WorldWideScience

Sample records for photobioreactor design final

  1. Design process of an area-efficient photobioreactor

    NARCIS (Netherlands)

    Zijffers, J.F.; Janssen, M.G.J.; Tramper, J.; Wijffels, R.H.

    2008-01-01

    This article describes the design process of the Green Solar Collector (GSC), an area-efficient photobioreactor for the outdoor cultivation of microalgae. The overall goal has been to design a system in which all incident sunlight on the area covered by the reactor is delivered to the algae at such

  2. Design scenarios for flat panel photobioreactors

    International Nuclear Information System (INIS)

    Slegers, P.M.; Wijffels, R.H.; Straten, G. van; Boxtel, A.J.B. van

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel photobioreactors using the interaction between light and algae growth for the algae species Phaeodactylum tricornutum and Thalassiosira pseudonana. The effect of location, variable sunlight and reactor layout on biomass production in single standing and parallel positioned flat panels was considered. Three latitudes were studied representing the Netherlands, France and Algeria. In single standing reactors the highest yearly biomass production is achieved in Algeria. During the year biomass production fluctuates the most in the Netherlands, while it is almost constant in Algeria. Several combinations of path lengths and biomass concentrations can result in the same optimal biomass production. The productivity in parallel place flat panels is strongly influenced by shading and diffuse light penetration between the panels. Panel orientation has a large effect on productivity and at higher latitudes the difference between north-south and east-west orientation may go up to 50%.

  3. Design, construction and evaluation of solarized airlift tubular photobioreactor

    International Nuclear Information System (INIS)

    Bahadur, A; Zubair, M; Khan, M B

    2013-01-01

    An innovative photobioreactor is developed for growing algae in simulated conditions. The proposed design comprises of a continuous tubular irradiance loop and air induced liquid circulation with gas separation through air lift device. The unique features of air lift system are to ensure the shear free circulation of sensitive algal culture and induce light/dark cycles to the photosynthetic micro-organisms. The design strategy employs to model and construct a 20-liter laboratory scale unit using Boro-silicate glass tubing. The material is selected to ensure maximum photon transmission. All components of the device are designed to have flexibility to be replaced with an alternative design, providing fair chance of modification for future investigators. The principles of fluid mechanics are applied to describe geometrical attributes of the air lift system. Combination of LEDs and Florescent tube lights (Warm white) were used to illuminate the photosynthesis reaction area providing a possibility to control both illumination duration and light intensity. 200 Watt Solar PV system is designed to power up the device which included air pump (100 Watt) and illumination system (100 Watt). Algal strain Chlorella sp was inoculated in photobioreactor which was sparged with air and carbon dioxide. The growth was sustained in the batch mode with daily monitoring of temperature, pH and biomass concentration. The novel photobioreactor recorded a maximum experimental average yield of 0.65 g/l.day (11.3 g/m 2 .day) as compared to theoretical modeled yield of 0.82 g/l.day (14.26 g/m 2 .day), suggesting the device can be efficiently and cost-effectively employed in the production of algal biomass for biofuels, concomitantly mitigating CO 2 .

  4. Design and construction of a photobioreactor for hydrogen production, including status in the field.

    Science.gov (United States)

    Skjånes, Kari; Andersen, Uno; Heidorn, Thorsten; Borgvang, Stig A

    Several species of microalgae and phototrophic bacteria are able to produce hydrogen under certain conditions. A range of different photobioreactor systems have been used by different research groups for lab-scale hydrogen production experiments, and some few attempts have been made to upscale the hydrogen production process. Even though a photobioreactor system for hydrogen production does require special construction properties (e.g., hydrogen tight, mixing by other means than bubbling with air), only very few attempts have been made to design photobioreactors specifically for the purpose of hydrogen production. We have constructed a flat panel photobioreactor system that can be used in two modes: either for the cultivation of phototrophic microorganisms (upright and bubbling) or for the production of hydrogen or other anaerobic products (mixing by "rocking motion"). Special emphasis has been taken to avoid any hydrogen leakages, both by means of constructional and material choices. The flat plate photobioreactor system is controlled by a custom-built control system that can log and control temperature, pH, and optical density and additionally log the amount of produced gas and dissolved oxygen concentration. This paper summarizes the status in the field of photobioreactors for hydrogen production and describes in detail the design and construction of a purpose-built flat panel photobioreactor system, optimized for hydrogen production in terms of structural functionality, durability, performance, and selection of materials. The motivations for the choices made during the design process and advantages/disadvantages of previous designs are discussed.

  5. Design of a novel flat-plate photobioreactor system for green algal hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Tamburic, B.; Zemichael, F.W.; Maitland, G.C.; Hellgardt, K. [Imperial College London (United Kingdom)

    2010-07-01

    Some unicellular green algae have the ability to photosynthetically produce molecular hydrogen using sunlight and water. This renewable, carbon-neutral process has the additional benefit of sequestering carbon dioxide during the algal growth phase. The main costs associated with this process result from building and operating a photobioreactor system. The challenge is to design an innovative and cost effective photobioreactor that meets the requirements of algal growth and sustainable hydrogen production. We document the details of a novel 1 litre vertical flat-plate photobioreactor that has been designed to accommodate green algal hydrogen production at the laboratory scale. Coherent, non-heating illumination is provided by a panel of cool white LEDs. The reactor body consists of two compartments constructed from transparent Perspex sheets. The primary compartment holds the algal culture, which is agitated by means of a recirculating gas flow. A secondary compartment is filled with water and used to control the temperature and wavelength of the system. The reactor is fitted with instruments that monitor the pH, pO{sub 2}, temperature and optical density of the culture. A membrane-inlet mass spectrometry system has been developed for hydrogen collection and in situ monitoring. The reactor is fully autoclaveable and the possibility of hydrogen leaks has been minimised. The modular nature of the reactor allows efficient cleaning and maintenance. (orig.)

  6. integrated vertical photobioreactor system for carbon dioxide

    African Journals Online (AJOL)

    Astri Nugroho

    2013-07-02

    Jul 2, 2013 ... efficient system for converting carbon dioxide (CO2) into biomass. The use of ... often been thought to achieve the most efficient mixing and the best ... such process a photobioreactor is designed. Photobioreactor is a device ...

  7. Design, Construction, and Validation of an Internally Lit Air-Lift Photobioreactor for Growing Algae

    Energy Technology Data Exchange (ETDEWEB)

    Hincapie, Esteban [Department of Mechanical Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH (United States); Stuart, Ben J., E-mail: stuart@ohio.edu [Department of Civil Engineering, Russ College of Engineering and Technology, Ohio University, Athens, OH (United States)

    2015-01-23

    A novel 28 L photobioreactor for growing algae was developed using fiber optics for internal illumination. The proposed design uses the air-lift principle to enhance the culture circulation and induce light/dark cycles to the microorganisms. Optical fibers were used to distribute photons inside the culture media providing an opportunity to control both light cycle and intensity. The fibers were coupled to an artificial light source; however, the development of this approach aims for the future use of natural light collected through parabolic solar collectors. This idea could also allow the use of opaque materials for photobioreactor construction significantly reducing costs and increasing durability. Internal light levels were determined in dry conditions and were maintained above 80 μmol/(s·m{sup 2}). The hydrodynamic equations of the air-lift phenomena were explored and used to define the geometric characteristics of the unit. The reactor was inoculated with the algae strain Chlorella sp. and sparged with air. The reactor was operated under batch mode and daily monitored for biomass concentration. The specific growth rate constant of the novel device was determined to be 0.011 h{sup −1}. The proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts.

  8. Design, Construction, and Validation of an Internally Lit Air-Lift Photobioreactor for Growing Algae

    International Nuclear Information System (INIS)

    Hincapie, Esteban; Stuart, Ben J.

    2015-01-01

    A novel 28 L photobioreactor for growing algae was developed using fiber optics for internal illumination. The proposed design uses the air-lift principle to enhance the culture circulation and induce light/dark cycles to the microorganisms. Optical fibers were used to distribute photons inside the culture media providing an opportunity to control both light cycle and intensity. The fibers were coupled to an artificial light source; however, the development of this approach aims for the future use of natural light collected through parabolic solar collectors. This idea could also allow the use of opaque materials for photobioreactor construction significantly reducing costs and increasing durability. Internal light levels were determined in dry conditions and were maintained above 80 μmol/(s·m 2 ). The hydrodynamic equations of the air-lift phenomena were explored and used to define the geometric characteristics of the unit. The reactor was inoculated with the algae strain Chlorella sp. and sparged with air. The reactor was operated under batch mode and daily monitored for biomass concentration. The specific growth rate constant of the novel device was determined to be 0.011 h −1 . The proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts.

  9. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation.

    Science.gov (United States)

    Rooke, Joanna C; Léonard, Alexandre; Meunier, Christophe F; Su, Bao-Lian

    2011-09-19

    Atmospheric carbon dioxide levels have been rising since the industrial revolution, with the most dramatic increase occurring since the end of World War II. Carbon dioxide is widely regarded as one of the major factors contributing to the greenhouse effect, which is of major concern in today's society because it leads to global warming. Photosynthesis is Nature's tool for combating elevated carbon dioxide levels. In essence, photosynthesis allows a cell to harvest solar energy and convert it into chemical energy through the assimilation of carbon dioxide and water. Therefore photosynthesis is regarded as an ideal way to harness the abundance of solar energy that reaches Earth and convert anthropologically generated carbon dioxide into useful carbohydrates, providing a much more sustainable energy source. This Minireview aims to tackle the idea of immobilizing photosynthetic unicellular organisms within inert silica frameworks, providing protection both to the fragile cells and to the external ecosystem, and to use this resultant living hybrid material in a photobioreactor. The viability and activity of various unicellular organisms are summarized alongside design issues of a photobioreactor based on living hybrid materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Numerical investigation of a bubble-column photo-bioreactor design for biodiesel production from microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Seo, I.H.; Lee, I.B.; Hwang, H.S.; Hong, S.W.; Bitog, J.P.; Kwon, K.S.; Choi, J.S.; Song, S.H. [Seoul National Univ., Seoul (Korea, Democratic People' s Republic of). Dept. of Rural Systems Engineering and Research Inst. for Agriculture and Life Sciences

    2010-07-01

    Biodiesel made from vegetable oil is among the most desirable of renewable energy sources because it can be a substitute for diesel oil. However, biodiesel from soybean or corn can be confronted with a food crisis. Microalgae is a new biodiesel source which contains high oil lipids with a high growth rate, and which also offers value-added products from the residue, such as cosmetics, health functional food or pharmaceuticals. Microalgae are best cultivated in photo-bioreactors (PBRs) where light, nutrients, carbon dioxide and temperature can be controlled. Despite the current availability of PBRs, only a few can be practically used for mass production. Computational fluid dynamics (CFD) was used in this study to design an optimum bubble-column PBR for mass production of microalgae. Multi-phase models including bubble movement, meshes and time step independent tests were considered to develop the 3-dimensional CFD model. Particle Image Velocimetry (PIV) tests were used to enhance and validate the model. Different types of PBRs were simulated and compared quantitatively with the microalgae's growth model.

  11. Control Structure Design of an Innovative Enhanced Biological Nutrient Recovery Activated Sludge System Coupled with a Photobioreactor

    DEFF Research Database (Denmark)

    Valverde Perez, Borja; Fuentes-Martínez, José Manuel; Flores Alsina, Xavier

    2015-01-01

    The TRENS system is a train of biological units designed for resource recovery from wastewater. It is a sequence of a modified enhanced biological phosphorus removal and recovery system (EBP2R) coupled with a photobioreactor (PBR). The bacteria-based system constructs an optimal culture media...... for the downstream algae cultivation. In this work, we present a control strategy to ensure an optimal nutrient balance to feed to the PBR, so the grown algal suspension is suitable for fertigation (irrigation and fertilization of agricultural crops). The system is able to recover up to 75% of the influent load......, while keeping an optimal N-to-P ratio of 16 in the influent to the PBR. The system is tested under different scenarios, where the influent quality is disturbed following a step change. The control system is able to reject most of the disturbances. However, when the P-recovery is limited by the bacteria...

  12. Improving protein production of indigenous microalga Chlorella vulgaris FSP-E by photobioreactor design and cultivation strategies.

    Science.gov (United States)

    Chen, Chun-Yen; Lee, Po-Jen; Tan, Chung Hong; Lo, Yung-Chung; Huang, Chieh-Chen; Show, Pau Loke; Lin, Chih-Hung; Chang, Jo-Shu

    2015-06-01

    Fish meal is currently the major protein source for commercial aquaculture feed. Due to its unstable supply and increasing price, fish meal is becoming more expensive and its availability is expected to face significant challenges in the near future. Therefore, feasible alternatives to fish meal are urgently required. Microalgae have been recognized as the most promising candidates to replace fish meal because the protein composition of microalgae is similar to fish meal and the supply of microalgae-based proteins is sustainable. In this study, an indigenous microalga (Chlorella vulgaris FSP-E) with high protein content was selected, and its feasibility as an aquaculture protein source was explored. An innovative photobioreactor (PBR) utilizing cold cathode fluorescent lamps as an internal light source was designed to cultivate the FSP-E strain for protein production. This PBR could achieve a maximum biomass and protein productivity of 699 and 365 mg/L/day, respectively, under an optimum urea and iron concentration of 12.4 mM and 90 μM, respectively. In addition, amino acid analysis of the microalgal protein showed that up to 70% of the proteins in this microalgal strain consist of indispensable amino acids. Thus, C. vulgaris FSP-E appears to be a viable alternative protein source for the aquaculture industry. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A comparative study of soft sensor design for lipid estimation of microalgal photobioreactor system with experimental validation.

    Science.gov (United States)

    Yoo, Sung Jin; Jung, Dong Hwi; Kim, Jung Hun; Lee, Jong Min

    2015-03-01

    This study examines the applicability of various nonlinear estimators for online estimation of the lipid concentration in microalgae cultivation system. Lipid is a useful bio-product that has many applications including biofuels and bioactives. However, the improvement of lipid productivity using real-time monitoring and control with experimental validation is limited because measurement of lipid in microalgae is a difficult and time-consuming task. In this study, estimation of lipid concentration from other measurable sources such as biomass or glucose sensor was studied. Extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filter (PF) were compared in various cases for their applicability to photobioreactor systems. Furthermore, simulation studies to identify appropriate types of sensors for estimating lipid were also performed. Based on the case studies, the most effective case was validated with experimental data and found that UKF and PF with time-varying system noise covariance is effective for microalgal photobioreactor system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    Science.gov (United States)

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects

    NARCIS (Netherlands)

    Janssen, M.G.J.; Tramper, J.; Mur, L.R.; Wijffels, R.H.

    2003-01-01

    Enclosed outdoor photobioreactors need to be developed and designed for large-scale production of phototrophic microorganisms. Both light regime and photosynthetic efficiency were analyzed in characteristic examples of state-of-the-art pilot-scale photobioreactors. In this study it is shown that

  16. MINIMARS conceptual design: Final report

    International Nuclear Information System (INIS)

    Lee, J.D.

