International Nuclear Information System (INIS)
Zhang Zijing; Song Jie; Zhao Yuan; Wu Long
2017-01-01
Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments. (paper)
Statistical method for resolving the photon-photoelectron-counting inversion problem
International Nuclear Information System (INIS)
Wu Jinlong; Li Tiejun; Peng, Xiang; Guo Hong
2011-01-01
A statistical inversion method is proposed for the photon-photoelectron-counting statistics in quantum key distribution experiment. With the statistical viewpoint, this problem is equivalent to the parameter estimation for an infinite binomial mixture model. The coarse-graining idea and Bayesian methods are applied to deal with this ill-posed problem, which is a good simple example to show the successful application of the statistical methods to the inverse problem. Numerical results show the applicability of the proposed strategy. The coarse-graining idea for the infinite mixture models should be general to be used in the future.
Directory of Open Access Journals (Sweden)
Thomas Weidinger
2016-01-01
Full Text Available This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs in computed tomography. It is based on local approximations (surrogates of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD.
International Nuclear Information System (INIS)
Choi, Jiyoung; Kang, Dong-Goo; Kang, Sunghoon; Sung, Younghun; Ye, Jong Chul
2013-01-01
Purpose: Material decomposition using multienergy photon counting x-ray detectors (PCXD) has been an active research area over the past few years. Even with some success, the problem of optimal energy selection and three material decomposition including malignant tissue is still on going research topic, and more systematic studies are required. This paper aims to address this in a unified statistical framework in a mammographic environment.Methods: A unified statistical framework for energy level optimization and decomposition of three materials is proposed. In particular, an energy level optimization algorithm is derived using the theory of the minimum variance unbiased estimator, and an iterative algorithm is proposed for material composition as well as system parameter estimation under the unified statistical estimation framework. To verify the performance of the proposed algorithm, the authors performed simulation studies as well as real experiments using physical breast phantom and ex vivo breast specimen. Quantitative comparisons using various performance measures were conducted, and qualitative performance evaluations for ex vivo breast specimen were also performed by comparing the ground-truth malignant tissue areas identified by radiologists.Results: Both simulation and real experiments confirmed that the optimized energy bins by the proposed method allow better material decomposition quality. Moreover, for the specimen thickness estimation errors up to 2 mm, the proposed method provides good reconstruction results in both simulation and real ex vivo breast phantom experiments compared to existing methods.Conclusions: The proposed statistical framework of PCXD has been successfully applied for the energy optimization and decomposition of three material in a mammographic environment. Experimental results using the physical breast phantom and ex vivo specimen support the practicality of the proposed algorithm
Energy Technology Data Exchange (ETDEWEB)
Suh, M. Y.; Jee, K. Y.; Park, K. K.; Park, Y. J.; Kim, W. H
1999-08-01
This report is intended to describe the statistical methods necessary to design and conduct radiation counting experiments and evaluate the data from the experiment. The methods are described for the evaluation of the stability of a counting system and the estimation of the precision of counting data by application of probability distribution models. The methods for the determination of the uncertainty of the results calculated from the number of counts, as well as various statistical methods for the reduction of counting error are also described. (Author). 11 refs., 8 tabs., 8 figs.
Energy Technology Data Exchange (ETDEWEB)
Suh, M. Y.; Jee, K. Y.; Park, K. K. [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-08-01
This report is intended to describe the statistical methods necessary to design and conduct radiation counting experiments and evaluate the data from the experiments. The methods are described for the evaluation of the stability of a counting system and the estimation of the precision of counting data by application of probability distribution models. The methods for the determination of the uncertainty of the results calculated from the number of counts, as well as various statistical methods for the reduction of counting error are also described. 11 refs., 6 figs., 8 tabs. (Author)
International Nuclear Information System (INIS)
Suh, M. Y.; Jee, K. Y.; Park, K. K.; Park, Y. J.; Kim, W. H.
1999-08-01
This report is intended to describe the statistical methods necessary to design and conduct radiation counting experiments and evaluate the data from the experiment. The methods are described for the evaluation of the stability of a counting system and the estimation of the precision of counting data by application of probability distribution models. The methods for the determination of the uncertainty of the results calculated from the number of counts, as well as various statistical methods for the reduction of counting error are also described. (Author). 11 refs., 8 tabs., 8 figs
Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo
2017-01-01
The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.
Counting statistics in radioactivity measurements
International Nuclear Information System (INIS)
Martin, J.
1975-01-01
The application of statistical methods to radioactivity measurement problems is analyzed in several chapters devoted successively to: the statistical nature of radioactivity counts; the application to radioactive counting of two theoretical probability distributions, Poisson's distribution law and the Laplace-Gauss law; true counting laws; corrections related to the nature of the apparatus; statistical techniques in gamma spectrometry [fr
Quantum Biometrics with Retinal Photon Counting
Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.
2017-10-01
It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.
Femtosecond Photon-Counting Receiver
Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji
2016-01-01
An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.
Photon counting and fluctuation of molecular movement
International Nuclear Information System (INIS)
Inohara, Koichi
1978-01-01
The direct measurement of the fluctuation of molecular motions, which provides with useful information on the molecular movement, was conducted by introducing photon counting method. The utilization of photon counting makes it possible to treat the molecular system consisting of a small number of molecules like a radioisotope in the detection of a small number of atoms, which are significant in biological systems. This method is based on counting the number of photons of the definite polarization emitted in a definite time interval from the fluorescent molecules excited by pulsed light, which are bound to the marked large molecules found in a definite spatial region. Using the probability of finding a number of molecules oriented in a definite direction in the definite spatial region, the probability of counting a number of photons in a definite time interval can be calculated. Thus the measurable count rate of photons can be related with the fluctuation of molecular movement. The measurement was carried out under the condition, in which the probability of the simultaneous arrival of more than two photons at a detector is less than 1/100. As the experimental results, the resolving power of photon-counting apparatus, the frequency distribution of the number of photons of some definite polarization counted for 1 nanosecond are shown. In the solution, the variance of the number of molecules of 500 on the average is 1200, which was estimated from the experimental data by assuming normal distribution. This departure from the Poisson distribution means that a certain correlation does exist in molecular movement. In solid solution, no significant deviation was observed. The correlation existing in molecular movement can be expressed in terms of the fluctuation of the number of molecules. (Nakai, Y.)
Fast pulse discriminator for photon counting at high photon densities
International Nuclear Information System (INIS)
Benoit, R.; Pedrini, A.
1977-03-01
A fast tunnel diode discriminator for photon counting up to 200MHz count frequency is described. The tunnel diode is operated on its apparent I.V. characteristics displayed when the diode is driven into its oscillating region. The pulse shaper-discriminator is completely D.C. coupled in order to avoid base-line shift at high pulse rates
Photon counting with small pore microchannel plates
International Nuclear Information System (INIS)
Martindale, A.; Lapington, J.S.; Fraser, G.W.
2007-01-01
We describe the operation of microchannel plates (MCPs) with 3.2μm diameter channels as photon counting detectors of soft X-rays. Gain and temporal resolution measurements are compared with theoretical scaling laws for channel diameter. A minimum pulse width of 264ps is observed for a two stage multiplier at a total bias voltage of ∼1930V
Photon Counting Using Edge-Detection Algorithm
Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.
2010-01-01
New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1
Theory of photoelectron counting statistics
International Nuclear Information System (INIS)
Blake, J.
1980-01-01
The purpose of the present essay is to provide a detailed analysis of those theoretical aspects of photoelectron counting which are capable of experimental verification. Most of our interest is in the physical phenomena themselves, while part is in the mathematical techniques. Many of the mathematical methods used in the analysis of the photoelectron counting problem are generally unfamiliar to physicists interested in the subject. For this reason we have developed the essay in such a fashion that, although primary interest is focused on the physical phenomena, we have also taken pains to carry out enough of the analysis so that the reader can follow the main details. We have chosen to present a consistently quantum mechanical version of the subject, in that we follow the Glauber theory throughout. (orig./WL)
Advanced photon counting applications, methods, instrumentation
Kapusta, Peter; Erdmann, Rainer
2015-01-01
This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a "fingerprint" for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Förster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution micr...
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
Statistical inference from imperfect photon detection
International Nuclear Information System (INIS)
Audenaert, Koenraad M R; Scheel, Stefan
2009-01-01
We consider the statistical properties of photon detection with imperfect detectors that exhibit dark counts and less than unit efficiency, in the context of tomographic reconstruction. In this context, the detectors are used to implement certain positive operator-valued measures (POVMs) that would allow us to reconstruct the quantum state or quantum process under consideration. Here we look at the intermediate step of inferring outcome probabilities from measured outcome frequencies, and show how this inference can be performed in a statistically sound way in the presence of detector imperfections. Merging outcome probabilities for different sets of POVMs into a consistent quantum state picture has been treated elsewhere (Audenaert and Scheel 2009 New J. Phys. 11 023028). Single-photon pulsed measurements as well as continuous wave measurements are covered.
Counting statistics and loss corrections for the APS
International Nuclear Information System (INIS)
Lee, W.K.; Mills, D.M.
1992-01-01
It has been suggested that for timing experiments, it might be advantageous to arrange the bunches in the storage ring in an asymmetrical mode. In this paper, we determine the counting losses from pulsed x-ray sources from basic probabilistic arguments and from Poisson statistics. In particular the impact on single-photon counting losses of a variety of possible filling modes for the Advanced Photon Source (APS) is examined. For bunches of equal current, a loss of 10% occurs whenever the count rate exceeds 21% of the bunch repetition rate. This changes slightly when bunches containing unequal numbers of particles are considered. The results are applied to several common detector/electronics systems
Counting statistics and loss corrections for the APS
International Nuclear Information System (INIS)
Lee, W.K.; Mills, D.M.
1992-01-01
It has been suggested that for timing experiments, it might be advantageous to arrange the bunches in the storage ring in an asymmetrical mode. In this paper, we determine the counting losses from pulsed x-ray sources from basic probabilistic arguments and from Poisson statistics. In particular the impact on single photon counting losses of a variety of possible filling modes for the Advanced Photon Source (APS) is examined. For bunches of equal current, a loss of 10% occurs whenever the count rate exceeds 21% of the bunch repetition rate. This changes slightly when bunches containing unequal numbers of particles are considered. The results are applied to several common detector/electronics systems
Three-dimensional passive sensing photon counting for object classification
Yeom, Seokwon; Javidi, Bahram; Watson, Edward
2007-04-01
In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.
Photon statistics in scintillation crystals
Bora, Vaibhav Joga Singh
Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP
Cascaded systems analysis of photon counting detectors.
Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H
2014-10-01
Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of
Cascaded systems analysis of photon counting detectors
International Nuclear Information System (INIS)
Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.
2014-01-01
Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f 50 (spatial-frequency at
Cascaded systems analysis of photon counting detectors
Energy Technology Data Exchange (ETDEWEB)
Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Taguchi, K.; Carrino, J. A. [Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Lundqvist, M.; Fredenberg, E. [Philips Healthcare, Solna 171 41 (Sweden); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)
2014-10-15
Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial
Photon counting arrays for AO wavefront sensors
Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva
2005-01-01
Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...
Statistical data filtration in neutron coincidence counting
International Nuclear Information System (INIS)
Beddingfield, D.H.; Menlove, H.O.
1992-11-01
We assessed the effectiveness of statistical data filtration to minimize the contribution of matrix materials in 200-ell drums to the nondestructive assay of plutonium. Those matrices were examined: polyethylene, concrete, aluminum, iron, cadmium, and lead. Statistical filtration of neutron coincidence data improved the low-end sensitivity of coincidence counters. Spurious data arising from electrical noise, matrix spallation, and geometric effects were smoothed in a predictable fashion by the statistical filter. The filter effectively lowers the minimum detectable mass limit that can be achieved for plutonium assay using passive neutron coincidence counting
Statistical tests to compare motif count exceptionalities
Directory of Open Access Journals (Sweden)
Vandewalle Vincent
2007-03-01
Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.
Statistical Methods for Unusual Count Data
DEFF Research Database (Denmark)
Guthrie, Katherine A.; Gammill, Hilary S.; Kamper-Jørgensen, Mads
2016-01-01
microchimerism data present challenges for statistical analysis, including a skewed distribution, excess zero values, and occasional large values. Methods for comparing microchimerism levels across groups while controlling for covariates are not well established. We compared statistical models for quantitative...... microchimerism values, applied to simulated data sets and 2 observed data sets, to make recommendations for analytic practice. Modeling the level of quantitative microchimerism as a rate via Poisson or negative binomial model with the rate of detection defined as a count of microchimerism genome equivalents per...
Energy Technology Data Exchange (ETDEWEB)
Kitaygorsky, J. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States); Słysz, W., E-mail: wslysz@ite.waw.pl [Institute of Electron Technology, PL-02 668 Warsaw (Poland); Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V. [Kavli Institute of Nanoscience Delft, Delft University of Technology, 2600 GA Delft (Netherlands); Sobolewski, Roman [Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14627-0231 (United States)
2017-01-15
Highlights: • A new operation regime of NbN superconducting single-photon detectors (SSPDs). • A better understanding of the origin of dark counts generated by the detector. • A promise of PNR functionality in SSPD measurements. - Abstract: We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.
Multiple-Event, Single-Photon Counting Imaging Sensor
Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.
2011-01-01
The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.
Tutorial on X-ray photon counting detector characterization.
Ren, Liqiang; Zheng, Bin; Liu, Hong
2018-01-01
Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.
Characterization of a new computer-ready photon counting system
Andor, Gyorgy
1998-08-01
The photon-counting system seems to be the best solution for extremely low optical power measurements. The Hamamatsu HC135 photon counting module has a built-in high-voltage power supply amplifier, discriminator, micro-controller with an RS232 serial output. It requires only a +5V supply voltage and an IBM PC or compatible computer to run. The system is supplied with an application software. This talk is about the testing of the device.
Counting statistics in low level radioactivity measurements fluctuating counting efficiency
International Nuclear Information System (INIS)
Pazdur, M.F.
1976-01-01
A divergence between the probability distribution of the number of nuclear disintegrations and the number of observed counts, caused by counting efficiency fluctuation, is discussed. The negative binominal distribution is proposed to describe the probability distribution of the number of counts, instead of Poisson distribution, which is assumed to hold for the number of nuclear disintegrations only. From actual measurements the r.m.s. amplitude of counting efficiency fluctuation is estimated. Some consequences of counting efficiency fluctuation are investigated and the corresponding formulae are derived: (1) for detection limit as a function of the number of partial measurements and the relative amplitude of counting efficiency fluctuation, and (2) for optimum allocation of the number of partial measurements between sample and background. (author)
Photon counting altimeter and lidar for air and spaceborne applications
Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Kodet, Jan
2011-06-01
We are presenting the concept and preliminary design of modular multipurpose device for space segment: single photon counting laser altimeter, atmospheric lidar, laser transponder and one way laser ranging receiver. For all the mentioned purposes, the same compact configuration of the device is appropriate. Overall estimated device weight should not exceed 5 kg with the power consumption below 10 W. The device will consists of three main parts, namely, receiver, transmitter and control and processing unit. As a transmitter a commercial solid state laser at 532 nm wavelength with 10 mW power will be used. The transmitter optics will have a diameter at most of 50 mm. The laser pulse width will be of hundreds of picoseconds order. For the laser altimeter and atmospheric lidar application, the repetition rate of 10 kHz is planned in order to obtain sufficient number of data for a distance value computing. The receiver device will be composed of active quenched Single Photon Avalanche Diode module, tiny optics, and narrow-band optical filter. The core part of the control and processing unit including high precision timing unit is implemented using single FPGA chip. The preliminary device concept includes considerations on energy balance, and statistical algorithms to meet all the mentioned purposes. Recently, the bread board version of the device is under construction in our labs. The concept, construction, and timing results will be presented.
Radon counting statistics - a Monte Carlo investigation
International Nuclear Information System (INIS)
Scott, A.G.
1996-01-01
Radioactive decay is a Poisson process, and so the Coefficient of Variation (COV) of open-quotes nclose quotes counts of a single nuclide is usually estimated as 1/√n. This is only true if the count duration is much shorter than the half-life of the nuclide. At longer count durations, the COV is smaller than the Poisson estimate. Most radon measurement methods count the alpha decays of 222 Rn, plus the progeny 218 Po and 214 Po, and estimate the 222 Rn activity from the sum of the counts. At long count durations, the chain decay of these nuclides means that every 222 Rn decay must be followed by two other alpha decays. The total number of decays is open-quotes 3Nclose quotes, where N is the number of radon decays, and the true COV of the radon concentration estimate is 1/√(N), √3 larger than the Poisson total count estimate of 1/√3N. Most count periods are comparable to the half lives of the progeny, so the relationship between COV and count time is complex. A Monte-Carlo estimate of the ratio of true COV to Poisson estimate was carried out for a range of count periods from 1 min to 16 h and three common radon measurement methods: liquid scintillation, scintillation cell, and electrostatic precipitation of progeny. The Poisson approximation underestimates COV by less than 20% for count durations of less than 60 min
Estimation of atomic interaction parameters by photon counting
DEFF Research Database (Denmark)
Kiilerich, Alexander Holm; Mølmer, Klaus
2014-01-01
Detection of radiation signals is at the heart of precision metrology and sensing. In this article we show how the fluctuations in photon counting signals can be exploited to optimally extract information about the physical parameters that govern the dynamics of the emitter. For a simple two......-level emitter subject to photon counting, we show that the Fisher information and the Cram\\'er- Rao sensitivity bound based on the full detection record can be evaluated from the waiting time distribution in the fluorescence signal which can, in turn, be calculated for both perfect and imperfect detectors...
Optimization of time-correlated single photon counting spectrometer
International Nuclear Information System (INIS)
Zhang Xiufeng; Du Haiying; Sun Jinsheng
2011-01-01
The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)
Photon statistics, antibunching and squeezed states
International Nuclear Information System (INIS)
Leuchs, G.
1986-01-01
This paper attempts to describe the status and addresses future prospects of experiments regarding photon antibunching, and squeezed states. Light correlation is presented in the framework of classical electrodynamics. The extension to quantized radiation fields is discussed and an introduction to the basic principles related to photon statistics, antibunching and squeezed states are presented. The effect of linear attenuation (beam splitters, neutral density filters, and detector quantum efficiency) on the detected signal is discussed. Experiments on the change of photon statistics by the nonlinear interaction of radiation fields with matter are described and some experimental observations of antibunching and sub-Poissonian photon statistics in resonance fluorescence and with possible schemes for the generation and detection of squeezed states are examined
Optimization of a photon rejecter to separate electronic noise in a photon-counting detector
International Nuclear Information System (INIS)
Cho, Hyo-Min; Choi, Yu-Na; Lee, Seung-Wan; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung
2012-01-01
Photon-counting-based X-ray imaging technology provides the capability to count individual photons and to characterize photon energies. The cadmium telluride (CdTe)-based photon-counting detector is limited in capability, however, under a high X-ray flux. A photon rejecter composed of aluminum, for example, can reduce this limitation by modulating the incident number of photons. In addition to this function, the optimal photon rejecter can separate electronic noise, which degrades image quality. The aim of this work was to optimize a photon rejecter for high-quality image acquisition by removing electronic noise from the actual pulse signal. The images and spectra were acquired using a micro-focus X-ray source with a CdTe-based photon-counting detector. We acquired data with various types of photon-rejecter materials composed of aluminum (Al) and iodine at three different tube voltages (50, 70, and 90 kVp). A phantom composed of high-atomic-number materials was imaged to evaluate the efficiency of the photon rejecter. Photon rejecters composed of 1-mm Al, 10-mm Al, and a combination of 10-mm Al and iodine provided optimum capability at 50, 70, and 90 kVp, respectively. Each optimal combination of photon-rejecter material and voltage effectively separated electronic noise from the actual pulse signal and gave the highest contrast-to-noise ratio for materials on the image. These optimized types of photon rejecters can effectively discriminate electronic noise and improve image quality at different tube voltages.
Counting constituents in molecular complexes by fluorescence photon antibunching
Energy Technology Data Exchange (ETDEWEB)
Fore, S; Laurence, T; Hollars, C; Huser, T
2007-04-17
Modern single molecule fluorescence microscopy offers new, highly quantitative ways of studying the systems biology of cells while keeping the cells healthy and alive in their natural environment. In this context, a quantum optical technique, photon antibunching, has found a small niche in the continuously growing applications of single molecule techniques to small molecular complexes. Here, we review some of the most recent applications of photon antibunching in biophotonics, and we provide a guide for how to conduct photon antibunching experiments at the single molecule level by applying techniques borrowed from time-correlated single photon counting. We provide a number of new examples for applications of photon antibunching to the study of multichromophoric molecules and small molecular complexes.
Energy Technology Data Exchange (ETDEWEB)
Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)
2016-05-15
Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.
Novel Photon-Counting Detectors for Free-Space Communication
Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff
2016-01-01
We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.
Photon-Counting Arrays for Time-Resolved Imaging
Directory of Open Access Journals (Sweden)
I. Michel Antolovic
2016-06-01
Full Text Available The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach.
Musculoskeletal imaging with a prototype photon-counting detector.
Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F
2012-01-01
To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.
On the statistical properties of photons
International Nuclear Information System (INIS)
Cini, M.
1990-01-01
The interpretation in terms of a transition from Maxwell-Boltzmann to Bose-Einstein statistics of the effect in quantum optics of degenerate light discovered by De Martini and Di Fonzo is discussed. It is shown that the results of the experiment can be explained by using only the quantum-mechanical rule that the states of an assembly of bosons should be completely symmetrical, without mentioning in any way their statistical properties. This means that photons are indeed identical particles
Photon-counting multifactor optical encryption and authentication
International Nuclear Information System (INIS)
Pérez-Cabré, E; Millán, M S; Mohammed, E A; Saadon, H L
2015-01-01
The multifactor optical encryption authentication method [Opt. Lett., 31 721-3 (2006)] reinforces optical security by allowing the simultaneous authentication of up to four factors. In this work, the photon-counting imaging technique is applied to the multifactor encrypted function so that a sparse phase-only distribution is generated for the encrypted data. The integration of both techniques permits an increased capacity for signal hiding with simultaneous data reduction for better fulfilling the general requirements of protection, storage and transmission. Cryptanalysis of the proposed method is carried out in terms of chosen-plaintext and chosen-ciphertext attacks. Although the multifactor authentication process is not substantially altered by those attacks, its integration with the photon-counting imaging technique prevents from possible partial disclosure of any encrypted factor, thus increasing the security level of the overall process. Numerical experiments and results are provided and discussed. (paper)
ON THE USE OF SHOT NOISE FOR PHOTON COUNTING
Energy Technology Data Exchange (ETDEWEB)
Zmuidzinas, Jonas, E-mail: jonas@caltech.edu [Division of Physics, Mathematics, and Astronomy, California Institute Institute of Technology, Pasadena, CA 91125 (United States)
2015-11-01
Lieu et al. have recently claimed that it is possible to substantially improve the sensitivity of radio-astronomical observations. In essence, their proposal is to make use of the intensity of the photon shot noise as a measure of the photon arrival rate. Lieu et al. provide a detailed quantum-mechanical calculation of a proposed measurement scheme that uses two detectors and conclude that this scheme avoids the sensitivity degradation that is associated with photon bunching. If correct, this result could have a profound impact on radio astronomy. Here I present a detailed analysis of the sensitivity attainable using shot-noise measurement schemes that use either one or two detectors, and demonstrate that neither scheme can avoid the photon bunching penalty. I perform both semiclassical and fully quantum calculations of the sensitivity, obtaining consistent results, and provide a formal proof of the equivalence of these two approaches. These direct calculations are furthermore shown to be consistent with an indirect argument based on a correlation method that establishes an independent limit to the sensitivity of shot-noise measurement schemes. Furthermore, these calculations are directly applicable to the regime of interest identified by Lieu et al. Collectively, these results conclusively demonstrate that the photon-bunching sensitivity penalty applies to shot-noise measurement schemes just as it does to ordinary photon counting, in contradiction to the fundamental claim made by Lieu et al. The source of this contradiction is traced to a logical fallacy in their argument.
Conditionally Teleported States Using Optical Squeezers and Photon Counting
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; FAN Yue; CHENG Hai-Ling
2002-01-01
By virtue of the neat expression of the two-mode squeezing operator in the Einstein,Podolsky and Rosen entangled state representation,we provide a new approach for discussing the teleportation scheme using optical squeezers and photon counting devices.We derive the explicit form of the teleported states,so that the conditional property of teleportation and teleportation fidelity of this protocol can be scen more clcarly.The derivation is concise.
Ultrafast photon counting applied to resonant scanning STED microscopy.
Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong
2015-01-01
To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Low photon count based digital holography for quadratic phase cryptography.
Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T
2017-07-15
Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.
Multimode model for projective photon-counting measurements
International Nuclear Information System (INIS)
Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Dantan, Aurelien; Grangier, Philippe; Wubs, Martijn; Soerensen, Anders S.
2009-01-01
We present a general model to account for the multimode nature of the quantum electromagnetic field in projective photon-counting measurements. We focus on photon-subtraction experiments, where non-Gaussian states are produced conditionally. These are useful states for continuous-variable quantum-information processing. We present a general method called mode reduction that reduces the multimode model to an effective two-mode problem. We apply this method to a multimode model describing broadband parametric down-conversion, thereby improving the analysis of existing experimental results. The main improvement is that spatial and frequency filters before the photon detector are taken into account explicitly. We find excellent agreement with previously published experimental results, using fewer free parameters than before, and discuss the implications of our analysis for the optimized production of states with negative Wigner functions.
Analysis of photon statistics with Silicon Photomultiplier
International Nuclear Information System (INIS)
D'Ascenzo, N.; Saveliev, V.; Wang, L.; Xie, Q.
2015-01-01
The Silicon Photomultiplier (SiPM) is a novel silicon-based photodetector, which represents the modern perspective of low photon flux detection. The aim of this paper is to provide an introduction on the statistical analysis methods needed to understand and estimate in quantitative way the correct features and description of the response of the SiPM to a coherent source of light
Advanced time-correlated single photon counting applications
Becker, Wolfgang
2015-01-01
This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.
Direct photon-counting scintillation detector readout using an SSPM
International Nuclear Information System (INIS)
Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.
2007-01-01
Gamma-ray detector technologies, capable of providing adequate energy information, use photomultiplier tubes (PMTs) or silicon avalanche photodiodes to detect the light pulse from a scintillation crystal. A new approach to detect the light from scintillation materials is to use an array of small photon counting detectors, or a 'detector-on-a-chip' based on a novel 'Solid-state Photomultiplier' (SSPM) concept. A CMOS SSPM coupled to a scintillation crystal uses an array of CMOS Geiger photodiode (GPD) pixels to collect light and produce a signal proportional to the energy of the radiation. Each pixel acts as a binary photon detector, but the summed output is an analog representation of the total photon intensity. We have successfully fabricated arrays of GPD pixels in a CMOS environment, which makes possible the production of miniaturized arrays integrated with the detector electronics in a small silicon chip. This detector technology allows for a substantial cost reduction while preserving the energy resolution needed for radiological measurements. In this work, we compare designs for the SSPM detector. One pixel design achieves maximum detection efficiency (DE) for 632-nm photons approaching 30% with a room temperature dark count rate (DCR) of less than 1 kHz for a 30-μm-diameter pixel. We characterize after pulsing and optical cross talk and discuss their effects on the performance of the SSPM. For 30-μm diameter, passively quenched CMOS GPD pixels, modeling suggests that a pixel spacing of approximately 90 μm optimizes the SSPM performance with respect to DE and cross talk
An area efficient readout architecture for photon counting color imaging
International Nuclear Information System (INIS)
Lundgren, Jan; O'Nils, Mattias; Oelmann, Bengt; Norlin, Boerje; Abdalla, Suliman
2007-01-01
The introduction of several energy levels, namely color imaging, in photon counting X-ray image sensors is a trade-off between circuit complexity and spatial resolution. In this paper, we propose a pixel architecture that has full resolution for the intensity and uses sub-sampling for the energy spectrum. The results show that this sub-sampling pixel architecture produces images with an image quality which is, on average, 2.4 dB (PSNR) higher than those for a single energy range architecture and with half the circuit complexity of that for a full sampling architecture
Theory of overdispersion in counting statistics caused by fluctuating probabilities
International Nuclear Information System (INIS)
Semkow, Thomas M.
1999-01-01
It is shown that the random Lexis fluctuations of probabilities such as probability of decay or detection cause the counting statistics to be overdispersed with respect to the classical binomial, Poisson, or Gaussian distributions. The generating and the distribution functions for the overdispersed counting statistics are derived. Applications to radioactive decay with detection and more complex experiments are given, as well as distinguishing between the source and background, in the presence of overdispersion. Monte-Carlo verifications are provided
Characterization of photon-counting multislit breast tomosynthesis.
Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik
2018-02-01
It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the
Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.
Hosny, Neveen A; Lee, David A; Knight, Martin M
2012-01-01
Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Non-Poissonian photon statistics from macroscopic photon cutting materials.
de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T
2017-05-24
In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.
The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode
International Nuclear Information System (INIS)
Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian
2013-01-01
In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined. (letter)
Coherence modulation at the photon-counting level: A new scheme for secure communication
International Nuclear Information System (INIS)
Rhodes, William T; Boughanmi, Abdellatif; Moreno, Yezid Torres
2016-01-01
When operated at the photon-counting level, coherence modulation can provide quantifiably secure binary signal transmission between two entities, security being based on the nonclonability of photons. (paper)
Real-time computational photon-counting LiDAR
Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles
2018-03-01
The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.
Maturing CCD Photon-Counting Technology for Space Flight
Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian
2015-01-01
This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.
Development and flight testing of UV optimized Photon Counting CCDs
Hamden, Erika T.
2018-06-01
I will discuss the latest results from the Hamden UV/Vis Detector Lab and our ongoing work using a UV optimized EMCCD in flight. Our lab is currently testing efficiency and performance of delta-doped, anti-reflection coated EMCCDs, in collaboration with JPL. The lab has been set-up to test quantum efficiency, dark current, clock-induced-charge, and read noise. I will describe our improvements to our circuit boards for lower noise, updates from a new, more flexible NUVU controller, and the integration of an EMCCD in the FIREBall-2 UV spectrograph. I will also briefly describe future plans to conduct radiation testing on delta-doped EMCCDs (both warm, unbiased and cold, biased configurations) thus summer and longer term plans for testing newer photon counting CCDs as I move the HUVD Lab to the University of Arizona in the Fall of 2018.
A multispectral photon-counting double random phase encoding scheme for image authentication.
Yi, Faliu; Moon, Inkyu; Lee, Yeon H
2014-05-20
In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.
Fast imaging by photon counting application to long-baseline optical stellar interferometry
International Nuclear Information System (INIS)
Morel, Sebastien
1998-01-01
Image acquisition by photon counting in the visible spectrum with a high precision on photo-events dating is especially useful for ground-based observations. In the first part of this thesis, and after a review of several techniques for photon acquisition and processing, I introduce a new type of photon counting camera, noticeable for its high temporal resolution and its high maximum counting rate: the DELTA (Detector Enhancement by Linear-projections on Three Axes) camera. I describe the concept of this camera, and the engineering solutions (optics, electronics, computing) that could be used for its construction. The second part of my work regards fringe detection and tracking in ground-based and long- baseline optical stellar interferometry. After a statistical approach of the issue, I describe methods introducing a priori information in the data, in order to have a better detection efficiency. One of the proposed methods, using a priori information on the atmospheric piston, requires a precise photo-event dating, and therefore uses methods described in the first part. (author) [fr
A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication
Directory of Open Access Journals (Sweden)
Faliu Yi
2014-05-01
Full Text Available In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI and double random phase encoding (DRPE schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.
Zhang, Guoqing; Lina, Liu
2018-02-01
An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.
A simulator for airborne laser swath mapping via photon counting
Slatton, K. C.; Carter, W. E.; Shrestha, R.
2005-06-01
Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.
Photon-number statistics in resonance fluorescence
Lenstra, D.
1982-12-01
The theory of photon-number statistics in resonance fluorescence is treated, starting with the general formula for the emission probability of n photons during a given time interval T. The results fully confirm formerly obtained results by Cook that were based on the theory of atomic motion in a traveling wave. General expressions for the factorial moments are derived and explicit results for the mean and the variance are given. It is explicitly shown that the distribution function tends to a Gaussian when T becomes much larger than the natural lifetime of the excited atom. The speed of convergence towards the Gaussian is found to be typically slow, that is, the third normalized central moment (or the skewness) is proportional to T-12. However, numerical results illustrate that the overall features of the distribution function are already well represented by a Gaussian when T is larger than a few natural lifetimes only, at least if the intensity of the exciting field is not too small and its detuning is not too large.
Understanding photon sideband statistics and correlation for determining phonon coherence
Ding, Ding; Yin, Xiaobo; Li, Baowen
2018-01-01
Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.
Single photon laser altimeter simulator and statistical signal processing
Vacek, Michael; Prochazka, Ivan
2013-05-01
Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (˜10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (˜10 km) where range evaluation repetition rates of ˜100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.
Counting statistics of many-particle quantum walks
Mayer, Klaus; Tichy, Malte C.; Mintert, Florian; Konrad, Thomas; Buchleitner, Andreas
2011-06-01
We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.
Counting statistics of many-particle quantum walks
International Nuclear Information System (INIS)
Mayer, Klaus; Tichy, Malte C.; Buchleitner, Andreas; Mintert, Florian; Konrad, Thomas
2011-01-01
We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.
Optimisation of centroiding algorithms for photon event counting imaging
International Nuclear Information System (INIS)
Suhling, K.; Airey, R.W.; Morgan, B.L.
1999-01-01
Approaches to photon event counting imaging in which the output events of an image intensifier are located using a centroiding technique have long been plagued by fixed pattern noise in which a grid of dimensions similar to those of the CCD pixels is superimposed on the image. This is caused by a mismatch between the photon event shape and the centroiding algorithm. We have used hyperbolic cosine, Gaussian, Lorentzian, parabolic as well as 3-, 5-, and 7-point centre of gravity algorithms, and hybrids thereof, to assess means of minimising this fixed pattern noise. We show that fixed pattern noise generated by the widely used centre of gravity centroiding is due to intrinsic features of the algorithm. Our results confirm that the recently proposed use of Gaussian centroiding does indeed show a significant reduction of fixed pattern noise compared to centre of gravity centroiding (Michel et al., Mon. Not. R. Astron. Soc. 292 (1997) 611-620). However, the disadvantage of a Gaussian algorithm is a centroiding failure for small pulses, caused by a division by zero, which leads to a loss of detective quantum efficiency (DQE) and to small amounts of residual fixed pattern noise. Using both real data from an image intensifier system employing a progressive scan camera, framegrabber and PC, and also synthetic data from Monte-Carlo simulations, we find that hybrid centroiding algorithms can reduce the fixed pattern noise without loss of resolution or loss of DQE. Imaging a test pattern to assess the features of the different algorithms shows that a hybrid of Gaussian and 3-point centre of gravity centroiding algorithms results in an optimum combination of low fixed pattern noise (lower than a simple Gaussian), high DQE, and high resolution. The Lorentzian algorithm gives the worst results in terms of high fixed pattern noise and low resolution, and the Gaussian and hyperbolic cosine algorithms have the lowest DQEs
Non-Poissonian photon statistics from macroscopic photon cutting materials
De Jong, Mathijs; Meijerink, A; Rabouw, Freddy T.
2017-01-01
In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and
Energy-correction photon counting pixel for photon energy extraction under pulse pile-up
Energy Technology Data Exchange (ETDEWEB)
Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong, E-mail: gscho@kaist.ac.kr
2017-06-01
A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 µm{sup 2} was fabricated by using a 6-metal 1-poly 0.18 µm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.
X-ray imaging with photon counting hybrid semiconductor pixel detectors
Manolopoulos, S; Campbell, M; Snoeys, W; Heijne, Erik H M; Pernigotti, E; Raine, C; Smith, K; Watt, J; O'Shea, V; Ludwig, J; Schwarz, C
1999-01-01
Semiconductor pixel detectors, originally developed for particle physics experiments, have been studied as X-ray imaging devices. The performance of devices using the OMEGA 3 read-out chip bump-bonded to pixellated silicon semiconductor detectors is characterised in terms of their signal-to-noise ratio when exposed to 60 kVp X-rays. Although parts of the devices achieve values of this ratio compatible with the noise being photon statistics limited, this is not found to hold for the whole pixel matrix, resulting in the global signal-to-noise ratio being compromised. First results are presented of X-ray images taken with a gallium arsenide pixel detector bump-bonded to a new read-out chip, (MEDIPIX), which is a single photon counting read-out chip incorporating a 15-bit counter in every pixel. (author)
Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors
Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.
2016-01-01
SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643
Reducing bias in the analysis of counting statistics data
International Nuclear Information System (INIS)
Hammersley, A.P.; Antoniadis, A.
1997-01-01
In the analysis of counting statistics data it is common practice to estimate the variance of the measured data points as the data points themselves. This practice introduces a bias into the results of further analysis which may be significant, and under certain circumstances lead to false conclusions. In the case of normal weighted least squares fitting this bias is quantified and methods to avoid it are proposed. (orig.)
Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.
Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C
2009-01-01
The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and
Photon statistics characterization of a single-photon source
International Nuclear Information System (INIS)
Alleaume, R; Treussart, F; Courty, J-M; Roch, J-F
2004-01-01
In a recent experiment, we reported the time-domain intensity noise measurement of a single-photon source relying on single-molecule fluorescence control. In this paper, we present data processing starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single-photon source is derived from ON↔OFF dynamics. Finally, source intensity noise analysis, using the Mandel parameter, is quantitatively compared with the usual approach relying on the time autocorrelation function, both methods yielding the same molecular dynamical parameters
Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.
Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay
2016-04-09
Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor.
Photon statistical properties of photon-added two-mode squeezed coherent states
International Nuclear Information System (INIS)
Xu Xue-Fen; Wang Shuai; Tang Bin
2014-01-01
We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA-TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA-TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
International Nuclear Information System (INIS)
Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus
2016-01-01
Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.
Experimental investigation of statistical models describing distribution of counts
International Nuclear Information System (INIS)
Salma, I.; Zemplen-Papp, E.
1992-01-01
The binomial, Poisson and modified Poisson models which are used for describing the statistical nature of the distribution of counts are compared theoretically, and conclusions for application are considered. The validity of the Poisson and the modified Poisson statistical distribution for observing k events in a short time interval is investigated experimentally for various measuring times. The experiments to measure the influence of the significant radioactive decay were performed with 89 Y m (T 1/2 =16.06 s), using a multichannel analyser (4096 channels) in the multiscaling mode. According to the results, Poisson statistics describe the counting experiment for short measuring times (up to T=0.5T 1/2 ) and its application is recommended. However, analysis of the data demonstrated, with confidence, that for long measurements (T≥T 1/2 ) Poisson distribution is not valid and the modified Poisson function is preferable. The practical implications in calculating uncertainties and in optimizing the measuring time are discussed. Differences between the standard deviations evaluated on the basis of the Poisson and binomial models are especially significant for experiments with long measuring time (T/T 1/2 ≥2) and/or large detection efficiency (ε>0.30). Optimization of the measuring time for paired observations yields the same solution for either the binomial or the Poisson distribution. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2015-11-15
Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.
A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation, Phase II
National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...
The multichannel system of synchronous photon counting of range 50 ns - 100 ms
Energy Technology Data Exchange (ETDEWEB)
Dmitriev, S M [and others
1996-12-31
A new type of the multichannel system of synchronous photon counting is designed. The recording past of the analyzer is described and the whole measurement process is considered. Frequency of the master generator is 75 MHz. 1 ref.; 2 figs.
A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation, Phase I
National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...
Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications, Phase I
National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...
Counting in Lattices: Combinatorial Problems from Statistical Mechanics.
Randall, Dana Jill
In this thesis we consider two classical combinatorial problems arising in statistical mechanics: counting matchings and self-avoiding walks in lattice graphs. The first problem arises in the study of the thermodynamical properties of monomers and dimers (diatomic molecules) in crystals. Fisher, Kasteleyn and Temperley discovered an elegant technique to exactly count the number of perfect matchings in two dimensional lattices, but it is not applicable for matchings of arbitrary size, or in higher dimensional lattices. We present the first efficient approximation algorithm for computing the number of matchings of any size in any periodic lattice in arbitrary dimension. The algorithm is based on Monte Carlo simulation of a suitable Markov chain and has rigorously derived performance guarantees that do not rely on any assumptions. In addition, we show that these results generalize to counting matchings in any graph which is the Cayley graph of a finite group. The second problem is counting self-avoiding walks in lattices. This problem arises in the study of the thermodynamics of long polymer chains in dilute solution. While there are a number of Monte Carlo algorithms used to count self -avoiding walks in practice, these are heuristic and their correctness relies on unproven conjectures. In contrast, we present an efficient algorithm which relies on a single, widely-believed conjecture that is simpler than preceding assumptions and, more importantly, is one which the algorithm itself can test. Thus our algorithm is reliable, in the sense that it either outputs answers that are guaranteed, with high probability, to be correct, or finds a counterexample to the conjecture. In either case we know we can trust our results and the algorithm is guaranteed to run in polynomial time. This is the first algorithm for counting self-avoiding walks in which the error bounds are rigorously controlled. This work was supported in part by an AT&T graduate fellowship, a University of
Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy
Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo
2014-01-01
Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114
Neutron radiography imaging with 2-dimensional photon counting method and its problems
International Nuclear Information System (INIS)
Ikeda, Y.; Kobayashi, H.; Niwa, T.; Kataoka, T.
1988-01-01
A ultra sensitive neutron imaging system has been deviced with a 2-dimensional photon counting camara (ARGUS 100). The imaging system is composed by a 2-dimensional single photon counting tube and a low background vidicon followed with an image processing unit and frame memories. By using the imaging system, electronic neutron radiography (NTV) has been possible under the neutron flux less than 3 x 10 4 n/cm 2 ·s. (author)
To test photon statistics by atomic beam deflection
International Nuclear Information System (INIS)
Wang Yuzhu; Chen Yudan; Huang Weigang; Liu Liang
1985-02-01
There exists a simple relation between the photon statistics in resonance fluorescence and the statistics of the momentum transferred to an atom by a plane travelling wave [Cook, R.J., Opt. Commun., 35, 347(1980)]. Using an atomic beam deflection by light pressure, we have observed sub-Poissonian statistics in resonance fluorescence of two-level atoms. (author)
International Nuclear Information System (INIS)
Sen, Biswajit; Mandal, Swapan
2007-01-01
An initially prepared coherent state coupled to a second-order nonlinear medium is responsible for stimulated and spontaneous hyper Raman processes. By using an intuitive approach based on perturbation theory, the Hamiltonian corresponding to the hyper Raman processes is analytically solved to obtain the temporal development of the field operators. It is true that these analytical solutions are valid for small coupling constants. However, the interesting part is that these solutions are valid for reasonably large time. Hence, the present analytical solutions are quite general and are fresh compared to those solutions under short-time approximations. By exploiting the analytical solutions of field operators for various modes, we investigate the squeezing, photon antibunching and nonclassical photon statistics for pure modes of the input coherent light responsible for hyper Raman processes. At least in one instance (stimulated hyper Raman processes for vibration phonon mode), we report the simultaneous appearance of classical (photon bunching) and nonclassical (squeezing) effects of the radiation field responsible for hyper Raman processes
HgCdTe APD-based linear-mode photon counting components and ladar receivers
Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.
2011-05-01
Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.
International Nuclear Information System (INIS)
Bartlett, Stephen D.; Sanders, Barry C.
2002-01-01
Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved ''off-line,'' thereby permitting universal continuous-variable quantum computation with linear optics
Gene coexpression measures in large heterogeneous samples using count statistics.
Wang, Y X Rachel; Waterman, Michael S; Huang, Haiyan
2014-11-18
With the advent of high-throughput technologies making large-scale gene expression data readily available, developing appropriate computational tools to process these data and distill insights into systems biology has been an important part of the "big data" challenge. Gene coexpression is one of the earliest techniques developed that is still widely in use for functional annotation, pathway analysis, and, most importantly, the reconstruction of gene regulatory networks, based on gene expression data. However, most coexpression measures do not specifically account for local features in expression profiles. For example, it is very likely that the patterns of gene association may change or only exist in a subset of the samples, especially when the samples are pooled from a range of experiments. We propose two new gene coexpression statistics based on counting local patterns of gene expression ranks to take into account the potentially diverse nature of gene interactions. In particular, one of our statistics is designed for time-course data with local dependence structures, such as time series coupled over a subregion of the time domain. We provide asymptotic analysis of their distributions and power, and evaluate their performance against a wide range of existing coexpression measures on simulated and real data. Our new statistics are fast to compute, robust against outliers, and show comparable and often better general performance.
International Nuclear Information System (INIS)
Chikkur, G.C.; Lagare, M.T.; Umakantha, N.
1981-01-01
Details of how a DK-2A spectrophotometer can be modified into an automatic single-photon counting fluorescence spectrophotometer for recording a low intensity spectrum, are reported. The single-photon count-rate converted into a DC voltage is applied at the appropriate stage in the sample channel amplifier circuit of a DK-2A to get the pen deflection proportional to the count-rate. A high intensity spectrum may be recorded in the usual way by merely turning the shaft of the mirror motor by 180 degrees. (author)
Energy Technology Data Exchange (ETDEWEB)
Liang, A K; Koniczek, M; Antonuk, L E; El-Mohri, Y; Zhao, Q [University of Michigan, Ann Arbor, MI (United States)
2016-06-15
Purpose: Photon counting arrays (PCAs) offer several advantages over conventional, fluence-integrating x-ray imagers, such as improved contrast by means of energy windowing. For that reason, we are exploring the feasibility and performance of PCA pixel circuitry based on polycrystalline silicon. This material, unlike the crystalline silicon commonly used in photon counting detectors, lends itself toward the economic manufacture of radiation tolerant, monolithic large area (e.g., ∼43×43 cm2) devices. In this presentation, exploration of maximum count rate, a critical performance parameter for such devices, is reported. Methods: Count rate performance for a variety of pixel circuit designs was explored through detailed circuit simulations over a wide range of parameters (including pixel pitch and operating conditions) with the additional goal of preserving good energy resolution. The count rate simulations assume input events corresponding to a 72 kVp x-ray spectrum with 20 mm Al filtration interacting with a CZT detector at various input flux rates. Output count rates are determined at various photon energy threshold levels, and the percentage of counts lost (e.g., due to deadtime or pile-up) is calculated from the ratio of output to input counts. The energy resolution simulations involve thermal and flicker noise originating from each circuit element in a design. Results: Circuit designs compatible with pixel pitches ranging from 250 to 1000 µm that allow count rates over a megacount per second per pixel appear feasible. Such rates are expected to be suitable for radiographic and fluoroscopic imaging. Results for the analog front-end circuitry of the pixels show that acceptable energy resolution can also be achieved. Conclusion: PCAs created using polycrystalline silicon have the potential to offer monolithic large-area detectors with count rate performance comparable to those of crystalline silicon detectors. Further improvement through detailed circuit
Characterization of Sphinx1 ASIC X-ray detector using photon counting and charge integration
Habib, A.; Arques, M.; Moro, J.-L.; Accensi, M.; Stanchina, S.; Dupont, B.; Rohr, P.; Sicard, G.; Tchagaspanian, M.; Verger, L.
2018-01-01
Sphinx1 is a novel pixel architecture adapted for X-ray imaging, it detects radiation by photon counting and charge integration. In photon counting mode, each photon is compensated by one or more counter-charges typically consisting of 100 electrons (e-) each. The number of counter-charges required gives a measure of the incoming photon energy, thus allowing spectrometric detection. Pixels can also detect radiation by integrating the charges deposited by all incoming photons during one image frame and converting this analog value into a digital response with a 100 electrons least significant bit (LSB), based on the counter-charge concept. A proof of concept test chip measuring 5 mm × 5 mm, with 200 μm × 200 μm pixels has been produced and characterized. This paper provides details on the architecture and the counter-charge design; it also describes the two modes of operation: photon counting and charge integration. The first performance measurements for this test chip are presented. Noise was found to be ~80 e-rms in photon counting mode with a power consumption of only 0.9 μW/pixel for the static analog part and 0.3 μW/pixel for the static digital part.
Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Stierstorfer, Karl; Kappler, Steffen
2016-12-01
An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the pixels. This is called double-counting with charge sharing. (A photoelectric effect with K-shell fluorescence x-ray emission would result in double-counting as well). As a result, PCD data are spatially and energetically correlated, although the output of individual PCD pixels is Poisson distributed. Major problems include the lack of a detector noise model for the spatio-energetic cross talk and lack of a computationally efficient simulation tool for generating correlated Poisson data. A Monte Carlo (MC) simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, the authors developed a new detector model and implemented it in an efficient software simulator that uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account: (1) detection efficiency; (2) incomplete charge collection and ballistic effect; (3) interaction with PCDs via photoelectric effect (with or without K-shell fluorescence x-ray emission, which may escape from the PCDs or be reabsorbed); and (4) electronic noise. The correlation was modeled by using these two simplifying assumptions: energy conservation and mutual exclusiveness. The mutual exclusiveness is that no more than two pixels measure energy from one photon. The effect of model parameters has been studied and results were compared with MC simulations. The agreement, with respect to the spectrum, was evaluated using the reduced χ 2 statistics or a weighted sum of squared errors, χ red 2 (≥1), where χ red 2 =1 indicates a perfect fit. The model produced spectra with flat field irradiation that
Characterization of spectrometric photon-counting X-ray detectors at different pitches
Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.
2017-09-01
There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.
Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors
Erkmen, Baris I.; Moision, Bruce E.
2010-01-01
Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.
Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials
Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas
2016-01-01
Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399
Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry
Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul
2003-01-01
Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.
Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.
Stierstorfer, Karl
2018-01-01
To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.
A new microcalorimeter concept for photon counting X-ray spectroscopy
International Nuclear Information System (INIS)
Silver, E.H.; Labov, S.E.
1989-01-01
We present an innovative approach for performing photon counting X-ray spectroscopy with cryogenic microcalorimeters. The detector concept takes advantage of the temperature dependence of the dielectric constant in ferroelectric materials. A dielectric calorimeter has many potential advantages over traditional resistive devices, particularly in the reduction of Johnson noise. This makes the energy resolution for photon counting spectroscopy limited only to the noise produced by the intrinsic temperature fluctuations of the device. The detector concept is presented and its predicted performance is compared with resistive calorimeters. Calculations have shown that practical instruments operating with an energy resolution less than 20 eV may be possible at 300 mK. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Cheng, Z; Zheng, X; Deen, J; Peng, H [McMaster University, Hamilton, ON (Canada); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)
2016-06-15
Purpose: Silicon photomultiplier (SiPM) has recently emerged as a promising photodetector for biomedical imaging applications. Due to its high multiplication gain (comparable to PMT), fast timing, low cost and compactness, it is considered a good candidate for photon counting CT. Dark noise is a limiting factor which impacts both energy resolution and detection dynamic range. Our goal is to develop a comprehensive model for noise sources for SiPM sensors. Methods: The physical parameters used in this work were based upon a test SPAD fabricated in 130nm CMOS process. The SPAD uses an n+/p-well junction, which is isolated from the p-substrate by a deep n-well junction. Inter-avalanche time measurement was used to record the time interval between two adjacent avalanche pulses. After collecting 1×106 counts, the histogram was obtained and multiple exponential fitting process was used to extract the lifetime associated with the traps within the bandgap. Results: At room temperature, the breakdown voltage of the SPAD is ∼11.4V and shows a temperature coefficient of 7.7mV/°C. The dark noise of SPAD increases with both the excess biasing voltage and temperature. The primary dark counts from the model were validated against the measurement results. A maximum relative error of 8.7% is observed at 20 °C with an excess voltage of 0.5V. The probabilities of after-pulsing are found to be dependent of both temperature and excess voltage. With 0.5V excess voltage, the after-pulsing probability is 63.5% at - 30 °C and drops to ∼6.6% at 40 °C. Conclusion: A comprehensive noise model for SPAD sensor was proposed. The model takes into account of static, dynamic and statistical behavior of SPADs. We believe that this is the first SPAD circuit simulation model that includes the band-to-band tunneling dark noise contribution and temporal dependence of the after-pulsing probability.
Single-photon counting in the 1550-nm wavelength region for quantum cryptography
International Nuclear Information System (INIS)
Park, Chul-Woo; Park, Jun-Bum; Park, Young-Soo; Lee, Seung-Hun; Shin, Hyun-Jun; Bae, Byung-Seong; Moon, Sung; Han, Sang-Kook
2006-01-01
In this paper, we report the measured performance of an InGaAs avalanche photodiode (APD) Module fabricated for single-photon counting. We measured the dark current noise, the after-pulse noise, and the quantum efficiency of the single- photon detector for different temperatures. We then examined our single-photon source and detection system by measuring the coincident probability. From our measurement, we observed that the after-pulse effect of the APD at temperatures below 105 .deg. C caused cascade noise build-up on the succeeding electrical signals.
International Nuclear Information System (INIS)
Guo Yanqiang; Yang Rongcan; Li Gang; Zhang Pengfei; Zhang Yuchi; Wang Junmin; Zhang Tiancai
2011-01-01
By employing multiple conventional single-photon counting modules (SPCMs), which are binary-response detectors, instead of photon number resolving detectors, the nonclassicality criteria are investigated for various quantum states. The bounds of the criteria are derived from a system based on three or four SPCMs. The overall efficiency and background are both taken into account. The results of experiments with thermal and coherent light agree with the theoretical analysis. Compared with photon number resolving detectors, the use of a Hanbury Brown-Twiss-like scheme with multiple SPCMs is even better for revealing the nonclassicality of the fields, and the efficiency requirements are not so stringent. Some proposals are presented which can improve the detection performance with binary-response SPCMs for different quantum states.
Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.
Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio
2016-01-01
The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.
Photon-counting digital radiography using high-pressure xenon filled detectors
Li, Maozhen; Johns, P C
2001-01-01
Digital radiography overcomes many of the limitations of the traditional screen/film system. Further enhancements in the digital radiography image are possible if the X-ray image receptor could measure the energy of individual photons instead of simply integrating their energy, as is the case at present. A prototype photon counting scanned projection radiography system has been constructed, which combines a Gas Electron Multiplier (GEM) and a Gas Microstrip Detector (GMD) using Xe : CH sub 4 (90 : 10) at high pressure. With the gain contribution from the GEM, the GMD can be operated at lower and safer voltages making the imaging system more reliable. Good energy resolution, and spatial resolution comparable to that of screen/film, have been demonstrated for the GEM/GMD hybrid imaging system in photon counting mode for X-ray spectra up to 50 kV.
K-edge energy-based calibration method for photon counting detectors
Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong
2018-01-01
In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.
Statistical x-ray computed tomography imaging from photon-starved measurements
Chang, Zhiqian; Zhang, Ruoqiao; Thibault, Jean-Baptiste; Sauer, Ken; Bouman, Charles
2013-03-01
Dose reduction in clinical X-ray computed tomography (CT) causes low signal-to-noise ratio (SNR) in photonsparse situations. Statistical iterative reconstruction algorithms have the advantage of retaining image quality while reducing input dosage, but they meet their limits of practicality when significant portions of the sinogram near photon starvation. The corruption of electronic noise leads to measured photon counts taking on negative values, posing a problem for the log() operation in preprocessing of data. In this paper, we propose two categories of projection correction methods: an adaptive denoising filter and Bayesian inference. The denoising filter is easy to implement and preserves local statistics, but it introduces correlation between channels and may affect image resolution. Bayesian inference is a point-wise estimation based on measurements and prior information. Both approaches help improve diagnostic image quality at dramatically reduced dosage.
Statistical measurement of the gamma-ray source-count distribution as a function of energy
Zechlin, H.-S.; Cuoco, A.; Donato, F.; Fornengo, N.; Regis, M.
2017-01-01
Photon counts statistics have recently been proven to provide a sensitive observable for characterizing gamma-ray source populations and for measuring the composition of the gamma-ray sky. In this work, we generalize the use of the standard 1-point probability distribution function (1pPDF) to decompose the high-latitude gamma-ray emission observed with Fermi-LAT into: (i) point-source contributions, (ii) the Galactic foreground contribution, and (iii) a diffuse isotropic background contribution. We analyze gamma-ray data in five adjacent energy bands between 1 and 171 GeV. We measure the source-count distribution dN/dS as a function of energy, and demonstrate that our results extend current measurements from source catalogs to the regime of so far undetected sources. Our method improves the sensitivity for resolving point-source populations by about one order of magnitude in flux. The dN/dS distribution as a function of flux is found to be compatible with a broken power law. We derive upper limits on further possible breaks as well as the angular power of unresolved sources. We discuss the composition of the gamma-ray sky and capabilities of the 1pPDF method.
Photon statistics in an N-level (N-1)-mode system
International Nuclear Information System (INIS)
Kozierowski, M.; Shumovskij, A.S.
1987-01-01
The characteristic and photon number distribution functions, the statistical moments of photon numbers and the correlations of modes are studied. The normally ordered variances of the photon numbers and the cross-correlation functions are calculated
Statistical analysis of nematode counts from interlaboratory proficiency tests
Berg, van den W.; Hartsema, O.; Nijs, Den J.M.F.
2014-01-01
A series of proficiency tests on potato cyst nematode (PCN; n=29) and free-living stages of Meloidogyne and Pratylenchus (n=23) were investigated to determine the accuracy and precision of the nematode counts and to gain insights into possible trends and potential improvements. In each test, each
Characterization of spectrometric photon-counting X-ray detectors at different pitches
International Nuclear Information System (INIS)
Jurdit, M.; Moulin, V.; Ouvrier-Buffet, P.; Verger, L.; Brambilla, A.; Radisson, P.
2017-01-01
There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm 2 . Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 10 6 incident photons.s −1 .mm −2 .
Hard photons in heavy ion collisions: direct or statistical?
International Nuclear Information System (INIS)
Herrmann, N.; Bock, R.; Emling, H.; Freifelder, R.; Gobbi, A.; Grosse, E.; Hildenbrand, K.D.; Kulessa, R.; Matulewicz, T.; Rami, F.; Simon, R.S.; Stelzer, H.; Wessels, J.; Maurenzig, P.R.; Olmi, A.; Stefanini, A.A.; Kuehn, W.; Metag, V.; Novotny, R.
1987-10-01
Photons with energies from 2 to 60 MeV have been measured in coincidence with binary fragments in the reaction 92 Mo + 92 Mo at an incident energy of 19.5 A MeV. The rapid change of the γ-ray spectrum and multiplicity with the fragment total kinetic energy in the exit channel indicates that the γ-rays are emitted statistically by the highly excited fragments. Temperatures as high as 6 MeV are inferred. (orig.)
A study of pile-up in integrated time-correlated single photon counting systems.
Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K
2013-10-01
Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.
Cambié, D.; Zhao, F.; Hessel, V.; Debije, M.G.; Noël, T.
2017-01-01
Luminescent solar concentrator-based photomicroreactors (LSC-PMs) have been recently proposed for sustainable and energy-efficient photochemical reactions. Herein, a Monte Carlo ray tracing algorithm to simulate photon paths within LSC-PMs was developed and experimentally validated. The simulation
Clinical experience of photon counting breast tomosynthesis: comparison with traditional mammography
International Nuclear Information System (INIS)
Svane, Gunilla; Azavedo, Edward; Lindman, Karin; Urech, Mattias; Nilsson, Jonas; Weber, Niclas; Lindqvist, Lars; Ullberg, Christer
2011-01-01
Background: In two-dimensional mammography, a well-known problem is over- and underlying tissue which can either obstruct a lesion or create a false-positive result. Tomosynthesis, with an ability to layer the tissue in the image, has the potential to resolve these issues. Purpose: To compare the diagnostic quality, sensitivity and specificity of a single tomosynthesis mammography image and a traditional two-view set of two-dimensional mammograms and to assess the comfort of the two techniques. Material and Methods: One hundred and forty-four women, mainly chosen because of suspicious features on standard mammograms (76 malignant), had a single tomosynthesis image taken of one breast using a novel photon counting system. On average, the dose of the tomosynthesis images was 0.63 times that of the two-view images and the compression force during the procedure was halved. The resulting images were viewed by two radiologists and assessed both individually and comparing the two techniques. Results: In 56% of the cases the radiologists rated the diagnostic quality of the lesion details higher in the tomosynthesis images than in the conventional images (and in 91% equal or higher), which means there is a statistically significant preference for the tomosynthesis technique. This included the calcifications which were rated as having better quality in 41% of the cases. While sensitivity was slightly higher for traditional mammography the specificity was higher for tomosynthesis. However, neither of these two differences was large enough to be statistically significant. Conclusion: The overall accuracy of the two techniques was virtually equal despite the radiologist's very limited experience with tomosynthesis images and vast experience with two-dimensional mammography. As the diagnostic quality of the lesion details in the tomosynthesis images was valued considerably higher this factor should improve with experience. The patients also favored the tomosynthesis examination
A statistical analysis of count normalization methods used in positron-emission tomography
International Nuclear Information System (INIS)
Holmes, T.J.; Ficke, D.C.; Snyder, D.L.
1984-01-01
As part of the Positron-Emission Tomography (PET) reconstruction process, annihilation counts are normalized for photon absorption, detector efficiency and detector-pair duty-cycle. Several normalization methods of time-of-flight and conventional systems are analyzed mathematically for count bias and variance. The results of the study have some implications on hardware and software complexity and on image noise and distortion
A high-throughput, multi-channel photon-counting detector with picosecond timing
Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J
2009-01-01
High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...
Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector
Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush
2012-01-01
Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.
Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors
Czech Academy of Sciences Publication Activity Database
Pichotka, Martin; Jakůbek, Jan; Vavřík, Daniel
2015-01-01
Roč. 10, č. 12 (2015), C12033 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LO1219 Keywords : micro-tomography * photon-counting detectors * metallic-organic composites Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.310, year: 2015 http://iopscience.iop.org/article/10.1088/1748-0221/10/12/C12033/pdf
Rhodes, William T.
2011-09-01
An ideal beam splitter model for an absorber presented by Leonhardt in his book Measuring the Quantum State of Light (Cambridge University Press, 1997) has intriguing implications for the simple Young's fringe experiment in the photon-counting regime. Specifically, it suggests that different results will be obtained depending on whether the light forming the fringes is attenuated at the source or at the slits.
Andrews, David L
2015-01-01
This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol
Statistical analysis of the count and profitability of air conditioners.
Rady, El Houssainy A; Mohamed, Salah M; Abd Elmegaly, Alaa A
2018-08-01
This article presents the statistical analysis of the number and profitability of air conditioners in an Egyptian company. Checking the same distribution for each categorical variable has been made using Kruskal-Wallis test.
McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.
2015-01-01
We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.
Photon counting detector for the personal radiography inspection system “SIBSCAN”
Energy Technology Data Exchange (ETDEWEB)
Babichev, E.A.; Baru, S.E. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Grigoriev, D.N. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk 630073 (Russian Federation); Leonov, V.V. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Oleynikov, V.P. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Porosev, V.V., E-mail: porosev@inp.nsk.su [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova st. 2, Novosibirsk 630090 (Russian Federation); Savinov, G.A. [Budker Institute of Nuclear Physics, Lavrentiev ave. 11, Novosibirsk 630090 (Russian Federation)
2017-02-11
X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator – SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.
Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode
Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli
2014-01-01
The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.
Development of new photon-counting detectors for single-molecule fluorescence microscopy
Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.
2013-01-01
Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185
Photon counting detector for the personal radiography inspection system “SIBSCAN”
International Nuclear Information System (INIS)
Babichev, E.A.; Baru, S.E.; Grigoriev, D.N.; Leonov, V.V.; Oleynikov, V.P.; Porosev, V.V.; Savinov, G.A.
2017-01-01
X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator – SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.
Time-resolved statistics of photon pairs in two-cavity Josephson photonics
Energy Technology Data Exchange (ETDEWEB)
Dambach, Simon; Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University (Germany)
2017-06-15
We analyze the creation and emission of pairs of highly nonclassical microwave photons in a setup where a voltage-biased Josephson junction is connected in series to two electromagnetic oscillators. Tuning the external voltage such that the Josephson frequency equals the sum of the two mode frequencies, each tunneling Cooper pair creates one additional photon in both of the two oscillators. The time-resolved statistics of photon emission events from the two oscillators is investigated by means of single- and cross-oscillator variants of the second-order correlation function g{sup (2)}(τ) and the waiting-time distribution w(τ). They provide insight into the strongly correlated quantum dynamics of the two oscillator subsystems and reveal a rich variety of quantum features of light including strong antibunching and the presence of negative values in the Wigner function. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications
Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry
2015-01-01
An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.
The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results
Dabney, Phillip
2010-01-01
The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.
65Zn and 133Ba standardizing by photon-photon coincidence counting
Loureiro, Jamir S.; da Cruz, Paulo A. L.; Iwahara, Akira; Delgado, José U.; Lopes, Ricardo T.
2018-03-01
The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of 65Zn and 133Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for 65Zn and 0.48 % for 133Ba samples.
65Zn and 133Ba standardizing by photon-photon coincidence counting
International Nuclear Information System (INIS)
Loureiro, Jamir S.; Cruz, Paulo A.L. da; Iwahara, Akira; Delgado, José U.; Lopes, Ricardo T.
2017-01-01
The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of 65 Zn and 133 Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for 65 Zn and 0.48 % for 133 Ba samples. (author)
{sup 65}Zn and {sup 133}Ba standardizing by photon-photon coincidence counting
Energy Technology Data Exchange (ETDEWEB)
Loureiro, Jamir S.; Cruz, Paulo A.L. da; Iwahara, Akira; Delgado, José U., E-mail: palcruz@ird.gov.br [Instituto de Radioproteção e Dosimetria (LNMRI/IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiações Ionizantes; Lopes, Ricardo T. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2017-07-01
The LNMRI/Brazil has deployed a system using X-gamma coincidence technique for the standardizing radionuclide, which present simple and complex decay scheme with X-rays of energy below 100 keV. The work was carried on radionuclide metrology laboratory using a sodium iodide detector, for gamma photons, in combination with a high purity germanium detector for X-rays. Samples of {sup 65}Zn and {sup 133}Ba were standardized and the results for both radionuclides showed good precision and accuracy when compared with reference values. The standardization differences were 0.72 % for {sup 65}Zn and 0.48 % for {sup 133}Ba samples. (author)
On Approaching the Ultimate Limits of Communication Using a Photon-Counting Detector
Erkmen, Baris I.; Moision, Bruce E.; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush
2012-01-01
Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement scheme is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We analyze two binary modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with the state-of-the-art coherent-state on-off keying modulation. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.
High-Sensitivity Semiconductor Photocathodes for Space-Born UV Photon-Counting and Imaging, Phase I
National Aeronautics and Space Administration — Many UV photon-counting and imaging applications, including space-borne astronomy, missile tracking and guidance, UV spectroscopy for chemical/biological...
Evaluation of a hybrid photon counting pixel detector for X-ray polarimetry
International Nuclear Information System (INIS)
Michel, T.; Durst, J.
2008-01-01
It has already been shown in literature that X-ray sensitive CCDs can be used to measure the degree of linear polarization of X-rays using the effect that photoelectrons are emitted with a non-isotropic angular distribution in respect to the orientation of the electric field vector of impinging photons. Up to now hybrid semiconductor pixel detectors like the Timepix-detector have never been used for X-ray polarimetry. The main reason for this is that the pixel pitch is large compared to CCDs which results in a much smaller analyzing power. On the other hand, the active thickness of the sensor layer can be larger than in CCDs leading to an increased efficiency. Therefore hybrid photon counting pixel detectors may be used for imaging and polarimetry at higher photon energies. For irradiation with polarized X-ray photons we were able to measure an asymmetry between vertical and horizontal double hit events in neighboring pixels of the hybrid photon counting Timepix-detector at room temperature. For the specific spectrum used in our experiment an average polarization asymmetry of (0.96±0.02)% was measured. Additionally, the Timepix-detector with its spectroscopic time-over-threshold-mode was used to measure the dependence of the polarization asymmetry on energy deposition in the detector. Polarization asymmetries between 0.2% at 29 keV and 3.4% at 78 keV energy deposition were determined. The results can be reproduced with our EGS4-based Monte-Carlo simulation
Optimization of counting time using count statistics on a diffraction beamline
Energy Technology Data Exchange (ETDEWEB)
Marais, D., E-mail: Deon.Marais@necsa.co.za [Research and Development Division, South African Nuclear Energy Corporation (Necsa) SOC Limited, PO Box 582, Pretoria 0001 (South Africa); School of Mechanical and Nuclear Engineering, North-West University, Potchefstroom 2520 (South Africa); Venter, A.M., E-mail: Andrew.Venter@necsa.co.za [Research and Development Division, South African Nuclear Energy Corporation (Necsa) SOC Limited, PO Box 582, Pretoria 0001 (South Africa); Faculty of Agriculture Science and Technology, North-West University, Mahikeng 2790 (South Africa); Markgraaff, J., E-mail: Johan.Markgraaff@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Potchefstroom 2520 (South Africa)
2016-05-11
The feasibility of an alternative data acquisition strategy to improve the efficiency of beam time usage with neutron strain scanner instruments is demonstrated. By performing strain measurements against set statistical criteria, rather than time, not only leads to substantially reduced sample investigation time but also renders data of similar quality throughout.
Gaussian point count statistics for families of curves over a fixed finite field
Kurlberg, Par; Wigman, Igor
2010-01-01
We produce a collection of families of curves, whose point count statistics over F_p becomes Gaussian for p fixed. In particular, the average number of F_p points on curves in these families tends to infinity.
Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T
2015-01-01
The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...
Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure
Harding, David J.; Dabney, Philip W.; Valett, Susan
2011-01-01
Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.
Photon-counting monolithic avalanche photodiode arrays for the super collider
International Nuclear Information System (INIS)
Ishaque, A.N.; Castleberry, D.E.; Rougeot, H.M.
1994-01-01
In fiber tracking, calorimetry, and other high energy and nuclear physics experiments, the need arises to detect an optical signal consisting of a few photons (in some cases a single photoelectron) with a detector insensitive to magnetic fields. Previous attempts to detect a single photoelectron have involved avalanche photodiodes (APDs) operated in the Geiger mode, the visible light photon counter, and a photomultiplier tube with an APD as the anode. In this paper it is demonstrated that silicon APDs, biased below the breakdown voltage, can be used to detect a signal of a few photons with conventional pulse counting circuitry at room temperature. Moderate cooling, it is further argued, could make it possible to detect a single photoelectron. Monolithic arrays of silicon avalanche photodiodes fabricated by Radiation Monitoring Devices, Inc. (RMD) were evaluated for possible use in the Super Collider detector systems. Measurements on 3 element x 3 element (2 mm pitch) APD arrays, using pulse counting circuitry with a charge sensitive amplifier (CSA) and a Gaussian filter, are reported and found to conform to a simple noise model. The model is used to obtain the optimal operating point. Experimental results are described in Section II, modeling results in Section III, and the conclusions are summarized in Section IV
Photon counting microstrip X-ray detectors with GaAs sensors
Ruat, M.; Andrä, M.; Bergamaschi, A.; Barten, R.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Lozinskaya, A. D.; Mezza, D.; Mozzanica, A.; Novikov, V. A.; Ramilli, M.; Redford, S.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Tolbanov, O. P.; Tyazhev, A.; Vetter, S.; Zarubin, A. N.; Zhang, J.
2018-01-01
High-Z sensors are increasingly used to overcome the poor efficiency of Si sensors above 15 keV, and further extend the energy range of synchrotron and FEL experiments. Detector-grade GaAs sensors of 500 μm thickness offer 98% absorption efficiency at 30 keV and 50% at 50 keV . In this work we assess the usability of GaAs sensors in combination with the MYTHEN photon-counting microstrip readout chip developed at PSI. Different strip length and pitch are compared, and the detector performance is evaluated in regard of the sensor material properties. Despite increased leakage current and noise, photon-counting strips mounted with GaAs sensors can be used with photons of energy as low as 5 keV, and exhibit excellent linearity with energy. The charge sharing is doubled as compared to silicon strips, due to the high diffusion coefficient of electrons in GaAs.
The effect of event shape on centroiding in photon counting detectors
International Nuclear Information System (INIS)
Kawakami, Hajime; Bone, David; Fordham, John; Michel, Raul
1994-01-01
High resolution, CCD readout, photon counting detectors employ simple centroiding algorithms for defining the spatial position of each detected event. The accuracy of centroiding is very dependent upon a number of parameters including the profile, energy and width of the intensified event. In this paper, we provide an analysis of how the characteristics of an intensified event change as the input count rate increases and the consequent effect on centroiding. The changes in these parameters are applied in particular to the MIC photon counting detector developed at UCL for ground and space based astronomical applications. This detector has a maximum format of 3072x2304 pixels permitting its use in the highest resolution applications. Individual events, at light level from 5 to 1000k events/s over the detector area, were analysed. It was found that both the asymmetry and width of event profiles were strongly dependent upon the energy of the intensified event. The variation in profile then affected the centroiding accuracy leading to loss of resolution. These inaccuracies have been quantified for two different 3 CCD pixel centroiding algorithms and one 2 pixel algorithm. The results show that a maximum error of less than 0.05 CCD pixel occurs with the 3 pixel algorithms and 0.1 CCD pixel for the 2 pixel algorithm. An improvement is proposed by utilising straight pore MCPs in the intensifier and a 70 μm air gap in front of the CCD. ((orig.))
International Nuclear Information System (INIS)
Samuelsson, P.
2007-01-01
We present a theory for the full distribution of current fluctuations in incoherent diffusive superconducting junctions, subjected to a voltage bias. This theory of full counting statistics of incoherent multiple Andreev reflections is valid for an arbitrary applied voltage. We present a detailed discussion of the properties of the first four cumulants as well as the low and high voltage regimes of the full counting statistics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica; Tisa, Simone; Zappa, Franco [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)
2013-12-15
We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.
International Nuclear Information System (INIS)
Lopez de la Cruz, J.; Gutierrez, M.A.
2008-01-01
This paper presents a stochastic analysis of spatial point patterns as effect of localized pitting corrosion. The Quadrat Counts method is studied with two empirical pit patterns. The results are dependent on the quadrat size and bias is introduced when empty quadrats are accounted for the analysis. The spatially inhomogeneous Poisson process is used to improve the performance of the Quadrat Counts method. The latter combines Quadrat Counts with distance-based statistics in the analysis of pit patterns. The Inter-Event and the Nearest-Neighbour statistics are here implemented in order to compare their results. Further, the treatment of patterns in irregular domains is discussed
International Nuclear Information System (INIS)
Kawano, Takao
2014-01-01
It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)
Ralicon anodes for image photon counting fabricated by electron beam lithography
International Nuclear Information System (INIS)
Burton, W.M.
