nathan K.; Walmsley, Ian A. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Gates, James C.; Smith, Peter G. R. [Optoelectronics Research Centre, University of Southampton, Highfield SO17 1BJ (United Kingdom)

    2011-12-15

    Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of the detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.

  12. Excitonic and photonic processes in materials

    CERN Document Server

    Williams, Richard

    2015-01-01

    This book is expected to present state-of-the-art understanding of a selection of excitonic and photonic processes in useful materials from semiconductors to insulators to metal/insulator nanocomposites, both inorganic and organic.  Among the featured applications are components of solar cells, detectors, light-emitting devices, scintillators, and materials with novel optical properties.  Excitonic properties are particularly important in organic photovoltaics and light emitting devices, as also in questions of the ultimate resolution and efficiency of new-generation scintillators for medical diagnostics,  border security, and nuclear nonproliferation.  Novel photonic and optoelectronic applications benefit from new material combinations and structures to be discussed.

  13. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    Science.gov (United States)

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Photon-hadron and photon-photon collisions in CMS (including data from p-p, p-A and A-A collisions)

    CERN Document Server

    Rebello Teles, Patricia

    2015-01-01

    Photon-nucleus and photon-photon collisions are abundantly produced at the LHC. The LHC provides a unique opportunity to study high-energy photon-photon interactions, thanks to its high energy and large integrated luminosity. In this talk two CMS analyses concerning photon-hadron and photon-photon collisions are going to be presented. The first deals with the measurement of the coherent $J/\\Psi$ photoproduction cross section in ultra-peripheral PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV in conjunction with forward neutrons. The second one shows the evidence of the exclusive $\\gamma \\gamma \\to W^{+}W^{-}$ production and improvement on constraints for the anomalous gauge quartic coupling $\\gamma \\gamma WW$ parameters.

  15. Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weidong; Yang Hongjun; Qiang Zexuan; Chen Li; Yang Weiquan; Chuwongin, Santhad; Zhao Deyin [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, TX 76019 (United States); Ma Zhenqiang; Qin Guoxuan; Pang Huiqing, E-mail: wzhou@uta.ed, E-mail: mazq@engr.wisc.ed [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI 53706 (United States)

    2009-12-07

    Crystalline semiconductor nanomembranes (NMs), which are transferable, stackable, bondable and manufacturable, offer unprecedented opportunities for unique and novel device applications. We report and review here nanophotonic devices based on stacked semiconductor NMs that were built on Si, glass and flexible PET substrates. Photonic-crystal Fano resonance based surface-normal optical filters and broadband reflectors have been demonstrated with unique angle and polarization properties. Such a low temperature NM stacking process can lead to a paradigm shift on silicon photonic integration and inorganic flexible photonics.

  16. The effective W boson approximation and heavy Higgs production at a photon-photon collider

    International Nuclear Information System (INIS)

    Ma, J.P.

    1995-01-01

    The inclusive production of single Higgs boson at a photon-phonon collider is studied under the effective W boson approximation. The W boson distribution in a photon is determined. The cross section is much larger than this from the photon-photon fusion and this means that a good opportunity of studying heavy Higgs boson can be provided at NLC, where photon beams may be obtained via Compton-backscattering of laser photons off the initial e + e - beams. 8 refs., 1 fig

  17. Two-photon exclusive processes in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1986-07-01

    QCD predictions for ..gamma gamma.. annihilation into single mesons, meson pairs, and baryon pairs are reviewed. Two-photon exclusive processes provide the most sensitive and practical measure of the distribution amplitudes, and thus a critical confrontation between QCD and experiment. Both the angular distribution and virtual photon mass dependence of these amplitudes are sensitive to the shapes of the phi (chi, Q). Novel effects involving the production of qq anti q anti q states at threshold are also discussed, and a new method is presented for systematically incorporating higher-order QCD corrections in ..gamma gamma.. reactions.

  18. Two-photon exclusive processes in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1986-07-01

    QCD predictions for γγ annihilation into single mesons, meson pairs, and baryon pairs are reviewed. Two-photon exclusive processes provide the most sensitive and practical measure of the distribution amplitudes, and thus a critical confrontation between QCD and experiment. Both the angular distribution and virtual photon mass dependence of these amplitudes are sensitive to the shapes of the phi (chi, Q). Novel effects involving the production of qq anti q anti q states at threshold are also discussed, and a new method is presented for systematically incorporating higher-order QCD corrections in γγ reactions

  19. Quantum information processing with atoms and photons

    International Nuclear Information System (INIS)

    Monroe, C.

    2003-01-01

    Quantum information processors exploit the quantum features of superposition and entanglement for applications not possible in classical devices, offering the potential for significant improvements in the communication and processing of information. Experimental realization of large-scale quantum information processors remains a long term vision, as the required nearly pure quantum behaviour is observed only in exotic hardware such as individual laser-cooled atoms and isolated photons. But recent theoretical and experimental advances suggest that cold atoms and individual photons may lead the way towards bigger and better quantum information processors, effectively building mesoscopic versions of Schroedinger's cat' from the bottom up. (author)

  20. Analysis of angular momentum properties of photons emitted in fundamental atomic processes

    Science.gov (United States)

    Zaytsev, V. A.; Surzhykov, A. S.; Shabaev, V. M.; Stöhlker, Th.

    2018-04-01

    Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons, such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular momentum upon propagation direction. This property has attracted a special attention over the past decades due to studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple theoretical method for determination of the angular momentum properties of the photons emitted in various atomic processes. This method is based on the evaluation of expectation value of the total angular momentum projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave, and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a nonzero projection of the orbital angular momentum.

  1. Supercritical fluids processing: emerging opportunities

    International Nuclear Information System (INIS)

    Kovaly, K.A.

    1985-01-01

    This publication on the emerging opportunities of supercritical fluids processing reveals the latest research findings and development trends in this field. These findings and development trends are highlighted, and the results of applications of technology to the business of supercritical fluids are reported. Applications of supercritical fluids to chemical intermediates, environmental applications, chemical reactions, food and biochemistry processing, and fuels processing are discussed in some detail

  2. Hadron production in photon-photon collisions

    International Nuclear Information System (INIS)

    Pandita, P.N.; Singh, Y.

    1976-01-01

    We analyze deep-inelastic photon-photon collisions via the two-photon mechanism in electron-positron (-electron) colliding beams in a form especially suitable for experimental analysis. It is shown that by a helicity analysis similar to that used in electroproduction experiments, we can separate five of the eight structure functions describing the process γ* + γ* → hadrons. The helicity cross sections for this process and for the process with one real photon (inelastic electron-photon scattering) are related to structure functions, and are evaluated using quark light-cone algebra. There are anomalous contributions to the structure functions for the inelastic electron-photon scattering which arise both in parton as well as generalized vector-meson-dominance models. This suggests a connection between these two types of models for photon-photon scattering. Further, we use vector-meson dominance to construct a sum rule for sigma/sub gamma//sub gamma/ /sub arrow-right/ from which it is estimated that roughly 20% of the cross section should be built up from higher-mass vector states. Using a spectral representation for the total transverse cross section, and the ''aligned-jet'' vector-dominance model we achieve a connection, via a ''correspondence principle,'' with the parton model for the hadron multiplicities in photon-photon collisions. We also comment on inclusive pion multiplicities and the approach to scaling for photon-photon processes in the light-cone algebra

  3. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  4. Axion-photon conversion in space and in low symmetrical dielectric crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2016-01-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed. (paper)

  5. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...... of the ultra-fast nonlinear response of silicon photonic waveguides. These chips offer ultra-broadband wavelength operation, ultra-high timing resolution and ultra-fast response, and when used appropriately offer energy-efficient switching. In this presentation we review some all-optical functionalities based...... on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show...

  6. Suppression of two-photon resonantly enhanced nonlinear processes in extended media

    International Nuclear Information System (INIS)

    Garrett, W.R.; Moore, M.A.; Payne, M.G.; Wunderlich, R.K.

    1988-11-01

    On the basis of combined experimental and theoretical studies of nonlinear processes associated with two-photon excitations near 3d and 4d states in Na, we show how resonantly enhanced stimulated hyper-Raman emission, parametric four-wave mixing processes and total resonant two-photon absorption can become severely suppressed through the actions of internally generated fields on the total atomic response in extended media. 7 refs., 3 figs

  7. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  8. Single photon laser altimeter simulator and statistical signal processing

    Science.gov (United States)

    Vacek, Michael; Prochazka, Ivan

    2013-05-01

    Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.

  9. Photon-photon collisions

    International Nuclear Information System (INIS)

    Field, J.H.

    1984-01-01

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  10. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  11. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  12. Multi-photon absorption limits to heralded single photon sources

    Science.gov (United States)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  13. Manipulation of multi-photon-entanglement. Applications in quantum information processing

    International Nuclear Information System (INIS)

    Goebel, Alexander Matthias

    2008-01-01

    Over the last twenty years the field of quantum information processing (QIP) has attracted the attention of many scientists, due to the promise of impressive improvements in the areas of computational speed, communication security and the ability to simulate nature on the micro scale. This thesis describes an experimental work on the physics of multi-photon entanglement and its application in the field of QIP. We have thoroughly developed the necessary techniques to generate multipartite entanglement between up to six photons. By exploiting the developed six-photon interferometer, in this thesis we report for the first time the experimental quantum teleportation of a two-qubit composite system, the realization of multi-stage entanglement swapping, the implementation of a teleportation-based controlled-NOT gate for fault-tolerant quantum computation, the first generation of entanglement in sixpartite photonic graph states and the realization of 'one-way' quantum computation with two-photon four-qubit cluster states. The methods developed in these experiments are of great significance both for exploring the field of QIP and for future experiments on the fundamental tests of quantum mechanics. (orig.)

  14. Valley photonic crystals for control of spin and topology.

    Science.gov (United States)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  15. Engaging college physics students with photonics research

    Science.gov (United States)

    Adams, Rhys; Chen, Lawrence R.

    2017-08-01

    As educators and researchers in the field of photonics, we find what we do to be very exciting, and sharing this passion and excitement to our university students is natural to us. Via outreach programs and college research funding, a new college and university collaboration has broadened our student audience: photonics is brought into the college classroom and research opportunities are provided to college students. Photonics-themed active learning activities are conducted in the college Waves and Modern Physics class, helping students forge relationships between course content and modern communications technologies. Presentations on photonics research are prepared and presented by the professor and past college student-researchers. The students are then given a full tour of the photonics university laboratories. Furthermore, funds are set aside to give college students a unique opportunity to assist the college professor with experiments during a paid summer research internship.

  16. A review on the processing accuracy of two-photon polymerization

    Directory of Open Access Journals (Sweden)

    Xiaoqin Zhou

    2015-03-01

    Full Text Available Two-photon polymerization (TPP is a powerful and potential technology to fabricate true three-dimensional (3D micro/nanostructures of various materials with subdiffraction-limit resolution. And it has been applied to microoptics, electronics, communications, biomedicine, microfluidic devices, MEMS and metamaterials. These applications, such as microoptics and photon crystals, put forward rigorous requirements on the processing accuracy of TPP, including the dimensional accuracy, shape accuracy and surface roughness and the processing accuracy influences their performance, even invalidate them. In order to fabricate precise 3D micro/nanostructures, the factors influencing the processing accuracy need to be considered comprehensively and systematically. In this paper, we review the basis of TPP micro/nanofabrication, including mechanism of TPP, experimental set-up for TPP and scaling laws of resolution of TPP. Then, we discuss the factors influencing the processing accuracy. Finally, we summarize the methods reported lately to improve the processing accuracy from improving the resolution and changing spatial arrangement of voxels.

  17. A review on the processing accuracy of two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaoqin; Hou, Yihong [School of Mechanical Science and Engineering, Jilin University, Changchun, 130022 (China); Lin, Jieqiong, E-mail: linjieqiong@mail.ccut.edu.cn [School of Electromechanical Engineering, Changchun University of Technology, Changchun, 130012 (China)

    2015-03-15

    Two-photon polymerization (TPP) is a powerful and potential technology to fabricate true three-dimensional (3D) micro/nanostructures of various materials with subdiffraction-limit resolution. And it has been applied to microoptics, electronics, communications, biomedicine, microfluidic devices, MEMS and metamaterials. These applications, such as microoptics and photon crystals, put forward rigorous requirements on the processing accuracy of TPP, including the dimensional accuracy, shape accuracy and surface roughness and the processing accuracy influences their performance, even invalidate them. In order to fabricate precise 3D micro/nanostructures, the factors influencing the processing accuracy need to be considered comprehensively and systematically. In this paper, we review the basis of TPP micro/nanofabrication, including mechanism of TPP, experimental set-up for TPP and scaling laws of resolution of TPP. Then, we discuss the factors influencing the processing accuracy. Finally, we summarize the methods reported lately to improve the processing accuracy from improving the resolution and changing spatial arrangement of voxels.

  18. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2

  19. Neuromorphic photonic networks using silicon photonic weight banks.

    Science.gov (United States)

    Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2017-08-07

    Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  20. Manipulation of multi-photon-entanglement. Applications in quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Alexander Matthias

    2008-07-16

    Over the last twenty years the field of quantum information processing (QIP) has attracted the attention of many scientists, due to the promise of impressive improvements in the areas of computational speed, communication security and the ability to simulate nature on the micro scale. This thesis describes an experimental work on the physics of multi-photon entanglement and its application in the field of QIP. We have thoroughly developed the necessary techniques to generate multipartite entanglement between up to six photons. By exploiting the developed six-photon interferometer, in this thesis we report for the first time the experimental quantum teleportation of a two-qubit composite system, the realization of multi-stage entanglement swapping, the implementation of a teleportation-based controlled-NOT gate for fault-tolerant quantum computation, the first generation of entanglement in sixpartite photonic graph states and the realization of 'one-way' quantum computation with two-photon four-qubit cluster states. The methods developed in these experiments are of great significance both for exploring the field of QIP and for future experiments on the fundamental tests of quantum mechanics. (orig.)

  1. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For the application of photon to industrial technologies, in particular, a hard photon technology was surveyed which uses photon beams of 0.1-200nm in wavelength. Its features such as selective atom reaction, dense inner shell excitation and spacial high resolution by quantum energy are expected to provide innovative techniques for various field such as fine machining, material synthesis and advanced inspection technology. This wavelength region has been hardly utilized for industrial fields because of poor development of suitable photon sources and optical devices. The developmental meaning, usable time and issue of a hard photon reduction lithography were surveyed as lithography in ultra-fine region below 0.1{mu}m. On hard photon analysis/evaluation technology, the industrial use of analysis, measurement and evaluation technologies by micro-beam was viewed, and optimum photon sources and optical systems were surveyed. Prediction of surface and surface layer modification by inner shell excitation, the future trend of this process and development of a vacuum ultraviolet light source were also surveyed. 383 refs., 153 figs., 17 tabs.

  2. Chemical and biological sensing applications of integrated photonics with an introduction to the American Institute for Manufacturing Integrated Photonics (AIM Photonics)

    Science.gov (United States)

    Bickford, Justin; Guicheteau, Jason

    2016-05-01

    Integrated photonics affords an opportunity to explore novel sensing and lab-on-a-chip concepts. It offers a route to high sensitivity, high selectivity, and low SWaP-C test systems that can be operated autonomously or by minimallytrained field personnel. We'll introduce the topic, discuss possible sensing modalities, and highlight the advantages and limitations of this technology. We'll also introduce the recent American Institute for Manufacturing Integrated Photonics (AIM Photonics), give an overview of its vision and capabilities, how to utilize its Electronic-Photonic Design Automation (EPDA) tools and its Multi-Project Wafer and Assembly (MPWA) services, how to engage in its road mapping efforts, and how to become a contributing member.

  3. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  4. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  5. Strong-field QED processes in short laser pulses. One- and two-photon Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Seipt, Daniel

    2012-12-20

    The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10{sup 24} W/cm{sup 2} and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton

  6. Valley photonic crystals for control of spin and topology

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  7. Processing multiphoton states through operation on a single photon: Methods and applications

    International Nuclear Information System (INIS)

    Lin Qing; He Bing; Bergou, Janos A.; Ren, Yuhang

    2009-01-01

    Multiphoton states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multiphoton state in the form of multiple single-photon qubit products can be mapped to a single-photon qudit, which could also be in a separable product with other photons. This makes possible the manipulation of such multiphoton states by processing single-photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inverse transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multicontrol gates (including Toffoli gate) operating directly on the products of single-photon qubits.

  8. High performance printed oxide field-effect transistors processed using photonic curing

    Science.gov (United States)

    Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho

    2018-06-01

    Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

  9. Determining the quark charges by one and two photon processes

    International Nuclear Information System (INIS)

    Janah, A.

    1982-01-01

    Testable predictions are presented, which may be used to decide between the gauge theories of integer and fractionally charged quarks (icq and fcq). Two distinctive features of icq are exploited, namely (a) presence of color non-singlet components in weak and electromagnetic currents and (b) possible liberation of color non-singlet states above a threshold energy. Consequences are sought in lepton-hadron interaction processes, taking into account the known color-suppression effect. Single photon/weak-boson processes such as nuN → nuX distinguish between icq and fcq only above color-threshold. Experimental consequences of color-liberation in the above process are obtained. It is found that the gluon-parton contribution survives color-suppression to produce a significant rise in the structure functions when color-threshold is exceeded. Two-photon processes such as e + e - → e + e - + 2 jets distinguish between the two theories even below color threshold. To obtain the icq predictions for this process, one must take into account (a) the (momentum-dependent) color suppression and (b) the added contribution from pair production of charged gluons

  10. Two photon processes in surface photovoltage spectroscopy

    International Nuclear Information System (INIS)

    Craig, R.P.; Thurgate, S.M.

    1996-01-01

    Full text: A significant mid-gap effect has been found in Surface Photovoltage Spectroscopy measurements of cleaved GaAs, InP and Si wafer which is normally interpreted as arising from transitions between surface states and band edges. This large mid-gap effect common to various materials is puzzling as such a high proportion of mid-gap states seems unlikely. Most theories of surface states predict states that tail from the band edges into the gap or states that have a well defined energy in the gap. None propose a large state exactly at E G /2. We recently investigated the variation in SPS spectra with flux density. We find a non-linear correlation in the magnitude of Band-Bending arising from mid-gap and band-gap photon energies. We suggest that the mid-gap feature is due to a two photon absorption process leading to carrier pair generation mediated by mid-gap states in the continuum of band-gap surface states

  11. On-chip photonic microsystem for optical signal processing based on silicon and silicon nitride platforms

    Science.gov (United States)

    Li, Yu; Li, Jiachen; Yu, Hongchen; Yu, Hai; Chen, Hongwei; Yang, Sigang; Chen, Minghua

    2018-04-01

    The explosive growth of data centers, cloud computing and various smart devices is limited by the current state of microelectronics, both in terms of speed and heat generation. Benefiting from the large bandwidth, promising low power consumption and passive calculation capability, experts believe that the integrated photonics-based signal processing and transmission technologies can break the bottleneck of microelectronics technology. In recent years, integrated photonics has become increasingly reliable and access to the advanced fabrication process has been offered by various foundries. In this paper, we review our recent works on the integrated optical signal processing system. We study three different kinds of on-chip signal processors and use these devices to build microsystems for the fields of microwave photonics, optical communications and spectrum sensing. The microwave photonics front receiver was demonstrated with a signal processing range of a full-band (L-band to W-band). A fully integrated microwave photonics transceiver without the on-chip laser was realized on silicon photonics covering the signal frequency of up 10 GHz. An all-optical orthogonal frequency division multiplexing (OFDM) de-multiplier was also demonstrated and used for an OFDM communication system with the rate of 64 Gbps. Finally, we show our work on the monolithic integrated spectrometer with a high resolution of about 20 pm at the central wavelength of 1550 nm. These proposed on-chip signal processing systems potential applications in the fields of radar, 5G wireless communication, wearable devices and optical access networks.

  12. Processing Challenges and Opportunities of Camel Dairy Products

    DEFF Research Database (Denmark)

    Berhe, Tesfemariam; Seifu, Eyassu; Ipsen, Richard

    2017-01-01

    A review on the challenges and opportunities of processing camel milk into dairy products is provided with an objective of exploring the challenges of processing and assessing the opportunities for developing functional products from camel milk. The gross composition of camel milk is similar...... to bovine milk. Nonetheless, the relative composition, distribution, and the molecular structure of the milk components are reported to be different. Consequently, manufacturing of camel dairy products such as cheese, yoghurt, or butter using the same technology as for dairy products from bovine milk can...... result in processing difficulties and products of inferior quality. However, scientific evidence points to the possibility of transforming camel milk into products by optimization of the processing parameters. Additionally, camel milk has traditionally been used for its medicinal values and recent...

  13. Study the multi-photon absorption process in two types of molecules

    International Nuclear Information System (INIS)

    Al-azawi, H.R.

    1986-01-01

    The aim of the present work was to study the multi-photon absorption process in two types of molecules; spherical top such as SF 6 molecules and assymetric top such as CHOOH and C 2 H 4 molecules. This work also aimed to study the effect of buffer gas pressure (Ar), which is transparent to the infrared (IR) laser on the multiphoton absorption of both types of molecules. A pulsed (TEA) CO 2 laser was used as a source which generates multi-lines in the IR-region of the spectrum and an optoacoustic detector was used to detect the energy absorbed by the molecules. In this study, the relaxation process was found to be faster in the heavy molecules than that in the light ones. A limit in the Ar pressure was observed. Below this limit, the gas acted as an active buffer gas and above it, the multi-photon absorption process was quenched. This work also aimed to study the multi-photon absorption spectrum for the CHOOH molecules in the range (1067-1090 cm -1 ). This spectrum was found to be consistent with the linear absorption spectrum obtained for the same range. The density of the vibrational states as a function of the vibrational energy was studied for the molecules SF 6 , CHOOH and C 2 H 4 . The results were used to interpret (i) the difference in the energy absorbed by difference molecules at the same energy density and (ii) the non-linearity in the multi-photon absorption for CHOOH molecules. 1 tab.; 40 figs.; 70 refs

  14. Vector meson dominance and pointlike coupling of the photon in soft and hard processes

    International Nuclear Information System (INIS)

    Paul, E.

    1990-05-01

    Recent experimental results on photoproduction of hadrons probe the nature of the interacting photon over a wide kinematical range from soft to hard processes. Single inclusive spectra and energy flows of the final state charged particles are well described by assuming that photon production data are built up by an incoherent superposition of a soft Vector-Meson-Dominance component and a hard pointlike photon component. (orig.)

  15. Photon-Photon Collisions -- Past and Future

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy γγ and eγ tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy γγ collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider

  16. Investigation of deep inelastic scattering processes involving large p$_{t}$ direct photons in the final state

    CERN Multimedia

    2002-01-01

    This experiment will investigate various aspects of photon-parton scattering and will be performed in the H2 beam of the SPS North Area with high intensity hadron beams up to 350 GeV/c. \\\\\\\\ a) The directly produced photon yield in deep inelastic hadron-hadron collisions. Large p$_{t}$ direct photons from hadronic interactions are presumably a result of a simple annihilation process of quarks and antiquarks or of a QCD-Compton process. The relative contribution of the two processes can be studied by using various incident beam projectiles $\\pi^{+}, \\pi^{-}, p$ and in the future $\\bar{p}$. \\\\\\\\b) The correlations between directly produced photons and their accompanying hadronic jets. We will examine events with a large p$_{t}$ direct photon for away-side jets. If jets are recognised their properties will be investigated. Differences between a gluon and a quark jet may become observable by comparing reactions where valence quark annihilations (away-side jet originates from a gluon) dominate over the QDC-Compton...

  17. Two-photon processes of π0, η, η', ηc and ηb

    International Nuclear Information System (INIS)

    Klabucar, D.

    1997-01-01

    Two-photon processes of π 0 , η, η', η c and η b are studied in the consistently coupled Schwinger-Dyson (SD) and Bethe-Salpeter (BS) approach, where dynamical chiral symmetry breaking (DχSB) is obtained through the SD equation for the quark propagator which is then used in the BS equation. It is shown that the coupled SD-BS approach is similarly successful in the description of two-photon processes of pseudoscalar mesons over a wide range of masses. (K.A.)

  18. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  19. Optics and photonics education centers of excellence: an opportunity for international collaboration

    Science.gov (United States)

    Hull, Daniel M.

    2015-10-01

    The increased demand for highly educated and trained workers in optics and photonics is evident in many countries. Colleges and universities that provide this education can benefit greatly from support by non-profit National Education Centers of Excellence that conduct research in workforce needs, design curricula, develop industry-validated teaching materials, train new faculty and establish models for laser/optics laboratories. In 2006, the National Science Foundation (NSF) established OP-TEC, the National Center for Optics and Photonics Education, which encourages and supports U.S. colleges to educate and train an adequate supply of high quality technicians to meet the workforce demand by companies, institutions and government agencies. In 2013 and 2014 NSF awarded grants to establish regional photonics centers in the southeast U.S. (LASER-TEC) and the Midwest (MPEC). These Centers work cooperatively with OP-TEC, sharing resources, teaching materials and best practices for colleges with photonics technician education programs. This successful "center organization plan" that has evolved could be adopted in other countries, and international cooperation could be established between similar Centers of Education in Photonics education.

  20. Low-energy photon-neutrino inelastic processes beyond the Standard Model

    CERN Document Server

    Abada, A.; Pittau, R.

    1999-01-01

    We investigate in this work the leading contributions of the MSSM with R-parity violation and of Left-Right models to the low-energy five-leg photon-neutrino processes. We discuss the results and compare them to the Standard Model ones.

  1. Self-collimation in photonic crystals. Applications and opportunities

    International Nuclear Information System (INIS)

    Noori, Mina; Soroosh, Mohammad; Baghban, Hamed

    2018-01-01

    A comprehensive review considering recent advances in self-collimation and its applications in optical integration is covered in the current article. Self-collimation is compared to the conventional technique of photonic bandgap engineering to control the light propagation in photonic crystal-based structures. It is fully discussed how the self-collimation phenomenon can be tailored to be independent of the incident angle and polarization. This adds substantial flexibility to the structure to overcome light coupling challenges and simultaneously aids in the omission of bulk and challenging elements, including polarizers and lenses from optical integrated circuits. Additionally, designed structures have the potential to be rescaled to operate in any desired frequency range thanks to the scalability rule in the field of electromagnetics. Moreover, it is shown that one can boost the coupling efficiency by applying an anti-reflection property to the structure, which provides not only efficient index matching but also the matching between external waves with uniform amplitude and Bloch waves with periodic amplitude. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Photon-photon collisions, and other processes without annihilation, in e{sup -} e{sup ±} storage rings; Collisions photon-photon, et autres processus sans annihilation dans les anneaux de stockage e{sup -} e{sup ±}

    Energy Technology Data Exchange (ETDEWEB)

    Parisi, Joseph Robert

    1974-02-19

    Chapter 1: The author here presents the historical development of the idea of photon-photon collisions in electron-positron (or electron-electron) storage rings. He shows in particular the considerations which guided the work of the College de France group since this work was started in 1969. A brief review is given of the various developments of the field in the last four years. The fundamental problem of the 'tagging' of the outgoing electrons is mentioned. Chapter 2: We study the conditions which allow the rejection of the background provided by the 'heavy photon Bremsstrahlung' diagram of the same order in Q E D as the photon-photon collision diagram. We show that this background is totally negligible in the case of 'double tagging' (both electrons detected near 0 deg.). In the case of 'single tagging' (one electron detected at large angle and the other one near 0 deg.), it appears that the background can become dangerous already at moderately large values of θ when resonant enhancements (ρ, φ, ρ''') are present. Also in the case of 'no tagging' or 'tagging through absence' (i. e. checking, in e{sup +} e{sup -} collisions, that the electrons are not scattered at large angle), it is essentially near the resonant enhancements that the background becomes about as large or larger than the γγ collision term. Various means of reducing it or eliminating it even in those cases are discussed. Chapter 3: We here consider some general features of photon-photon collision processes, in the case of double tagging; dependence on θ{sub max} (maximal tagging angle of both electrons); dependence on the beam energy; angular distributions of the particles A{sup ±} produced. We then introduce realistic experimental conditions, in particular two cutoff parameters: a minimal emission angle ψ{sub min} for the particles produced, and a minimal relative energy loss χ{sub min} for the outgoing electrons. The effect of these parameters on the invariant mass spectrum of the pair

  3. Hadronic cross-sections in two photon processes at a future linear collider

    International Nuclear Information System (INIS)

    Godbole, Rohini M.; Roeck, Albert de; Grau, Agnes; Pancheri, Giulia

    2003-01-01

    In this note we address the issue of measurability of the hadronic cross-sections at a future photon collider as well as for the two-photon processes at a future high energy linear e + e - collider. We extend, to higher energy, our previous estimates of the accuracy with which the γ γ cross-section needs to be measured, in order to distinguish between different theoretical models of energy dependence of the total cross-sections. We show that the necessary precision to discriminate among these models is indeed possible at future linear colliders in the Photon Collider option. Further we note that even in the e + e - option a measurement of the hadron production cross-section via γ γ processes, with an accuracy necessary to allow discrimination between different theoretical models, should be possible. We also comment briefly on the implications of these predictions for hadronic backgrounds at the future TeV energy e + e - collider CLIC. (author)

  4. Induction linear accelerators for commercial photon irradiation processing

    International Nuclear Information System (INIS)

    Matthews, S.M.

    1989-01-01

    A number of proposed irradiation processes requires bulk rather than surface exposure with intense applications of ionizing radiation. Typical examples are irradiation of food packaged into pallet size containers, processing of sewer sludge for recycling as landfill and fertilizer, sterilization of prepackaged medical disposals, treatment of municipal water supplies for pathogen reduction, etc. Volumetric processing of dense, bulky products with ionizing radiation requires high energy photon sources because electrons are not penetrating enough to provide uniform bulk dose deposition in thick, dense samples. Induction Linear Accelerator (ILA) technology developed at the Lawrence Livermore National Laboratory promises to play a key role in providing solutions to this problem. This is discussed in this paper

  5. Time evolution of absorption process in nonlinear metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Hatef, Ali [Department of Physics and Astronomy, University of Western Ontario, London (Canada)

    2009-05-15

    The time evolution of the absorption coefficient in metallic photonic crystals has been studied numerically. These crystals are made from metallic spheres which are arranged periodically in air. The refractive index of the metallic spheres depends on the plasma frequency. Probe and pump fields are applied to monitor the absorption process. Ensembles of three-level particles are embedded in the crystal. Nanoparticles are interacting with the metallic crystals via the electron-photon interaction. It is found that when the resonance states lie away from the band edges system goes to transparent state. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  7. Two-photon physics

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes

  8. Photon correlation in single-photon frequency upconversion.

    Science.gov (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  9. SIGNAL PROCESSING UTILIZING RADIO FREQUENCY PHOTONICS

    Science.gov (United States)

    2017-09-07

    has many advantages over these electronic counterparts. The ability to cover larger bandwidths, immunity to electromagnetic interference, low weight...is unlimited. 4.1 RF Photonics Sampling with Electronic ADCs Figure 7 shows a photonic sampling scheme. The amplitude of the pulses from a laser are...modified by the RF signal to be sampled. The pulses are time demultiplexed and passed to multiple ADCs. The hybrid configuration combines parallel

  10. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    International Nuclear Information System (INIS)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg

    2010-01-01

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  11. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg [eds.

    2010-01-15

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  12. Photons, photon jets and dark photons at 750 GeV and beyond

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Kopp, Joachim

    2016-03-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to ''photon jets''. For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance S → γγ can be mimicked by a process of the form pp → S → aa → 4γ, where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an e + e - pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to S → A'A' → e + e - e + e - , where there are no photons at all but the dark photon A' decays to e + e - pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  13. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted...

  14. Quantum photonic networks in diamond

    KAUST Repository

    Lončar, Marko; Faraon, Andrei

    2013-01-01

    Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has

  15. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  16. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  17. Photon structure and the production of jets, hadrons, and prompt photons

    International Nuclear Information System (INIS)

    Klasen, M.

    1999-01-01

    We give a pedagogical introduction to hard photoproduction processes at HERA, including the production of jets, hadrons, and prompt photons. Recent theoretical developments in the three areas are reviewed. In summary, hard photoproduction processes can provide very useful information on the hadronic structure of the photon, in particular on the gluon density, which is complimentary to the information coming from deep inelastic photon-photon scattering at electron-positron colliders. Among the different hadronic final states, jets are most easily accessible experimentally and phenomenologically. On the other hand, inclusive hadron production offers the possibility to test the universality of hadron fragmentation functions and measure the photon structure down to very low values of p T and x γ . Prompt photon production suffers from a reduced cross section and limited data, but allows for the additional testing of photon fragmentation functions

  18. Photons, photon jets, and dark photons at 750 GeV and beyond.

    Science.gov (United States)

    Dasgupta, Basudeb; Kopp, Joachim; Schwaller, Pedro

    2016-01-01

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to "photon jets". For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance [Formula: see text] can be mimicked by a process of the form [Formula: see text], where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an [Formula: see text] pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to [Formula: see text], where there are no photons at all but the dark photon [Formula: see text] decays to [Formula: see text] pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  19. PREFACE: I International Scientific School Methods of Digital Image Processing in Optics and Photonics

    Science.gov (United States)

    Gurov, I. P.; Kozlov, S. A.