    1986-09-01

    This volume contains the following sections: (1) fueling systems; (2) blanket; (3) alternative blanket concepts; (4) halo scraper/direct converter system study and final conceptual design; (5) heat-transport and power-conversion systems; (6) tritium systems; (7) minimars air detritiation system; (8) appropriate radiological safety design criteria; and (9) cost estimate

  17. Photobioreactor cultivation strategies for microalgae and cyanobacteria.

    Science.gov (United States)

    Johnson, Tylor J; Katuwal, Sarmila; Anderson, Gary A; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2018-03-08

    The current burden on fossil-derived chemicals and fuels combined with the rapidly increasing global population has led to a crucial need to develop renewable and sustainable sources of chemicals and biofuels. Photoautotrophic microorganisms, including cyanobacteria and microalgae, have garnered a great deal of attention for their capability to produce these chemicals from carbon dioxide, mineralized water, and solar energy. While there have been substantial amounts of research directed at scaling-up production from these microorganisms, several factors have proven difficult to overcome, including high costs associated with cultivation, photobioreactor construction, and artificial lighting. Decreasing these costs will substantially increase the economic feasibility of these production processes. Thus, the purpose of this review is to describe various photobioreactor designs, and then provide an overview on lighting systems, mixing, gas transfer, and the hydrodynamics of bubbles. These factors must be considered when the goal of a production process is economic feasibility. Targets for improving microalgae and cyanobacteria cultivation media, including water reduction strategies will also be described. As fossil fuel reserves continue to be depleted and the world population continues to increase, it is imperative that renewable chemical and biofuel production processes be developed toward becoming economically feasible. Thus, it is essential that future research is directed toward improving these processes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  18. Final amplifier design and mercury

    International Nuclear Information System (INIS)

    Rose, E.A.; Hanson, D.E.

    1991-01-01

    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met

  19. Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.

    Science.gov (United States)

    Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci

    2017-07-01

    In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.

  20. UMTRA project: Canonsburg final design

    International Nuclear Information System (INIS)

    Thiers, G.R.; Guros, F.B.; Smith, E.S.

    1984-01-01

    Final design for on-site stabilization of over 300,000 cubic yards of abandoned mill tailings in Canonsburg, Pennsylvania, is being completed this Fall. This paper describes design criteria, design procedures, and difficulties encountered for the following required elements: 1. Encapsulation cell; 2. Durability of erosion protection material; 3. Flood control berm; 4. Sedimentation pond; 5. Wastewater treatment plant. The 70,000 cubic yards of the tailings for which radiation levels exceed 100 picocuries per gram will be placed on a 2-ft-thick compacted clay liner and encased by a 3-ft-thick compacted clay cover. The remaining tailings will be covered with at least two feet of clay to prevent radon escape and to reduce rainfall infiltration. Erosion protection will be provided for the encapsulation cell, the drainage swales, and from potential meandering of nearby Chartiers Creek

  1. Environmental photobioreactor array (EPBRA) systems and apparatus related thereto

    Science.gov (United States)

    Kramer, David; Zegarac, Robert; Lucker, Ben F.; Hall, Christopher; Abernathy, Casey; Carpenter, Joel; Cruz, Jeffrey

    2017-11-14

    A system is described herein that comprises one or more modular environmental photobioreactor arrays, each array containing two or more photobioreactors, wherein the system is adapted to monitor each of the photobioreactors and/or modulate the conditions with each of the photobioreactors. The photobioreactors are also adapted for measurement of multiple physiological parameters of a biomass contained therein. Various methods for selecting and characterizing biomass are also provided. In one embodiment, the biomass is algae.

  2. Optical propagation analysis in photobioreactor measurements on cyanobacteria

    Science.gov (United States)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2017-12-01

    Biotechnology applications are nowadays increasing in many areas, from agriculture to biochemistry, or even biomedicine. Knowledge on biological processes is becoming essential in order to be able to adequately estimate and control the production of these elements. Cyanobacteria present the capability of producing oxygen and biomass, from CO2 and light irradiation. Therefore, they could be fundamental for human subsistence in adverse environments, as basic needs of breathing and food would be guaranteed. Cyanobacteria cultivation, as other microorganisms, is carried out in photo-bioreactors. The adequate design of photobioreactors greatly influences elements production throughput. This design includes optical illumination and optical measurement of cyanobacteria growth. In this work an analysis of optical measurement of cyanobacteria growth in a photobioreactor is made. As cyanobacteria are inhomogeneous elements, the influence of light scattering is significant. Several types of cyanobacteria are considered, as long as several spatial profiles and irradiances of the incident light. Depending on cyanobacteria optical properties, optical distribution of transmitted light can be estimated. These results allow an appropriate consideration, in the optical design, of the relationship between detected light and cyanobacteria growth. As a consequence, the most adequate conditions of elements production from cyanobacteria could be estimated.

  3. Light scattering influence in cyanobacteria suspensions inside a photobioreactor

    Science.gov (United States)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2018-02-01

    The application of biotechnology is increasing in areas such as agriculture, biochemistry or biomedicine. Growing bacteria or algae could be beneficial for supplying fuel, drugs, food or oxygen, among other products. An adequate knowledge of biological processes is becoming essential to estimate and control products production. Cyanobacteria are particularly appropriate for producing oxygen and biomass, by consuming mainly carbon dioxide and light irradiation. These capacities could be employed to provide human subsistence in adverse environments, as basic breathing and food needs would be satisfied. Cyanobacteria growing is carried out in bioreactors. As light irradiation is quite relevant for their behavior, photobioreactors are needed. Photobioreactors are designed to supply and control the amounts of elements they need, in order to maximize growth. The adequate design of photobioreactors greatly influences production throughput. This design includes, on the optical side, optical illumination and optical measurement of cyanobacteria growth. The influence of optical scattering is fundamental for maximizing cyanobacteria growing, as long as for adequately measure this growth. In this work, optical scattering in cyanobacteria suspensions is analyzed. Optical properties of cyanobacteria and its relationship with concentration is taken into account. Several types of cyanobacteria are considered. The influence of different beam spatial profiles and irradiances is studied by a Monte Carlo approach. The results would allow the consideration of the influence of optical scattering in the detected optical signal employed for growth monitoring, as a function of cyanobacteria type and optical beam parameters.

  4. Photobioreactor: Biotechnology for the Technology Education Classroom.

    Science.gov (United States)

    Dunham, Trey; Wells, John; White, Karissa

    2002-01-01

    Describes a problem scenario involving photobioreactors and presents materials and resources, student project activities, and teaching and evaluation methods for use in the technology education classroom. (Contains 14 references.) (SK)

  5. Technical evaluation of photobioreactors for microalgae cultivation

    Directory of Open Access Journals (Sweden)

    Płaczek Małgorzata

    2017-01-01

    Full Text Available This paper undertakes the description and assessment of various solutions applied for the design of photobioreactors as the type of apparatus, which can provide high output of green algae biomass. The design of such apparatus plays an important role in the context of the concurrent fulfillment of ecological and economic requirements, which are necessary to conduct an efficient and effective technology using cheap and easily accessible resources to produce different goods. Nowadays, algae is seen as one of the most promising sustainable way to produce energy in the future (biofuels, electricity, thermal energy but technologies of biomass production and processing are still under development particularly to increase biomass and energy output. The cultivation costs in closed systems are still high, limiting their commercial applications to high-valued compounds but they can be reduced by efficient bioreactor designs, which are able to achieve high areal biomass productivities. This paper focuses on the advantages and drawbacks associated with the application of the particular types of bioreactors in algae production, description of their operation parameters and area for practical application, pointing of the constructions (tubular, flat panel, bubble column that can contribute to improvement the profitability of large-scale production.

  6. Technical evaluation of photobioreactors for microalgae cultivation

    Science.gov (United States)

    Płaczek, Małgorzata; Patyna, Agnieszka; Witczak, Stanisław

    2017-10-01

    This paper undertakes the description and assessment of various solutions applied for the design of photobioreactors as the type of apparatus, which can provide high output of green algae biomass. The design of such apparatus plays an important role in the context of the concurrent fulfillment of ecological and economic requirements, which are necessary to conduct an efficient and effective technology using cheap and easily accessible resources to produce different goods. Nowadays, algae is seen as one of the most promising sustainable way to produce energy in the future (biofuels, electricity, thermal energy) but technologies of biomass production and processing are still under development particularly to increase biomass and energy output. The cultivation costs in closed systems are still high, limiting their commercial applications to high-valued compounds but they can be reduced by efficient bioreactor designs, which are able to achieve high areal biomass productivities. This paper focuses on the advantages and drawbacks associated with the application of the particular types of bioreactors in algae production, description of their operation parameters and area for practical application, pointing of the constructions (tubular, flat panel, bubble column) that can contribute to improvement the profitability of large-scale production.

  7. MINIMARS conceptual design: Final report

    International Nuclear Information System (INIS)

    Lee, J.D.

    1986-09-01

    This volume of the conceptual design report contains detailed information on the following: (1) plasma engineering, (2) tandem mirror optimization code, (3) configuration, (4) assembly and maintenance, (5) availability, (6) site and facilities, (7) magnet design, (8) end-cell shielding, (9) drift pumping system, (10) rf systems, (11) negative-ion neutral beam injection system, (12) sloshing-ion beamline, and (13) power balance and electrical systems

  8. Modeling and visual simulation of Microalgae photobioreactor

    Science.gov (United States)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  9. Mine-by experiment final design report

    International Nuclear Information System (INIS)

    Read, R.S.; Martin, C.D.

    1991-12-01

    The Underground Research Laboratory (URL) Mine-by Experiment is designed to provide information on rock mass response to excavation that will be used to assess important aspects of the design of a nuclear fuel waste disposal vault in a granitic pluton. The final experiment design is the result of a multidisciplinary approach, drawing on experience gained at other sites as well as the URL, and using both internal expertise and the external consultants. The final experiment design, including details on characterization, construction, instrumentation, and numerical modelling, is presented along with final design drawings

  10. Technical Note: Development of a Photobioreactor for Microalgae ...

    African Journals Online (AJOL)

    In view of the technical and biological limitations of open pond systems, a study was conducted to develop a cost-effective experimental photobioreactor that would permit efficient cultivation of microalgae for biodiesel production. The photobioreactor was developed using low cost materi- als, cylindrical translucent tubes ...

  11. Design scenarios for flat panel photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2011-01-01

    Evaluation of the potential of algae production for biofuel and other products at various locations throughout the world requires assessment of algae productivity under varying light conditions and different reactor layouts. A model was developed to predict algae biomass production in flat panel

  12. Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor

    NARCIS (Netherlands)

    Zijffers, J.F.; Janssen, M.G.J.; Tramper, J.; Wijffels, R.H.; Salim, S.

    2008-01-01

    The Green Solar Collector (GSC), a photobioreactor designed for area efficient outdoor cultivation of microalgae uses Fresnel lenses and light guides to focus, transport and distribute direct light into the algae suspension. Calculating the path of rays of light, so-called ray tracing, is used to

  13. Scenario analysis of large scale algae production in tubular photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Beveren, van P.J.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    Microalgae productivity in tubular photobioreactors depends on algae species, location, tube diameter, biomass concentration, distance between tubes and for vertically stacked systems, the number of horizontal tubes per stack. A simulation model for horizontal and vertically stacked horizontal

  14. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors.

    Directory of Open Access Journals (Sweden)

    Eleonora Sforza

    Full Text Available Biofuels from algae are highly interesting as renewable energy sources to replace, at least partially, fossil fuels, but great research efforts are still needed to optimize growth parameters to develop competitive large-scale cultivation systems. One factor with a seminal influence on productivity is light availability. Light energy fully supports algal growth, but it leads to oxidative stress if illumination is in excess. In this work, the influence of light intensity on the growth and lipid productivity of Nannochloropsis salina was investigated in a flat-bed photobioreactor designed to minimize cells self-shading. The influence of various light intensities was studied with both continuous illumination and alternation of light and dark cycles at various frequencies, which mimic illumination variations in a photobioreactor due to mixing. Results show that Nannochloropsis can efficiently exploit even very intense light, provided that dark cycles occur to allow for re-oxidation of the electron transporters of the photosynthetic apparatus. If alternation of light and dark is not optimal, algae undergo radiation damage and photosynthetic productivity is greatly reduced. Our results demonstrate that, in a photobioreactor for the cultivation of algae, optimizing mixing is essential in order to ensure that the algae exploit light energy efficiently.

  15. Biotransformations of carbon dioxide in photobioreactors

    International Nuclear Information System (INIS)

    Jacob-Lopes, Eduardo; Gimenes Scoparo, Carlos Henrique; Queiroz, Maria Isabel; Franco, Telma Teixeira

    2010-01-01

    Laboratory experiments were performed to study the capacity of CO 2 sequestration and carbon fixation into biomass during the cultivation of the cyanobacteria Aphanothece microscopica Naegeli in refinery wastewater. The influence of the photoperiod (day/night) on the rates of CO 2 sequestration and O 2 release was also determined. Rates of CO 2 sequestration were measured both in the liquid and gaseous phases. The results showed that the capacity of CO 2 sequestration and O 2 release during the day/night experiment was about one-fourth less than that achieved in the continuously illuminated experiment. Equivalence was found between rates of CO 2 sequestration measured in the two phases. Despite large amounts of CO 2 that were sequestered during the cultivation, it is demonstrated that only a small fraction (about 3%) was effectively fixed as microalgae biomass, indicating the existence of other routes of CO 2 conversion in the photobioreactor.

  16. Exterior insulating shutter final prototype design. Final report, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Dike, G.A.; Kinney, L.F.

    1982-12-01

    The final prototype shutter described uses sliding panels composed of inch-thick thermax sandwiched between 60 mil thick ultraviolet-resistant plastic on the outside, and 20 mil stryrene on the inside. The shuter system was shown to have an effective R-value of 6 using ASHRAE procedures to convert from still air conditions to 15 mph wind conditions in a simulated cold environment. Tests were performed for cyclical operation, vulnerability to ice and wind, thermal performance, and air infiltration. Marketing efforts are described. Cost effectiveness is determined via present value analysis. (LEW)

  17. Model-supported phototrophic growth studies with Scenedesmus obtusiusculus in a flat-plate photobioreactor.

    Science.gov (United States)

    Koller, Anja Pia; Löwe, Hannes; Schmid, Verena; Mundt, Sabine; Weuster-Botz, Dirk

    2017-02-01

    Light-dependent growth of microalgae can vary remarkably depending on the cultivation system and microalgal strain. Cell size and the pigmentation of each strain, as well as reactor geometry have a great impact on absorption and scattering behavior within a photobioreactor. In this study, the light-dependent, cell-specific growth kinetics of a novel green algae isolate, Scenedesmus obtusiusculus, was studied in a LED-illuminated flat-plate photobioreactor on a lab-scale (1.8 L, 0.09 m 2 ). First, pH-controlled batch processes were performed with S. obtusiusculus at different constant incident photon flux densities. The best performance was achieved by illuminating S. obtusiusculus with 1400 μmol photons m -2  s -1 at the surface of the flat-plate photobioreactor, resulting in the highest biomass concentration (4.95 ± 0.16 g CDW  L -1 within 3.5 d) and the highest specific growth rate (0.22 h -1 ). The experimental data were used to identify the kinetic parameters of different growth models considering light inhibition for S. obtusiusculus. Light attenuation within the flat-plate photobioreactor was considered by varying light transfer models. Based on the identified kinetic growth model of S. obtusiusculus, an optimum growth rate of 0.22 h -1 was estimated at a mean integral photon flux density of 1072 μmol photons m -2  s -1 with the Beer-Lambert law and 1590 μmol photons m -2  s -1 with Schuster's light transfer model in the flat-plate photobioreactor. LED illumination was, thus, increased to keep the identified optimum mean integral photon flux density constant in the batch process assuming Schuster's light transfer model. Compared to the same constant incident photon flux density (1590 μmol photons m -2  s -1 ), biomass concentration was up to 24% higher using the lighting profile until a dry cell mass concentration of 14.4 ± 1.4 g CDW  L -1 was reached. Afterward, the biomass concentration remained constant

  18. The surface physics work station: final design

    International Nuclear Information System (INIS)

    Landers, R.; Kleiman, G.G.; Castro, S.G.C. de; Douglas, R.A.; Nascente, P.A.P.