1982-01-01
The Anger wedge and strip anode event location system developed for microchannel plate image photon detectors at the Space Sciences Laboratory of the University of California, Berkeley, has been extended in the present work by the use of electron beam lithography (EBL). This method of fabrication can be used to produce optical patterns for the subsequent manufacture of anodes by conventional photo-etching methods and has also enabled anodes to be produced directly by EBL microfabrication techniques. Computer-aided design methods have been used to develop several types of RALICON (Readout Anodes of Lithographic Construction) for use in photon counting microchannel plate imaging detectors. These anodes are suitable for linear, two dimensional or radial position measurements and they incorporate novel design features made possible by the EBL fabrication technique which significantly extend their application relative to published wedge-strip anode designs. (author)
Hybrid statistics-simulations based method for atom-counting from ADF STEM images
Energy Technology Data Exchange (ETDEWEB)
De wael, Annelies, E-mail: annelies.dewael@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); De Backer, Annick [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Jones, Lewys; Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Van Aert, Sandra, E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)
2017-06-15
A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. - Highlights: • A hybrid method for atom-counting from ADF STEM images is introduced. • Image simulations are incorporated into a statistical framework in a reliable manner. • Limits of the existing methods for atom-counting are far exceeded. • Reliable counting results from an experimental low dose image are obtained. • Progress towards reliable quantitative analysis of beam-sensitive materials is made.
A Burst-Mode Photon-Counting Receiver with Automatic Channel Estimation and Bit Rate Detection
2016-02-24
Grein, M.E., Elgin, L.E., Robinson, B.S., Kachelmyer, A.L., Caplan , D.O., Stevens, M.L., Carney, J.J., Hamilton, S.A., and Boroson, D.M., “Demonstration...Robinson, B.S., Kerman, A.J., Dauler, E.A., Barron, R.J., Caplan , D.O., Stevens, M.L., Carney, J.J., Hamilton, S.A., Yang, J.K.W., and Berggren, K.K., “781...Mbit/s photon-counting optical communications using a superconducting nanowire detector,” Optics Letters, v. 31 no. 4 444-446 (2006). [14] Caplan
Characterization of energy response for photon-counting detectors using x-ray fluorescence
International Nuclear Information System (INIS)
Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.
2014-01-01
Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the
Measurement of scintillation decay curves by a single photon counting technique
International Nuclear Information System (INIS)
Noguchi, Tsutomu
1978-01-01
An improved apparatus suitable for the measurement of spectroscopic scintillation decay curves has been developed by combination of a single photon counting technique and a delayed coincidence method. The time resolution of the apparatus is improved up to 1.16 nsec (FWHM), which is obtained from the resolution function of the system for very weak Cherenkov light flashes. Systematic measurement of scintillation decay curves is made for liquid and crystal scintillators including PPO-toluene, PBD-xylene, PPO-POPOP-toluene, anthracene and stilbene. (auth.)
Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer
Stryjewski, Wieslaw J.
1991-08-01
A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.
High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors
Energy Technology Data Exchange (ETDEWEB)
Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2016-09-11
A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.
High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors
International Nuclear Information System (INIS)
Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.
2016-01-01
A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.
International Nuclear Information System (INIS)
Liu Fei; Yang Sen; Zhou Dong; Lu Hai; Zhang Rong; Zheng You-Dou
2015-01-01
In many critical civil and emerging military applications, low-level UV detection, sometimes at single photon level, is highly desired. In this work, a mesa-type 4H-SiC UV avalanche photodiode (APD) is designed and fabricated, which exhibits low leakage current and high avalanche gain. When studied by using a passive quenching circuit, the APD exhibits self-quenching characteristics due to its high differential resistance in the avalanche region. The single photon detection efficiency and dark count rate of the APD are evaluated as functions of discrimination voltage and over-drive voltage. The optimized operation conditions of the single photon counting APD are discussed. (paper)
International Nuclear Information System (INIS)
Bergamaschi, Anna; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura
2011-01-01
The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems
Energy Technology Data Exchange (ETDEWEB)
Bergamaschi, Anna, E-mail: anna.bergamaschi@psi.ch; Dinapoli, Roberto; Greiffenberg, Dominic; Henrich, Beat; Johnson, Ian; Mozzanica, Aldo; Radicci, Valeria; Schmitt, Bernd; Shi, Xintian; Stoppani, Laura [Paul Scherrer Institut, CH-5232 Villigen (Switzerland)
2011-11-01
The MYTHEN photon-counting ASIC operated in time-over-threshold mode shows an innovative approach towards the development of a detector operating with very high photon intensities while maintaining the single-photon sensitivity for synchrotron radiation experiments. The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method, i.e. measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.
Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng
2017-11-01
Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.
Imaging of small children with a prototype for photon counting tomosynthesis
del Risco Norrlid, Lilián; Fredenberg, Erik; Hemmendorff, Magnus; Jackowski, Christian; Danielsson, Mats
2009-02-01
We present data on a first prototype for photon counting tomosynthesis imaging of small children, which we call photoncounting tomosynthesis (PCT). A photon counting detector can completely eliminate electronic noise, which makes it ideal for tomosynthesis because of the low dose in each projection. Another advantage is that the detector allows for energy sensitivity in later versions, which will further lower the radiation dose. In-plane resolution is high and has been measured to be 5 lp/mm, at least 4 times better than in CT, while the depth resolution was significantly lower than typical CT resolution. The image SNR decreased from 30 to 10 for a detail of 10 mm depth in increasing thickness of PMMA from 10 to 80 mm. The air kerma measured for PCT was 5.2 mGy, which leads to an organ dose to the brain of approximately 0.7 mGy. This dose is 96 % lower than a typical CT dose. PCT can be appealing for pediatric imaging since young children have an increased sensitivity to radiation induced cancers. We have acquired post mortem images of a newborn with the new device and with a state-of-the-art CT and compared the diagnostic information and dose levels of the two modalities. The results are promising but more work is needed to provide input to a next generation prototype that would be suitable for clinical trials.
Photon-counting 1.0 GHz-phase-modulation fluorometer
Energy Technology Data Exchange (ETDEWEB)
Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T., E-mail: iwata@tokushima-u.ac.jp [Division of Energy System, Institute of Technology and Science, Tokushima University, 2-1 Minami-Jyosanjima, Tokushima 770-8506 (Japan)
2015-04-15
We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method.
Range walk error correction and modeling on Pseudo-random photon counting system
Shen, Shanshan; Chen, Qian; He, Weiji
2017-08-01
Signal to noise ratio and depth accuracy are modeled for the pseudo-random ranging system with two random processes. The theoretical results, developed herein, capture the effects of code length and signal energy fluctuation are shown to agree with Monte Carlo simulation measurements. First, the SNR is developed as a function of the code length. Using Geiger-mode avalanche photodiodes (GMAPDs), longer code length is proven to reduce the noise effect and improve SNR. Second, the Cramer-Rao lower bound on range accuracy is derived to justify that longer code length can bring better range accuracy. Combined with the SNR model and CRLB model, it is manifested that the range accuracy can be improved by increasing the code length to reduce the noise-induced error. Third, the Cramer-Rao lower bound on range accuracy is shown to converge to the previously published theories and introduce the Gauss range walk model to range accuracy. Experimental tests also converge to the presented boundary model in this paper. It has been proven that depth error caused by the fluctuation of the number of detected photon counts in the laser echo pulse leads to the depth drift of Time Point Spread Function (TPSF). Finally, numerical fitting function is used to determine the relationship between the depth error and the photon counting ratio. Depth error due to different echo energy is calibrated so that the corrected depth accuracy is improved to 1cm.
Photon-counting 1.0 GHz-phase-modulation fluorometer
International Nuclear Information System (INIS)
Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T.
2015-01-01
We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method
Dual-contrast agent photon-counting computed tomography of the heart: initial experience.
Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir
2017-08-01
To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.
Analysis of the factors that affect photon counts in Compton scattering
International Nuclear Information System (INIS)
Luo, Guang; Xiao, Guangyu
2015-01-01
Compton scattering has been applied in a variety of fields. The factors that affect Compton scattering have been studied extensively in the literature. However, the factors that affect the measured photon counts in Compton scattering are rarely considered. In this paper, we make a detailed discussion on those factors. First, Compton scattering experiments of some alloy series and powder mixture series are explored. Second, the electron density is researched in terms of atom and lattice constants. Third, the factor of attenuation coefficient is discussed. And then, the active degree of electrons is discussed based on the DFT theory. Lastly, the conclusions are made, that the factors affecting Compton scattering photon counts include mainly electron number density, attenuation coefficient and active degree of electrons. - Highlights: • Compton scattering experiments of some alloy series and powder mixture series are explored. • The influence of electron density is researched in terms of atom and lattice constants. • The influence of attenuation coefficient is discussed. • The active degree of electrons is discussed detailedly based on DFT theory
Detector Motion Method to Increase Spatial Resolution in Photon-Counting Detectors
Energy Technology Data Exchange (ETDEWEB)
Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of)
2017-03-15
Medical imaging requires high spatial resolution of an image to identify fine lesions. Photoncounting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former's high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55-μm-pixel image was achieved by application of the proposed method to a 110-μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.
Development of superconducting tunnel junction as photon counting detector in astronomy
International Nuclear Information System (INIS)
Jorel, C.
2004-12-01
This work describes the development of S/Al-AlOx-Al/S Superconducting Tunnel Junctions (STJ) to count photons for astronomical applications in the near-infrared. The incoming light energy is converted into excited charges in a superconducting layer (S, either Nb or Ta) with a population proportional to the deposited energy. The photon energy can thus be evaluated by integrating the tunnel current induced in a voltage biased junction at a very low temperature (100 mK). The performance of STJ for light detection is discussed in the first chapter and compared with the best performances obtained with other techniques based on either superconductors. At the beginning of the thesis, a previous manufacturing process made it possible to obtain good quality Nb based junctions and preliminary results for photon counting. The objective of the thesis was to replace Nb as absorber with Ta, an intrinsically more sensitive material, and secondly to develop a new and more efficient manufacturing process. We first focused on the optimization of the Tantalum thin film quality. Structural analysis showed that these films can be grown epitaxially by magnetron sputtering onto an R-plane sapphire substrate heated to 600 Celsius degrees and covered by a thin Nb buffer layer. Electrical transport measurement from room to low temperatures gave excellent Relative Resistive Ratios of about 50 corresponding to mean free path of the order of 100 nm. Then, we conceived an original manufacturing process batch on 3 inch diameter sapphire substrate with five mask levels. These masks made it possible to produce single pixel STJ of different sizes (from 25*25 to 50*50 square microns) and shapes. We also produced multiple junctions onto a common absorber as well as 9-pixel arrays. Thanks to the development of this process we obtained a very large percentage of quality junctions (>90%) with excellent measured normal resistances of a few micro-ohm cm 2 and low leakage currents of the order of one n
Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.
Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland
2011-09-01
The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of
Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging
Energy Technology Data Exchange (ETDEWEB)
Talla, Patrick Takoukam
2011-04-07
The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 {mu}m. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is
Investigation of photon counting pixel detectors for X-ray spectroscopy and imaging
International Nuclear Information System (INIS)
Talla, Patrick Takoukam
2011-01-01
The Medipix2 and Medipix3 detectors are hybrid pixelated photon counting detectors with a pixel pitch of 55 μm. The sensor material used in this thesis was silicon. Because of their small pixel size they suffer from charge sharing i.e. an incoming photon can be registered by more than one pixel. In order to correct for charge sharing due to lateral diffusion of charge carriers, the Medipix3 detector was developed: with its Charge Summing Mode, the charge collected in a cluster of 2 x 2 pixel is added up and attributed to only one pixel whose counter is incremented. The adjustable threshold of the detectors allows to count the photons and to gain information on their energy. The main purposes of the thesis are to investigate spectral and imaging properties of pixelated photon counting detectors from the Medipix family such as Medipix2 and Medipix3. The investigations are based on simulations and measurements. In order to investigate the spectral properties of the detectors measurements were performed using fluorescence lines of materials such as molybdenum, silver but also some radioactive sources such as Am-241 or Cd-109. From the measured data, parameters like the threshold dispersion and the gain variation from pixel-to-pixel were extracted and used as input in the Monte Carlo code ROSI to model the responses of the detector to monoenergetic photons. The measured data are well described by the simulations for Medipix2 and for Medipix3 operating in Charge Summing Mode. Due to charge sharing and due to the energy dependence of attenuation processes in silicon and to Compton scattering the incoming and the measured spectrum differ substantially from each other. Since the responses to monoenergetic photons are known, a deconvolution was performed to determine the true incoming spectrum. Several direct and iterative methods were successfully applied on measured and simulated data of an X-ray tube and radioactive sources. The knowledge of the X-ray spectrum is
Non-Poisson counting statistics of a hybrid G-M counter dead time model
International Nuclear Information System (INIS)
Lee, Sang Hoon; Jae, Moosung; Gardner, Robin P.
2007-01-01
The counting statistics of a G-M counter with a considerable dead time event rate deviates from Poisson statistics. Important characteristics such as observed counting rates as a function true counting rates, variances and interval distributions were analyzed for three dead time models, non-paralyzable, paralyzable and hybrid, with the help of GMSIM, a Monte Carlo dead time effect simulator. The simulation results showed good agreements with the models in observed counting rates and variances. It was found through GMSIM simulations that the interval distribution for the hybrid model showed three distinctive regions, a complete cutoff region for the duration of the total dead time, a degraded exponential and an enhanced exponential regions. By measuring the cutoff and the duration of degraded exponential from the pulse interval distribution, it is possible to evaluate the two dead times in the hybrid model
International Nuclear Information System (INIS)
Rebic, S.; Parkins, A.S.; Tan, S.M.
2002-01-01
We explore the photon statistics of light emitted from a system comprising a single four-level atom strongly coupled to a high-finesse optical cavity mode that is driven by a coherent laser field. In the weak driving regime this system is found to exhibit a photon blockade effect. For intermediate driving strengths we find a sudden change in the photon statistics of the light emitted from the cavity. Photon antibunching switches to photon bunching over a very narrow range of intracavity photon number. It is proven that this sudden change in photon statistics occurs due to the existence of robust quantum interference of transitions between the dressed states of the atom-cavity system. Furthermore, it is shown that the strong photon bunching is a nonclassical effect for certain values of driving field strength, violating classical inequalities for field correlations
Energy Technology Data Exchange (ETDEWEB)
Mazouchi, Amir; Liu Baoxu; Bahram, Abdullah [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada); Gradinaru, Claudiu C., E-mail: claudiu.gradinaru@utoronto.ca [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada)
2011-02-28
Fluorescence correlation spectroscopy (FCS) data acquisition and analysis routines were developed and implemented in a home-built, multiparameter photon-counting microscope. Laser excitation conditions were investigated for two representative fluorescent probes, Rhodamine110 and enhanced green fluorescent protein (EGFP). Reliable local concentrations and diffusion constants were obtained by fitting measured FCS curves, provided that the excitation intensity did not exceed 20% of the saturation level for each fluorophore. Accurate results were obtained from FCS measurements for sample concentrations varying from pM to {mu}M range, as well as for conditions of high background signals. These experimental constraints were found to be determined by characteristics of the detection system and by the saturation behavior of the fluorescent probes. These factors actually limit the average number of photons that can be collected from a single fluorophore passing through the detection volume. The versatility of our setup and the data analysis capabilities were tested by measuring the mobility of EGFP in the nucleus of Drosophila cells under conditions of high concentration and molecular crowding. As a bioanalytical application, we studied by FCS the binding affinity of a novel peptide-based drug to the cancer-regulating STAT3 protein and corroborated the results with fluorescence polarization analysis derived from the same photon data.
Initial results from a prototype whole-body photon-counting computed tomography system.
Yu, Z; Leng, S; Jorgensen, S M; Li, Z; Gutjahr, R; Chen, B; Duan, X; Halaweish, A F; Yu, L; Ritman, E L; McCollough, C H
X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×10 11 photons per cm 2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo .
A high-throughput, multi-channel photon-counting detector with picosecond timing
Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.
2009-06-01
High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.
A high-throughput, multi-channel photon-counting detector with picosecond timing
International Nuclear Information System (INIS)
Lapington, J.S.; Fraser, G.W.; Miller, G.M.; Ashton, T.J.R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.
2009-01-01
High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.
International Nuclear Information System (INIS)
Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping
2016-01-01
Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ∼240 and 290 μm. (paper)
Zhang, Zijing; Wu, Long; Song, Jie; Zhao, Yuan
2017-09-01
Not Available Projiect supported by the Fundamental Research Funds for the Central Universities, China (Grant No. AUGA5710056414), the Program for Innovation Research of Science in Harbin Institute of Technology (Grant Nos. PIRS OF HIT A201412 and PIRS OF HIT Q201505), the National Natural Science Foundation of China (Grant No. 11675046), the Doctoral Fund of the Ministry of Education of China (Grant No. 20122302120003), the Natural Science Foundation of Heilongjiang Province of China (Grant No. A201303), and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China (Grant No. LBH-Q15060).
International Nuclear Information System (INIS)
Nilsson, H.-E.; Mattsson, C.G.; Norlin, B.; Froejdh, C.; Bethke, K.; Vries, R. de
2006-01-01
In this study, we examine how charge loss due to charge sharing in photon-counting pixels detectors affects the recording of spot intensity in an X-ray diffraction (XRD) setup. In the photon-counting configuration, the charge from photons that are absorbed at the boarder of a pixel will be shared between two pixels. If the threshold is high enough, these photons will not be counted whereas if it is low enough, they will be counted twice. In an XRD setup, the intensity and position of various spots should be recorded. Thus, the intensity measure will be affected by the setting of the threshold. In this study, we used a system level Monte Carlo simulator to evaluate the variations in the intensity signals for different threshold settings and spot sizes. The simulated setup included an 8keV mono-chromatic source (providing a Gaussian shaped spot) and the MEDIPIX2 photon-counting pixel detector (55 μm x 55 μm pixel size with 300μm silicon) at various detector biases. Our study shows that the charge-sharing distortion can be compensated by numerical post processing and that high resolution in both charge distribution and position can be achieved
Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.
2012-01-01
An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.
Humeniuk, Stephan; Büchler, Hans Peter
2017-12-08
We present a method for computing the full probability distribution function of quadratic observables such as particle number or magnetization for the Fermi-Hubbard model within the framework of determinantal quantum Monte Carlo calculations. Especially in cold atom experiments with single-site resolution, such a full counting statistics can be obtained from repeated projective measurements. We demonstrate that the full counting statistics can provide important information on the size of preformed pairs. Furthermore, we compute the full counting statistics of the staggered magnetization in the repulsive Hubbard model at half filling and find excellent agreement with recent experimental results. We show that current experiments are capable of probing the difference between the Hubbard model and the limiting Heisenberg model.
Performance of the latest MPPCs with reduced dark counts and improved photon detection efficiency
International Nuclear Information System (INIS)
Tsujikawa, T.; Funamoto, H.; Kataoka, J.; Fujita, T.; Nishiyama, T.; Kurei, Y.; Sato, K.; Yamamura, K.; Nakamura, S.
2014-01-01
We have tested the performance of two types of the latest Multi-Pixel Photon Counters (MPPCs; measuring 3×3 mm 2 in size) developed by Hamamatsu Photonics K.K. The new S12572-050C is a successor to the S10362-33-050C (i.e., conventional 3×3-mm 2 pixel MPPC of 50 μm pitch), comprises 3600 Geiger mode avalanche photodiodes (APDs), and also features high gain (up to 1.25×10 6 ), a low dark count (up to 10 6 cps), and improved photon detection efficiency (PDE) by up to 30%. The S12572-015C is a new type of fine-pitch (15 μm) MPPC featuring a wide dynamic range and fast timing response. This paper first presents the detailed performance of these latest MPPCs as photon counting devices. It then describes our fabrication of a prototype detector consisting of a MPPC optically coupled with a Ce:GAGG scintillator. We obtained average FWHM energy resolutions of 7.3% (15 μm) and 6.7% (new-50 μm), as compared to 6.9% (old-50 μm) for 662-keV gamma rays from the 137 Cs source, as measured at 20 °C. Moreover, the number of fired pixels for 662-keV gamma rays increased by 30% for the new-50 μm (as compared to the old-50 μm). We confirmed that the low energy threshold improved from 10 keV to 4 keV, when using the latest MPPC device (new-50 μm). We also confirmed that the timing resolution of the new MPPC is 50 ps or even better, as compared to 89 ps of the old MPPC. The results thus confirm that these new types of MPPCs are promising for various applications as scintillation detectors. - Highlights: • We tested the performance of the latest MPPC. • We confirmed that the new MPPC is superior to the old MPPC. • We plan to apply the new MPPC for a next-generation PET and a handy Compton camera
Performance of the latest MPPCs with reduced dark counts and improved photon detection efficiency
Energy Technology Data Exchange (ETDEWEB)
Tsujikawa, T., E-mail: takayuki-t.w@asagi.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo (Japan); Funamoto, H.; Kataoka, J.; Fujita, T.; Nishiyama, T.; Kurei, Y. [Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo (Japan); Sato, K.; Yamamura, K.; Nakamura, S. [Solid State Division, Hamamatsu Photonics K. K., 1126-1, Ichino-cho, Hamamatsu, Shizuoka (Japan)
2014-11-21
We have tested the performance of two types of the latest Multi-Pixel Photon Counters (MPPCs; measuring 3×3 mm{sup 2} in size) developed by Hamamatsu Photonics K.K. The new S12572-050C is a successor to the S10362-33-050C (i.e., conventional 3×3-mm{sup 2} pixel MPPC of 50 μm pitch), comprises 3600 Geiger mode avalanche photodiodes (APDs), and also features high gain (up to 1.25×10{sup 6}), a low dark count (up to 10{sup 6} cps), and improved photon detection efficiency (PDE) by up to 30%. The S12572-015C is a new type of fine-pitch (15 μm) MPPC featuring a wide dynamic range and fast timing response. This paper first presents the detailed performance of these latest MPPCs as photon counting devices. It then describes our fabrication of a prototype detector consisting of a MPPC optically coupled with a Ce:GAGG scintillator. We obtained average FWHM energy resolutions of 7.3% (15 μm) and 6.7% (new-50 μm), as compared to 6.9% (old-50 μm) for 662-keV gamma rays from the {sup 137}Cs source, as measured at 20 °C. Moreover, the number of fired pixels for 662-keV gamma rays increased by 30% for the new-50 μm (as compared to the old-50 μm). We confirmed that the low energy threshold improved from 10 keV to 4 keV, when using the latest MPPC device (new-50 μm). We also confirmed that the timing resolution of the new MPPC is 50 ps or even better, as compared to 89 ps of the old MPPC. The results thus confirm that these new types of MPPCs are promising for various applications as scintillation detectors. - Highlights: • We tested the performance of the latest MPPC. • We confirmed that the new MPPC is superior to the old MPPC. • We plan to apply the new MPPC for a next-generation PET and a handy Compton camera.
Sakhr, Jamal; Nieminen, John M.
2018-03-01
Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.
International Nuclear Information System (INIS)
Hall, D J; Soman, M; Tutt, J; Murray, N; Holland, A; Schmitt, T; Raabe, J; Strocov, V N; Schmitt, B
2012-01-01
In 2007, a study of back-illuminated Charge-Coupled Devices (CCDs) for soft X-ray photon detection demonstrated the improvements that could be brought over more traditional micro-channel plate detectors for X-ray spectrometers based on diffraction gratings and position sensitive detectors. Whilst the spatial resolution was reported to be improved dramatically, an intrinsic limit of approximately 25 micrometers was found due to the spreading of the charge cloud generated in the CCD across several pixels. To overcome this resolution limit, it is necessary to move away from the current integrated imaging methods and consider a photon-counting approach, recording the photon interaction locations to the sub-pixel level. To make use of photon-counting techniques it is important that the individual events are separable. To maintain the throughput of the spectrometer for high intensity lines, higher frame rates and therefore higher readout speeds are required. With CCD based systems, the increased noise at high readout speeds can limit the photon-counting performance. The Electron-Multiplying CCD shares a similar architecture with the standard CCD but incorporates a g ain register . This novel addition allows controllable gain to be applied to the signal before the read noise is introduced, therefore allowing individual events to be resolved above the noise even at much higher readout rates. In the past, the EM-CCD has only been available with imaging areas too small to be practical in soft X-ray emission spectrometers. The current drive for large area Electron-Multiplying CCDs is opening this technology to new photon-counting applications, requiring in-depth analysis of the processes and techniques involved. Early results indicate that through the introduction of photon-counting techniques the resolution in such systems can be dramatically improved.
Photon-counting-based diffraction phase microscopy combined with single-pixel imaging
Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo
2018-04-01
We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.
International Nuclear Information System (INIS)
Laws, W.R.; Potter, D.W.; Sutherland, J.C.
1984-01-01
We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics
Analysis of photon count data from single-molecule fluorescence experiments
Burzykowski, T.; Szubiakowski, J.; Rydén, T.
2003-03-01
We consider single-molecule fluorescence experiments with data in the form of counts of photons registered over multiple time-intervals. Based on the observation schemes, linking back to works by Dehmelt [Bull. Am. Phys. Soc. 20 (1975) 60] and Cook and Kimble [Phys. Rev. Lett. 54 (1985) 1023], we propose an analytical approach to the data based on the theory of Markov-modulated Poisson processes (MMPP). In particular, we consider maximum-likelihood estimation. The method is illustrated using a real-life dataset. Additionally, the properties of the proposed method are investigated through simulations and compared to two other approaches developed by Yip et al. [J. Phys. Chem. A 102 (1998) 7564] and Molski [Chem. Phys. Lett. 324 (2000) 301].
Development and characterisation of a visible light photon counting imaging detector system
Barnstedt, J
2002-01-01
We report on the development of a visible light photon counting imaging detector system. The detector concept is based on standard 25 mm diameter microchannel plate image intensifiers made by Proxitronic in Bensheim (Germany). Modifications applied to these image intensifiers are the use of three microchannel plates instead of two and a high resistance ceramics plate used instead of the standard phosphor output screen. A wedge and strip anode mounted directly behind the high resistance ceramics plate was used as a read out device. This wedge and strip anode picks up the image charge of electron clouds emerging from the microchannel plates. The charge pulses are fed into four charge amplifiers and subsequently into a digital position decoding electronics, achieving a position resolution of up to 1024x1024 pixels. Mounting the anode outside the detector tube is a new approach and has the great advantage of avoiding electrical feedthroughs from the anode so that the standard image intensifier fabrication process...
Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.;
2011-01-01
We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.
In situ detection of warfarin using time-correlated single-photon counting
Energy Technology Data Exchange (ETDEWEB)
Rosengren, Annika M.; Karlsson, Bjoern C.G. [Bioorganic and Biophysical Chemistry Laboratory, School of Natural Sciences, Linnaeus University, SE-391 82 Kalmar (Sweden); Naeslund, Inga; Andersson, Per Ola [Swedish Defence Research Agency, FOI, CBRN Defence and Security, SE-901 82 Umea (Sweden); Nicholls, Ian A., E-mail: ian.a.nicholls@bioorg.uu.se [Bioorganic and Biophysical Chemistry Laboratory, School of Natural Sciences, Linnaeus University, SE-391 82 Kalmar (Sweden); Department of Biochemistry and Organic Chemistry Laboratory, Uppsala University, SE-751 23 Uppsala (Sweden)
2011-04-01
Highlights: {yields} Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. {yields} TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. {yields} Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction with the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.
Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.
Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos
2013-11-04
In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.
Irradiation of the CLARO-CMOS chip, a fast ASIC for single-photon counting
International Nuclear Information System (INIS)
Andreotti, M.; Baldini, W.; Calabrese, R.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Fiorini, M.; Giachero, A.; Gotti, C.; Luppi, E.; Maino, M.; Malaguti, R.; Pessina, G.; Tomassetti, L.
2015-01-01
The CLARO-CMOS is a prototype ASIC that allows fast photon counting with low power consumption, built in AMS 0.35 μm CMOS technology. It is intended to be used as a front-end readout for the upgraded LHCb RICH detectors. In this environment, assuming 10 years of operation at the nominal luminosity expected after the upgrade, the ASIC must withstand a total fluence of about 6×10 12 1 MeV n eq /cm 2 and a total ionising dose of 400 krad. Long term stability of the electronics front-end is essential and the effects of radiation damage on the CLARO-CMOS performance must be carefully studied. This paper describes results of multi-step irradiation tests with protons up to the dose of ~8 Mrad, including measurement of single event effects during irradiation and chip performance evaluation before and after each irradiation step
In situ detection of warfarin using time-correlated single-photon counting
International Nuclear Information System (INIS)
Rosengren, Annika M.; Karlsson, Bjoern C.G.; Naeslund, Inga; Andersson, Per Ola; Nicholls, Ian A.
2011-01-01
Highlights: → Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. → TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. → Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction with the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.
Energy Technology Data Exchange (ETDEWEB)
Laurence, Ted Alfred [Univ. of California, Berkeley, CA (United States)
2002-01-01
Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS
International Nuclear Information System (INIS)
Laurence, Ted Alfred
2002-01-01
Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS
A burst-mode photon counting receiver with automatic channel estimation and bit rate detection
Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.
2016-04-01
We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.
Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector
Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.
2016-10-01
We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.
Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)
2015-01-01
We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.
Lifshitz, Ronen; Kimchy, Yoav; Gelbard, Nir; Leibushor, Avi; Golan, Oleg; Elgali, Avner; Hassoon, Salah; Kaplan, Max; Smirnov, Michael; Shpigelman, Boaz; Bar-Ilan, Omer; Rubin, Daniel; Ovadia, Alex
2017-03-01
An ingestible capsule for colorectal cancer screening, based on ionizing-radiation imaging, has been developed and is in advanced stages of system stabilization and clinical evaluation. The imaging principle allows future patients using this technology to avoid bowel cleansing, and to continue the normal life routine during procedure. The Check-Cap capsule, or C-Scan ® Cap, imaging principle is essentially based on reconstructing scattered radiation, while both radiation source and radiation detectors reside within the capsule. The radiation source is a custom-made radioisotope encased in a small canister, collimated into rotating beams. While traveling along the human colon, irradiation occurs from within the capsule towards the colon wall. Scattering of radiation occurs both inside and outside the colon segment; some of this radiation is scattered back and detected by sensors onboard the capsule. During procedure, the patient receives small amounts of contrast agent as an addition to his/her normal diet. The presence of contrast agent inside the colon dictates the dominant physical processes to become Compton Scattering and X-Ray Fluorescence (XRF), which differ mainly by the energy of scattered photons. The detector readout electronics incorporates low-noise Single Photon Counting channels, allowing separation between the products of these different physical processes. Separating between radiation energies essentially allows estimation of the distance from the capsule to the colon wall, hence structural imaging of the intraluminal surface. This allows imaging of structural protrusions into the colon volume, especially focusing on adenomas that may develop into colorectal cancer.
Xu, Xiaofei; Xing, Yuxiang; Wang, Sen; Zhang, Li
2018-06-01
X-ray liquid security inspection system plays an important role in homeland security, while the conventional dual-energy CT (DECT) system may have a big deviation in extracting the atomic number and the electron density of materials in various conditions. Photon counting detectors (PCDs) have the capability of discriminating the incident photons of different energy. The technique becomes more and more mature in nowadays. In this work, we explore the performance of a multi-energy CT imaging system with a PCD for liquid security inspection in material discrimination. We used a maximum-likelihood (ML) decomposition method with scatter correction based on a cross-energy response model (CERM) for PCDs so that to improve the accuracy of atomic number and electronic density imaging. Experimental study was carried to examine the effectiveness and robustness of the proposed system. Our results show that the concentration of different solutions in physical phantoms can be reconstructed accurately, which could improve the material identification compared to current available dual-energy liquid security inspection systems. The CERM-base decomposition and reconstruction method can be easily used to different applications such as medical diagnosis.
Photon counting and energy discriminating X-ray detectors. Benefits and applications
International Nuclear Information System (INIS)
Walter, David; Zscherpel, Uwe; Ewert, Uwe
2016-01-01
Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging.
Pichette, Charles; Giudice, Andrea; Thibault, Simon; Bérubé-Lauzière, Yves
2016-11-20
Single-photon avalanche diodes (SPADs) achieving high timing resolution (≈20-50 ps) developed for time-correlated single-photon counting (TCSPC) generally have very small photosensitive areas (25-100 μm in diameter). This limits the achievable photon counting rate and signal-to-noise ratio and may lead to long counting times. This is detrimental in applications requiring several measurements, such as fluorescence lifetime imaging (FLIM) microscopy, which requires scanning, and time-domain diffuse optical tomography (TD-DOT). We show in this work that the use of an immersion lens directly affixed onto the photosensitive area of the SPAD helps alleviate this problem by allowing more light to be concentrated onto the detector. Following careful optical design and simulations, our experimental results show that it is actually possible to achieve the predicted theoretical increase in the photon counting rate (we achieve a factor of ≈4 here). This work is of high relevance in high timing resolution TCSPC with small photosensitive area detectors and should find widespread interest in FLIM and TD-DOT with SPADs.
Farey Statistics in Time n^{2/3} and Counting Primitive Lattice Points in Polygons
Patrascu, Mihai
2007-01-01
We present algorithms for computing ranks and order statistics in the Farey sequence, taking time O (n^{2/3}). This improves on the recent algorithms of Pawlewicz [European Symp. Alg. 2007], running in time O (n^{3/4}). We also initiate the study of a more general algorithmic problem: counting primitive lattice points in planar shapes.
Application of statistical methods to the testing of nuclear counting assemblies
International Nuclear Information System (INIS)
Gilbert, J.P.; Friedling, G.
1965-01-01
This report describes the application of the hypothesis test theory to the control of the 'statistical purity' and of the stability of the counting batteries used for measurements on activation detectors in research reactors. The principles involved and the experimental results obtained at Cadarache on batteries operating with the reactors PEGGY and AZUR are given. (authors) [fr
CLARO: an ASIC for high rate single photon counting with multi-anode photomultipliers
Baszczyk, M.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Dorosz, P.; Fiorini, M.; Gotti, C.; Kucewicz, W.; Malaguti, R.; Pessina, G.
2017-08-01
The CLARO is a radiation-hard 8-channel ASIC designed for single photon counting with multi-anode photomultiplier tubes. Each channel outputs a digital pulse when the input signal from the photomultiplier crosses a configurable threshold. The fast return to baseline, typically within 25 ns, and below 50 ns in all conditions, allows to count up to 107 hits/s on each channel, with a power consumption of about 1 mW per channel. The ASIC presented here is a much improved version of the first 4-channel prototype. The threshold can be precisely set in a wide range, between 30 ke- (5 fC) and 16 Me- (2.6 pC). The noise of the amplifier with a 10 pF input capacitance is 3.5 ke- (0.6 fC) RMS. All settings are stored in a 128-bit configuration and status register, protected against soft errors with triple modular redundancy. The paper describes the design of the ASIC at transistor-level, and demonstrates its performance on the test bench.
Si-strip photon counting detectors for contrast-enhanced spectral mammography
Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.
2015-08-01
We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.
Energy Technology Data Exchange (ETDEWEB)
Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)
2015-07-01
Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.
Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors
Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason
2014-01-01
Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal
Bloemsma, E. A.; Knoester, J.
2012-01-01
Based on the generating function formalism, we investigate broadband photon statistics of emission for single dimers and trimers driven by a continuous monochromatic laser field. In particular, we study the first and second moments of the emission statistics, which are the fluorescence excitation
An accurate behavioral model for single-photon avalanche diode statistical performance simulation
Xu, Yue; Zhao, Tingchen; Li, Ding
2018-01-01
An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.
Hybrid statistics-simulations based method for atom-counting from ADF STEM images.
De Wael, Annelies; De Backer, Annick; Jones, Lewys; Nellist, Peter D; Van Aert, Sandra
2017-06-01
A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Vincent, C.H.
1982-01-01
Bayes' principle is applied to the differential counting measurement of a positive quantity in which the statistical errors are not necessarily small in relation to the true value of the quantity. The methods of estimation derived are found to give consistent results and to avoid the anomalous negative estimates sometimes obtained by conventional methods. One of the methods given provides a simple means of deriving the required estimates from conventionally presented results and appears to have wide potential applications. Both methods provide the actual posterior probability distribution of the quantity to be measured. A particularly important potential application is the correction of counts on low radioacitvity samples for background. (orig.)
International Nuclear Information System (INIS)
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; Chen, Baiyu; Yu, Lifeng; McCollough, Cynthia H; Jorgensen, Steven M; Ritman, Erik L; Gutjahr, Ralf; Kappler, Steffen; Halaweish, Ahmed F
2016-01-01
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x
Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H
2016-02-21
This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x
Sileshi, G
2006-10-01
Researchers and regulatory agencies often make statistical inferences from insect count data using modelling approaches that assume homogeneous variance. Such models do not allow for formal appraisal of variability which in its different forms is the subject of interest in ecology. Therefore, the objectives of this paper were to (i) compare models suitable for handling variance heterogeneity and (ii) select optimal models to ensure valid statistical inferences from insect count data. The log-normal, standard Poisson, Poisson corrected for overdispersion, zero-inflated Poisson, the negative binomial distribution and zero-inflated negative binomial models were compared using six count datasets on foliage-dwelling insects and five families of soil-dwelling insects. Akaike's and Schwarz Bayesian information criteria were used for comparing the various models. Over 50% of the counts were zeros even in locally abundant species such as Ootheca bennigseni Weise, Mesoplatys ochroptera Stål and Diaecoderus spp. The Poisson model after correction for overdispersion and the standard negative binomial distribution model provided better description of the probability distribution of seven out of the 11 insects than the log-normal, standard Poisson, zero-inflated Poisson or zero-inflated negative binomial models. It is concluded that excess zeros and variance heterogeneity are common data phenomena in insect counts. If not properly modelled, these properties can invalidate the normal distribution assumptions resulting in biased estimation of ecological effects and jeopardizing the integrity of the scientific inferences. Therefore, it is recommended that statistical models appropriate for handling these data properties be selected using objective criteria to ensure efficient statistical inference.
Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging
Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott
2016-01-01
We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.
TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors
Energy Technology Data Exchange (ETDEWEB)
Molloi, S. [University of California (United States)
2015-06-15
Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis
TU-EF-207-02: Spectral Mammography Based on Photon Counting Detectors
International Nuclear Information System (INIS)
Molloi, S.
2015-01-01
Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis
Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.
Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro
2016-01-01
At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics.
8-Channel acquisition system for Time-Correlated Single-Photon Counting.
Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M
2013-06-01
Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.
Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.
Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix
2011-05-01
To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in
International Nuclear Information System (INIS)
Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung
2014-01-01
Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the
Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.
In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina substrate. The charge cloud is matched to the anode period so that it is collected on several neighboring fingers to ensure an accurate event charge centroid can be determined. Each finger of the anode is connected to a low noise charge sensitive amplifier and followed by subsequent A/D conversion of individual strip charge values and a hardware centroid determination of better than 1/100 of a strip are possible. Recently we have commissioned a full 32 x 32 mm XS open face laboratory detector and demonstrated excellent resolution (Los Alamos National Laboratory, NASA and NSF we are developing high rate (>107 Hz) XS encoding electronics that will encode temporally simultaneous
Manurkar, Paritosh
phase of each spectral frequency from an optical frequency comb. The latter is generated using a cascaded configuration of phase and amplitude modulators. We characterize the mode selectivity using classical signals by arranging the six TMs into two orthogonal signal sets. Furthermore, we also demonstrate that mode selectivity is preserved if we use sub-photon signals (weak coherent light). Thus, this work supports the idea that QFC has the basic properties needed for advanced multi-dimensional quantum measurements given that we have demonstrated for the first time the ability to move to high dimensions (d=4), measure coherent superposition modes, and measure sub-photon signal levels. In addition to mode-selective photon counting, we also experimentally demonstrate a method of reshaping optical pulses based on QFC. Such a method has the potential to serve as the interface between quantum memories and the existing fiber infrastructure. At the same time, it can be employed in all-optical systems for optical signal regeneration.
Full counting statistics of level renormalization in electron transport through double quantum dots
International Nuclear Information System (INIS)
Luo Junyan; Shen Yu; Cen Gang; He Xiaoling; Wang Changrong; Jiao Hujun
2011-01-01
We examine the full counting statistics of electron transport through double quantum dots coupled in series, with particular attention being paid to the unique features originating from level renormalization. It is clearly illustrated that the energy renormalization gives rise to a dynamic charge blockade mechanism, which eventually results in super-Poissonian noise. Coupling of the double dots to an external heat bath leads to dephasing and relaxation mechanisms, which are demonstrated to suppress the noise in a unique way.
Preliminary characterization of a single photon counting detection system for CT application
International Nuclear Information System (INIS)
Belcari, N.; Bisogni, M.G.; Carpentieri, C.; Del Guerra, A.; Delogu, P.; Panetta, D.; Quattrocchi, M.; Rosso, V.; Stefanini, A.
2007-01-01
The aim of this work is to evaluate the capability of a single photon counting acquisition system based on the Medipix2 read-out chip for Computed Tomography (CT) applications in Small Animal Imaging. We used a micro-focus X-ray source with a W anode. The detection system is based on the Medipix2 read-out chip, bump-bonded to a 1 mm thick silicon pixel detector. The read-out chip geometry is a matrix of 256x256 cells, 55 μmx55 μm each. This system in planar radiography shows a good detection efficiency (about 70%) at the anode voltage of 30 kV and a good spatial resolution (MTF=10% at 16.8 lp/mm). Starting from these planar performances we have characterized the system for the tomography applications with phantoms. We will present the results obtained as a function of magnification with two different background medium compositions. The effect of the reconstruction algorithm on image quality will be also discussed
Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.
Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T
2009-06-11
In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.
X-ray Imaging Using a Hybrid Photon Counting GaAs Pixel Detector
Schwarz, C; Göppert, R; Heijne, Erik H M; Ludwig, J; Meddeler, G; Mikulec, B; Pernigotti, E; Rogalla, M; Runge, K; Smith, K M; Snoeys, W; Söldner-Rembold, S; Watt, J
1999-01-01
The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consists of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (...
Prochazka, Ivan; Kodet, Jan; Blazej, Josef
2016-05-01
The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.
Distributed plastic optical fibre measurement of pH using a photon counting OTDR
International Nuclear Information System (INIS)
Saunders, C; Scully, P J
2005-01-01
Distributed measurement of pH was demonstrated at a sensitised region 4m from the distal end of a 20m length of plastic optical fibre. The cladding was removed from the fibre over 150mm and the bare core was exposed to an aqueous solution of methyl red at three values of pH, between 2.89 and 9.70. The optical fibre was interrogated at 648nm using a Luciol photon counting optical time domain reflectometer, and demonstrated that the sensing region was attenuated as a function of pH. The attenuation varied from 16.3 dB at pH 2.89 to 8.6 dB at pH 9.70; this range equated to -1.13 ± 0.04 dB/pH. It is thus possible to determine both the position to ± 12mm and pH to an estimated ± 0.5pH at the sensing region
Photon counting with a FDIRC Cherenkov prototype readout by SiPM arrays
Energy Technology Data Exchange (ETDEWEB)
Marrocchesi, P.S., E-mail: marrocchesi@pi.infn.it [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bagliesi, M.G. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); Basti, A. [Department of Physics, University of Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bigongiari, G.; Bonechi, S.; Brogi, P. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Checchia, C.; Collazuol, G. [Department of Physics and Astronomy, University of Padova, Padova, Italy, and INFN-Padova, 35131 Padova (Italy); Maestro, P. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Morsani, F. [INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Piemonte, C. [Fondazione Bruno Kessler (FBK), I-38122 Trento (Italy); Stolzi, F.; Suh, J.E; Sulaj, A. [Department of Physical Sciences, Earth and Environment, Via Roma 56, I-53100 Siena (Italy); INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)
2017-02-11
A prototype of a Focused Internal Reflection Cherenkov, equipped with 16 arrays of NUV-SiPM, was tested at CERN SPS in March 2015 with beams of relativistic ions at 13, 19 and 30 GeV/n obtained from fragmentation of an Ar primary beam. The detector, designed to identify cosmic nuclei, features a Fused Silica radiator bar optically connected to a cylindrical mirror of the same material and an imaging focal plane of dimensions ∼4 cm×3 cm covered with a total of 1024 SiPM photosensors. Thanks to the outstanding performance of the SiPM arrays, the detector could be operated in photon counting mode as a fully digital device. The Cherenkov pattern was recorded together with the total number of detected photoelectrons increasing as Z{sup 2} as a function of the atomic number Z of the beam particle. In this paper, we report on the characterization and test of the SiPM arrays and the performance of the Cherenkov prototype for the charge identification of the beam particles.
TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors
International Nuclear Information System (INIS)
Taguchi, K.
2015-01-01
Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications
Characterisation of a single photon counting pixel system for imaging of low-contrast objects
Mikulec, B; Dipasquale, G; Schwarz, C; Watt, J
2001-01-01
In the framework of the Medipix collaboration the PCC, a single photon counting pixel chip, has been developed with the aim of improving the contrast resolution in medical imaging applications. The PCC consists of a matrix of 64x64 square pixels with 170 mm side length, each pixel comprising a 15 bit counter and a pulse height discriminator. The chip has been bump bonded to equally segmented 200 mm thick SI-LEC GaAs detectors showing a very high absorption energy for X-rays used in diagnostics. An absolute calibration of the system with a radioactive source and a synchrotron beam are described resulting in the value of the test input capacitance of ~24.7 fF. Using this value a full characterisation of the system from electrical measurements is presented. The entire system can reach a minimum threshold of ~2100 e- with ~250e- rms noise. One of the characteristics of the PCC is the possibility to adjust the thresholds of all pixels on a pixel-by-pixel basis with 3-bit precision. The threshold distribution after...
Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.
2016-03-01
The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.
Ziarkash, Abdul Waris; Joshi, Siddarth Koduru; Stipčević, Mario; Ursin, Rupert
2018-03-22
Single-photon avalanche diode (SPAD) detectors, have a great importance in fields like quantum key distribution, laser ranging, florescence microscopy, etc. Afterpulsing is a non-ideal behavior of SPADs that adversely affects any application that measures the number or timing of detection events. Several studies based on a few individual detectors, derived distinct mathematical models from semiconductor physics perspectives. With a consistent testing procedure and statistically large data sets, we show that different individual detectors - even if identical in type, make, brand, etc. - behave according to fundamentally different mathematical models. Thus, every detector must be characterized individually and it is wrong to draw universal conclusions about the physical meaning behind these models. We also report the presence of high-order afterpulses that are not accounted for in any of the standard models.
Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping
2014-03-01
The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.
Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.
Tanguay, Jesse; Cunningham, Ian A
2018-05-01
Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded
On the γ-photon detection processes and the statistics of radiation
International Nuclear Information System (INIS)
Bertolotti, M.; Sibilia, C.
1977-01-01
The problem of detection of γ-photons is treated in the cases of photoelectric and Compton effects. In both cases the probability of detecting a γ-photon is found proportional to the first-order correlation function of the e.m. field. The statistical properties of the γ-radiation can therefore be determined through the methods developed in quantum optics
Noroozian, Omid; Barrentine, Emily M.; Stevenson, Thomas R.; Brown, Ari D.; Moseley, Samuel Harvey; Wollack, Edward; Pontoppidan, Klaus Martin; U-Yen, Konpop; Mikula, Vilem
2018-01-01
Photon-counting detectors are highly desirable for reaching the ~ 10-20 W/√Hz power sensitivity permitted by the Origins Space Telescope (OST). We are developing unique Kinetic Inductance Detectors (KIDs) with photon counting capability in the far/mid-IR. Combined with an on-chip far-IR spectrometer onboard OST these detectors will enable a new data set for exploring galaxy evolution and the growth of structure in the Universe. Mid-IR spectroscopic surveys using these detectors will enable mapping the composition of key volatiles in planet-forming material around protoplanetary disks and their evolution into solar systems. While these OST science objectives represent a well-organized community agreement they are impossible to reach without a significant leap forward in detector technology, and the OST is likely not to be recommended if a path to suitable detectors does not exist.To reach the required sensitivity we are experimenting with superconducting resonators made from thin aluminum films on single-crystal silicon substrates. Under the right conditions, small-volume inductors made from these films can become ultra-sensitive to single photons >90 GHz. Understanding the physics of these superconductor-dielectric systems is critical to performance. We achieved a very high quality factor of 0.5 x 106 for a 10-nm Al resonator at n ~ 1 microwave photon drive power, by far the highest value for such thin films in the literature. We measured a residual electron density of detector when illuminated with randomly arriving photon events. Our results show that photon counting with >95% efficiency at 0.5 - 1.0 THz is achievable.We report on these developments and discuss plans to test in our facility through funding from our recently awarded ROSES-APRA grant and Roman Technology Fellowship award.
Statistical and physical content of low-energy photons in nuclear medicine imaging
International Nuclear Information System (INIS)
Gagnon, D.; Pouliot, N.; Laperriere, L.; Harel, F.; Gregoire, J.; Arsenault, A.
1990-01-01
Limit in the energy resolution of present gamma camera technology prevents a total rejection of Compton events: inclusion of bad photons in the image is inescapable. Various methods acquiring data over a large portion of the spectrum have already been described. This paper investigates the usefulness of low energy photons using statistical and physical models. Holospectral Imaging, for instance, exploits correlation between energy frames to build an information related transformation optimizing primary photon image. One can also use computer simulation to show that a portion of low energy photons is detected at the same location (pixel) as pure primary photons. These events are for instance: photons undergoing scatter interaction in the crystal; photons undergoing a small angle backscatter or forwardscatter interaction in the medium, photons backscattered by the Pyrex into the crystal. For a 140 keV source in 10 cm of water and a 1/4 inch thick crystal, more than 6% of all the photons detected do not have the primary energy and still are located in the right 4 mm pixel. Similarly, it is possible to show that more than 5% of all the photons detected at 140 keV deposit their energy in more than one pixel. These results give additional support to techniques considering low energy photons and more sophisticated ways to segregate between good and bad events
Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT
Energy Technology Data Exchange (ETDEWEB)
Aschenbrenner, Katharina P.; Hesser, Juergen W. [Heidelberg Univ., Mannheim (Germany). Dept. of Experimental Radiation Oncology; Heidelberg Univ. (Germany). IWR; Guthier, Christian V. [Heidelberg Univ., Mannheim (Germany). Dept. of Experimental Radiation Oncology; Lyatskaya, Yulia [Brigham and Women' s Center, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Boda-Heggemann, Judit; Wenz, Frederik [Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology
2017-10-01
In stereotactic body radiation therapy of lung tumors, reliable position estimation of the tumor is necessary in order to minimize normal tissue complication rate. While kV X-ray imaging is frequently used, continuous application during radiotherapy sessions is often not possible due to concerns about the additional dose. Thus, ultra low-dose (ULD) kV X-ray imaging based on a single photon counting detector is suggested. This paper addresses the lower limit of photons to locate the tumor reliably with an accuracy in the range of state-of-the-art methods, i.e. a few millimeters. 18 patient cases with four dimensional CT (4D-CT), which serves as a-priori information, are included in the study. ULD cone beam projections are simulated from the 4D-CTs including Poisson noise. The projections from the breathing phases which correspond to different tumor positions are compared to the ULD projection by means of Poisson log-likelihood (PML) and correlation coefficient (CC), and template matching under these metrics. The results indicate that in full thorax imaging five photons per pixel suffice for a standard deviation in tumor positions of less than half a breathing phase. Around 50 photons per pixel are needed to achieve this accuracy with the field of view restricted to the tumor region. Compared to CC, PML tends to perform better for low photon counts and shifts in patient setup. Template matching only improves the position estimation in high photon counts. The quality of the reconstruction is independent of the projection angle. The accuracy of the proposed ULD single photon counting system is in the range of a few millimeters and therefore comparable to state-of-the-art tumor tracking methods. At the same time, a reduction in photons per pixel by three to four orders of magnitude relative to commercial systems with flatpanel detectors can be achieved. This enables continuous kV image-based position estimation during all fractions since the additional dose to the
Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT.
Aschenbrenner, Katharina P; Guthier, Christian V; Lyatskaya, Yulia; Boda-Heggemann, Judit; Wenz, Frederik; Hesser, Jürgen W
2017-09-01
In stereotactic body radiation therapy of lung tumors, reliable position estimation of the tumor is necessary in order to minimize normal tissue complication rate. While kV X-ray imaging is frequently used, continuous application during radiotherapy sessions is often not possible due to concerns about the additional dose. Thus, ultra low-dose (ULD) kV X-ray imaging based on a single photon counting detector is suggested. This paper addresses the lower limit of photons to locate the tumor reliably with an accuracy in the range of state-of-the-art methods, i.e. a few millimeters. 18 patient cases with four dimensional CT (4D-CT), which serves as a-priori information, are included in the study. ULD cone beam projections are simulated from the 4D-CTs including Poisson noise. The projections from the breathing phases which correspond to different tumor positions are compared to the ULD projection by means of Poisson log-likelihood (PML) and correlation coefficient (CC), and template matching under these metrics. The results indicate that in full thorax imaging five photons per pixel suffice for a standard deviation in tumor positions of less than half a breathing phase. Around 50 photons per pixel are needed to achieve this accuracy with the field of view restricted to the tumor region. Compared to CC, PML tends to perform better for low photon counts and shifts in patient setup. Template matching only improves the position estimation in high photon counts. The quality of the reconstruction is independent of the projection angle. The accuracy of the proposed ULD single photon counting system is in the range of a few millimeters and therefore comparable to state-of-the-art tumor tracking methods. At the same time, a reduction in photons per pixel by three to four orders of magnitude relative to commercial systems with flatpanel detectors can be achieved. This enables continuous kV image-based position estimation during all fractions since the additional dose to the
Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT
International Nuclear Information System (INIS)
Aschenbrenner, Katharina P.; Hesser, Juergen W.; Boda-Heggemann, Judit; Wenz, Frederik
2017-01-01
In stereotactic body radiation therapy of lung tumors, reliable position estimation of the tumor is necessary in order to minimize normal tissue complication rate. While kV X-ray imaging is frequently used, continuous application during radiotherapy sessions is often not possible due to concerns about the additional dose. Thus, ultra low-dose (ULD) kV X-ray imaging based on a single photon counting detector is suggested. This paper addresses the lower limit of photons to locate the tumor reliably with an accuracy in the range of state-of-the-art methods, i.e. a few millimeters. 18 patient cases with four dimensional CT (4D-CT), which serves as a-priori information, are included in the study. ULD cone beam projections are simulated from the 4D-CTs including Poisson noise. The projections from the breathing phases which correspond to different tumor positions are compared to the ULD projection by means of Poisson log-likelihood (PML) and correlation coefficient (CC), and template matching under these metrics. The results indicate that in full thorax imaging five photons per pixel suffice for a standard deviation in tumor positions of less than half a breathing phase. Around 50 photons per pixel are needed to achieve this accuracy with the field of view restricted to the tumor region. Compared to CC, PML tends to perform better for low photon counts and shifts in patient setup. Template matching only improves the position estimation in high photon counts. The quality of the reconstruction is independent of the projection angle. The accuracy of the proposed ULD single photon counting system is in the range of a few millimeters and therefore comparable to state-of-the-art tumor tracking methods. At the same time, a reduction in photons per pixel by three to four orders of magnitude relative to commercial systems with flatpanel detectors can be achieved. This enables continuous kV image-based position estimation during all fractions since the additional dose to the
PREFACE: Counting Complexity: An international workshop on statistical mechanics and combinatorics
de Gier, Jan; Warnaar, Ole
2006-07-01
On 10-15 July 2005 the conference `Counting Complexity: An international workshop on statistical mechanics and combinatorics' was held on Dunk Island, Queensland, Australia in celebration of Tony Guttmann's 60th birthday. Dunk Island provided the perfect setting for engaging in almost all of Tony's life-long passions: swimming, running, food, wine and, of course, plenty of mathematics and physics. The conference was attended by many of Tony's close scientific friends from all over the world, and most talks were presented by his past and present collaborators. This volume contains the proceedings of the meeting and consists of 24 refereed research papers in the fields of statistical mechanics, condensed matter physics and combinatorics. These papers provide an excellent illustration of the breadth and scope of Tony's work. The very first contribution, written by Stu Whittington, contains an overview of the many scientific achievements of Tony over the past 40 years in mathematics and physics. The organizing committee, consisting of Richard Brak, Aleks Owczarek, Jan de Gier, Emma Lockwood, Andrew Rechnitzer and Ole Warnaar, gratefully acknowledges the Australian Mathematical Society (AustMS), the Australian Mathematical Sciences Institute (AMSI), the ARC Centre of Excellence for Mathematics and Statistics of Complex Systems (MASCOS), the ARC Complex Open Systems Research Network (COSNet), the Institute of Physics (IOP) and the Department of Mathematics and Statistics of The University of Melbourne for financial support in organizing the conference. Tony, we hope that your future years in mathematics will be numerous. Count yourself lucky! Tony Guttman
Statistics of decay dynamics of quantum emitters in disordered photonic-crystal waveguides
DEFF Research Database (Denmark)
Javadi, Alisa; Garcia-Fernandez, Pedro David; Sapienza, Luca
2014-01-01
We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24.......We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24....
Quantitative spectral K-edge imaging in preclinical photon-counting x-ray computed tomography.
de Vries, Anke; Roessl, Ewald; Kneepkens, Esther; Thran, Axel; Brendel, Bernhard; Martens, Gerhard; Proska, Roland; Nicolay, Klaas; Grüll, Holger
2015-04-01
The objective of this study was to investigate the feasibility and the accuracy of spectral computed tomography (spectral CT) to determine the tissue concentrations and localization of high-attenuation, iodine-based contrast agents in mice. Iodine tissue concentrations determined with spectral CT are compared with concentrations measured with single-photon emission computed tomography (SPECT) and inductively coupled plasma mass spectrometry (ICP-MS). All animal procedures were performed according to the US National Institutes of Health principles of laboratory animal care and were approved by the ethical review committee of Maastricht, The Netherlands. Healthy Swiss mice (n = 4) were injected with an iodinated emulsion radiolabeled with indium as multimodal contrast agent for CT and SPECT. The CT and SPECT scans were acquired using a dedicated small-animal SPECT/CT system. Subsequently, scans were performed with a preclinical spectral CT scanner equipped with a photon-counting detector and 6 energy threshold levels. Quantitative data analysis of SPECT and spectral CT scans were obtained using 3-dimensional volumes-of-interest drawing methods. The ICP-MS on dissected organs was performed to determine iodine uptake per organ and was compared with the amounts determined from spectral CT and SPECT. Iodine concentrations obtained with image-processed spectral CT data correlated well with data obtained either with noninvasive SPECT imaging (slope = 0.96, r = 0.75) or with ICP-MS (slope = 0.99, r = 0.89) in tissue samples. This preclinical proof-of-concept study shows the in vivo quantification of iodine concentrations in tissues using spectral CT. Our multimodal imaging approach with spectral CT and SPECT using radiolabeled iodinated emulsions together with ICP-based quantification allows a direct comparison of all methods. Benchmarked against ICP-MS data, spectral CT in the present implementation shows a slight underestimation of organ iodine concentrations compared
On-line statistical processing of radiation detector pulse trains with time-varying count rates
International Nuclear Information System (INIS)
Apostolopoulos, G.
2008-01-01
Statistical analysis is of primary importance for the correct interpretation of nuclear measurements, due to the inherent random nature of radioactive decay processes. This paper discusses the application of statistical signal processing techniques to the random pulse trains generated by radiation detectors. The aims of the presented algorithms are: (i) continuous, on-line estimation of the underlying time-varying count rate θ(t) and its first-order derivative dθ/dt; (ii) detection of abrupt changes in both of these quantities and estimation of their new value after the change point. Maximum-likelihood techniques, based on the Poisson probability distribution, are employed for the on-line estimation of θ and dθ/dt. Detection of abrupt changes is achieved on the basis of the generalized likelihood ratio statistical test. The properties of the proposed algorithms are evaluated by extensive simulations and possible applications for on-line radiation monitoring are discussed
Fast recognition of single molecules based on single-event photon statistics
International Nuclear Information System (INIS)
Dong Shuangli; Huang Tao; Liu Yuan; Wang Jun; Zhang Guofeng; Xiao Liantuan; Jia Suotang
2007-01-01
Mandel's Q parameter, which is determined from single-event photon statistics, provides an alternative way to recognize single molecules with fluorescence detection, other than the second-order correlation function. It is shown that the Q parameter of an assumed ideal double-molecule fluorescence with the same average photon number as that of the sample fluorescence can act as the criterion for single-molecule recognition. The influence of signal-to-background ratio and the error estimates for photon statistics are also presented. We have applied this method to ascertain single Cy5 dye molecules within hundreds of milliseconds
International Nuclear Information System (INIS)
Lundgren, Jan; Abdalla, Suliman; O'Nils, Mattias; Oelmann, Bengt
2007-01-01
In modern mixed-signal system design, there are increasing problems associated with noise coupling caused by switching digital parts to sensitive analog parts. As a consequence, there is a growing necessity to understand these problems. In order to avoid costly design iterations, noise coupling simulations should be initiated as early as possible in the design chain. The problems associated with on-chip noise coupling have been discovered in photon counting pixel detector readout systems, where the level of integration of analog and digital circuits is very high on a very small area, and it would appear that these problems will continue to increase for future system designs in this field. This paper deals with the functionality of utilizing behavioral level models for simulating noise coupling in these readout systems. The methods and models are described and simulation results are shown for a photon counting pixel detector readout system
Carpentieri, C; Ludwig, J; Ashfaq, A; Fiederle, M
2002-01-01
High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within +-1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.
Evaluation of mixed-signal noise effects in photon-counting X-ray image sensor readout circuits
International Nuclear Information System (INIS)
Lundgren, Jan; Abdalla, Suliman; O'Nils, Mattias; Oelmann, Bengt
2006-01-01
In readout electronics for photon-counting pixel detectors, the tight integration between analog and digital blocks causes the readout electronics to be sensitive to on-chip noise coupling. This noise coupling can result in faulty luminance values in grayscale X-ray images, or as color distortions in a color X-ray imaging system. An exploration of simulating noise coupling in readout circuits is presented which enables the discovery of sensitive blocks at as early a stage as possible, in order to avoid costly design iterations. The photon-counting readout system has been simulated for noise coupling in order to highlight the existing problems of noise coupling in X-ray imaging systems. The simulation results suggest that on-chip noise coupling should be considered and simulated in future readout electronics systems for X-ray detectors
Spectral CT of the extremities with a silicon strip photon counting detector
Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.
2015-03-01
Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized regularization.
Contrast-enhanced spectral mammography with a photon-counting detector.
Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats
2010-05-01
Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.
Contrast-enhanced spectral mammography with a photon-counting detector
Energy Technology Data Exchange (ETDEWEB)
Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats [Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden)
2010-05-15
Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.
Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.
2017-03-01
In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.
Energy Technology Data Exchange (ETDEWEB)
Diamare, D., E-mail: d.diamare@ee.ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Wojdak, M. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom); Lettieri, S. [Institute for Superconductors and Innovative Materials, National Council of Research (CNR-SPIN), Via Cintia 80126, Naples (Italy); Department of Physical Sciences, University of Naples “Federico II”, Via Cintia 80126, Naples (Italy); Kenyon, A.J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE (United Kingdom)
2013-04-15
We report time-resolved photoluminescence measurements of thin films of silica containing silicon nanoclusters (Si NCs), produced by PECVD and annealed at temperatures between 700 °C and 1150 °C. While the near infrared emission of Si NCs has long been studied, visible light emission has only recently attracted interest due to its very short decay times and its recently-reported redshift with decreasing NCs size. We analyse the PL decay dynamics in the range 450–700 nm with picosecond time resolution using Time Correlated Single Photon Counting. In the resultant multi-exponential decays two dominant components can clearly be distinguished: a very short component, in the range of hundreds of picoseconds, and a nanosecond component. In this wavelength range we do not detect the microsecond component generally associated with excitonic recombination. We associate the nanosecond component to defect relaxation: it decreases in intensity in the sample annealed at higher temperature, suggesting that the contribution from defects decreases with increasing temperature. The origin of the very fast PL component (ps time region) is also discussed. We show that it is consistent with the Auger recombination times of multiple excitons. Further work needs to be done in order to assess the contribution of the Auger-controlled recombinations to the defect-assisted mechanism of photoluminescence. -- Highlights: ► We report time-resolved PL measurements of Si-Ncs embedded in SiO{sub 2} matrix. ► Net decrease of PL with increasing the annealing temperature has been observed. ► Lifetime distribution analysis revealed a multiexponential decay with ns and ps components. ► Ps components are consistent with the lifetime range of the Auger recombination times. ► No evidence for a fast direct transition at the Brillouin zone centre.
International Nuclear Information System (INIS)
Kumpová, I.; Jandejsek, I.; Jakůbek, J.; Vopálenský, M.; Vavřík, D.; Fíla, T.; Koudelka, P.; Kytýř, D.; Zlámal, P.; Gantar, A.
2016-01-01
To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical
Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.
2016-02-01
To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.
Wang, X.; Meier, D.; Oya, P.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.
2010-04-01
The overall aim of this work was to evaluate the potential for improving in vivo small animal microCT through the use of an energy resolved photon-counting detector. To this end, we developed and evaluated a prototype microCT system based on a second-generation photon-counting x-ray detector which simultaneously counted photons with energies above six energy thresholds. First, we developed a threshold tuning procedure to reduce the dependence of detector uniformity and to reduce ring artifacts. Next, we evaluated the system in terms of the contrast-to-noise ratio in different energy windows for different target materials. These differences provided the possibility to weight the data acquired in different windows in order to optimize the contrast-to-noise ratio. We also explored the ability of the system to use data from different energy windows to aid in distinguishing various materials. We found that the energy discrimination capability provided the possibility for improved contrast-to-noise ratios and allowed separation of more than two materials, e.g., bone, soft-tissue and one or more contrast materials having K-absorption edges in the energy ranges of interest.
Full counting statistics of a charge pump in the Coulomb blockade regime
Andreev, A. V.; Mishchenko, E. G.
2001-12-01
We study full charge counting statistics (FCCS) of a charge pump based on a nearly open single electron transistor. The problem is mapped onto an exactly soluble problem of a nonequilibrium g=1/2 Luttinger liquid with an impurity. We obtain an analytic expression for the generating function of the transmitted charge for an arbitrary pumping strength. Although this model contains fractionally charged excitations only integer transmitted charges can be observed. In the weak pumping limit FCCS correspond to a Poissonian transmission of particles with charge e*=e/2 from which all events with odd numbers of transferred particles are excluded.
The statistical interpretations of counting data from measurements of low-level radioactivity
International Nuclear Information System (INIS)
Donn, J.J.; Wolke, R.L.
1977-01-01
The statistical model appropriate to measurements of low-level or background-dominant radioactivity is examined and the derived relationships are applied to two practical problems involving hypothesis testing: 'Does the sample exhibit a net activity above background' and 'Is the activity of the sample below some preselected limit'. In each of these cases, the appropriate decision rule is formulated, procedures are developed for estimating the preset count which is necessary to achieve a desired probability of detection, and a specific sequence of operations is provided for the worker in the field. (author)
Energy Technology Data Exchange (ETDEWEB)
Sato, Eiichi, E-mail: dresato@iwate-med.ac.jp [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Sugimura, Shigeaki [Tokyo Denpa Co. Ltd., 82-5 Ueno, Ichinohe, Iwate 028-5321 (Japan); Endo, Haruyuki [Iwate Industrial Research Insutitute 3, 3-35-2 Shinden, Iioka, Morioka, Iwate 020-0852 (Japan); Oda, Yasuyuki [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Abudurexiti, Abulajiang [Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa, Iwate 020-0193 (Japan); Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)
2012-01-15
15 Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2 mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 1.95 mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15 min, and photon-counting CT was accomplished using gadolinium-based contrast media. - Highlights: Black-Right-Pointing-Pointer We developed a first-generation 15 Mcps photon-counting X-ray computed tomography (CT) system. Black-Right-Pointing-Pointer High-speed photon counting was carried out using a zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module in the X-ray CT system. Black-Right-Pointing-Pointer Tomography is accomplished by repeated translations and rotations of an object. Black-Right-Pointing-Pointer The minimum exposure time for obtaining a tomogram was 15 min. Black-Right-Pointing-Pointer The photon-counting CT was accomplished using gadolinium-based contrast media.
International Nuclear Information System (INIS)
Acciavatti, Raymond J.; Maidment, Andrew D. A.
2010-01-01
Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS PC ≥NPS EI and hence DQE PC ≤DQE EI . The necessary and sufficient condition for equality is that the PSF
Sub-Poissonian photon statistics in time-dependent collective resonance fluorescence
International Nuclear Information System (INIS)
Buzek, V.; Tran Quang; Lan, L.H.
1989-10-01
We have discussed the photon statistics of the spectral components of N-atom time-dependent resonance fluorescence. It is shown that in contrast to the stationary limit, sub-Poissonian photon statistics in the sidebands occur for any number N of atoms including the case N >> 1. Reduction in Maldel's parameters Q ±1 is found with increasing numbers of atoms. The typical time for the presence of sub-Poissonian statistics is proportional to 1/N. (author). 31 refs, 1 fig
Energy Technology Data Exchange (ETDEWEB)
Ding, H; Molloi, S [University of California, Irvine, CA (United States)
2016-06-15
Purpose: To investigate the feasibility of optimizing the imaging parameters for contrast-enhanced spectral mammography based on Si strip photon-counting detectors. Methods: A computer simulation model using polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector was evaluated for contrast-enhanced spectral mammography. The simulation traces the emission of photons from the x-ray source, attenuation through the breast and subsequent absorption in the detector. The breast was modeled as a mixture of adipose and mammary gland tissues with a breast density of 30%. A 4 mm iodine signal with a concentration of 4 mg/ml was used to simulate the enhancement of a lesion. Quantum efficiency of the detector was calculated based on the effective attenuation length in the Si strips. The figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and pre-filtrations for breast of various thicknesses and densities. Results: The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy of 45 kVp with a splitting energy at 34 keV for an averaged breast thickness of 4 cm with a standard 0.75 mm Al pre-filtration. The optimal tube voltage varied slightly from 46 to 44 kVp as the breast thickness increases from 2 to 8 cm. The optimal tube voltage decreased to 42 kVp when the Al pre-filtration was increased to 3 mm. Conclusion: This simulation study predicted the optimal imaging parameters for application of photon-counting spectral mammography to contrast-enhanced imaging. The simulation results laid the ground work for future phantom and clinical studies. Grant funding from Philips Medical Systems.
Ding, Huanjun; Molloi, Sabee
2017-08-01
To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. A computer simulation model was developed to evaluate the performance of a photon-counting spectral mammography system in the application of contrast-enhanced spectral mammography. A figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and prefiltrations for breasts of various thicknesses and densities. Experimental phantom studies were also performed using a beam energy of 40 kVp and a splitting energy of 34 keV with 3 mm Al prefiltration. A two-step calibration method was investigated to quantify the iodine mass thickness, and was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy log-weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known value to characterize the quantification accuracy and precision. The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy between 42 and 46 kVp with a splitting energy at 34 keV. The optimal tube voltage decreased as the breast thickness or the Al prefiltration increased. The proposed quantification method was able to measure iodine mass thickness on phantoms of various thicknesses and densities with high accuracy. The root-mean-square (RMS) error for cm-scale lesion phantoms was estimated to be 0.20 mg/cm 2 . The precision of the technique, characterized by the standard deviation of the measurements, was estimated to be 0.18 mg/cm 2 . The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However
EIGER: Next generation single photon counting detector for X-ray applications
Energy Technology Data Exchange (ETDEWEB)
Dinapoli, Roberto, E-mail: roberto.dinapoli@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bergamaschi, Anna; Henrich, Beat; Horisberger, Roland; Johnson, Ian; Mozzanica, Aldo; Schmid, Elmar; Schmitt, Bernd; Schreiber, Akos; Shi, Xintian; Theidel, Gerd [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)
2011-09-11
EIGER is an advanced family of single photon counting hybrid pixel detectors, primarily aimed at diffraction experiments at synchrotrons. Optimization of maximal functionality and minimal pixel size (using a 0.25{mu}m process and conserving the radiation tolerant design) has resulted in 75x75{mu}m{sup 2} pixels. Every pixel comprises a preamplifier, shaper, discriminator (with a 6 bit DAC for threshold trimming), a configurable 4/8/12 bit counter with double buffering, as well as readout, control and test circuitry. A novel feature of this chip is its double buffered counter, meaning a next frame can be acquired while the previous one is being readout. An array of 256x256 pixels fits on a {approx}2x2cm{sup 2} chip and a sensor of {approx}8x4cm{sup 2} will be equipped with eight readout chips to form a module containing 0.5 Mpixel. Several modules can then be tiled to form larger area detectors. Detectors up to 4x8 modules (16 Mpixel) are planned. To achieve frame rates of up to 24 kHz the readout architecture is highly parallel, and the chip readout happens in parallel on 32 readout lines with a 100 MHz Double Data Rate clock. Several chips and singles (i.e. a single chip bump-bonded to a single chip silicon sensor) were tested both with a lab X-ray source and at Swiss Light Source (SLS) beamlines. These tests demonstrate the full functionality of the chip and provide a first assessment of its performance. High resolution X-ray images and 'high speed movies' were produced, even without threshold trimming, at the target system frame rates (up to {approx}24kHz in 4 bit mode). In parallel, dedicated hardware, firmware and software had to be developed to comply with the enormous data rate the chip is capable of delivering. Details of the chip design and tests will be given, as well as highlights of both test and final readout systems.
18k Channels single photon counting readout circuit for hybrid pixel detector
International Nuclear Information System (INIS)
Maj, P.; Grybos, P.; Szczygiel, R.; Zoladz, M.; Sakumura, T.; Tsuji, Y.
2013-01-01
We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm×20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96×192 pixels with 100 μm×100 μm pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 μW/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 μV/e − and the equivalent noise charge is 168 e − rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.