    2014-09-01

    The first international scientific school "Methods of Digital Image Processing in Optics and Photonics" was held with a view to develop cooperation between world-class experts, young scientists, students and post-graduate students, and to exchange information on the current status and directions of research in the field of digital image processing in optics and photonics. The International Scientific School was managed by: Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University) - Saint Petersburg (Russia) Chernyshevsky Saratov State University - Saratov (Russia) National research nuclear University "MEPHI" (NRNU MEPhI) - Moscow (Russia) The school was held with the participation of the local chapters of Optical Society of America (OSA), the Society of Photo-Optical Instrumentation Engineers (SPIE) and IEEE Photonics Society. Further details, including topics, committees and conference photos are available in the PDF

  20. Processing Challenges and Opportunities of Camel Dairy Products

    Directory of Open Access Journals (Sweden)

    Tesfemariam Berhe

    2017-01-01

    Full Text Available A review on the challenges and opportunities of processing camel milk into dairy products is provided with an objective of exploring the challenges of processing and assessing the opportunities for developing functional products from camel milk. The gross composition of camel milk is similar to bovine milk. Nonetheless, the relative composition, distribution, and the molecular structure of the milk components are reported to be different. Consequently, manufacturing of camel dairy products such as cheese, yoghurt, or butter using the same technology as for dairy products from bovine milk can result in processing difficulties and products of inferior quality. However, scientific evidence points to the possibility of transforming camel milk into products by optimization of the processing parameters. Additionally, camel milk has traditionally been used for its medicinal values and recent scientific studies confirm that it is a rich source of bioactive, antimicrobial, and antioxidant substances. The current literature concerning product design and functional potential of camel milk is fragmented in terms of time, place, and depth of the research. Therefore, it is essential to understand the fundamental features of camel milk and initiate detailed multidisciplinary research to fully explore and utilize its functional and technological properties.

  1. Embedded RF Photonic Crystals as Routing and Processing Devices in Naval Aperstructures

    National Research Council Canada - National Science Library

    Prather, Dennis W

    2008-01-01

    .... To address these issues, we utilize advanced artificial materials - photonic crystals (PhCs) and meta-material - to construct a sensing head with minaturized antennas as RF receivers and embedded signal channelization for pre-processing...

  2. The entanglement of two moving atoms interacting with a single-mode field via a three-photon process

    International Nuclear Information System (INIS)

    Chao, Wu; Mao-Fa, Fang

    2010-01-01

    In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average photon number N, the number p of half-wave lengths of the field mode and the atomic initial state. Also, the sudden death and the sudden birth of the entanglement are detected in this model and the results show that the existence of the sudden death and the sudden birth depends on the parameter and the category of the mode field. In addition, the three-photon process is a higher order nonlinear process. (general)

  3. Study of two photon production process in proton-proton collisions at 216 MeV

    International Nuclear Information System (INIS)

    Khrykin, A.S.

    2002-01-01

    The energy spectrum for high energy γ-rays (Eγ ≥ 10 MeV) from the process pp → γγX emitted at 90 deg. in the laboratory frame has been measured at 216 MeV. The resulting photon energy spectrum extracted from γ - γ coincidence events consists of a narrow peak (5.3σ) at a photon energy of about 24 MeV and a relatively broad peak (3.5σ) in the energy range of (50 - 70) MeV. This behavior of the photon energy spectrum is interpreted as a signature of the exotic dibaryon resonance d 1 * with a mass of about 1956 MeV which is assumed to be formed in the radiative process pp → γd 1 * followed by its electromagnetic decay via the d 1 * → ppγ mode. The experimental spectrum is compared with those obtained by means of Monte Carlo simulations

  4. Graviton production by two photon and electron-photon processes in Kaluza-Klein theories with large extra dimensions

    International Nuclear Information System (INIS)

    Atwood, David; Bar-Shalom, Shaouly; Soni, Amarjit

    2000-01-01

    We consider the production of gravitons via two photon and electron-photon fusion in Kaluza-Klein theories which allow TeV scale gravitational interactions. We show that at electron-positron colliders, the processes l + l - →l + l - +graviton, with l=e, μ, can lead to a new signal of low energy gravity of the form l + l - →l + l - +missing energy which is well above the standard model background. For example, with two extra dimensions, at the Next Linear Collider with a center of mass energy of 500 or 1000 GeV, hundreds to thousands such l + l - +graviton events may be produced if the scale of the gravitational interactions, M D , is around a few TeV. At a gamma-electron collider, more stringent bounds may be placed on M D via the related reaction e - γ→e - G. For instance, if a 1 TeV e + e - collider is converted to an electron-photon collider, a bound of ∼10(14) TeV may be placed on the scale M D if the number of extra dimensions δ=2, while a bound of ∼4(5) TeV may be placed if δ=4, with unpolarized (right polarized) electron beams. (c) 2000 The American Physical Society

  5. Recent developments in the theory of photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1984-09-01

    Over the past few years the field of photon-photon collisions has emerged as one of the best testing grounds for QCD, particularly in the area of exclusive and inclusive hard scattering processes, exotic resonance production, and detailed tests of the coupling of real and virtual photons to the quark current. In this summary of contributed papers, I will briefly review recent theoretical progress in the analysis of two-photon reactions and possible directions for future work. 29 references

  6. Photonic Architecture for Scalable Quantum Information Processing in Diamond

    Directory of Open Access Journals (Sweden)

    Kae Nemoto

    2014-08-01

    Full Text Available Physics and information are intimately connected, and the ultimate information processing devices will be those that harness the principles of quantum mechanics. Many physical systems have been identified as candidates for quantum information processing, but none of them are immune from errors. The challenge remains to find a path from the experiments of today to a reliable and scalable quantum computer. Here, we develop an architecture based on a simple module comprising an optical cavity containing a single negatively charged nitrogen vacancy center in diamond. Modules are connected by photons propagating in a fiber-optical network and collectively used to generate a topological cluster state, a robust substrate for quantum information processing. In principle, all processes in the architecture can be deterministic, but current limitations lead to processes that are probabilistic but heralded. We find that the architecture enables large-scale quantum information processing with existing technology.

  7. EQUAL EMPLOYMENT OPPORTUNITIES IN THE RECRUITMENT AND SELECTION PROCESS OF HUMAN RESOURCES

    Directory of Open Access Journals (Sweden)

    Aleksandra Stoilkovska

    2015-12-01

    Full Text Available The aim of this article is to examine the problem of the concept of equal employment opportunities in the HR recruitment and selection process. Due to the fact that in these processes, both the HR managers and the applicants are involved, this research is conducted separately among them. Thus, it will be determined if both sides share the same opinion with respect to the existence of this concept in the mentioned processes. Providing equal employment opportunities is crucial for any company and represents a key for selecting the real employees. Therefore, the research includes the existence of prejudices in the recruitment and selection process such as discrimination based on national and social origin, gender and sexual orientation, age, political affiliation etc. As an essential part of this concept, the legislation in the Republic of Macedonia and its impact in the process of generating equal opportunities will be considered.

  8. Parallel photonic information processing at gigabyte per second data rates using transient states

    Science.gov (United States)

    Brunner, Daniel; Soriano, Miguel C.; Mirasso, Claudio R.; Fischer, Ingo

    2013-01-01

    The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.

  9. FY 1999 report on the results of the research and development project for the photon-aided instrumentation and processing technologies. R and D of the photon-aided instrumentation and processing technologies; 1999 nendo photon keisoku kako gijutsu seika hokokusho. Photon keisoku kako gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 1999 results of development of the photon-aided instrumentation and processing technologies. The photon technologies will be widely applicable to various industrial areas, e.g., medical, diagnostic, communication, transmission and chemical areas, in addition to instrumentation and processing, and the FY 1999 project is directed to the survey and analysis of the information, and prediction of their effects. The high-sensitivity light-receiving elements enlarged up to 5mm diameter (effective area) are developed, based on the technologies to grow the thin films using an MOVPE (metal-organic vapor-phase epitaxy) device and the results of development of the infrared ray-receiving InGaAs photodiode sensitive in a 2.5 to 2.7{mu}m wavelength range. The surface roughness of 0.4nmRMS is achieved by the bowl feed liquid polishing method, to develop the processing technologies for high-precision substrates for optical mirrors. The results are used to develop the prototype X-ray mirrors with surface accuracy of {lambda}/10 to {lambda}/20 and roughness of 0.3 to 0.5nmRMS. In the development of the technologies for the light sources which can sufficiently supply photons for exciting semiconductor lasers, the technologies are developed to efficiently converge the laser beams. Also developed are the apparatus which can converge the beams to a diameter of around 0.6mm, and the apparatus which uses optical fibers to evaluate the beam diameter. (NEDO)

  10. Regional Photonics Initiative at the College of Lake County

    Science.gov (United States)

    Dulmes, Steven; Kellerhals, William

    2017-01-01

    The College of Lake County Regional Photonics Initiative project was motivated in part by the hiring of out-of-state technicians for local Photonics industry positions. Fifteen high paying employment opportunities during the recent recession could not be filled from the locally available workforce. Research on the current demand and future growth…

  11. Mobility as Progressivity: Ranking Income Processes According to Equality of Opportunity

    OpenAIRE

    Roland Benabou; Efe A. Ok

    2001-01-01

    Interest in economic mobility stems largely from its perceived role as an equalizer of opportunities, though not necessarily of outcomes. In this paper we show that this view leads very naturally to a methodology for the measurement of social mobility which has strong parallels with the theory of progressive taxation. We characterize opportunity--equalizing mobility processes, and provide simple criteria to determine when one process is more equalizing than another. We then explain how this m...

  12. Present and future applications of analogue microwave photonics

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2009-01-01

    Photonics may be even more suited for analog than for digital signal applications. Today, microwave photonics techniques are currently used in radio-over-fibre signal transmission and other commercial applications, but recent advances are widening the scope of application to new areas. The speakers...... will introduce present and emerging opportunities for analog photonics, among which microwave filters, arbitrary optical waveform control, THz radiation and UWB pulse generation. A panel discussion will contrast different views from company, academy and funding bodies, to identify the most promising ones...

  13. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    The generation of photonic ultra-wideband (UWB) impulse signals using an uncooled distributed-feedback laser is proposed. For the first time, we experimentally demonstrate bit-for-bit digital signal processing (DSP) bit-error-rate measurements for transmission of a 781.25-Mb/s photonic UWB signal...

  14. Guide to resource conservation and cost savings opportunities in the dairy processing sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This guide identifies and promotes opportunities for conserving energy and water, as well as reducing waste, in the dairy processing sector. The guide begins with an introduction and a profile of Ontario`s dairy processing sector, outlining the context for resource conservation and cost savings opportunities. It then outlines the rationale and the generic processes selected for careful examination of resource conservation and cost savings opportunities. Subsequent chapters describe the energy, water, and material resources commonly used in relation to the generic processes; the air, water, and solid waste residuals commonly derived from those processes; and new technologies with potential application in dairy processing. The generic processes covered in the guide are for fluid milk, cheese, ice cream and frozen products, cultured products such as yogurt, butter, and dried or evaporated products. The report ends with additional useful information for dairy processors.

  15. DNA-templated photonic arrays and assemblies: design principles and future opportunities.

    Science.gov (United States)

    Su, Wu; Bonnard, Vanessa; Burley, Glenn A

    2011-07-11

    Molecular photonics is a rapidly developing and multi-disciplinary field of research involving the construction of molecular assemblies comprising photoactive building blocks that are responsive to a light stimulus. A salient challenge in this field is the controlled assembly of these building blocks with nanoscale precision. DNA exhibits considerable promise as an architecture for the templated assembly of photoactive materials. In this Concept Article we describe the progress that has been made in the area of DNA photonics, in which DNA acts as a platform for the construction of optoelectronic assemblies, thin films and devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tests of perturbative quantum chromodynamics in photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1979-01-01

    The production of hadrons in the collision of two photons via the process e + e - → e + e - X can provide an ideal laboratory for testing many of the features of the photon's hadronic interactions, especially its short-distance aspects. That part of two-photon physics which is particularly relevant to tests of perturbative QCD is reviewed here. 6 figures

  17. Hadron production in photon-photon processes at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Sasikumar, Kollassery Swathi [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Universitaet Hamburg, Institut fuer Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg (Germany); Berggren, Carl Mikael; List, Jenny [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany)

    2016-07-01

    The International linear Collider (ILC) is a proposed e{sup +}e{sup -} collider, designed to operate at energies from 91 GeV upto about 500 GeV (with the possibility to upgrade to 1 TeV). The highly clean conditions provided by the ILC enables us to make high precision measurements e.g. of the Higgs boson and to search for new particles. In addition to the desired e{sup +}e{sup -} collisions, parasitic collisions of real and virtual photons radiated off the e{sup ±} beams occur at rates of a few γγ collisions per bunch crossing. The γγ centre of mass energies reach from few 100 MeV up to the full e{sup +}e{sup -} centre of mass energy. For all these energies, in particular the production of hadrons,needs to be modelled correctly in order to estimate the impact of these backgrounds which pile-up on each e{sup +}e{sup -} event. This contribution discusses the current simulations of γγ → hadron processes, evaluates their impact on the detector and introduces new methods to remove them from the interesting physics events.

  18. Thrust distribution of two-jet like events at a photon-photon collider

    International Nuclear Information System (INIS)

    Kanakubo, Fumiko

    1995-01-01

    One of the advantages of using a photon-photon collision with the same helicity is that the continuum qq-bar production is suppressed at the lowest order (α s 0 ). However, the helicity suppression does not take place for the gluon radiation process, and qq-barg can be two-jet like. We evaluate the cross sections of the two-jet like events in a photon-photon collision, and present the thrust distributions. We take into account the QCD effect to all orders in α s in the leading-double-log approximation, and show the suppression due to this effect. The evaluation with the energy and the polarization distributions of the photon suggests that the contaminating photons with the opposite helicity contribute dominantly to the two-jet like process. (author)

  19. Mid-infrared integrated photonics on silicon: a perspective

    Directory of Open Access Journals (Sweden)

    Lin Hongtao

    2017-12-01

    Full Text Available The emergence of silicon photonics over the past two decades has established silicon as a preferred substrate platform for photonic integration. While most silicon-based photonic components have so far been realized in the near-infrared (near-IR telecommunication bands, the mid-infrared (mid-IR, 2–20-μm wavelength band presents a significant growth opportunity for integrated photonics. In this review, we offer our perspective on the burgeoning field of mid-IR integrated photonics on silicon. A comprehensive survey on the state-of-the-art of key photonic devices such as waveguides, light sources, modulators, and detectors is presented. Furthermore, on-chip spectroscopic chemical sensing is quantitatively analyzed as an example of mid-IR photonic system integration based on these basic building blocks, and the constituent component choices are discussed and contrasted in the context of system performance and integration technologies.

  20. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance.

    Science.gov (United States)

    Poplová, Michaela; Sovka, Pavel; Cifra, Michal

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.

  1. Scalable quantum information processing with photons and atoms

    Science.gov (United States)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  2. Signal processing: opportunities for superconductive circuits

    International Nuclear Information System (INIS)

    Ralston, R.W.

    1985-01-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers

  3. Progress in neuromorphic photonics

    Science.gov (United States)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  4. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    Science.gov (United States)

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Blockchains for Business Process Management - Challenges and Opportunities

    OpenAIRE

    Mendling, Jan; Weber, Ingo; van der Aalst, Wil; Brocke, Jan vom; Cabanillas, Cristina; Daniel, Florian; Debois, Soren; Di Ciccio, Claudio; Dumas, Marlon; Dustdar, Schahram; Gal, Avigdor; Garcia-Banuelos, Luciano; Governatori, Guido; Hull, Richard; La Rosa, Marcello

    2017-01-01

    Blockchain technology offers a sizable promise to rethink the way inter-organizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof, in this paper we outline the challenges and opportunities of blockchain for Business Process Management (BPM). We first reflect how blockchains could be used in the context of the established BPM l...

  6. Direct and indirect two-photon processes in semiconductors

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1986-07-01

    The expressions describing direct and indirect two-photon absorption in crystals are given. They are valid both near and far from the energy gap. A perturbative approach through two different band models is adopted. The effects of the non-parabolicity and the degeneracy of the energy bands are considered. The numerical results are compared with the other theories and with a recent experimental data in Zn and AgCl. It is shown that the dominant transition mechanisms are of the allowed-allowed type near and far from the gap for both direct and indirect processes. (author)

  7. Food Processing and Marketing: New Directions...New Opportunities.

    Science.gov (United States)

    Welch, Mary A., Ed.

    1995-01-01

    This issue uses tomato processing to illustrate the new directions and opportunities available in the food market. Comparative advantage and economies of scale are discussed in relation to markets. Forecasting success in the market is attributed to studying consumer consumption trends by type and monitoring standards of living in 32 newly…

  8. Coupling the photon kinetics of soft photons with high energy photons

    Science.gov (United States)

    Silva, L. O.; Bingham, R.

    2017-10-01

    The description of electromagnetic fields based on the generalized photon kinetic theory, which takes advantage of the Wigner-Moyal description for the corresponding classical field theory, is capable of capturing collective plasma dynamics in the relativistic regime driven by broadband incoherent or partially coherent sources. We explore the possibility to extend this description to include the dynamics of hard photons in the plasma, whose interaction is dominated by single scattering processes. Examples of the modification of classical plasma instabilities due to the presence of hard photons is discussed. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  9. Restricted conformal invariance in QCD and its predictive power for virtual two-photon processes

    CERN Document Server

    Müller, D

    1998-01-01

    The conformal algebra provides powerful constraints, which guarantee that renormalized conformally covariant operators exist in the hypothetical conformal limit of the theory, where the $\\beta$-function vanishes. Thus, in this limit also the conformally covariant operator product expansion on the light cone holds true. This operator product expansion has predictive power for two-photon processes in the generalized Bjorken region. Only the Wilson coefficients and the anomalous dimensions that are known from deep inelastic scattering are required for the prediction of all other two-photon processes in terms of the process-dependent off-diagonal expectation values of conformal operators. It is checked that the next-to-leading order calculations for the flavour non-singlet meson transition form factors are consistent with the corrections to the corresponding Wilson coefficients in deep inelasitic scattering.

  10. Color management: printing processes - opportunities and limitations

    Science.gov (United States)

    Ingram, Samuel T.

    2002-06-01

    Digital tools have impacted traditional methods employed to reproduce color images during the past decade. The shift from a purely photomechanical process in color reproduction to colorimetric reproduction offers tremendous opportunity in the graphic arts industry. But good things do not necessarily come to all in the same package. Printing processes possess different reproduction attributes: tone reproduction, gray balance and color correction requirements are as different as the ingredient sets selected for color reproduction. This paper will provide insight toward understanding advantages and limitations offered by the new digital technologies in printing, publishing and packaging. For the past five years the Clemson University Graphic Communications Department has conducted numerous color projects using the new digital colorimetric tools during the previous decade. Several approaches have been used including experimental research and typical production workflows. The use of colorimetric data in color reproduction has given an opportunity to realize real gains in color use, predictability and consistency. Meeting an image's separation and reproduction requirements for a specified printing process can involve disruption of the anticipated workflow. Understanding the printing process requirements and the fit within the specifications of a colorimetric workflow are critical to the successful adoption of a color managed workflow. The paper will also provide an insight into the issues and challenges experienced with a color managed workflow. The printing processes used include offset litho, narrow and wide-web flexography (paper, liner board, corrugated and film), screen printing (paper board and polycarbonates), and digital imaging with toner, ink and inkjet systems. A proposal for technology integration will be the focus of the presentation drawn from documented experiences in over 300 applications of color management tools. Discussion will include the structure of

  11. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  12. FY 1998 achievement report on the photon measuring/processing technology (R and D of the photon measuring/processing technology); 1998 nendo foton keisoku kako gijutsu seika hokokusho. Foton keisoku kako gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In this project, the survey/arrangement were made of the trend of the recent technology such as photon (laser) measuring/processing/generation and a possibility of adopting the photon technology to the field except measuring/processing, to clarify technical subjects for establishing/commercializing the photon technology. Also for the purpose of reducing the energy cost by improving the performance of laser processing device, prolonging the life and reducing the operational cost, the development of the following were carried out: (1) high efficiency laser processing device. (2) high conversion efficiency laser diode. In (1), a laser generating device with Yb:YAG crystal as oscillating medium was trially manufactured, and the power of 35W and optical-optical conversion efficiency of 7.1% were obtained. A comparison was also made between Yb:YAG laser and Nd:YAG laser, and made it clear that as the industrial use high power laser, Nd:YAG laser has the advantage over the other. In (2), the development was made of technology for simultaneous uniform growth of more than one LD crystal wafers with high conversion efficiency and technology for evaluation. Namely, the high uniformity crystal wafer with variations among wafers of {+-}4% was obtained using the introduced high efficiency crystal growth device and high efficiency thin film evaluation device. (NEDO)

  13. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  14. Study of prompt photon and neutral pion production in photon-photon scattering with the OPAL experiment

    CERN Document Server

    Lillich, Joachim

    2003-01-01

    For the first time at LEP the production of prompt photons is studied in the collisions of quasi-real photons using the OPAL data taken at e+e- centre-of mass energies between 183 GeV and 209 GeV. The total inclusive production cross-section for isolated prompt photons in the kinematic range of transverse momentum > 3.0 GeV and the absolut value of pseudorapidity <1 is determined to be (0.32 +- 0.04 (stat) +- 0.04 (sys)) pb. Differential cross-sections are compared to the predictions of a next-to-leading-order (NLO) calculation. In the second part of this thesis inclusive differential neutral pion cross-sections in photon photon collisons are measured. This measurement is an important test of QCD. In addition this process is the main background for prompt photons.

  15. New design for photonic temporal integration with combined high processing speed and long operation time window.

    Science.gov (United States)

    Asghari, Mohammad H; Park, Yongwoo; Azaña, José

    2011-01-17

    We propose and experimentally prove a novel design for implementing photonic temporal integrators simultaneously offering a high processing bandwidth and a long operation time window, namely a large time-bandwidth product. The proposed scheme is based on concatenating in series a time-limited ultrafast photonic temporal integrator, e.g. implemented using a fiber Bragg grating (FBG), with a discrete-time (bandwidth limited) optical integrator, e.g. implemented using an optical resonant cavity. This design combines the advantages of these two previously demonstrated photonic integrator solutions, providing a processing speed as high as that of the time-limited ultrafast integrator and an operation time window fixed by the discrete-time integrator. Proof-of-concept experiments are reported using a uniform fiber Bragg grating (as the original time-limited integrator) connected in series with a bulk-optics coherent interferometers' system (as a passive 4-points discrete-time photonic temporal integrator). Using this setup, we demonstrate accurate temporal integration of complex-field optical signals with time-features as fast as ~6 ps, only limited by the processing bandwidth of the FBG integrator, over time durations as long as ~200 ps, which represents a 4-fold improvement over the operation time window (~50 ps) of the original FBG integrator.

  16. Open innovation at the Abbe School of Photonics

    Science.gov (United States)

    Helgert, Christian; Geiss, Reinhard; Nolte, Stefan; Eilenberger, Falk; Zakoth, David; Mauroner, Oliver; Pertsch, Thomas

    2017-08-01

    The Abbe School of Photonics (ASP) provides and coordinates the optics and photonics education of graduate and doctoral students at the Friedrich Schiller University in Jena, Germany. The internationalized Master's degree program is the key activity in training students in the optical sciences. The program is designed to provide them with the skills necessary to fill challenging positions in industry and academia. Here, an essential factor is ASP's close collaboration with more than 20 German photonics companies. To sustain these partners' future economic development, the availability of highly qualified employees is constantly required. Accordingly, these industrial partners, the European Union, the local state and the federal German government are strongly involved in the sustainable development of ASP's curriculum by both conceptual and financial engagements. The main goal is to promote the students' academic careers and job experience in the photonics industry as well as in academia. To open up the program to students from all over the world, all ASP lectures and courses are taught in English. ASP's qualification strategy is fully research-oriented and based on the principles of academic freedom, competitive research conditions and internationalization at all levels. The education program is complemented by a structured doctoral student support and a prestigious guest professorship program. Recently, ASP and partners have started a project to build an open photonics laboratory in order to foster innovative and co-creative processes. The idea follows well-established open innovation schemes e.g. in electronics. This Photon Garage (German: "Lichtwerkstatt") will bring together professionals and interested laymen from different backgrounds to approach pertinent challenges in photonics. Here, we will share our latest insights into the potentials and opportunities offered by this novel educative approach.

  17. Two-dimensional topological photonic systems

    Science.gov (United States)

    Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng

    2017-09-01

    The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.

  18. Design and demonstration of a multitechnology FPGA for photonic information processing

    Science.gov (United States)

    Mal, Prosenjit; Hawk, Chris; Toshniwal, Kavita; Beyette, Fred R., Jr.

    2003-11-01

    We present here a novel architecture for a multi-technology field programmabler gate array (MT-FPGA). Implemented with a conventional CMOS VLSI technology the architecture is suitable for prototyping photonic information processing systems. We report here that this new FPGA architecture will enable the design of reconfigurable systems that incorporate technologies outside the traditional electronic domain.

  19. Photon management in two-dimensional disordered media.

    Science.gov (United States)

    Vynck, Kevin; Burresi, Matteo; Riboli, Francesco; Wiersma, Diederik S

    2012-12-01

    Elaborating reliable and versatile strategies for efficient light coupling between free space and thin films is of crucial importance for new technologies in energy efficiency. Nanostructured materials have opened unprecedented opportunities for light management, notably in thin-film solar cells. Efficient coherent light trapping has been accomplished through the careful design of plasmonic nanoparticles and gratings, resonant dielectric particles and photonic crystals. Alternative approaches have used randomly textured surfaces as strong light diffusers to benefit from their broadband and wide-angle properties. Here, we propose a new strategy for photon management in thin films that combines both advantages of an efficient trapping due to coherent optical effects and broadband/wide-angle properties due to disorder. Our approach consists of the excitation of electromagnetic modes formed by multiple light scattering and wave interference in two-dimensional random media. We show, by numerical calculations, that the spectral and angular responses of thin films containing disordered photonic patterns are intimately related to the in-plane light transport process and can be tuned through structural correlations. Our findings, which are applicable to all waves, are particularly suited for improving the absorption efficiency of thin-film solar cells and can provide a new approach for high-extraction-efficiency light-emitting diodes.

  20. On the validity of the equivalent-photon approximation for virtual photon-photon collisions

    International Nuclear Information System (INIS)

    Carimalo, C.; Kessler, P.; Parisi, J.

    1979-05-01

    For virtual photon-photon collisions in electron storage rings, one derive the equivalent-photon approximation from a helicity treatment, and present it in two forms, involving respectively (i) polarized transverse photons ('transverse-photon approximation') and (ii) unpolarized ones ('Williams-Weizsaecker approximation'). One first postulates the conditions of validity of the approximation on the basis of analytic considerations, and then check them numerically in the case of the process e e → e e μ + μ - . For this check, we consider the completely differentiated cross section as far as approximation (i) is concerned; and in the case of approximation (ii), the cross section differentiated with respect to all variables except the azimuthal angles. The results are given in the form of Tables showing the lower and higher limit of the error involved in the approximation for a large variety of kinematic configurations (i. e., energy losses and scattering angles of both electrons). Those Tables are discussed in detail, and conclusions are drawn as to the applicability of the equivalent-photon approximation to future experiments to be performed with high-energy electron storage rings

  1. Multi-photon creation and single-photon annihilation of electron-positron pairs

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Huayu

    2011-04-27

    In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)

  2. Multi-photon creation and single-photon annihilation of electron-positron pairs

    International Nuclear Information System (INIS)

    Hu, Huayu

    2011-01-01

    In this thesis we study multi-photon e + e - pair production in a trident process, and singlephoton e + e - pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e + e - pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e + e - plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e + e - dynamics at very high density. (orig.)

  3. Consistency check of photon beam physical data after recommissioning process

    International Nuclear Information System (INIS)

    Kadman, B; Chawapun, N; Ua-apisitwong, S; Asakit, T; Chumpu, N; Rueansri, J

    2016-01-01

    In radiotherapy, medical linear accelerator (Linac) is the key system used for radiation treatments delivery. Although, recommissioning was recommended after major modification of the machine by AAPM TG53, but it might not be practical in radiotherapy center with heavy workloads. The main purpose of this study was to compare photon beam physical data between initial commissioning and recommissioning of 6 MV Elekta Precise linac. The parameters for comparing were the percentage depth dose (PDD) and beam profiles. The clinical commissioning test cases followed IAEA-TECDOC-1583 were planned on REF 91230 IMRT Dose Verification Phantom by Philips’ Pinnacle treatment planning system. The Delta 4PT was used for dose distribution verification with 90% passing criteria of the gamma index (3%/3mm). Our results revealed that the PDDs and beam profiles agreed within a tolerance limit recommended by TRS430. Most of the point doses and dose distribution verification passed the acceptance criteria. This study showed the consistency of photon beam physical data after recommissioning process. There was a good agreement between initial commissioning and recommissioning within a tolerance limit, demonstrated that the full recommissioning process might not be required. However, in the complex treatment planning geometry, the initial data should be applied with great caution. (paper)

  4. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    Science.gov (United States)

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  5. Analysis of InP-based single photon avalanche diodes based on a single recess-etching process

    Science.gov (United States)

    Lee, Kiwon

    2018-04-01

    Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.

  6. Multiple photon resonances

    International Nuclear Information System (INIS)

    Elliott, C.J.; Feldman, B.J.

    1979-02-01

    A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures

  7. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions.

    Science.gov (United States)

    Jha, Abhinav K; Barrett, Harrison H; Frey, Eric C; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A

    2015-09-21

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and

  8. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions

    Science.gov (United States)

    Jha, Abhinav K.; Barrett, Harrison H.; Frey, Eric C.; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A.

    2015-09-01

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and

  9. Measurement of exclusive two-photon processes with dilepton final states in pp collisions at the LHC

    CERN Document Server

    Forthomme, Laurent

    The unification of the electromagnetic and weak forces is a cornerstone of the standard theory of elementary particles and fundamental interactions. At the Large Hadron Collider the processes of pair production via fusion of two exchanged photons provide a unique laboratory both for testing the standard theory and for search of new phenomena in high-energy physics. In this thesis such a two-photon exclusive pair production in pp collisions has been studied experimentally, at two centre of mass energies using the data collected with the CMS experiment during LHC's Run-1. Thanks to large, effective photon fluxes and the outstanding performance of the CMS apparatus clean two-photon signal samples could be extracted. The novel track-based exclusivity selection was instrumental for making successful measurements in an extremely demanding LHC environment. In particular, the "reference" two-photon production of lepton pairs has been measured and investigated in detail, including extended phenomenological studies. A ...

  10. Development of a Monte Carlo software to photon transportation in voxel structures using graphic processing units

    International Nuclear Information System (INIS)

    Bellezzo, Murillo

    2014-01-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo Method (MCM) has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this thesis, the CUBMC code is presented, a GPU-based MC photon transport algorithm for dose calculation under the Compute Unified Device Architecture (CUDA) platform. The simulation of physical events is based on the algorithm used in PENELOPE, and the cross section table used is the one generated by the MATERIAL routine, also present in PENELOPE code. Photons are transported in voxel-based geometries with different compositions. There are two distinct approaches used for transport simulation. The rst of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon ignores the existence of borders and travels in homogeneous fictitious media. The CUBMC code aims to be an alternative of Monte Carlo simulator code that, by using the capability of parallel processing of graphics processing units (GPU), provide high performance simulations in low cost compact machines, and thus can be applied in clinical cases and incorporated in treatment planning systems for radiotherapy. (author)

  11. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Rishøj, Lars Søgaard; Steffensen, Henrik

    2007-01-01

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner–Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy...... residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light–matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving...

  12. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  13. Interferometry of hard photons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ostendorf, R.W.

    1993-10-01

    Heavy ion collisions offer the unique opportunity to study interference effects between independent hard photons (energies above 25 MeV). The theoretical basis of interference is presented in the framework of classical as well as quantum theory. Experiments use the photon spectrometer TAPS, a modular array of BaF 2 crystals covering 30% of the solid angle. The properties of the spectrometer and the data analysis techniques are described for the experiment 129 Xe + 197 Au at 44 MeV/u, the very first dedicated to the study of photon correlation function. Data are interpreted using GEANT3 simulations to analyse the effect of the method as well as the response function of the photon spectrometer. A second experiment, 86 Kr + 58 Ni at 60 MeV/u is described briefly, where for the first time the existence of an interference effect between hard photons is observed. 52 figs., 76 refs

  14. Experiments on quantum frequency conversion of photons

    International Nuclear Information System (INIS)

    Ramelow, S.

    2011-01-01

    Coherently converting photons between different states offers intriguing new possibilities and applications in quantum optical experiments. In this thesis three experiments on this theme are presented. The first experiment demonstrates the quantum frequency conversion of polarization entangled photons. Coherent frequency conversion of single photons offers an elegant solution for the often difficult trade-off of choosing the optimal photon wavelength, e.g. regarding optimal transmission and storage of photons in quantum memory based quantum networks. In our experiments, we verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully characterised our close to unity fidelity entanglement transfer using quantum state- and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum technologies.The second part of the thesis introduces a deterministic scheme for photonic quantum information processing. While single photons offer many advantages for quantum information technologies, key unresolved challenges are scalable on-demand single photon sources; deterministic two-photon interactions; and near 100%-efficient detection. All these can be solved with a single versatile process - a novel four-wave mixing process that we introduce here as a special case of the more general scheme of coherent photon conversion (CPC). It can provide valuable photonic quantum processing tools, from scalably creating single- and multi-photon states to implementing deterministic entangling gates and high-efficiency detection. Notably, this would enable scalable photonic quantum computing. Using photonic crystal fibres, we experimentally demonstrate a nonlinear process suited for coherent photon conversion. We observe correlated photon-pair production at the predicted wavelengths and experimentally characterise the enhancement of the interaction strength by varying the pump

  15. Photonic integration and photonics-electronics convergence on silicon platform

    CERN Document Server

    Liu, Jifeng; Baba, Toshihiko; Vivien, Laurent; Xu, Dan-Xia

    2015-01-01

    Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference de...