    1996-01-01

    Thanks to funding from FAPESP we will be installing in the beginning of 1997 a work station for electron spectroscopy designed for the study of clean solid surfaces and the modification of these surfaces by deposition in situ of ultra thin metallic films. The main analytical tool will be a high resolution hemispherical analyzer made by VSW-Omicrom (EA 125 HR) which is capable of better than 5 meV resolution and high transmission due to its five channeltron multi detection system. The system will also have a Rear View LEED Optics for single crystal studies. The system will be housed in a 16'' cylindrical chamber with mu metal magnetic shielding having two levels for analysis. The upper level will contain instruments for technique which do not require photons such as LEED and sample cleaning. The lower level will have the electron analyzer, conventional X-ray source (Al/Mg), electron gun for Auger, e-beam evaporators for thin film deposition and ports for the future addition of different detectors. We will have a manipulator with 5 degrees of freedom (thre translation and two rotational) and sample heating and LN cooling. Finally we will have a fast entry/preparation chamber. The pumping system will have a combination of turbomolecular and ion pumps for the main chamber and a turbo for the fast entr/prep chamber. The system will be used initially for the study of surface alloys by XPS and Photoelectron Diffraction but as soon as it is properly characterized it will be open for collaborations with other groups interested in using its capabilities. (author)

  19. Biofilm photobioreactors for the treatment of industrial wastewaters

    International Nuclear Information System (INIS)

    Munoz, Raul; Koellner, Claudia; Guieysse, Benoit

    2009-01-01

    A flat plate and a tubular packed-bed photobioreactor with an algal-bacterial biofilm attached onto Poraver beads carriers, a flat plate and a tubular photobioreactor with the biofilm attached onto the reactor walls, and an algal-turf reactor were compared in terms of BOD removal efficiencies, elimination capacities, and stability. A control column photobioreactor with suspended algal-bacterial biomass was also tested to compare the performance of biofilm photobioreactors with conventional algal-based processes. When the algal-bacterial biomass was immobilized onto Poraver the process never reached a steady state due to a poor homogenization in the bioreactor. When the biofilm was formed onto the reactor wall (or reactor base) the process was stable. A maximum degradation rate of 295 mg BOD l -1 h -1 was achieved in the algal-turf reactor although control experiments performed in the dark showed atmospheric O 2 diffusion represented 55% of the oxygenation capacity in this system. BOD removal rates of 108, and 92 mg BOD l -1 h -1 were achieved in the tubular and flat plate biofilm reactors, respectively, compared to 77 mg BOD l -1 h -1 in the control suspended bioreactor. In addition, all biofilm photobioreactors produced an easily settleable biomass. Evidence was found that biomass attachment to the reactor's wall improved stability

  20. Biotransformations of carbon dioxide in photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Jacob-Lopes, Eduardo [School of Agricultural Engineering, Federal University of Pelotas, UFPel, 96010-900 Pelotas-RS (Brazil); Gimenes Scoparo, Carlos Henrique; Franco, Telma Teixeira [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Queiroz, Maria Isabel [School of Chemistry and Food, Federal University of Rio Grande, FURG, 96201-900 Rio Grande-RS (Brazil)

    2010-05-15

    Laboratory experiments were performed to study the capacity of CO{sub 2} sequestration and carbon fixation into biomass during the cultivation of the cyanobacteria Aphanothece microscopica Naegeli in refinery wastewater. The influence of the photoperiod (day/night) on the rates of CO{sub 2} sequestration and O{sub 2} release was also determined. Rates of CO{sub 2} sequestration were measured both in the liquid and gaseous phases. The results showed that the capacity of CO{sub 2} sequestration and O{sub 2} release during the day/night experiment was about one-fourth less than that achieved in the continuously illuminated experiment. Equivalence was found between rates of CO{sub 2} sequestration measured in the two phases. Despite large amounts of CO{sub 2} that were sequestered during the cultivation, it is demonstrated that only a small fraction (about 3%) was effectively fixed as microalgae biomass, indicating the existence of other routes of CO{sub 2} conversion in the photobioreactor. (author)

  1. Retrievable storage concept designs. Final report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1979-01-01

    Three tasks related to the reference design of retrievable storage canisters for radioactive waste have been completed. The three tasks consist of the reference design itself, the definition of failure modes most appropriate for structural integrity determinations for the reference canister, and the development of a failure methodology for the structural integrity of the containers. The reference design is a sealed storage canister concept based upon the waste isolation pilot plant (WIPP) design, with slight modifications. The modifications consist of an alternate lifting yoke arrangement for the top head and a revised bottom head design for absorption of impact energy. Welded closures provide the seal at each end. Overpacking is considered as a possibility, but is not included in the preliminary reference design. The four failure modes that are deemed the most appropriate for the design of the reference canister are: (i) a loss of functional capability; (ii) ductile rupture of the canister; (iii) buckling of the structural members; and (iv) stress corrosion cracking. Failure scenarios are provided for each of the relevant failure modes. In addition, a failure methodology based upon the distribution of demand and the distribution of capacity for the structural members, with respect to each failure mode, is proffered

  2. Safety culture in design. Final report

    International Nuclear Information System (INIS)

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M.; Kahlbom, U.; Rollenhagen, C.

    2013-04-01

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  3. Safety culture in design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, L.; Pietikaeinen, E.; Liinasuo, M.; Savioja, P.; Reiman, T.; Wahlstroem, M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kahlbom, U. [Risk Pilot AB, Stockholm (Sweden); Rollenhagen, C. [Vattenfall, Stockholm, (Sweden)

    2013-04-15

    In this report we approach design from a safety culture approach As this research area is new and understudied, we take a wide scope on the issue. Different theoretical perspectives that can be taken when improving safety of the design process are considered in this report. We suggest that in the design context the concept of safety culture should be expanded from an organizational level to the level of the network of organizations involved in the design activity. The implication of approaching the design process from a safety culture perspective are discussed and the results of the empirical part of the research are presented. In the interview study in Finland and Sweden we identified challenges and opportunities in the design process from safety culture perspective. Also, a small part of the interview study concentrated on state of the art human factors engineering (HFE) practices in Finland and the results relating to that are presented. This report provide a basis for future development of systematic good design practices and for providing guidelines that can lead to safe and robust technical solutions. (Author)

  4. Tokamak blanket design study, final report

    International Nuclear Information System (INIS)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m 2 and a particle heat flux of 1 MW/m 2 . Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma

  5. Tokamak blanket design study, final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.

  6. The completed design of the SLC Final Focus System

    International Nuclear Information System (INIS)

    Murray, J.J.; Brown, K.L.; Fieguth, T.

    1987-02-01

    The design of the SLC Final Focus System has evolved from its initial conceptual design into its final form. This final design is described including a review of the critical decisions influencing the adoption of particular features. The creation of a feasible design has required that these decisions be tempered by practical considerations such as site constraints, correction of optical errors caused by imperfections, and accommodations requested by engineers and particle detector physicists. As this is the first such system to be built, it is hoped that the experience gained will be useful for the design of future systems

  7. Final Exam Weighting as Part of Course Design

    Science.gov (United States)

    Franke, Matthew

    2018-01-01

    The weighting of a final exam or a final assignment is an essential part of course design that is rarely discussed in pedagogical literature. Depending on the weighting, a final exam or assignment may provide unequal benefits to students depending on their prior performance in the class. Consequently, uncritical grade weighting can discount…

  8. Final design report, September 11, 1986

    International Nuclear Information System (INIS)

    1988-11-01

    The task is to design the quasi-optical microwave components for each of five different optical paths within the MFTF-B machine. Each path contains two reflectors. The function of the two reflectors in each path is to modify the output field of a waveguide to a desired pattern within the plasma. For all five beam paths, the waveguide output is assumed to be a TE 01 mode as decided at the July 18, design review. Each optical train consists of two reflectors. The first reflector is an off axis paraboloid which focuses the beam. The first reflector also contains the groove pattern of the twist polarizer. The second reflector receives the polarized beam from the first reflector. The function of the second reflector is to modify the phase of the polarized wavefront received from the first reflector. This modification shapes the wavefront profile in the plasma

  9. Outdoor open thin-layer microalgal photobioreactor: potential productivity

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2009-01-01

    Roč. 21, č. 1 (2009), s. 111-117 ISSN 0921-8971 Institutional research plan: CEZ:AV0Z50200510 Keywords : productivity * photobioreactor * thin layer Subject RIV: EE - Microbiology, Virology Impact factor: 1.018, year: 2009

  10. Final focus designs for crab waist colliders

    Directory of Open Access Journals (Sweden)

    A. Bogomyagkov

    2016-12-01

    Full Text Available The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DAΦNE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DAΦNE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  11. New Brunswick Market Design Committee : final report

    International Nuclear Information System (INIS)

    2002-04-01

    This report presents a plan for implementing New Brunswick's electricity restructuring. It includes two resolutions and 95 recommendations to help achieve the main policy objectives of the White Paper, the New Brunswick Energy Policy. The most significant policy goal outlined in the White Paper is the restructuring of the electricity sector, with initial competition being only at the wholesale and large industrial retail level. The Board of Commissioners of Public Utilities will regulate many aspects of the new electricity market. In addition, green pricing options will be made available. The Market Design Committee recommends that the government set up a bilateral contract market for wholesale and large industrial customers to contract with alternate providers for electrical power. Power generators would have the freedom to sell by contract to customers both within and outside the province. The report describes the requirements for establishing a bilateral contract market and how it functions. The Committee also recommends designating a Heritage Pool of electricity available from the existing generation assets in the province. Other recommendations include the creation of programs that will help meet environmental protection goals. The programs include net metering, support of embedded generation, renewable portfolio standards, energy efficiency programs, green pricing, broad-based carbon dioxide emissions trading, emission performance standards, and the promotion of cogeneration. 37 refs., 2 figs

  12. Feedback-Controlled LED Photobioreactor for Photophysiological Studies of Cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Stolyar, Sergey; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.

    2013-04-09

    A custom photobioreactor (PBR) was designed to enable automatic light adjustments using computerized feedback control. A black anodized aluminum enclosure, constructed to surround the borosilicate reactor vessel, prevents the transmission of ambient light and serves as a mount for arrays of light-emitting diodes (LEDs). The high-output LEDs provide narrow-band light of either 630 or 680 nm for preferential excitation of the cyanobacterial light-harvesting pigments, phycobilin or chlorophyll a, respectively. Custom developed software BioLume provides automatic control of optical properties and a computer feedback loop can automatically adjust the incident irradiance as necessary to maintain a fixed transmitted light through the culture, based on user-determined set points. This feedback control serves to compensate for culture dynamics which have optical effects, (e.g., changing cell density, pigment adaptations) and thus can determine the appropriate light conditions for physiological comparisons or to cultivate light-sensitive strains, without prior analyses. The LED PBR may also be controlled as a turbidostat, using a feedback loop to continuously adjust the rate of media-dilution based on the transmitted light measurements, with a fast and precise response. This cultivation system gains further merit as a high-performance analytical device, using non-invasive tools (e.g., dissolved gas sensors, online mass spectrometry) to automate real-time measurements, thus permitting unsupervised experiments to search for optimal growth conditions, to monitor physiological responses to perturbations, as well as to quantitate photophysiological parameters using an in situ light-saturation response routine.

  13. A Novel Final Focus Design for Future Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei

    2000-05-30

    The length, complexity and cost of the present Final Focus designs for linear colliders grows very quickly with the beam energy. In this letter, a novel final focus system is presented and compared with the one proposed for NLC. This new design is simpler, shorter and cheaper, with comparable bandwidth, tolerances and tunability. Moreover, the length scales slower than linearly with energy allowing for a more flexible design which is applicable over a much larger energy range.

  14. Development of suitable photobioreactors for CO{sub 2} sequestration addressing global warming using green algae and cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K.; Dasgupta, C.N.; Nayak, B.; Lindblad, P.; Das, D. [Indian Institute of Technology, Kharagpur (India)

    2011-04-15

    CO{sub 2} sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO{sub 2} in the atmosphere. They, in addition to CO{sub 2} capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO{sub 2} are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO{sub 2} present in the flue gas including SOx, NOx. However, there are additional factors like the availability of light, pH, O{sub 2}, removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO{sub 2} sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor.

  15. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.

    Science.gov (United States)

    Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca

    2013-04-06

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.

  16. General method for final focus system design for circular colliders

    Directory of Open Access Journals (Sweden)

    Riccardo de Maria

    2008-03-01

    Full Text Available Colliders use final focus systems to reduce the transverse beam sizes at the interaction point in order to increase collision event rates. The maximum focal strength (gradient of the quadrupoles, and the maximum beam size in them, together limit the beam size reduction that is possible. The goal of a final focus system design is to find the best compromise between quadrupole aperture and quadrupole gradient, for the magnet technology that is used. This paper develops a design method that identifies the intrinsic limitations of a final focus system, validates the results of the method against realistic designs, and reports its application to the upgrade of the Large Hadron Collider final focus.

  17. Final Exam Weighting as Part of Course Design

    Directory of Open Access Journals (Sweden)

    Matthew Franke

    2018-03-01

    Full Text Available The weighting of a final exam or a final assignment is an essential part of course design that is rarely discussed in pedagogical literature. Depending on the weighting, a final exam or assignment may provide unequal benefits to students depending on their prior performance in the class. Consequently, uncritical grade weighting can discount student learning, by ensuring that improved mastery of material at the semester’s end is not reflected in the course grade. Problems related to several common final exam weights are explored, as are potential solutions to unequal student outcomes made possible by uncritical grade weighting. Ultimately, this essay argues that choosing a weight for a final exam or a final assignment determines what types of student success ought to be possible in the class; therefore, instructors should assign exam weights intentionally, being fully aware of the potential benefits and problems of the weights that they choose.

  18. Growth of Chlorella vulgaris and associated bacteria in photobioreactors

    Science.gov (United States)

    Lakaniemi, Aino‐Maija; Intihar, Veera M.; Tuovinen, Olli H.; Puhakka, Jaakko A.

    2012-01-01

    Summary The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l−1 and 2.0 day−1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions. PMID:21936882

  19. A mathematical model of microalgae growth in cylindrical photobioreactor

    Science.gov (United States)

    Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana

    2017-08-01

    Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.

  20. Summary of the ITER final design report. July 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This document is a summary of the ITER final design report foreseen during the current, Engineering Design Activities (EDA), phase of the ITER project. The report presents the results of collaborative design and supporting technical work undertaken by the ITER Joint Central team (JCT) and the Home Teams (HT) of the parties to the agreement on co-operation in the Engineering Design Activities for ITER (the ITER EDA Agreement). This report marks the achievement of the full technical scope of activities indicated in the ITER EDA Agreement, with a final design which meets the programmatic objective defined in the Agreement and satisfies detailed scientific, technical and costing objectives set by ITER Council in 1998

  1. On Energy Balance and Production Costs in Tubular and Flat Panel Photobioreactors

    NARCIS (Netherlands)

    Norsker, N.H.; Barbosa, M.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    Reducing mixing in both flat panel and tubular photobioreactors can result in a positive net energy balance with state-of-the-art technology and Dutch weather conditions. In the tubular photobioreactor, the net energy balance becomes positive at velocities <0.3 ms-1, at which point the biomass

  2. Use of Chlorella vulgaris for CO{sub 2} mitigation in a photobioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Keffer, J.E.; Kleinheinz, G.T.