18k Channels single photon counting readout circuit for hybrid pixel detector
Energy Technology Data Exchange (ETDEWEB)
Maj, P., E-mail: piotr.maj@agh.edu.pl [AGH University of Science and Technology, Department of Measurements and Electronics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Grybos, P.; Szczygiel, R.; Zoladz, M. [AGH University of Science and Technology, Department of Measurements and Electronics, Al. Mickiewicza 30, 30-059 Krakow (Poland); Sakumura, T.; Tsuji, Y. [X-ray Analysis Division, Rigaku Corporation, Matsubara, Akishima, Tokyo 196-8666 (Japan)
2013-01-01
We have performed measurements of an integrated circuit named PXD18k designed for hybrid pixel semiconductor detectors used in X-ray imaging applications. The PXD18k integrated circuit, fabricated in CMOS 180 nm technology, has dimensions of 9.64 mm Multiplication-Sign 20 mm and contains approximately 26 million transistors. The core of the IC is a matrix of 96 Multiplication-Sign 192 pixels with 100 {mu}m Multiplication-Sign 100 {mu}m pixel size. Each pixel works in a single photon counting mode. A single pixel contains two charge sensitive amplifiers with Krummenacher feedback scheme, two shapers, two discriminators (with independent thresholds A and B) and two 16-bit ripple counters. The data are read out via eight low voltage differential signaling (LVDS) outputs with 100 Mbps rate. The power consumption is dominated by analog blocks and it is about 23 {mu}W/pixel. The effective peaking time at the discriminator input is 30 ns and is mainly determined by the time constants of the charge sensitive amplifier (CSA). The gain is equal to 42.5 {mu}V/e{sup -} and the equivalent noise charge is 168 e{sup -} rms (with bump-bonded silicon pixel detector). Thanks to the use of trim DACs in each pixel, the effective threshold spread at the discriminator input is only 1.79 mV. The dead time of the front end electronics for a standard setting is 172 ns (paralyzable model). In the standard readout mode (when the data collection time is separated from the time necessary to readout data from the chip) the PXD18k IC works with two energy thresholds per pixel. The PXD18k can also be operated in the continuous readout mode (with a zero dead time) where one can select the number of bits readout from each pixel to optimize the PXD18k frame rate. For example, for reading out 16 bits/pixel the frame rate is 2.7 kHz and for 4 bits/pixel it rises to 7.1 kHz.
International Nuclear Information System (INIS)
Starkov, V. N.; Semenov, A. A.; Gomonay, H. V.
2009-01-01
We demonstrate a practical possibility of loss compensation in measured photocounting statistics in the presence of dark counts and background radiation noise. It is shown that satisfactory results are obtained even in the case of low detection efficiency and large experimental errors.
Steadman, Roger; Herrmann, Christoph; Livne, Amir
2017-08-01
Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.
Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo
2016-05-01
High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54
Energy Technology Data Exchange (ETDEWEB)
Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu; Shi, Linxi; Gounis, Matthew J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo [Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy and Pixirad Imaging Counters s.r.l., L. Pontecorvo 3, Pisa 56127 (Italy)
2016-05-15
Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54
Energy Technology Data Exchange (ETDEWEB)
Crane, T.W.
1980-03-01
A summary of the status and applicability of nondestructive assay (NDA) techniques for the measurement of uranium and plutonium in 55-gal barrels of solid waste is reported. The NDA techniques reviewed include passive gamma-ray and x-ray counting with scintillator, solid state, and proportional gas photon detectors, passive neutron counting, and active neutron interrogation with neutron and gamma-ray counting. The active neutron interrogation methods are limited to those employing isotopic neutron sources. Three generic neutron sources (alpha-n, photoneutron, and /sup 252/Cf) are considered. The neutron detectors reviewed for both prompt and delayed fission neutron detection with the above sources include thermal (/sup 3/He, /sup 10/BF/sub 3/) and recoil (/sup 4/He, CH/sub 4/) proportional gas detectors and liquid and plastic scintillator detectors. The instrument found to be best suited for low-level measurements (< 10 nCi/g) is the /sup 252/Cf Shuffler. The measurement technique consists of passive neutron counting followed by cyclic activation using a /sup 252/Cf source and delayed neutron counting with the source withdrawn. It is recommended that a waste assay station composed of a /sup 252/Cf Shuffler, a gamma-ray scanner, and a screening station be tested and evaluated at a nuclear waste site. 34 figures, 15 tables.
Farnsworth, G.L.; Nichols, J.D.; Sauer, J.R.; Fancy, S.G.; Pollock, K.H.; Shriner, S.A.; Simons, T.R.; Ralph, C. John; Rich, Terrell D.
2005-01-01
Point counts are a standard sampling procedure for many bird species, but lingering concerns still exist about the quality of information produced from the method. It is well known that variation in observer ability and environmental conditions can influence the detection probability of birds in point counts, but many biologists have been reluctant to abandon point counts in favor of more intensive approaches to counting. However, over the past few years a variety of statistical and methodological developments have begun to provide practical ways of overcoming some of the problems with point counts. We describe some of these approaches, and show how they can be integrated into standard point count protocols to greatly enhance the quality of the information. Several tools now exist for estimation of detection probability of birds during counts, including distance sampling, double observer methods, time-depletion (removal) methods, and hybrid methods that combine these approaches. Many counts are conducted in habitats that make auditory detection of birds much more likely than visual detection. As a framework for understanding detection probability during such counts, we propose separating two components of the probability a bird is detected during a count into (1) the probability a bird vocalizes during the count and (2) the probability this vocalization is detected by an observer. In addition, we propose that some measure of the area sampled during a count is necessary for valid inferences about bird populations. This can be done by employing fixed-radius counts or more sophisticated distance-sampling models. We recommend any studies employing point counts be designed to estimate detection probability and to include a measure of the area sampled.
International Nuclear Information System (INIS)
Khayat, Omid; Afarideh, Hossein; Mohammadnia, Meisam
2015-01-01
In the solid state nuclear track detectors of chemically etched type, nuclear tracks with center-to-center neighborhood of distance shorter than two times the radius of tracks will emerge as overlapping tracks. Track overlapping in this type of detectors causes tracks count losses and it becomes rather severe in high track densities. Therefore, tracks counting in this condition should include a correction factor for count losses of different tracks overlapping orders since a number of overlapping tracks may be counted as one track. Another aspect of the problem is the cases where imaging the whole area of the detector and counting all tracks are not possible. In these conditions a statistical generalization method is desired to be applicable in counting a segmented area of the detector and the results can be generalized to the whole surface of the detector. Also there is a challenge in counting the tracks in densely overlapped tracks because not sufficient geometrical or contextual information are available. It this paper we present a statistical counting method which gives the user a relation between the tracks overlapping probabilities on a segmented area of the detector surface and the total number of tracks. To apply the proposed method one can estimate the total number of tracks on a solid state detector of arbitrary shape and dimensions by approximating the tracks averaged area, whole detector surface area and some orders of tracks overlapping probabilities. It will be shown that this method is applicable in high and ultra high density tracks images and the count loss error can be enervated using a statistical generalization approach. - Highlights: • A correction factor for count losses of different tracks overlapping orders. • For the cases imaging the whole area of the detector is not possible. • Presenting a statistical generalization method for segmented areas. • Giving a relation between the tracks overlapping probabilities and the total tracks
Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics
Wang, Chen; Ren, Jie; Cao, Jianshu
2017-02-01
To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.
Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee
2015-07-01
To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater
CMOS SPAD-based image sensor for single photon counting and time of flight imaging
Dutton, Neale Arthur William
2016-01-01
The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications....
Physics colloquium: Single-electron counting in quantum metrology and in statistical mechanics
Geneva University
2011-01-01
GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92olé Lundi 17 octobre 2011 17h00 - Ecole de Physique, Auditoire Stueckelberg PHYSICS COLLOQUIUM « Single-electron counting in quantum metrology and in statistical mechanics » Prof. Jukka Pekola Low Temperature Laboratory, Aalto University Helsinki, Finland First I discuss the basics of single-electron tunneling and its potential applications in metrology. My main focus is in developing an accurate source of single-electron current for the realization of the unit ampere. I discuss the principle and the present status of the so-called single- electron turnstile. Investigation of errors in transporting electrons one by one has revealed a wealth of observations on fundamental phenomena in mesoscopic superconductivity, including individual Andreev...
RCT: Module 2.03, Counting Errors and Statistics, Course 8768
Energy Technology Data Exchange (ETDEWEB)
Hillmer, Kurt T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-04-01
Radiological sample analysis involves the observation of a random process that may or may not occur and an estimation of the amount of radioactive material present based on that observation. Across the country, radiological control personnel are using the activity measurements to make decisions that may affect the health and safety of workers at those facilities and their surrounding environments. This course will present an overview of measurement processes, a statistical evaluation of both measurements and equipment performance, and some actions to take to minimize the sources of error in count room operations. This course will prepare the student with the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and by providing in the field skills.
2Kx2K resolution element photon counting MCP sensor with >200 kHz event rate capability
Vallerga, J V
2000-01-01
Siegmund Scientific undertook a NASA Small Business Innovative Research (SBIR) contract to develop a versatile, high-performance photon (or particle) counting detector combining recent technical advances in all aspects of Microchannel Plate (MCP) detector development in a low cost, commercially viable package that can support a variety of applications. The detector concept consists of a set of MCPs whose output electron pulses are read out with a crossed delay line (XDL) anode and associated high-speed event encoding electronics. The delay line anode allows high-resolution photon event centroiding at very high event rates and can be scaled to large formats (>40 mm) while maintaining good linearity and high temporal stability. The optimal sensitivity wavelength range is determined by the choice of opaque photocathodes. Specific achievements included: spatial resolution of 200 000 events s sup - sup 1; local rates of >100 events s sup - sup 1 per resolution element; event timing of <1 ns; and low background ...
Energy Technology Data Exchange (ETDEWEB)
Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)
2016-08-15
We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.
WE-FG-207A-04: Performance Characteristics of Photon-Counting Breast CT
Energy Technology Data Exchange (ETDEWEB)
Kalender, W. [University of Erlangen (Germany)
2016-06-15
investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography
Energy Technology Data Exchange (ETDEWEB)
Jorel, C
2004-12-15
This work describes the development of S/Al-AlOx-Al/S Superconducting Tunnel Junctions (STJ) to count photons for astronomical applications in the near-infrared. The incoming light energy is converted into excited charges in a superconducting layer (S, either Nb or Ta) with a population proportional to the deposited energy. The photon energy can thus be evaluated by integrating the tunnel current induced in a voltage biased junction at a very low temperature (100 mK). The performance of STJ for light detection is discussed in the first chapter and compared with the best performances obtained with other techniques based on either superconductors. At the beginning of the thesis, a previous manufacturing process made it possible to obtain good quality Nb based junctions and preliminary results for photon counting. The objective of the thesis was to replace Nb as absorber with Ta, an intrinsically more sensitive material, and secondly to develop a new and more efficient manufacturing process. We first focused on the optimization of the Tantalum thin film quality. Structural analysis showed that these films can be grown epitaxially by magnetron sputtering onto an R-plane sapphire substrate heated to 600 Celsius degrees and covered by a thin Nb buffer layer. Electrical transport measurement from room to low temperatures gave excellent Relative Resistive Ratios of about 50 corresponding to mean free path of the order of 100 nm. Then, we conceived an original manufacturing process batch on 3 inch diameter sapphire substrate with five mask levels. These masks made it possible to produce single pixel STJ of different sizes (from 25*25 to 50*50 square microns) and shapes. We also produced multiple junctions onto a common absorber as well as 9-pixel arrays. Thanks to the development of this process we obtained a very large percentage of quality junctions (>90%) with excellent measured normal resistances of a few micro-ohm cm{sup 2} and low leakage currents of the order of one
International Nuclear Information System (INIS)
Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.
1994-01-01
Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe
Statistical Methods for Unusual Count Data: Examples From Studies of Microchimerism
Guthrie, Katherine A.; Gammill, Hilary S.; Kamper-Jørgensen, Mads; Tjønneland, Anne; Gadi, Vijayakrishna K.; Nelson, J. Lee; Leisenring, Wendy
2016-01-01
Natural acquisition of small amounts of foreign cells or DNA, referred to as microchimerism, occurs primarily through maternal-fetal exchange during pregnancy. Microchimerism can persist long-term and has been associated with both beneficial and adverse human health outcomes. Quantitative microchimerism data present challenges for statistical analysis, including a skewed distribution, excess zero values, and occasional large values. Methods for comparing microchimerism levels across groups while controlling for covariates are not well established. We compared statistical models for quantitative microchimerism values, applied to simulated data sets and 2 observed data sets, to make recommendations for analytic practice. Modeling the level of quantitative microchimerism as a rate via Poisson or negative binomial model with the rate of detection defined as a count of microchimerism genome equivalents per total cell equivalents tested utilizes all available data and facilitates a comparison of rates between groups. We found that both the marginalized zero-inflated Poisson model and the negative binomial model can provide unbiased and consistent estimates of the overall association of exposure or study group with microchimerism detection rates. The negative binomial model remains the more accessible of these 2 approaches; thus, we conclude that the negative binomial model may be most appropriate for analyzing quantitative microchimerism data. PMID:27769989
Technical feasibility proof for high-resolution low-dose photon-counting CT of the breast
Energy Technology Data Exchange (ETDEWEB)
Kalender, Willi A.; Kolditz, Daniel; Lueck, Ferdinand [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); CT Imaging GmbH, Erlangen (Germany); Steiding, Christian [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); CT Imaging GmbH, Erlangen (Germany); University Hospital of Erlangen, Institute of Radiology, Erlangen (Germany); Ruth, Veikko; Roessler, Ann-Christin [University of Erlangen-Nuernberg, Institute of Medical Physics (IMP), Erlangen (Germany); Wenkel, Evelyn [University Hospital of Erlangen, Institute of Radiology, Erlangen (Germany)
2017-03-15
X-ray computed tomography (CT) has been proposed and evaluated multiple times as a potentially alternative method for breast imaging. All efforts shown so far have been criticized and partly disapproved because of their limited spatial resolution and higher patient dose when compared to mammography. Our concept for a dedicated breast CT (BCT) scanner therefore aimed at novel apparatus and detector design to provide high spatial resolution of about 100 μm and average glandular dose (AGD) levels of 5 mGy or below. Photon-counting technology was considered as a solution to reach these goals. The complete concept was previously evaluated and confirmed by simulations and basic experiments on laboratory setups. We here present measurements of dose, technical image quality parameters and surgical specimen results on such a scanner. For comparison purposes, the specimens were also imaged with digital mammography (DM) and breast tomosynthesis (BT) apparatus. Results show that photon-counting BCT (pcBCT) at 5 mGy AGD offers sufficiently high 3D spatial resolution for reliable detectability of calcifications and soft tissue delineation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)
2016-07-11
A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.
X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix
Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.
2017-12-01
As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.
HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project
Energy Technology Data Exchange (ETDEWEB)
Wei, Wei, E-mail: weiw@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Liu, Peng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)
2016-11-01
China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 µm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 µm×150 µm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-µm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e{sup −} rms after bump bonding and a threshold dispersion of 55 e{sup −} rms after calibration.
Fluctuations and dark count rates in superconducting NbN single-photon detectors
International Nuclear Information System (INIS)
Engel, Andreas; Semenov, Alexei; Huebers, Heinz-Wilhelm; Il'in, Kostya; Siegel, Michael
2005-01-01
We measured the temperature- and current-dependence of dark count rates of a superconducting singlephoton detector. The detector's key element is a 84 nm wide meander strip line fabricated from a 5 nm thick NbN film. Due to its reduced dimensions various types of fluctuations can cause temporal and localized transitions into a resistive state leading to dark count events. Adopting a recent refinement of the hotspot model we achieve a satisfying description of the experimental dark count rates taking into account fluctuations of the Cooper-pair density and current-assisted unbinding of vortex-antivortex pairs. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Korn, A.
2007-01-01
The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated
2D dark-count-rate modeling of PureB single-photon avalanche diodes in a TCAD environment
Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav
2018-02-01
PureB silicon photodiodes have nm-shallow p+n junctions with which photons/electrons with penetration-depths of a few nanometer can be detected. PureB Single-Photon Avalanche Diodes (SPADs) were fabricated and analysed by 2D numerical modeling as an extension to TCAD software. The very shallow p+ -anode has high perimeter curvature that enhances the electric field. In SPADs, noise is quantified by the dark count rate (DCR) that is a measure for the number of false counts triggered by unwanted processes in the non-illuminated device. Just like for desired events, the probability a dark count increases with increasing electric field and the perimeter conditions are critical. In this work, the DCR was studied by two 2D methods of analysis: the "quasi-2D" (Q-2D) method where vertical 1D cross-sections were assumed for calculating the electron/hole avalanche-probabilities, and the "ionization-integral 2D" (II-2D) method where crosssections were placed where the maximum ionization-integrals were calculated. The Q-2D method gave satisfactory results in structures where the peripheral regions had a small contribution to the DCR, such as in devices with conventional deepjunction guard rings (GRs). Otherwise, the II-2D method proved to be much more precise. The results show that the DCR simulation methods are useful for optimizing the compromise between fill-factor and p-/n-doping profile design in SPAD devices. For the experimentally investigated PureB SPADs, excellent agreement of the measured and simulated DCR was achieved. This shows that although an implicit GR is attractively compact, the very shallow pn-junction gives a risk of having such a low breakdown voltage at the perimeter that the DCR of the device may be negatively impacted.
Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)
2002-01-01
Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.
Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee
2014-01-01
Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution
International Nuclear Information System (INIS)
Gaidash, A A; Egorov, V I; Gleim, A V
2014-01-01
Quantum cryptography in theory allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source. In order to overcome this possibility, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. We present an alternative method based on monitoring photon number statistics after detection. This method can therefore be used with any existing protocol
Computed tomography from photon statistics to modern cone-beam CT
Buzug, T M
2008-01-01
Tis book provides an overview of X-ray technology, the historic developmental milestones of modern CT systems, and gives a comprehensive insight into the main reconstruction methods used in computed tomography. Te basis of reconstr- tion is, undoubtedly, mathematics. However, the beauty of computed tomography cannot be understood without a detailed knowledge of X-ray generation, photon- matter interaction, X-ray detection, photon statistics, as well as fundamental signal processing concepts and dedicated measurement systems. Terefore, the reader will ?nd a number of references to these basic d
Design Considerations for Area-Constrained In-Pixel Photon Counting in Medipix3
Wong, W; Campbell, M; Heijne, E H M; Llopart, X; Tlustos, L
2008-01-01
Hybrid pixel detectors process impinging photons using front-end electronics electrically connected to a segmented sensor via solder bumps. This allows for complex in-pixel processing while maintaining 100% fill factor. Medipix3 is a single photon processing chip whose 55 μm x 55 μm pixels contain analog charge-processing circuits, inter-pixel routing, and digital blocks. While a standard digital design flow would use logic gates from a standard cell library, the integration of multiple functions and configurations within the compact area of the Medipix3 pixel requires a full-custom manual layout. This work describes the various area-saving design strategies which were employed to optimize the use of available space in the digital section of the Medipix3 pixel.
Full counting statistics in a serially coupled double quantum dot system with spin-orbit coupling
Wang, Qiang; Xue, Hai-Bin; Xie, Hai-Qing
2018-04-01
We study the full counting statistics of electron transport through a serially coupled double quantum dot (QD) system with spin-orbit coupling (SOC) weakly coupled to two electrodes. We demonstrate that the spin polarizations of the source and drain electrodes determine whether the shot noise maintains super-Poissonian distribution, and whether the sign transitions of the skewness from positive to negative values and of the kurtosis from negative to positive values take place. In particular, the interplay between the spin polarizations of the source and drain electrodes and the magnitude of the external magnetic field, can give rise to a gate-voltage-tunable strong negative differential conductance (NDC) and the shot noise in this NDC region is significantly enhanced. Importantly, for a given SOC parameter, the obvious variation of the high-order current cumulants as a function of the energy-level detuning in a certain range, especially the dip position of the Fano factor of the skewness can be used to qualitatively extract the information about the magnitude of the SOC.
Full-counting statistics of energy transport of molecular junctions in the polaronic regime
International Nuclear Information System (INIS)
Tang, Gaomin; Yu, Zhizhou; Wang, Jian
2017-01-01
We investigate the full-counting statistics (FCS) of energy transport carried by electrons in molecular junctions for the Anderson–Holstein model in the polaronic regime. Using the two-time quantum measurement scheme, the generating function (GF) for the energy transport is derived and expressed as a Fredholm determinant in terms of Keldysh nonequilibrium Green’s function in the time domain. Dressed tunneling approximation is used in decoupling the phonon cloud operator in the polaronic regime. This formalism enables us to analyze the time evolution of energy transport dynamics after a sudden switch-on of the coupling between the dot and the leads towards the stationary state. The steady state energy current cumulant GF in the long time limit is obtained in the energy domain as well. Universal relations for steady state energy current FCS are derived under a finite temperature gradient with zero bias and this enabled us to express the equilibrium energy current cumulant by a linear combination of lower order cumulants. The behaviors of energy current cumulants in steady state under temperature gradient and external bias are numerically studied and explained. The transient dynamics of energy current cumulants is numerically calculated and analyzed. Universal scaling of normalized transient energy cumulants is found under both temperature gradient and external bias. (paper)
Implementing a Multiplexed System of Detectors for Higher Photon Counting Rates
2007-01-01
Castelletto, I. P. Degiovanni, and M. L. Rastello, “Theoretical aspects of photon number measurement,” Metrologia , vol. 37, pp. 613-616, 2000. [19] http...source heralding efficiency and detection effi- ciency metrology at 1550 nm using periodically poled lithium niobate,” Metrologia , vol. 43, pp. S56-S60...2006. Valentina Schettini received her master degree in Physics at the University La Sapienza of Rome in 2003. In 2004 and 2005 she had a research
MABEL Photon-Counting Laser Altimetry Data in Alaska for ICESat-2 Simulations and Development
Brunt, Kelly; Neumann, T. A.; Amundson, M.; Kavanaugh, J. L.; Moussavi, M. S.; Walsh, K. M.; Cook, W. B.; Markus, T.
2016-01-01
Multiple Altimeter Beam Experimental Lidar (MABEL) maps Alaskan crevasses in detail, using 50 of the expected along-track Advanced Topographic Laser Altimeter System (ATLAS) signal-photon densities over summer ice sheets. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) along-track data density, and spatial data density due to the multiple-beam strategy, will provide a new dataset to mid-latitude alpine glacier researchers.
Schneebeli, L.; Kira, M.; Koch, S. W.
2008-08-01
It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.
Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-01-01
15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.
Study of a photomultiplier for the measurement of low light flows by photon counting
International Nuclear Information System (INIS)
Haye, Kleber
1964-01-01
After a recall of the history of the discovery and use of the photoemission effect, a presentation of the main characteristics of photomultipliers, a discussion of performance and weaknesses of electron multiplier-based cells, this research thesis addresses the study of low light flows. The author tried to determine whether it was possible, at ambient temperature, to reduce the influence of the thermoelectric effect. In order to do so, he made a detailed study of the amplitude spectrum of pulses of photoelectric origin. In order to analyse the influence of temperature of photomultiplier characteristics, he studied, with respect to temperature, the variation of the counting rate corresponding to darkness, the variation of pulse amplitude spectrum, and relative variations of the quantum efficiency for various wavelengths. In parallel with the study by counting, a study has been performed by using the well known mean current measurement [fr
International Nuclear Information System (INIS)
Buckman, S.M.
1995-03-01
The major part of the thesis is devoted to the theoretical development of a comprehensive PC-based statistical package for the analysis of data from coincidence-counting experiments. This analysis is applied to primary standardizations of Co performed in Australia and Japan. The Australian standardisation, the accuracy of which is confirmed through international comparison, is used to re-calibrate the ionisation chamber. Both Australian and Japanese coincidence-counting systems are interfaced to personal computers to enable replicated sets of measurements to be made under computer control. Further research to confirm the validity of the statistical model includes an experimental investigation into the non-Poisson behaviour of radiation detectors due to the effect of deadtime. Experimental investigation is conducted to determine which areas are most likely to limit the ultimate accuracy achievable with coincidence counting. The thesis concludes by discussing the possibilities of digital coincidence counting and outlines the design of a prototype system presently under development. The accuracy of the Australian standardisation is confirmed by international comparison. From this result a more accurate Co calibration is obtained for the Australian working standard. Based on the work of this thesis, uncertainties in coincidence counting experiments can be better handled with resulting improvements in measurement reliability. The concept and benefits of digital coincidence counting are discussed and a proposed design is given for such a system. All of the data and software associated with this thesis is provided on computer discs. 237 refs., figs., tabs
Polynomial approximation of non-Gaussian unitaries by counting one photon at a time
Arzani, Francesco; Treps, Nicolas; Ferrini, Giulia
2017-05-01
In quantum computation with continuous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the laboratory. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.
Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P
2016-09-07
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
International Nuclear Information System (INIS)
Mallick, M.B.; Ravindranath, S.V.G.; Das, N.C.
2002-07-01
A VUV spectroscopic facility for studies in photophysics and photochemistry is being set up at INDUS-I synchrotron source, CAT, Indore. For this purpose, a data acquisition system based on time-correlated single photon counting method is being developed for fluorescence lifetime measurement. To estimate fluorescence lifetime from the data collected with this sytem, a Windows based program has been developed using Visual Basic 5.0. It uses instrument response function (IRF) and observed decay curve and estimates parameters of single exponential decay by least square analysis and Marquardt method as convergence mechanism. Estimation of parameters was performed using data collected with a commercial setup. Goodness of fit was judged by evaluating χR 2 , weighted residuals and autocorrelation function. Performance is compared with two commercial software packages and found to be satisfactory. (author)
Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency
Energy Technology Data Exchange (ETDEWEB)
Korzh, B., E-mail: Boris.Korzh@unige.ch; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H. [Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, CH-1211 Geneva 4 (Switzerland)
2014-02-24
We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of −110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.
Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency
Korzh, B.; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H.
2014-02-01
We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of -110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.
DEFF Research Database (Denmark)
Nielsen, Martin Krarup; Vidyashankar, Anand N.; Hanlon, Bret
statistical model was therefore developed for analysis of FECRT data from multiple farms. Horse age, gender, zip code and pre-treatment egg count were incorporated into the model. Horses and farms were kept as random effects. Resistance classifications were based on model-based 95% lower confidence limit (LCL...
Development of bonded semiconductor device for high counting rate high efficiency photon detectors
International Nuclear Information System (INIS)
Kanno, Ikuo
2008-01-01
We are trying to decrease dose exposure in medical diagnosis by way of measuring the energy of X-rays. For this purpose, radiation detectors for X-ray energy measurement with high counting rate should be developed. Direct bonding of Si wafers was carried out to make a radiation detector, which had separated X-ray absorber and detector. The resistivity of bonding interface was estimated with the results of four-probe measurements and model calculations. Direct bonding of high resistivity p and n-Si wafers was also performed. The resistance of the pn bonded diode was 0.7 MΩ. The resistance should be increased in the future. (author)
Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik
2018-02-01
Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. © 2017 American Association of Physicists in Medicine.
Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos
2013-07-01
In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.
Monfardini, A; Stalio, R; Mahne, N; Battiston, R; Menichelli, M; Mazzinghi, P
2001-01-01
A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed 'Notte' and the Aurora emission with 'Alba'. AURORA, this is the name of the experiment, will determine, with the 'Notte' channel, the overall night-side photon background in the 300-400 nm spectral range, together with a particular 2 sup + N sub 2 line (lambda sub c =337 nm). The 'Alba' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6 nm) centered on: 367 nm (continuum evaluation), 391 nm (1 sup - N sup + sub 2), 535 nm (continuum evaluation), 560 nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 'Satan' rocket. The satellite orbit is nearly circular (h sub a sub p sub o sub g sub e sub e =648 km, e=0.0022), and the inclination of the orbital plane is 64.56 deg. An overview of...
International Nuclear Information System (INIS)
Monfardini, A.; Trampus, P.; Stalio, R.; Mahne, N.; Battiston, R.; Menichelli, M.; Mazzinghi, P.
2001-01-01
A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed 'Notte' and the Aurora emission with 'Alba'. AURORA, this is the name of the experiment, will determine, with the 'Notte' channel, the overall night-side photon background in the 300-400 nm spectral range, together with a particular 2 + N 2 line (λ c =337 nm). The 'Alba' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6 nm) centered on: 367 nm (continuum evaluation), 391 nm (1 - N + 2 ), 535 nm (continuum evaluation), 560 nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 'Satan' rocket. The satellite orbit is nearly circular (h apogee =648 km, e=0.0022), and the inclination of the orbital plane is 64.56 deg. An overview of the techniques adopted is given in this paper
Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo
2017-05-01
The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.
Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution
Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.
High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of 5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.
A direct measurement of the invisible width of the Z from single photon counting
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pasual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Atjaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Petl, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stielin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botteril, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellatoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau, Lan, Wu; Wu, X.; Zheng, M.; Zobernig, G.
1993-09-01
The ALEPH detector at LEP is used to study single photon events in e+e- collisions at the Z resonance. In a total data sample of 15.7 pb-1 taken in 1990 and 1991 scanning the resonance, 400 events were recorded where each has a single deposition of more than 1.5 GeV measured in the polar angular region cosθγ < 0.74 of the electromagnetic calorimeter. It is shown that this number of events cab be accounted for by known processes. After subtraction of background events, the invisible width of the Z is determined to be 45 +/- 34(stat.) +/- 34(syst.) MeV. Using Z. resonance parameters derived by ALEPH, the corresponding number oflight neutrino generations is found to be 2.68 +/- 0.20(stat.) +/- 0.20(syst.). Supported by the US Department of Energy, contract DE-ACO2-76ER00881.
Performance of a single photon counting microstrip detector for strip pitches down to 10 μm
International Nuclear Information System (INIS)
Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E.; Gozzo, F.; Henrich, B.; Kobas, M.; Kraft, P.; Patterson, B.; Schmitt, B.
2008-01-01
The MYTHEN detector is a one-dimensional microstrip detector with single photon counting readout optimized for time resolved powder diffraction experiments at the Swiss Light Source (SLS). The system has been successfully tested for many different synchrotron radiation applications including phase contrast and tomographic imaging, small angle scattering, diffraction and time resolved pump and probe experiments for X-ray energies down to 5 keV and counting rate up to 3 MHz. The frontend electronics is designed in order to be coupled to 50 μm pitch microstrip sensors but some interest in enhancing the spatial resolution is arising for imaging and powder diffraction experiments. A test structure with strip pitches in the range 10-50 μm has been tested and the gain and noise on the readout electronics have been measured for the different strip pitches, observing no large difference down to 25 μm. Moreover, the effect of the charge sharing between neighboring strips on the spatial resolution has been quantified by measuring the Point Spread Function (PSF) of the system for the different pitches
Performance of a single photon counting microstrip detector for strip pitches down to 10 μm
Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E.; Gozzo, F.; Henrich, B.; Kobas, M.; Kraft, P.; Patterson, B.; Schmitt, B.
2008-06-01
The MYTHEN detector is a one-dimensional microstrip detector with single photon counting readout optimized for time resolved powder diffraction experiments at the Swiss Light Source (SLS). The system has been successfully tested for many different synchrotron radiation applications including phase contrast and tomographic imaging, small angle scattering, diffraction and time resolved pump and probe experiments for X-ray energies down to 5 keV and counting rate up to 3 MHz. The frontend electronics is designed in order to be coupled to 50 μm pitch microstrip sensors but some interest in enhancing the spatial resolution is arising for imaging and powder diffraction experiments. A test structure with strip pitches in the range 10-50 μm has been tested and the gain and noise on the readout electronics have been measured for the different strip pitches, observing no large difference down to 25 μm. Moreover, the effect of the charge sharing between neighboring strips on the spatial resolution has been quantified by measuring the Point Spread Function (PSF) of the system for the different pitches.
International Nuclear Information System (INIS)
Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung
2011-01-01
Conventional X-ray systems and X-ray computed tomography (CT) systems, which use detectors operated in the integrating mode, are not able to reflect spectral information because the detector output is proportional to the energy fluence integrated over the whole spectrum. Photon-counting detectors have been considered as alternative devices. These detectors can measure the photon energy deposited by each event and improve the image quality. In this study, we investigated the feasibility of K-edge imaging using a photon-counting detector and evaluated the capability of material decomposition in X-ray images. The geometries of X-ray imaging systems equipped with cadmium telluride (CdTe) detectors and phantoms consisting of different materials were designed using Geant4 Application for Tomographic Emission (GATE) version 6.0. To observe the effect of a discontinuity in the attenuation due to the K-edge of a high atomic number material, we chose the energy windows to be one below and one above the K-edge absorption energy of the target material. The contrast-to-noise ratios (CNRs) of the target materials were increased at selective energy levels above the K-edge absorption energy because the attenuation is more dramatically increased at energies above the K-edge absorption energy of the material than at energies below that. The CNRs for the target materials in the K-edge image were proportional to the material concentration. The results of this study show that K-edge imaging can be carried out in conventional X-ray systems and X-ray CT systems using CdTe photon-counting detectors and that the target materials can be separated from background materials by using K-edge imaging. The photon-counting detector has potential to provide improved image quality, and this study will be used as a basis for future studies on photon-counting X-ray imaging.
Energy Technology Data Exchange (ETDEWEB)
Cluchet, J.
1960-07-01
After a recall of some aspects regarding the Gauss law and the Gauss curve, this note addresses the case of performance of a large number of measurements of a source activity by means of a sensor (counter, scintillator, nuclear emulsion, etc.) at equal intervals, and with a number of events which is not rigorously constant. Thus, it addresses measurements, and more particularly counting operations in a random or statistical environment. It more particularly addresses the case of a counting rate due to a source greater (and then lower) than twenty times the Eigen movement. The validity of curves is discussed.
Time-Correlated Single-Photon Counting Range Profiling of Moving Objects
Directory of Open Access Journals (Sweden)
Hedborg Julia
2016-01-01
TCSPC is a statistic method that requires an acquisition time and therefore the range profile of a non-stationary object (target may be corrupted. Here, we present results showing that it is possible to reconstruct the range profile of a moving target and calculate the velocity of the target.
Test of a 32-channel Prototype ASIC for Photon Counting Application.
Chen, Y; Cui, Y; O'Connor, P; Seo, Y; Camarda, G S; Hossain, A; Roy, U; Yang, G; James, R B
2015-01-01
A new low-power application-specific integrated circuit (ASIC) for Cadmium Zinc Telluride (CZT) detectors for single-photon emission computed tomography (SPECT) application is being developed at BNL. As the first step, a 32-channel prototype ASIC was designed and tested recently. Each channel has a preamplifier followed by CR-RC 3 shaping circuits and three independent energy bins with comparators and 16-bit counters. The ASIC was fabricated with TSMC 0.35-μm complementary metal-oxide-semiconductor (CMOS) process and tested in laboratories. The power consumption is around 1 mW/ch with a 2.5-V supply. With a gain of 400 mV/fC and the peaking time of 500 ns, the equivalent noise charge (ENC) of 360 e- has been measured in room temperature while the crosstalk rate is less than 0.3%. The 10-bit DACs for global thresholds have an integral nonlinearity (INL) less than 0.56% and differential nonlinearity (DNL) less than 0.33%. In the presentation, we will report the detailed test results with this ASIC.
Energy Technology Data Exchange (ETDEWEB)
Kim, Ho Chul; Lee, Young Jin [Dept. of Radiological Science, Eulji University, Seongnam (Korea, Republic of); Kim, Hee Joung; Kim, Kyuseok; Lee, Min Hee [Yonsei University, Wonju (Korea, Republic of)
2017-06-15
To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a {sup 99m}Tc gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.
International Nuclear Information System (INIS)
Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus
2012-01-01
Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption
Energy Technology Data Exchange (ETDEWEB)
Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus [Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna, Sweden and Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Department of Biomedical Engineering and Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Research and Development, Philips Women' s Healthcare, Smidesvaegen 5, SE-171 41 Solna (Sweden)
2012-09-15
Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption
Chamberlain, John Martyn; Hillier, John; Signoretta, Paola
2015-01-01
This article reports the results of research concerned with students' statistical anxiety and confidence to both complete and learn to complete statistical tasks. Data were collected at the beginning and end of a quantitative method statistics module. Students recognised the value of numeracy skills but felt they were not necessarily relevant for…
Andrews, David L
2015-01-01
Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov
Andrews, David L
2015-01-01
Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas
Andrews, David L
2015-01-01
Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry
DEFF Research Database (Denmark)
Flindt, Christian; Novotny, Tomás; Braggio, Alessandro
2010-01-01
Recent experimental progress has made it possible to detect in real-time single electrons tunneling through Coulomb blockade nanostructures, thereby allowing for precise measurements of the statistical distribution of the number of transferred charges, the so-called full counting statistics...... interactions. Our recursive method can treat systems with many states as well as non-Markovian dynamics. We illustrate our approach with three examples of current experimental relevance: bunching transport through a two-level quantum dot, transport through a nanoelectromechanical system with dynamical Franck...