  16. Three new bachelors of photonics in Ontario

    Science.gov (United States)

    Nantel, Marc; Beda, Johann; Grevatt, Treena; Chebbi, Brahim; Jessop, Paul; Song, Shaowen

    2004-10-01

    After the introduction in 2001 of community college programs at the Photonics Technician/Technologist levels, the need to cover the photonics educational space at the undergraduate level was addressed. In the last year, three very different new undergraduate degrees in photonics have started to develop in Ontario. These programs are presented in this paper. The Honours B.Sc. in Photonics at Wilfrid Laurier University (Waterloo) will develop a strong understanding of the theory and application of photonics, with practical hands-on exposure to optics, fibre optics, and lasers. This program benefits from the particularity that the department offering it combines both Physics and Computer Science. At McMaster University, the Engineering Physics program will provide students with a broad background in basic Engineering, Mathematics, Electronics, and Semiconductors, as well as an opportunity to pursue Photonics in greater depth and to have that fact recognized in the program designation. The Niagara and Algonquin College Bachelor of Applied Technology in Photonics program is co-op and joint between the two institutions. Emphasis is placed on the applied aspects of the field, with the more hands-on experimental learning taking precedence in the first years and the more advanced theoretical subjects following in the latter years.

  17. Integrated Microwave Photonics

    OpenAIRE

    Marpaung, David; Roeloffzen, Chris; Heideman, René; Leinse, Arne; Sales Maicas, Salvador; Capmany Francoy, José

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the r...

  18. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits.

    Science.gov (United States)

    Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo

    2017-12-01

    One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe 2 , a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  19. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits

    Science.gov (United States)

    Bie, Ya-Qing; Grosso, Gabriele; Heuck, Mikkel; Furchi, Marco M.; Cao, Yuan; Zheng, Jiabao; Bunandar, Darius; Navarro-Moratalla, Efren; Zhou, Lin; Efetov, Dmitri K.; Taniguchi, Takashi; Watanabe, Kenji; Kong, Jing; Englund, Dirk; Jarillo-Herrero, Pablo

    2017-12-01

    One of the current challenges in photonics is developing high-speed, power-efficient, chip-integrated optical communications devices to address the interconnects bottleneck in high-speed computing systems. Silicon photonics has emerged as a leading architecture, in part because of the promise that many components, such as waveguides, couplers, interferometers and modulators, could be directly integrated on silicon-based processors. However, light sources and photodetectors present ongoing challenges. Common approaches for light sources include one or few off-chip or wafer-bonded lasers based on III-V materials, but recent system architecture studies show advantages for the use of many directly modulated light sources positioned at the transmitter location. The most advanced photodetectors in the silicon photonic process are based on germanium, but this requires additional germanium growth, which increases the system cost. The emerging two-dimensional transition-metal dichalcogenides (TMDs) offer a path for optical interconnect components that can be integrated with silicon photonics and complementary metal-oxide-semiconductors (CMOS) processing by back-end-of-the-line steps. Here, we demonstrate a silicon waveguide-integrated light source and photodetector based on a p-n junction of bilayer MoTe2, a TMD semiconductor with an infrared bandgap. This state-of-the-art fabrication technology provides new opportunities for integrated optoelectronic systems.

  20. The Role of External Knowledge Sources and Organizational Design in the Process of Opportunity Exploitation

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Lyngsie, Jacob; A. Zahra, Shaker

    involving 536 Danish firms shows that the use of external knowledge sources is positively associated with opportunity exploitation, but the strength of this association is significantly influenced by organizational designs that enable the firm to access external knowledge during the process of exploiting......Research highlights the role of external knowledge sources in the recognition of strategic opportunities, but is less forthcoming with respect to the role of such sources during the process of exploiting or realizing opportunities. We build on the knowledge-based view to propose that realizing...... opportunities often involves significant interactions with external knowledge sources. Organizational design can facilitate a firm’s interactions with these sources, while achieving coordination among organizational members engaged in opportunity exploitation. Our analysis of a double-respondent survey...

  1. The Role of External Knowledge Sources and Organizational Design in the Process of Opportunity Exploitation

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Lyngsie, Jacob; Zahra, Shaker A.

    2013-01-01

    involving 536 Danish firms shows that the use of external knowledge sources is positively associated with opportunity exploitation, but the strength of this association is significantly influenced by organizational designs that enable the firm to access external knowledge during the process of exploiting......Research highlights the role of external knowledge sources in the recognition of strategic opportunities but is less forthcoming with respect to the role of such sources during the process of exploiting or realizing opportunities. We build on the knowledge-based view to propose that realizing...... opportunities often involves significant interactions with external knowledge sources. Organizational design can facilitate a firm's interactions with these sources, while achieving coordination among organizational members engaged in opportunity exploitation. Our analysis of a double-respondent survey...

  2. Measurements of Pair Production Under Channelling Conditions by 70-180 GeV Photons Incident on Single Crystals

    CERN Multimedia

    2002-01-01

    This experiment will use the WA69 set-up to deliver a tagged photon beam in the energy range from 15~GeV to 150~GeV with a total angular spread of about @M~0.5~mrad. The incident photon direction is known to about 35~@mrad through the direction of the emitting electron. The photon beam is incident on an about 1~mm thick Ge single crystal in order to investigate pair production in single crystals. Above a certain energy threshold photons incident along crystal axis will show strongly increased pair production yi - the so-called .us Channelling Pair Production (ChPP). The produced pairs are analyzed in the @W-spectrometer. The large spread in incident photon angles offers an excellent opportunity to investigate in one single experiment the pair production in an angular region around a crystal axes and thereby compare ChPP with coherent (CPP) and incoherent (ICPP) processes. The very abrupt onset of ChPP (around threshold) will be measured and give a crucial test of the theoretical calculations. The differential...

  3. Measurement of the linear polarization of the photons in the elementary processes of bremsstrahlung production

    International Nuclear Information System (INIS)

    Bleier, W.

    1983-01-01

    The polarization of the photons in the elementary processes of the electron-nucleus and electron-electron bremsstrahlung was measured. Electrons with an energy of 300 keV were scattered by copper, gold and carbon target. The polarization in the different processes was measured by using different coincidence methods. (BEF)

  4. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  5. Generation of photon number states

    International Nuclear Information System (INIS)

    Waks, Edo; Diamanti, Eleni; Yamamoto, Yoshihisa

    2006-01-01

    The visible light photon counter (VLPC) has the capability to discriminate photon number states, in contrast to conventional photon counters which can only detect the presence or absence of photons. We use this capability, along with the process of parametric down-conversion, to generate photon number states. We experimentally demonstrate generation of states containing 1, 2, 3 and 4 photons with high fidelity. We then explore the effect the detection efficiency of the VLPC has on the generation rate and fidelity of the created states

  6. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  7. Photonic sensor opportunities for distributed and wireless systems in security applications

    Science.gov (United States)

    Krohn, David

    2006-10-01

    There are broad ranges of homeland security sensing applications that can be facilitated by distributed fiber optic sensors and photonics integrated wireless systems. These applications include [1]: Pipeline, (Monitoring, Security); Smart structures (Bridges, Tunnels, Dams, Public spaces); Power lines (Monitoring, Security); Transportation security; Chemical/biological detection; Wide area surveillance - perimeter; and Port Security (Underwater surveillance, Cargo container). Many vital assets which cover wide areas, such as pipeline and borders, are under constant threat of being attacked or breached. There is a rapidly emerging need to be able to provide identification of intrusion threats to such vital assets. Similar problems exit for monitoring the basic infrastructure such as water supply, power utilities, communications systems as well as transportation. There is a need to develop a coordinated and integrated solution for the detection of threats. From a sensor standpoint, consideration must not be limited to detection, but how does detection lead to intervention and deterrence. Fiber optic sensor technology must be compatible with other surveillance technologies such as wireless mote technology to facilitate integration. In addition, the multi-functionality of fiber optic sensors must be expanded to include bio-chemical detection. There have been a number of barriers for the acceptance and broad use of smart fiber optic sensors. Compared to telecommunications, the volume is low. This fact coupled with proprietary and custom specifications has kept the price of fiber optic sensors high. There is a general lack of a manufacturing infrastructure and lack of standards for packaging and reliability. Also, there are several competing technologies; some photonic based and other approaches based on conventional non-photonic technologies.

  8. Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.; Wolff-Rottke, B.; Rottke, H.; Welge, K.H.; Feldmann, D.

    1992-01-01

    Theoretical and experimental studies show the strong influence of the three-photon nearly resonant 2p state on four- and five-photon ionization of atomic hydrogen near the threshold for four-photon ionization. Changes in five-photon ionization occur when the four-photon ionization channel opens. The angular distributions of photoelectrons from five-photon ionization of H are studied at five wavelengths which cover the range from four-photon resonance with high-lying Rydberg states (n≥10) to direct four-photon ionization into the continuum. The role of resonances in this ionization process is discussed. A fair agreement is found in comparing experimental and theoretical results

  9. Blockchains for Business Process Management - Challenges and Opportunities

    DEFF Research Database (Denmark)

    Mendling, Jan; Weber, Ingo; Van Der Aalst, Wil

    2018-01-01

    Blockchain technology offers a sizable promise to rethink the way inter-organizational business processes are managed because of its potential to realize execution without a central party serving as a single point of trust (and failure). To stimulate research on this promise and the limits thereof......, in this paper we outline the challenges and opportunities of blockchain for Business Process Management (BPM). We first reflect how blockchains could be used in the context of the established BPM lifecycle and second how they might become relevant beyond. We conclude our discourse with a summary of seven...... research directions for investigating the application of blockchain technology in the context of BPM...

  10. The role of virtual photons in nanoscale photonics

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, David L.; Bradshaw, David S. [School of Chemistry, University of East Anglia, Norwich (United Kingdom)

    2014-04-15

    The fundamental theory of processes and properties associated with nanoscale photonics should properly account for the quantum nature of both the matter and the radiation field. A familiar example is the Casimir force, whose significant role in nanoelectromechanical systems is widely recognised; the correct representation invokes the creation of short-lived virtual photons from the vacuum. In fact, there is an extensive range of nanophotonic interactions in which virtual photon exchange plays a vital role, mediating the coupling between particles. This review surveys recent theory and applications, also exhibiting novel insights into key electrodynamic mechanisms. Examples are numerous and include: laser-induced inter-particle forces known as optical binding; non-parametric frequency-conversion processes especially in rare-earth doped materials; light-harvesting polymer materials that involve electronic energy transfer between their constituent chromophores. An assessment of these and the latest prospective applications concludes with a view on future directions of research. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Construction of Nanowire Heterojunctions: Photonic Function-Oriented Nanoarchitectonics.

    Science.gov (United States)

    Li, Yong Jun; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2016-02-10

    Nanophotonics has received broad research interest because it may provide an alternative opportunity to overcome the fundamental limitations of electronic circuits. So far, diverse photonic functions, such as light generation, modulation, and detection, have been realized based on various nano-materials. The exact structural features of these material systems, including geometric characteristics, surface morphology, and material composition, play a key role in determining the photonic functions. Therefore, rational designs and constructions of materials on both morphological and componential levels, namely nanoarchitectonics, are indispensable for any photonic device with specific functionalities. Recently, a series of nanowire heterojunctions (NWHJs), which are usually made from two or more kinds of material compositions, were constructed for novel photonic applications based on various interactions between different materials at the junctions, for instance, energy transfer, exciton-plasmon coupling, or photon-plasmon coupling. A summary of these works is necessary to get a more comprehensive understanding of the relationship between photonic functions and architectonics of NWHJs, which will be instructive for designing novel photonic devices towards integrated circuits. Here, photonic function oriented nanoarchitectonics based on recent breakthroughs in nanophotonic devices are discussed, with emphasis on the design mechanisms, fabrication strategies, and excellent performances. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  13. Optical beam induced current measurements based on two-photon absorption process in 4H-SiC bipolar diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, H.; Raynaud, C.; Bevilacqua, P.; Tournier, D.; Planson, D. [Ampère Laboratory - UMR 5005, 21, Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Vergne, B. [Franco-Allemand Institute of Saint-Louis ISL, 5, Rue du Général Cassagnou, 68300 Saint-Louis (France)

    2014-02-24

    Using a pulsed green laser with a wavelength of 532 nm, a duration pulse of ∼1 ns, and a mean power varying between 1 and 100 mW, induced photocurrents have been measured in 4H-SiC bipolar diodes. Considering the photon energy (2.33 eV) and the bandgap of 4H-SiC (3.2 eV), the generation of electron-hole pair by the conventional single photon absorption process should be negligible. The intensity of the measured photocurrents depends quadratically on the power beam intensity. This clearly shows that they are generated using two-photon absorption process. As in conventional OBIC (Optical Beam Induced Current), the measurements give an image of the electric field distribution in the structure under test, and the minority carrier lifetime can be extracted from the decrease of the photocurrent at the edge of the structure. The extracted minority carrier lifetime of 210 ns is consistent with results obtained in case of single photon absorption.

  14. Optical beam induced current measurements based on two-photon absorption process in 4H-SiC bipolar diodes

    International Nuclear Information System (INIS)

    Hamad, H.; Raynaud, C.; Bevilacqua, P.; Tournier, D.; Planson, D.; Vergne, B.

    2014-01-01

    Using a pulsed green laser with a wavelength of 532 nm, a duration pulse of ∼1 ns, and a mean power varying between 1 and 100 mW, induced photocurrents have been measured in 4H-SiC bipolar diodes. Considering the photon energy (2.33 eV) and the bandgap of 4H-SiC (3.2 eV), the generation of electron-hole pair by the conventional single photon absorption process should be negligible. The intensity of the measured photocurrents depends quadratically on the power beam intensity. This clearly shows that they are generated using two-photon absorption process. As in conventional OBIC (Optical Beam Induced Current), the measurements give an image of the electric field distribution in the structure under test, and the minority carrier lifetime can be extracted from the decrease of the photocurrent at the edge of the structure. The extracted minority carrier lifetime of 210 ns is consistent with results obtained in case of single photon absorption

  15. Photonic jet μ-etching: from static to dynamic process

    Science.gov (United States)

    Abdurrochman, A.; Lecler, S.; Zelgowski, J.; Mermet, F.; Fontaine, J.; Tumbelaka, B. Y.

    2017-05-01

    Photonic jet etching is a direct-laser etching method applying photonic jet phenomenon to concentrate the laser beam onto the proceeded material. We call photonic jet the phenomenon of the localized sub-wavelength propagative beam generated at the shadow-side surfaces of micro-scale dielectric cylinders or spheres, when they are illuminated by an electromagnetic plane-wave or laser beam. This concentration has made possible the laser to yield sub-μ etching marks, despite the laser was a near-infrared with nano-second pulses sources. We will present these achievements from the beginning when some spherical glasses were used for static etching to dynamic etching using an optical fiber with a semi-elliptical tip.

  16. Challenges and opportunities for plasma processing of materials

    International Nuclear Information System (INIS)

    McKenzie, D.R.

    1999-01-01

    Full text: Plasma processing of materials is in many ways at a turning point in its development. On the one hand, there are new opportunities arising from the environmental concerns associated with conventional materials processing methods such as electroplating. On the other hand, there are challenges associated with the large capital cost of plant and the demonstration that the new techniques can deliver the quality and quantity required in the market place. An example of such a challenge is file replacement of electroplated chromium by sputtered alternatives in the solar absorber coatings industry. Cathodic arc based processes also offer opportunities for advanced materials processing to displace electroplating. The use of cathodic arcs to coat gold look-alike finishes for architectural applications is well advanced. The challenges for other coatings are essentially dependent on the quality of the adhesion. The combination of the cathodic arc with Plasma Immersion Ion implantation (PI 3 ) technology gives significant improvements in film adhesion. The energy of the incident ions from the cathodic arc may be readily increased to 20 KeV or so without serious difficulties. We have been carrying out trials of a PI 3 type power supply developed by ANSTO, coupled to a continuous type cathodic arc fitted with a magnetic sector filter. The power supply provides short pulses with an adjustable repetition rate and duty cycle. The pulses provide bursts of energetic ions which can be used for assisting the deposition of coatings or for implantation without coating, depending on the location and orientation of the substrate. The results for film adhesion are promising on a number of substrates. The adhesion of metal films on polyimide substrates for example is definitely improved. The modification of polymers to improve their scratch resistance is becoming an important opportunity for plasma processing. Polymers have some valuable properties such as strength to weight ratio

  17. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    Science.gov (United States)

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  18. Microwave photonics processing controlling the speed of light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Sales, Salvador

    2009-01-01

    We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like optoelect......We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like...

  19. Temperature-modified photonic bandgap in colloidal photonic crystals fabricated by vinyl functionalized silica spheres

    International Nuclear Information System (INIS)

    Deng Tiansong; Zhang Junyan; Zhu Kongtao; Zhang Qifeng; Wu Jinlei

    2011-01-01

    Graphical abstract: A thermal annealing procedure was described for fine modifying the photonic bandgap properties of colloidal photonic crystals, which were self-assembled from vinyl-functionalized silica spheres by a gravity sedimentation process. Highlights: → We described a thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals. → The position of its stop band had more than 25% blue shift by annealing the sample from 60 to 600 deg. C. → The annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. → The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals. - Abstract: A thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals was described. The colloidal photonic crystals were assembled from monodisperse vinyl functionalized silica spheres by a gravity sedimentation process. The samples diffract light following Bragg's law combined with Snell's law. By annealing the sample at temperatures in the range of 60-600 deg. C, the position of its stop band shifted from 943 to 706 nm. It had more than 25% blue shift. In addition, the annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. Fourier transform infrared (FT-IR) spectra and thermo-gravimetric analysis (TGA) curves of vinyl functionalized silica spheres confirmed the above results. The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals.

  20. Complementary metal-oxide semiconductor compatible source of single photons at near-visible wavelengths

    Science.gov (United States)

    Cernansky, Robert; Martini, Francesco; Politi, Alberto

    2018-02-01

    We demonstrate on chip generation of correlated pairs of photons in the near-visible spectrum using a CMOS compatible PECVD Silicon Nitride photonic device. Photons are generated via spontaneous four wave mixing enhanced by a ring resonator with high quality Q-factor of 320,000 resulting in a generation rate of 950,000 $\\frac{pairs}{mW}$. The high brightness of this source offers the opportunity to expand photonic quantum technologies over a broad wavelength range and provides a path to develop fully integrated quantum chips working at room temperature.

  1. Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    DEFF Research Database (Denmark)

    Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst

    2018-01-01

    Access to the electron spin is at the heart of many protocols for integrated and distributed quantum-information processing [1-4]. For instance, interfacing the spin-state of an electron and a photon can be utilized to perform quantum gates between photons [2,5] or to entangle remote spin states [6......-9]. Ultimately, a quantum network of entangled spins constitutes a new paradigm in quantum optics [1]. Towards this goal, an integrated spin-photon interface would be a major leap forward. Here we demonstrate an efficient and optically programmable interface between the spin of an electron in a quantum dot...... and photons in a nanophotonic waveguide. The spin can be deterministically prepared with a fidelity of 96\\%. Subsequently the system is used to implement a "single-spin photonic switch", where the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may...

  2. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    Science.gov (United States)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  3. National Photonics Skills Standard for Technicians.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This document defines "photonics" as the generation, manipulation, transport, detection, and use of light information and energy whose quantum unit is the photon. The range of applications of photonics extends from energy generation to detection to communication and information processing. Photonics is at the heart of today's…

  4. Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers

    International Nuclear Information System (INIS)

    Zebda, A.; Camberlein, L.; Beche, B.; Gaviot, E.; Beche, E.; Duval, D.; Zyss, J.; Jezequel, G.; Solal, F.; Godet, C.

    2008-01-01

    Polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators, made of disk- or ring-shaped upper rib waveguides, using common polymers such as SU8 (biphenol A ether glycidyl), PS233 (polymeric silane) and SOG (siloxane Spin on Glass). Both oxygen and argon plasma treatments, applied to PS233 and SOG before spin-coating the SU8, improve substantially the grip of multilayer devices (SU8 / PS233 or SU8 / SOG). Surface energy components derived from contact angle measurements have been used to optimize the processing conditions. In such integrated photonic devices, the both single-electromagnetic-modes called transverse electric (TE 00 ) and transverse magnetic (TM 00 ) have been excited in a SU8 micro-disk, with a single mode propagation strongly localized near the edge of the disk (i.e. the so called whispering gallery modes)

  5. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi-photon

  6. Measurement of exclusive $\\rho^{+}\\rho^{-}$ production in mid-virtuality two-photon interactions and study of the $\\gamma \\gamma^{*} \\to \\rho\\rho$ process at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2005-01-01

    Exclusive rho+rho- production in two-photon collisions between a quasi-real photon, gamma, and a mid-virtuality photon, gamma*, is studied with data collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* -> rho+ rho- process is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 0.2GeV^2 rho rho process over the Q^2-region 0.2GeV^2 < Q^2 < 30 GeV^2.

  7. Studies and comparisons of two photon-tagging systems for the production of monochromatic photon beams for photonuclear experiments

    International Nuclear Information System (INIS)

    Aniel, Thierry.

    1982-06-01

    The performance of photon beams obtained by two different tagging processes (tagging of ''hard'' annihilation photons with ''soft'' associated photons, tagging of bremstrahlung photons with associated electrons) on the same facility was studied. The two processes are described and experimental results on the characteristics of the resulting beams given. The respective advantages of both methods are compared with one another and with those of a quasi-monochromatic beam obtained by the in-flight annihilation of a positron beam. A development based on the second process is then studied together with its applications to photonuclear physics [fr

  8. Exclusive two-photon processes: Tests of QCD at the amplitude level

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1992-07-01

    Exclusive two-photon processes at large momentum transfer, particularly Compton scattering γp→γp and its crossed-channel reactions γγ→ bar pp and bar pp→γγ, can provide definitive information on the bound-state distributions of quarks in hadrons at the amplitude level. Recent theoretical work has shown that QCD predictions based on the factorization of long and short distance physics are already applicable at momentum transfers of order of a few GeV

  9. Prospects for forward photon measurements at LHC

    Directory of Open Access Journals (Sweden)

    van Leeuwen Marco

    2016-01-01

    Full Text Available We present the opportunities to experimentally probe the gluon density at small x in nuclei to explore non-linear gluon evolution, saturation and the physics of the Color Glass Condensate by measuring photon production at forward rapidity in proton-nucleus collisions at the LHC. Performance studies for π0 and direct photon measurements based on simulations of a Forward Calorimeter (FoCal, which is under consideration as an upgrade for the ALICE detector, are presented. Other aspects of the FoCal physics program for pp, p+Pb and Pb+Pb collisions are briefly discussed as well.

  10. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Experimental review of exclusive processes in two photon reactions

    International Nuclear Information System (INIS)

    Ronan, M.T.

    1986-07-01

    Recent experimental results on exclusive final stated produced in photon-photon interactions are reviewed. Comparisons between experiments and with perturbative QCD calculations are made for meson and baryon pair production. New results on vector meson pair (rho 0 rho 0 ,rho 0 omega,rho 0 phi,...) production and production of multiparticle (KKππ,K*Kπ,...) final states are summarized. 34 refs

  12. EDITORIAL: Photonica 2011: 3rd International School and Conference on Photonics Photonica 2011: 3rd International School and Conference on Photonics

    Science.gov (United States)

    Petrović, Jovana; Stepić, Milutin; Hadžievski, Ljupčo

    2012-04-01

    dedicated to Photonica 2011 held on 29 August-2 September 2011 in Belgrade, Serbia. The conference was attended by 144 participants from 27 countries who gave 132 oral and poster presentations and 24 lectures. The accompanying papers were peer reviewed and 82 were selected for publication. We take this opportunity to gratefully acknowledge the contribution of the reviewers to the quality of this issue. The papers are grouped in accordance with the conference topics, each section opening with an invited paper. The issue begins with papers dedicated to ultra-cold atomic systems that display coherent behaviour analogous to that of light. These well-controlled atomic systems are indispensible workhorses for experiments in quantum optics, which is the topic of the next section. Holography as a concept, measurement tool and technique for fabrication of periodic photonic structures is placed accordingly between fundamental and applied photonics. It is followed by reports on various photonic devices, their modelling and nonlinear phenomena. The progress in constructing these devices largely depends on artificial (composites, metamaterials) and natural optical materials and their processing. This Topical Issue is an original snapshot of the current research in photonics and by no means an extensive survey of the field. While the making of the former has been a challenging task, the compilation of the latter would be indomitable due to the rapid advances in and diversification of photonics research. In accordance with the aims of the conference itself, we hope that the results reported in this Topical Issue of Physica Scripta will serve to inform and to spark the imagination of scientists and engineers exploring or using the principles and products of photonics.

  13. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules.

    Science.gov (United States)

    Lee, Sang Seok; Kim, Bomi; Kim, Su Kyung; Won, Jong Chan; Kim, Yun Ho; Kim, Shin-Hyun

    2015-01-27

    Robust photonic microcapsules are created by microfluidic encapsulation of cholesteric liquid crystals with a hydrogel membrane. The membrane encloses the cholesteric core without leakage in water and the core exhibits pronounced structural colors. The photonic ink capsules, which have a precisely controlled bandgap position and size, provide new opportunities in colorimetric micro-thermometers and optoelectric applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photon-photon colliders

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  15. Single photons on demand

    International Nuclear Information System (INIS)

    Grangier, P.; Abram, I.

    2004-01-01

    Quantum cryptography and information processing are set to benefit from developments in novel light sources that can emit photons one by one. Quantum mechanics has gained a reputation for making counter-intuitive predictions. But we rarely get the chance to witness these effects directly because, being humans, we are simply too big. Take light, for example. The light sources that are familiar to us, such as those used in lighting and imaging or in CD and DVD players, are so huge that they emit billions and billions of photons. But what if there was a light source that emitted just one photon at a time? Over the past few years, new types of light source that are able to emit photons one by one have been emerging from laboratories around the world. Pulses of light composed of a single photon correspond to power flows in the femtowatt range - a million billion times less than that of a table lamp. The driving force behind the development of these single-photon sources is a range of novel applications that take advantage of the quantum nature of light. Quantum states of superposed and entangled photons could lead the way to guaranteed-secure communication, to information processing with unprecedented speed and efficiency, and to new schemes for quantum teleportation. (U.K.)

  16. Photonics: Technology project summary

    Science.gov (United States)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  17. Generation of a multi-photon Greenberger-Horne-Zeilinger state with linear optical elements and photon detectors

    International Nuclear Information System (INIS)

    Zou, X B; Pahlke, K; Mathis, W

    2005-01-01

    We present a scheme to generate a multi-photon Greenberger-Horne-Zeilinger (GHZ) state by using single-photon sources, linear optical elements and photon detectors. Such a maximum entanglement has wide applications in the demonstration of quantum nonlocality and quantum information processing

  18. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  19. Photonics in South Africa

    CSIR Research Space (South Africa)

    Bollig, C

    2007-12-01

    Full Text Available : photonics, ultrafast and ultra- intense laser science (Heinrich Schwoerer, University of Stellenbosch); quantum information processing and communication (Francesco Petruccione, University of KwaZulu-Natal); medicinal chemistry and nanotechnology... of experience in diamond research, where scientists are now turning their attention to diamond for photonic devices. �ere is an active community in South Africa studying the potential of diamond as a single-photon source for applications in quantum...

  20. Highly efficient photonic nanowire single-photon sources for quantum information applications

    DEFF Research Database (Denmark)

    Gregersen, Niels; Claudon, J.; Munsch, M.

    2013-01-01

    to a collection efficiency of only 1-2 %, and efficient light extraction thus poses a major challenge in SPS engineering. Initial efforts to improve the efficiency have exploited cavity quantum electrodynamics (cQED) to efficiently couple the emitted photons to the optical cavity mode. An alternative approach......Within the emerging field of optical quantum information processing, the current challenge is to construct the basic building blocks for the quantum computing and communication systems. A key component is the singlephoton source (SPS) capable of emitting single photons on demand. Ideally, the SPS...... must feature near-unity efficiency, where the efficiency is defined as the number of detected photons per trigger, the probability g(2)(τ=0) of multi-photon emission events should be 0 and the emitted photons are required to be indistinguishable. An optically or electrically triggered quantum light...

  1. Multi-photon processes brought about by a laser; Processus multiphotoniques provoques par un laser

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    We calculate the critical intensity characterizing the multiphoton processes. The multiphoton effects corresponding to the Compton scattering, the Bremsstrahlung, the photoelectric effect are investigated. The cross sections are evaluated. We show how the introduction of a refractive index, in clothing the photons, allows the elimination of the infrared divergence. The theory seems consistent with experiment. (author) [French] Nous calculons l'intensite critique caracterisant les processus multiphotoniques. Les effets multiphotoniques correspondant a la diffusion Compton, au bremsstrahlung, a l'effet photoelectrique sont etudies. Les sections efficaces sont evaluees. Nous montrons comment l'introduction d'un indice de refraction, en habillant les photons, permet d'eliminer les divergences infra-rouges. La theorie semble compatible avec l'experience. (auteur)

  2. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  3. Single-photon sources

    International Nuclear Information System (INIS)

    Lounis, Brahim; Orrit, Michel

    2005-01-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information

  4. J/Ψ-production of photon-photon colliders as a probe of the color octet mechanism

    International Nuclear Information System (INIS)

    Ma, J.P.; McKellar, B.H.J.; Paranavitane, C.B

    1997-01-01

    We study J/Ψ production at photon-photon colliders, which can be realised with Compton scattering of laser photons at e + e - colliders. We find that the production rate through the color-octet channel is comparable to that through the color-singlet channel. Experimentally the two mechanisms can be studied separately because the processes have different signals. (authors)

  5. Physics with photons at the ATLAS experiment

    CERN Document Server

    Pérez-Réale, V

    2008-01-01

    ATLAS is a general-purpose detector due to start operation next year at the Large Hadron Collider (LHC). The LHC will collide pairs of protons at a centre-of-mass energy of 14 TeV, with a bunch-crossing frequency of 40 MHz, and luminosities up to L = 10^34 cm^-2s^-1. The identification of photons is crucial for the study of a number of physics channels, including the search for a Higgs boson decaying to photon pairs, and measurements of direct production of single photons and photon pairs. Events containing true high-p_T photons must be selected with high efficiency, while rejecting the bulk of high-p_T jet events produced with enormously larger rate through QCD processes. The photon--photon and photon--jet channels are interesting in their own right, allowing the study of QCD at high energy. It is also essential to understand these proceses as the dominant background in the search for certain new physics processes, notably the production and decay of Higgs bosons to photon pairs. There are large uncertaintin...

  6. Photon cooperative effect in resonance spectroscopy

    International Nuclear Information System (INIS)

    Veklenko, B.A.

    1998-01-01

    A systematic method is proposed for calculating the density matrix of subsystems interacting with their environment under conditions of thermodynamic equilibrium. The density matrix of photons resonantly interacting with a surrounding gas is calculated. It is shown that use of the Gibbs distribution allows one to completely eliminate inelastic processes from the calculations. A correct account of photon-photon correlators indicates the presence of new cooperative effects. A new branch of the polariton spectrum is predicted, which is due to the presence of excited atoms in the medium. With the help of the density matrix the mean filling numbers of the photon modes are calculated. In terms of wavelengths, we have obtained a generalization of the Planck formula which accounts for photon cooperative phenomena. The manifestation of these effects in kinetic processes is discussed

  7. Quantum information processing with mesoscopic photonic states

    DEFF Research Database (Denmark)

    Madsen, Lars Skovgaard

    2012-01-01

    photon numbers and the states where one of Stokes parameters is highly excited. To describe the polarization of these state we introduce several new polarization measures which take into account the covariance of the polarization and resolve the polarization manifolds. We experimentally demonstrate...

  8. Formation of η' mesons in photon-photon collisions

    International Nuclear Information System (INIS)

    Uitert, B.K. van.

    1986-01-01

    This thesis describes an experiment performed at the positron electron storage ring PEP at the Stanford Linear Accelerator Center on the formation of the η' resonance which is observed in its decay mode ρ 0 γ, where the ρ decays into a π + π - pair. Some general features of the relatively new subject of photon-photon physics are introduced. The η' and the coupling of photons to the η' are discussed in the context of the quark model. It is shown how the mixing angle in the nonet of pseudoscalar mesons can be derived from ratios of γγ widths. The kinematics of the two-photon exchange process, the formation of the η' resonance by the two virtual photons and its subsequent electromagnetic decay into ρ 0 γ are discussed. The selected sample of events is used to determine the γγ width of the η' under the conventional assignment J P = 0 - for the η' and J P = 1 - for the ρ. The result is combined with measurements by other experiments to a world average, which is used to determine the mixing angle for the pseudoscalar nonet under various assumptions. The decay angular and energy distributions are investigated in detail. (Auth.)

  9. Time correlation in two-photon decay

    International Nuclear Information System (INIS)

    Hrasko, P.

    1979-11-01

    The relative time distribution of the photons emitted in a second order non-cascade process b→a+2γ is investigated under the assumption that only those photon pairs are detected which were emitted a sufficiently long time after the preparation of the decaying state. An anticorrelation between the photons is found and attributed to the propagation of one of the photons backward in time. (author)

  10. Photon-photon interactions

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1980-01-01

    A brief summary of the present status of photon-photon interactions is presented. Stress is placed on the use of two-photon collisions to test present ideas on the quark constituents of hadrons and on the theory of strong interactions

  11. Efficient quantum computing using coherent photon conversion.

    Science.gov (United States)

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting

  12. Dirac tensor with heavy photon

    Energy Technology Data Exchange (ETDEWEB)

    Bytev, V.V.; Kuraev, E.A. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Scherbakova, E.S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik

    2012-01-15

    For the large-angles hard photon emission by initial leptons in process of high energy annihilation of e{sup +}e{sup -} {yields} to hadrons the Dirac tensor is obtained, taking into account the lowest order radiative corrections. The case of large-angles emission of two hard photons by initial leptons is considered. This result is being completed by the kinematics case of collinear hard photons emission as well as soft virtual and real photons and can be used for construction of Monte-Carlo generators. (orig.)