    2002-07-01

    One of the most understudied methods for CO{sub 2} mitigation is the use of biological processes in engineered systems such as photobioreactors. This research project describes the effectiveness of Chlorella vulgaris, used in a photobioreactor with a very short gas residence time, in sequestering CO{sub 2} from an elevated CO{sub 2} airstream. We evaluated a flow-through photobioreactor's operational parameters, as well as the growth characteristics of the C. vulgaris inoculum when exposed to an airstream with over 1850 ppm CO{sub 2}. When using dry weight, chlorophyll, and direct microscopic measurements, it was apparent that the photobioreactor's algal inoculum responded well to the elevated CO{sub 2} levels and there was no build-up of CO{sub 2} or carbonic acid in the photobioreactor. The photobioreactor, with a gas residence time of approximately 2 s, was able to remove up to 74% of the CO{sub 2} in the airstream to ambient levels. This corresponded to a 63.9-g/m(3)/h bulk removal for the experimental photobioreactor. Consequently, this photobioreactor shows that biological processes may have some promise for treating point source emissions of CO{sub 2} and deserve further study.

  3. Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance

    NARCIS (Netherlands)

    Cuaresma, M.; Janssen, M.G.J.; Vilchez, C.; Wijffels, R.H.

    2009-01-01

    Maximal productivity of a 14 mm light-path panel photobioreactor under high irradiance was determined. Under continuous illumination of 2,100 µmol photons m-2 s-1 with red light emitting diodes (LEDs) the effect of dilution rate on photobioreactor productivity was studied. The light intensity used

  4. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2003-01-01

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given

  5. A conceptual design of Final Focus Systems for linear colliders

    International Nuclear Information System (INIS)

    Brown, K.L.

    1987-06-01

    Linear colliders are a relatively recent development in the evolution of particle accelerators. This report discusses some of the approaches that have been considered for the design of Final Focus Systems to demagnify the beam exiting from a linac to the small size suitable for collisions at the interaction point. The system receiving the most attention is the one adopted for the SLAC Linear Collider. However, the theory and optical techniques discussed should be applicable to the design efforts for future machines

  6. Final design review report for K basin dose reduction project

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1996-01-01

    The strategy for reducing radiation dose originating from radionuclides absorbed in the K East Basin concrete is to raise the pool water level to provide additional shielding. This report documents a final design review for cleaning/coating basin walls and modifying other basin components where appropriate. The conclusion of this review was that the documents developed constitute an acceptable design for the Dose Reduction Project

  7. SIAM Conference on Geometric Design and Computing. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-03-11

    The SIAM Conference on Geometric Design and Computing attracted 164 domestic and international researchers, from academia, industry, and government. It provided a stimulating forum in which to learn about the latest developments, to discuss exciting new research directions, and to forge stronger ties between theory and applications. Final Report

  8. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae.

    Science.gov (United States)

    Guo, Xin; Yao, Lishan; Huang, Qingshan

    2015-08-01

    Effects of superficial gas velocity and top clearance on gas holdup, liquid circulation velocity, mixing time, and mass transfer coefficient are investigated in a new airlift loop photobioreactor (PBR), and empirical models for its rational control and scale-up are proposed. In addition, the impact of top clearance on hydrodynamics, especially on the gas holdup in the internal airlift loop reactor, is clarified; a novel volume expansion technique is developed to determine the low gas holdup in the PBR. Moreover, a model strain of Chlorella vulgaris is cultivated in the PBR and the volumetric power is analyzed with a classic model, and then the aeration is optimized. It shows that the designed PBR, a cost-effective reactor, is promising for the mass cultivation of microalgae. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Production of bio-based materials using photobioreactors with binary cultures

    Science.gov (United States)

    Beliaev, Alex S; Pinchuk, Grigoriy E; Hill, Eric A; Fredrickson, Jim K

    2013-08-27

    A method, device and system for producing preselected products, (either finished products or preselected intermediary products) from biobased precursors or CO.sub.2 and/or bicarbonate. The principal features of the present invention include a method wherein a binary culture is incubated with a biobased precursor in a closed system to transform at least a portion of the biobased precursor to a preselected product. The present invention provides a method of cultivation that does not need sparging of a closed bioreactor to remove or add a gaseous byproduct or nutrient from a liquid medium. This improvement leads to significant savings in energy consumption and allows for the design of photobioreactors of any desired shape. The present invention also allows for the use of a variety of types of waste materials to be used as the organic starting material.

  10. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.

    Science.gov (United States)

    Yadav, Geetanjali; Karemore, Ankush; Dash, Sukanta Kumar; Sen, Ramkrishna

    2015-09-01

    In the present study, carbon-dioxide capture from in situ generated flue gas was carried out using Chlorella sp. in bubble column photobioreactors to develop a cost effective process for concomitant carbon sequestration and biomass production. Firstly, a comparative analysis of CO2 sequestration with varying concentrations of CO2 in air-CO2 and air-flue gas mixtures was performed. Chlorella sp. was found to be tolerant to 5% CO2 concentration. Subsequently, inhibitory effect of pure flue gas was minimized using various strategies like use of high initial cell density and photobioreactors in series. The final biofixation efficiency was improved by 54% using the adopted strategies. Further, sequestered microalgal biomass was analyzed for various biochemical constituents for their use in food, feed or biofuel applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Final design of the beam source for the MITICA injector

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  12. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.

    Science.gov (United States)

    Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter

    2013-03-01

    Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.

  13. Surfactant selection for a liquid foam-bed photobioreactor.

    Science.gov (United States)

    Janoska, Agnes; Vázquez, María; Janssen, Marcel; Wijffels, René H; Cuaresma, María; Vílchez, Carlos

    2018-02-01

    A novel liquid foam-bed photobioreactor has been shown to hold potential as an innovative technology for microalgae production. In this study, a foam stabilizing agent has been selected which fits the requirements of use in a liquid foam-bed photobioreactor. Four criteria were used for an optimal surfactant: the surfactant should have good foaming properties, should not be rapidly biodegradable, should drag up microalgae in the foam formed, and it should not be toxic for microalgae. Ten different surfactants (nonionic, cationic, and anionic) and two microalgae genera (Chlorella and Scenedesmus) were compared on the above-mentioned criteria. The comparison showed the following facts. Firstly, poloxameric surfactants (Pluronic F68 and Pluronic P84) have acceptable foaming properties described by intermediate foam stability and liquid holdup and small bubble size. Secondly, the natural surfactants (BSA and Saponin) and Tween 20 were easily biodegraded by bacteria within 3 days. Thirdly, for all surfactants tested the microalgae concentration is reduced in the foam phase compared to the liquid phase with exception of the cationic surfactant CTAB. Lastly, only BSA, Saponin, Tween 20, and the two Pluronics were not toxic at concentrations of 10 CMC or higher. The findings of this study indicate that the Pluronics (F68 and P84) are the best surfactants regarding the above-mentioned criteria. Since Pluronic F68 performed slightly better, this surfactant is recommended for application in a liquid foam-bed photobioreactor. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  14. Carbohydrates in Ankistrodesmus braunii biomass cultivated in tubular photobioreactors

    Directory of Open Access Journals (Sweden)

    Ana Lucía Morocho-Jácome

    2017-12-01

    Full Text Available The great need for microalgae biomass production in tubular photobioreactors has increased for use in biofuels, pharmaceuticals and even cosmetic applications. In order to better understand the potential applications of this material, it is imperative to know in detail its composition. Ankistrodesmus braunii was cultivated in 3.5 L tubular air-lift photobioreactors using 10 mM sodium nitrate as nitrogen source in batch mode at 60 µmol photons m-2 s-1. The maximum biomass concentration (Xm and the biomass productivity (PX reached at 6th day of cultivation was 1249 ± 72 mg L-1 and 165 ± 13 mg L-1 d-1, respectively. Carbohydrates productivity expressed in terms of glucose, galactose and glucose+galactose (1:1 were 2.57 ± 0.04, 4.12 ± 0.06 and 3.22 ± 0.05 mg L-1 d-1, respectively. Results show a statistical difference that was found between carbohydrate productivity values expressed as glucose, galactose and glucose+galactose (1:1.

  15. Final design and construction issues of the TAPIRO epithermal column

    International Nuclear Information System (INIS)

    Burn, K.W.; Casalini, L.; Nava, E.; Tinti, R.; Martini, S.; Mondini, D.; Rosi, G.

    2006-01-01

    The construction of the epithermal column for clinical trials at the 5 kW fast reactor TAPIRO (ENEA, Casaccia, Italy) has been completed, the experimental bunker in the reactor hall has been designed and the beam characterisation will shortly be underway. As has been reviewed at the last two ICNCT conferences, the low power of the neuron source and the relatively distant patient position outside the reactor shield led to a column design with certain characteristics. One consequence is the employment of a collimator containing lead of high purity with the resultant problems of mechanical construction. Another is the substantial neutron leakage from the column outside the aperture into the experimental bunker. Furthermore the absence of a gamma shield has led to an electron dose to the skin. This is resolved with an electron shield of aluminium. Here the construction and final design issues are discussed and the state of the project is presented. (author)

  16. Final design of kaon beam K2 at KEK

    International Nuclear Information System (INIS)

    Kurokawa, Shin-ichi; Yamamoto, Akira.

    1977-09-01

    Final design of the 2.3 GeV/c kaon beam K2 is given. The K2 beam starts from the production target in slow extracted beam. Momentum range is 1 GeV/c through 2.3 GeV/c. Nominal total beam length is 27.9 m and solid-angle momentum acceptance is 6.25 msr%ΔP/P. Using a platinum target of diameter 3 mm and length 6 cm, 2.0 GeV/c beam fluxes of 1.0 x 10 6 K + and 5.2 x 10 5 K - per 10 12 13 GeV/c incident protons are expected at the final focus. (auth.)

  17. Final design and performance of in situ testing in Grimsel

    International Nuclear Information System (INIS)

    Fuentes-Cantillana, J.L.; Garcia-SiNeriz, J.L.

    1998-01-01

    This report is focused on the design, engineering, and construction aspects of the in situ test carried out at the Grimsel underground laboratory in Switzerland. This reproduces the AGP-granite concept of ENRESA for HLW repositories in crystalline rock. Two heaters, similar in dimensions and weight to the canisters in the reference concept, have been placed in a horizontal drift with a 2.28-m diameter, a total test length of 17.4 m, and backfilled with a total of 115.7 † of highly-compacted bentonite blocks. The backfilled area has been closed with a concrete plug which is 2.7 m thick. More than 600 sensors have been installed in the test to monitor different parameters such as temperature, pressures, humidity, etc., within both the buffer material and the host rock. The installation was completed and commissioned in February 1997, and then the heating phase, which will last for at least 3 years, was started. During this period, the test will basically be operated in an automatic mode, controlled and monitored from Spain via modem. The report is the Final Report from AITEMIN for Phase 4 of the project and includes a description of the test configuration and layout; the design, engineering, and manufacturing aspects of the different test components and equipment; the emplacement operation; and the as built information regarding the final position of the main components and the sensors. (Author)

  18. An Interactive Tool for Outdoor Computer Controlled Cultivation of Microalgae in a Tubular Photobioreactor System

    Directory of Open Access Journals (Sweden)

    Raquel Dormido

    2014-03-01

    Full Text Available This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short. This virtual laboratory it makes possible to: (a accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain; (b simulate a generic tubular PBR by changing the PBR geometry; (c simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.; (d simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations.

  19. Final design and status of the NSLS vacuum system

    International Nuclear Information System (INIS)

    Schuchman, J.C.

    1982-01-01

    We describe the final system, as built, reasons for changes and the general status of the NSLS. The NSLS is a dedicated facility for the purpose of producing synchrotron radiation. It consists of an electron linac-booster injector system, and two storage rings, one for uv research and the other for x-ray research. (Synchrotron radiation is produced by accelerating electrons in the storage rings.) The design current and energies are 1000 ma at 700 MeV for the vuv ring and 500 ma at 2.5 GeV for the x-ray ring. A total of 44 experimental beam ports are available for use. Since each beam port may be divided into two or more experimentall beam lines, it is quite plausible to have upward of 100 simultaneously operating beam lines

  20. Final design of thermal diagnostic system in SPIDER ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2016-11-15

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  1. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  2. Final design of thermal diagnostic system in SPIDER ion source

    International Nuclear Information System (INIS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-01-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H"− production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  3. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  4. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Montgomery (Montgomery Watson, Bellevue, WA)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  5. Northeast Oregon Hatchery Project conceptual design report. Final report

    International Nuclear Information System (INIS)

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed

  6. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toru; Hirabayashi, Shinichiro [Department of Ocean Technology, Policy, and Environment, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8563 (Japan); Yamada, Daiki [Department of Systems Innovation, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8563 (Japan)

    2010-06-15

    A virtual photobioreactor for mass-culturing microalgae was developed. This is a computer model system combining a numerical simulation code for two-phase turbulent flow of bubbles and continuous medium and a photosynthesis model that can express the flashing light effect. The flashing light effect should be considered because turbulent flow in the reactor gives microalgae a chance to come close to the irradiated surface in the opaque medium at irregular frequency and this intermittent illumination enhances photosynthesis of the algae. The two-phase flow model output the time history of light pass along light ray between the irradiated wall surface of the reactor and the individual algal cell, which was passively moved by turbulent flow. When the history of light intensity, which was calculated from that of the light pass and the Beer-Lambert law, experienced by the cell was given, the photosynthesis model output the amount of O{sub 2} emitted from the cell in every small time interval. Finally, the harvest of the alga was estimated from the amount of the O{sub 2}. As a result, the present model system successfully predicted the algal concentration optimal for the largest O{sub 2} emission at the given light intensity and simulated the growth curve of Chaetoceros gracili. (author)

  7. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect

    International Nuclear Information System (INIS)

    Sato, Toru; Yamada, Daiki; Hirabayashi, Shinichiro

    2010-01-01

    A virtual photobioreactor for mass-culturing microalgae was developed. This is a computer model system combining a numerical simulation code for two-phase turbulent flow of bubbles and continuous medium and a photosynthesis model that can express the flashing light effect. The flashing light effect should be considered because turbulent flow in the reactor gives microalgae a chance to come close to the irradiated surface in the opaque medium at irregular frequency and this intermittent illumination enhances photosynthesis of the algae. The two-phase flow model output the time history of light pass along light ray between the irradiated wall surface of the reactor and the individual algal cell, which was passively moved by turbulent flow. When the history of light intensity, which was calculated from that of the light pass and the Beer-Lambert law, experienced by the cell was given, the photosynthesis model output the amount of O 2 emitted from the cell in every small time interval. Finally, the harvest of the alga was estimated from the amount of the O 2 . As a result, the present model system successfully predicted the algal concentration optimal for the largest O 2 emission at the given light intensity and simulated the growth curve of Chaetoceros gracili.

  8. Red River Stream Improvement Final Design Nez Perce National Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Watershed Consulting, LLC

    2007-03-15

    This report details the final stream improvement design along the reach of Red River between the bridge below Dawson Creek, upstream for approximately 2 miles, Idaho County, Idaho. Geomorphic mapping, hydrologic profiles and cross-sections were presented along with existing fish habitat maps in the conceptual design report. This information is used to develop a stream improvement design intended to improve aquatic habitat and restore riparian health in the reach. The area was placer mined using large bucket dredges between 1938 and 1957. This activity removed most of the riparian vegetation in the stream corridor and obliterated the channel bed and banks. The reach was also cut-off from most valley margin tributaries. In the 50 years since large-scale dredging ceased, the channel has been re-established and parts of the riparian zone have grown in. However, the recruitment of large woody debris to the stream has been extremely low and overhead cover is poor. Pool habitat makes up more than 37% of the reach, and habitat diversity is much better than the project reach on Crooked River. There is little large woody debris in the stream to provide cover for spawning and juvenile rearing, because the majority of the woody debris does not span a significant part of the channel, but is mainly on the side slopes of the stream. Most of the riparian zone has very little soil or subsoil left after the mining and so now consists primarily of unconsolidated cobble tailings or heavily compacted gravel tailings. Knapweed and lodgepole pine are the most successful colonizers of these post mining landforms. Tributary fans which add complexity to many other streams in the region, have been isolated from the main reach due to placer mining and road building.