International Nuclear Information System (INIS)
Sohier, Till
2011-01-01
This research thesis reports the first fundamental study of the dosimetry of charged and gamma radiations by measurement of fluorescence resolved in time at a nanosecond scale, in organic matter. This method allows an in-depth and real-time analysis of the deposited dose, while taking ionisation as well as excitation processes into account. The author describes mechanisms of interaction and deposition of energy on dense matter, reports the detailed study of the ion-matter interaction, and the interaction of secondary electrons produced within traces. He addresses mechanisms of energy relaxation, and more particularly the study or organic scintillators. Then, he presents the adopted experimental approach: experimental observation with a statistic reconstitution of the curve representing the intensity of the emitted fluorescence in time and with a nanosecond resolution by using a scintillating sensor for time correlated single photon counting (TCSPC). The next part reports the development of an experimental multi-modal platform for dosimetry by TCSPC aimed at the measurement of fluorescence decays under pulsed excitation (nanosecond pulsed ion beams) and continuous flow excitation (non pulsed beams and radioactive sources). Experimental results are then presented for fluorescence measurements, and compared with measurements obtained by using an ionization chamber under the same irradiation conditions: dose deposited by hellions and carbon ions within polyvinyl toluene and polyethylene terephthalate, use of scintillating optic fibers under gamma irradiation of Caesium 137 and Cobalt 60. A new experimental approach is finally presented to perform dosimetry measurements while experimentally ignoring luminescence produced by Cerenkov effect [fr
Material recognition with the Medipix photon counting colour X-ray system
Energy Technology Data Exchange (ETDEWEB)
Norlin, B. E-mail: borje.norlin@mh.se; Manuilskiy, A.; Nilsson, H.-E.; Froejdh, C
2004-09-21
An energy sensitive imaging system like Medipix1 has proved to be promising in distinguishing different materials in an X-ray image of an object. We propose a general method utilising X-ray energy information for material recognition. For objects where the thickness of the materials is unknown, a convenient material parameter to identify is K={alpha}{sub 1}/{alpha}{sub 2}, which is the ratio of the logarithms of the measured transmissions ln(t{sub 1})/ln(t{sub 2}). If a database of the parameter K for different materials and energies is created, this method can be used for material recognition independent of the thickness of the materials. Series of images of an object consisting of aluminium and silicon were taken with different energy thresholds. The X-ray absorption for silicon and aluminium is very similar for the range 40-60 keV and only differs for lower energies. The results show that it is possible to distinguish between aluminium and silicon on images achieved by Medipix1 using a standard dental source. By decreasing the spatial resolution a better contrast between the materials was achieved. The resolution of contrasts shown by the histograms was close to the limit of the system due to the statistical noise of the signal.
Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo
2017-03-01
Contrast-enhanced mammography has been used to demonstrate functional information about a breast tumor by injecting contrast agents. However, a conventional technique with a single exposure degrades the efficiency of tumor detection due to structure overlapping. Dual-energy techniques with energy-integrating detectors (EIDs) also cause an increase of radiation dose and an inaccuracy of material decomposition due to the limitations of EIDs. On the other hands, spectral mammography with photon-counting detectors (PCDs) is able to resolve the issues induced by the conventional technique and EIDs using their energy-discrimination capabilities. In this study, the contrast-enhanced spectral mammography based on a PCD was implemented by using a polychromatic dual-energy model, and the proposed technique was compared with the dual-energy technique with an EID in terms of quantitative accuracy and radiation dose. The results showed that the proposed technique improved the quantitative accuracy as well as reduced radiation dose comparing to the dual-energy technique with an EID. The quantitative accuracy of the contrast-enhanced spectral mammography based on a PCD was slightly improved as a function of radiation dose. Therefore, the contrast-enhanced spectral mammography based on a PCD is able to provide useful information for detecting breast tumors and improving diagnostic accuracy.
UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting
Energy Technology Data Exchange (ETDEWEB)
Sottile, G.; Russo, F.; Agnetta, G. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Belluso, M.; Billotta, S. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Biondo, B. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Bonanno, G. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Catalano, O.; Giarrusso, S. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Grillo, A. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Impiombato, D.; La Rosa, G.; Maccarone, M.C.; Mangano, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Marano, D. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy); Mineo, T.; Segreto, A.; Strazzeri, E. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, IASF-Pa/INAF, Palermo (Italy); Timpanaro, M.C. [Osservatorio Astrofisico di Catania, OACT/INAF, Catania (Italy)
2013-06-15
UVSiPM is a light detector designed to measure the intensity of electromagnetic radiation in the 320–900 nm wavelength range. It has been developed in the framework of the ASTRI project whose main goal is the design and construction of an end-to-end Small Size class Telescope prototype for the Cherenkov Telescope Array. The UVSiPM instrument is composed by a multipixel Silicon Photo-Multiplier detector unit coupled to an electronic chain working in single photon counting mode with 10 nanosecond double pulse resolution, and by a disk emulator interface card for computer connection. The detector unit of UVSiPM is of the same kind as the ones forming the camera at the focal plane of the ASTRI prototype. Eventually, the UVSiPM instrument can be equipped with a collimator to regulate its angular aperture. UVSiPM, with its peculiar characteristics, will permit to perform several measurements both in lab and on field, allowing the absolute calibration of the ASTRI prototype.
International Nuclear Information System (INIS)
Enqvist, Andreas
2008-03-01
One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible sample
Energy Technology Data Exchange (ETDEWEB)
Enqvist, Andreas
2008-03-15
One particular purpose of nuclear safeguards, in addition to accounting for known materials, is the detection, identifying and quantifying unknown material, to prevent accidental and clandestine transports and uses of nuclear materials. This can be achieved in a non-destructive way through the various physical and statistical properties of particle emission and detection from such materials. This thesis addresses some fundamental aspects of nuclear materials and the way they can be detected and quantified by such methods. Factorial moments or multiplicities have long been used within the safeguard area. These are low order moments of the underlying number distributions of emission and detection. One objective of the present work was to determine the full probability distribution and its dependence on the sample mass and the detection process. Derivation and analysis of the full probability distribution and its dependence on the above factors constitutes the first part of the thesis. Another possibility of identifying unknown samples lies in the information in the 'fingerprints' (pulse shape distribution) left by a detected neutron or photon. A study of the statistical properties of the interaction of the incoming radiation (neutrons and photons) with the detectors constitutes the second part of the thesis. The interaction between fast neutrons and organic scintillation detectors is derived, and compared to Monte Carlo simulations. An experimental approach is also addressed in which cross correlation measurements were made using liquid scintillation detectors. First the dependence of the pulse height distribution on the energy and collision number of an incoming neutron was derived analytically and compared to numerical simulations. Then an algorithm was elaborated which can discriminate neutron pulses from photon pulses. The resulting cross correlation graphs are analyzed and discussed whether they can be used in applications to distinguish possible
Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan, Liu; Yu-Hong, Liu; Jia-Min, Li; Xiao-Ying, Li
2016-07-01
We study the photon statistics of pulse-pumped four-wave mixing in fibers with weak coherent signal injection by measuring the intensity correlation functions of individual signal and idler fields. The experimental results show that the intensity correlation function of individual signal (idler) field decreases with the intensity of signal injection. After applying narrow band filter in signal (idler) band, the value of decreases from 1.9 ± 0.02 (1.9 ± 0.02) to 1.03 ± 0.02 (1.05 ± 0.02) when the intensity of signal injection varies from 0 to 120 photons/pulse. The results indicate that the photon statistics changes from Bose-Einstein distribution to Poisson distribution. We calculate the intensity correlation functions by using the multi-mode theory of four-wave mixing in fibers. The theoretical curves well fit the experimental results. Our investigation will be useful for mitigating the crosstalk between quantum and classical channels in a dense wavelength division multiplexing network. Project supported by the National Natural Science Foundation of China (Grant No. 11527808), the State Key Development Program for Basic Research of China (Grant No. 2014CB340103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110055), the Natural Science Foundation of Tianjin, China (Grant No. 14JCQNJC02300), the Program for Changjiang Scholars and Innovative Research Team in University, China, and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B07014).
Barber, Catherine; Azrael, Deborah; Cohen, Amy; Miller, Matthew; Thymes, Deonza; Wang, David Enze; Hemenway, David
2016-05-01
To evaluate the National Violent Death Reporting System (NVDRS) as a surveillance system for homicides by law enforcement officers. We assessed sensitivity and positive predictive value of the NVDRS "type of death" variable against our study count of homicides by police, which we derived from NVDRS coded and narrative data for states participating in NVDRS 2005 to 2012. We compared state counts of police homicides from NVDRS, Vital Statistics, and Federal Bureau of Investigation Supplementary Homicide Reports. We identified 1552 police homicides in the 16 states. Positive predictive value and sensitivity of the NVDRS "type of death" variable for police homicides were high (98% and 90%, respectively). Counts from Vital Statistics and Supplementary Homicide Reports were 58% and 48%, respectively, of our study total; gaps varied widely by state. The annual rate of police homicide (0.24/100,000) varied 5-fold by state and 8-fold by race/ethnicity. NVDRS provides more complete data on police homicides than do existing systems. Expanding NVDRS to all 50 states and making 2 improvements we identify will be an efficient way to provide the nation with more accurate, detailed data on homicides by law enforcement.
Energy Technology Data Exchange (ETDEWEB)
Krzyżanowska, A. [AGH-UST, Cracow; Deptuch, G. W. [Fermilab; Maj, P. [AGH-UST, Cracow; Gryboś, P. [AGH-UST, Cracow; Szczygieł, R. [AGH-UST, Cracow
2017-08-01
This paper presents the detailed characterization of a single photon counting chip, named CHASE Jr., built in a CMOS 40-nm process, operating with synchrotron radiation. The chip utilizes an on-chip implementation of the C8P1 algorithm. The algorithm eliminates the charge sharing related uncertainties, namely, the dependence of the number of registered photons on the discriminator’s threshold, set for monochromatic irradiation, and errors in the assignment of an event to a certain pixel. The article presents a short description of the algorithm as well as the architecture of the CHASE Jr., chip. The analog and digital functionalities, allowing for proper operation of the C8P1 algorithm are described, namely, an offset correction for two discriminators independently, two-stage gain correction, and different operation modes of the digital blocks. The results of tests of the C8P1 operation are presented for the chip bump bonded to a silicon sensor and exposed to the 3.5- μm -wide pencil beam of 8-keV photons of synchrotron radiation. It was studied how sensitive the algorithm performance is to the chip settings, as well as the uniformity of parameters of the analog front-end blocks. Presented results prove that the C8P1 algorithm enables counting all photons hitting the detector in between readout channels and retrieving the actual photon energy.
Assessment of noise in a digital image using the join-count statistic and the Moran test
International Nuclear Information System (INIS)
Kehshih Chuang; Huang, H.K.
1992-01-01
It is assumed that data bits of a pixel in digital images can be divided into signal and noise bits. The signal bits occupy the most significant part of the pixel. The signal parts of each pixel are correlated while the noise parts are uncorrelated. Two statistical methods, the Moran test and the join-count statistic, are used to examine the noise parts. Images from computerized tomography, magnetic resonance and computed radiography are used for the evaluation of the noise bits. A residual image is formed by subtracting the original image from its smoothed version. The noise level in the residual image is then identical to that in the original image. Both statistical tests are then performed on the bit planes of the residual image. Results show that most digital images contain only 8-9 bits of correlated information. Both methods are easy to implement and fast to perform. (author)
Optimization of statistical methods for HpGe gamma-ray spectrometer used in wide count rate ranges
Energy Technology Data Exchange (ETDEWEB)
Gervino, G., E-mail: gervino@to.infn.it [UNITO - Università di Torino, Dipartimento di Fisica, Turin (Italy); INFN - Istituto Nazionale di Fisica Nucleare, Sez. Torino, Turin (Italy); Mana, G. [INRIM - Istituto Nazionale di Ricerca Metrologica, Turin (Italy); Palmisano, C. [UNITO - Università di Torino, Dipartimento di Fisica, Turin (Italy); INRIM - Istituto Nazionale di Ricerca Metrologica, Turin (Italy)
2016-07-11
The need to perform γ-ray measurements with HpGe detectors is a common technique in many fields such as nuclear physics, radiochemistry, nuclear medicine and neutron activation analysis. The use of HpGe detectors is chosen in situations where isotope identification is needed because of their excellent resolution. Our challenge is to obtain the “best” spectroscopy data possible in every measurement situation. “Best” is a combination of statistical (number of counts) and spectral quality (peak, width and position) over a wide range of counting rates. In this framework, we applied Bayesian methods and the Ellipsoidal Nested Sampling (a multidimensional integration technique) to study the most likely distribution for the shape of HpGe spectra. In treating these experiments, the prior information suggests to model the likelihood function with a product of Poisson distributions. We present the efforts that have been done in order to optimize the statistical methods to HpGe detector outputs with the aim to evaluate to a better order of precision the detector efficiency, the absolute measured activity and the spectra background. Reaching a more precise knowledge of statistical and systematic uncertainties for the measured physical observables is the final goal of this research project.
International Nuclear Information System (INIS)
Habib, A.; Menouni, M.; Pangaud, P.; Morel, C.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.
2017-01-01
PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.
International Nuclear Information System (INIS)
Reza, S; Wong, W S; Fröjdh, E; Norlin, B; Fröjdh, C; Thungström, G; Thim, J
2012-01-01
The function of a dosimeter is to determine the absorbed dose of radiation, for those cases in which, generally, the particular type of radiation is already known. Lately, a number of applications have emerged in which all kinds of radiation are absorbed and are sorted by pattern recognition, such as the Medipix2 application in [1]. This form of smart dosimetry enables measurements where not only the total dosage is measured, but also the contributions of different types of radiation impacting upon the detector surface. Furthermore, the use of a photon counting system, where the energy deposition can be measured in each individual pixel, ensures measurements with a high degree of accuracy in relation to the pattern recognition. In this article a Timepix [2] detector system has been used in the creation of a smart dosimeter for Alpha, Beta and Gamma radiation. When a radioactive particle hits the detector surface it generates charge clusters and those impacting upon the detector surface are read out and image processing algorithms are then used to classify each charge cluster. The individual clusters are calculated and as a result, the dosage for each type of radiation is given. In some cases, several particles can impact in roughly the same place, forming overlapping clusters. In order to handle this problem, a cluster separation method has been added to the pattern recognition algorithm. When the clusters have been separated, they are classified by shape and sorted into the correct type of radiation. The algorithms and methods used in this dosimeter have been developed so as to be simple and computationally effective, in order to enable implementation on a portable device.
International Nuclear Information System (INIS)
Krzyżanowska, A.; Gryboś, P.; Szczygieł, R.; Maj, P.
2015-01-01
Designing a hybrid pixel detector readout electronics operating in a single photon counting mode is a very challenging process, where many main parameters are optimized in parallel (e.g. gain, noise, and threshold dispersion). Additional requirements for a smaller pixel size with extended functionality push designers to use new deep sub-micron technologies. Minimizing the channel size is possible, however, with a decreased pixel size, the charge sharing effect becomes a more important issue. To overcome this problem, we designed an integrated circuit prototype produced in CMOS 40 nm technology, which has an extended functionality of a single pixel. A C8P1 algorithm for the charge sharing effect compensation was implemented. In the algorithm's first stage the charge is rebuilt in a signal rebuilt hub fed by the CSA (charge sensitive amplifier) outputs from four neighbouring pixels. Then, the pixel with the biggest amount of charge is chosen, after a comparison with all the adjacent ones. In order to process the data in such a complicated way, a certain architecture of a single channel was proposed, which allows for: ⋅ processing the signal with the possibility of total charge reconstruction (by connecting with the adjacent pixels), ⋅ a comparison of certain pixel amplitude to its 8 neighbours, ⋅ the extended testability of each block inside the channel to measure CSA gain dispersion, shaper gain dispersion, threshold dispersion (including the simultaneous generation of different pulse amplitudes from different pixels), ⋅ trimming all the necessary blocks for proper operation. We present a solution for multistage gain and offset trimming implemented in the IC prototype. It allows for minimization of the total charge extraction errors, minimization of threshold dispersion in the pixel matrix and minimization of errors of comparison of certain pixel pulse amplitudes with all its neighbours. The detailed architecture of a single channel is presented
Bastianello, Alvise; Piroli, Lorenzo; Calabrese, Pasquale
2018-05-01
We derive exact analytic expressions for the n -body local correlations in the one-dimensional Bose gas with contact repulsive interactions (Lieb-Liniger model) in the thermodynamic limit. Our results are valid for arbitrary states of the model, including ground and thermal states, stationary states after a quantum quench, and nonequilibrium steady states arising in transport settings. Calculations for these states are explicitly presented and physical consequences are critically discussed. We also show that the n -body local correlations are directly related to the full counting statistics for the particle-number fluctuations in a short interval, for which we provide an explicit analytic result.
Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy
2016-12-23
We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.
van den Ende, Jan; van Oost, Elizabeth C.J.
2001-01-01
This article is a longitudinal analysis of the relation between gendered labour divisions and new data processing technologies at the Dutch Central Bureau of Statistics (CBS). Following social-constructivist and evolutionary economic approaches, the authors hold that the relation between technology
Chen, Weiting; Yi, Xi; Zhao, Huijuan; Gao, Feng
2014-09-01
We presented a novel dual-wavelength diffuse optical imaging system which can perform 2-D or 3-D imaging fast and high-sensitively for monitoring the dynamic change of optical parameters. A newly proposed lock-in photon-counting detection method was adopted for week optical signal collection, which brought in excellent property as well as simplified geometry. Fundamental principles of the lock-in photon-counting detection were elaborately demonstrated, and the feasibility was strictly verified by the linearity experiment. Systemic performance of the prototype set up was experimentally accessed, including stray light rejection and inherent interference. Results showed that the system possessed superior anti-interference capability (under 0.58% in darkroom) compared with traditional photon-counting detection, and the crosstalk between two wavelengths was lower than 2.28%. For comprehensive assessment, 2-D phantom experiments towards relatively large dimension model (diameter of 4cm) were conducted. Different absorption targets were imaged to investigate detection sensitivity. Reconstruction image under all conditions was exciting, with a desirable SNR. Study on image quality v.s. integration time put forward a new method for accessing higher SNR with the sacrifice of measuring speed. In summary, the newly developed system showed great potential in promoting detection sensitivity as well as measuring speed. This will make substantial progress in dynamically tracking the blood concentration distribution in many clinical areas, such as small animal disease modeling, human brain activity research and thick tissues (for example, breast) diagnosis.
Uhlemann, C.; Feix, M.; Codis, S.; Pichon, C.; Bernardeau, F.; L'Huillier, B.; Kim, J.; Hong, S. E.; Laigle, C.; Park, C.; Shin, J.; Pogosyan, D.
2018-02-01
Starting from a very accurate model for density-in-cells statistics of dark matter based on large deviation theory, a bias model for the tracer density in spheres is formulated. It adopts a mean bias relation based on a quadratic bias model to relate the log-densities of dark matter to those of mass-weighted dark haloes in real and redshift space. The validity of the parametrized bias model is established using a parametrization-independent extraction of the bias function. This average bias model is then combined with the dark matter PDF, neglecting any scatter around it: it nevertheless yields an excellent model for densities-in-cells statistics of mass tracers that is parametrized in terms of the underlying dark matter variance and three bias parameters. The procedure is validated on measurements of both the one- and two-point statistics of subhalo densities in the state-of-the-art Horizon Run 4 simulation showing excellent agreement for measured dark matter variance and bias parameters. Finally, it is demonstrated that this formalism allows for a joint estimation of the non-linear dark matter variance and the bias parameters using solely the statistics of subhaloes. Having verified that galaxy counts in hydrodynamical simulations sampled on a scale of 10 Mpc h-1 closely resemble those of subhaloes, this work provides important steps towards making theoretical predictions for density-in-cells statistics applicable to upcoming galaxy surveys like Euclid or WFIRST.
Subcritical Multiplicative Chaos for Regularized Counting Statistics from Random Matrix Theory
Lambert, Gaultier; Ostrovsky, Dmitry; Simm, Nick
2018-05-01
For an {N × N} Haar distributed random unitary matrix U N , we consider the random field defined by counting the number of eigenvalues of U N in a mesoscopic arc centered at the point u on the unit circle. We prove that after regularizing at a small scale {ɛN > 0}, the renormalized exponential of this field converges as N \\to ∞ to a Gaussian multiplicative chaos measure in the whole subcritical phase. We discuss implications of this result for obtaining a lower bound on the maximum of the field. We also show that the moments of the total mass converge to a Selberg-like integral and by taking a further limit as the size of the arc diverges, we establish part of the conjectures in Ostrovsky (Nonlinearity 29(2):426-464, 2016). By an analogous construction, we prove that the multiplicative chaos measure coming from the sine process has the same distribution, which strongly suggests that this limiting object should be universal. Our approach to the L 1-phase is based on a generalization of the construction in Berestycki (Electron Commun Probab 22(27):12, 2017) to random fields which are only asymptotically Gaussian. In particular, our method could have applications to other random fields coming from either random matrix theory or a different context.
DEFF Research Database (Denmark)
Christensen, Nana Louise; Tolbod, Lars Poulsen
PET scans. 3) Static and dynamic images from a set of 7 patients (BSA: 1.6-2.2 m2) referred for 82Rb cardiac PET was analyzed using a range of beta factors. Results were compared to the institution’s standard clinical practice reconstruction protocol. All scans were performed on GE DMI Digital......Aim: Q.Clear reconstruction is expected to improve detection of perfusion defects in cardiac PET due to the high degree of image convergence and effective noise suppression. However, 82Rb (T½=76s) possess a special problem, since count statistics vary significantly not only between patients...... statistics using a cardiac PET phantom as well as a selection of clinical patients referred for 82Rb cardiac PET. Methods: The study consistent of 3 parts: 1) A thorax-cardiac phantom was scanned for 10 minutes after injection of 1110 MBq 82Rb. Frames at 3 different times after infusion were reconstructed...
De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S
2013-11-01
In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.
Correcting the Count: Improving Vital Statistics Data Regarding Deaths Related to Obesity.
McCleskey, Brandi C; Davis, Gregory G; Dye, Daniel W
2017-11-15
Obesity can involve any organ system and compromise the overall health of an individual, including premature death. Despite the increased risk of death associated with being obese, obesity itself is infrequently indicated on the death certificate. We performed an audit of our records to identify how often "obesity" was listed on the death certificate to determine how our practices affected national mortality data collection regarding obesity-related mortality. During the span of nearly 25 years, 0.2% of deaths were attributed to or contributed by obesity. Over the course of 5 years, 96% of selected natural deaths were likely underreported as being associated with obesity. We present an algorithm for certifiers to use to determine whether obesity should be listed on the death certificate and guidelines for certifying cases in which this is appropriate. Use of this algorithm will improve vital statistics concerning the role of obesity in causing or contributing to death. © 2017 American Academy of Forensic Sciences.
International Nuclear Information System (INIS)
Jeong, Hyunseok; Nguyen Ba An
2006-01-01
We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors
Maloney, Chris; Lormeau, Jean Pierre; Dumas, Paul
2016-07-01
Many astronomical sensing applications operate in low-light conditions; for these applications every photon counts. Controlling mid-spatial frequencies and surface roughness on astronomical optics are critical for mitigating scattering effects such as flare and energy loss. By improving these two frequency regimes higher contrast images can be collected with improved efficiency. Classically, Magnetorheological Finishing (MRF) has offered an optical fabrication technique to correct low order errors as well has quilting/print-through errors left over in light-weighted optics from conventional polishing techniques. MRF is a deterministic, sub-aperture polishing process that has been used to improve figure on an ever expanding assortment of optical geometries, such as planos, spheres, on and off axis aspheres, primary mirrors and freeform optics. Precision optics are routinely manufactured by this technology with sizes ranging from 5-2,000mm in diameter. MRF can be used for form corrections; turning a sphere into an asphere or free form, but more commonly for figure corrections achieving figure errors as low as 1nm RMS while using careful metrology setups. Recent advancements in MRF technology have improved the polishing performance expected for astronomical optics in low, mid and high spatial frequency regimes. Deterministic figure correction with MRF is compatible with most materials, including some recent examples on Silicon Carbide and RSA905 Aluminum. MRF also has the ability to produce `perfectly-bad' compensating surfaces, which may be used to compensate for measured or modeled optical deformation from sources such as gravity or mounting. In addition, recent advances in MRF technology allow for corrections of mid-spatial wavelengths as small as 1mm simultaneously with form error correction. Efficient midspatial frequency corrections make use of optimized process conditions including raster polishing in combination with a small tool size. Furthermore, a novel MRF
International Nuclear Information System (INIS)
Murayama, Hideo; Tanaka, Eiichi; Toyama, Hinako.
1985-01-01
The weighted backprojection (WBP) method and the radial post-correction (RPC) method were compared with other several attenuation correction methods for single photon emission computed tomography by computer simulation. These methods are the pre-correction method with arithmetic means of opposing projections, the post-correction method with a correction matrix, and the inverse attenuated Randon transform method. Statistical mean square noise in a reconstructed image was formulated, and was displayed two-dimensionally for typical simulated phantoms. The noise image for the WBP method was dependent on several parameters, namely, size of an attenuating object, distribution of activity, the attenuation coefficient, and choise of the reconstruction index, k and position of the reconstruction origin. The noise image for the WBP method with k=0 was almost the same for the RPC method. It has been shown that position of the reconstruction origin has to be chosen appropriately in order to improve the noise properties of the reconstructed image for the WBP method as well as the RPC method. Comparision of the different attenuation correction methods accomplished by using both the reconstructed images and the statistical noise images with the same mathematical phantom and convolving function concluded that the WBP method and the RPC method were more amenable to any radioisotope distributions than the other methods, and had the advantage of flexibility to improve image noise of any local positions. (author)
2D Dark-Count-Rate Modeling of PureB Single-Photon Avalanche Diodes in a TCAD Environment
Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav; Witzigmann, Bernd; Osiński, Marek; Arakawa, Yasuhiko
2018-01-01
PureB silicon photodiodes have nm-shallow p+n junctions with which photons/electrons with penetration-depths of a few nanometer can be detected. PureB Single-Photon Avalanche Diodes (SPADs) were fabricated and analysed by 2D numerical modeling as an extension to TCAD software. The very shallow
Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben
2015-02-01
The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.
Curtis, Tyler E; Roeder, Ryan K
2017-10-01
Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in
Statistical properties of laser light scattering in Brownian medium
International Nuclear Information System (INIS)
Suwono; Santoso, Budi; Baiquni, A.
1983-01-01
Relationship between statistical properties of laser light scattering in Brownian medium and photon-counting distributions are described in detail. A coherence optical detection has been constructed and by using photon-counting technique the ensemble distribution of the scattered field within space and time coherence has been measured. Good agreement between theory and experiment is shown. (author)
International Nuclear Information System (INIS)
Kelly, L.A.; Trunk, J.G.; Polewski, K.; Sutherland, J.C.
1995-01-01
A new fluorescence spectrometer has been assembled at the U9B beamline of the National Synchrotron Light Source to allow simultaneous multiwavelength and time-resolved fluorescence detection, as well as spatial imaging of the sample fluorescence. The spectrometer employs monochromatized, tunable UV and visible excitation light from a synchrotron bending magnet and an imaging spectrograph equipped with a single-photon sensitive emission detector. The detector is comprised of microchannel plates in series, with a resistive anode for encoding the position of the photon-derived current. The centroid position of the photon-induced electron cascade is derived in a position analyzer from the four signals measured at the corners of the resistive anode. Spectral information is obtained by dispersing the fluorescence spectrum across one dimension of the detector photocathode. Timing information is obtained by monitoring the voltage divider circuit at the last MCP detector. The signal from the MCP is used as a ''start'' signal to perform a time-correlated single photon counting experiment. The analog signal representing the position, and hence wavelength, is digitized concomitantly with the start/stop time difference and stored in the two-dimensional histogramming memory of a multiparameter analyzer
International Nuclear Information System (INIS)
Fiorini, M.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Giachero, A.; Gotti, C.; Luppi, E.; Maino, M.; Malaguti, R.; Pessina, G.; Tomassetti, L.
2014-01-01
The CLARO-CMOS is a prototype ASIC that allows fast photon counting with 5 ns peaking time, a recovery time to baseline smaller than 25 ns, and a power consumption of less than 1 mW per channel. This chip is capable of single-photon counting with multi-anode photomultipliers and finds applications also in the read-out of silicon photomultipliers and microchannel plates. The prototype is realized in AMS 0.35 micron CMOS technology. In the LHCb RICH environment, assuming 10 years of operation at the nominal luminosity expected after the upgrade in Long Shutdown 2 (LS2), the ASIC must withstand a total fluence of about 6×10 12 1 MeV n eq /cm 2 and a total ionizing dose of 400 krad. A systematic evaluation of the radiation effects on the CLARO-CMOS performance is therefore crucial to ensure long term stability of the electronics front-end. The results of multi-step irradiation tests with neutrons and X-rays up to the fluence of 10 14 cm −2 and a dose of 4 Mrad, respectively, are presented, including measurement of single event effects during irradiation and chip performance evaluation before and after each irradiation step. - Highlights: • CLARO chip capable of single-photon counting with 5 ns peaking time. • Chip irradiated up to very high neutron, proton and X-rays fluences, as expected for upgraded LHCb RICH detectors. • No significant performance degradation is observed after irradiation
von Spiczak, Jochen; Mannil, Manoj; Peters, Benjamin; Hickethier, Tilman; Baer, Matthias; Henning, André; Schmidt, Bernhard; Flohr, Thomas; Manka, Robert; Maintz, David; Alkadhi, Hatem
2018-05-23
The aims of this study were to assess the value of a dedicated sharp convolution kernel for photon counting detector (PCD) computed tomography (CT) for coronary stent imaging and to evaluate to which extent iterative reconstructions can compensate for potential increases in image noise. For this in vitro study, a phantom simulating coronary artery stenting was prepared. Eighteen different coronary stents were expanded in plastic tubes of 3 mm diameter. Tubes were filled with diluted contrast agent, sealed, and immersed in oil calibrated to an attenuation of -100 HU simulating epicardial fat. The phantom was scanned in a modified second generation 128-slice dual-source CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Erlangen, Germany) equipped with both a conventional energy integrating detector and PCD. Image data were acquired using the PCD part of the scanner with 48 × 0.25 mm slices, a tube voltage of 100 kVp, and tube current-time product of 100 mAs. Images were reconstructed using a conventional convolution kernel for stent imaging with filtered back-projection (B46) and with sinogram-affirmed iterative reconstruction (SAFIRE) at level 3 (I463). For comparison, a dedicated sharp convolution kernel with filtered back-projection (D70) and SAFIRE level 3 (Q703) and level 5 (Q705) was used. The D70 and Q70 kernels were specifically designed for coronary stent imaging with PCD CT by optimizing the image modulation transfer function and the separation of contrast edges. Two independent, blinded readers evaluated subjective image quality (Likert scale 0-3, where 3 = excellent), in-stent diameter difference, in-stent attenuation difference, mathematically defined image sharpness, and noise of each reconstruction. Interreader reliability was calculated using Goodman and Kruskal's γ and intraclass correlation coefficients (ICCs). Differences in image quality were evaluated using a Wilcoxon signed-rank test. Differences in in-stent diameter difference, in
International Nuclear Information System (INIS)
Diziain, S.; Bijeon, J.-L.; Adam, P.-M.; Lamy de la Chapelle, M.; Thomas, B.; Deturche, R.; Royer, P.
2007-01-01
An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy
Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.
2013-01-01
In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).
Energy Technology Data Exchange (ETDEWEB)
Diziain, S. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Bijeon, J.-L. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)]. E-mail: bijeon@utt.fr; Adam, P.-M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Lamy de la Chapelle, M. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Thomas, B. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Deturche, R. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Royer, P. [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France)
2007-01-15
An apertureless scanning near-field optical microscope (ASNOM) in reflection backscattering configuration is designed to conduct spectroscopic experiments on opaque samples constituted of latex beads. The ASNOM proposed takes advantage of the depth-discrimination properties of confocal microscopes to efficiently extract the near-field optical signal. Given their importance in a spectroscopic experiment, we systematically compare the lock-in and synchronous photon counting detection methods. Some results of Rayleigh's scattering in the near field of the test samples are used to illustrate the possibilities of this technique for reflection backscattering spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Durst, Juergen
2008-07-22
First of all the physics processes generating the energy deposition in the sensor volume are investigated. The spatial resolution limits of photon interactions and the range of secondary electrons are discussed. The signatures in the energy deposition spectrum in pixelated detectors with direct conversion layers are described. The energy deposition for single events can be generated by the Monte-Carlo-Simulation package ROSI. The basic interactions of photons with matter are evaluated, resulting in the ability to use ROSI as a basis for the simulation of photon counting pixel detectors with direct conversion. In the context of this thesis a detector class is developed to simulate the response of hybrid photon counting pixel detectors using high-Z sensor materials like Cadmium Telluride (CdTe) or Gallium Arsenide (GaAs) in addition to silicon. To enable the realisation of such a simulation, the relevant physics processes and properties have to be implemented: processes in the sensor layer (provided by EGS4/LSCAT in ROSI), generation of charge carriers as electron hole pairs, diffusion and repulsion of charge carriers during drift and lifetime. Furthermore, several noise contributions of the electronics can be taken into account. The result is a detector class which allows the simulation of photon counting detectors. In this thesis the multiplicity framework is developed, including a formula to calculate or measure the zero frequency detective quantum efficiency (DQE). To enable the measurement of the multiplicity of detected events a cluster analysis program was developed. Random and systematic errors introduced by the cluster analysis are discussed. It is also shown that the cluster analysis method can be used to determine the averaged multiplicity with high accuracy. The method is applied to experimental data. As an example using the implemented detector class, the discriminator threshold dependency of the DQE and modulation transfer function is investigated in
There’s plenty of light at the bottom: statistics of photon penetration depth in random media
Martelli, Fabrizio; Binzoni, Tiziano; Pifferi, Antonio; Spinelli, Lorenzo; Farina, Andrea; Torricelli, Alessandro
2016-01-01
We propose a comprehensive statistical approach describing the penetration depth of light in random media. The presented theory exploits the concept of probability density function f(z|ρ, t) for the maximum depth reached by the photons that are eventually re-emitted from the surface of the medium at distance ρ and time t. Analytical formulas for f, for the mean maximum depth 〈zmax〉 and for the mean average depth reached by the detected photons at the surface of a diffusive slab are derived within the framework of the diffusion approximation to the radiative transfer equation, both in the time domain and the continuous wave domain. Validation of the theory by means of comparisons with Monte Carlo simulations is also presented. The results are of interest for many research fields such as biomedical optics, advanced microscopy and disordered photonics. PMID:27256988
Energy Technology Data Exchange (ETDEWEB)
Marchal, J [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)], E-mail: julien.marchal@diamond.ac.uk
2010-01-15
A detector cascaded model is proposed to describe charge-sharing effect in single-photon counting segmented silicon detectors. Linear system theory is applied to this cascaded model in order to derive detector performance parameters such as large-area gain, presampling Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE) as a function of energy detection threshold. This theory is used to model one-dimensional detectors (i.e. strip detectors) where X-ray-generated charge can be shared between two sampling elements, but the concepts developed in this article can be generalized to two-dimensional arrays of detecting elements (i.e. pixels detectors). The zero-frequency DQE derived from this model is consistent with expressions reported in the literature using a different method. The ability of this model to simulate the effect of charge sharing on image quality in the spatial frequency domain is demonstrated by applying it to a hypothetical one-dimensional single-photon counting detector illuminated with a typical mammography spectrum.
Energy Technology Data Exchange (ETDEWEB)
Geohegan, D.B.
1992-11-01
Fast intensified CCD photography and gated photon counting following KrF-laser irradiation of YBCO and BN targets reveals the first observations of very weak emission from slow-moving ejecta up to 2 cm from the target and times extending to {approx}1.5 ms. Time-of-flight velocities inferred from the emission measurements indicate velocities (v {approximately} (0.45--1.2) {times} 10{sup 4} cm s{sup {minus}1}) comparable to those measured for the large particles which often accompany the pulsed laser deposition process. Gated photon counting is employed to obtain temporally resolved spectra of this weak emission. The spectral shape is characteristic of blackbody emission, which shifts to longer wavelengths as the particles cool during flight in vacuum. Estimates of the temperature of the particles are made based on the emissivity of a perfect blackbody and range from 2200 K to 3200 K for both BN and YBCO when irradiated at ({Phi}{sub 248} = 3.5 J cm{sup {minus}2} and 1.5 J cm{sup {minus}2}, respectively. The temperature decrease of the particles in vacuum is compared to a radiative cooling model which gives estimates of the initial surface temperature and radii of the particles.
Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P
2009-04-01
The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.
International Nuclear Information System (INIS)
Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro
2017-01-01
The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra. - Highlights: • We propose a precise material identification method to be used as a photon counting system. • Beam hardening correction is important, even when the analysis is applied to the short energy regions in the X-ray spectrum. • Experiments using a single probe-type CdTe detector were performed, and Monte Carlo simulation was also carried out. • We described the applicability of our method for clinical diagnostic X-ray imaging in the near future.