  13. Photon statistics characterization of a single-photon source

    International Nuclear Information System (INIS)

    Alleaume, R; Treussart, F; Courty, J-M; Roch, J-F

    2004-01-01

    In a recent experiment, we reported the time-domain intensity noise measurement of a single-photon source relying on single-molecule fluorescence control. In this paper, we present data processing starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single-photon source is derived from ON↔OFF dynamics. Finally, source intensity noise analysis, using the Mandel parameter, is quantitatively compared with the usual approach relying on the time autocorrelation function, both methods yielding the same molecular dynamical parameters

  14. Quantum interface between an atom and a photon

    International Nuclear Information System (INIS)

    Wilk, Tatjana

    2008-02-01

    A single atom strongly coupled to a high-finesse optical cavity is a versatile tool for quantum information processing. Utilized as a single-photon source, it allows one to generate single photons very efficiently in a well de ned spatio-temporal mode. In a first experiment, polarization-control over the photons is shown. A time-resolved two-photon interference experiment proves the indistinguishability of these photons - required in various quantum information processing schemes. Moreover, in a second experiment, entanglement between the polarization of the emitted photon and the population of the atomic Zeeman levels is created. Subsequent state mapping of the atomic state onto another photon results in a pair of polarization-entangled photons emitted one after the other from the cavity. Although these schemes are in principle possible in free space, the cavity boosts the efficiency by several orders of magnitude. (orig.)

  15. Modular manufacturing processes : Status, challenges, and opportunities

    NARCIS (Netherlands)

    Baldea, Michael; Edgar, Thomas F.; Stanley, Bill L.; Kiss, Anton A.

    2017-01-01

    Chemical companies are constantly seeking new, high-margin growth opportunities, the majority of which lie in high-grade, specialty chemicals, rather than in the bulk sector. To realize these opportunities, manufacturers are increasingly considering decentralized, flexible production facilities:

  16. Post-processing with linear optics for improving the quality of single-photon sources

    International Nuclear Information System (INIS)

    Berry, Dominic W; Scheel, Stefan; Myers, Casey R; Sanders, Barry C; Knight, Peter L; Laflamme, Raymond

    2004-01-01

    Triggered single-photon sources produce the vacuum state with non-negligible probability, but produce a much smaller multiphoton component. It is therefore reasonable to approximate the output of these photon sources as a mixture of the vacuum and single-photon states. We show that it is impossible to increase the probability for a single photon using linear optics and photodetection on fewer than four modes. This impossibility is due to the incoherence of the inputs; if the inputs were pure-state superpositions, it would be possible to obtain a perfect single-photon output. In the more general case, a chain of beam splitters can be used to increase the probability for a single photon, but at the expense of adding an additional multiphoton component. This improvement is robust against detector inefficiencies, but is degraded by distinguishable photons, dark counts or multiphoton components in the input

  17. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  18. CONFERENCE: Photon-photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Despite being difficult to observe, photon-photon collisions have opened up a range of physics difficult, or even impossible, to access by other methods. The progress which has been made in this field was evident at the fifth international workshop on photon-photon collisions, held in Aachen from 13-16 April and attended by some 120 physicists

  19. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  20. Photonics for life.

    Science.gov (United States)

    Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco

    2011-01-01

    Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.

  1. Direct experimental observation of nonclassicality in ensembles of single-photon emitters

    Science.gov (United States)

    Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.

    2017-11-01

    In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.

  2. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  3. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...

  4. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  5. Efficient generation of single and entangled photons on a silicon photonic integrated chip

    International Nuclear Information System (INIS)

    Mower, Jacob; Englund, Dirk

    2011-01-01

    We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.

  6. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  7. Agreements process: problems and opportunities for the states

    International Nuclear Information System (INIS)

    Hunter, T.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (the Act) directs the Secretary of the US Department of Energy (US DOE) to consult and cooperate with the Governor and legislature of each state within which a candidate site for a nuclear waste repository may exist. The Act further directs USDOE to begin negotiations and to seek to enter into a binding written agreement to address specific concerns of any candidate state which requests such an agreement or within which a site has been approved for site characterization. The written agreements are to address at least the eleven topic areas specified in the Act and are to be completed within six months if possible. The author has been a negotiator for the State of Washington in the repository siting agreements process over the past year. The experience of the author has shown that the agreements process as contemplated by the Act bears little resemblance to the institutional interaction process of the state and federal government on matters relating to consideration of the state for a nuclear waste repository. This paper seeks to analyze the agreements process as it has developed in one state, and identify the problems and opportunities in that process so that other states and USDOE may learn from that experience

  8. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  9. One photon exchange processes and the calibration of polarization of high energy protons

    International Nuclear Information System (INIS)

    Margolis, B.; Thomas, G.H.

    1978-01-01

    Polarization phenomena in small momentum transfer high energy one-photon exchange processes in the reaction p + A → X + A where A is a complex nucleus and X is anything are examined. It is shown that these polarizations can be related directly to photoproduction polarization effects in the reaction γ + p → X at low energies. Explicit formulae are written for polarization effects in the case where X → π 0 + p

  10. Physics research opportunities with XFEL's

    International Nuclear Information System (INIS)

    Sinha, S. K.

    1999-01-01

    The advent of x-ray Free Electron Lasers will present a number of unique new scientific opportunities. These arise from their special characteristics which include intensely brilliant pulses of x-rays delivered in very short times, complete transverse coherence, and high photon quantum degeneracy, amongst other things. While clearly much thought needs to be given to a detailed quantitative assessment of the feasibility of various experiments using such sources, including methods of dealing with heat loads on beamline optics and radiation damage to samples, there are a number of areas in which one can see new opportunities, and other exciting possibilities about which one might speculate. In this talk the author briefly reviews some of these areas, such as x-ray holography, pump-probe type experiments, correlation spectroscopy and quantum optics experiments with x-rays

  11. Two-photon resonant, stimulated processes in krypton and xenon

    International Nuclear Information System (INIS)

    Miller, J.C.

    1988-11-01

    Both on-axis and conical emissions have been observed following two-photon pumping of the 5p states of krypton and the 6p', 7p, 8p, and 4f states of xenon. In the former case, coherent emissions from the 5p states to the 5s are observed, and in the latter case, many p→s, d→p, and f→d cascade emissions are observed. By analogy to the well-studied alkali and alkaline earth examples, the emissions are discussed in terms of amplified spontaneous emission (ASE), stimulated hyper-Raman scattering, and parametric four-wave mixing. The physical processes responsible for the conical emission and for intensity anomalies in the xenon p→s emissions are not understood at present. Interference effects due to coherent cancellation between competing excitation pathways may be occurring. 4 refs., 3 figs

  12. Arrays of surface-normal electroabsorption modulators for the generation and signal processing of microwave photonics signals

    NARCIS (Netherlands)

    Noharet, Bertrand; Wang, Qin; Platt, Duncan; Junique, Stéphane; Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2011-01-01

    The development of an array of 16 surface-normal electroabsorption modulators operating at 1550nm is presented. The modulator array is dedicated to the generation and processing of microwave photonics signals, targeting a modulation bandwidth in excess of 5GHz. The hybrid integration of the

  13. Photonic efficiency of the photodegradation of paracetamol in water by the photo-Fenton process.

    Science.gov (United States)

    Yamal-Turbay, E; Ortega, E; Conte, L O; Graells, M; Mansilla, H D; Alfano, O M; Pérez-Moya, M

    2015-01-01

    An experimental study of the homogeneous Fenton and photo-Fenton degradation of 4-amidophenol (paracetamol, PCT) is presented. For all the operation conditions evaluated, PCT degradation is efficiently attained by both Fenton and photo-Fenton processes. Also, photonic efficiencies of PCT degradation and mineralization are determined under different experimental conditions, characterizing the influence of hydrogen peroxide (H2O2) and Fe(II) on both contaminant degradation and sample mineralization. The maximum photonic degradation efficiencies for 5 and 10 mg L(-1) Fe(II) were 3.9 (H2O2 = 189 mg L(-1)) and 5 (H2O2 = 378 mg L(-1)), respectively. For higher concentrations of oxidant, H2O2 acts as a "scavenger" radical, competing in pollutant degradation and reducing the reaction rate. Moreover, in order to quantify the consumption of the oxidizing agent, the specific consumption of the hydrogen peroxide was also evaluated. For all operating conditions of both hydrogen peroxide and Fe(II) concentration, the consumption values obtained for Fenton process were always higher than the corresponding values observed for photo-Fenton. This implies a less efficient use of the oxidizing agent for dark conditions.

  14. Photon Collider Physics with Real Photon Beams

    International Nuclear Information System (INIS)

    Gronberg, J; Asztalos, S

    2005-01-01

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e + e - collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two

  15. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis.

    Science.gov (United States)

    Wohlgemuth, Roland; Plazl, Igor; Žnidaršič-Plazl, Polona; Gernaey, Krist V; Woodley, John M

    2015-05-01

    Despite the expanding presence of microscale technology in chemical synthesis and energy production as well as in biomedical devices and analytical and diagnostic tools, its potential in biocatalytic processes for pharmaceutical and fine chemicals, as well as related industries, has not yet been fully exploited. The aim of this review is to shed light on the strategic advantages of this promising technology for the development and realization of biocatalytic processes and subsequent product recovery steps, demonstrated with examples from the literature. Constraints, opportunities, and the future outlook for the implementation of these key green engineering methods and the role of supporting tools such as mathematical models to establish sustainable production processes are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Zifei Wang

    2018-02-01

    Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  17. One-photon two-electron processes in helium close to the double ionization threshold

    International Nuclear Information System (INIS)

    Bouri, C.

    2007-04-01

    This work presents a study of the 1 P 0 excited states of He that can be reached by absorption of a single photon carrying an energy close to the double ionization threshold (DIT) (79 eV). Above the DIT, these states are the double continuum states; below, they are the double excited states. These two types of states are tightly coupled to the single continuum states with or without excitation of the residual ion He + , owing to their degeneracy in energy. In a one-photon process, these states can only be formed owing to the electronic correlations in the system which must be well described to obtain quantitative good results. Our study is a part of the work which aims at a united description of all these doubly excited, ionized-excited, and double continuum states. We use the Hyperspherical R-Matrix with Semiclassical Outgoing Waves (HRM-SOW) method, initially dedicated to double photoionization studies. We extend it to extract information on the single continuum. This extension allows us to compute cross sections of single photoionization with or without excitation up to n 50 for an excess of 100 meV just above the double ionization threshold. A deep insight into this process is given by a partial waves analysis. The results obtained shed light on the key role of angular and radial correlations. The numerous data we obtain on double and single ionization allow us to establish a continuity relation between these two processes. We show that single ionization with an infinite excitation of the residual ion merges into double photoionization when the excess energy is redistributed between the two electrons. It appears that this relation is valid not only for low but also for high photon energies. Since the HRM-SOW can produce the integrated cross section for double photoionization with high accuracy in the low energy domain, we check the Wannier threshold law. The parameters extracted support strongly this threshold law, and are in good agreement with experimental

  18. Mapping of the atomic hydrogen density in combustion processes at atmospheric pressure by two-photon polarization spectroscopy

    International Nuclear Information System (INIS)

    Steiger, A.; Gruetzmacher, K.; Steiger, M.; Gonzalo, A.B.; Rosa, M.I. de la

    2001-01-01

    With laser spectroscopic techniques used so far, quantitative measurements of atomic number densities in flames and other combustion processes at atmospheric pressure yield no satisfying results because high quenching rates remarkably reduce the signal size and the results suffer from large uncertainties. Whereas, two-photon polarization spectroscopy is not limited by quenching, as the polarization signal is a direct measure of the two-photon absorption. This sensitive laser technique with high spatial and temporal resolution has been applied to determine absolute number densities and the kinetic temperatures of atomic hydrogen in flames for the first time. The great potential of this method of measurement comes into its own only in conjunction with laser radiation of highest possible spectral quality, i.e. single-frequency ns-pulses with peak irradiance of up to 1 GW/cm 2 tunable around 243 nm for 1S-2S two-photon transition of atomic hydrogen

  19. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  20. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarkissian, Raymond, E-mail: RaymondSark@gmail.com; O' Brien, John [Electrophysics department, University of Southern California, Los Angeles, California 90089 (United States)

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  1. Patient level costing in Ireland: process, challenges and opportunities.

    Science.gov (United States)

    Murphy, A; McElroy, B

    2015-03-01

    In 2013, the Department of Health released their policy paper on hospital financing entitled Money Follows the Patient. A fundamental building block for the proposed financing model is patient level costing. This paper outlines the patient level costing process, identifies the opportunities and considers the challenges associated with the process in the Irish hospital setting. Methods involved a review of the existing literature which was complemented with an interview with health service staff. There are considerable challenges associated with implementing patient level costing including deficits in information and communication technologies and financial expertise as well as timeliness of coding. In addition, greater clinical input into the costing process is needed compared to traditional costing processes. However, there are long-term benefits associated with patient level costing; these include empowerment of clinical staff, improved transparency and price setting and greater fairness, especially in the treatment of outliers. These can help to achieve the Government's Health Strategy. The benefits of patient level costing need to be promoted and a commitment to investment in overcoming the challenges is required.

  2. On the γ-photon detection processes and the statistics of radiation

    International Nuclear Information System (INIS)

    Bertolotti, M.; Sibilia, C.

    1977-01-01

    The problem of detection of γ-photons is treated in the cases of photoelectric and Compton effects. In both cases the probability of detecting a γ-photon is found proportional to the first-order correlation function of the e.m. field. The statistical properties of the γ-radiation can therefore be determined through the methods developed in quantum optics

  3. Cross sections for electron and photon processes required by electron-transport calculations

    International Nuclear Information System (INIS)

    Peek, J.M.

    1979-11-01

    Electron-transport calculations rely on a large collection of electron-atom and photon-atom cross-section data to represent the response characteristics of the target medium. These basic atomic-physics quantities, and certain qualities derived from them that are now commonly in use, are critically reviewed. Publications appearing after 1978 are not given consideration. Processes involving electron or photon energies less than 1 keV are ignored, while an attempt is made to exhaustively cover the remaining independent parameters and target possibilities. Cases for which data improvements can be made from existing information are identified. Ranges of parameters for which state-of-the-art data are not available are sought out, and recommendations for explicit measurements and/or calculations with presently available tools are presented. An attempt is made to identify the maturity of the atomic-physics data and to predict the possibilities for rapid changes in the quality of the data. Finally, weaknesses in the state-of-the-art atomic-physics data and in the conceptual usage of these data in the context of electron-transport theory are discussed. Brief attempts are made to weight the various aspects of these questions and to suggest possible remedies

  4. FY 1998 annual summary report on photon measuring/processing techniques. Development of the techniques for high-efficiency production processes; 1998 nendo foton keisoku kako gijutsu seika hokokusho. Kokoritsu seisan process gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The objectives are set to develop the techniques for energy-efficient laser-aided processing; techniques for high-precision, real-time measurement to improve quality control for production processes and increase their efficiency; and the techniques for generating/controlling photon of high efficiency and quality as the laser beam sources therefor, in order to promote energy saving at and improve efficiency of production processes consuming large quantities of energy, e.g., welding, joining, surface treatment and production of fine particles. The R and D themes are microscopic processing technology: simulation technology for laser welding phenomena; microscopic processing technology: synthesis of technology for quantum dot functional structures; in-situ status measuring technology: fine particle elements and size measurement technology; high-power all-solid-state laser technology: efficient rod type LD-pumping laser modules and pumping chamber of a slab-type laser; tightly-focusing all-solid-state laser technology: improvement of E/O efficiency of laser diode, high-quality nonlinear crystal growth technology and fabrication technology for nonlinear crystal; and comprehensive investigation of photonics engineering: high-efficiency harmonic generation technology. (NEDO)

  5. The MARS Photon Processing Cameras for Spectral CT

    CERN Document Server

    Doesburg, Robert Michael Nicholas; Butler, APH; Renaud, PF

    This thesis is about the development of the MARS camera: a stan- dalone portable digital x-ray camera with spectral sensitivity. It is built for use in the MARS Spectral system from the Medipix2 and Medipix3 imaging chips. Photon counting detectors and Spectral CT are introduced, and Medipix is identified as a powerful new imaging device. The goals and strategy for the MARS camera are discussed. The Medipix chip physical, electronic and functional aspects, and ex- perience gained, are described. The camera hardware, firmware and supporting PC software are presented. Reports of experimental work on the process of equalisation from noise, and of tests of charge sum- ming mode, conclude the main body of the thesis. The camera has been actively used since late 2009 in pre-clinical re- search. A list of publications that derive from the use of the camera and the MARS Spectral scanner demonstrates the practical benefits already obtained from this work. Two of the publications are first- author, eight are co-authore...

  6. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting.

    Science.gov (United States)

    Kim, Soo Jin; Kang, Ju-Hyung; Mutlu, Mehmet; Park, Joonsuk; Park, Woosung; Goodson, Kenneth E; Sinclair, Robert; Fan, Shanhui; Kik, Pieter G; Brongersma, Mark L

    2018-01-22

    The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibility to spectrally split light at a subwavelength scale with optical antennas. Unfortunately, such small structures offer limited spectral control and are hard to exploit in optoelectronic devices. Here, we overcome both challenges and demonstrate how within a single-layer metafilm one can laterally sort photons of different wavelengths below the free-space diffraction limit and extract a useful photocurrent. This chipscale demonstration of anti-Hermitian coupling between resonant photodetector elements also facilitates near-unity photon-sorting efficiencies, near-unity absorption, and a narrow spectral response (∼ 30 nm) for the different wavelength channels. This work opens up entirely new design paradigms for image sensors and energy harvesting systems in which the active elements both sort and detect photons.

  7. Fiscal 1999 research report. Research on photonic measurement and processing technology (Development of high- efficiency production process technology); 1999 nendo foton keisoku kako gijutsu seika hokokusho. Kokoritsu seisan process gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on R and D of laser processing technology, in-situ measurement technology, and generation and control technology of photon as laser beam source, for energy saving and efficiency improvement of energy-consumptive production processes such as welding, jointing, surface treatment and fine particle fabrication. The research was carried out by a technical center, 9 companies and a university as contract research. The research themes are as follows: (1) Processing technology: simulation technology for laser welding phenomena, synthesis technology for quantum dot functional structures, and fabrication technology for functional composite materials, (2) In-situ measurement technology: fine particle element and size measurement technology, (3) All- solid state laser technology: efficient rod type LD-pumping laser module, pumping chamber of slab type laser, improvement of E/O efficiency of laser diode, high-quality nonlinear crystal growth technology, fabrication technology for nonlinear crystals, and high-efficiency harmonic generation technology. Comprehensive survey was also made on high- efficiency photon generation technologies. (NEDO)

  8. FDTD simulation for plasma photonic crystals

    International Nuclear Information System (INIS)

    Liu Shaobin; Zhu Chuanxi; Yuan Naichang

    2005-01-01

    Plasma photonic crystals are artificially periodic structures, which are composed of plasmas and dielectric structures (or vacuum). In this paper, the piecewise linear current density recursive convolution (PLCDRC) finite-difference time-domain (FDTD) method is applied to study the plasma photonic crystals and those containing defects. In time-domain, the electromagnetic (EM) propagation process and reflection/transmission electric field of Gauss pulses passing through the plasma photonic crystals are investigated. In frequency-domain, the reflection and transmission coefficients of the pulses through the two kinds of crystals are computed. The results illustrate that the plasma photonic crystals mostly reflect for the EM wave of frequencies less than the plasma frequency, and mostly transmit for EM wave of frequencies higher than the plasma frequency. In high frequency domain, the plasma photonic crystals have photonic band gaps, which is analogous to the conventional photonic crystals. (authors)

  9. Two-dimensional 'photon fluid': effective photon-photon interaction and physical realizations

    International Nuclear Information System (INIS)

    Chiao, R Y; Hansson, T H; Leinaas, J M; Viefers, S

    2004-01-01

    We describe a recently developed effective theory for atom-mediated photon-photon interactions in a two-dimensional 'photon fluid' confined to a Fabry-Perot resonator. The photons in the lowest longitudinal cavity mode will appear as massive bosons interacting via a renormalized delta-function potential with a strength determined by physical parameters such as the density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. We discuss novel quantum phenomena for photons, such as Bose-Einstein condensation and bound state formation, as well as possible experimental scenarios based on Rydberg atoms in a microwave cavity, or alkali atoms in an optical cavity

  10. Examining leisure event opportunities of Isle Royale National Park: bridging the gap between social process and spatial form

    Science.gov (United States)

    Chad D. Pierskalla; Dorothy H. Anderson; David W. Lime

    2000-01-01

    To manage various recreation opportunities, managers and planners must consider the spatial and temporal scale of social process when identifying opportunities on base maps. However, analyses of social process and spatial form are often treated as two distinct approaches--sociological and geographical approaches. A sociologist might control for spatial form by adopting...

  11. Deterministic multimode photonic device for quantum-information processing

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Mølmer, Klaus

    2010-01-01

    We propose the implementation of a light source that can deterministically generate a rich variety of multimode quantum states. The desired states are encoded in the collective population of different ground hyperfine states of an atomic ensemble and converted to multimode photonic states by exci...

  12. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  13. Introduction to photonics and holography

    International Nuclear Information System (INIS)

    Grosmann, M.

    1982-01-01

    These new terms cover a group of advanced technologies based on the specific properties of the ineraction between light and matter that have been discovered since the development of lasers. Electronics uses electricity to process information: photonics performs the same functions, but uses light instead of electricity. Photonics can be said to cover all the methods, processes or systems which serve of study, measure and transform or transmit by means of light. The photon devices which have resulted from fundamental and applied research in this field over the last ten years or so cover a comparable range of application areas to that of electronics - mechanical engineering, medicine, avionics, telecommunications, biology, metrology, quality control, hydraulics, computers, botanical science, textiles, remote sensing, pneumatics, aerospace, etc. The list is too long to give in its entirety, but for our present purposes there are four types of significant products: lasers and their accessories, optical fibres and their accessories, data acquisition, processing and display systems and photovoltaic and solar systems. (orig.)

  14. Opportunities and challenges for photon diagnostics at the soft X-ray FEL FLASH in simultaneous operation mode (Conference Presentation)

    Science.gov (United States)

    Kuhlmann, Marion; Treusch, Rolf; Plönjes-Palm, Elke; Faatz, Bart; Tiedtke, Kai; Braune, Markus; Keitel, Barbara

    2017-06-01

    FLASH operates two distinguished undulator sections driven by one linear accelerator. In the 11th year of user operation the grown demands for detailed photon beam performances are doubled approached. The more complex machine settings and setup times require a more and more efficient determination of its characteristics concerning electron- and photon-beams. The photon diagnostics systems, e.g. gas monitor detection, photon-ion spectroscopy, or diffractive tools, not only have to deal on a regular basis with fundamental wavelengths between 4nm and 90nm, also they have to be reliable from 1µJ up to 1mJ of average single pulse energy. For the success of the experiments the error bars of many diagnostics measurements need to be pushed into their current limits and developments to go further are always issued. Especial, the pulse duration in conjunction with the spectral width has been accessed in the last year. Direct approaches of fundamental wavelengths below the Nitrogene K-edge and higher harmonics in and below the water window were achieved. While in principal distinguished to each other, the photon diagnostics tools of FLASH1 and FLASH2 add-up to a more complete understanding of the other. Together they allow for a better perspective towards further developments and a more suitable use of beam times. The intermingled knowledge of electron- and photon-beams is essential for an FEL particular in simultaneous operation mode. Examples out of regular user operation and distinguished FEL-studies are given to illustrate the current state of the photon diagnostics at FLASH.

  15. Jet and hadron production in photon-photon collisions

    OpenAIRE

    Soldner-Rembold, Stefan

    1999-01-01

    Di-jet and inclusive charged hadron production cross-sections measured in photon-photon collisions by OPAL are compared to NLO pQCD calculations. Jet shapes measured in photon-photon scattering by OPAL, in deep-inelastic ep scattering by H1 and in photon-proton scattering by ZEUS are shown to be consistent in similar kinematic ranges. New results from TOPAZ on prompt photon production in photon-photon interactions are presented.

  16. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Science.gov (United States)

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  17. Control of coherent information via on-chip photonic-phononic emitter-receivers.

    Science.gov (United States)

    Shin, Heedeuk; Cox, Jonathan A; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2015-03-05

    Rapid progress in integrated photonics has fostered numerous chip-scale sensing, computing and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons moving at slower velocities allow information to be stored, filtered and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of integrated photonics. Here we demonstrate a mechanism for coherent information processing based on travelling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device, physics--which supports GHz frequencies--we create wavelength-insensitive radiofrequency photonic filters with frequency selectivity, narrow-linewidth and high power-handling in silicon. More generally, this emit-receive concept is the impetus for enabling new signal processing schemes.

  18. Thermal effects on the photon mass

    International Nuclear Information System (INIS)

    Woloshyn, R.M.

    1982-09-01

    It is shown that processes of O(αGsub(F)) in which the photon interacts indirectly with the thermal neutrino background dominate electric screening at low temperature. The photon electric mass still comes out to be much smaller than the present experimental limit

  19. The photon content of the proton

    Science.gov (United States)

    Manohar, Aneesh V.; Nason, Paolo; Salam, Gavin P.; Zanderighi, Giulia

    2017-12-01

    The photon PDF of the proton is needed for precision comparisons of LHC cross sections with theoretical predictions. In a recent paper, we showed how the photon PDF could be determined in terms of the electromagnetic proton structure functions F 2 and F L measured in electron-proton scattering experiments, and gave an explicit formula for the PDF including all terms up to next-to-leading order. In this paper we give details of the derivation. We obtain the photon PDF using the factorisation theorem and applying it to suitable BSM hard scattering processes. We also obtain the same PDF in a process-independent manner using the usual definition of PDFs in terms of light-cone Fourier transforms of products of operators. We show how our method gives an exact representation for the photon PDF in terms of F 2 and F L , valid to all orders in QED and QCD, and including all non-perturbative corrections. This representation is then used to give an explicit formula for the photon PDF to one order higher than our previous result. We also generalise our results to obtain formulæ for the polarised photon PDF, as well as the photon TMDPDF. Using our formula, we derive the P γ i subset of DGLAP splitting functions to order αα s and α 2, which agree with known results. We give a detailed explanation of the approach that we follow to determine a photon PDF and its uncertainty within the above framework.

  20. On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform.

    Science.gov (United States)

    Luo, Ye; Chamanzar, Maysamreza; Apuzzo, Aniello; Salas-Montiel, Rafael; Nguyen, Kim Ngoc; Blaize, Sylvain; Adibi, Ali

    2015-02-11

    The enhancement and confinement of electromagnetic radiation to nanometer scale have improved the performances and decreased the dimensions of optical sources and detectors for several applications including spectroscopy, medical applications, and quantum information. Realization of on-chip nanofocusing devices compatible with silicon photonics platform adds a key functionality and provides opportunities for sensing, trapping, on-chip signal processing, and communications. Here, we discuss the design, fabrication, and experimental demonstration of light nanofocusing in a hybrid plasmonic-photonic nanotaper structure. We discuss the physical mechanisms behind the operation of this device, the coupling mechanisms, and how to engineer the energy transfer from a propagating guided mode to a trapped plasmonic mode at the apex of the plasmonic nanotaper with minimal radiation loss. Optical near-field measurements and Fourier modal analysis carried out using a near-field scanning optical microscope (NSOM) show a tight nanofocusing of light in this structure to an extremely small spot of 0.00563(λ/(2n(rmax)))(3) confined in 3D and an exquisite power input conversion of 92%. Our experiments also verify the mode selectivity of the device (low transmission of a TM-like input mode and high transmission of a TE-like input mode). A large field concentration factor (FCF) of about 4.9 is estimated from our NSOM measurement with a radius of curvature of about 20 nm at the apex of the nanotaper. The agreement between our theory and experimental results reveals helpful insights about the operation mechanism of the device, the interplay of the modes, and the gradual power transfer to the nanotaper apex.

  1. Recent measurements of two photon muon pair process from Mark J at √s up to 46.78 GeV

    International Nuclear Information System (INIS)

    Zhang, C.C.

    1985-07-01

    The recent results from Mark J on two photon muon pair production with √s from 14 to 46.78 GeV are presented, and compared with the complete α 4 QED calculation in a large range of √s and four momentum transfer, including untagged, single and double tagged events. The forward-backward charge asymmetry of muons produced in the two photon process is also compared to the QED prediction. (orig.)

  2. Status of the PADME experiment and review of dark photon searches

    Directory of Open Access Journals (Sweden)

    Raggi M.

    2018-01-01

    Full Text Available While accelerator particle physics has traditionally focused on exploring dark matter through highenergy experiments, testing dark-sectors hypothesis requires innovative low energy experiments that use highintensity beams and high-sensitivity detectors. In this scenario attractive opportunities are offered to low energy machines and flavour experiments. In this paper we will focus our attention on the Dark Photon (DP scenario, reviewing the current status of searches and new opportunities with particular attention to the PADME experiment at Laboratori Nazionali di Frascati.

  3. Scalable quantum information processing with atomic ensembles and flying photons

    International Nuclear Information System (INIS)

    Mei Feng; Yu Yafei; Feng Mang; Zhang Zhiming

    2009-01-01

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could much relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.

  4. 40-Gb/s all-optical processing systems using hybrid photonic integration technology

    DEFF Research Database (Denmark)

    Kehayas, E.; Tsiokos, D.I.; Bakopoulos, P.

    2006-01-01

    the potential that all-optical technology can find application in future data-centric networks with efficient and dynamic bandwidth utilization. This paper also reports on the latest photonic integration breakthroughs as a potential migration path for reducing fabrication cost by developing photonic systems...

  5. Hybrid Integrated Platforms for Silicon Photonics

    Science.gov (United States)

    Liang, Di; Roelkens, Gunther; Baets, Roel; Bowers, John E.

    2010-01-01

    A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  6. Hadronic photon-photon interactions at high energies

    International Nuclear Information System (INIS)

    Engel, R.; Siegen Univ.; Ranft, J.

    1996-01-01

    Photon-photon collisions are investigated in the framework of the two-component Dual Parton Model. The model contains contributions from direct, resolved soft and resolved hard interactions. All free parameters of the model are determined in fits to hadron-hadron and photon-hadron cross section data. The model is shown to agree well to hadron production data from hadron-hadron and photon-hadron collisions. The multiparticle production in hadron-hadron, photon-hadron and photon-photon collisions as predicted by the model is compared. Strong differences are only found as function of the transverse momentum variable. (author)

  7. Chem/bio sensing with non-classical light and integrated photonics.

    Science.gov (United States)

    Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B

    2018-01-29

    Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.

  8. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  9. Photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of α/sub s/ and Λ/sup ms/ from the γ*γ → π 0 form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from γγ → H anti H, reconstruction of sigma/sub γγ/ from exclusive channels at low W/sub γγ/, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z 0 and W +- beams from e → eZ 0 and e → nu W will become important. 44 references

  10. Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators

    International Nuclear Information System (INIS)

    Pastells, Carme; Marco, M.-Pilar; Merino, David; Loza-Alvarez, Pablo; Pasquardini, Laura; Lunelli, Lorenzo; Pederzolli, Cecilia; Daldosso, Nicola; Farnesi, Daniele; Berneschi, Simone; Righini, Giancarlo C.; Quercioli, Franco; Nunzi Conti, Gualtiero; Soria, Silvia

    2016-01-01

    We investigate the feasibility of both one photon and two photon fluorescence excitation using whispering gallery mode microresonators. We report the linear and non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a silica whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also investigate the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are dylight800, tetramethyl rhodamine isothiocyanate, rhodamine 6G and fluorescein. All measurements were performed in a modified confocal microscope. - Highlights: • One photon fluorescence overlaps with the semiconductor pump laser gain bandwidth. • We report on the feasibility to excite two photon fluorescence in microbubble resonators. • Our functionalization process maintains a good quality factor of the microresonator.

  11. Two photon versus one photon fluorescence excitation in whispering gallery mode microresonators

    Energy Technology Data Exchange (ETDEWEB)

    Pastells, Carme; Marco, M.-Pilar [Nanobiotechnology for Diagnostics Group (Nb4Dg), IQAC-CSIC, 08034 Barcelona (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina, 08034 Barcelona (Spain); Merino, David; Loza-Alvarez, Pablo [ICFO-Institut de Ciències Fotòniques, Castelldefels, 08860 Barcelona (Spain); Pasquardini, Laura [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); Lunelli, Lorenzo [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); IBF-CNR, 38123 Povo, TN (Italy); Pederzolli, Cecilia [Fondazione Bruno Kessler, 38123 Povo, TN (Italy); Daldosso, Nicola [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy); Farnesi, Daniele [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, 00184 Roma (Italy); Berneschi, Simone [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Righini, Giancarlo C. [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, 00184 Roma (Italy); Quercioli, Franco [CNR-INO National Institute of Optics, Sesto Fiorentino, FI (Italy); Nunzi Conti, Gualtiero [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy); Soria, Silvia, E-mail: s.soria@ifac.cnr.it [CNR-IFAC “Nello Carrara” Institute of Applied Physics, 50019 Sesto Fiorentino, FI (Italy)

    2016-02-15

    We investigate the feasibility of both one photon and two photon fluorescence excitation using whispering gallery mode microresonators. We report the linear and non linear fluorescence real-time detection of labeled IgG covalently bonded to the surface of a silica whispering gallery mode resonator (WGMR). The immunoreagents have been immobilized onto the surface of the WGMR sensor after being activated with an epoxy silane and an orienting layer. The developed immunosensor presents great potential as a robust sensing device for fast and early detection of immunoreactions. We also investigate the potential of microbubbles as nonlinear enhancement platform. The dyes used in these studies are dylight800, tetramethyl rhodamine isothiocyanate, rhodamine 6G and fluorescein. All measurements were performed in a modified confocal microscope. - Highlights: • One photon fluorescence overlaps with the semiconductor pump laser gain bandwidth. • We report on the feasibility to excite two photon fluorescence in microbubble resonators. • Our functionalization process maintains a good quality factor of the microresonator.