  9. Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day-night irradiation: experiments and simulation.

    Science.gov (United States)

    Bertucco, Alberto; Beraldi, Mariaelena; Sforza, Eleonora

    2014-08-01

    In this work, the production of Scenedesmus obliquus in a continuous flat-plate laboratory-scale photobioreactor (PBR) under alternated day-night cycles was tested both experimentally and theoretically. Variation of light intensity according to the four seasons of the year were simulated experimentally by a tunable LED lamp, and effects on microalgal growth and productivity were measured to evaluate the conversion efficiency of light energy into biomass during the different seasons. These results were used to validate a mathematical model for algae growth that can be applied to simulate a large-scale production unit, carried out in a flat-plate PBR of similar geometry. The cellular concentration in the PBR was calculated in both steady-state and transient conditions, and the value of the maintenance kinetic term was correlated to experimental profiles. The relevance of this parameter was finally outlined.

  10. How does sustainability certification affect the design process? Mapping final design projects at an architectural office

    DEFF Research Database (Denmark)

    Landgren, Mathilde; Jensen, Lotte Bjerregaard

    2017-01-01

    process and informing the industry of them. This has led to optimised design processes such as Integrated Energy Design, in which many decisions related to energy consumption and indoor climate are made in the early design stages. The current tendency is to use an expanded notion of sustainability......, derived from the sustainability certification system itself, and to apply it even in the early design process. This perspective emphasises all phases of the life cycle of a building. The goal of the present study was to map how a Danish architectural office approached sustainability in the projects......The context of the study is the very strict regulation of energy consumption for operating buildings in Denmark. It is difficult to meet the requirements by system optimisation in the final design phase, so recent research has focused on ways of meeting the target by adapting the whole design...

  11. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  12. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  13. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-05

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m(2). With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  14. Bioaggregate of photo-fermentative bacteria for enhancing continuous hydrogen production in a sequencing batch photobioreactor

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Wang, Rui-Qing; Ding, Jie; Ren, Hong-Yu; Zhou, Xu; Ren, Nan-Qi

    2015-11-01

    Hydrogen recovery through solar-driven biomass conversion by photo-fermentative bacteria (PFB) has been regarded as a promising way for sustainable energy production. However, a considerable fraction of organic substrate was consumed for the growth of PFB as biocatalysts, furthermore, these PFB were continuously washed out from the photobioreactor in continuous operation because of their poor flocculation. In this work, PFB bioaggregate induced by L-cysteine was applied in a sequencing batch photobioreactor to enhance continuous hydrogen production and reduce biomass washout. The effects of the hydraulic retention time (HRT), influent concentration and light intensity on hydrogen production of the photobioreactor were investigated. The maximum hydrogen yield (3.35 mol H2/mol acetate) and production rate (1044 ml/l/d) were obtained at the HRT of 96 h, influent concentration of 3.84 g COD/l, and light intensity of 200 W/m2. With excellent settling ability, biomass accumulated in the photobioreactor and reached 2.15 g/l under the optimum conditions. Structural analysis of bioaggregate showed that bacterial cells were covered and tightly linked together by extracellular polymeric substances, and formed a stable structure. Therefore, PFB bioaggregate induced by L-cysteine is an efficient strategy to improve biomass retention capacity of the photobioreactor and enhance hydrogen recovery efficiency from organic wastes.

  15. Bioethanol production from Scenedesmus obliquus sugars. The influence of photobioreactors and culture conditions on biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, J.R.; Passarinho, P.C.; Gouveia, L. [Laboratorio Nacional de Energia e Geologia (LNEG), Lisbon (Portugal). Unidade de Bioenergia

    2012-10-15

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L. (orig.)

  16. Physical abrasion method using submerged spike balls to remove algal biofilm from photobioreactors.

    Science.gov (United States)

    Nawar, Azra; Khoja, Asif Hussain; Akbar, Naveed; Ansari, Abeera Ayaz; Qayyum, Muneeb; Ali, Ehsan

    2017-12-02

    A major factor in practical application of photobioreactors (PBR) is the adhesion of algal cells onto their inner walls. Optimized algal growth requires an adequate sunlight for the photosynthesis and cell growth. Limitation in light exposure adversely affects the algal biomass yield. The removal of the biofilm from PBR is a challenging and expansive task. This study was designed to develop an inexpensive technique to prevent adhesion of algal biofilm on tubular PBR to ensure high efficiency of light utilization. Rubber balls with surface projections were introduced into the reactor, to remove the adherent biofilm by physical abrasion technique. The floatation of spike balls created a turbulent flow, thereby inhibiting further biofilm formation. The parameters such as, specific growth rate and doubling time of the algae before introducing the balls were 0.451 day -1 and 1.5 days respectively. Visible biofilm impeding light transmission was formed by 15-20 days. The removal of the biofilm commenced immediately after the introduction of the spike balls with visibly reduced deposits in 3 days. This was also validated by enhance cell count (6.95 × 106 cells mL -1 ) in the medium. The employment of spike balls in PBR is an environmental friendly and economical method for the removal of biofilm.

  17. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    Science.gov (United States)

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  18. Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors.

    Science.gov (United States)

    Yuvraj; Padmanabhan, Padmini

    2017-06-01

    Microalgal cultures are usually sparged with CO 2 -enriched air to preclude CO 2 limitation during photoautotrophic growth. However, the CO 2 vol% specifically required at operating conditions to meet the carbon requirement of algal cells in photobioreactor is never determined and 1-10% v/v CO 2 -enriched air is arbitrarily used. A scheme is proposed and experimentally validated for Chlorella vulgaris that allows computing CO 2 -saturated growth feasible at given CO 2 vol% and volumetric O 2 mass-transfer coefficient (k L a) O . CO 2 sufficiency in an experiment can be theoretically established to adjust conditions for CO 2 -saturated growth. The methodology completely eliminates the requirement of CO 2 electrode for online estimation of dissolved CO 2 to determine critical CO 2 concentration (C crit ), specific CO 2 uptake rate (SCUR), and volumetric CO 2 mass-transfer coefficient (k L a) C required for the governing CO 2 mass-transfer equation. C crit was estimated from specific O 2 production rate (SOPR) measurements at different dissolved CO 2 concentrations. SCUR was calculated from SOPR and photosynthetic quotient (PQ) determined from the balanced stoichiometric equation of growth. Effect of light attenuation and nutrient depletion on biomass estimate is also discussed. Furthermore, a simple design of photosynthetic activity measurement system was used, which minimizes light attenuation by hanging a low depth (ca. 10 mm) culture over the light source.

  19. Light requirements in microalgal photobioreactors. An overview of biophotonic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana P. [Universidade Catolica Portuguesa, Porto (Portugal). CBQF/Escola Superior de Biotecnologia; Silva, Susana O. [Universidade Catolica Portuguesa, Porto (Portugal). CBQF/Escola Superior de Biotecnologia; INESC Porto, Porto (Portugal); Baptista, Jose M. [INESC Porto, Porto (Portugal); Universidade da Madeira, Funchal (Portugal). Centro de Competencia de Ciencias Exactas e de Engenharia; Malcata, F. Xavier [ISMAI - Instituto Superior da Maia, Avioso S. Pedro (Portugal); Universidade Nova de Lisboa, Oeiras (Portugal). Inst. de Tecnologia Quimica e Biologica

    2011-03-15

    In order to enhance microalgal growth in photobioreactors (PBRs), light requirement is one of the most important parameters to be addressed; light should indeed be provided at the appropriate intensity, duration, and wavelength. Excessive intensity may lead to photo-oxidation and -inhibition, whereas low light levels will become growth-limiting. The constraint of light saturation may be overcome via either of two approaches: increasing photosynthetic efficiency by genetic engineering, aimed at changing the chlorophyll antenna size; or increasing flux tolerance, via tailoring the photonic spectrum, coupled with its intensity and temporal characteristics. These approaches will allow an increased control over the illumination features, leading to maximization of microalgal biomass and metabolite productivity. This minireview briefly introduces the nature of light, and describes its harvesting and transformation by microalgae, as well as its metabolic effects under excessively low or high supply. Optimization of the photosynthetic efficiency is discussed under the two approaches referred to above; the selection of light sources, coupled with recent improvements in light handling by PBRs, are chronologically reviewed and critically compared. (orig.)

  20. Waste Isolation Pilot Plant design validation: Final report

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides documentation of actual underground conditions encountered as they relate to the design criteria, design bases, and design configurations for the reference design of the underground openings. It includes a selection of the more essential data collected during the design validation effort and an interpretation of these data

  1. [Patented photobioreactor to commercial production of new drugs and nutraceuticals from microalgae].

    Science.gov (United States)

    Talbierz, Szymon; Kujawska, Natalia; Latała, Adam

    2012-01-01

    Microalgae - microscopic photosynthetic plants are an inexhaustible source of compounds with potential pharmaceutical applications. However, the development of microalgal biotechnology in particular for the production of new drugs and nutraceuticals has been slowed by the limited growth performance of algae in industrial photobioreactors. This is due to low light intensity, necessary for photosynthesis, which causes growth of algae. Flat-Plate photobioreactor with a solar-tracker system which is reported to protect with the Patent Office of RP enables optimal positioning of culture vessel to the direction of the sun's rays and thus can increase the efficiency of biomass growth (by 30%) and lipid content, compared with photobioreactors without it. The use of the invention in industrial plants can significantly contribute to lower costs and make all the technology more profitable.

  2. Alpha Group: The Behemoth Apteryx. Final design proposal

    Science.gov (United States)

    1991-01-01

    The participation of the University of Notre Dame's Alpha Design Group in the NASA/Universities Space Research Association (USRA) University Advanced Design Program for the 1990 to 1991 academic year is presented. Alpha Design Group presented a design for an aircraft called The Behemoth Apteryx.

  3. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  4. Knowledge and Processes in Design. DPS Final Report.

    Science.gov (United States)

    Pirolli, Peter

    Four papers from a project concerning information-processing characterizations of the knowledge and processes involved in design are presented. The project collected and analyzed verbal protocols from instructional designers, architects, and mechanical engineers. A framework was developed for characterizing the problem spaces of design that…

  5. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 1, Detailed design

    International Nuclear Information System (INIS)

    Blissell, W.H.; Ciez, A.P.; Goedicke, F.E.; Bessko, C.

    1987-01-01

    This document describes the Westinghouse Final Design for the Prototypical Spent Fuel Consolidation Equipment Demonstration Project. This design represents a fully qualified, licensable, cost effective spent fuel rod consolidation system. As a result of significant concerns raised by DOE and its Technical Review Committee during the 30% Design Review, significant changes were made to the original Preliminary Design resulting from Phase I activities. These changes focused on increased automation, end fitting removal, the rod pulling process and the need to maintain the consolidation canisters as clean as possible. As a result of these changes, the new system is greatly enhanced with a much greater probability of meeting or exceeding the project functional requirements. As a result of delays in resolving cost and contractual differences, additional bench testing was not conducted during Phase II. It is however our belief that the current design exceeds the 90% confidence level required by DOE because of the confidence gained from the Phase I tests, the additional engineering detail completed and the fact that our rod pulling tool has been demonstrated in a similar application at Oconee while our ID tube cutter is a modified (mounting method only) off-the-shelf design. 7 refs., 49 figs., 36 tabs

  6. 280 GHz Gyro-BWO design study: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    This report summarizes the results of a design study of a 280 GHz Gyro-BWO tunable source. The purpose of this study is to identify and propose viable design alternatives for any significant technological risk associated with building an operational BWO system. The tunable Gyro-BWO system will have three major components: a Gyro-BWO microwave tube, a superconducting magnet, and a power supply/modulator. The design tasks for this study in order of decreasing importance are: design and specification of the superconducting magnet; preliminary design and layout of a Gyro-BWO microwave tube; and specification for the power supply/modulator. 2 refs., 4 figs

  7. An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor

    International Nuclear Information System (INIS)

    Ashokkumar, Veeramuthu; Salam, Zainal; Tiwari, O.N.; Chinnasamy, Senthil; Mohammed, Sudheer; Ani, Farid Nasir

    2015-01-01

    Highlights: • Alga Scenedesmus bijugatus was explored for biodiesel and bioethanol production. • Tubular photobioreactor was designed and produced 0.26 g L −1 d −1 of dry biomass. • Sequential stages of transesterification produced 0.21 g biodiesel yield/g dry biomass. • The lipid extracted residues of S. bijugatus produced 0.158 g bioethanol/g dry biomass. - Abstract: Algae are considered promising renewable feedstocks for the production of alternative fuels. In this study, an indigenous strain of Scenedesmus bijugatus found commonly in the fresh water bodies was isolated and evaluated for biofuels production. The alga was successfully mass cultivated in the custom made vertical tubular photobioreactor (250 L capacity) at semi-continuous mode. During the cultivation period, the volumetric biomass and lipid productivity were assessed. The alga S. bijugatus produced 0.26 g L −1 d −1 of dry biomass and 63 mg L −1 d −1 of lipids, respectively. Algal biomass was harvested by a combined harvesting process involving coagulation and flocculation using Iron (III) sulfate and an organic polymer which resulted in 98% harvesting efficiency. Lipid extraction using hexane:diethyl ether (1:2 ratio) resulted in maximum extraction of lipids. This study also examined sequential stages of esterification and transesterification to convert lipids to biodiesel. The maximum biodiesel yield of 0.21 g/g of dry biomass was obtained through the acid base catalytic process. The biodiesel fuel properties were tested and observed that most of the properties complying with ASTM D6751 specifications. The lipid extracted residual biomass recorded a yield of 0.158 g of bioethanol per g. This study confirmed the potential of lipid extracted biomass for the production of bioethanol to improve the economic feasibility of microalgal biorefinery

  8. Empirical pillar design methods review report: Final report

    International Nuclear Information System (INIS)

    1988-02-01

    This report summarizes and evaluates empirical pillar design methods that may be of use during the conceptual design of a high-level nuclear waste repository in salt. The methods are discussed according to category (i.e, main, submain, and panel pillars; barrier pillars; and shaft pillars). Of the 21 identified for main, submain, and panel pillars, one method, the Confined Core Method, is evaluated as being most appropriate for conceptual design. Five methods are considered potentially applicable. Of six methods identified for barrier pillars, one method based on the Load Transfer Distance concept is considered most appropriate for design. Based on the evaluation of 25 methods identified for shaft pillars, an approximate sizing criterion is proposed for use in conceptual design. Aspects of pillar performance relating to creep, ground deformation, interaction with roof and floor rock, and response to high temperature environments are not adequately addressed by existing empirical design methods. 152 refs., 22 figs., 14 tabs

  9. Development of the ITER Continuous External Rogowski: From conceptual design to final design

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, Philippe, E-mail: philippe.jacques.moreau@cea.fr [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Spuig, Pascal; Le-luyer, Alain; Malard, Philippe; Cantone, Bruno; Pastor, Patrick; Saint-Laurent, François [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Vayakis, George; Delhom, Dominique [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arshad, Shakeib [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Lister, Jonathan; Toussaint, Matthieu; Marmillod, Philippe; Testa, Duccio; Schlatter, Christian [Ecole polytechnique fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, 1015 Lausanne (Switzerland); Peruzzo, Simone [Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy)

    2015-10-15

    Highlights: • ITER Continuous External Rogowskis are designed for plasma current measurement. • CER are located in the casing of Toroidal Field Coils and will operate at 4.5 K. • The design of the sensors has been completed and validated through prototypes. • Detailed assembly procedure inside the toroidal field coil casing has been defined. • The CER has passed all the ITER and F4E design review procedures. - Abstract: In ITER, an accurate measurement of plasma current, with high reliability, is mandatory as this parameter is used to demonstrate licensing compliance with regulatory limits. For that purpose, several independent measurements based on magnetic diagnostics have been proposed. Rogowski coils are standard inductive sensors for current measurement in many applications. In ITER, three continuous external Rogowski coils are to be installed in the casing of the toroidal field coils. These sensors are remarkable from several points of view: overall length is about 40 m, high sensitivity needed, located in the toroidal field coil casing at 4.5 K and complex 3D routing with tight bending radius of 50 mm. Since 2005 an extensive work has been carried out to develop and analyze several design options complying with ITER specifications. Prototypes of a selected continuous external Rogowski design were built and tested successfully in terms of electrical, thermal, mechanical and vacuum characteristics. Finally a detailed assembly procedure inside the toroidal field coil casing has been defined according to the coil manufacturing and assembly constraints.