Lukas, J M; Hawkins, D M; Kinsel, M L; Reneau, J K
2005-11-01
The objective of this study was to examine the relationship between monthly Dairy Herd Improvement (DHI) subclinical mastitis and new infection rate estimates and daily bulk tank somatic cell count (SCC) summarized by statistical process control tools. Dairy Herd Improvement Association test-day subclinical mastitis and new infection rate estimates along with daily or every other day bulk tank SCC data were collected for 12 mo of 2003 from 275 Upper Midwest dairy herds. Herds were divided into 5 herd production categories. A linear score [LNS = ln(BTSCC/100,000)/0.693147 + 3] was calculated for each individual bulk tank SCC. For both the raw SCC and the transformed data, the mean and sigma were calculated using the statistical quality control individual measurement and moving range chart procedure of Statistical Analysis System. One hundred eighty-three herds of the 275 herds from the study data set were then randomly selected and the raw (method 1) and transformed (method 2) bulk tank SCC mean and sigma were used to develop models for predicting subclinical mastitis and new infection rate estimates. Herd production category was also included in all models as 5 dummy variables. Models were validated by calculating estimates of subclinical mastitis and new infection rates for the remaining 92 herds and plotting them against observed values of each of the dependents. Only herd production category and bulk tank SCC mean were significant and remained in the final models. High R2 values (0.83 and 0.81 for methods 1 and 2, respectively) indicated a strong correlation between the bulk tank SCC and herd's subclinical mastitis prevalence. The standard errors of the estimate were 4.02 and 4.28% for methods 1 and 2, respectively, and decreased with increasing herd production. As a case study, Shewhart Individual Measurement Charts were plotted from the bulk tank SCC to identify shifts in mastitis incidence. Four of 5 charts examined signaled a change in bulk tank SCC before
Energy Technology Data Exchange (ETDEWEB)
Xue Haibin, E-mail: xhb98326110@163.co [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China); Nie, Y.-H., E-mail: nieyh@sxu.edu.c [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China); Li, Z.-J.; Liang, J.-Q. [Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006 (China)
2011-01-17
We study the full counting statistics (FCS) in a single-molecule magnet (SMM) with finite Coulomb interaction U. For finite U the FCS, differing from U{yields}{infinity}, shows a symmetric gate-voltage-dependence when the coupling strengths with two electrodes are interchanged, which can be observed experimentally just by reversing the bias-voltage. Moreover, we find that the effect of finite U on shot noise depends on the internal level structure of the SMM and the coupling asymmetry of the SMM with two electrodes as well. When the coupling of the SMM with the incident-electrode is stronger than that with the outgoing-electrode, the super-Poissonian shot noise in the sequential tunneling regime appears under relatively small gate-voltage and relatively large finite U, and dose not for U{yields}{infinity}; while it occurs at relatively large gate-voltage for the opposite coupling case. The formation mechanism of super-Poissonian shot noise can be qualitatively attributed to the competition between fast and slow transport channels.
International Nuclear Information System (INIS)
Xue Haibin; Nie, Y.-H.; Li, Z.-J.; Liang, J.-Q.
2011-01-01
We study the full counting statistics (FCS) in a single-molecule magnet (SMM) with finite Coulomb interaction U. For finite U the FCS, differing from U→∞, shows a symmetric gate-voltage-dependence when the coupling strengths with two electrodes are interchanged, which can be observed experimentally just by reversing the bias-voltage. Moreover, we find that the effect of finite U on shot noise depends on the internal level structure of the SMM and the coupling asymmetry of the SMM with two electrodes as well. When the coupling of the SMM with the incident-electrode is stronger than that with the outgoing-electrode, the super-Poissonian shot noise in the sequential tunneling regime appears under relatively small gate-voltage and relatively large finite U, and dose not for U→∞; while it occurs at relatively large gate-voltage for the opposite coupling case. The formation mechanism of super-Poissonian shot noise can be qualitatively attributed to the competition between fast and slow transport channels.
International Nuclear Information System (INIS)
Eastham, P. R.; Littlewood, P. B.
2006-01-01
We consider polariton condensation in a generalized Dicke model, describing a single-mode cavity containing quantum dots, and extend our previous mean-field theory to allow for finite-size fluctuations. Within the fluctuation-dominated regime the correlation functions differ from their (trivial) mean-field values. We argue that the low-energy physics of the model, which determines the photon statistics in this fluctuation-dominated crossover regime, is that of the (quantum) anharmonic oscillator. The photon statistics at the crossover are different in the high-temperature and low-temperature limits. When the temperature is high enough for quantum effects to be neglected we recover behavior similar to that of a conventional laser. At low enough temperatures, however, we find qualitatively different behavior due to quantum effects
High Flux Energy-Resolved Photon-Counting X-Ray Imaging Arrays with CdTe and CdZnTe for Clinical CT
International Nuclear Information System (INIS)
Barber, William C.; Hartsough, Neal E.; Gandhi, Thulasidharan; Iwanczyk, Jan S.; Wessel, Jan C.; Nygard, Einar; Malakhov, Nail; Wawrzyniak, Gregor; Dorholt, Ole; Danielsen, Roar
2013-06-01
We have fabricated fast room-temperature energy dispersive photon counting x-ray imaging arrays using pixellated cadmium zinc (CdTe) and cadmium zinc telluride (CdZnTe) semiconductors. We have also fabricated fast application specific integrated circuits (ASICs) with a two dimensional (2D) array of inputs for readout from the CdZnTe sensors. The new CdTe and CdZnTe sensors have a 2D array of pixels with a 0.5 mm pitch and can be tiled in 2D. The new 2D ASICs have four energy discriminators per pixel with a linear energy response across the entire dynamic range for clinical CT. The ASICs can also be tiled in 2D and are designed to fit within the active area of the 2D sensors. We have measured several important performance parameters including; an output count rate (OCR) in excess of 20 million counts per second per square mm, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor less than 20 keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdTE and CdZnTe sensors incurring very little additional capacitance. We present a comparison of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, and noise floor. (authors)
Wood, Tim J.; Moore, Craig S.; Saunderson, John R.; Beavis, Andrew W.
2018-01-01
Effective detective quantum efficiency (eDQE) describes the resolution and noise properties of an imaging system along with scatter and primary transmission, all measured under clinically appropriate conditions. Effective dose efficiency (eDE) is the eDQE normalised to mean glandular dose and has been proposed as a useful metric for the optimisation of clinical imaging systems. The aim of this study was to develop a methodology for measuring eDQE and eDE on a Philips microdose mammography (MDM) L30 photon counting scanning system, and to compare performance with two conventional flat panel systems. A custom made lead-blocker was manufactured to enable the accurate determination of dose measurements, and modulation transfer functions were determined free-in-air at heights of 2, 4 and 6 cm above the breast support platform. eDQE were calculated for a Philips MDM L30, Hologic Dimensions and Siemens Inspiration digital mammography system for 2, 4 and 6 cm thick poly(methyl methacrylate) (PMMA). The beam qualities (target/filter and kilovoltage) assessed were those selected by the automatic exposure control, and anti-scatter grids were used where available. Measurements of eDQE demonstrate significant differences in performance between the slit- and scan-directions for the photon counting imaging system. MTF has been shown to be the limiting factor in the scan-direction, which results in a rapid fall in eDQE at mid-to-high spatial frequencies. A comparison with two flat panel mammography systems demonstrates that this may limit image quality for small details, such as micro-calcifications, which correlates with a more conventional image quality assessment with the CDMAM phantom. eDE has shown the scanning photon counting system offers superior performance for low spatial frequencies, which will be important for the detection of large low contrast masses. Both eDQE and eDE are proposed as useful metrics that should enable optimisation of the Philips MDM L30.
Voet, van der H.; Goedhart, P.W.
2015-01-01
Publications on power analyses for field trial count data comparing transgenic and conventional crops have reported widely varying requirements for the replication needed to obtain statistical tests with adequate power. These studies are critically reviewed and complemented with a new simulation
Boosting up quantum key distribution by learning statistics of practical single-photon sources
International Nuclear Information System (INIS)
Adachi, Yoritoshi; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2009-01-01
We propose a simple quantum-key-distribution (QKD) scheme for practical single-photon sources (SPSs), which works even with a moderate suppression of the second-order correlation g (2) of the source. The scheme utilizes a passive preparation of a decoy state by monitoring a fraction of the signal via an additional beam splitter and a detector at the sender's side to monitor photon-number splitting attacks. We show that the achievable distance increases with the precision with which the sub-Poissonian tendency is confirmed in higher photon-number distribution of the source, rather than with actual suppression of the multiphoton emission events. We present an example of the secure key generation rate in the case of a poor SPS with g (2) =0.19, in which no secure key is produced with the conventional QKD scheme, and show that learning the photon-number distribution up to several numbers is sufficient for achieving almost the same distance as that of an ideal SPS.
A statistical approach for measuring dislocations in 2D photonic crystals
DEFF Research Database (Denmark)
Malureanu, Radu; Frandsen, Lars Hagedorn
2008-01-01
In this paper, a comparison between the placement accuracy of lattice atoms in photonic crystal structures fabricated with different lithographic techniques is made. Using atomic force microscopy measurements and self-developed algorithms for calculating the holes position within less than 0.01nm...
Photocount statistics of ultra-weak photon emission from germinating mung bean
Czech Academy of Sciences Publication Activity Database
Rafieiolhosseini, N.; Poplová, Michaela; Sasanpour, P.; Rafii-Tabar, H.; Alhossaini, M.R.; Cifra, Michal
2016-01-01
Roč. 162, September (2016), s. 50-55 ISSN 1011-1344 R&D Projects: GA ČR GA13-29294S Institutional support: RVO:67985882 Keywords : Mung bean * PMT photomultiplier tube * Abbreviations UPE ultra-weak photon emission Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.673, year: 2016
International Nuclear Information System (INIS)
Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung
2013-01-01
The purpose of this study was to improve the spatial resolution for the x-ray computed tomography (CT) imaging with a photon-counting detector using an irregular sampling method. The geometric shift-model of detector was proposed to produce the irregular sampling pattern and increase the number of samplings in the radial direction. The conventional micro-x-ray CT system and the novel system with the geometric shift-model of detector were simulated using analytic and Monte Carlo simulations. The projections were reconstructed using filtered back-projection (FBP), algebraic reconstruction technique (ART), and total variation (TV) minimization algorithms, and the reconstructed images were compared in terms of normalized root-mean-square error (NRMSE), full-width at half-maximum (FWHM), and coefficient-of-variation (COV). The results showed that the image quality improved in the novel system with the geometric shift-model of detector, and the NRMSE, FWHM, and COV were lower for the images reconstructed using the TV minimization technique in the novel system with the geometric shift-model of detector. The irregular sampling method produced by the geometric shift-model of detector can improve the spatial resolution and reduce artifacts and noise for reconstructed images obtained from an x-ray CT system with a photon-counting detector. -- Highlights: • We proposed a novel sampling method based on a spiral pattern to improve the spatial resolution. • The novel sampling method increased the number of samplings in the radial direction. • The spatial resolution was improved by the novel sampling method
International Nuclear Information System (INIS)
Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo
2017-01-01
Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.
International Nuclear Information System (INIS)
Burke, D.L.
1982-10-01
Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved
Energy Technology Data Exchange (ETDEWEB)
Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2014-10-15
Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.
International Nuclear Information System (INIS)
Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.
2014-01-01
Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds
DEFF Research Database (Denmark)
Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer
2009-01-01
The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...
Energy Technology Data Exchange (ETDEWEB)
Zheng, X; Cheng, Z; Deen, J; Peng, H [McMaster University, Hamilton, Ontario (Canada); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)
2016-06-15
Purposes: Photon counting CT is a new imaging technology that can provide tissue composition information such as calcium/iodine content quantification. Cadmium zinc telluride CZT is considered a good candidate the photon counting CT due to its relatively high atomic number and band gap. One potential challenge is the degradation of both spatial and energy resolution as the fine electrode pitch is deployed (<50 µm). We investigated the extent of charge sharing effect as functions of gap width, bias voltage and depth-of-interaction (DOI). Methods: The initial electron cloud size and diffusion process were modeled analytically. The valid range of charge sharing effect refers to the range over which both signals of adjacent electrodes are above the triggering threshold (10% of the amplitude of 60keV X-ray photons). The intensity ratios of output in three regions (I1/I2/I3: left pixel, gap area and right pixel) were calculated. With Gaussian white noises modeled (a SNR of 5 based upon the preliminary experiments), the sub-pitch resolution as a function of the spatial position in-between two pixels was studied. Results: The valid range of charge sharing increases linearly with depth-of-interaction (DOI) but decreases with gap width and bias voltage. For a 1.5mm thickness CZT detector (pitch: 50µm, bias: 400 V), the range increase from ∼90µm up to ∼110µm. Such an increase can be attributed to a longer travel distance and the associated electron cloud broadening. The achievable sub-pitch resolution is in the range of ∼10–30µm. Conclusion: The preliminary results demonstrate that sub-pixel spatial resolution can be achieved using the ratio of amplitudes of two neighboring pixels. Such ratio may also be used to correct charge loss and help improve energy resolution of a CZT detector. The impact of characteristic X-rays hitting adjacent pixels (i.e., multiple interaction) on charge sharing is currently being investigated.
Collective effects in nanolasers: Steady-state characteristics and photon statistics
DEFF Research Database (Denmark)
André, Emil Cortes; Protsenko, I. E.; Mørk, Jesper
2017-01-01
In the traditional rate equation-approach to nanolasers, the active material is modelled as a collection of independent emitters [1], but in recent years it has become increasingly clear that radiative coupling of the emitters in the cavity can significantly change the characteristics of a (nano)......-thermal values of the photon auto-correlation function g2(0), i.e. values larger than g2(0) = 2 associated with thermal radiation....
International Nuclear Information System (INIS)
Venkataraman, G.
1992-01-01
Treating radiation gas as a classical gas, Einstein derived Planck's law of radiation by considering the dynamic equilibrium between atoms and radiation. Dissatisfied with this treatment, S.N. Bose derived Plank's law by another original way. He treated the problem in generality: he counted how many cells were available for the photon gas in phase space and distributed the photons into these cells. In this manner of distribution, there were three radically new ideas: The indistinguishability of particles, the spin of the photon (with only two possible orientations) and the nonconservation of photon number. This gave rise to a new discipline of quantum statistical mechanics. Physics underlying Bose's discovery, its significance and its role in development of the concept of ideal gas, spin-statistics theorem and spin particles are described. The book has been written in a simple and direct language in an informal style aiming to stimulate the curiosity of a reader. (M.G.B.)
International Nuclear Information System (INIS)
Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen
2011-01-01
Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen ( 1 O 2 ) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1 O 2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1 O 2 luminescence counts, and the optimal threshold for our detection system is found to be about − 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1 O 2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique
Nathaniel E. Seavy; Suhel Quader; John D. Alexander; C. John Ralph
2005-01-01
The success of avian monitoring programs to effectively guide management decisions requires that studies be efficiently designed and data be properly analyzed. A complicating factor is that point count surveys often generate data with non-normal distributional properties. In this paper we review methods of dealing with deviations from normal assumptions, and we focus...
Problems and precision of the alpha scintillation radon counting system
International Nuclear Information System (INIS)
Lucas, H.F.; Markuu, F.
1985-01-01
Variations in efficiency as large as 3% have been found for radon scintillation counting systems in which the photomultiplier tubes are sensitive to the thermoluminescent photons emitted by the scintillator after exposure to light or for which the resolution has deteriorated. The additional standard deviation caused by counting a radon chamber on multiple counting systems has been evaluated and the effect, if present, did not exceed about 0.1%. The chambers have been calibrated for the measurement of radon in air, and the standard deviation was equal to statistical counting error combined with a systematic error of 1.1%. 3 references, 2 figures, 2 tables
Di Mauro, M.; Manconi, S.; Zechlin, H.-S.; Ajello, M.; Charles, E.; Donato, F.
2018-04-01
The Fermi Large Area Telescope (LAT) Collaboration has recently released the Third Catalog of Hard Fermi-LAT Sources (3FHL), which contains 1556 sources detected above 10 GeV with seven years of Pass 8 data. Building upon the 3FHL results, we investigate the flux distribution of sources at high Galactic latitudes (| b| > 20^\\circ ), which are mostly blazars. We use two complementary techniques: (1) a source-detection efficiency correction method and (2) an analysis of pixel photon count statistics with the one-point probability distribution function (1pPDF). With the first method, using realistic Monte Carlo simulations of the γ-ray sky, we calculate the efficiency of the LAT to detect point sources. This enables us to find the intrinsic source-count distribution at photon fluxes down to 7.5 × 10‑12 ph cm‑2 s‑1. With this method, we detect a flux break at (3.5 ± 0.4) × 10‑11 ph cm‑2 s‑1 with a significance of at least 5.4σ. The power-law indexes of the source-count distribution above and below the break are 2.09 ± 0.04 and 1.07 ± 0.27, respectively. This result is confirmed with the 1pPDF method, which has a sensitivity reach of ∼10‑11 ph cm‑2 s‑1. Integrating the derived source-count distribution above the sensitivity of our analysis, we find that (42 ± 8)% of the extragalactic γ-ray background originates from blazars.
Statistical analyses of the magnet data for the advanced photon source storage ring magnets
International Nuclear Information System (INIS)
Kim, S.H.; Carnegie, D.W.; Doose, C.; Hogrefe, R.; Kim, K.; Merl, R.
1995-01-01
The statistics of the measured magnetic data of 80 dipole, 400 quadrupole, and 280 sextupole magnets of conventional resistive designs for the APS storage ring is summarized. In order to accommodate the vacuum chamber, the curved dipole has a C-type cross section and the quadrupole and sextupole cross sections have 180 degrees and 120 degrees symmetries, respectively. The data statistics include the integrated main fields, multipole coefficients, magnetic and mechanical axes, and roll angles of the main fields. The average and rms values of the measured magnet data meet the storage ring requirements
DEFF Research Database (Denmark)
Denwood, M.J.; McKendrick, I.J.; Matthews, L.
Introduction. There is an urgent need for a method of analysing FECRT data that is computationally simple and statistically robust. A method for evaluating the statistical power of a proposed FECRT study would also greatly enhance the current guidelines. Methods. A novel statistical framework has...... been developed that evaluates observed FECRT data against two null hypotheses: (1) the observed efficacy is consistent with the expected efficacy, and (2) the observed efficacy is inferior to the expected efficacy. The method requires only four simple summary statistics of the observed data. Power...... that the notional type 1 error rate of the new statistical test is accurate. Power calculations demonstrate a power of only 65% with a sample size of 20 treatment and control animals, which increases to 69% with 40 control animals or 79% with 40 treatment animals. Discussion. The method proposed is simple...
Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo
2017-03-01
Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.
Energy Technology Data Exchange (ETDEWEB)
Butera, S., E-mail: S.Butera@sussex.ac.uk; Lioliou, G.; Barnett, A. M. [Semiconductor Materials and Device Laboratory, School of Engineering and Informatics, University of Sussex, Brighton BN1 9QT (United Kingdom); Krysa, A. B. [EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)
2016-07-14
Results characterising the performance of thin (2 μm i-layer) Al{sub 0.52}In{sub 0.48}P p{sup +}-i-n{sup +} mesa photodiodes for X-ray photon counting spectroscopy are reported at room temperature. Two 200 μm diameter and two 400 μm diameter Al{sub 0.52}In{sub 0.48}P p{sup +}-i-n{sup +} mesa photodiodes were studied. Dark current results as a function of applied reverse bias are shown; dark current densities <3 nA/cm{sup 2} were observed at 30 V (150 kV/cm) for all the devices analysed. Capacitance measurements as a function of applied reverse bias are also reported. X-ray spectra were collected using 10 μs shaping time, with the device illuminated by an {sup 55}Fe radioisotope X-ray source. Experimental results showed that the best energy resolution (FWHM) achieved at 5.9 keV was 930 eV for the 200 μm Al{sub 0.52}In{sub 0.48}P diameter devices, when reverse biased at 15 V. System noise analysis was also carried out, and the different noise contributions were computed.
Energy Technology Data Exchange (ETDEWEB)
Amendolia, S. R.; Bisogni, M. G.; Delogu, P.; Fantacci, M. E.; Paternoster, G.; Rosso, V.; Stefanini, A. [Str. Dip. di Matematica e Fisica dell' Universita di Sassari, Via Vienna 2, I-07100, Sassari (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy); Dip. di Fisica ' ' E. Fermi' ' , Universita di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy) and Istituto Nazionale di Fisica Nucleare INFN Sezione di Pisa, Largo B. Pontecorvo 3, I-56127, Pisa (Italy)
2009-04-15
The authors report on the imaging capabilities of a mammographic system demonstrator based on GaAs pixel detectors operating in single photon counting (SPC) mode. The system imaging performances have been assessed by means of the transfer functions: The modulation transfer function (MTF), the normalized noise power spectrum, and the detective quantum efficiency (DQE) have been measured following the guidelines of the IEC 62220-1-2 protocol. The transfer function analysis has shown the high spatial resolution capabilities of the GaAs detectors. The MTF calculated at the Nyquist frequency (2.94 cycles/mm) is indeed 60%. The DQE, measured with a standard mammographic beam setup (Mo/Mo, 28 kVp, with 4 mm Al added filter) and calculated at zero frequency, is 46%. Aiming to further improve the system's image quality, the authors investigate the DQE limiting factors and show that they are mainly related to system engineering. For example, the authors show that optimization of the image equalization procedure increases the DQE(0) up to 74%, which is better than the DQE(0) of most clinical mammographic systems. The authors show how the high detection efficiency of GaAs detectors and the noise discrimination associated with the SPC technology allow optimizing the image quality in mammography. In conclusion, the authors propose technological solutions to exploit to the utmost the potentiality of GaAs detectors coupled to SPC electronics.
Energy Technology Data Exchange (ETDEWEB)
Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)
2017-09-15
Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.
International Nuclear Information System (INIS)
Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.
2017-01-01
Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.
International Nuclear Information System (INIS)
Seo, Jungho; Kim, Jinyoung; Lim, Hyunwoo; Park, Jingoo; Lee, Songjun; Kim, Bonghoe; Jeon, Sungchae; Huh, Young
2010-01-01
A Si-PIN X-ray detector for digital x-ray imaging with single photon counting capability has been fabricated and characterized. It consists of an array of 32 x 32 pixels with an area of 80 x 80 μm 2 . An extrinsic gettering process was performed to reduce the leakage current by removing the impurities and defects from the X-ray detector's Si substrate. Multiple guard-rings (MGRs) and metal filed plates (MFPs) techniques were adopted to reduce the leakage current and to improve the breakdown performance. The simulation verified that the breakdown voltage was improved with the MGRs and that the leakage current was significantly reduced with the MFPs. The electrical properties, such as the leakage current and the breakdown voltage, of the Si-PIN X-ray detector were characterized. The extrinsic gettering process played a significant role in reducing the leakage current, and a leakage current lower than 60 pA could be achieved at 100 V dc .
Energy Technology Data Exchange (ETDEWEB)
Jiao, Yi, E-mail: jiaoyi@ihep.ac.cn; Duan, Zhe
2017-01-01
In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.
Coast Community Coll. District, Costa Mesa, CA.
This instructor's manual for workplace trainers contains the materials required to conduct a course in pre-statistical process control. The course consists of six lessons for workers and two lessons for supervisors that discuss the following: concepts taught in the six lessons; workers' progress in the individual lessons; and strategies for…
International Nuclear Information System (INIS)
Carton, Ann-Katherine; Ullberg, Christer; Lindman, Karin; Acciavatti, Raymond; Francke, Tom; Maidment, Andrew D. A.
2010-01-01
Purpose: Dual-energy (DE) iodine contrast-enhanced x-ray imaging of the breast has been shown to identify cancers that would otherwise be mammographically occult. In this article, theoretical modeling was performed to obtain optimally enhanced iodine images for a photon-counting digital breast tomosynthesis (DBT) system using a DE acquisition technique. Methods: In the system examined, the breast is scanned with a multislit prepatient collimator aligned with a multidetector camera. Each detector collects a projection image at a unique angle during the scan. Low-energy (LE) and high-energy (HE) projection images are acquired simultaneously in a single scan by covering alternate collimator slits with Sn and Cu filters, respectively. Sn filters ranging from 0.08 to 0.22 mm thickness and Cu filters from 0.11 to 0.27 mm thickness were investigated. A tube voltage of 49 kV was selected. Tomographic images, hereafter referred to as DBT images, were reconstructed using a shift-and-add algorithm. Iodine-enhanced DBT images were acquired by performing a weighted logarithmic subtraction of the HE and LE DBT images. The DE technique was evaluated for 20-80 mm thick breasts. Weighting factors, w t , that optimally cancel breast tissue were computed. Signal-difference-to-noise ratios (SDNRs) between iodine-enhanced and nonenhanced breast tissue normalized to the square root of the mean glandular dose (MGD) were computed as a function of the fraction of the MGD allocated to the HE images. Peak SDNR/√(MGD) and optimal dose allocations were identified. SDNR/√(MGD) and dose allocations were computed for several practical feasible system configurations (i.e., determined by the number of collimator slits covered by Sn and Cu). A practical system configuration and Sn-Cu filter pair that accounts for the trade-off between SDNR, tube-output, and MGD were selected. Results: w t depends on the Sn-Cu filter combination used, as well as on the breast thickness; to optimally cancel 0
Energy Technology Data Exchange (ETDEWEB)
Lee, S; Kang, S; Eom, J [Konyang University, Daejeon (Korea, Republic of)
2016-06-15
Purpose: Photon-counting detectors (PCDs) allow multi-energy X-ray imaging without additional exposures and spectral overlap. This capability results in the improvement of accuracy of material decomposition for dual-energy X-ray imaging and the reduction of radiation dose. In this study, the PCD-based contrast-enhanced dual-energy mammography (CEDM) was compared with the conventional CDEM in terms of radiation dose, image quality and accuracy of material decomposition. Methods: A dual-energy model was designed by using Beer-Lambert’s law and rational inverse fitting function for decomposing materials from a polychromatic X-ray source. A cadmium zinc telluride (CZT)-based PCD, which has five energy thresholds, and iodine solutions included in a 3D half-cylindrical phantom, which composed of 50% glandular and 50% adipose tissues, were simulated by using a Monte Carlo simulation tool. The low- and high-energy images were obtained in accordance with the clinical exposure conditions for the conventional CDEM. Energy bins of 20–33 and 34–50 keV were defined from X-ray energy spectra simulated at 50 kVp with different dose levels for implementing the PCD-based CDEM. The dual-energy mammographic techniques were compared by means of absorbed dose, noise property and normalized root-mean-square error (NRMSE). Results: Comparing to the conventional CEDM, the iodine solutions were clearly decomposed for the PCD-based CEDM. Although the radiation dose for the PCD-based CDEM was lower than that for the conventional CEDM, the PCD-based CDEM improved the noise property and accuracy of decomposition images. Conclusion: This study demonstrates that the PCD-based CDEM allows the quantitative material decomposition, and reduces radiation dose in comparison with the conventional CDEM. Therefore, the PCD-based CDEM is able to provide useful information for detecting breast tumor and enhancing diagnostic accuracy in mammography.
Energy Technology Data Exchange (ETDEWEB)
Ding, H; Zhou, B; Beidokhti, D; Molloi, S [University of California, Irvine, CA (United States)
2016-06-15
Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodine signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.
International Nuclear Information System (INIS)
Ding, H; Zhou, B; Beidokhti, D; Molloi, S
2016-01-01
Purpose: To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. Methods: Experimental phantom studies were performed on a spectral mammography system based on Si strip photon-counting detectors. Dual-energy images were acquired using 40 kVp and a splitting energy of 34 keV with 3 mm Al pre-filtration. The initial calibration was done with glandular and adipose tissue equivalent phantoms of uniform thicknesses and iodine disk phantoms of various concentrations. A secondary calibration was carried out using the iodine signal obtained from the dual-energy decomposed images and the known background phantom thicknesses and densities. The iodine signal quantification method was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known iodine concentrations of the disk phantoms to characterize the quantification accuracy. Results: There was good agreement between the iodine mass thicknesses measured using the proposed method and the known values. The root-mean-square (RMS) error was estimated to be 0.2 mg/cm2. The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However, the correlation slope and offset values were strongly dependent on the total breast thickness and density. Conclusion: The results of the current study suggest that iodine mass thickness can be accurately quantified with contrast-enhanced spectral mammography. The quantitative information can potentially improve the differentiation between benign and malignant legions. Grant funding from Philips Medical Systems.
International Nuclear Information System (INIS)
Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung
2014-01-01
Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.
Energy Technology Data Exchange (ETDEWEB)
Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung [Yonsei University, Wonju (Korea, Republic of)
2014-06-15
Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.
Hayslett, H T
1991-01-01
Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the
Tzonev, Svilen
2018-01-01
Current commercially available digital PCR (dPCR) systems and assays are capable of detecting individual target molecules with considerable reliability. As tests are developed and validated for use on clinical samples, the need to understand and develop robust statistical analysis routines increases. This chapter covers the fundamental processes and limitations of detecting and reporting on single molecule detection. We cover the basics of quantification of targets and sources of imprecision. We describe the basic test concepts: sensitivity, specificity, limit of blank, limit of detection, and limit of quantification in the context of dPCR. We provide basic guidelines how to determine those, how to choose and interpret the operating point, and what factors may influence overall test performance in practice.
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
International Nuclear Information System (INIS)
Nakagawa, Yuri; Matsumura, Kaname; Iwasa, Motoh; Kaito, Masahiko; Adachi, Yukihiko; Takeda, Kan
2004-01-01
The early diagnosis and treatment of cognitive impairment in cirrhotic patients is needed to improve the patients' daily living. In this study, alterations of regional cerebral blood flow (rCBF) were evaluated in cirrhotic patients using statistical parametric mapping (SPM). The relationships between rCBF and neuropsychological test, severity of disease and biochemical data were also assessed. 99m Tc-ethyl cysteinate dimer single photon emission computed tomography was performed in 20 patients with non-alcoholic liver cirrhosis without overt hepatic encephalopathy (HE) and in 20 age-matched healthy subjects. Neuropsychological tests were performed in 16 patients; of these 7 had minimal HE. Regional CBF images were also analyzed in these groups using SPM. On SPM analysis, cirrhotic patients showed regions of significant hypoperfusion in the superior and middle frontal gyri, and inferior parietal lobules compared with the control group. These areas included parts of the premotor and parietal associated areas of the cortex. Among the cirrhotic patients, those with minimal HE had regions of significant hypoperfusion in the cingulate gyri bilaterally as compared with those without minimal HE. Abnormal function in the above regions may account for the relatively selective neuropsychological deficits in the cognitive status of patients with cirrhosis. These findings may be important in the identification and management of cirrhotic patients with minimal HE. (author)
Marchal, J.; Horswell, I.; Willis, B.; Plackett, R.; Gimenez, E. N.; Spiers, J.; Ballard, D.; Booker, P.; Thompson, J. A.; Gibbons, P.; Burge, S. R.; Nicholls, T.; Lipp, J.; Tartoni, N.
2013-03-01
Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.
International Nuclear Information System (INIS)
Marchal, J; Horswell, I; Willis, B; Plackett, R; Gimenez, E N; Spiers, J; Thompson, J A; Gibbons, P; Tartoni, N; Ballard, D; Booker, P; Burge, S R; Nicholls, T; Lipp, J
2013-01-01
Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.
International Nuclear Information System (INIS)
Symons, R; Cork, T; Folio, L; Bluemke, D; Pourmorteza, A
2016-01-01
Purpose: To evaluate the feasibility of using a whole-body photon counting detector (PCD) CT scanner for low dose lung cancer screening compared to a conventional energy integrating detector (EID) system. Methods: Radiation dose-matched EID and PCD scans of the COPDGene 2 phantom and 2 human volunteers were acquired. Phantom images were acquired at different radiation dose levels (CTDIvol: 3.0, 1.5, and 0.75 mGy) and different tube voltages (120, 100, and 80 kVp), while human images were acquired at vendor recommended low-dose lung cancer screening settings. EID and PCD images were compared for quantitative Hounsfield unit accuracy, noise levels, and contrast-to-noise ratios (CNR) for detection of ground-glass nodules (GGNs) and emphysema. Results: The PCD Hounsfield unit accuracy was better for water at all scan parameters, and for lung, GGN and emphysema equivalent regions of interest (ROIs) at 1.5 and 0.75 mGy. PCD attenuation accuracy was more consistent for all scan parameters (all P<0.01), while Hounsfield units for lung, GGN and emphysema ROIs changed significantly for EID with decreasing dose (all P<0.001). PCD showed lower noise levels at the lowest dose setting at 120, 100 and 80 kVp (15.2±0.3 vs 15.8±0.2, P=0.03; 16.1±0.3 vs 18.0±0.4, P=0.003; and 16.1±0.3 vs 17.9±0.3, P=0.001, respectively), resulting in superior CNR for the detection of GGNs and emphysema at 100 and 80 kVp. Significantly lower PCD noise levels were confirmed in volunteer images. Conclusion: PCD provided better Hounsfield unit accuracy for lung, ground-glass, and emphysema-equivalent foams at 1.5 and 0.75 mGy with less variability than EID. Additionally, PCD showed less noise, and higher CNR at 0.75 mGy for both 100 and 80 kVp. PCD technology may help reduce radiation exposure in lung cancer screening while maintaining diagnostic quality.
Energy Technology Data Exchange (ETDEWEB)
Symons, R; Cork, T; Folio, L; Bluemke, D; Pourmorteza, A [National Institutes of Health Clinical Center, Bethesda, MD (United States)
2016-06-15
Purpose: To evaluate the feasibility of using a whole-body photon counting detector (PCD) CT scanner for low dose lung cancer screening compared to a conventional energy integrating detector (EID) system. Methods: Radiation dose-matched EID and PCD scans of the COPDGene 2 phantom and 2 human volunteers were acquired. Phantom images were acquired at different radiation dose levels (CTDIvol: 3.0, 1.5, and 0.75 mGy) and different tube voltages (120, 100, and 80 kVp), while human images were acquired at vendor recommended low-dose lung cancer screening settings. EID and PCD images were compared for quantitative Hounsfield unit accuracy, noise levels, and contrast-to-noise ratios (CNR) for detection of ground-glass nodules (GGNs) and emphysema. Results: The PCD Hounsfield unit accuracy was better for water at all scan parameters, and for lung, GGN and emphysema equivalent regions of interest (ROIs) at 1.5 and 0.75 mGy. PCD attenuation accuracy was more consistent for all scan parameters (all P<0.01), while Hounsfield units for lung, GGN and emphysema ROIs changed significantly for EID with decreasing dose (all P<0.001). PCD showed lower noise levels at the lowest dose setting at 120, 100 and 80 kVp (15.2±0.3 vs 15.8±0.2, P=0.03; 16.1±0.3 vs 18.0±0.4, P=0.003; and 16.1±0.3 vs 17.9±0.3, P=0.001, respectively), resulting in superior CNR for the detection of GGNs and emphysema at 100 and 80 kVp. Significantly lower PCD noise levels were confirmed in volunteer images. Conclusion: PCD provided better Hounsfield unit accuracy for lung, ground-glass, and emphysema-equivalent foams at 1.5 and 0.75 mGy with less variability than EID. Additionally, PCD showed less noise, and higher CNR at 0.75 mGy for both 100 and 80 kVp. PCD technology may help reduce radiation exposure in lung cancer screening while maintaining diagnostic quality.
Energy Technology Data Exchange (ETDEWEB)
Lee, Youngjin, E-mail: radioyoungj@gmail.com [Department of Radiological Science, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Amy Candy [Department of Mathematics and Statistics, McGill University (Canada); Kim, Hee-Joung [Department of Radiological Science and Radiation Convergence Engineering, Yonsei University (Korea, Republic of)
2016-09-11
Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on
International Nuclear Information System (INIS)
Heemskerk, Jan W T; Westra, Albert H; Linotte, Peter M; Ligtvoet, Kees M; Zbijewski, Wojciech; Beekman, Freek J
2007-01-01
Charge-coupled devices (CCDs) coupled to scintillation crystals can be used for high-resolution imaging with x-rays and gamma rays. When the CCD images can be read out fast enough, the energy and interaction position of individual gamma quanta can be estimated by a real-time image analysis of the scintillation light flashes ('photon-counting mode'). The electron-multiplying CCD (EMCCD) is well suited for fast read out, since even at high frame rates it has extremely low read-out noise. Back-illuminated (BI) EMCCDs have much higher quantum efficiency than front-illuminated (FI) EMCCDs. Here we compare the spatial and energy resolution of gamma cameras based on FI and BI EMCCDs. The CCDs are coupled to a 1000 μm thick columnar CsI(Tl) crystal for the purpose of Tc-99m and I-125 imaging. Intrinsic spatial resolutions of 44 μm for I-125 and 49 μm for Tc-99m were obtained when using a BI EMCCD, which is an improvement by a factor of about 1.2-2 over the FI EMCCD. Furthermore, in the energy spectrum of the BI EMCCD, the I-125 signal could be clearly separated from the background noise, which was not the case for the FI EMCCD. The energy resolution of a BI EMCCD for Tc-99m was estimated to be approximately 36 keV, full width at half maximum, at 141 keV. The excellent results for the BI EMCCD encouraged us to investigate the cooling requirements for our setup. We have found that for the BI EMCCD, the spatial and energy resolution, as well as image noise, remained stable over a range of temperatures from -50 deg. C to -15 deg. C. This is a significant advantage over the FI EMCCD, which suffered from loss of spatial and especially energy resolution at temperatures as low as -40 deg. C. We conclude that the use of BI EMCCDs may significantly improve the imaging capabilities and the cost efficiency of CCD-based high-resolution gamma cameras. (note)
International Nuclear Information System (INIS)
2005-01-01
For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees
Higher-order photon bunching in a semiconductor microcavity
DEFF Research Database (Denmark)
Assmann, M.; Veit, F.; Bayer, M.
2009-01-01
Quantum mechanically indistinguishable particles such as photons may show collective behavior. Therefore, an appropriate description of a light field must consider the properties of an assembly of photons instead of independent particles. We have studied multiphoton correlations up to fourth order...... in the single-mode emission of a semiconductor microcavity in the weak and strong coupling regimes. The counting statistics of single photons were recorded with picosecond time resolution, allowing quantitative measurement of the few-photon bunching inside light pulses. Our results show bunching behavior...
International Nuclear Information System (INIS)
2001-01-01
For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
1999-01-01
For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2003-01-01
For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products
International Nuclear Information System (INIS)
2004-01-01
For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
National Aeronautics and Space Administration — A radiation hard, single photon sensitive InGaAs avalanche photodiode (APD) receiver technology will be demonstrated useful for long range space based optical...