  12. APS [Advanced Photon Source] interests in PEP

    International Nuclear Information System (INIS)

    Moncton, D.E.; Shenoy, G.K.; Mills, D.M.

    1987-11-01

    As one of the very few high-energy electron storage rings in the world, potentially available for synchrotron radiation studies, PEP represents an opportunity to accomplish certain preconstruction R and D tasks relevant to the successful construction and operation of dedicated user facilities such as the Advanced Photon Source (APS) at Argonne. Three topical areas are discussed: Accelerator R and D, Insertion Devices (ID) R and D, and Beam Line Instrumentation R and D

  13. Double-Tag Events in Two-Photon Collisions at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2002-01-01

    Double-tag events in two-photon collisions are studied using the L3 detector at LEP centre-of-mass energies from root(s)=189 GeV to 209 GeV. The cross sections of the e+e- -> e+e- hadrons and gamma*gamma* -> hadrons processes are measured as a function of the photon virtualities, Q2_1 and Q2_2, of the two-photon mass, W_gammagamma, and of the variable Y=ln(W2_gammagamma/(Q_1Q_2)), for an average photon virtuality = 16 GeV2. The results are in agreement with next-to-leading order calculations for the process gamma*gamma* -> q qbar in the interval 2 <= Y <= 5. An excess is observed in the interval 5 < Y <= 7, corresponding to W_gammagamma greater than 40 GeV . This may be interpreted as a sign of resolved photon QCD processes or the onset of BFKL phenomena.

  14. Identifying opportunities to reduce the consumption of energy across mining and processing plants

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, David; Johnson, Greg

    2010-09-15

    In addition to meeting Government Policy on Energy Efficiency Opportunities (EEOs), mining and mineral processing companies are increasing energy efficiency to reduce costs in the current financial conditions. One of the major issues with EEOs is the lack of data available on energy use, and more importantly the energy use linked to production data, that identify energy reduction opportunities. This paper looks at expanding the use of a Manufacturing Execution Systems by integrating with Energy Solutions. This will provide automatic, timely information, at a granularity that makes it easier to identify EEOs, reduce energy costs, and better predict energy use.

  15. Microfluidics and thin-film processes: a recipe for organic integrated photonics based on 3D microresonators

    Science.gov (United States)

    Huby, N.; Pluchon, D.; Belloul, M.; Moreac, A.; Coulon, N.; Gaviot, E.; Panizza, P.; B"che, B.

    2010-02-01

    We report on the design and realization of photonic integrated devices based on 3D organic microresonators. This has been achieved by combining microfluidics techniques and thin-film processes. The microfluidic device and the control of the flow rates of the continuous and dispersed phases allow the fabrication of organic microresonators with diameter ranging from 30 to 200 μm. The resonance of the sphere in air has been first investigated by using the Raman spectroscopy set-up demonstrating the appropriate photonic properties. Then the microresonators have been integrated on an organic chip made of the photosensitive resin SU-8 and positioned at the extremity of a taper and alongside a rib waveguide. The realization of these structures by thin-film processes needs one step UV-lithography leading to 6μm width and 30μm height. Both devices have proved the efficient evanescent coupling leading to the excitation of the whispering gallery modes confined at the surface of the organic 3D microresonators. Finally, a band-stop filter has been used to detect the resonance spectra of the resonators once integrated.

  16. Information Optics and Photonics Algorithms, Systems, and Applications

    CERN Document Server

    Javidi, Bahram

    2010-01-01

    This book addresses applications, recent advances, and emerging areas in fields with applications in information optics and photonics systems. The objective of this book is to illustrate and discuss novel approaches, analytical techniques, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information using free space optics and photonics. The material in this book concentrates on integration of diverse fields for cross-disciplinary applications including bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on the nano-scale, quantum optics, super resolution imaging, photonics for biological applications, and holographic information systems. As a result, this book is a useful resource for researchers, engineers, and graduate students who work in the diverse fields comprising information optics and photonics.

  17. Detecting Dark Photons with Reactor Neutrino Experiments

    Science.gov (United States)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ reactors as potential sources of intense fluxes of low-mass dark photons.

  18. Generation of Fourier-transform-limited heralded single photons

    International Nuclear Information System (INIS)

    U'Ren, Alfred B.; Jeronimo-Moreno, Yasser; Garcia-Gracia, Hipolito

    2007-01-01

    In this paper we study the spectral (temporal) properties of heralded single photon wave packets, triggered by the detection of an idler photon in the process of parametric down conversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier-transform-limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfillment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wave packets

  19. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  20. Essentials of photonics

    CERN Document Server

    Rogers, Alan; Baets, Roel

    2008-01-01

    Photons and ElectronsHistorical SketchThe Wave Nature of LightPolarizationThe Electromagnetic SpectrumEmission and Absorption ProcessesPhoton Statistics The Behaviour of Electrons LasersSummaryWave Properties of LightThe Electromagnetic SpectrumWave RepresentationElectromagnetic WavesReflection and RefractionTotal Internal ReflectionInterference of LightLight WaveguidingInterferometersDiffractionGaussian Beams and Stable Optical ResonatorsPolarization OpticsThe Polarization EllipseCrystal OpticsRetarding WaveplatesA Variable Waveplate: The Soleil-Babinet Compensator Polarizing PrismsLinear BirefringenceCircular BirefringenceElliptical BirefringencePractical Polarization EffectsPolarization AnalysisThe Form of the Jones MatricesLight and Matter Emission, Propagation, and Absorption ProcessesClassical Theory of Light Propagation in Uniform Dielectric Media Optical Dispersion Emission and Absorption of LightOptical Coherence and CorrelationIntroductionMeasure of Coherence Wiener-Khinchin TheoremDual-Beam Interfe...

  1. Virtual-pion and two-photon production in pp scattering

    International Nuclear Information System (INIS)

    Scholten, O.; Korchin, A.Yu.

    2002-01-01

    Two-photon production in pp scattering is proposed as a means of studying virtual-pion emission. Such a process is complementary to real-pion emission in pp scattering. The virtual-pion signal is embedded in a background of double-photon bremsstrahlung. We have developed a model to describe this background process and show that in certain parts of phase space the virtual-pion signal gives significant contributions. In addition, through interference with the two-photon bremsstrahlung background, one can determine the relative phase of the virtual-pion process

  2. Continuous Energy Photon Transport Implementation in MCATK

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pritchett-Sheats, Lori A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Werner, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-31

    The Monte Carlo Application ToolKit (MCATK) code development team has implemented Monte Carlo photon transport into the MCATK software suite. The current particle transport capabilities in MCATK, which process the tracking and collision physics, have been extended to enable tracking of photons using the same continuous energy approximation. We describe the four photoatomic processes implemented, which are coherent scattering, incoherent scattering, pair-production, and photoelectric absorption. The accompanying background, implementation, and verification of these processes will be presented.

  3. Hybrid Integrated Platforms for Silicon Photonics

    Directory of Open Access Journals (Sweden)

    John E. Bowers

    2010-03-01

    Full Text Available A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  4. Clinical Natural Language Processing in languages other than English: opportunities and challenges.

    Science.gov (United States)

    Névéol, Aurélie; Dalianis, Hercules; Velupillai, Sumithra; Savova, Guergana; Zweigenbaum, Pierre

    2018-03-30

    Natural language processing applied to clinical text or aimed at a clinical outcome has been thriving in recent years. This paper offers the first broad overview of clinical Natural Language Processing (NLP) for languages other than English. Recent studies are summarized to offer insights and outline opportunities in this area. We envision three groups of intended readers: (1) NLP researchers leveraging experience gained in other languages, (2) NLP researchers faced with establishing clinical text processing in a language other than English, and (3) clinical informatics researchers and practitioners looking for resources in their languages in order to apply NLP techniques and tools to clinical practice and/or investigation. We review work in clinical NLP in languages other than English. We classify these studies into three groups: (i) studies describing the development of new NLP systems or components de novo, (ii) studies describing the adaptation of NLP architectures developed for English to another language, and (iii) studies focusing on a particular clinical application. We show the advantages and drawbacks of each method, and highlight the appropriate application context. Finally, we identify major challenges and opportunities that will affect the impact of NLP on clinical practice and public health studies in a context that encompasses English as well as other languages.

  5. On the spallation of a polarized photon on a nonpolarized electron

    International Nuclear Information System (INIS)

    Bozrikov, P.V.; Kopytov, G.F.

    1978-01-01

    Considered is the process of the spallation of a polarized photon of the plane electromagnet wave into two polarized photons on a nonpolarized electron. One of these photons is considered as an emitted one, another as a photon of a plane wave. The degrees of circular and linear polarization of the emitted photon are studied in detail. It is shown that the degree of linear polarization does not depend on the type of circular polarization of the initial plane wave photon. At a relativistic electron moving in the direction of the plane wave, totally linearly polarized radiation appears. The analogy between the following two processes is made: (1) γ 1 +e - → γ 2 + γ tilde +e' - (where γ 1 , γ 2 are photons of the plane wave, and γ tilde is an emitted photon) and (2) γ 1 +e - → γ 2 +γ 3 +e' - . From the correspondence between the processes it follows that the results of the investigation may be applied to the double Compton effect. Besides, it appears to be possible to study the correlation between polarization states of all three photons participating in the double Compton scattering

  6. Simulation of multi-photon emission isotopes using time-resolved SimSET multiple photon history generator

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chih-Chieh; Lin, Hsin-Hon; Lin, Chang-Shiun; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing-HuaUniversity, Hsinchu, Taiwan (China); Jan, Meei-Ling [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan (China)

    2015-07-01

    Abstract-Multiple-photon emitters, such as In-111 or Se-75, have enormous potential in the field of nuclear medicine imaging. For example, Se-75 can be used to investigate the bile acid malabsorption and measure the bile acid pool loss. The simulation system for emission tomography (SimSET) is a well-known Monte Carlo simulation (MCS) code in nuclear medicine for its high computational efficiency. However, current SimSET cannot simulate these isotopes due to the lack of modeling of complex decay scheme and the time-dependent decay process. To extend the versatility of SimSET for simulation of those multi-photon emission isotopes, a time-resolved multiple photon history generator based on SimSET codes is developed in present study. For developing the time-resolved SimSET (trSimSET) with radionuclide decay process, the new MCS model introduce new features, including decay time information and photon time-of-flight information, into this new code. The half-life of energy states were tabulated from the Evaluated Nuclear Structure Data File (ENSDF) database. The MCS results indicate that the overall percent difference is less than 8.5% for all simulation trials as compared to GATE. To sum up, we demonstrated that time-resolved SimSET multiple photon history generator can have comparable accuracy with GATE and keeping better computational efficiency. The new MCS code is very useful to study the multi-photon imaging of novel isotopes that needs the simulation of lifetime and the time-of-fight measurements. (authors)

  7. Opportunity Design

    DEFF Research Database (Denmark)

    Løwe Nielsen, Suna; Lassen, Astrid Heidemann; Nielsen, Louise Møller

    2013-01-01

    design”. The framework explains how opportunities intentionally and pro-actively can be designed from methods and processes of moving-in and moving-out. An illustrative case of opportunity design within the area of sustainable energy and electric cars is presented to link the theoretical discussion...

  8. Solid-state single-photon emitters

    Science.gov (United States)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  9. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya

    2010-01-01

    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  10. The photon structure function at large Q2

    International Nuclear Information System (INIS)

    Cordier, A.

    1987-01-01

    LEP II offers the unique opportunity to measure the photon structure function over a large Q 2 range up to ∼ 2000 GeV 2 . Two crucial predictions of QCD can be tested in this experiment: the linear rise in log Q 2 as a consequence of asymptotic freedom, and the large renormalization O(1) of the shape of the structure function due to gluon bremsstrahlung, unperturbed by higher-twist effects

  11. Deterministic Single-Photon Source for Distributed Quantum Networking

    International Nuclear Information System (INIS)

    Kuhn, Axel; Hennrich, Markus; Rempe, Gerhard

    2002-01-01

    A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity. The photons are generated by an adiabatically driven stimulated Raman transition between two atomic ground states, with the vacuum field of the cavity stimulating one branch of the transition, and laser pulses deterministically driving the other branch. This process is unitary and therefore intrinsically reversible, which is essential for quantum communication and networking, and the photons should be appropriate for all-optical quantum information processing

  12. Surface modification of nanoporous anodic alumina photonic crystals for photocatalytic applications

    Science.gov (United States)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    Herein, we report on the development of a rationally designed composite photocatalyst material by combining nanoporous anodic alumina-rugate filters (NAA-RFs) with photo-active layers of titanium dioxide (TiO2). NAA-RFs are synthesised by sinusoidal pulse anodisation and subsequently functionalised with TiO2 by sol-gel method to provide the photonic structures with photocatalytic properties. We demonstrate that the characteristic photonic stopband (PSB) of the surface-modified NAA-RFs can be precisely tuned across the UV-visible-NIR spectrum to enhance the photon-toelectron conversion of TiO2 by `slow photon effect'. We systematically investigate the effect of the anodisation parameters (i.e. anodisation period and pore widening time) on the position of the PSB of NAA-RFs as well as the photocatalytic performances displayed by these photonic crystal structures. When the edges of the PSB of surfacemodified NAA-RFs are positioned closely to the absorption peak of the model organic dye (i.e. methyl orange - MO), the photocatalytic performance of the system to degrade these molecules is enhanced under simulated solar light irradiation due to slow photon effect. Our investigation also reveals that the photocatalytic activity of surface-modified NAA-RFs is independent of slow photon effect and enhances with increasing period length (i.e. increasing anodisation period) of the photonic structures when there is no overlap between the PSB and the absorption peak of MO. This study therefore provides a rationale towards the photocatalytic enhancement of photonic crystals by a rational design of the PSB, creating new opportunities for the future development of high-performance photocatalysts.

  13. One Photon Can Simultaneously Excite Two or More Atoms.

    Science.gov (United States)

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  14. Direct photon production and PDF fits reloaded

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M.; Rojo, Juan; Slade, Emma; Williams, Ciaran

    2018-02-08

    Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availability of the next-to-next-to-leading (NNLO) calculation for this process. We demonstrate that the inclusion of NNLO QCD and leading-logarithmic electroweak corrections leads to a good quantitative agreement with the ATLAS measurements at 8 TeV and 13 TeV, except for the most forward rapidity region in the former case. By including the ATLAS 8 TeV direct photon production data in the NNPDF3.1 NNLO global analysis, we assess its impact on the medium-x gluon. We also study the constraining power of the direct photon production measurements on PDF fits based on different datasets, in particular on the NNPDF3.1 no-LHC and collider-only fits. We also present updated NNLO theoretical predictions for direct photon production at 13 TeV that include the constraints from the 8 TeV measurements.

  15. MATLAB-aided teaching and learning in optics and photonics using the methods of computational photonics

    Science.gov (United States)

    Lin, Zhili; Li, Xiaoyan; Zhu, Daqing; Pu, Jixiong

    2017-08-01

    Due to the nature of light fields of laser waves and pulses as vector quantities with complex spatial distribution and temporal dependence, the optics and photonics courses have always been difficult to teach and learn without the support of graphical visualization, numerical simulations and hands-on experiments. One of the state-of-the-art method of computational photonics, the finite-difference time-domain(FDTD) method, is applied with MATLAB simulations to model typical teaching cases in optics and photonics courses. The obtained results with graphical visualization in the form of animated pictures allow students to more deeply understand the dynamic process of light interaction with classical optical structures. The discussed teaching methodology is aimed to enhance the teaching effectiveness of optics and photonics courses and arousing the students' learning interest.

  16. Process strategies for ultra-deep x-ray lithography at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Mancini, D.C.; Moldovan, N.; Divan, R.; De Carlo, F.; Yaeger, J.

    2001-01-01

    For the past five years, we have been investigating and advancing processing capabilities for deep x-ray lithography (DXRL) using synchrotron radiation from a bending magnet at the Advanced Photon Source (APS), with an emphasis on ultra-deep structures (1mm to 1cm thick). The use of higher-energy x-rays has presented many challenges in developing optimal lithographic techniques for high-aspect ratio structures: mask requirements, resist preparation, exposure, development, and post-processing. Many problems are more severe for high-energy exposure of thicker films than for sub-millimeter structures and affect resolution, processing time, adhesion, damage, and residue. A number of strategies have been created to overcome the challenges and limitations of ultra-deep x-ray lithography (UDXRL), that have resulted in the current choices for mask, substrate, and process flow at the APS. We describe our current process strategies for UDXRL, how they address the challenges presented, and their current limitations. We note especially the importance of the process parameters for use of the positive tone resist PMMA for UDXRL, and compare to the use of negative tone resists such as SU-8 regarding throughput, resolution, adhesion, damage, and post-processing.

  17. Optics and photonics: essential technologies for our nation (technology & engineering)

    CERN Document Server

    Research, Committee on Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future; Sciences, Division on Engineering and Physical; Council, National Research

    2013-01-01

    Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad--incl...

  18. Distribution of quantum information between an atom and two photons

    International Nuclear Information System (INIS)

    Weber, Bernhard

    2008-01-01

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  19. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  20. Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality.

    Science.gov (United States)

    Zhang, Chao; Huang, Yun-Feng; Wang, Zhao; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2015-12-31

    Quantum nonlocality gives us deeper insight into quantum physics. In addition, quantum nonlocality has been further recognized as an essential resource for device-independent quantum information processing in recent years. Most experiments of nonlocality are performed using a photonic system. However, until now, photonic experiments of nonlocality have involved at most four photons. Here, for the first time, we experimentally demonstrate the six-photon quantum nonlocality in an all-versus-nothing manner based on a high-fidelity (88.4%) six-photon Greenberger-Horne-Zeilinger state. Our experiment pushes multiphoton nonlocality studies forward to the six-photon region and might provide a larger photonic system for device-independent quantum information protocols.

  1. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    Science.gov (United States)

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  2. Ultra-weak photon emission as a non-invasive tool for monitoring of oxidative processes in the epidermal cells of human skin: comparative study on the dorsal and the palm side of the hand.

    Science.gov (United States)

    Rastogi, Anshu; Pospísil, Pavel

    2010-08-01

    All living organisms emit spontaneous ultra-weak photon emission as a result of cellular metabolic processes. Exposure of living organisms to exogenous factors results in oxidative processes and enhancement in ultra-weak photon emission. Here, hydrogen peroxide (H(2)O(2)), as a strongly oxidizing molecule, was used to induce oxidative processes and enhance ultra-weak photon emission in human hand skin. The presented work intends to compare both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the dorsal and the palm side of the hand. A highly sensitive photomultiplier tube and a charge-coupled device camera were used to detect ultra-weak photon emission from human hand skin. Spontaneous ultra-weak photon emission from the epidermal cells on the dorsal side of the hand was 4 counts/s. Topical application of 500 mM H(2)O(2) to the dorsal side of the hand caused enhancement in ultra-weak photon emission to 40 counts/s. Interestingly, both spontaneous and peroxide-induced ultra-weak photon emission from the epidermal cells on the palm side of the hand were observed to increase twice their values, i.e. 8 and 80 counts/s, respectively. Similarly, the two-dimensional image of ultra-weak photon emission observed after topical application of H(2)O(2) to human skin reveals that photon emission from the palm side exceeds the photon emission from the dorsal side of the hand. The results presented indicate that the ultra-weak photon emission originating from the epidermal cells on the dorsal and the palm side of the hand is related to the histological structure of the human hand skin. Ultra-weak photon emission is shown as a non-destructive technique for monitoring of oxidative processes in the epidermal cells of the human hand skin and as a diagnostic tool for skin diseases.

  3. Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    CERN Document Server

    Llopart Cudie, Xavier; Campbell, M

    2007-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each...

  4. Chargino production and decay in photon-photon collisions

    International Nuclear Information System (INIS)

    Mayer, T.; Bloechinger, C.; Franke, F.; Fraas, H.

    2003-01-01

    We discuss the pair production of charginos in collisions of polarized photons, γγ→χ i + χ i - (i=1,2), and the subsequent leptonic decay of the lighter chargino χ 1 + →χ 1 0 e + ν e including the complete spin correlations. Analytical formulae are given for the polarization and the spin-spin correlations of the charginos. Since the production is a pure QED process the decay dynamics can be studied separately. For high energy photons from Compton backscattering of polarized laser pulses off polarized electron beams numerical results are presented for the cross section, the angular distribution and the forward-backward asymmetry of the decay positron. Finally we study the dependence on the gaugino mass parameter M 1 and on the sneutrino mass for a gaugino-like MSSM scenario. (orig.)

  5. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    Science.gov (United States)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  6. Direct photon experiments

    International Nuclear Information System (INIS)

    Boeggild, H.

    1986-11-01

    The author reviews the experiments on direct photon production in hadronic collisions. After a description of the experimental methods for the study of such processes he presents some results on differential cross sections and the γ/π 0 ratio in π - p, π + p, pp, and anti pp processes as well as in reactions of π - , π + , and p on carbon. (HSI)

  7. Electrospinning for nano- to mesoscale photonic structures

    Science.gov (United States)

    Skinner, Jack L.; Andriolo, Jessica M.; Murphy, John P.; Ross, Brandon M.

    2017-08-01

    The fabrication of photonic and electronic structures and devices has directed the manufacturing industry for the last 50 years. Currently, the majority of small-scale photonic devices are created by traditional microfabrication techniques that create features by processes such as lithography and electron or ion beam direct writing. Microfabrication techniques are often expensive and slow. In contrast, the use of electrospinning (ES) in the fabrication of micro- and nano-scale devices for the manipulation of photons and electrons provides a relatively simple and economic viable alternative. ES involves the delivery of a polymer solution to a capillary held at a high voltage relative to the fiber deposition surface. Electrostatic force developed between the collection plate and the polymer promotes fiber deposition onto the collection plate. Issues with ES fabrication exist primarily due to an instability region that exists between the capillary and collection plate and is characterized by chaotic motion of the depositing polymer fiber. Material limitations to ES also exist; not all polymers of interest are amenable to the ES process due to process dependencies on molecular weight and chain entanglement or incompatibility with other polymers and overall process compatibility. Passive and active electronic and photonic fibers fabricated through the ES have great potential for use in light generation and collection in optical and electronic structures/devices. ES produces fiber devices that can be combined with inorganic, metallic, biological, or organic materials for novel device design. Synergistic material selection and post-processing techniques are also utilized for broad-ranging applications of organic nanofibers that span from biological to electronic, photovoltaic, or photonic. As the ability to electrospin optically and/or electronically active materials in a controlled manner continues to improve, the complexity and diversity of devices fabricated from this

  8. EM-induced processes in heavy ion collisions with the ATLAS detector at the LHC

    CERN Document Server

    Steinberg, Peter; The ATLAS collaboration

    2018-01-01

    Electromagnetic processes provide new tools for studying the partonic structure of nuclei, and possibly for directly probing the quark gluon plasma. Ultra-peripheral heavy ion collisions occur when the nuclei have large impact parameter and interact through photon-induced reactions. These include processes in which an energetic photon emitted by one nucleus resolves the partonic structure of the other and stimulates jet production. Much like deep inelastic scattering, such processes provide a clean probe of the nuclear parton distributions. Jet photo-production represents the most direct opportunity to study nuclear parton distributions until a future electron-ion collider is constructed. This talk presents measurements of ultra-peripheral jet photo-production in Pb+Pb collisions with the ATLAS detector at the LHC. It also presents another application of EM-induced processes, where dimuons produced by gamma-gamma processes are observed to show a centrality-dependent broadening in their opening angle, which ca...

  9. Social problems as sources of opportunity – antecedents of social entrepreneurship opportunities

    Directory of Open Access Journals (Sweden)

    Agnieszka Żur

    2016-02-01

    Full Text Available Objective: Based on extensive literature review, this paper aims to establish if, why and how, in given environmental and market contexts, social entrepreneurship (SE opportunities are discovered and exploited. It positions social problems as sources of entrepreneurial opportunity. The article presents an integrated process-based view of SE opportunity antecedents and concludes with a dynamic model of SE opportunity. Research Design & Methods: To fulfil its goal, the paper establishes opportunity as unit of research and explores the dynamics of opportunity recognition. To identify the components of SE opportunity through a process-based view, the study follows the steps of critical literature review method. The literature review follows with logical reasoning and inference, which results in the formulation of a model proposition of social entrepreneurship opportunity. Findings: The paper presents a holistic perspective on opportunity antecedents in SE context and introduces social problems, information, social awareness and entrepreneurial mindset  as fundamental components of social entrepreneurship opportunity equation. Implications & Recommendations: It is necessary to remember for policy makers, investors and partners involved within the social sector, that social problems can be the source of entrepreneurial opportunity. Training, assisting and engaging socially aware entrepreneurs is a promising line of development for all communities. Contribution & Value Added: The major contribution of this study lies in extending the existing body of social entrepreneurship research by providing a new perspective, placing social problem as opportunity in the centre of the discussion.

  10. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    International Nuclear Information System (INIS)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

    2008-01-01

    Cleaning up the nation's nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing (1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, (2) a rational path to the development of alternative technologies should the primary options fail, (3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, (4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

  11. Range detection using entangled optical photons

    Science.gov (United States)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2015-05-01

    Quantum radar is an emerging field that shows a lot of promise in providing significantly improved resolution compared to its classical radar counterpart. The key to this kind of resolution lies in the correlations created from the entanglement of the photons being used. Currently, the technology available only supports quantum radar implementation and validation in the optical regime, as opposed to the microwave regime, because microwave photons have very low energy compared to optical photons. Furthermore, there currently do not exist practical single photon detectors and generators in the microwave spectrum. Viable applications in the optical regime include deep sea target detection and high resolution detection in space. In this paper, we propose a conceptual architecture of a quantum radar which uses entangled optical photons based on Spontaneous Parametric Down Conversion (SPDC) methods. After the entangled photons are created and emerge from the crystal, the idler photon is detected very shortly thereafter. At the same time, the signal photon is sent out towards the target and upon its reflection will impinge on the detector of the radar. From these two measurements, correlation data processing is done to obtain the distance of the target away from the radar. Various simulations are then shown to display the resolution that is possible.

  12. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire......The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...

  13. From Ideas to Opportunities: Exploring the Construction of Technology-Based Entrepreneurial Opportunities

    Directory of Open Access Journals (Sweden)

    Ferran Giones

    2013-06-01

    Full Text Available The transformation of business ideas into market opportunities is at the core of entrepreneurship. Nevertheless, the complexity of such a transformative process is seen to change depending on the variables influencing the opportunity-entrepreneur nexus. Although technology-entrepreneurship is regarded as a force of change and dynamism in socio-economic growth, it also depends upon an intricate process of opportunity development. The interest in understanding better how technology-based entrepreneurs simultaneously cope with technological uncertainty while trying to gain stakeholder support and access to resources, highlights a relevant research gap. The research described in this article uses the constructivist view to deepen our understanding of the technology-based entrepreneur’s conceptualization of the opportunity as a process of social construction. Our results show how initial consensus-building efforts and iteration with knowledgeable peers are an essential part of the emergence of the opportunity, changing both entrepreneur's and stakeholders' perceptions of the early business idea. Consequently, our results provide evidence in support of policy programs and measures that favour social-construction support mechanisms to foster technology-based entrepreneurship.

  14. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    Science.gov (United States)

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.

  15. The European BOOM project :silicon photonics for high-capacity optical packet routers

    NARCIS (Netherlands)

    Stampoulidis, L.; Vyrsokinos, K.; Voigt, K.; Zimmermann, L.; Gomez-Agis, F.; Dorren, H.J.S.; Sheng, Z.; Thourhout, Van D.; Moerl, L.; Kreissl, J.; Sedighi, B.; Scheytt, J.C.; Pagano, A.; Riccardi, E.

    2010-01-01

    During the past years, monolithic integration in InP has been the driving force for the realization of integrated photonic routing systems. The advent of silicon as a basis for cost-effective integration and its potential blend with III–V material is now opening exciting opportunities for the

  16. Report on the results of the fiscal 1997 R and D under consignment from NEDO of photon measuring/processing technology (development of high-efficiency production process technology); 1997 nendo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku photon keisoku kako gijutsu (kokoritsu seisan process gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Development is made of high energy-efficiency laser processing technology and high efficiency/high grade photon generation/control technology as laser light source, for the purpose of energy conservation/efficiency heightening of production processes which require a large amount of energy such as welding, joining, surface treatment, and particle fabrication. As to keyhole dynamics of the molten metal generated on the laser weld, construction of simulational mathematical models was started. Equipment to fabricate semiconductor ultrafine particles which become the core of quantum dot functional structures was designed to fabricate particles. In-situ optical measuring technology was studied of element/size of particles of below 30 nm in size by emission spectroscopy associated with the plasma irradiation. As tightly focusing all-solid-state laser technology, studied was the wavelength conversion method in which harmonics are generated four times as much as the fundamental wave due to high efficient generation of high power UV laser. Also studied were high laser strength, low optical losses, conditions for fostering high homogenity crystals. Technology for high accuracy processing of element surface was established. High efficiency photon generation technology was comprehensively investigated. 140 refs., 276 figs., 46 tabs.

  17. Methodology of Continuous-Energy Adjoint Monte Carlo for Neutron, Photon, and Coupled Neutron-Photon Transport

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2003-01-01

    Adjoint Monte Carlo may be a useful alternative to regular Monte Carlo calculations in cases where a small detector inhibits an efficient Monte Carlo calculation as only very few particle histories will cross the detector. However, in general purpose Monte Carlo codes, normally only the multigroup form of adjoint Monte Carlo is implemented. In this article the general methodology for continuous-energy adjoint Monte Carlo neutron transport is reviewed and extended for photon and coupled neutron-photon transport. In the latter cases the discrete photons generated by annihilation or by neutron capture or inelastic scattering prevent a direct application of the general methodology. Two successive reaction events must be combined in the selection process to accommodate the adjoint analog of a reaction resulting in a photon with a discrete energy. Numerical examples illustrate the application of the theory for some simplified problems

  18. Single-photon three-qubit quantum logic using spatial light modulators.

    Science.gov (United States)

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  19. Experimental study of angular dependence in double photon Compton scattering

    International Nuclear Information System (INIS)

    Sandhu, B.S.; Dewan, R.; Saddi, M.B.; Singh, B.; Ghumman, B.S.

    2000-01-01

    The collision differential cross-section and energy of one of the final photons for double photon Compton scattering have been measured as a function of scattering angle θ 1 . The incident photon energy is 0.662 MeV and thin aluminium foils are used as a scatterer. The two simultaneously emitted photons in this higher order process are detected in coincidence using two NaI(Tl) scintillation spectrometers and 30 ns timing electronics. The measured values for energy and collision differential cross-section agree with theory within experimental estimated error. The present data provide information of angular dependence in this higher order process

  20. Optical components based on two-photon absorption process in functionalized polymers

    International Nuclear Information System (INIS)

    Klein, S.; Barsella, A.; Taupier, G.; Stortz, V.; Fort, A.; Dorkenoo, K.D.

    2006-01-01

    We report on the fabrication of basic elements needed in optical circuits in a photopolymerizable resin, using a two-photon absorption (TPA) process to perform a selective polymerization. By taking advantage of the high spatial selectivity of the TPA approach, we can control the value of the local index of refraction in the material and realize permanent optical pathways in the bulk of photopolymerizable matrices. The computer-controlled design of such pathways allows creating optical circuits. As an example of application, optical fibers separated by millimetric distances and placed in arbitrary positions have been connected with moderate losses. Moreover, active components, such as electro-optical Mach-Zehnder interferometers, can be fabricated using photopolymers functionalized with non-linear optical chromophores, in order to be integrated in micro-optical circuits

  1. Investigation of the two-photon decay following the neutron capture in hydrogen

    International Nuclear Information System (INIS)

    Wuest, N.

    1978-01-01

    The continuous two-photon radiation, resulting from thermal neutron capture in hydrogen, has been measured. This reaction can be described in second order perturbation theory and occurs besides the dominating 2223.4 keV single-photon radiation. The theoretical ratio between two-photon and one-photon process is 2.8 10 -7 for the case considered here, so coincidence experiments with extremely high sensitivity have to be performed. In order to exclude systematical errors, three measurements with a different experimental set-up have been performed. Besides the total cross section for the two-photon process, the differential cross section has been studied in one of the experiments as a function of the energy ratio of the two photons. For the branching ratio between the two- and one-photon process an upper limit of 2 x 10 -5 could be obtained. So the hypothesis that the neutron capture state and the deuterium ground state one non-orthogonal, is shown to be false. (orig.) [de

  2. Broadband photonic crystal fiber coupler with polarization selection of coupling ratio

    Science.gov (United States)

    Jaroszewicz, Leszek R.; Stasiewicz, Karol A.; Marć, Paweł; Szymański, Michał

    2010-09-01

    In the paper a new broadband photonic crystal fiber coupler is presented. The proper application of the biconical taper technology has been used for manufacturing the coupler without air holes collapse in LMA10 fiber (NKT Photonics Crystal). This coupler, operates in the weakly coupling condition, protects coupling operation in range from 900 nm to 1700 nm. The coupling ratio between output arms is depending on wavelength and can be tuning by selection the proper input state of polarization. It gives opportunity to use the broadband crystal fiber coupler in many applications in which it is necessary to tune a coupling between output arms during the measurement.