  10. LWR design decision methodology: Phase II. Final report

    International Nuclear Information System (INIS)

    1981-01-01

    Techniques were identified to augment existing design process at the component and system level in order to optimize cost and safety between alternative system designs. The method was demonstrated using the Surry Low Pressure Injection System (LPIS). Three possible backfit options were analyzed for the Surry LPIS, assessing the safety level of each option and estimating the acquisition and installation costs for each

  11. LWR design decision methodology: Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    Techniques were identified to augment existing design process at the component and system level in order to optimize cost and safety between alternative system designs. The method was demonstrated using the Surry Low Pressure Injection System (LPIS). Three possible backfit options were analyzed for the Surry LPIS, assessing the safety level of each option and estimating the acquisition and installation costs for each. (DLC)

  12. 77 FR 56241 - Notice of Withdrawal of Final Design Approval; Westinghouse Electric Company; Advanced Passive 1000

    Science.gov (United States)

    2012-09-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0131] Notice of Withdrawal of Final Design Approval; Westinghouse Electric Company; Advanced Passive 1000 By letter dated December 10, 2010, Westinghouse Electric... final design approval (FDA) for the Advanced Passive 1000 (AP1000) design upon the completion of...

  13. Microalgae community shifts during the biogas upgrading in an alkaline open photobioreactor.

    Science.gov (United States)

    Granada-Moreno, C I; Aburto-Medina, A; de Los Cobos Vasconcelos, D; González-Sánchez, A

    2017-10-01

    To achieve the functional specialization of a microalgae community through operational tuning of an open photobioreactor used for biogas upgrading under alkaline conditions. An open photobioreactor was inoculated with an indigenous microalgae sample from the Texcoco Soda Lake. A microalgae community was adapted to fix CO 2 from synthetic biogas through different culture conditions reaching a maximum of 220 mg CO 2  l -1 per day. Picochlorum sp. and Scenedesmus sp. were identified as the prominent microalgae genera by molecular fingerprinting (partial sequencing of 16S rRNA and 18S rRNA genes) but only the first was detected by microscopy screening. Changes in the microalgae community profile were monitored by a range-weighted richness index, reaching the lowest value when biogas was upgraded. A robust microalgae community in the open photobioreactor was obtained after different culture conditions. The specialization of microalgae community for CO 2 fixation under H 2 S presence was driven by biogas upgrading conditions. The alkaline conditions enhance the CO 2 absorption from biogas and could optimize specialized microalgae communities in the open photobioreactor. Denaturing gradient gel electrophoresis fingerprinting and richness index comparison are useful methods for the evaluation of microalgae community shifts and photosynthetic activity performance, particularly in systems intended for CO 2 removal from biogas where the CO 2 assimilation potential can be related to the microbial richness. © 2017 The Society for Applied Microbiology.

  14. Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications

    NARCIS (Netherlands)

    Olivieri, G.; Salatino, P.; Marzocchella, A.

    2014-01-01

    Over the past ten years a great deal of literature has focused on the biotechnological potential of microalgal commercial applications, mainly in the field of biofuel production. However, the biofuel production is not yet competitive, mainly due to the incidence of the photobioreactor technology on

  15. Optimisation of cultivation parameters in photobioreactors for microalgae cultivation using the A-stat technique

    NARCIS (Netherlands)

    Barbosa, M.J.; Hoogakker, J.; Wijffels, R.H.

    2003-01-01

    Light availability inside the reactor is often the bottleneck in microalgal cultivation and for this reason much attention is being given to light limited growth kinetics of microalgae, aiming at the increase of productivity in photobioreactors. Steady-state culture characteristics are commonly used

  16. LWR design decision methodology. Phase III. Final report

    International Nuclear Information System (INIS)

    Bertucio, R.; Held, J.; Lainoff, S.; Leahy, T.; Prather, W.; Rees, D.; Young, J.

    1982-01-01

    Traditionally, management decisions regarding design options have been made using quantitative cost information and qualitative safety information. A Design Decision Methodology, which utilizes probabilistic risk assessment techniques, including event trees and fault trees, along with systems engineering and standard cost estimation methods, has been developed so that a quantitative safety measure may be obtained as well. The report documents the development of this Design Decision Methodology, a demonstration of the methodology on a current licensing issue with the cooperation of the Washington Public Power Supply System (WPPSS), and a discussion of how the results of the demonstration may be used addressing the various issues associated with a licensing position on the issue

  17. Gas recombination device design and cost study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Under a contract with Argonne National Laboratory, VARTA Batterie AG. conducted a design and cost study of hydrogen-oxygen recombination devices (HORD) for use with utility load-leveling lead-acid cells. Design specifications for the devices, through extensive calculation of the heat-flow conditions of the unit, were developed. Catalyst and condenser surface areas were specified. The exact dimensions can, however, be adjusted to the cell dimension and the space available above the cell. Design specifications were also developed for additional components required to ensure proper function of the recombination device, including metal hydride compound decomposer, aerosol retainer, and gas storage component. Costs for HORD were estimated to range from $4 to $10/kWh cell capacity for the production of a large number of units (greater than or equal to 10,000 units). The cost is a function of cell size and positive grid design. 21 figures, 2 tables.

  18. Design phase identification of high pile rebound soils : final report

    Science.gov (United States)

    2010-12-15

    An engineering problem has occurred when installing displacement piles in certain soils. During driving, piles are rebounding excessively during each hammer blow, causing delay and as a result may not achieve the required design capacities. Piles dri...

  19. Industrial assessment of nonbackfittable PWR design modifications. Final report

    International Nuclear Information System (INIS)

    Matzie, R.A.; Daleas, R.S.; Miller, D.D.

    1980-11-01

    As part of the US Department of Energy's Advanced Reactor Design Study, various nonbackfittable PWR design modifications were evaluated to determine their potential for improved uranium utilization and commercial viability. Combustion Engineering, Inc. contributed to this effort through participation in the Battelle Pacific Northwest Laboratory industrial assessment of such design modifications. Seven modifications, including the use of higher primary system temperatures and pressures, rapid-frequent refueling, end-of-cycle stretchout, core periphery modifications, radial blankets, low power density cores, and small PWR assemblies, were evaluated with respect to uranium utilization, economics, technical and operational complexity, and several other subjective considerations. Rapid-frequent refueling was judged to have the highest potential although it would probably not be economical for the majority of reactors with the design assumptions used in this assessment

  20. Assessment of Design Modifications to Final Clothe the Soldier Rucksack

    National Research Council Canada - National Science Library

    Reid, S. A; Stevenson, J. M

    2006-01-01

    .... Quantitative assessment of these functional parameters was undertaken to compare the behaviour of a proposed modification to that of the currently fielded design to ensure no degradation in performance...

  1. Work zone design and operation enhancements : final report, March 2010.

    Science.gov (United States)

    2010-02-01

    Oregon Department of Transportation contractors are required to implement Traffic Control Plans (TCPs) to protect and direct traffic through work zones. The design and implementation of TCPs have shown variation from project-to-project across the Sta...

  2. Stationary battery guide: Design, application, and maintenance. Final report

    International Nuclear Information System (INIS)

    1997-11-01

    This guide has been prepared to assist a variety of users with stationary battery design, application, and maintenance. The following battery-related topics are discussed in detail: (1) fundamentals--how batteries are designed and how they work; (2) aging, degradation, and failures with an emphasis on how various maintenance tasks can prevent, detect, or repair certain degradation mechanisms; (3) applications--how batteries are designed for a specific purpose and how the battery industry has evolved; (4) sizing for different applications; (5) protection and charging; (6) periodic inspections and checks; (7) capacity discharge testing; (8) installation and replacement considerations; and (9) problems that can occur with battery systems. Since the original guide was published, new IEEE Recommended Practices related to stationary battery applications have been issued. This revision addresses those industry changes as well as some of the emerging issues related to the development of other industry documents. This guide has been prepared as a comprehensive reference source for stationary batteries and is intended to address the design, application, and maintenance needs of users. The technical discussions are at the application level. Fundamentals of battery design are covered in greater detail in this revision. More details related to internal cell materials, their operational relationship, and performance over the expected life of the battery cell are provided. This information has been included because many changes in battery cell materials, manufacturing and design processes are not always communicated to the user

  3. Assessment of inspectability of LMFBR designs. Final report

    International Nuclear Information System (INIS)

    1981-09-01

    This two-volume report provides a comprehensive review of the inspectability of specific portions of loop- and pool-type LMFBR (1000-MWe) designs selected by EPRI. The designs were developed during the mid to late 1970s by three independent design teams (General Electric Co., Rockwell International, and Westinghouse) under the sponsorship of DOE (formerly ERDA) and EPRI. The requirements for normal, contingency, and post-repair inspections, addressed in this report, were established from Draft 12 of the ASME Boiler and Pressure Vessel Code, Section XI Division 3, issued in September 1979. These requirements, the intrinsic characteristics of the designs, the environmental (radiation, thermal, and atmospheric) aspects, and the available (present and near-term) inspection techniques, formed the basis for assessing the selected portions of the design or (1) accessibility, (2) feasibility, (3) practicality, and (4) costs to perform the above-specified inspections. Changes and additions fly ash has been as a concrete additive; however, extensive pilot scale development is underway to advance ash use in the TVA region in such areas as mineral and magnetite recovery, and mineral wool insulation. Recommended studies include: (1) the feasibility of converting existing wet fly d by the fuels include: residential (which includes residential and commercial), elthodology will be developed and verified in Phase II

  4. Feasibility design study. Land-based OTEC plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, J. H.; Minor, J.; Jacobs, R.

    1979-01-01

    The purpose of this study has been to determine the feasibility of installing 10 MWe (MegaWatt-electric) and 40 MWe land-based OTEC demonstration power plants at two specific sites: Keahole Point on the western shore of the island of Hawaii; and Punta Tuna, on the southeast coast of the main island of Puerto Rico. In addition, the study has included development of design parameters, schedules and budgets for the design, construction and operation of these plants. Seawater systems (intake and discharge pipes) were to be sized so that flow losses were equivalent to those expected with a platform-based OTEC power plant. The power module (components and general arrangement was established based on the TRW design. Results are presented in detail. (WHK)

  5. Deepwater offshore windfarm. Design fabrication and installation study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report discusses the plans and benefits of using the Beatrice oil field installation for the development of the offshore Beatrice windfarm in the Moray Firth. The development of an economic support structure for wind turbine generators to allow development of deepwater wind farms was investigated, and the screening of structural designs, and the analysis of fatigue, fabrication and installation considerations is described. Details are given of the recommendation for a further examination of two structural designs as options for the Beatrice windfarm development, the estimated costs, and the results of an environmental review.

  6. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  7. Enhanced Internet firewall design using stateful filters final report

    Energy Technology Data Exchange (ETDEWEB)

    Hutchins, J.A. [Sandia National Labs., Livermore, CA (United States). Infrastructure and Networking Research Dept.; Simons, R.W. [Sandia National Labs., Albuquerque, NM (United States). Decision Support Systems Architectures

    1997-08-01

    The current state-of-the-art in firewall design provides a lot of security for company networks, but normally at the expense of performance and/or functionality. Sandia researched a new approach to firewall design which incorporates a highly stateful approach, allowing much more flexibility for protocol checking and manipulation while retaining performance. A prototype system was built and multiple protocol policy modules implemented to test the concept. The resulting system, though implemented on a low-power workstation, performed almost at the same performance as Sandia`s current firewall.

  8. TIBER: Tokamak Ignition/Burn Experimental Research. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Barr, W.L.

    1985-01-01

    The Tokamak Ignition/Burn Experimental Research (TIBER) device is the smallest superconductivity tokamak designed to date. In the design plasma shaping is used to achieve a high plasma beta. Neutron shielding is minimized to achieve the desired small device size, but the superconducting magnets must be shielded sufficiently to reduce the neutron heat load and the gamma-ray dose to various components of the device. Specifications of the plasma-shaping coil, the shielding, coaling, requirements, and heating modes are given. 61 refs., 92 figs., 30 tabs

  9. Design and synthesis of reactive separation systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-12-31

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  10. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT; FINAL

    International Nuclear Information System (INIS)

    Albrecht H. Mayer

    2000-01-01

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions

  11. AGC-1 Experiment and Final Preliminary Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Bratton; Tim Burchell

    2006-08-01

    This report details the experimental plan and design as of the preliminary design review for the Advanced Test Reactor Graphite Creep-1 graphite compressive creep capsule. The capsule will contain five graphite grades that will be irradiated in the Advanced Test Reactor at the Idaho National Laboratory to determine the irradiation induced creep constants. Seven other grades of graphite will be irradiated to determine irradiated physical properties. The capsule will have an irradiation temperature of 900 C and a peak irradiation dose of 5.8 x 10{sup 21} n/cm{sup 2} [E > 0.1 MeV], or 4.2 displacements per atom.

  12. Fifth SIAM conference on geometric design 97: Final program and abstracts. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The meeting was divided into the following sessions: (1) CAD/CAM; (2) Curve/Surface Design; (3) Geometric Algorithms; (4) Multiresolution Methods; (5) Robotics; (6) Solid Modeling; and (7) Visualization. This report contains the abstracts of papers presented at the meeting. Proceding the conference there was a short course entitled ``Wavelets for Geometric Modeling and Computer Graphics``.

  13. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Drake [Abengoa Solar LLC, Lakewood, CO (United States); Kelly, Bruce [Abengoa Solar LLC, Lakewood, CO (United States); Burkholder, Frank [Abengoa Solar LLC, Lakewood, CO (United States)

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  14. Design analysis of supplemental heating systems. Final report

    International Nuclear Information System (INIS)

    1981-09-01

    The first objective of the study was to formulate an R and D plan for tokamak supplemental heating based upon an evaluation and the potential of each heating technique. The second objective was to develop conceptual designs for reactor level heating systems. The two techniques selected for the second studies were icrh and negative beams

  15. MFTF electron cyclotron resonance heating conceptual design study. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    This report presents conceptual designs, discusses research and development requirements, and provides schedule requirements and rough order of magnitude cost estimates for the ECRH system. Requirements for the basic equipment needed to implement the ECRH power generators and distribute the power have been developed. Conceptual approaches to the development and fabrication of such a system have been generated

  16. Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor.

    Science.gov (United States)

    Li, Tong; Piltz, Bastian; Podola, Björn; Dron, Anthony; de Beer, Dirk; Melkonian, Michael

    2016-05-01

    In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000 μmol photons m(-2) s(-1) ) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 µm, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150 μm, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2 mM was measured with 1,000 μmol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. © 2015 Wiley Periodicals, Inc.

  17. 75 FR 52860 - Final Airworthiness Design Standards for Acceptance Under the Primary Category Rule; Orlando...

    Science.gov (United States)

    2010-08-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 21 Final Airworthiness Design Standards for Acceptance Under the Primary Category Rule; Orlando Helicopter Airways (OHA), Inc... Existence of Proposed Airworthiness Design Standards for Acceptance Under the Primary Category Rule; Orlando...