... by kidney disease) RBC destruction ( hemolysis ) due to transfusion, blood vessel injury, or other cause Leukemia Malnutrition Bone ... slight risk any time the skin is broken) Alternative Names Erythrocyte count; Red blood cell count; Anemia - RBC count Images Blood test ...
Lukishova, Svetlana G.
2017-08-01
At the Institute of Optics, University of Rochester (UR), we have adapted to the main challenge (the lack of space in the curriculum) by developing a series of modular 3-hour experiments and 20-min-demonstrations based on technical elective, 4-credit-hour laboratory course "Quantum Optics and Nano-Optics Laboratory" (OPT 253/OPT453/PHY434), that were incorporated into a number of required courses ranging from freshman to senior level. Rochester Monroe Community College (MCC) students also benefited from this facility that was supported by four NSF grants. MCC students carried out two 3-hour labs on photon quantum mechanics at the UR. Since 2006, total 566 students passed through the labs with lab reports submission (including 144 MCC students) and more than 250 students through lab demonstrations. In basic class OPT 253, four teaching labs were prepared on generation and characterization of entangled and single (antibunched) photons demonstrating the laws of quantum mechanics: (1) entanglement and Bell's inequalities, (2) single-photon interference (Young's double slit experiment and Mach-Zehnder interferometer), (3) confocal microscope imaging of single-emitter (colloidal nanocrystal quantum dots and NV-center nanodiamonds) fluorescence within photonic (liquid crystal photonic bandgap microcavities) or plasmonic (gold bowtie nanoantennas) nanostructures, (4) Hanbury Brown and Twiss setup. Fluorescence antibunching from nanoemitters. Students also carried out measurements of nanodiamond topography using atomic force microscopy and prepared photonic bandgap materials from cholesteric liquid crystals. Manuals, student reports, presentations, lecture materials and quizzes, as well as some NSF grants' reports are placed on a website http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ . In 2011 UR hosted 6 professors from different US universities in three-days training of these experiments participating in the Immersion Program of the Advanced
Tavala, Amir; Dovzhik, Krishna; Schicker, Klaus; Koschak, Alexandra; Zeilinger, Anton
Probing the visual system of human and animals at very low photon rate regime has recently attracted the quantum optics community. In an experiment on the isolated photoreceptor cells of Xenopus, the cell output signal was measured while stimulating it by pulses with sub-poisson distributed photons. The results showed single photon detection efficiency of 29 +/-4.7% [1]. Another behavioral experiment on human suggests a less detection capability at perception level with the chance of 0.516 +/-0.01 (i.e. slightly better than random guess) [2]. Although the species are different, both biological models and experimental observations with classical light stimuli expect that a fraction of single photon responses is filtered somewhere within the retina network and/or during the neural processes in the brain. In this ongoing experiment, we look for a quantitative answer to this question by measuring the output signals of the last neural layer of WT mouse retina using microelectrode arrays. We use a heralded downconversion single-photon source. We stimulate the retina directly since the eye lens (responsible for 20-50% of optical loss and scattering [2]) is being removed. Here, we demonstrate our first results that confirms the response to the sub-poisson distributied pulses. This project was supported by Austrian Academy of Sciences, SFB FoQuS F 4007-N23 funded by FWF and ERC QIT4QAD 227844 funded by EU Commission.
Energy Technology Data Exchange (ETDEWEB)
Korn, A.
2007-05-14
The Medipix detector is a hybrid photon counting X-ray detector, consisting of an ASIC and a semiconducting layer as the sensor. This makes the Medipix a direct converting detector. A special feature of the Medipix is a signal processing circuit in every single pixel. This circuit amplifies the input signal triggered by a photon and then transforms the pulse into a digital signal. This early stage digitalisation is one of the main advantages of the detector, since no dark currents are integrated into the signal. Furthermore, the energy information of each single photon is partly preserved. The high number of pixels lends the detector a wide dynamic range, starting from single counts up to a rate of 1010 photons per cm2 and second. Apart from the many advantages, there are still some problems with the detector. Some effects lead to a deterioration of the energy resolution as well as the spatial resolution. The main reasons for this are two effects occuring in the detector, charge sharing and backscattering inside the detector. This study investigates the influence of those two effects on both the energy and spatial resolution. The physical causes of these effects are delineated and their impact on the detector output is examined. In contrast to high energy photon detectors, the repulsion of the charge carriers drifting inside the sensor must not be neglected in a detailed model of X-ray detectors with an energy range of 5 keV-200 keV. For the simulation of the Medipix using Monte Carlo simulations, the software ROSI was augmented. The added features allow a detailed simulation of the charge distribution, using the relevant physical effects that alter the distribution width during the drift towards the sensor electrodes as well further influences on the detector output, including electronical noise, threshold noise or the geometry of the detector. The measured energy and spatial resolution of several different models of Medipix is compared to the simulated
Ji, Xu; Zhang, Ran; Chen, Guang-Hong; Li, Ke
2018-05-01
Inter-pixel communication and anti-charge sharing (ACS) technologies have been introduced to photon counting detector (PCD) systems to address the undesirable charge sharing problem. In addition to improving the energy resolution of PCD, ACS may also influence other aspects of PCD performance such as detector multiplicity (i.e. the number of pixels triggered by each interacted photon) and detective quantum efficiency (DQE). In this work, a theoretical model was developed to address how ACS impacts the multiplicity and zero-frequency DQE [DQE(0)] of PCD systems. The work focused on cadmium telluride (CdTe)-based PCD that often involves the generation and transport of K-fluorescence photons. Under the parallel cascaded systems analysis framework, the theory takes both photoelectric and scattering effects into account, and it also considers both the reabsorption and escape of photons. In a new theoretical treatment of ACS, it was considered as a modified version of the conventional single pixel (i.e. non-ACS) mode, but with reduced charge spreading distance and K-fluorescence travel distance. The proposed theoretical model does not require prior knowledge of the detailed ACS implementation method for each specific PCD, and its parameters can be experimentally determined using a radioisotope without invoking any Monte-Carlo simulation. After determining the model parameters, independent validation experiments were performed using a diagnostic x-ray tube and four different polychromatic beams (from 50 to 120 kVp). Both the theoretical and experimental results demonstrate that ACS increased the first and second moments of multiplicity for a majority of the x-ray energy and threshold levels tested, except when the threshold level was much lower than the x-ray energy level. However, ACS always improved DQE(0) at all energy and threshold levels tested.
Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... Many foods contain carbohydrates (carbs), including: Fruit and fruit juice Cereal, bread, pasta, and rice Milk and milk products, soy milk Beans, legumes, ...
Energy Technology Data Exchange (ETDEWEB)
Lakshmanan, M; Symons, R; Cork, T; Davies-Venn, C; Rice, K; Malayeri, A; Sandfort, V; Bluemke, D; Pourmorteza, A [National Institutes of Health Clinical Center, Bethesda, MD (United States)
2016-06-15
Purpose: To demonstrate the feasibility of in vivo three-material decomposition techniques using photon-counting CT (PCCT) with possible advantage of resolving arterial and venous flow of an organ simultaneously. Methods: Abdominal PCCT scans were acquired using a prototype whole-body PCCT with four energy thresholds (25/50/75/90keV) in a canine. Bismuth subsalicylate (60 mg) was administered orally one day prior to scanning. Immediately prior to CT scan, gadoteric acid (60 ml, Dotarem, Guerbet) was intravenously injected, followed in ten minutes by a 20mL injection of iodinated contrast (iopamidol 370 mg/mL, Bracco). Scans were acquired every ∼20 seconds, starting from the time of iodine injection. Linear material decomposition was performed using the least mean squares method to create concentration maps of iodine, gadolinium, and bismuth. The method was calibrated to vials with known concentrations of materials placed next to the animal. The accuracy of this method was tested on vials with known concentrations. Results: The material decomposition algorithm’s accuracy was confirmed to be within ±4mM in the test vials. In the animal, we could estimate the concentration of gadolinium in delayed-enhanced phase (10 minutes post-injection) in the abdomen. We could follow the wash-in and wash-out of iodine in arterial, venous, and excretory flow of the kidneys (20s, 80s, and 120s post-iodine injection) while gadolinium was present in the delayed-enhanced phase. Bismuth, which was used as a contrast agent for the gastro-intestinal tract, was easily differentiable from the other two contrast agents in the small intestine. Conclusion: This study shows the feasibility of using photon-counting CT with four energy thresholds to differentiate three k-edge contrast agents in vivo. This can potentially reduce radiation dose to patients by combining arterial and venous phases into a single acquisition.
International Nuclear Information System (INIS)
Fujii, H.
1977-01-01
High energy photon-proton scattering is expected to bring an important information on strong and electromagnetic interaction, and is discussed in this paper. When the ''mass'' of the photon is less than that of the lightest hadron, it is said ''the photon is almost real''. The photon energy is sufficiently high to check the energy dependence of the gamma-proton total cross section, even in the first stage of TRISTAN. The tagging system consists of four multi-wire proportional chambers (MWPC) and a lead glass Cerenkov counter. The energy of scattered electrons is determined with the Cerenkov counter. The equivalent-photon approximation is a useful method to obtain the counting rates. The estimation of the counting rate was made under the expected value of the total cross section. The estimated counting rate is strong enough for the experiment of the gamma-proton total cross section measurement. (Kato, T.)
Tsatrafyllis, N; Kominis, I K; Gonoskov, I A; Tzallas, P
2017-04-27
High-order harmonics in the extreme-ultraviolet spectral range, resulting from the strong-field laser-atom interaction, have been used in a broad range of fascinating applications in all states of matter. In the majority of these studies the harmonic generation process is described using semi-classical theories which treat the electromagnetic field of the driving laser pulse classically without taking into account its quantum nature. In addition, for the measurement of the generated harmonics, all the experiments require diagnostics in the extreme-ultraviolet spectral region. Here by treating the driving laser field quantum mechanically we reveal the quantum-optical nature of the high-order harmonic generation process by measuring the photon number distribution of the infrared light exiting the harmonic generation medium. It is found that the high-order harmonics are imprinted in the photon number distribution of the infrared light and can be recorded without the need of a spectrometer in the extreme-ultraviolet.
Nonclassicality of Photon-Added Displaced Thermal State via Quantum Phase-Space Distributions
Zhang, Ran; Meng, Xiang-Guo; Du, Chuan-Xun; Wang, Ji-Suo
2018-02-01
We introduce a new kind of nonclassical mixed state generated by adding arbitrary photons to a displaced thermal state, i.e., the photon-added displaced thermal state (PADTS), and obtain the normalization factor, which is simply related to two-variable Hermite polynomials. We also discuss the nonclassicality of the PADTS by considering quantum phase-space distributions. The results indicate that the value of the photon count statistics is maximum when the number of detected photons is equal to the number of added photons, and that the photon-added operation has a similar modulation effect with increasing displacement. Moreover, the negative volume of the Wigner function for the PADTS takes a maximal value for a specific photon-added number.
DEFF Research Database (Denmark)
Bregnballe, Thomas; Carss, David N; Lorentsen, Svein-Håkon
2013-01-01
This chapter focuses on Cormorant population counts for both summer (i.e. breeding) and winter (i.e. migration, winter roosts) seasons. It also explains differences in the data collected from undertaking ‘day’ versus ‘roost’ counts, gives some definitions of the term ‘numbers’, and presents two...
International Nuclear Information System (INIS)
Donath, T; Brandstetter, S; Commichau, S; Hofer, P; Lüthi, B; Schneebeli, M; Schulze-Briese, C; Cibik, L; Krumrey, M; Marggraf, S; Müller, P; Wernecke, J
2013-01-01
The PILATUS detector module was characterized in the PTB laboratory at BESSY II comparing modules with 320 μm thick and newly developed 450 μm and 1000 μm thick silicon sensors. Measurements were carried out over a wide energy range, in-vacuum from 1.75 keV to 8.8 keV and in air from 8 keV to 60 keV. The quantum efficiency (QE) was measured as a function of energy and the spatial resolution was measured at several photon energies both in terms of the modulation transfer function (MTF) from edge profile measurements and by directly measuring the point spread function (PSF) of a single pixel in a raster scan with a pinhole beam. Independent of the sensor thickness, the measured MTF and PSF come close to those for an ideal pixel detector with the pixel size of the PILATUS detector (172 × 172 μm 2 ). The measured QE follows the values predicted by calculation. Thicker sensors significantly enhance the QE of the PILATUS detectors for energies above 10 keV without impairing the spatial resolution and noise-free detection. In-vacuum operation of the PILATUS detector is possible at energies as low as 1.75 keV.
Donath, T.; Brandstetter, S.; Cibik, L.; Commichau, S.; Hofer, P.; Krumrey, M.; Lüthi, B.; Marggraf, S.; Müller, P.; Schneebeli, M.; Schulze-Briese, C.; Wernecke, J.
2013-03-01
The PILATUS detector module was characterized in the PTB laboratory at BESSY II comparing modules with 320 μm thick and newly developed 450 μm and 1000 μm thick silicon sensors. Measurements were carried out over a wide energy range, in-vacuum from 1.75 keV to 8.8 keV and in air from 8 keV to 60 keV. The quantum efficiency (QE) was measured as a function of energy and the spatial resolution was measured at several photon energies both in terms of the modulation transfer function (MTF) from edge profile measurements and by directly measuring the point spread function (PSF) of a single pixel in a raster scan with a pinhole beam. Independent of the sensor thickness, the measured MTF and PSF come close to those for an ideal pixel detector with the pixel size of the PILATUS detector (172 × 172 μm2). The measured QE follows the values predicted by calculation. Thicker sensors significantly enhance the QE of the PILATUS detectors for energies above 10 keV without impairing the spatial resolution and noise-free detection. In-vacuum operation of the PILATUS detector is possible at energies as low as 1.75 keV.
Tian, Guo-Liang; Li, Hui-Qiong
2017-08-01
Some existing confidence interval methods and hypothesis testing methods in the analysis of a contingency table with incomplete observations in both margins entirely depend on an underlying assumption that the sampling distribution of the observed counts is a product of independent multinomial/binomial distributions for complete and incomplete counts. However, it can be shown that this independency assumption is incorrect and can result in unreliable conclusions because of the under-estimation of the uncertainty. Therefore, the first objective of this paper is to derive the valid joint sampling distribution of the observed counts in a contingency table with incomplete observations in both margins. The second objective is to provide a new framework for analyzing incomplete contingency tables based on the derived joint sampling distribution of the observed counts by developing a Fisher scoring algorithm to calculate maximum likelihood estimates of parameters of interest, the bootstrap confidence interval methods, and the bootstrap testing hypothesis methods. We compare the differences between the valid sampling distribution and the sampling distribution under the independency assumption. Simulation studies showed that average/expected confidence-interval widths of parameters based on the sampling distribution under the independency assumption are shorter than those based on the new sampling distribution, yielding unrealistic results. A real data set is analyzed to illustrate the application of the new sampling distribution for incomplete contingency tables and the analysis results again confirm the conclusions obtained from the simulation studies.
International Nuclear Information System (INIS)
Ferraz, E.S.B.; Nascimento Filho, V.F.
1975-04-01
The use of two radiation peaks from the same gamma-emitting source in the calculation of the corresponding liquid counting rate in multi-element gamma spectrometry is discussed. It is shown that, in the determination of chlorine in Phaseolus vulgaris L. using neutronic activation analysis will result in an increase in accuracy of measurement of approximately 40%
Energy Technology Data Exchange (ETDEWEB)
Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.; Hage, B.; Lam, P. K.; Symul, T. [Centre for Quantum Computation and Communication Technology, Quantum Optics group, Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Lund, A. P. [Centre for Quantum Computation and Communication Technology, Centre for Quantum Dynamics, Griffith University, Nathan QLD 4111 (Australia); Ralph, T. C. [Centre for Quantum Computation and Communication Technology, Department of Physics, University of Queensland, St. Lucia QLD 4072 (Australia)
2011-11-15
The nonlinearity of a conditional photon-counting measurement can be used to ''de-Gaussify'' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.
International Nuclear Information System (INIS)
Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.; Hage, B.; Lam, P. K.; Symul, T.; Lund, A. P.; Ralph, T. C.
2011-01-01
The nonlinearity of a conditional photon-counting measurement can be used to ''de-Gaussify'' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.
Energy Technology Data Exchange (ETDEWEB)
Haye, Kleber
1964-03-20
After a recall of the history of the discovery and use of the photoemission effect, a presentation of the main characteristics of photomultipliers, a discussion of performance and weaknesses of electron multiplier-based cells, this research thesis addresses the study of low light flows. The author tried to determine whether it was possible, at ambient temperature, to reduce the influence of the thermoelectric effect. In order to do so, he made a detailed study of the amplitude spectrum of pulses of photoelectric origin. In order to analyse the influence of temperature of photomultiplier characteristics, he studied, with respect to temperature, the variation of the counting rate corresponding to darkness, the variation of pulse amplitude spectrum, and relative variations of the quantum efficiency for various wavelengths. In parallel with the study by counting, a study has been performed by using the well known mean current measurement [French] Si l'on veut etudier de faibles flux lumineux, c'est surtout l'effet thermoelectronique qui limite a temperature ambiante le domaine possible des mesures. Les electrons qui arrivent en effet a quitter la photocathode ou les dynodes donnent naissance a des groupes supplementaires d'electrons venant s'ajouter a ceux causes par effet photoelectrique. En utilisant une methode de mesure par comptage des groupes d'electrons, nous nous sommes attaches a determiner s'il etait possible a temperature ordinaire de reduire 1'influence de l'effet thermoelectronique. Pour cela, nous avons fait une etude detaillee du spectre d'amplitude des impulsions d'origine photoelectrique. Toutefois, la solution la plus efficace pour combattre l'effet thermoelectronique etant le refroidissement, nous avons essaye d'analyser l'influence de la temperature sur les caracteristiques du photomultiplicateur. Nous avons ainsi etudie en fonction de la temperature la variation du taux de comptage correspondant a l'obscurite, la variation du spectre d
Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.
2007-01-01
Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers.
Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan
2010-04-01
Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).
International Nuclear Information System (INIS)
Henning, Paul E; Geissinger, Peter
2012-01-01
Quasi-distributed optical fibre sensor arrays containing luminescent sensor molecules can be read out spatially resolved utilizing optical time-of-flight detection (OTOFD) methods, which employ pulsed laser interrogation of the luminosensors and time-resolved detection of the sensor signals. In many cases, sensing is based on a change in sensor luminescence intensity; however, sensing based on luminescence lifetime changes is preferable because it reduces the need for field calibration. Because in OTOFD detection is time-resolved, luminescence-lifetime information is already available through the signal pulses, although in practise applications were restricted to sensors with long luminescence lifetimes (hundreds of ns). To implement lifetime-based sensing in crossed-optical-fibre-sensor arrays for sensor molecules with lifetimes less than 10 ns, two time-domain methods, time-correlated single photon counting and stroboscopic detection, were used to record the pH-dependent emission of a fluorescein derivative covalently attached to a highly-porous polymer. A two-term nonexponential decay function yielded both a good fit for experimental lifetime data during reconvolution and a pH response that matches Henderson–Hasselbalch behaviour, yielding a sensor accuracy of 0.02 pH units. Moreover, strong agreement was obtained for the two lifetime determination methods and with intensity-based measurements taken previously. (paper)
International Nuclear Information System (INIS)
Gal, O.; Dessus, B.; Laine, F.; Jean, F.; Leveque, C.
2001-01-01
The CARTOGAM portable gamma camera, which is particularly compact (15 Kg in mass, including the shield, 8 cm in diameter), has been developed for gamma imaging applications in nuclear facilities. The detector is composed of a CsI(Tl) scintillator, an image intensifier and a CCD matrix. The ordinary mode for image acquisition with such a detector is an integrating mode: signal accumulated in the CCD pixels is read at the end of the exposure time, or even periodically with a summation in a PC memory. The main sources of noise in that mode are the photo-cathode thermo-electronic emission and the CCD leaking pixels. We have developed an alternative acquisition mode based on a morphological processing of the elementary images at the video frequency (25 images/s). In that mode, gamma events are individually identified and the noise due to isolated thermo-electrons or white pixels is (almost) completely removed, thus leading to an important gain in camera sensitivity. We present here experimental results obtained in this photon counting mode concerning SNR, spatial resolution, saturation limit in dose rate, sensitivity and comparison with the integrating mode. We present also a short analysis of the problem of measuring the SNR in practice in such images. (author)
International Nuclear Information System (INIS)
Grifols, J.A.; Martinez, M.; Sola, J.
1985-10-01
We give a detailed analysis of the reaction e + e - ->γν tilde ν tilde. If the sneutrino is the lightest supersymmetric particle, detecting a single photon plus missing energy provides an excellent tool for either discover new physics or for setting interesting bounds on the masses of the sneutrino and the wino. (orig.)
International Nuclear Information System (INIS)
Gilman, F.J.
1980-01-01
A brief summary of the present status of photon-photon interactions is presented. Stress is placed on the use of two-photon collisions to test present ideas on the quark constituents of hadrons and on the theory of strong interactions
Teater, Barbra; Roy, Jessica; Carpenter, John; Forrester, Donald; Devaney, John; Scourfield, Jonathan
2017-01-01
Students in the United Kingdom (UK) are found to lack knowledge and skills in quantitative research methods. To address this gap, a quantitative research method and statistical analysis curriculum comprising 10 individual lessons was developed, piloted, and evaluated at two universities The evaluation found that BSW students' (N = 81)…
International Nuclear Information System (INIS)
Matsumoto, Haruya; Kaya, Nobuyuki; Yuasa, Kazuhiro; Hayashi, Tomoaki
1976-01-01
Electron counting method has been devised and experimented for the purpose of measuring electron temperature and density, the most fundamental quantities to represent plasma conditions. Electron counting is a method to count the electrons in plasma directly by equipping a probe with the secondary electron multiplier. It has three advantages of adjustable sensitivity, high sensitivity of the secondary electron multiplier, and directional property. Sensitivity adjustment is performed by changing the size of collecting hole (pin hole) on the incident front of the multiplier. The probe is usable as a direct reading thermometer of electron temperature because it requires to collect very small amount of electrons, thus it doesn't disturb the surrounding plasma, and the narrow sweep width of the probe voltage is enough. Therefore it can measure anisotropy more sensitively than a Langmuir probe, and it can be used for very low density plasma. Though many problems remain on anisotropy, computer simulation has been carried out. Also it is planned to provide a Helmholtz coil in the vacuum chamber to eliminate the effect of earth magnetic field. In practical experiments, the measurement with a Langmuir probe and an emission probe mounted to the movable structure, the comparison with the results obtained in reverse magnetic field by using a Helmholtz coil, and the measurement of ionic sound wave are scheduled. (Wakatsuki, Y.)
International Nuclear Information System (INIS)
Povoski, Stephen P; Chapman, Gregg J; Murrey, Douglas A; Lee, Robert; Martin, Edward W; Hall, Nathan C
2013-01-01
Intraoperative detection of 18 F-FDG-avid tissue sites during 18 F-FDG-directed surgery can be very challenging when utilizing gamma detection probes that rely on a fixed target-to-background (T/B) ratio (ratiometric threshold) for determination of probe positivity. The purpose of our study was to evaluate the counting efficiency and the success rate of in situ intraoperative detection of 18 F-FDG-avid tissue sites (using the three-sigma statistical threshold criteria method and the ratiometric threshold criteria method) for three different gamma detection probe systems. Of 58 patients undergoing 18 F-FDG-directed surgery for known or suspected malignancy using gamma detection probes, we identified nine 18 F-FDG-avid tissue sites (from amongst seven patients) that were seen on same-day preoperative diagnostic PET/CT imaging, and for which each 18 F-FDG-avid tissue site underwent attempted in situ intraoperative detection concurrently using three gamma detection probe systems (K-alpha probe, and two commercially-available PET-probe systems), and then were subsequently surgical excised. The mean relative probe counting efficiency ratio was 6.9 (± 4.4, range 2.2–15.4) for the K-alpha probe, as compared to 1.5 (± 0.3, range 1.0–2.1) and 1.0 (± 0, range 1.0–1.0), respectively, for two commercially-available PET-probe systems (P < 0.001). Successful in situ intraoperative detection of 18 F-FDG-avid tissue sites was more frequently accomplished with each of the three gamma detection probes tested by using the three-sigma statistical threshold criteria method than by using the ratiometric threshold criteria method, specifically with the three-sigma statistical threshold criteria method being significantly better than the ratiometric threshold criteria method for determining probe positivity for the K-alpha probe (P = 0.05). Our results suggest that the improved probe counting efficiency of the K-alpha probe design used in conjunction with the three
Povoski, Stephen P; Chapman, Gregg J; Murrey, Douglas A; Lee, Robert; Martin, Edward W; Hall, Nathan C
2013-03-04
Intraoperative detection of (18)F-FDG-avid tissue sites during 18F-FDG-directed surgery can be very challenging when utilizing gamma detection probes that rely on a fixed target-to-background (T/B) ratio (ratiometric threshold) for determination of probe positivity. The purpose of our study was to evaluate the counting efficiency and the success rate of in situ intraoperative detection of (18)F-FDG-avid tissue sites (using the three-sigma statistical threshold criteria method and the ratiometric threshold criteria method) for three different gamma detection probe systems. Of 58 patients undergoing (18)F-FDG-directed surgery for known or suspected malignancy using gamma detection probes, we identified nine (18)F-FDG-avid tissue sites (from amongst seven patients) that were seen on same-day preoperative diagnostic PET/CT imaging, and for which each (18)F-FDG-avid tissue site underwent attempted in situ intraoperative detection concurrently using three gamma detection probe systems (K-alpha probe, and two commercially-available PET-probe systems), and then were subsequently surgical excised. The mean relative probe counting efficiency ratio was 6.9 (± 4.4, range 2.2-15.4) for the K-alpha probe, as compared to 1.5 (± 0.3, range 1.0-2.1) and 1.0 (± 0, range 1.0-1.0), respectively, for two commercially-available PET-probe systems (P < 0.001). Successful in situ intraoperative detection of 18F-FDG-avid tissue sites was more frequently accomplished with each of the three gamma detection probes tested by using the three-sigma statistical threshold criteria method than by using the ratiometric threshold criteria method, specifically with the three-sigma statistical threshold criteria method being significantly better than the ratiometric threshold criteria method for determining probe positivity for the K-alpha probe (P = 0.05). Our results suggest that the improved probe counting efficiency of the K-alpha probe design used in conjunction with the three-sigma statistical
International Nuclear Information System (INIS)
Haissinski, J.
1986-06-01
The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2
International Nuclear Information System (INIS)
Sessler, A.M.
1995-04-01
Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy
Decoy-state quantum key distribution with both source errors and statistical fluctuations
International Nuclear Information System (INIS)
Wang Xiangbin; Yang Lin; Peng Chengzhi; Pan Jianwei
2009-01-01
We show how to calculate the fraction of single-photon counts of the 3-intensity decoy-state quantum cryptography faithfully with both statistical fluctuations and source errors. Our results rely only on the bound values of a few parameters of the states of pulses.
Medicaid Drug Claims Statistics
U.S. Department of Health & Human Services — The Medicaid Drug Claims Statistics CD is a useful tool that conveniently breaks up Medicaid claim counts and separates them by quarter and includes an annual count.
Larkin, J D; Publicover, N G; Sutko, J L
2011-01-01
In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution. Photon event distribution sampling is superior to pixel-based image formation in recognizing the presence of structured (non-random) photon distributions at low photon counts and permits use of non-raster scanning patterns. A photon event distribution sampling based method for localizing single particles derived from a multi-variate normal distribution is more precise than statistical (Gaussian) fitting to pixel-based images. Using the multi-variate normal distribution method, non-raster scanning and a typical confocal microscope, localizations with 8 nm precision were achieved at 10 ms sampling rates with acquisition of ~200 photons per frame. Single nanometre precision was obtained with a greater number of photons per frame. In summary, photon event distribution sampling provides an efficient way to form images when low numbers of photons are involved and permits particle tracking with confocal point-scanning microscopes with nanometre precision deep within specimens. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.
Directory of Open Access Journals (Sweden)
Alfredo Tomasetta
2010-06-01
Full Text Available Timothy Williamson supports the thesis that every possible entity necessarily exists and so he needs to explain how a possible son of Wittgenstein’s, for example, exists in our world:he exists as a merely possible object (MPO, a pure locus of potential. Williamson presents a short argument for the existence of MPOs: how many knives can be made by fitting together two blades and two handles? Four: at the most two are concrete objects, the others being merely possible knives and merely possible objects. This paper defends the idea that one can avoid reference and ontological commitment to MPOs. My proposal is that MPOs can be dispensed with by using the notion of rules of knife-making. I first present a solution according to which we count lists of instructions - selected by the rules - describing physical combinations between components. This account, however, has its own difficulties and I eventually suggest that one can find a way out by admitting possible worlds, entities which are more commonly accepted - at least by philosophers - than MPOs. I maintain that, in answering Williamson’s questions, we count classes of physically possible worlds in which the same instance of a general rule is applied.
Directory of Open Access Journals (Sweden)
Adrion Christine
2012-09-01
Full Text Available Abstract Background A statistical analysis plan (SAP is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. Methods We focus on generalized linear mixed models (GLMMs for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs. The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC or probability integral transform (PIT, and by using proper scoring rules (e.g. the logarithmic score. Results The instruments under study
Adrion, Christine; Mansmann, Ulrich
2012-09-10
A statistical analysis plan (SAP) is a critical link between how a clinical trial is conducted and the clinical study report. To secure objective study results, regulatory bodies expect that the SAP will meet requirements in pre-specifying inferential analyses and other important statistical techniques. To write a good SAP for model-based sensitivity and ancillary analyses involves non-trivial decisions on and justification of many aspects of the chosen setting. In particular, trials with longitudinal count data as primary endpoints pose challenges for model choice and model validation. In the random effects setting, frequentist strategies for model assessment and model diagnosis are complex and not easily implemented and have several limitations. Therefore, it is of interest to explore Bayesian alternatives which provide the needed decision support to finalize a SAP. We focus on generalized linear mixed models (GLMMs) for the analysis of longitudinal count data. A series of distributions with over- and under-dispersion is considered. Additionally, the structure of the variance components is modified. We perform a simulation study to investigate the discriminatory power of Bayesian tools for model criticism in different scenarios derived from the model setting. We apply the findings to the data from an open clinical trial on vertigo attacks. These data are seen as pilot data for an ongoing phase III trial. To fit GLMMs we use a novel Bayesian computational approach based on integrated nested Laplace approximations (INLAs). The INLA methodology enables the direct computation of leave-one-out predictive distributions. These distributions are crucial for Bayesian model assessment. We evaluate competing GLMMs for longitudinal count data according to the deviance information criterion (DIC) or probability integral transform (PIT), and by using proper scoring rules (e.g. the logarithmic score). The instruments under study provide excellent tools for preparing decisions
Nanodiamond Emitters of Single Photons
Directory of Open Access Journals (Sweden)
Vlasov I.I.
2015-01-01
Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.
Fetterman, J Gregor; Killeen, P Richard
2010-09-01
Pigeons pecked on three keys, responses to one of which could be reinforced after a few pecks, to a second key after a somewhat larger number of pecks, and to a third key after the maximum pecking requirement. The values of the pecking requirements and the proportion of trials ending with reinforcement were varied. Transits among the keys were an orderly function of peck number, and showed approximately proportional changes with changes in the pecking requirements, consistent with Weber's law. Standard deviations of the switch points between successive keys increased more slowly within a condition than across conditions. Changes in reinforcement probability produced changes in the location of the psychometric functions that were consistent with models of timing. Analyses of the number of pecks emitted and the duration of the pecking sequences demonstrated that peck number was the primary determinant of choice, but that passage of time also played some role. We capture the basic results with a standard model of counting, which we qualify to account for the secondary experiments. Copyright 2010 Elsevier B.V. All rights reserved.
1991-11-27
The data of the 1991 census indicated that the population count of Brazil fell short of a former estimate by 3 million people. The population reached 150 million people with an annual increase of 2%, while projections in the previous decade expected an increase of 2.48% to 153 million people. This reduction indicates more widespread use of family planning (FP) and control of fertility among families of lower social status as more information is being provided to them. However, the Ministry of Health ordered an investigation of foreign family planning organizations because it was suspected that women were forced to undergo tubal ligation during vaccination campaigns. A strange alliance of left wing politicians and the Roman Catholic Church alleges a conspiracy of international FP organizations receiving foreign funds. The FP strategies of Bemfam and Pro-Pater offer women who have little alternative the opportunity to undergo tubal ligation or to receive oral contraceptives to control fertility. The ongoing government program of distributing booklets on FP is feeble and is not backed up by an education campaign. Charges of foreign interference are leveled while the government hypocritically ignores the grave problem of 4 million abortions a year. The population is expected to continue to grow until the year 2040 and then to stabilize at a low growth rate of .4%. In 1980, the number of children per woman was 4.4 whereas the 1991 census figures indicate this has dropped to 3.5. The excess population is associated with poverty and a forsaken caste in the interior. The population actually has decreased in the interior and in cities with 15,000 people. The phenomenon of the drop of fertility associated with rural exodus is contrasted with cities and villages where the population is 20% less than expected.
Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector
Huntington, Andrew
2013-01-01
The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.
Blocking Losses With a Photon Counter
Moision, Burce E.; Piazzolla, Sabino
2012-01-01
It was not known how to assess accurately losses in a communications link due to photodetector blocking, a phenomenon wherein a detector is rendered inactive for a short time after the detection of a photon. When used to detect a communications signal, blocking leads to losses relative to an ideal detector, which may be measured as a reduction in the communications rate for a given received signal power, or an increase in the signal power required to support the same communications rate. This work involved characterizing blocking losses for single detectors and arrays of detectors. Blocking may be mitigated by spreading the signal intensity over an array of detectors, reducing the count rate on any one detector. A simple approximation was made to the blocking loss as a function of the probability that a detector is unblocked at a given time, essentially treating the blocking probability as a scaling of the detection efficiency. An exact statistical characterization was derived for a single detector, and an approximation for multiple detectors. This allowed derivation of several accurate approximations to the loss. Methods were also derived to account for a rise time in recovery, and non-uniform illumination due to diffraction and atmospheric distortion of the phase front. It was assumed that the communications signal is intensity modulated and received by an array of photon-counting photodetectors. For the purpose of this analysis, it was assumed that the detectors are ideal, in that they produce a signal that allows one to reproduce the arrival times of electrons, produced either as photoelectrons or from dark noise, exactly. For single detectors, the performance of the maximum-likelihood (ML) receiver in blocking is illustrated, as well as a maximum-count (MC) receiver, that, when receiving a pulse-position-modulated (PPM) signal, selects the symbol corresponding to the slot with the largest electron count. Whereas the MC receiver saturates at high count rates
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J.
1985-01-01
The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.
International Nuclear Information System (INIS)
Brodsky, S.J.
1985-01-01
The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of α/sub s/ and Λ/sup ms/ from the γ*γ → π 0 form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from γγ → H anti H, reconstruction of sigma/sub γγ/ from exclusive channels at low W/sub γγ/, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z 0 and W +- beams from e → eZ 0 and e → nu W will become important. 44 references
International Nuclear Information System (INIS)
Field, J.H.
1984-01-01
The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range
Real-time imaging systems for superconducting nanowire single-photon detector arrays
Energy Technology Data Exchange (ETDEWEB)
Hofherr, Matthias
2014-07-01
Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark counts and low jitter. This work provides a piece of deeper physical understanding of detector functionality in combination with highly engineered readout development. A detailed analysis focuses on the intrinsic detection mechanism of SNSPDs related to the detection in the infrared regime and the evolution of dark counts. With this fundamental knowledge, the next step is the development of a multi-pixel readout at cryogenic conditions. It is demonstrated, how two auspicious multi-pixel readout concepts can be realized, which enables statistical framing like in imaging applications using RSFQ electronics with fast framing rates and the readout of a detector array with continuous real-time single-photon resolution.
A counting silicon microstrip detector for precision compton polarimetry
Doll, D W; Hillert, W; Krüger, H; Stammschroer, K; Wermes, N
2002-01-01
A detector for the detection of laser photons backscattered off an incident high-energy electron beam for precision Compton polarimetry in the 3.5 GeV electron stretcher ring ELSA at Bonn University has been developed using individual photon counting. The photon counting detector is based on a silicon microstrip detector system using dedicated ASIC chips. The produced hits by the pair converted Compton photons are accumulated rather than individually read out. A transverse profile displacement can be measured with mu m accuracy rendering a polarization measurement of the order of 1% on the time scale of 10-15 min possible.
Transmitting more than 10 bit with a single photon
Tentrup, T.B.H.; Hummel, T.; Wolterink, T.A.W.; Uppu, R.; Mosk, Allard; Pinkse, P.W.H.
2017-01-01
Encoding information in the position of single photons has no known limits, given infinite resources. Using a heralded single-photon source and a spatial light modulator (SLM), we steer single photons to specific positions in a virtual grid on a large-area spatially resolving photon-counting
CONFERENCE: Photon-photon collisions
International Nuclear Information System (INIS)
Anon.
1983-01-01
Despite being difficult to observe, photon-photon collisions have opened up a range of physics difficult, or even impossible, to access by other methods. The progress which has been made in this field was evident at the fifth international workshop on photon-photon collisions, held in Aachen from 13-16 April and attended by some 120 physicists
Detectors for proton counting. Si-APD and scintillation detectors
International Nuclear Information System (INIS)
Kishimoto, Shunji
2008-01-01
Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)
Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-03-01
Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their ve