  3. Tomography of photon-added and photon-subtracted states

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    The purpose of this paper is to introduce symplectic and optical tomograms of photon-added and photon-subtracted quantum states. Explicit relations for the tomograms of photon-added and photon-subtracted squeezed coherent states and squeezed number states are obtained. Generating functions for the

  4. Organic printed photonics: From microring lasers to integrated circuits.

    Science.gov (United States)

    Zhang, Chuang; Zou, Chang-Ling; Zhao, Yan; Dong, Chun-Hua; Wei, Cong; Wang, Hanlin; Liu, Yunqi; Guo, Guang-Can; Yao, Jiannian; Zhao, Yong Sheng

    2015-09-01

    A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

  5. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  6. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  7. Jet-Tagged Back-Scattering Photons for Quark Gluon Plasma Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J. [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77845 (United States); De, Somnath; Srivastava, Dinesh K. [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata – 700064 (India)

    2013-05-02

    Direct photons are important probes for quark gluon plasma created in high energy nuclear collisions. Various sources of direct photons in nuclear collisions are known, each of them endowed with characteristic information about the production process. However, it has been challenging to separate direct photon sources through measurements of single inclusive photon spectra and photon azimuthal asymmetry. Here we explore a method to identify photons created from the back-scattering of high momentum quarks off quark gluon plasma. We show that the correlation of back-scattering photons with a trigger jet leads to a signal that should be measurable at RHIC and LHC.

  8. Verification of photon-production processing techniques

    International Nuclear Information System (INIS)

    Barrett, R.J.; Ford, W.E. III; Gohar, Y.; Bohn, T.S.; MacFarlane, R.E.; Boicourt, R.M.

    1979-01-01

    Several laboratories have independently developed computer codes which use evaluated data from the ENDF/B file to produce group-averaged cross sections and transfer matrices for neutron-induced photon production. There have been several instances in which these codes have produced discrepant data sets, and thereby cast doubt on the validity of all the codes. For a series of specified test cases, the results from three of these codes (NJOY, LAPHNGAS, and MACK-IV) were systematically compared with each other and with hand calculations. Several shortcomings in the codes were discovered and repaired. One major difference of philosophy was resolved. Consequently, the codes have arrived at substantial agreement on all of the nearly 1200 nonzero group constants calculated in the study. 4 figures, 1 table

  9. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    Science.gov (United States)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  10. Improving the equivalent-photon approximation in electron-positron collisions

    CERN Document Server

    Schuler, G A

    1996-01-01

    The validity of the equivalent-photon approximation for two-photon processes in electron--positron collisions is critically examined. Commonly used forms to describe hadronic two-photon production are shown to lead to sizeable errors. An improved two-photon luminosity function is presented, which includes beyond-leading-logarithmic effects and scalar-photon contributions. Comparisons of various approximate expressions with the exact calculation in the case of the total hadronic cross section are given. Furthermore, effects of the poorly known low-Q2 behaviour of the virtual hadronic cross sections are discussed.

  11. International Conference on Applications of Photonic Technology, Communications, Sensing, Materials and Signal Processing

    CERN Document Server

    Lessard, Roger; ICAPT '96; Applications of photonic technology 2

    1997-01-01

    This book presents a current review ofphotonic technologies and their applications. The papers published in this book are extended versions of the papers presented at the Inter­ national Conference on Applications ofPhotonic Technology (ICAPT'96) held in Montreal, Canada, on July 29 to August 1, 1996. The theme of this event was "Closing the Gap Between Theory, Developments and Applications. " The term photonics covers both optics and optical engineering areas of growing sci­ entific and commercial importance throughout the world. It is estimated that photonic tech­ nology-related applications to increase exponentially over the next few years and will play a significant role in the global economy by reaching a quarter of a trillion of US dollars by the year 2000. The global interest and advancements of this technology are represented in this book, where leading scientists of twenty-two countries with advanced technology in photon­ ics present their latest results. The papers selected herein are ...

  12. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    Science.gov (United States)

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  13. On chip frequency discriminator for microwave photonics signal processing

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    Microwave photonics (MWP) techniques for the generation, distribution and pro- cessing of radio frequency (RF) signals have enjoyed a surge of interest in the last few years. The workhorse behind these MWP functionalities is a high performance MWP link. Such a link needs to fulfill several criteria

  14. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    , as well as a honeycomb bandgap fibre and the first analysis of semi-periodic layered air-hole fibres. Using the modelling framework established as a basis, we provide an analysis of microbend loss, by regarding displacement of a fibre core as a stationary stochastic process, inducing mismatch between......In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...

  15. Towards a measurement of the two-photon decay width of the Higgs boson at a photon collider

    International Nuclear Information System (INIS)

    Moenig, K.; Rosca, A.

    2007-05-01

    A study of the measurement of the two photon decay width times the branching ratio of a Higgs boson with the mass of 120 GeV in photon-photon collisions is presented, assuming a γγ integrated luminosity of 80 fb -1 in the high energy part of the spectrum. The analysis is based on the reconstruction of the Higgs events produced in the γγ→H process, followed by the decay f the Higgs into a b anti b pair. A statistical error of the measurement of the two-photon width, Γ(H→γγ), times the branching ratio of the Higgs boson, BR(H →b anti b) is found to be 2.1 % for one year of data taking. (orig.)

  16. Towards the coupling of single photons from dye molecules to a photonic waveguide

    Science.gov (United States)

    Polisseni, Claudio; Kho, Kiang Wei; Major, Kyle; Grandi, Samuele; Boisser, Sebastien; Hwang, Jaesuk; Clark, Alex; Hinds, Edward

    Single photons are very attractive for quantum information processing given their long coherence time and their ability to carry information in many degrees of freedom. A current challenge is the efficient generation of single photons in a photonic chip in order to scale up the complexity of quantum operations. We have proposed that a dibenzoterrylene (DBT) molecule inside an anthracene (AC) crystal could couple lifetime-limited indistinguishable single photons into a photonic waveguide if deposited in its vicinity. In this talk I describe the recent progress towards the realization of this proposal. A new method has been developed for evaporating AC and DBT to produce crystals that are wide and thin. The crystals are typically several microns across and have remarkably uniform thickness, which we control between 20 and 150 nm. The crystal growth is carried out in a glove bag in order to exclude oxygen, which improves the photostability of the DBT molecules by orders of magnitude. We image the fluorescence of single DBT molecules using confocal microscopy and analyse the polarization of this light to determine the alignment of the molecules. I will report on our efforts to control the alignement of the molecules by aligning the host matrix with the substrate.

  17. Heavy quark pair production in polarized photon-photon collisions

    International Nuclear Information System (INIS)

    Jikia, G.; Tkabladze, A.

    2000-04-01

    We present the cross sections of the heavy quark-antiquark pair production in polarized photon photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including QCD radiative corrections. (orig.)

  18. Photonic Microresonator Research and Applications

    CERN Document Server

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2010-01-01

    Photonic Microresonator Research and Applications explores advances in the fabrication process that enable nanometer waveguide separations. The technology surrounding the design and fabrication of optical microresonators has matured to a point where there is a need for commercialization. Consequently, there is a need for device research involving more advanced architectures and more esoteric operating princples. This volume discusses these issues, while also: Showing a reader how to design and fabricate microresonators Discussing microresonators in photonic crystals, microsphere circuits, and sensors, and provides application oriented examples Covering the latest in microresonator research with contributions from the leading researchers Photonic Microresonator Research and Applications would appeal to researchers and academics working in the optical sciences.

  19. Transition radiation and coherent electron-photon scattering

    International Nuclear Information System (INIS)

    Moran, M.J.

    1985-04-01

    Relativistic electron irradiation of thin solid targets is known to generate collimated beams of x-ray photons in the forward direction by a number of different processes. A variety of mechanisms are discussed that share common characteristics in the angular and spectral distributions of the generated photon beams. Some simple physical explanations are offered for the characteristics shared by these processes. Some examples are then given based on experimental results attained at the LLNL electron-positron accelerator

  20. Photon-photon collisions and photon structure functions at LEP

    CERN Document Server

    Patt, J

    2000-01-01

    The present knowledge of the structure of the photon based on measurements of photon structure functions is discussed. This review covers recent results on QED structure functions and on the hadronic structure function F/sub 2//sup gamma /. (13 refs).

  1. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  2. Hunting the Opportunity

    DEFF Research Database (Denmark)

    Løwe Nielsen, Suna; Rind Christensen, Poul; Lassen, Astrid Heidemann

    2017-01-01

    This paper bring together the two research fields of design and entrepreneurship in order to stimulate new knowledge on opportunity creation. A shared theoretical framework on new opportunity creation that illustrates that design and entrepreneurship can advantageously complement each other in th...... in the opportunity design process. Practical insights into the robustness of the framework are provided by a short illustrative case on electric cars....

  3. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  4. Photons in a partonic transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Moritz; Senzel, Florian; Greiner, Carsten [Goethe Universitaet Frankfurt, Max-von-Laue-Str. 1 60438 Frankfurt am Main (Germany)

    2015-07-01

    Partonic transport approaches have proved to be valuable tools in describing the quark-gluon plasma, created in heavy-ion collisions. In this work, first steps towards a dynamical understanding of photonproduction in expanding heavy-ion collisions are presented. Several photon production processes are included in the partonic cascade BAMPS (Boltzmann Approach to Multi-Parton Scatterings). BAMPS provides a microscopic tool to study expanding fireballs, employing a stochastic method to solve the relativistic 3+1d Boltzmann equation. Subsequently, photon spectra can be investigated, and in particular, the influence of the quark-gluon plasma phase for the elliptic flow of photons is studied.

  5. Prompt photons in photoproduction at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Zus, R.; Aldaya Martin, M.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Habib, S.; List, B.; Pokorny, B.; Toll, T.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Del Degan, M.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Joensson, L.; Osman, S.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Straumann, U.; Truoel, P.; Schoening, A.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.

    2010-01-01

    The production of prompt photons is measured in the photoproduction regime of electron-proton scattering at HERA. The analysis is based on a data sample corresponding to a total integrated luminosity of 340 pb -1 collected by the H1 experiment. Cross sections are measured for photons with transverse momentum and pseudorapidity in the range 6 T γ γ γ and x p carried by the partons entering the hard scattering process. The correlation between the photon and the jet is also studied. The results are compared with QCD predictions based on the collinear and on the k T factorization approaches. (orig.) 7

  6. Topological photonic orbital-angular-momentum switch

    Science.gov (United States)

    Luo, Xi-Wang; Zhang, Chuanwei; Guo, Guang-Can; Zhou, Zheng-Wei

    2018-04-01

    The large number of available orbital-angular-momentum (OAM) states of photons provides a unique resource for many important applications in quantum information and optical communications. However, conventional OAM switching devices usually rely on precise parameter control and are limited by slow switching rate and low efficiency. Here we propose a robust, fast, and efficient photonic OAM switch device based on a topological process, where photons are adiabatically pumped to a target OAM state on demand. Such topological OAM pumping can be realized through manipulating photons in a few degenerate main cavities and involves only a limited number of optical elements. A large change of OAM at ˜10q can be realized with only q degenerate main cavities and at most 5 q pumping cycles. The topological photonic OAM switch may become a powerful device for broad applications in many different fields and motivate a topological design of conventional optical devices.

  7. Opportunities of Bamboo for Industrial Processes

    NARCIS (Netherlands)

    Janssen, J.J.A.; Erkelens, P.A.; Jonge, S. de; Vliet, A.A.M. van

    2000-01-01

    Bamboo as resource for industrial raw material has many opportunities: It contains a 40 percent cellulose, with a fibre length of 3 to 4 mm, more than wood. This can be used as pulp in the paper industry or as cellulose. The fibres also can be used for fibreboard or for furniture parts. Bamboo

  8. Direct photon production and PDF fits reloaded

    NARCIS (Netherlands)

    Campbell, John M.; Rojo, Juan; Slade, Emma; Williams, Ciaran

    2018-01-01

    Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availability of the next-to-next-to-leading (NNLO)

  9. Direct detection of a single photon by humans

    Science.gov (United States)

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  10. Pion pair production in photon-photon interactions

    International Nuclear Information System (INIS)

    Berger, C.; Deuter, A.; Genzel, H.; Lackas, W.; Pielorz, J.; Raupach, F.; Wagner, W.; Bussey, P.J.; Cartwright, S.L.; Dainton, J.B.; King, B.T.; Raine, C.; Scarr, J.M.; Skillikorn, I.O.; Smith, K.M.; Thomson, J.C.; Achterberg, O.; Blobel, V.; Burkart, D.; Diehlmann, K.; Feindt, M.; Kapitza, H.; Koppitz, B.; Krueger, M.; Poppe, M.; Spitzer, H.; Staa, R. van; Almeida, F.; Baecker, A.; Barreiro, F.; Brandt, S.; Derikum, K.; Grupen, C.; Meyer, H.J.; Mueller, H.; Neumann, B.; Rost, M.; Stupperich, K.; Zech, G.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.; Junge, H.; Kraski, K.; Maxeiner, C.; Maxeiner, H.; Meyer, H.; Schmidt, D.; Buerger, J.; Criegee, L.; Ferrarotto, F.; Franke, G.; Gaspero, M.; Gerke, C.; Knies, G.; Lewendel, B.; Meyer, J.; Michelsen, U.; Pape, K.H.; Stella, B.; Timm, U.; Winter, G.G.; Zachara, M.; Zimmermann, W.

    1984-08-01

    The process γγ -> π + π - has been measured with complete particle identification. Cross-sections are presented from near threshold up to the region of the f(1270). In the mass range 0.5-0.7 GeV, cross-sections are lower than the Born term predictions and show no evidence for an epsilon(600). The two-photon width of the f(1270) is found to be in agreement with previous results. (orig.)

  11. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    Science.gov (United States)

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  12. Large conditional single-photon cross-phase modulation

    Science.gov (United States)

    Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-01-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of π/6 (and up to π/3 by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  13. Single Photon Sources in Silicon Carbide

    International Nuclear Information System (INIS)

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  14. Production of high energy photon beam at TAC

    International Nuclear Information System (INIS)

    Akkurt, I.; Tekin, H. O.; Demir, N.; Cakirli, R. B.; Akkus, B.; Kupa, I.

    2010-01-01

    When an electron pass through an electric field, the electron loose its part of energy and photon is generated. This process is known as Bremsstrahlung (means 'radiation breaking' in German) and this photon can be used in a variety of different application. The TAC will be first Turkish Accelerator Center (TAC) where a IR-FEL and Beamstrahlung photon beam facilities will be established in first stage. The electrons will be accelerated up to 40 MeV by two LINAC and these beam will be used to generate Bremsstrahlung photon. In this study, the main parameters for Bremsstrahlung photon beam facility will be established at TAC will be detailed and fields to be used Bremsstrahlung beam will also be presented.

  15. Update on photon-photon collisions

    International Nuclear Information System (INIS)

    Arteaga-Romero, N.; Cochard, G.; Ong, S.; Amiens Univ., 80; Carimalo, C.; Kessler, P.; Nicolaidis, A.; Parisi, J.; Courau, A.

    1980-03-01

    This report is the continuation of the 'Update' of last year (L.P.C. 79-03, March 1979, in French). In Part I, the structure functions of the photon in QCD are examined. It is shown that, while large psub(T) hadron production is similar to some extent in γγ collisions and in hadron-hadron collisions, the point-like nature of the photon introduces new terms which are entirely calculable, providing new means to test the dynamics of strong interactions. In Part II, problems of analysis in γγ experiments are discussed. The pros and cons of various options with regard to the measurement of outgoing electrons (non-tagging, finite-angle tagging, tagging at 0 0 ) are compared. It is shown that (a) non-tagging may be applied to the study of a limited number of processes only; (b) finite-angle tagging counters allow for various possibilities (double-tagging, single-tagging, double anti-tagging), but none of them is entirely satisfactory; (c) the ideal measurement is double tagging at 0 0 , provided the problem of bremsstrahlung saturation of the tagging counters can be solved

  16. Deterministically swapping frequency-bin entanglement from photon-photon to atom-photon hybrid systems

    Science.gov (United States)

    Ou, Bao-Quan; Liu, Chang; Sun, Yuan; Chen, Ping-Xing

    2018-02-01

    Inspired by the recent developments of the research on the atom-photon quantum interface and energy-time entanglement between single-photon pulses, we are motivated to study the deterministic protocol for the frequency-bin entanglement of the atom-photon hybrid system, which is analogous to the frequency-bin entanglement between single-photon pulses. We show that such entanglement arises naturally in considering the interaction between a frequency-bin entangled single-photon pulse pair and a single atom coupled to an optical cavity, via straightforward atom-photon phase gate operations. Its anticipated properties and preliminary examples of its potential application in quantum networking are also demonstrated. Moreover, we construct a specific quantum entanglement witness tool to detect such extended frequency-bin entanglement from a reasonably general set of separable states, and prove its capability theoretically. We focus on the energy-time considerations throughout the analysis.

  17. The Importance of Locally Embedded Personal Relationships for SME Internationalisation Processes – from Opportunity Recognition to Company Growth

    Directory of Open Access Journals (Sweden)

    Milena Ratajczak-Mrozek

    2014-01-01

    Full Text Available The purpose of the paper is to present the importance of locally embedded personal relationships and individuals’ networks for the rise of small and medium enterprises (SMEs’ opportunities in the internationalisation process (especially the market entry phase as well as their international operations and growth. Above all, the aim of the article is to answer the question what is influencing the actual impact of these resulting opportunities on internationalisation and growth. This paper adopts both a conceptual and empirical approach to the problem based upon a critical review of pertinent literature. Two case studies of companies from industries representing different levels of technological advancement, that is the furniture industry and IT industry, are presented. The theoretical and empirical analysis presented in the article points to the fact that relationships simultaneously facilitate opportunity recognition and themselves constitute such an opportunity. The analysis carried out as part of the case study proves that main factors determining the rise of the opportunity based on locally embedded personal relationships are trust and mutual understanding, in this way emphasising the importance of relational embeddedness. At the same time the realisation of these opportunities and therefore their impact on the internationalisation process and a company’s growth requires additional social factors (an entrepreneurial attitude as well as economic factors (such as quality and competitive prices.

  18. High index glass thin film processing for photonics and photovoltaic (PV) applications

    Science.gov (United States)

    Ogbuu, Okechukwu Anthony

    To favorably compete with fossil-fuel technology, the greatest challenge for thin film solar-cells is to improve efficiency and reduce material cost. Thickness scaling to thin film reduces material cost but affects the light absorption in the cells; therefore a concept that traps incident photons and increases its optical path length is needed to boost absorption in thin film solar cells. One approach is the integration of low symmetric gratings (LSG), using high index material, on either the front-side or backside of 30 um thin c-Si cells. In this study, Multicomponent TeO2--Bi2O 3--ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. The structural origin of the optical property variation was studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy. The results indicate that TBZ glass thin film is a suitable material for front side LSG material photovoltaic and photonics applications due to their amorphous nature, high refractive index (n > 2), broad band optical transparency window, low processing temperature. We developed a simple maskless method to pattern sputtered tellurite based glass thin films using unconventional agarose hydrogel mediated wet etching. Conventional wet etching process, while claiming low cost and high throughput, suffers from reproducibility and pattern fidelity issues due to the isotropic nature of wet chemical etching when applied to glasses and polymers. This method overcomes these challenges by using an agarose hydrogel stamp to mediate a conformal etching process. In our maskless method, agarose hydrogel stamps are patterned following a standard soft lithography and replica molding process from micropatterned masters and soaked in a chemical etchant. The micro-scale features on the stamp are

  19. Microwave background constraints on mixing of photons with hidden photons

    International Nuclear Information System (INIS)

    Mirizzi, Alessandro; Redondo, Javier; Sigl, Guenter

    2008-12-01

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle χ 0 -7 - 10 -5 for hidden photon masses between 10 -14 eV and 10 -7 eV. This low-mass and low-mixing region of the hidden photon parameter space was previously unconstrained. (orig.)

  20. Photon-photon inclusive scattering and perturbative QCD

    International Nuclear Information System (INIS)

    Maor, U.

    1988-01-01

    Perturbative QCD expectations and problems associated with the study of the photon structure function data are reviewed. An assessment is given for the viability and sensitivity of photon-photon scattering as a decisive tool for the determination of the QCD scale. Particular attention is given to the theoretical problems of singularity cancellations at x = 0 and threshold-associated difficulties at x = 1 and their implications on the actual data analysis. It is concluded that the experimental results, while not providing a decisive verification of QCD at small distances, do add to other independent experiments which are all consistent with the theory and suggest a reasonably well defined QCD scale parameter. The importance of the small Q 2 limit to photon-photon analysis is discussed and the data are examined in an attempt to identify and isolate the contributions of the hadronic and point-like sectors of the target photon. 21 refs., 7 figs. (author)

  1. Inclusive two-photon reactions at TRISTAN

    International Nuclear Information System (INIS)

    Drees, M.

    1995-01-01

    After briefly reviewing past accomplishments of TRISTAN experiments in the field of inclusive two-photon reactions, I discuss open problems in the Monte Carlo simulation of such reactions. The main emphasis is on multiple scattering, i.e. events where at least two pairs of partons scatter within the same γγ collision to form at least four (mini)jets. The cross section for such events might just be observable at TRISTAN. While theoretical arguments for the existence of such events are strong, they have not yet been directly observed experimentally, thereby potentially opening a new opportunity for TRISTAN experiments. (author)

  2. Microwave background constraints on mixing of photons with hidden photons

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max-Planck-Institut fuer Physik, Muenchen (Germany); Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-12-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0}

  3. A first study of the structure of the virtual photon at HERA

    International Nuclear Information System (INIS)

    Utley, M.L.

    1996-01-01

    The production of two or more jets of hadrons in photoproduction events at the HERA e + p collider has been studied using the ZEUS detector. By tagging the final state positron, two samples of event have been isolated where the photon exchanged between proton and positron is quasi-real (of virtuality P 2 2 ) and virtual (0.1 2 2 ) respectively. It is shown that photons in both P 2 ranges show resolved structure. The P 2 evolution of the structure of the photon is studied by measuring the relative contribution of direct and resolved photon processes to the cross-section for the production of two or more jets. Events have been classified as direct or resolved based upon the value of the final state observable X γ obs . The data suggest that the contribution from resolved photon processes is suppressed relative to that from direct photon processes as P 2 rises and are in general agreement with leading order calculations. (author)

  4. A new interpretation of the two-photon entangled experiments via quantum mirrors

    International Nuclear Information System (INIS)

    Ion, D.B.; Constantin, P.

    1997-01-01

    The spontaneous parametric down conversion (SPDC) is a nonlinear optical process in which a laser pump beam (p) incident on a nonlinear crystal leads to the emission of a correlated pair of photons (signal (s) and idler (i)). In this process, energy and momentum of photons are conserved. Recently, the process allowed to demonstrate two photon 'ghost' imaging and 'ghost' interference diffraction patterns as well as other new phenomena from the geometric and physical optics. In this paper we consider that the key for understanding all of above results is given by the following two distinctive features of the SPDC crystals: 1 - the Cherenkov-like coherence conditions of the signal (or idler) photon; 2 - the existence of the crossing symmetric processes: p + s → i, p + i → s, as real processes in the SPDC crystals which can be described by the same transitions amplitude as that of the original SPDC process. Hence, the SPDC crystals can act as real mirrors (quantum mirror) since by the crossing processes and signal photon s(ω s , - k s vector) (or idler photon i(ω i , - k i vector)) is transformed in an idler photon i s (ω i , - k i vector) (or signal photon s i (ω s , - k s vector)), respectively. The proof of the reality of these phenomena is based on the optical phase conjugation property of the SPDC crystals. The high quality of the quantum mirrors is given by the distortion-undoing and amplification properties of these mirrors. Therefore, image of an object will be well observed only in coincidence measurements when the aperture, lens, and fiber tip are located according to the Gaussian thin-lens equation. In a similar way we obtain the interpretation of the results for the two photon entangled interference-diffraction patterns. These new results allow us to suggest that the quantum photography of objects, quantum holography, etc, can be now experimentally demonstrated. (authors)

  5. Photon flux determination for a precision measurement of the neutral pion lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Teymurazyan, Aram [Univ. of Kentucky, Lexington, KY (United States)

    2008-01-01

    The Jefferson Lab Hall B PrimEx Collaboration is using tagged photons to perform a 1.4% level measurement of the absolute cross section for the photo-production of neutral pions in the Coulomb field of a nucleus as a test of Chiral Perturbation Theory. Such a high precision pushes the limits of the photon tagging technique in regards to the determination of the absolute photon flux. A multifaceted approach to this problem has included measuring the absolute tagging ratios with a Total Absorption Counter (TAC) as well as relative tagging ratios with a Pair Spectrometer (PS), and determining the rate of the tagging counters using multi-hit TDC's and a clock trigger. This enables the determination of the absolute tagged photon flux for the PrimEx experiment with uncertainty of ~ 1.0%, which is unprecedented. In view of the stringent constraints on the required precision of the photon flux for this experiment, periodicmeasurements of the pair production cross section were performed throughout the run. In these measurements, both the photon energy and flux were determined by the Jefferson Lab Hall B tagger, and the electron-positron pairs were swept by a magnetic field and detected in the new 1728 channel hybrid calorimeter (HyCal). The pair production crosssection was extracted with an uncertainty of ~ 2%, producing an agreement with theoretical calculations at the level of ~ 2%. This measurement provided a unique opportunity to verify the photon flux determination procedure for the PrimEx experiment.

  6. Time-resolved measurement of the quantum states of photons using two-photon interference with short-time reference pulses

    International Nuclear Information System (INIS)

    Ren Changliang; Hofmann, Holger F.

    2011-01-01

    To fully utilize the energy-time degree of freedom of photons for optical quantum-information processes, it is necessary to control and characterize the temporal quantum states of the photons at extremely short time scales. For measurements of the temporal coherence of the quantum states beyond the time resolution of available detectors, two-photon interference with a photon in a short-time reference pulse may be a viable alternative. In this paper, we derive the temporal measurement operators for the bunching statistics of a single-photon input state with a photon from a weak coherent reference pulse. It is shown that the effects of the pulse shape of the reference pulse can be expressed in terms of a spectral filter selecting the bandwidth within which the measurement can be treated as an ideal projection on eigenstates of time. For full quantum tomography, temporal coherence can be determined by using superpositions of reference pulses at two different times. Moreover, energy-time entanglement can be evaluated based on the two-by-two entanglement observed in the coherences between pairs of detection times.

  7. The strategic research agenda of the Technology Platform Photonics21: European component industry for broadband communications and the FP 7

    Science.gov (United States)

    Thylén, Lars

    2006-07-01

    The design and manufacture of components and systems underpin the European and indeed worldwide photonics industry. Optical materials and photonic components serve as the basis for systems building at different levels of complexity. In most cases, they perform a key function and dictate the performance of these systems. New products and processes will generate economic activity for the European photonics industry into the 21 st century. However, progress will rely on Europe's ability to develop new and better materials, components and systems. To achieve success, photonic components and systems must: •be reliable and inexpensive •be generic and adaptable •offer superior functionality •be innovative and protected by Intellectual Property •be aligned to market opportunities The challenge in the short-, medium-, and long-term is to put a coordinating framework in place which will make the European activity in this technology area competitive as compared to those in the US and Asia. In the short term the aim should be to facilitate the vibrant and profitable European photonics industry to further develop its ability to commercialize advances in photonic related technologies. In the medium and longer terms the objective must be to place renewed emphasis on materials research and the design and manufacturing of key components and systems to form the critical link between science endeavour and commercial success. All these general issues are highly relevant for the component intensive broadband communications industry. Also relevant for this development is the convergence of data and telecom, where the low cost of data com meets with the high reliability requirements of telecom. The text below is to a degree taken form the Strategic Research Agenda of the Technology Platform Photonics 21 [1], as this contains a concerted effort to iron out a strategy for EU in the area of photonics components and systems.

  8. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  9. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    International Nuclear Information System (INIS)

    Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Poloski, Adam P.; Vienna, John D.; Moyer, Bruce A.; Hobbs, David; Wilmarth, B.; Mcilwain, Michael; Subramanian, K.; Krahn, Steve; Machara, N.

    2009-01-01

    Cleaning up the nation's nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research, addressing the full cleanup life-cycle, offers an opportunity to help address these challenges by providing (1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, (2) a rational path to the development of alternative technologies should the primary options fail, (3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and (4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DOE's Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM's responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM's mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The

  10. EDITORIAL: The next photonic revolution The next photonic revolution

    Science.gov (United States)

    Zheludev, Nikolay I.

    2009-11-01

    dependence upon active and switchable photonic metamaterials and nanophotonic devices. This revolution will lead to dramatic new science and applications on a global scale in all technologies using light, from data storage to optical processing of information, from sensing to light harvesting and energy conversion. Five plenary talks at the conference outlined its topical boundaries. They were given by Sir Michael Berry, Bristol University, UK, who spoke on the new topic of optical super-oscillations; Harry A Atwater, California Institute of Technology, USA, who gave an overview of recent developments in plasmonics; Christian Colliex, Université Paris-Sud, France, who presented the concept of electron energy-loss spectroscopy for the study of localized plasmons; Xiang Zhang, University of California at Berkeley, USA, who talked about recent achievements in the optical super-lens, and Antoinette Taylor, National Laboratory, Los Alamos, USA, who discussed recent work on tunable terahertz metamaterials. In the specially assigned `breakthrough' talks Steven Anlage, University of Maryland, USA, introduced the emerging field of superconducting meta-materials, Tobias Kippenberg, Max-Planck-Institut, Garching, Germany, talked about cavity optomechanics on a chip, while Misha Lukin, Harvard University, USA, explored the field of quantum plasmonics and Victor Prinz, Russian Academy of Science, Russia, introduced a novel class of metamaterials based on three-dimensional semiconductor nanostructures. The topical scope of this special section, to a great extent, echoes the paradigm shift in the NANOMETA community and includes papers on nanofabrication of plasmonic structure, transformation optics and invisibility, mapping of fields in nanostructures, nonlinear and magnetoplasmonic media, coherent effects in metamaterials, loss compensation in nanostructures, slow light and ultrafast switching of plasmon signals, and many other topics. The Guest Editor of this special section and the co

  11. Polymers for electronic & photonic application

    CERN Document Server

    Wong, C P

    2013-01-01

    The most recent advances in the use of polymeric materials by the electronic industry can be found in Polymers for Electronic and Photonic Applications. This bookprovides in-depth coverage of photoresis for micro-lithography, microelectronic encapsulants and packaging, insulators, dielectrics for multichip packaging,electronic and photonic applications of polymeric materials, among many other topics. Intended for engineers and scientists who design, process, and manufacturemicroelectronic components, this book will also prove useful for hybrid and systems packaging managers who want to be info

  12. Quasimetallic silicon micromachined photonic crystals

    International Nuclear Information System (INIS)

    Temelkuran, B.; Bayindir, Mehmet; Ozbay, E.; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.

    2001-01-01

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  13. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  14. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P.; Bakr, Osman; Sargent, Edward H.

    2015-01-01

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  15. Calculation of HPGe Detector Response for NRF Photons Scattered from Threat Materials

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.

    2009-01-01

    Nuclear Resonance Fluorescence (NRF) is a process of resonant nuclear absorption of photons, followed by deexcitation with emission of fluorescence photons. The cross section of NRF photons process is given by σ i max ≡ 2π(λ/2π) 2 2J+1/2J 0 +1 Γ 0 Γ i /Γ tot 2 , where λ is the wavelength of the photon, J 0 and J are the nuclear spins of the ground state and excited state, respectively, Γ 0 , Γ i and Γ tot are decay width for deexcitation to the ground state, to the i-th mode state and total decay width, respectively. NRF based security inspection technique uses the signatures of resonance energies of the fluorescence photon scattered from nuclides of the illicit materials in cargo container. NRF can be used to identify the material type, quantity and location. It is performed by measuring the fluorescence photon and the transmitted photon spectrum while irradiating Bremsstrahlung photon beam to the sample

  16. Nonlinear photonic metasurfaces

    Science.gov (United States)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  17. A new two-photon mechanism of the formation of a continuous spectrum of photons emitted by secondary emission products of atomic particles

    International Nuclear Information System (INIS)

    Veksler, V.I.

    1986-01-01

    A two-photon mechanism of the formation of a continuous spectrum of photons emitted by products of metal sputtering is considered. The following process of the two-photon mechanism is considered: the continuous spectrum is formed under quadrupole two-photon transitions in sputtered excited atoms having vacancies at the d level in atoms of transition metals or at the of level in lanthanides found against the filled conduction band. It is shown that the suggested mechanism should play an essential role in the formation of the continuous spectrum of optical radiation

  18. Photon Subtraction by Many-Body Decoherence

    DEFF Research Database (Denmark)

    Murray, C. R.; Mirgorodskiy, I.; Tresp, C.

    2018-01-01

    We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple...... stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how...... this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability....

  19. Fiscal 1997 report under consignment from NEDO on photon measuring/processing technology (development of power generation facility use high-function maintenance technology); 1997 nendo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku photon keisoku kako gijutsu (hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A research/development was conducted on technologies of photon applied measuring/photon applied processing/photon generation which are usable for heightening of reliability and maintenance efficiency of power generation facilities. In fiscal 1997, high melting-point metal particles were manufactured by high energy density laser for formation of high temperature and stabilized fine functional circuit. Further, a wavelength changeable ultra red laser light source was studied which can make in-situ measurement of gas concentration and components. A study was also made to examine the surface composition by measuring fluorescent X-rays emitted by radiating high intensity laser beam on the surface of material. A rod type and a slab type as a high-output complete-solidified laser are under development. There is also a development aiming at high speed/high quality photon processing such as high speed/high precision welding/cutting and laser joining. Besides, a study is being made of high energy pulse/high quality beam complete-solidified laser. The paper made a comprehensive survey of the trend of the photon measuring/monitoring technology, and made a systematical arrangement of the developmental subjects extracted. 142 refs., 357 figs., 62 tabs.