  18. Final Design of the SLAC P2 Marx Klystron Modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, M.A.; Benwell, A.; Burkhart, C.; Larsen, R.; MacNair, D.; Nguyen, M.; Olsen, J.; /SLAC

    2011-11-08

    The SLAC P2 Marx has been under development for two years, and follows on the P1 Marx as an alternative to the baseline klystron modulator for the International Linear Collider. The P2 Marx utilizes a redundant architecture, air-insulation, a control system with abundant diagnostic access, and a novel nested droop correction scheme. This paper is an overview of the design of this modulator. There are several points of emphasis for the P2 Marx design. First, the modulator must be compatible with the ILC two-tunnel design. In this scheme, the modulator and klystron are located within a service tunnel with limited access and available footprint for a modulator. Access to the modulator is only practical from one side. Second, the modulator must have high availability. Robust components are not sufficient alone to achieve availability much higher than 99%. Therefore, redundant architectures are necessary. Third, the modulator must be relatively low cost. Because of the large number of stations in the ILC, the investment needed for the modulator components is significant. High-volume construction techniques which take advantage of an economy of scale must be utilized. Fourth, the modulator must be simple and efficient to maintain. If a modulator does become inoperable, the MTTR must be small. Fifth, even though the present application for the modulator is for the ILC, future accelerators can also take advantage of this development effort. The hardware, software, and concepts developed in this project should be designed such that further development time necessary for other applications is minimal.

  19. Dedicated medical ion accelerator design study. Final report

    International Nuclear Information System (INIS)

    1977-12-01

    Results and conclusions are reported from a design study for a dedicated medical accelerator. Basing efforts on the current consensus regarding medical requirements, the resulting demands on accelerator and beam delivery systems were analyzed, and existing accelerator technology was reviewed to evaluate the feasibility of meeting these demands. This general analysis was augmented and verified by preparing detailed preliminary designs for sources of therapeutic beams of neutrons, protons and heavy ions. The study indicates that circular accelerators are the most desirable and economical solutions for such sources. Synchrotrons are clearly superior for beams of helium and heavier ions, while synchrotrons and cyclotrons seem equally well suited for protons although they have different strengths and weaknesses. Advanced techniques of beam delivery are of utmost importance in fully utilizing the advantages of particle beams. Several issues are invloved here. First, multi-treatment room arrangements are essential for making optimal use of the high dose rate capabilities of ion accelerators. The design of corresponding beam switching systems, the principles of which are already developed for physics experimental areas, pose no problems. Second, isocentric beam delivery substantially enhances flexibility of dose delivery. After several designs for such devices were completed, it was concluded that high field magnets are necessary to keep size, bulk and cost acceptable. Third, and most important, is the generation of large, homogeneous radiation fields. This is presently accomplished with the aid of scattering foils, occluding rings, collimators, ridge filters, and boluses. A novel approach, three-dimensional beam scanning, was developed here, and the most demanding components of such a system (fast-scanning magnet and power supply) were built and tested

  20. Final design proposal: Delta Group-Nood Rider 821(tm)

    Science.gov (United States)

    Pastega, C. B.; Vahey, B. P.; Hoffman, K. W.; Doherty, M. C.; Fay, M. J.; Konesky, A. L.; Lilly, D. C.; Moody, D. J.

    1991-01-01

    The Nood Rider 821 (trademark) twin-engine, prop passenger aircraft is described. It is argued that the aircraft is very economical to operate and maintain, offering competitive advantages in the air travel marketplace. The aircraft was designed to operate in 'Aeroworld', a fictional world where the passengers are ping pong balls and the distances between cites are on the order of thousands of feet.

  1. Photovoltaic subsystem optimization and design tradeoff study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, W.J.

    1982-03-01

    Tradeoffs and subsystem choices are examined in photovoltaic array subfield design, power-conditioning sizing and selection, roof- and ground-mounted structure installation, energy loss, operating voltage, power conditioning cost, and subfield size. Line- and self-commutated power conditioning options are analyzed to determine the most cost-effective technology in the megawatt power range. Methods for reducing field installation of flat panels and roof mounting of intermediate load centers are discussed, including the cost of retrofit installations.

  2. Maximizing the productivity of the microalgae Scenedesmus AMDD cultivated in a continuous photobioreactor using an online flow rate control.

    Science.gov (United States)

    McGinn, Patrick J; MacQuarrie, Scott P; Choi, Jerome; Tartakovsky, Boris

    2017-01-01

    In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L -1  d -1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.

  3. Laser fusion systems design study. Final technical report

    International Nuclear Information System (INIS)

    1975-06-01

    This study investigated: (1) the formulation and evaluation of an alignment system to accomplish pointing, focusing, centering and translation for the 20-arm SHIVA laser, (2) the formulation and evaluation of concepts for the correction of static phase distortions introduced by the accumulated optical elements in the laser chains, (3) the formulation and evaluation of concepts for the correction of optical path length differences between the arms of the SHIVA system, and (4) the conceptual design of appropriate control system hardware. (U.S.)

  4. Buildings energy management program workshop design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    This document describes activities undertaken by Honeywell's Energy Resources Center for design and development of the format, content, and materials that were used in conducting 129 one-day energy management workshops for specific commercial business audiences. The Building Energy Management Workshop Program was part of a National Workshop Program that was intended to increase awareness of energy-related issues and to encourage energy-conservation actions on the part of commercial and industrial sectors. The total effort included executive conferences for chief executive officers and other senior management personnel; industrial energy-conservation workshops directed at plant management and engineering personnel; vanpooling workshops designed to inform and encourage business in implementing a vanpooling program for employees; and the building energy-management workshops specifically developed for managers, owners, and operators of office and retail facilities, restaurants, and supermarkets. The total program spanned nearly two years and reached approximately 2,500 participants from all parts of the U.S. A detailed followup evaluation is still being conducted to determine the impact of this program in terms of conservation action undertaken by workshop participants.

  5. Permian Basin, Texas: Volume 1, Text: Final preliminary design report

    International Nuclear Information System (INIS)

    1988-01-01

    This report is a description of the preliminary design for an Exploratory Shaft Facility (ESF) at the proposed 49 acre site located 21 miles north of Hereford, Texas in Deaf Smith County. Department of Energy must conduct in situ testing at depth to ascertain the engineering and environmental suitability of the site for further consideration for nuclear waste repository development. The ESF includes the construction of two 12-ft diameter engineered shafts for accessing the bedded salt horizon to conduct in situ tests to ascertain if the site should be considered a candidate site for the first High Level Nuclear Waste Repository. This report includes pertinent engineering drawings for two shafts and all support facilities necessary for shaft construction and testing program operation. Shafts will be constructed by conventional drill-and-blast methods employing ground freezing prior to shaft construction to stabilize the existing groundwater and soil conditions at the site. A watertight liner and seal system will be employed to prevent intermingling of aquifers and provide a stable shaft throughout its design life. 38 refs., 37 figs., 14 tabs

  6. VHTR engineering design study: intermediate heat exchanger program. Final report

    International Nuclear Information System (INIS)

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes

  7. Canister Cleaning System Final Design Report - Project A.2.A

    International Nuclear Information System (INIS)

    FARWICK, C.C.

    2000-01-01

    Approximately 2,300 metric tons Spent Nuclear Fuel (SNF) are currently stored within two water filled pools, the 105 K East (KE) fuel storage basin and the 105 K West (KW) fuel storage basin, at the U.S. Department of Energy, Richland Operations Office (RL). The SNF Project is responsible for operation of the K Basins and for the materials within them. A subproject to the SNF Project is the Debris Removal Subproject, which is responsible for removal of empty canisters and lids from the basins. The Canister Cleaning System (CCS) is part of the Debris Removal Project. The CCS will be installed in the KW Basin and operated during the fuel removal activity. The KW Basin has approximately 3600 canisters that require removal from the basin. The CCS is being designed to ''clean'' empty fuel canisters and lids and package them for disposal to the Environmental Restoration Disposal Facility complex. The system will interface with the KW Basin and be located in the Dummy Elevator Pit

  8. Final report of the ITER EDA. Final report of the ITER Engineering Design Activities. Prepared by the ITER Council

    International Nuclear Information System (INIS)

    2001-01-01

    This is the Final Report by the ITER Council on work carried out by ITER participating countries on cooperation in the Engineering Design Activities (EDA) for the ITER. In this report the main ITER EDA technical objectives, the scope of ITER EDA, its organization and resources, engineering design of ITER tokamak and its main parameters are presented. This Report also includes safety and environmental assessments, site requirements and proposed schedule and estimates of manpower and cost as well as proposals on approaches to joint implementation of the project

  9. Blade System Design Study. Part II, final project report (GEC).

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Dayton A. (DNV Global Energy Concepts Inc., Seattle, WA)

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its

  10. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  11. A novel closed system bubble column photobioreactor for detailed characterisation of micro and macroalgal growth

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Christensen, L.; Iversen, J. J.L.

    produced oxygen was catalytically removed from the closed system by addition of hydrogen over a palladium catalyst to avoid photorespiration and to quantify oxygen production. In addition, the bubble column photobioreactor was well suited for cultivation of algae due to fast gas to liquid mass transfer (k...... in the different batch cultures of both micro and macroalgae. The algal SGR is normally considered to be constant. The maximum SGRs found by on-line determination were 0.13 hr-1 for T. striata and 0.12 d-1 for C. crispus. During batch cultivation growth stoichiometry was determined and photosynthetic quotients......Growth of the marine microalgae Tetraselmis striata Butcher and macroalgae Chondrus crispus Stackhouse was investigated in batch cultures in a closed system bubble column photobioreactor. A laboratory cultivation system was constructed that allowed on-line monitoring of temperature, p...

  12. Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond

    Science.gov (United States)

    Jay, M. I.; Kawaroe, M.; Effendi, H.

    2018-03-01

    Microalgae contain lipids and fatty acids that can be the raw materials of biofuel. Previous studies have been known of using cultivation systems to obtain biomass of C. vulgaris which can be extracted to obtain lipid and fatty acid content. The observational step was observed ten days in photobioreactor and open pond for harvesting biomass using NaOH, lipid extraction using hexane and methanol, and fatty acid analysis using Gas Chromatography. Lipid content of microalgae biomass in photobioreactor and open pond was 2.26 ± 0.51% and 3.18 ± 0.80%, respectively. Fatty acid content ranged between 0.7-22.8% and 0.9-22.6% and the dominant fatty acids in both cultivating system was palmitic acid.

  13. Increasing tetracycline concentrations on the performance and communities of mixed microalgae-bacteria photo-bioreactors

    KAUST Repository

    Xiong, Yanghui

    2017-12-11

    This study investigated the impact of varying concentrations of tetracycline on the performance of mixed microalgae-bacteria photo-bioreactors. Photo-bioreactors were assessed for their ability to remove carbon dioxide (CO2) from the biogas of anaerobic membrane bioreactor (anMBR), and nutrients from the anaerobic effluent. The varying concentrations of tetracycline had no impact on the removal of CO2 from biogas. 29% v/v of CO2 was completely removed to generate >20% v/v of oxygen (O2) in all reactors. Removal of nutrients and biomass was not affected at low concentrations of tetracycline (≤150μg/L), but 20mg/L of tetracycline lowered the biomass generation and removal efficiencies of phosphate. Conversely, high chlorophyll a and b content was observed at 20mg/L of tetracycline. High tetracycline level had no impact on the diversity of 18S rRNA gene-based microalgal communities but adversely affected the 16S rRNA gene-based microbial communities. Specifically, both Proteobacteria and Bacteroidetes phyla decreased in relative abundance but not phylum Chloroplast. Additionally, both nitrogen-fixing (e.g. Flavobacterium, unclassified Burkholderiales and unclassified Rhizobiaceae) and denitrifying groups (e.g. Hydrogenophaga spp.) were significantly reduced in relative abundance at high tetracycline concentration. Phosphate-accumulating microorganisms, Acinetobacter spp. and Pseudomonas spp. were similarly reduced upon exposure to high tetracycline concentration. Unclassified Comamonadaceae, however, increased in relative abundance, which correlated with an increase in the abundance of tetracycline resistance genes associated with efflux pump mechanism. Overall, the findings demonstrate that antibiotic concentrations in municipal wastewaters will not significantly affect the removal of nutrients by the mixed microalgae-bacteria photo-bioreactors. However, utilizing such photo-bioreactors as a polishing step for anMBRs that treat wastewaters with high tetracycline

  14. Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration.

    Science.gov (United States)

    Praveen, Prashant; Heng, Jonathan Yun Ping; Loh, Kai-Chee

    2016-12-01

    Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively. Based on the energy input, the total operating costs for OMPBR were 32-45% higher than that of the MPBR, and filtration cost for OMPBR was 3.5-4.5 folds higher than that of the MPBR. These results indicate that the integration of membrane filtration with photobioreactors is promising in microalgae-based tertiary wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Final turbine and test facility design report Alden/NREC fish friendly turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Thomas C. [Alden Research Lab., Holden, MA (United States); Cain, Stuart A. [Alden Research Lab., Holden, MA (United States); Fetfatsidis, Paul [Alden Research Lab., Holden, MA (United States); Hecker, George E. [Alden Research Lab., Holden, MA (United States); Stacy, Philip S. [Alden Research Lab., Holden, MA (United States)

    2000-09-01

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  16. Passive solar commercial buildings: design assistance and demonstration program. Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-26

    The final design of the Mount Airy Public Library is given. Incremental passive design costs are discussed. Performance and economic analyses are made and the results reported. The design process is thoroughly documented. Considerations discussed are: (1) building energy needs; (2) site energy potentials, (3) matching energy needs with site energy potentials, (4) design indicators for best strategies and concepts, (5) schematic design alternatives, (6) performance testing of the alternatives, (7) design selection, and (8) design development. Weather data and Duke Power electric rates are included. (LEW)

  17. Final design of the neutral beam lines for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Pittenger, L.C.; Valby, L.E.; Stone, R.R.; Pedrotti, L.R.; Denhoy, B.; Yoard, R.

    1979-01-01

    Final design of the neutral beam lines for TFTR has been completed. A prototype has been assembled at Lawrence Berkeley Laboratory and is undergoing testing as part of the Neutral Beam System Test Facility (NBSTF). The final neutral beam line (NBL) configuration differs in several details from that previously reported upon; certain components have been added; and testing of the cryopump system has led to some design simplification. It is these developments which are reported herein

  18. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 2

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3MW MOD-5A wind turbine generator is documented. The report is divided into four volumes: Volume 1 summarizes the entire MOD-5A program, Volume 2 discusses the conceptual and preliminary design phases, Volume 3 describes the final design of the MOD-5A, and Volume 4 contains the drawings and specifications developed for the final design. Volume 3, book 2 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. The subsystem for power generation, control, and instrumentation subsystems is described in detail. The manufacturing and construction plans, and the preparation of a potential site on Oahu, Hawaii, are documented. The quality assurance and safety plan, and analyses of failure modes and effects, and reliability, availability and maintainability are presented.

  19. The laboratory environmental algae pond simulator (LEAPS) photobioreactor: Validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina

    Energy Technology Data Exchange (ETDEWEB)

    Huesemann, M.; Williams, P.; Edmundson, S.; Chen, P.; Kruk, R.; Cullinan, V.; Crowe, B.; Lundquist, T.