  20. Monolithically Integrated Ge-on-Si Active Photonics

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-07-01

    Full Text Available Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs, electroabsorption modulators (EAMs, and laser diodes (LDs, and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform.

  1. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  2. FY 2006 Infrared Photonics Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Allen, Paul J.; Bernacki, Bruce E.; Ho, Nicolas; Krishnaswami, Kannan; Qiao, Hong (Amy); Schultz, John F.

    2006-12-28

    Research done by the Infrared Photonics team at Pacific Northwest National Laboratory (PNNL) is focused on developing miniaturized integrated optics and optical fiber processing methods for mid-wave infrared (MWIR) and long-wave infrared (LWIR) sensing applications by exploiting the unique optical and material properties of chalcogenide glass. PNNL has developed thin-film deposition capabilities, direct laser writing techniques, infrared photonic device demonstration, holographic optical element design and fabrication, photonic device modeling, and advanced optical metrology—all specific to chalcogenide glass. Chalcogenide infrared photonics provides a pathway to quantum cascade laser (QCL) transmitter miniaturization. The high output power, small size, and superb stability and modulation characteristics of QCLs make them amenable for integration as transmitters into ultra-sensitive, ultra-selective point sampling and remote short-range chemical sensors that are particularly useful for nuclear nonproliferation missions.

  3. Proposal for an optomechanical traveling wave phonon-photon translator

    Energy Technology Data Exchange (ETDEWEB)

    Safavi-Naeini, Amir H; Painter, Oskar, E-mail: safavi@caltech.edu, E-mail: opainter@caltech.edu [Thomas J Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2011-01-15

    In this paper, we describe a general optomechanical system for converting photons to phonons in an efficient and reversible manner. We analyze classically and quantum mechanically the conversion process and proceed to a more concrete description of a phonon-photon translator (PPT) formed from coupled photonic and phononic crystal planar circuits. The application of the PPT to RF-microwave photonics and circuit QED, including proposals utilizing this system for optical wavelength conversion, long-lived quantum memory and state transfer from optical to superconducting qubits, is considered.

  4. ITMO Photonics: center of excellence

    Science.gov (United States)

    Voznesenskaya, Anna; Bougrov, Vladislav; Kozlov, Sergey; Vasilev, Vladimir

    2016-09-01

    ITMO University, the leading Russian center in photonics research and education, has the mission to train highlyqualified competitive professionals able to act in conditions of fast-changing world. This paradigm is implemented through creation of a strategic academic unit ITMO Photonics, the center of excellence concentrating organizational, scientific, educational, financial, laboratory and human resources. This Center has the following features: dissemination of breakthrough scientific results in photonics such as advanced photonic materials, ultrafast optical and quantum information, laser physics, engineering and technologies, into undergraduate and graduate educational programs through including special modules into the curricula and considerable student's research and internships; transformation of the educational process in accordance with the best international educational practices, presence in the global education market in the form of joint educational programs with leading universities, i.e. those being included in the network programs of international scientific cooperation, and international accreditation of educational programs; development of mechanisms for the commercialization of innovative products - results of scientific research; securing financial sustainability of research in the field of photonics of informationcommunication systems via funding increase and the diversification of funding sources. Along with focusing on the research promotion, the Center is involved in science popularization through such projects as career guidance for high school students; interaction between student's chapters of international optical societies; invited lectures of World-famous experts in photonics; short educational programs in optics, photonics and light engineering for international students; contests, Olympics and grants for talented young researchers; social events; interactive demonstrations.

  5. One color multi-photon ionization of the Gadolinium atom in near UV region

    International Nuclear Information System (INIS)

    Kim, Jin Tae; Yi, Jong Hoon; Lhee, Yong Joo; Lee, Jong Min

    1999-01-01

    We have investigated the states of the gadolinium atom in near ultra-violet (UV) region (∼410 nm) using single photon excitation using resonance ionization mass spectrometry (RIMS). Around 70 transitions among observed 180 single color multi-photon ionization signals have been assigned. Most of the multi-photon processes of the assigned ion signals are through single photon resonant three photon ionization and through two photon resonant three photon ionization. (author)

  6. Tunable two-photon correlation in a double-cavity optomechanical system

    Directory of Open Access Journals (Sweden)

    Zhi-Bo Feng

    2015-12-01

    Full Text Available Correlated photons are essential sources for quantum information processing. We propose a practical scheme to generate pairs of correlated photons in a controllable fashion from a double-cavity optomechanical system, where the variable optomechanical coupling strength makes it possible to tune the photon correlation at our will. The key operation is based on the repulsive or attractive interaction between the two photons intermediated by the mechanical resonator. The present protocol could provide a potential approach to coherent control of the photon correlation using the optomechanical cavity.

  7. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    Efficient and high quality single-photon sources is a key element in quantum information processing using photons. As a consequence, much current research is focused on realizing all-solid-state nanophotonic single-photon sources. Single photons can be harvested with high efficiency if the emitter...... is coupled efficiently to a single enhanced mode. One popular approach has been to couple single quantum dots to a nanocavity but a limiting factor in this configuration is that in order to apply the photon it should subsequently be coupled out of the cavity, reducing the overall efficiency significantly...

  8. gPhoton: THE GALEX PHOTON DATA ARCHIVE

    Energy Technology Data Exchange (ETDEWEB)

    Million, Chase [Million Concepts LLC, P.O. Box 119, 141 Mary Street, Lemont, PA 16851 (United States); Fleming, Scott W.; Shiao, Bernie; Smith, Myron; Thompson, Randy; White, Richard L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Seibert, Mark [The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Loyd, Parke [Laboratory for Atmospheric and Space Physics, Boulder, Colorado, 80309 (United States); Tucker, Michael [Dept. of Physics and Astronomy, Appalachian State University, Boone, NC 28608 (United States)

    2016-12-20

    gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project’s stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope. This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command-line modules serve as a front end to interact with the database and to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database, and tools, with emphasis on divergence from prior work, as well as challenges created by the large data volume. We summarize the astrometric and photometric performance of gPhoton relative to the original mission pipeline. For a brief example of short time-domain science capabilities enabled by gPhoton, we show new flares from the known M-dwarf flare star CR Draconis. The gPhoton software has permanent object identifiers with the ASCL (ascl:1603.004) and DOI (doi:10.17909/T9CC7G). This paper describes the software as of version v1.27.2.

  9. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    Science.gov (United States)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  10. Multipurpose silicon photonics signal processor core.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José

    2017-09-21

    Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

  11. Scheme for generating Greenberger-Horne-Zeilinger-type states of n photons

    International Nuclear Information System (INIS)

    Sagi, Yoav

    2003-01-01

    In this paper we propose a scheme for creating a three photons Greenberger-Horne-Zeilinger-type (GHZ) state using only linear optics elements and single-photon detectors. We furthermore generalize the scheme for producing any GHZ-like state of n photons. The input state of the scheme consists of a nonentangled state of n photons. Experimental aspects regarding the implementation of the scheme are presented. Finally, the role of such schemes in quantum information processing with photons is discussed

  12. Contribution of the two-photon annihilation process in the measurement of σ/sub t/ (e+e/sup /minus// → hadrons at PEP)

    International Nuclear Information System (INIS)

    Shen, B.

    1988-01-01

    The possible impact of the 2γ process e/sup /plus//e/sup/minus// → e/sup /plus//e/sup /minus// /plus/ hadrons is evaluated as a source of background for the study of the one photon annihilation process. Two regions of hadron system invariant mass are considered---the resonance region with low invariant mass, and the ''diffractive'' region above 2 GeV hadron invariant mass. In spite of the fact that the 2γ cross-section rises with the energy of the initial e/sup /plus//e/sup /minus// system, it seems clear that measurements of the total energy of the final hadron system will allow the clean separation of the 2γ events from the single photon annihilation reaction

  13. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  14. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  15. The process of developing audiovisual patient information: challenges and opportunities.

    Science.gov (United States)

    Hutchison, Catherine; McCreaddie, May

    2007-11-01

    The aim of this project was to produce audiovisual patient information, which was user friendly and fit for purpose. The purpose of the audiovisual patient information is to inform patients about randomized controlled trials, as a supplement to their trial-specific written information sheet. Audiovisual patient information is known to be an effective way of informing patients about treatment. User involvement is also recognized as being important in the development of service provision. The aim of this paper is (i) to describe and discuss the process of developing the audiovisual patient information and (ii) to highlight the challenges and opportunities, thereby identifying implications for practice. A future study will test the effectiveness of the audiovisual patient information in the cancer clinical trial setting. An advisory group was set up to oversee the project and provide guidance in relation to information content, level and delivery. An expert panel of two patients provided additional guidance and a dedicated operational team dealt with the logistics of the project including: ethics; finance; scriptwriting; filming; editing and intellectual property rights. Challenges included the limitations of filming in a busy clinical environment, restricted technical and financial resources, ethical needs and issues around copyright. There were, however, substantial opportunities that included utilizing creative skills, meaningfully involving patients, teamworking and mutual appreciation of clinical, multidisciplinary and technical expertise. Developing audiovisual patient information is an important area for nurses to be involved with. However, this must be performed within the context of the multiprofessional team. Teamworking, including patient involvement, is crucial as a wide variety of expertise is required. Many aspects of the process are transferable and will provide information and guidance for nurses, regardless of specialty, considering developing this

  16. On-chip steering of entangled photons in nonlinear photonic crystals.

    Science.gov (United States)

    Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N

    2011-08-16

    One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.

  17. Two-photon interference of polarization-entangled photons in a Franson interferometer.

    Science.gov (United States)

    Kim, Heonoh; Lee, Sang Min; Kwon, Osung; Moon, Han Seb

    2017-07-18

    We present two-photon interference experiments with polarization-entangled photon pairs in a polarization-based Franson-type interferometer. Although the two photons do not meet at a common beamsplitter, a phase-insensitive Hong-Ou-Mandel type two-photon interference peak and dip fringes are observed, resulting from the two-photon interference effect between two indistinguishable two-photon probability amplitudes leading to a coincidence detection. A spatial quantum beating fringe is also measured for nondegenerate photon pairs in the same interferometer, although the two-photon states have no frequency entanglement. When unentangled polarization-correlated photons are used as an input state, the polarization entanglement is successfully recovered through the interferometer via delayed compensation.

  18. UV photon and low-energy (5--150 eV) electron-stimulated processes at environmental interfaces

    International Nuclear Information System (INIS)

    Orlando, T.M.

    1997-01-01

    Irradiation of surfaces and interfaces with low-energy (5--150 eV) electrons and ultraviolet photons occurs during the storage of ''mixed'' (chemical/radioactive) waste forms and during processing steps which involve the use of low temperature plasmas. It is well known that electron- and photon-stimulated desorption (ESD and PSD) from wide band-gap materials and interfaces can be initiated by Auger decay of deep valence and shallow core holes. This process consists of hole production, Auger decay, reversal of the Madelung potential, and ion expulsion due to the Coulomb repulsion. ESD and PSD of neutrals also occurs and involves production of electron-hole pairs and excitons. Generally, neutral yields dominate ESD and PSD cross sections, which typically vary between ∼10 -16 and 10 -22 cm 2 . The authors present results on the ESD and PSD of environmentally relevant substrates such as ZrO 2 (100), soda-glass, and NaNO 3 . The major cation thresholds and yields indicate that ESD and PSD from these complex materials involves Auger stimulated events. In particular, desorption thresholds correlate with ionization of the O(2s), Zr(4p), Si(2p) and Na(2s) levels. The near band-gap threshold energy (∼5--7 eV) for the desorption of neutrals (i.e., atomic oxygen, NO, etc) demonstrate the overall importance of self-trapped and localized excitons in both ESD and PSD of typical ceramics and oxides

  19. The potential benefits of photonics in the computing platform

    Science.gov (United States)

    Bautista, Jerry

    2005-03-01

    The increase in computational requirements for real-time image processing, complex computational fluid dynamics, very large scale data mining in the health industry/Internet, and predictive models for financial markets are driving computer architects to consider new paradigms that rely upon very high speed interconnects within and between computing elements. Further challenges result from reduced power requirements, reduced transmission latency, and greater interconnect density. Optical interconnects may solve many of these problems with the added benefit extended reach. In addition, photonic interconnects provide relative EMI immunity which is becoming an increasing issue with a greater dependence on wireless connectivity. However, to be truly functional, the optical interconnect mesh should be able to support arbitration, addressing, etc. completely in the optical domain with a BER that is more stringent than "traditional" communication requirements. Outlined are challenges in the advanced computing environment, some possible optical architectures and relevant platform technologies, as well roughly sizing these opportunities which are quite large relative to the more "traditional" optical markets.

  20. QCD measurements in photon-photon collisions at LEP

    OpenAIRE

    Csilling, Akos

    2001-01-01

    An overview of the latest results of the LEP collaborations on QCD measurements in photon-photon collisions is presented, including measurements of the total hadronic cross-section, the production of heavy quarks and dijets and the structure functions of real and virtual photons.

  1. First experimental observation of double-photon Compton scattering using single gamma detector

    International Nuclear Information System (INIS)

    Sandhu, B.S.; Saddi, M.B.; Singh, B.; Ghumman, B.S.

    2003-01-01

    Full text: The phenomenon of double-photon Compton scattering has been successfully observed using single gamma detector, a technique avoiding the use of complicated slow-fast coincidence set-up used till now for observing this higher order process. Here doubly differentiated collision cross-section integrated over direction of one of the two final photons, the direction of other one being kept fixed, has been measured experimentally for 0.662 MeV incident gamma photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process

  2. Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    M. Pechal

    2014-10-01

    Full Text Available Large-scale quantum information processors or quantum communication networks will require reliable exchange of information between spatially separated nodes. The links connecting these nodes can be established using traveling photons that need to be absorbed at the receiving node with high efficiency. This is achievable by shaping the temporal profile of the photons and absorbing them at the receiver by time reversing the emission process. Here, we demonstrate a scheme for creating shaped microwave photons using a superconducting transmon-type three-level system coupled to a transmission line resonator. In a second-order process induced by a modulated microwave drive, we controllably transfer a single excitation from the third level of the transmon to the resonator and shape the emitted photon. We reconstruct the density matrices of the created single-photon states and show that the photons are antibunched. We also create multipeaked photons with a controlled amplitude and phase. In contrast to similar existing schemes, the one we present here is based solely on microwave drives, enabling operation with fixed frequency transmons.

  3. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio...... the evolution of the fiber output beam in the few micro or milliseconds after the beam is turned on. The characterization of the temporal behavior of the thermal nonlinear response provides important information about the nonlocality associated with heat diffusion inside the fiber, thus enabling studies of long...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...

  4. Photon upconversion towards applications in energy conversion and bioimaging

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen C.; Sagar, Dodderi M.; Nagpal, Prashant

    2017-12-01

    The field of plasmonics can play an important role in developing novel devices for application in energy and healthcare. In this review article, we consider the progress made in design and fabrication of upconverting nanoparticles and metal nanostructures for precisely manipulating light photons, with a wavelength of several hundred nanometers, at nanometer length scales, and describe how to tailor their interactions with molecules and surfaces so that two or more lower energy photons can be used to generate a single higher energy photon in a process called photon upconversion. This review begins by introducing the current state-of-the-art in upconverting nanoparticle synthesis and achievements in color tuning and upconversion enhancement. Through understanding and tailoring physical processes, color tuning and strong upconversion enhancement have been demonstrated by coupling with surface plasmon polariton waves, especially for low intensity or diffuse infrared radiation. Since more than 30% of incident sunlight is not utilized in most photovoltaic cells, this photon upconversion is one of the promising approaches to break the so-called Shockley-Queisser thermodynamic limit for a single junction solar cell. Furthermore, since the low energy photons typically cover the biological window of optical transparency, this approach can also be particularly beneficial for novel biosensing and bioimaging techniques. Taken together, the recent research boosts the applications of photon upconversion using designed metal nanostructures and nanoparticles for green energy, bioimaging, and therapy.

  5. Realisation and optical engineering of linear variable bandpass filters in nanoporous anodic alumina photonic crystals.

    Science.gov (United States)

    Sukarno; Law, Cheryl Suwen; Santos, Abel

    2017-06-08

    We present the first realisation of linear variable bandpass filters in nanoporous anodic alumina (NAA-LVBPFs) photonic crystal structures. NAA gradient-index filters (NAA-GIFs) are produced by sinusoidal pulse anodisation and used as photonic crystal platforms to generate NAA-LVBPFs. The anodisation period of NAA-GIFs is modified from 650 to 850 s to systematically tune the characteristic photonic stopband of these photonic crystals across the UV-visible-NIR spectrum. Then, the nanoporous structure of NAA-GIFs is gradually widened along the surface under controlled conditions by wet chemical etching using a dip coating approach aiming to create NAA-LVBPFs with finely engineered optical properties. We demonstrate that the characteristic photonic stopband and the iridescent interferometric colour displayed by these photonic crystals can be tuned with precision across the surface of NAA-LVBPFs by adjusting the fabrication and etching conditions. Here, we envisage for the first time the combination of the anodisation period and etching conditions as a cost-competitive, facile, and versatile nanofabrication approach that enables the generation of a broad range of unique LVBPFs covering the spectral regions. These photonic crystal structures open new opportunities for multiple applications, including adaptive optics, hyperspectral imaging, fluorescence diagnostics, spectroscopy, and sensing.

  6. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  7. (RN) pair production by photons in a hot Maxwellian plasma

    International Nuclear Information System (INIS)

    Haug, E.

    2004-01-01

    The production of electron-positron pairs by photons in the Coulomb Field of electrons and positrons (triplet production) in hot thermal plasmas is investigated. The pair production rate for this process is calculated as a function of the photon energy and compared with the rate of photon-nucleus pair production for semi-relativistic and relativistic plasma temperatures. (author)

  8. Pauli principle in the soft-photon approach to proton-proton bremsstrahlung

    NARCIS (Netherlands)

    Liou, MK; Timmermans, R; Gibson, BF

    1996-01-01

    A relativistic and manifestly gauge-invariant soft-photon amplitude, which is consistent with the soft-photon theorem and satisfies the Pauli principle, is derived for the proton-proton bremsstrahlung process. This soft-photon amplitude is the first two-u-two-t special amplitude to satisfy all

  9. The photon structure function

    International Nuclear Information System (INIS)

    Berger, C.

    1984-01-01

    In principle we have to distinguish between three cases: In no-tag experiments, none of the outgoing leptons e + e - is detected. The photon flux is completely dominated by transversely polarized photons, which are practically on-mass-shell. In single-tag experiments, either the outgoing e - or e + is detected in a forward spectrometer. Sometimes the tagging information is only used for separating a multihadronic twophoton final state from e + e - annihilation states. On the other hand, the information from the forward detectors can be used to investigate the Q 2 behaviour of the cross-section. A combination of tagging on one side with antitagging on the other allows an easy interpretation of the results in terms of electron scattering off a real photon target. In double-tag experiments, both outgoing leptons are measured. In principle, the full kinematical structure of the process can be studied, but we are still a long way from starting to tackle this difficult task

  10. Elastic and inelastic photon scattering on the atomic nuclei

    International Nuclear Information System (INIS)

    Piskarev, I.M.

    1982-01-01

    Works on investigation of elastic and inelastic scattering of photons on heavy and intermediate nuclei are briefly reviewed. Theoretical problems of nuclear and electron Tompson, Releev and Delbrueck scatterings as well as nuclear resonance scattering are briefly discussed. It is shown that differential cross section of coherent elastic scattering is expressed by means of partial amplitudes of shown processes. Experimental investigations on elastic scattering in the region of threshold energies of photonucleon reactions are described. Problems of theoretical description of elastic scattering in different variants of collective models are considered. Discussed are works, investigating channels of inelastic photon scattering with excitation of nuclear Raman effect. It is noted that to describe channels of inelastic photon scattering it is necessary to use models, that correctly regard the microscopic structure of giant resonance levels to obtain information on the nature of these levels. Investigations of processes of photon elastic and inelastic scattering connected with fundamental characteristics of atomic nucleus, permit to obtain valuable spectroscopic information on high-lying levels of nucleus. Detail investigation of photon scattering in a wide range of energies is necessary [ru

  11. APIPIS: the Atomic Physics Ion-Photon Interaction System

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.; Kostroun, V.O.

    1985-01-01

    A proposed new facility for the study of highly charged heavy ions is described. The basic elements of APIPIS, the Atomic Physics Ion-Photon Interaction System, are: (1) a source of multiply-charged ions; (2) a linear accelerator; (3) a synchrotron storage ring; and (4) a source of high brightness x rays. The placement of a heavy ion storage ring at the x-ray ring of the National Synchrotron Light Source will provide unique opportunities for the study of photo-excitation of heavy ions

  12. Optical π phase shift created with a single-photon pulse.

    Science.gov (United States)

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  13. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  14. Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments

    International Nuclear Information System (INIS)

    Barz, Stefanie

    2015-01-01

    Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. This tutorial reviews the fundamental tools of photonic quantum information processing. The basics of theoretical quantum computing are presented and the quantum circuit model as well as measurement-based models of quantum computing are introduced. Furthermore, it is shown how these concepts can be implemented experimentally using photonic qubits, where information is encoded in the photons’ polarization. (tutorial)

  15. Room-temperature-deposited dielectrics and superconductors for integrated photonics.

    Science.gov (United States)

    Shainline, Jeffrey M; Buckley, Sonia M; Nader, Nima; Gentry, Cale M; Cossel, Kevin C; Cleary, Justin W; Popović, Miloš; Newbury, Nathan R; Nam, Sae Woo; Mirin, Richard P

    2017-05-01

    We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 °C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.

  16. Time-Dependent Neutron and Photon Dose-Field Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, Hasani Omar [Georgia Inst. of Technology, Atlanta, GA (United States)

    2005-08-01

    A unique tool is developed that allows the user to model physical representations of complicated glovebox facilities in two dimensions and determine neutral-particle flux and ambient dose-equivalent fields throughout that geometry. The Pandemonium code, originally designed to determine flux and dose-rates only, is improved to include realistic glovebox geometries, time-dependent source and detector positions, time-dependent shielding thickness calculations, time-integrated doses, a representative criticality accident scenario based on time-dependent reactor kinetics, and more rigorous photon treatment. A primary benefit of this work has been an extensive analysis and improvement of the photon model that is not limited to the application described in this thesis. The photon model has been extended in energy range to 10 MeV to include photons from fission and new photon buildup factors have been included that account for the effects of photon buildup at slant-path thicknesses as a function of angle, where the mean free path thickness has been preserved. The overall system of codes is user-friendly and it is directly applicable to facilities such as the plutonium facility at Los Alamos National Laboratory, where high-intensity neutron and photon emitters are regularly used. The codes may be used to determine a priori doses for given work scenarios in an effort to supply dose information to process models which will in turn assist decision makers on ensuring as low as reasonably achievable (ALARA) compliance. In addition, coupling the computational results of these tools with the process model visualization tools will help to increase worker safety and radiological safety awareness.

  17. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  18. Fiscal 1997 research report on the R and D project under a consignment from NEDO. Photonics engineering (R and D of photonics measuring/processing technology); 1997 nendo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Photon keisoku kako gijutsu (photon keisoku kako gijutsu no kenkyu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Survey was made on the trend of R and D on photonics engineering to clarify the direction of its impact and ripple effect on industrial fields. Reduction of environment burden, improvement of the productivity and reliability of products, and creation of new industries by novel creative R and D are necessary simultaneously. For reconsideration of the previous measurement and machining technologies in a manufacturing industry, use of photon (laser) beams is promising. As photonics engineering, photonics measurement and machining, and elemental and peripheral technologies for generation and control of photon were surveyed. Photonics application technologies for medical care and diagnosis, communication and transmission, entertainment, and chemical fields were also surveyed. In fiscal 1997 as the first year of this project, based on the results obtained in leading researches conducted until fiscal 1996, some technological issues were clarified through the survey on the latest trend of photonics engineering in measurement, machining and generation fields, and its feasibility in the other fields. 265 refs., 91 figs., 10 tabs.

  19. The ATLAS Electron and Photon Trigger

    CERN Document Server

    Jones, Samuel David; The ATLAS collaboration

    2018-01-01

    ATLAS electron and photon triggers covering transverse energies from 5 GeV to several TeV are essential to record signals for a wide variety of physics: from Standard Model processes to searches for new phenomena. To cope with ever-increasing luminosity and more challenging pile-up conditions at a centre-of-mass energy of 13 TeV, the trigger selections need to be optimized to control the rates and keep efficiencies high. The ATLAS electron and photon trigger performance in Run 2 will be presented, including both the role of the ATLAS calorimeter in electron and photon identification and details of new techniques developed to maintain high performance even in high pile-up conditions.

  20. Photonic spin Hall effect at metasurfaces.

    Science.gov (United States)

    Yin, Xiaobo; Ye, Ziliang; Rho, Junsuk; Wang, Yuan; Zhang, Xiang

    2013-03-22

    The spin Hall effect (SHE) of light is very weak because of the extremely small photon momentum and spin-orbit interaction. Here, we report a strong photonic SHE resulting in a measured large splitting of polarized light at metasurfaces. The rapidly varying phase discontinuities along a metasurface, breaking the axial symmetry of the system, enable the direct observation of large transverse motion of circularly polarized light, even at normal incidence. The strong spin-orbit interaction deviates the polarized light from the trajectory prescribed by the ordinary Fermat principle. Such a strong and broadband photonic SHE may provide a route for exploiting the spin and orbit angular momentum of light for information processing and communication.

  1. How bright is the proton? A precise determination of the photon PDF

    CERN Document Server

    Manohar, Aneesh; Salam, Gavin P; Zanderighi, Giulia

    2016-01-01

    It has become apparent in recent years that it is important, notably for a range of physics studies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the proton. We show how the photon parton distribution function (PDF) can be determined in a model-independent manner, using electron-proton ($ep$) scattering data, in effect viewing the $ep\\to e+X$ process as an electron scattering off the photon field of the proton. To this end, we consider an imaginary BSM process with a flavour changing photon-lepton vertex. We write its cross section in two ways, one in terms of proton structure functions, the other in terms of a photon distribution. Requiring their equivalence yields the photon distribution as an integral over proton structure functions. As a result of the good precision of $ep$ data, we constrain the photon PDF at the level of 1-2% over a wide range of $x$ values.

  2. Single-photon detector operating under extremely high background photon flux conditions

    International Nuclear Information System (INIS)

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  3. Photon statistical properties of photon-added two-mode squeezed coherent states

    International Nuclear Information System (INIS)

    Xu Xue-Fen; Wang Shuai; Tang Bin

    2014-01-01

    We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA-TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA-TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Prompt photon production in photoproduction at HERA

    International Nuclear Information System (INIS)

    Nowak, Krzysztof

    2010-03-01

    This thesis presents measurement of the production of prompt photons in photoproduction with the H1 experiment at HERA. The analysis is based on the data taken in the years 2004-2007, with a total integrated luminosity of 340 pb -1 . The main difficulty of the measurement comes from the high background of neutral mesons decaying into photons. It is accounted for with the help of multivariate analysis. Prompt photon cross sections are measured with the low negative four-momentum transfer squared Q 2 2 and in the inelasticity range 0.1 T γ γ γ and x p of the incident photon and proton carried by the constituents participating in the hard scattering process. Additionally, the transverse correlation between the photon and the jet is studied. The results are compared with predictions of a next-to-leading order calculation and a calculation based on the k T factorisation approach. Neither of calculations is able to describe all the aspects of the measurement. (orig.)

  5. New coherent cancellation effect involving four-photon excitation and the related ionization

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.; Judish, J.P.; McCann, M.P.

    1988-11-01

    We describe here an effect which occurs when a first laser is tuned near a dipole allowed three-photon resonance and a second laser is used to complete a dipole allowed four-photon resonance between the ground state 0 > and an excited state 2 >. In this process three photons are absorbed from the first laser and one photon from the second; so that if the 0 >--2 > transition is two-photon allowed the transition is also pumped resonantly by the third harmonic field due to the first laser and the second laser field. When the second laser is strong enough to cause strong absorption of the third harmonic light, and the phase mismatch, /DELTA/κ is large and dominated by the nearby resonance, a destructive interference occurs between the pumping of the 0 >--2 > transition by two- and four-photon process. 7 refs

  6. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  7. Resonance formation in photon-photon collisions

    International Nuclear Information System (INIS)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the γγ* production of spin-one resonances. 37 refs., 17 figs., 5 tabs

  8. Proceedings of the Fifth Users Meeting for the Advanced Photon Source

    International Nuclear Information System (INIS)

    1992-12-01

    The Fifth Users Meeting for the Advanced Photon Source (APS) was held on October 14--15, 1992, at Argonne National Laboratory. Scientists and engineers from universities, industry, and national laboratories came to review the status of the facility and to look ahead to the types of forefront science that will be possible when the APS is completed. The presentations at the meeting included an overview of the project, funding opportunities, advances in synchrotron radiation applications, and technical developments at the APS. In addition, the 15 Collaborative Access Teams that have been approved to date participated in a poster session, and several vendors displayed their wares. The actions taken at the 1992 Business Meeting of the Advanced Photon Source Users Organization are also documented

  9. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.

    2005-01-01

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process

  10. Preparation and photonic bandgap properties of Na1/2Bi1/2TiO3 inverse opal photonic crystals

    International Nuclear Information System (INIS)

    Yang Zhengwen; Zhou Ji; Huang Xueguang; Xie Qin; Fu Ming; Li Bo; Li Longtu

    2009-01-01

    The Na 1/2 Bi 1/2 TiO 3 (NBT) inverse opal photonic crystals were prepared by the self-assembly technique in combination with a sol-gel method. In the preparation process, NBT precursors were filled into the interstices of the opal template assembled by monodispersive polystyrene microspheres. The polystyrene template was then removed by calcination at 800 deg. C for 5 h, meanwhile, a perovskite NBT inverse opal photonic crystal was formed. An optical micrograph shows that the NBT inverse opals reflect green-yellow light strongly. Moreover, a photonic band gap was observed by reflective spectra of NBT sample

  11. Photon Counting Using Edge-Detection Algorithm

    Science.gov (United States)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  12. Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations

    Science.gov (United States)

    Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas

    2015-11-01

    Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.

  13. Scientific Opportunities to Reduce Risk in Nuclear Process Science

    International Nuclear Information System (INIS)

    Bredt, P.R.; Felmy, A.R.; Gauglitz, P.A.; Poloski, A.P.; Vienna, J.D.; Moyer, B.A.; Hobbs, D.; Wilmarth, B.; McIlwain, M.; Subramanian, K.; Krahn, S.; Machara, N.

    2009-01-01

    Cleaning up the nation's nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as strategies that may provide undue focus on near-term goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research addressing the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, and 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes. Over the last 3 years, DoE's Office of Environmental Management (EM) has experienced a fundamental shift in philosophy. The mission focus of driving to closure has been replaced by one of enabling the long-term needs of DOE and the nation. Resolving new challenges, such as the disposition of DOE spent nuclear fuel, have been added to EM's responsibilities. In addition, the schedules for addressing several elements of the cleanup mission have been extended. As a result, EM's mission is no longer focused only on driving the current baselines to closure. Meeting the mission will require fundamental advances over at least a 30-year window if not longer as new challenges are added. The overall

  14. Few-photon Non-linearities in Nanophotonic Devices for Quantum Information Technology

    DEFF Research Database (Denmark)

    Nysteen, Anders

    In this thesis we investigate few-photon non-linearities in all-optical, on-chip circuits, and we discuss their possible applications in devices of interest for quantum information technology, such as conditional two-photon gates and single-photon sources. In order to propose efficient devices...... the scattered photons. Even though the non-linearity also alters the pulse spectrum due to a four-wave mixing process, we demonstrate that input pulses with a Gaussian spectrum can be mapped to the output with up to 80 % fidelity. Using two identical two-level emitters, we propose a setup for a deterministic...... by the capturing process. Semiconductor quantum dots (QDs) are promising for realizing few-photon non-linearities in solid-state implementations, although coupling to phonon modes in the surrounding lattice have significant influence on the dynamics. By accounting for the commonly neglected asymmetry between...

  15. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Science.gov (United States)

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  16. Direct photon production in heavy-ion reactions at SPS and RHIC

    Indian Academy of Sciences (India)

    An outlook on the perspective of photon measurements at ... QCD, the theory of strong interaction, enters the perturbative regime and is calculable. ... While photon production may be less difficult to treat than some other processes ... the context of both prompt and thermal direct photons, as they are dominated by the lowest.

  17. Quantum secret sharing protocol using modulated doubly entangled photons

    International Nuclear Information System (INIS)

    Chuan, Wang; Yong, Zhang

    2009-01-01

    In this paper, we propose a quantum secret sharing protocol utilizing polarization modulated doubly entangled photon pairs. The measurement devices are constructed. By modulating the polarizations of entangled photons, the boss could encode secret information on the initial state and share the photons with different members to realize the secret sharing process. This protocol shows the security against intercept-resend attack and dishonest member cheating. The generalized quantum secret sharing protocol is also discussed. (general)

  18. Controllable optical bistability in photonic-crystal one-atom laser

    International Nuclear Information System (INIS)

    Guo Xiaoyong; Lue Shuchen

    2009-01-01

    We investigate the property of optical bistability in a photonic-crystal one-atom laser when nonlinear microcavity is present. The physical system consists of a coherently driven two-level light emitter strongly coupled to a high-quality microcavity which is embedded within a photonic crystal and another coherent probing field which has incident into the microcavity. In our case, the microcavity is fabricated by nonlinear material and placed as an impurity in photonic crystal. This study reveals that such a system can exhibit optical bistability. The dependence of threshold value and hysteresis loop on the photonic band gap of the photonic crystal, driving field Rabi frequency and dephasing processes, are studied. Our results clearly illustrate the ability to control optical bistability through suitable photonic-crystal architectures and external coherent driving field, and this study suggests that in a photonic-crystal nonlinear microcavity, the one-atom laser acts as an effective controllable bistable device in the design of all-light digital computing systems in the near future.

  19. Chemical sensors fabricated by a photonic integrated circuit foundry

    Science.gov (United States)

    Stievater, Todd H.; Koo, Kee; Tyndall, Nathan F.; Holmstrom, Scott A.; Kozak, Dmitry A.; Goetz, Peter G.; McGill, R. Andrew; Pruessner, Marcel W.

    2018-02-01

    We describe the detection of trace concentrations of chemical agents using waveguide-enhanced Raman spectroscopy in a photonic integrated circuit fabricated by AIM Photonics. The photonic integrated circuit is based on a five-centimeter long silicon nitride waveguide with a trench etched in the top cladding to allow access to the evanescent field of the propagating mode by analyte molecules. This waveguide transducer is coated with a sorbent polymer to enhance detection sensitivity and placed between low-loss edge couplers. The photonic integrated circuit is laid-out using the AIM Photonics Process Design Kit and fabricated on a Multi-Project Wafer. We detect chemical warfare agent simulants at sub parts-per-million levels in times of less than a minute. We also discuss anticipated improvements in the level of integration for photonic chemical sensors, as well as existing challenges.

  20. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    Science.gov (United States)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  1. Angle sensitive single photon avalanche diode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Changhyuk, E-mail: cl678@cornell.edu; Johnson, Ben, E-mail: bcj25@cornell.edu; Molnar, Alyosha, E-mail: am699@cornell.edu [Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  2. On-demand generation of background-free single photons from a solid-state source

    Science.gov (United States)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  3. [Study on spectral gain characterization of FWM processes with multi-frequency pumps in photonic crystal fiber].

    Science.gov (United States)

    Hui, Zhan-Qiang

    2011-10-01

    Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.

  4. On the basic mechanism of Pixelized Photon Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Otono, H. [Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)], E-mail: otono@icepp.s.u-tokyo.ac.jp; Oide, H. [Department of Physics, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamashita, S. [International Center for Elementary Particle Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yoshioka, T. [Neutron Science Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-10-21

    A Pixelized Photon Detector (PPD) is a generic name for the semiconductor devices operated in the Geiger-mode, such as Silicon PhotoMultiplier and Multi-Pixel Photon Counter, which has high photon counting capability. While the internal mechanisms of the PPD have been intensively studied in recent years, the existing models do not include the avalanche process. We have simulated the multiplication and quenching of the avalanche process and have succeeded in reproducing the output waveform of the PPD. Furthermore our model predicts the existence of dead-time in the PPD which has never been numerically predicted. For searching the dead-time, we also have developed waveform analysis method using deconvolution which has the potential to distinguish neighboring pulses precisely. In this paper, we discuss our improved model and waveform analysis method.

  5. Photon strength in spherical and deformed heavy nuclei

    International Nuclear Information System (INIS)

    Grosse, E.; Junghans, A.; Birgersson, E.; Massarczyk, R.; Schramm, G.; Becvar, F.

    2010-01-01

    Information on the photon strength in heavy nuclei with mass A>150 will be given and compared to respective data. The photon strength function is a very important ingredient for statistical model calculations - especially when these are used to describe neutron capture. Several schemes for a transmutation of radioactive waste favor nuclear reactions with fast neutrons and these also influence the performance of various reactor types proposed to deliver nuclear energy together with only small quantities of such waste. Reactions with fast neutrons are far less studied as compared to those induced by thermal neutrons. As they are not easily accessible experimentally, reference is often made to calculations using the statistical model. Photon emission probabilities are needed as input to such calculations aiming for predictions on fission to capture ratios. From the favorable comparison of our parameterization to the experimental data for photon induced as well radiative capture processes in nuclei with various shapes and level densities we conclude what follows. First, the giant dipole resonance has very much the same properties in all heavy nuclei when their deformation is properly accounted for and its spreading width varies only smoothly with the resonance energies E k and not with the photon energy E γ . The radiative neutron capture results presented confirm strength data found in the literature. We also learn that our parameterization is at least a good approximation for photon energies below 4 MeV that dominate this process

  6. Proceedings of the meeting on the planning of the computer control and data processing system in the photon factory project

    International Nuclear Information System (INIS)

    Ando, Masami; Ohta, Toshiaki

    1978-07-01

    In the photon factory for synchrotron radiation experiments, a computer control and data processing system is required for efficient utilization of the factory. Reports made in the meeting oriented as above are presented individually, reflecting various aspects of joint-use computer system and its technological advances. (Mori, K.)

  7. Applications of a controlled phase gate for photons

    International Nuclear Information System (INIS)

    Schmid, C.; Kiesel, N.; Weber, U.; Weinfurter, H.; Toth, G; Ursin, R.; Guehne, O.

    2005-01-01

    Full text: We report on experimental applications of a probabilistic quantum controlled-phase gate for photons. The gate is operating on the polarization degree of freedom and applies a pi phase shift to a target photon, conditioned on the polarization of a control photon. This is experimentally realized by overlapping the input photons on a beam splitter with polarization dependent splitting ratio (TH=1, TV=1/3). The phase is thereby introduced by a second order interference in case two vertically polarized photons are passing the gate. In order to ensure polarization independent weighting coefficients for the output states of all possible input combinations, two beam splitters with reversed splitting ratio (TH=1/3, TV=1) are placed after each output of the overlap BS. The gate allows the implementation of a full Bell state analysis and by this the accomplishment of a complete teleportation experiment. As input we used horizontal, vertical, +45 o , and right circular polarized photon states from which we could deduce a teleportation process tomography for each of the four Bell states detected. Whereas in the Bell state analysis the gate maps an entangled state onto a product state, it can be used as well in the opposite way for an entangling operation. We exploit this fact to generate a certain four qubit entangled state, the so-called four-photon cluster state. In order to do so we apply the gate on two photons of two different EPR pairs originating from a spontaneous parametric down conversion process. The resulting experimental state shows a fidelity of 74.4 ± 1.2 % to the theoretically expected one. By the experimental violation of a specially tailored Bell inequality we are able to proof its non-locality and delimit it from a GHZ state. We demonstrate its genuine four-photon entanglement by a witness measurement. Furthermore we characterize the generated state by the study of its remarkable entanglement persistency properties with respect to the measurement

  8. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  9. Numerical demonstration of neuromorphic computing with photonic crystal cavities.

    Science.gov (United States)

    Laporte, Floris; Katumba, Andrew; Dambre, Joni; Bienstman, Peter

    2018-04-02

    We propose a new design for a passive photonic reservoir computer on a silicon photonics chip which can be used in the context of optical communication applications, and study it through detailed numerical simulations. The design consists of a photonic crystal cavity with a quarter-stadium shape, which is known to foster interesting mixing dynamics. These mixing properties turn out to be very useful for memory-dependent optical signal processing tasks, such as header recognition. The proposed, ultra-compact photonic crystal cavity exhibits a memory of up to 6 bits, while simultaneously accepting bitrates in a wide region of operation. Moreover, because of the inherent low losses in a high-Q photonic crystal cavity, the proposed design is very power efficient.

  10. Heralded noiseless amplification for single-photon entangled state with polarization feature

    Science.gov (United States)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  11. Possible role of biochemiluminescent photons for lysergic acid diethylamide (LSD)-induced phosphenes and visual hallucinations.

    Science.gov (United States)

    Kapócs, Gábor; Scholkmann, Felix; Salari, Vahid; Császár, Noémi; Szőke, Henrik; Bókkon, István

    2017-01-01

    Today, there is an increased interest in research on lysergic acid diethylamide (LSD) because it may offer new opportunities in psychotherapy under controlled settings. The more we know about how a drug works in the brain, the more opportunities there will be to exploit it in medicine. Here, based on our previously published papers and investigations, we suggest that LSD-induced visual hallucinations/phosphenes may be due to the transient enhancement of bioluminescent photons in the early retinotopic visual system in blind as well as healthy people.

  12. Opportunistic maintenance considering non-homogenous opportunity arrivals and stochastic opportunity durations

    International Nuclear Information System (INIS)

    Truong Ba, H.; Cholette, M.E.; Borghesani, P.; Zhou, Y.; Ma, L.

    2017-01-01

    Many systems and manufacturing processes undergo intermittent operation due to external factors (e.g. weather, low market prices), offering opportunities to conduct maintenance with reduced production losses. Making use of appropriate opportunities can thus lead to significant reduction in the total cost of maintenance and improvement in productivity. In this paper, an opportunistic maintenance (OM) model is developed considering two critical properties of real world opportunities: (i) non-homogeneous opportunity arrivals and (ii) stochastic opportunity duration. The model enables exploiting downtime cost savings from “partial” opportunities (stops shorter than the required maintenance time) thus extending the potential benefit of OM. The criteria for accepting maintenance opportunities are found by minimizing the single-cycle total cost. A closed form expression of the single-cycle total cost is derived for a given PM/OM policy and then a Genetic Algorithm is used to solve the optimization problem. Numerical results are presented to assess the benefit of opportunistic maintenance and the marginal benefit of considering partial opportunities. Results indicate that significant savings can be achieved by considering OM. Moreover, it is shown that the novel consideration of partial opportunities significantly increase the benefit of OM. - Highlights: • Opportunistic and time-based preventive maintenance jointly optimized. • Non-homogeneous opportunity arrivals and stochastic durations considered. • “Partial” opportunities considered for the first time. • Opportunity duration thresholds used as a decision criterion. • Numerical study conducted to evaluate benefit of optimized policy.

  13. Prompt photon production in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Krzysztof

    2010-03-15

    This thesis presents measurement of the production of prompt photons in photoproduction with the H1 experiment at HERA. The analysis is based on the data taken in the years 2004-2007, with a total integrated luminosity of 340 pb{sup -1}. The main difficulty of the measurement comes from the high background of neutral mesons decaying into photons. It is accounted for with the help of multivariate analysis. Prompt photon cross sections are measured with the low negative four-momentum transfer squared Q{sup 2} < 1GeV{sup 2} and in the inelasticity range 0.1 < y < 0.7 for photons with a transverse energy 6 < E{sub T}{sup {gamma}} < 15GeV and in the pseudorapidity range.1.0 < {eta}{sup {gamma}} < 2.4 as a function of photons transverse energy and its pseudorapidity. Cross sections for prompt photon events with an additional hadronic jet are measured as a function of the transverse energy and pseudorapidity of the jet and of the momentum fractions x{sub {gamma}} and x{sub p} of the incident photon and proton carried by the constituents participating in the hard scattering process. Additionally, the transverse correlation between the photon and the jet is studied. The results are compared with predictions of a next-to-leading order calculation and a calculation based on the k{sub T} factorisation approach. Neither of calculations is able to describe all the aspects of the measurement. (orig.)

  14. Graphene-Based Josephson-Junction Single-Photon Detector

    Science.gov (United States)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  15. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  16. Robust Adaptive Photon Tracing using Photon Path Visibility

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Jensen, Henrik Wann

    2011-01-01

    We present a new adaptive photon tracing algorithm which can handle illumination settings that are considered difficult for photon tracing approaches such as outdoor scenes, close-ups of a small part of an illuminated region, and illumination coming through a small gap. The key contribution in our...... algorithm is the use of visibility of photon path as the importance function which ensures that our sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments in Markov chain Monte Carlo methods: adaptive Markov chain sampling...... and replica exchange. Using these techniques, each photon path is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility...

  17. Effects of four-wave mixing on four-photon resonance excitation and ionization in the presence of a three-photon intermediate state resonance enhancement

    International Nuclear Information System (INIS)

    Payne, M.G.; Miller, J.C.; Hart, R.C.; Garrett, W.R.

    1991-01-01

    We consider effects which occur when four-wave sum frequency generation and multiphoton ionization are induced by lasers tuned near a three-photon resonance and simultaneously near or at a dipole allowed four-photon resonance. In studies with unfocused laser beams, if the phase mismatch of the generated four-wave-mixing field is large and the related two-photon resonance for the absorption of a four-wave-mixing photon and a laser photon results in strong absorption of the four-wave-mixing field, a coherent cancellation occurs between the pumping of the resonance by two- and four-photon processes. This interference effect occurs when the first laser is tuned on either side of the three-photon resonance and |Δk rL |much-gt 1, where Δk r is the mismatch and L is the length of the path of the laser beams in the gas. With focused laser beams large differences occur between ionization with unidirectional beams and with counterpropagating laser beams when |Δk rb |much-gt 1, where b is the confocal parameter of the focused laser beams. Strong absorption of the four-wave-mixing field is shown not to be necessary for strong destructive interference with focused laser beams when the phase mismatch is large. This work also suggests an explanation for earlier experiments where the presence of a four-photon resonance enabled the generation of third-harmonic light in a positively dispersive wavelength region. We argue that this process can occur when the laser used to achieve the four-photon resonance is focused on the small z (z is the coordinate in the direction of propagation) side of the focal point of the laser responsible for the third-harmonic generation

  18. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators.

    Science.gov (United States)

    Ni, Xiang; Purtseladze, David; Smirnova, Daria A; Slobozhanyuk, Alexey; Alù, Andrea; Khanikaev, Alexander B

    2018-05-01

    Recent advances in condensed matter physics have shown that the spin degree of freedom of electrons can be efficiently exploited in the emergent field of spintronics, offering unique opportunities for efficient data transfer, computing, and storage ( 1 - 3 ). These concepts have been inspiring analogous approaches in photonics, where the manipulation of an artificially engineered pseudospin degree of freedom can be enabled by synthetic gauge fields acting on light ( 4 - 6 ). The ability to control these degrees of freedom significantly expands the landscape of available optical responses, which may revolutionize optical computing and the basic means of controlling light in photonic devices across the entire electromagnetic spectrum. We demonstrate a new class of photonic systems, described by effective Hamiltonians in which competing synthetic gauge fields, engineered in pseudospin, chirality/sublattice, and valley subspaces, result in bandgap opening at one of the valleys, whereas the other valley exhibits Dirac-like conical dispersion. We show that this effective response has marked implications on photon transport, among which are as follows: (i) a robust pseudospin- and valley-polarized one-way Klein tunneling and (ii) topological edge states that coexist within the Dirac continuum for opposite valley and pseudospin polarizations. These phenomena offer new ways to control light in photonics, in particular, for on-chip optical isolation, filtering, and wave-division multiplexing by selective action on their pseudospin and valley degrees of freedom.

  19. Two-photon Anderson localization in a disordered quadratic waveguide array

    International Nuclear Information System (INIS)

    Bai, Y F; Xu, P; Lu, L L; Zhong, M L; Zhu, S N

    2016-01-01

    We theoretically investigate two-photon Anderson localization in a χ (2) waveguide array with off-diagonal disorder. The nonlinear parametric down-conversion process would enhance both the single-photon and the two-photon Anderson localization. In the strong disorder regime, the two-photon position correlation exhibits a bunching distribution around the pumped waveguides, which is independent of pumping conditions and geometrical structures of waveguide arrays. Quadratic nonlinearity can be supplied as a new ingredient for Anderson localization. Also, our results pave the way for engineering quantum states through nonlinear quantum walks. (paper)

  20. Manipulation of photons at the surface of three-dimensional photonic crystals.

    Science.gov (United States)

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  1. Two-electron one-photon decay rates in doubly ionized atoms

    International Nuclear Information System (INIS)

    Baptista, G.B.

    1984-01-01

    The transion rate for the two-electron one-photon and one-electron one-photon decaying processes in atoms bearing initially two K-shell vacancies were evaluated for Ne up to Zr. The two-electron one-photon decay process is considered to be the result of the interaction between the jumping electrons and their interaction with the radiation field. The calculation is performed in second order perturbation theory and the many particle states are constructed from single particle solutions. The present approach allows one to discuss several aspects of the decaying process. The results obtained for the branching ratio between the two processes reproduces reasonably well available experimental data and show an almost linear dependence on the second power of the atomic number. A comparison with other theoretical predictions is also presented for the two decaying processes and the strong dependence of the branching ratio on the initial configuration of the decaying atom is pointed out. (Author) [pt

  2. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  3. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    Energy Technology Data Exchange (ETDEWEB)

    Mauritsson, J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Johnsson, P [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Lopez-Martens, R [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Varju, K [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); L' Huillier, A [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Gaarde, M B [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2005-07-14

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization.

  4. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    International Nuclear Information System (INIS)

    Mauritsson, J; Johnsson, P; Lopez-Martens, R; Varju, K; L'Huillier, A; Gaarde, M B; Schafer, K J

    2005-01-01

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization

  5. Two-color ghost interference with photon pairs generated in hot atoms

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ding

    2012-09-01

    Full Text Available We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.

  6. Double-mode Two-photon Absorption and Enhanced Photon Antibunching Due to Interference

    Science.gov (United States)

    Bandilla, A.; Ritze, H.-H.

    Inspired by results of interfering signal and idler from a nondegenerate parametric amplifier we investigate the photon statistics of the resulting field after interference of two components subjected to double-mode two-photon absorption. This absorption process leads to a strong correlation of the participating modes, which can be used to generate fields with photon antibunching in interference experiments. In addition the photon number can be made small, which produces enhanced antibunching.Translated AbstractZwei-Photonen-Absorption aus zwei Moden und durch Interferenz verstärktes photon antibunchingDie quantenmechanische Betrachtung der Interferenz führt zu neuen Ergebnissen, wenn Felder ohne klassisches Analogon betrachtet werden. Insbesondere ergibt sich durch die Reduktion der Photonenzahl durch Interferenz eine effektive Verstärkung des Photon Antibunching, wie von den Verfassern in vorhergehenden Arbeiten gezeigt wurde. Die vorliegende Untersuchung betrachtet die Interferenz von zwei korrelierten Moden, wobei die Korrelation durch Zwei-Photonen-Absorption aus den beiden Moden zustande kommt. In jeder einzelnen Mode ergibt sich lediglich ein gewisses Bunching, wenn man mit kohärentem Licht in beiden Moden beginnt. Es wird die Interferenz der Feldstärke-Komponenten in bestimmten Polarisationsrichtungen untersucht. Zur Vereinfachung wird in den betrachteten Moden die gleiche Anfangsphotonenzahl vorausgesetzt und der Analysator auf minimale Transmittanz gebracht. Das eigentliche Signal entsteht dann durch Einführung einer endlichen Phasenverschiebung zwischen den beiden Moden. Dieses Signal zeigt Antibunching und kann in seiner Intensität beliebig variiert werden, was wegen des (1/n)-Charakters des Antibunching zu seiner Verstärkung führt. Ferner wird gezeigt, daß die zunächst für zwei linear polarisierte Moden durchgeführte Rechnung auf zwei zirkulare Moden sowie auf zwei gegenläufige Strahlen bei der dopplerfreien Zwei-Quanten-Absorption

  7. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending......, filters, sensors, and photodetectors utilizing silicon photonic platforms....... on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators...

  8. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  9. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  10. Photon and photon reactions: elementary theoretical introduction

    International Nuclear Information System (INIS)

    Diu, B.

    The electromagnetic field and associated quanta, the photons, are simply and briefly studied. The conventional electromagnetism laws are recalled. Fundamental concepts such as gauge invariance, the electromagnetic current conservation, and photon behavior against the internal symmetries of strong interactions are simply introduced. Results and notations are applied to analysis of reactions where photons intervene in initial or final states (photoproduction) within the limits of amplitude properties in the conventional space-time. The helicity and invariant amplitude formalisms are compared [fr

  11. Photon attenuation properties of some thorium, uranium and plutonium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Badiger, N. M. [Karnatak University, Department of Physics, Dharwad-580003, Karnataka (India); Vega C, H. R., E-mail: kudphyvps@rediffmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Mass attenuation coefficients, effective atomic numbers, effective electron densities for nuclear materials; thorium, uranium and plutonium compounds have been studied. The photon attenuation properties for the compounds have been investigated for partial photon interaction processes by photoelectric effect, Compton scattering and pair production. The values of these parameters have been found to change with photon energy and interaction process. The variations of mass attenuation coefficients, effective atomic number and electron density with energy are shown graphically. Moreover, results have shown that these compounds are better shielding and suggesting smaller dimensions. The study would be useful for applications of these materials for gamma ray shielding requirement. (Author)

  12. Photon-assisted Andreev transport and sub-gap structures

    DEFF Research Database (Denmark)

    Wildt, M; Kutchinsky, Jonatan; Taboryski, Rafael Jozef

    2000-01-01

    We report new measurements of microwave-induced perturbations of the sub-harmonic energy gap structures in the current-voltage characteristics of superconductor-semiconductor-superconductor junctions. Around the sub-gap bias voltages associated with the enhanced quasi-particle transfer mediated...... by multiple Andreev reflection processes we observe microwave induced satellites, shifted in voltage by multiples of hf/en, where hf is the photon energy and n is the number of quasi-particle traversals as determined by the Andreev processes. The observed behavior is the analogue of the so-called photon...

  13. Nonlocal hyperconcentration on entangled photons using photonic module system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhang, Ru [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, Chuan, E-mail: wangchuan@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-06-15

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  14. Nonlocal hyperconcentration on entangled photons using photonic module system

    International Nuclear Information System (INIS)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan

    2016-01-01

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  15. Models for Photon-photon Total Cross-sections

    OpenAIRE

    Godbole, RM; Grau, A; Pancheri, G

    1999-01-01

    We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.

  16. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  17. Photon collider at TESLA

    International Nuclear Information System (INIS)

    Telnov, Valery

    2001-01-01

    High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e + e - linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3)L e + e - . Typical cross-sections of interesting processes in γγ collisions are higher than those in e + e - collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e + e - collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ''an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems

  18. Tailoring Dispersion properties of photonic crystal waveguides by topology optimization

    DEFF Research Database (Denmark)

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...

  19. Photonic entanglement as a resource in quantum computation and quantum communication

    OpenAIRE

    Prevedel, Robert; Aspelmeyer, Markus; Brukner, Caslav; Jennewein, Thomas; Zeilinger, Anton

    2008-01-01

    Entanglement is an essential resource in current experimental implementations for quantum information processing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum computing over quantum communication complexity to long-distance quantum communication. We then propose a set of feasible experiments that will underline the advantages of photonic entanglement for quantum information processing.

  20. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms

    Science.gov (United States)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-01

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  1. Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms.

    Science.gov (United States)

    Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho

    2016-12-16

    Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.

  2. Multiple-Event, Single-Photon Counting Imaging Sensor

    Science.gov (United States)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  3. Organic membrane photonic integrated circuits (OMPICs).

    Science.gov (United States)

    Amemiya, Tomohiro; Kanazawa, Toru; Hiratani, Takuo; Inoue, Daisuke; Gu, Zhichen; Yamasaki, Satoshi; Urakami, Tatsuhiro; Arai, Shigehisa

    2017-08-07

    We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.

  4. Empirical Study on Sustainable Opportunities Recognition. A Polyvinyl Chloride (PVC Joinery Industry Analysis Using Augmented Sustainable Development Process Model

    Directory of Open Access Journals (Sweden)

    Eduard-Gabriel Ceptureanu

    2017-09-01

    Full Text Available This paper analyzes factors influencing recognition of sustainable opportunities by using an augmented sustainability process model. The conceptual model used two main factors, Knowledge and Motivation, and one moderating variable, Social embeddedness. We investigated entrepreneurs from PVC joinery industry and concluded that while market orientation and sustainable entrepreneurial orientation definitely and positively influence sustainable opportunity recognition, others variables like knowledge of the natural/communal environment, awareness of sustainable development or focus on success have less support. Among all variables analyzed, perception of the threat of the natural/communal environment and altruism toward others have the poorest impact on opportunity recognition. Finally, we concluded that social embeddedness has a moderating effect on sustainable opportunity recognition, even though the results were mixed.

  5. Dye molecules as single-photon sources and large optical nonlinearities on a chip

    International Nuclear Information System (INIS)

    Hwang, J; Hinds, E A

    2011-01-01

    We point out that individual organic dye molecules, deposited close to optical waveguides on a photonic chip, can act as single-photon sources. A thin silicon nitride strip waveguide is expected to collect 28% of the photons from a single dibenzoterrylene molecule. These molecules can also provide large, localized optical nonlinearities, which are enough to discriminate between one photon or two through a differential phase shift of 2 0 per photon. This new atom-photon interface may be used as a resource for processing quantum information.

  6. Mass distribution for the two-photon channel

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Mass distribution for the two-photon channel. The strongest evidence for this new particle comes from analysis of events containing two photons. The smooth dotted line traces the measured background from known processes. The solid line traces a statistical fit to the signal plus background. The new particle appears as the excess around 126.5 GeV. The full analysis concludes that the probability of such a peak is three chances in a million.

  7. Investigation of photon attenuation coefficients for marble

    International Nuclear Information System (INIS)

    Basyigit, C; Akkurt, I; Kilincarslan, S; Akkurt, A

    2005-01-01

    The total linear attenuation coefficients μ (cm -1 ) have been obtained using the XCOM program at photon energies of 1 keV to 1 GeV for six different natural marbles produced in different places in Turkey. The individual contribution of photon interaction processes to the total linear attenuation coefficients for marble has been investigated. The calculated results were also compared with the measurements. The results obtained for marble were also compared with concrete. (note)

  8. Radiation Hard Silicon Photonics Mach-Zehnder Modulator for HEP applications: all-Synopsys SentaurusTM Pre-Irradiation Simulation

    CERN Document Server

    Cammarata, Simone

    2017-01-01

    Silicon Photonics may well provide the opportunity for new levels of integration between detectors and their readout electronics. This technology is thus being evaluated at CERN in order to assess its suitability for use in particle physics experiments. In order to check the agreement with measurements and the validity of previous device simulations, a pure Synopsys SentaurusTM simulation of an un-irradiated Mach-Zehnder silicon modulator has been carried out during the Summer Student project. Index Terms—Silicon Photonics, Mach-Zehnder modulator, electro-optic simulation, Synopsys SentaurusTM, electro-optic measurement, HEP.

  9. One-photon two-electron processes in helium close to the double ionization threshold; Diexcitation electronique de l'helium par un photon au voisinage du seuil de double ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Bouri, C

    2007-04-15

    This work presents a study of the {sup 1}P{sup 0} excited states of He that can be reached by absorption of a single photon carrying an energy close to the double ionization threshold (DIT) (79 eV). Above the DIT, these states are the double continuum states; below, they are the double excited states. These two types of states are tightly coupled to the single continuum states with or without excitation of the residual ion He{sup +}, owing to their degeneracy in energy. In a one-photon process, these states can only be formed owing to the electronic correlations in the system which must be well described to obtain quantitative good results. Our study is a part of the work which aims at a united description of all these doubly excited, ionized-excited, and double continuum states. We use the Hyperspherical R-Matrix with Semiclassical Outgoing Waves (HRM-SOW) method, initially dedicated to double photoionization studies. We extend it to extract information on the single continuum. This extension allows us to compute cross sections of single photoionization with or without excitation up to n 50 for an excess of 100 meV just above the double ionization threshold. A deep insight into this process is given by a partial waves analysis. The results obtained shed light on the key role of angular and radial correlations. The numerous data we obtain on double and single ionization allow us to establish a continuity relation between these two processes. We show that single ionization with an infinite excitation of the residual ion merges into double photoionization when the excess energy is redistributed between the two electrons. It appears that this relation is valid not only for low but also for high photon energies. Since the HRM-SOW can produce the integrated cross section for double photoionization with high accuracy in the low energy domain, we check the Wannier threshold law. The parameters extracted support strongly this threshold law, and are in good agreement with

  10. Chaos in coherent two-photon processes in a ring cavity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S; Agarwal, G S

    1983-08-01

    The output of a ring cavity containing a resonant medium undergoing two photon transitions is shown to become chaotic, after following a series of bifurcations involving 2 to the nth cycles, as the strength of the driving field is increased. The chaotic regime is followed by a sequence of period doubling bifurcations in reverse order. 14 references.

  11. CeB6 Sensor for Thermoelectric Single-Photon Detector

    Directory of Open Access Journals (Sweden)

    Armen KUZANIAN

    2015-08-01

    Full Text Available Interest in single-photon detectors has recently sharply increased. The most developed single-photon detectors are currently based on superconductors. Following the theory, thermoelectric single-photon detectors can compete with superconducting detectors. The operational principle of thermoelectric detector is based on photon absorption by absorber as a result of which a temperature gradient is generated across the sensor. In this work we present the results of computer modeling of heat distribution processes after absorption of a photon of 1 keV - 1 eV energy in different areas of the absorber for different geometries of tungsten absorber and cerium hexaboride sensor. The time dependence of the temperature difference between the ends of the thermoelectric sensor and electric potential appearing across the sensor are calculated. The results of calculations show that it is realistic to detect single photons from IR to X-ray and determine their energy. Count rates up to hundreds gigahertz can be achieved.

  12. Final-photon polarization in the scattering of photons by high-energy electrons

    International Nuclear Information System (INIS)

    Choi, J.; Choi, S.Y.; Ie, S.H.; Song, H.S.; Good, R.H. Jr.

    1987-01-01

    A general method for calculating the polarization of the outgoing photon beam in any reaction is presented. As an example the method is applied to the high-energy photon beam produced in Compton scattering of a laser beam by a high-energy electron beam. The Stokes parameters of the outgoing photon beam, relative to a unit vector normal to the photon momentum and including their dependence on the polarization of incident photon and electron beams, are obtained explicitly. It is expected that this method will be useful, both in photon production reactions and in the subsequent high-energy photon reactions

  13. Photonic devices prepared by embossing in PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Jandura, D., E-mail: jandura@fyzika.uniza.sk; Pudis, D.; Berezina, S.

    2017-02-15

    Highlights: • Fabrication technology of photonic devices based on embossing in PDMS is presented. • Analysis of morphological properties of prepared devices in PDMS by CLSM and AFM. • Spectral characterization of PDMS ring resonator proved the resonator functionality. - Abstract: In this paper, we present useful technique for fabrication of novel photonic devices created in the polydimethylsiloxane (PDMS). We use combination of direct laser writing in thin photoresist layer with embossing process of liquid PDMS. We prepared ring resonator and Mach-Zehnder interferometer in PDMS. The shape of prepared PDMS photonic devices was analyzed by confocal laser microscope and atomic force microscope. Optical characterization of these devices reveals extinction ratios of up to 20 dB.

  14. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    International Nuclear Information System (INIS)

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-01-01

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  15. Development and design of advanced two-photon microscope used in neuroscience

    International Nuclear Information System (INIS)

    Doronin, M S; Popov, A V

    2016-01-01

    This work represents the real steps to development and design advanced two-photon microscope by efforts of laboratory staff. Self-developed microscopy system provides possibility to service it and modify the structure of microscope depending on highly specialized experimental design and scientific goals. We are presenting here module-based microscopy system which provides an opportunity to looking for new applications of this setup depending on laboratories needs using with galvo and resonant scanners. (paper)

  16. Physics at high energy photon photon colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  17. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source

    International Nuclear Information System (INIS)

    Migdall, A.L.; Branning, D.; Castelletto, S.

    2002-01-01

    As typically implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single-photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand

  18. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

    DEFF Research Database (Denmark)

    Kyriienko, Oleksandr; Sørensen, Anders Søndberg

    2016-01-01

    We propose a microwave frequency single-photon transistor which can operate under continuous wave probing and represents an efficient single microwave photon detector. It can be realized using an impedance matched system of a three level artificial ladder-type atom coupled to two microwave cavities...... and the appearance of a photon flux leaving the second cavity through a separate input-output port. The proposal does not require time variation of the probe signals, thus corresponding to a passive version of a single-photon transistor. The resulting device is robust to qubit dephasing processes, possesses low dark...

  19. Engineering Photon-Photon Interactions within Rubidium-Filled Waveguides

    Science.gov (United States)

    Perrella, C.; Light, P. S.; Vahid, S. Afshar; Benabid, F.; Luiten, A. N.

    2018-04-01

    Strong photon-photon interactions are a required ingredient for deterministic two-photon optical quantum logic gates. Multiphoton transitions in dense atomic vapors have been shown to be a promising avenue for producing such interactions. The strength of a multiphoton interaction can be enhanced by conducting the interaction in highly confined geometries such as small-cross-section optical waveguides. We demonstrate, both experimentally and theoretically, that the strength of such interactions scale only with the optical mode diameter, d , not d2 as might be initially expected. This weakening of the interaction arises from atomic motion inside the waveguides. We create an interaction between two optical signals, at 780 and 776 nm, using the 5 S1 /2→5 D5 /2 two-photon transition in rubidium vapor within a range of hollow-core fibers with different core sizes. The interaction strength is characterized by observing the absorption and phase shift induced on the 780-nm beam, which is in close agreement with theoretical modeling that accounts for the atomic motion inside the fibers. These observations demonstrate that transit-time effects upon multiphoton transitions are of key importance when engineering photon-photon interactions within small-cross-section waveguides that might otherwise be thought to lead to enhanced optical nonlinearity through increased intensities.

  20. Production of photons with a narrow energy spectrum, starting from high energy electrons; Production de photons de spectre etroit a partir d'electrons de grande energie

    Energy Technology Data Exchange (ETDEWEB)

    Tzara, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    A method for the production of photons with a narrow spectrum and of variable energy, based on the properties of the annihilation in flight of positrons, is examined in detail. The spectra of the photons produced and the yield of the process are given for various conditions. (author) [French] Une methode de production de photons de spectre etroit et d'energie variable, basee sur les proprietes de l'annihilation en vol des positons, est examinee en detail. Le spectre des photons produits, le rendement du processus sont donnes pour diverses conditions. (auteur)