    2017-09-01

    A bench-scale photobioreactor system, termed Laboratory Environmental Algae Pond Simulator (LEAPS), was designed and constructed to simulate outdoor pond cultivation for a wide range of geographical locations and seasons. The LEAPS consists of six well-mixed glass column photobioreactors sparged with CO2-enriched air to maintain a set-point pH, illuminated from above by a programmable multicolor LED lighting (0 to 2,500 µmol/m2-sec), and submerged in a temperature controlled water-bath (-2 °C to >60 °C). Measured incident light intensities and water temperatures deviated from the respective light and temperature set-points on average only 2.3% and 0.9%, demonstrating accurate simulation of light and temperature conditions measured in outdoor ponds. In order to determine whether microalgae strains cultured in the LEAPS exhibit the same linear phase biomass productivity as in outdoor ponds, Chlorella sorokiniana and Nannochloropsis salina were cultured in the LEAPS bioreactors using light and temperature scripts measured previously in the respective outdoor pond studies. For Chlorella sorokiniana, the summer season biomass productivity in the LEAPS was 6.6% and 11.3% lower than in the respective outdoor ponds in Rimrock, Arizona, and Delhi, California; however, these differences were not statistically significant. For Nannochloropsis salina, the winter season biomass productivity in the LEAPS was statistically significantly higher (15.2%) during the 27 day experimental period than in the respective outdoor ponds in Tucson, Arizona. However, when considering only the first 14 days, the LEAPS biomass productivity was only 9.2% higher than in the outdoor ponds, a difference shown to be not statistically significant. Potential reasons for the positive or negative divergence in LEAPS performance, relative to outdoor ponds, are discussed. To demonstrate the utility of the LEAPS in predicting productivity, two other strains – Scenedesmus obliquus and Stichococcus minor

  20. Modifications of the design of the final transformer in the FFS to accommodate lower gradients in the final quadrupole triplet

    International Nuclear Information System (INIS)

    Murray, J.J.

    1983-01-01

    The final transformer of the FFS includes the soft bend magnet and two symmetric quadrupole triplets. It ends at the IP. It is a telescopic transformer (meaning that its transfer matrix is diagonal) with a magnification of -1/5 in both planes. In the current design, L*, the distance between the downstream end of Q1 and the IP, is equal to 7.25 feet (2.21 m) and space is provided upstream of Q6 to accommodate a 27 foot long soft bend magnet. Satisfaction of the foregoing conditions leads to field gradients of about 19.8 kg/cm in Q1 and Q3 and 18.1 kg/cm in Q2. It now appears that it would be very difficult to attain such gradients. For practical superconducting quad designs, meaning iron-free, 5 cm bore, two-layer windings and 4.2 0 K, experts have estimated that gradients of at least 14 kg/cm would be reasonable. This raises the question, can the final transformer in the FFS be modified to accommodate gradients of 14 kg/cm or less and if so at what price in performance

  1. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement. Refs, figs, tabs

  2. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    International Nuclear Information System (INIS)

    1998-01-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement

  3. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  4. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    Science.gov (United States)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  5. Final analysis and design of a thermal protection system for 8-foot HTST combustor

    Science.gov (United States)

    Moskowitz, S.

    1973-01-01

    The cylindrical shell combustor with T-bar supports in the 8-foot HTST at the NASA-Langley Research Center encountered vibratory fatigue cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A preliminary design study provided several suitable thermal protection system designs for the combustor, one of which was a two-pass regenerative type air-cooled omega-shaped segment liner. A final design layout of the omega segment liner was prepared and analyzed for steady-state and transient conditions. The design of a support system for the fuel spray bar assembly was also included. Detail drawings suitable for fabrication purposes were also prepared. Liner design problems defined during the preliminary study included (1) the ingress of gas into the attachment bulb section of the omega segment, (2) the large thermal gradient along the leg of the omega bulb attachment section and, (3) the local peak metal temperature at the radius between the liner ID and the leg of the bulb attachment. These were resolved during the final design task. Analyses of the final design of the omega segment liner indicated that all design goals were met and the design provided the capability of operating over the required test envelope with a life expectancy substantially above the goal of 1500 cycles.

  6. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    Science.gov (United States)

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mod-5A wind turbine generator program design report. Volume 3: Final design and system description, book 1

    Science.gov (United States)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. Volume 3, book 1 describes the performance and characteristics of the MOD-5A wind turbine generator in its final configuration. Each subsystem - the rotor, drivetrain, nacelle, tower and foundation is described in detail.

  8. Onondaga Lake Inner Harbor Dredging Design Project, Syracuse, New York: Final Design Memorandum

    National Research Council Canada - National Science Library

    1997-01-01

    .... The sponsor is the New York State Canal Corporation. The design includes deepening the Inner Harbor channel and a portion of the terminal slip area to a depth of 10 feet below Low Water Datum (LWD...

  9. Operability design review of prototype large breeder reactor (PLBR) designs. Final report, September 1981

    International Nuclear Information System (INIS)

    Beakes, J.H.; Ehman, J.R.; Jones, H.M.; Kinne, B.V.T.; Price, C.M.; Shores, S.P.; Welch, J.K.

    1981-09-01

    Prototype Large Breeder Reactor (PLBR) designs were reviewed by personnel with extensive power plant operations experience. Fourteen normal and off-normal events, such as startup, shutdown, refueling, reactor scram and loss of feedwater, were evaluated using an operational evaluation methodology which is designed to facilitate talk-through sessions on operational events. Human factors engineers participated in the review and assisted in developing and refining the review methodologies. Operating experience at breeder reactor facilities such as Experimental Breeder Reactor-II (EBR-II), Enrico Fermi Atomic Power Plant - Unit 1, and the Fast Flux Test Facility (FFTF) was gathered, analyzed, and used to determine whether lessons learned from operational experience had been incorporated into the PLBR designs. This eighteen month effort resulted in approximately one hundred specific recommendations for improving the operability of PLBR designs

  10. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  11. Wirelessly powered submerged-light illuminated photobioreactors for efficient microalgae cultivation

    DEFF Research Database (Denmark)

    Murray, Alexandra Marie; Fotidis, Ioannis; Isenschmid, Alex

    2017-01-01

    A novel submerged-light photobioreactor (SL-PBR) with free-floating, wireless internal light sources powered by near-field resonant inductive coupling was investigated using a quick (Chlorella vulgaris) and a slow (Haematococcus pluvialis) growing microalgal species. During testing of the SL......, respectively. Thus, the wireless internal light source was proven to be up to fivefold more effective light delivery system compared to the conventional illumination system. Meanwhile, it was discovered that some of the internal light sources had ceased to function, which might have caused underestimation...

  12. Conceptual design of bend, compression, and final focus components of ILSE [Induction Linac System Experiment

    International Nuclear Information System (INIS)

    Lee, E.P.; Fong, C.; Mukherjee, S.; Thur, W.

    1989-03-01

    The Induction Linac System Experiment (ILSE) includes a 180/degree/ bend system, drift compression line and a final focus, which test the analogous features of a heavy ion driver for inertial fusion. These components are novel in their transport of a space-charge-dominated ion beam with large head-to-tail velocity tilt. Their conceptual design is presented, including calculations of the beam envelope, momentum dispersion, and engineering design of magnets, vacuum system, diagnostics, alignment, and support. 3 refs., 5 figs

  13. Final design review report for K Basin Dose Reduction Project Clean and Coat Task

    International Nuclear Information System (INIS)

    Blackburn, L.D.

    1996-02-01

    The strategy for reducing radiation dose originating from radionuclides absorbed in the concrete is to raise the pool water level to provide additional shielding. The concrete walls need to be coated to prevent future radionuclide absorption into the walls. This report documents a final design review of equipment to clean and coat basin walls. The review concluded that the design presented was acceptable for release for fabrication

  14. TPX: Contractor preliminary design review. Volume 1, Presentation and design description. Final report

    International Nuclear Information System (INIS)

    Hartman, D.; Naumovich; Walstrom, P.; Clarkson, I.; Schultheiss, J.; Burger, A.

    1995-01-01

    This first volume of the five volume set begins with a CPDR overview and then details the PF magnet system, manufacturing R ampersand D, Westinghouse R ampersand D, the central solenoid, the PF 5 ring coil, the PF 6/7 ring coil, quality assurance, and the system design description

  15. National Ignition Facility subsystem design requirements final optics assembly subsystem SSDR 1.8.7

    International Nuclear Information System (INIS)

    Adams, C.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Final Optic Assembly (FOA). The FOA (WBS 1.8.7) as part of the Target Experimental System (1.8) includes vacuum windows, frequency conversion crystals, focus lens, debris shields and supporting mechanical equipment

  16. Experimental fusion power reactor conceptual design study. Final report. Volume III

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following appendices: (1) tradeoff code analysis, (2) residual mode transport, (3) blanket/first wall design evaluations, (4) shielding design evaluation, (5) toroidal coil design evaluation, (6) E-coil design evaluation, (7) F-coil design evaluation, (8) plasma recycle system design evaluation, (9) primary coolant purification design evaluation, (10) power supply system design evaluation, (11) number of coolant loops, (12) power conversion system design evaluation, and (13) maintenance methods evaluation

  17. Inertial confinement fusion driver enhancements: Final focusing systems and compact heavy-ion driver designs

    International Nuclear Information System (INIS)

    Bieri, R.L.

    1991-01-01

    Required elements of an inertial confinement fusion power plant are modeled and discussed. A detailed analysis of two critical elements of candidate drivers is done, and new component designs are proposed to increase the credibility and feasibility of each driver system. An analysis of neutron damage to the final elements of a laser focusing system is presented, and multilayer -- dielectric mirrors are shown to have damage lifetimes which axe too short to be useful in a commercial power plant. A new final-focusing system using grazing incidence metal mirrors to protect sensitive laser optics is designed and shown to be effective in extending the lifetime of the final focusing system. The reflectivities and damage limits of grazing incidence metal mirrors are examined in detail, and the required mirror sizes are shown to be compatible with the beam sizes and illumination geometries currently envisioned for laser drivers. A detailed design and analysis is also done for compact arrays of superconducting magnetic quadrupoles, which are needed in a multi-beam heavy-ion driver. The new array model is developed in more detail than some previous conceptual designs and models arrays which are more compact than arrays scaled from existing single -- quadrupole designs. The improved integrated model for compact arrays is used to compare the effects of various quadrupole array design choices on the size and cost of a heavy-ion driver. Array design choices which significantly affect the cost of a heavy-ion driver include the choice of superconducting material and the thickness of the collar used to support the winding stresses. The effect of these array design choices on driver size and cost is examined and the array model is used to estimate driver cost savings and performance improvements attainable with aggressive quadrupole array designs with high-performance superconductors

  18. Conceptual design study of 1985 commercial tilt rotor transports. Volume 3. STOL design summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sambell, K.W.

    1976-04-01

    A conceptual design study is presented of 1,985 commercial tilt rotor STOL transports for a NASA 200 n. mi. (370 km) STOL Mission. A 100-passenger STOL Variant (Bell D313) of the Phase I VTOL Tilt Rotor Aircraft is defined. Aircraft characteristics are given; with the aircraft redesigned to meet 2,000-foot (610 m) field criteria, with emphasis on low fuel consumption and low direct operating cost. The 100-passenger STOL Tilt Rotor Aircraft was analyzed for performance, weights, economics, handling qualities, noise footprint and aeroelastic stability. (GRA)

  19. ITER final design report, cost review and safety analysis (FDR) and relevant documents

    International Nuclear Information System (INIS)

    1999-01-01

    This volume contains the fourth major milestone report and documents associated with its acceptance, review and approval. This ITER Final Design Report, Cost Review and Safety Analysis was presented to the ITER Council at its 13th meeting in February 1998 and was approved at its extraordinary meeting on 25 June 1998. The contents include an outline of the ITER objectives, the ITER parameters and design overview as well as operating scenarios and plasma performance. Furthermore, design features, safety and environmental characteristics and schedule and cost estimates are given

  20. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective

    International Nuclear Information System (INIS)

    Murphy, Thomas E.; Berberoglu, Halil

    2011-01-01

    This paper reports a numerical study coupling light transfer with photosynthetic rate models to determine the size and microorganism concentration of photobioreactors based on the pigmentation of algae to achieve maximum productivity. The wild strain Chlamydomonas reinhardtii and its transformant tla1 with 63% lower pigmentation are used as exemplary algae. First, empirical models of the specific photosynthetic rates were obtained from experimental data as a function of local irradiance using inverse methods. Then, these models were coupled with the radiative transfer equation (RTE) to predict both the local and total photosynthetic rates in a planar photobioreactor (PBR). The optical thickness was identified as the proper scaling parameter. The results indicated that under full sunlight corresponding to about 400 W/m 2 photosynthetically active irradiation, enhancement of PBR productivity up to 30% was possible with tla1. Moreover, under similar irradiation, optical thicknesses above 169 and 275 for the wild strain and tla1, respectively, did not further enhance PBR productivity. Based on these results guidelines are provided for maximizing PBR productivity from a light transport perspective.

  1. A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria.

    Science.gov (United States)

    Kuhne, S; Strieth, D; Lakatos, M; Muffler, K; Ulber, R

    2014-12-20

    Cyanobacteria offer great potential for the production of biotechnological products for pharmaceutical applications. However, these organisms can only be cultivated efficiently using photobioreactors (PBR). Under submerged conditions though, terrestrial cyanobacteria mostly grow in a suboptimal way, which makes this cultivation-technique uneconomic and thus terrestrial cyanobacteria unattractive. Therefore, a novel emersed photobioreactor (ePBR) has been developed, which can provide the natural conditions for these organisms. Proof of concept as well as first efficiency tests are conducted using the terrestrial cyanobacteria Trichocoleus sociatus as a model organism. The initial maximum growth rate of T. sociatus (0.014±0.001h(-1)) in submerged systems could be increased by 35%. Furthermore, it is now possible to control desiccation-correlated product formation and related metabolic processes. This is shown for the production of extracellular polymeric substances (EPS). In this case the yield of 0.068±0.006g of EPS/g DW could be increased by more than seven times. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. SIMULATION OF MICROALGAL GROWTH IN A CONTINUOUS PHOTOBIOREACTOR WITH SEDIMENTATION AND PARTIAL BIOMASS RECYCLING

    Directory of Open Access Journals (Sweden)

    C. E. de Farias Silva

    Full Text Available Abstract Microalgae are considered as promising feedstocks for the third generation of biofuels. They are autotrophic organisms with high growth rate and can stock an enormous quantity of lipids (about 20 - 40% of their dried cellular weight. This work was aimed at studying the cultivation of Scenedesmus obliquus in a two-stage system composed of a photobioreactor and a settler to concentrate and partially recycle the biomass as a way to enhance the microalgae cellular productivity. It was attempted to specify by simulation and experimental data a relationship between the recycling rate, kinetic parameters of microalgal growth and photobioreactor operating conditions. Scenedesmus obliquus cells were cultivated in a lab-scale flat-plate reactor, homogenized by aeration, and running in continuous flow with a residence time of 1.66 day. Experimental data for the microalgal growth were used in a semi-empirical simulation model. The best results were obtained for Fw=0.2FI, when R = 1 and kd = 0 and 0.05 day-1, with the biomass production in the reactor varying between 8 g L -1 and 14 g L-1, respectively. The mathematical model fitted to the microalgal growth experimental data was appropriate for predicting the efficiency of the reactor in producing Scenedesmus obliquus cells, establishing a relation between cellular productivity and the minimum recycling rate that must be used in the system.

  3. Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors.

    Science.gov (United States)

    Selvan, B Karpanai; Revathi, M; Piriya, P Sobana; Vasan, P Thirumalai; Prabhu, D Immuanual Gilwax; Vennison, S John

    2013-03-01

    Carbon (neutral) based renewable liquid biofuels are alternative to petroleum derived transport fuels that contribute to global warming and are of a limited availability. Microalgae based biofuels are considered as promising source of energy. Lyngbya sp. and Synechococcus sp. were studied for the possibility of biodiesel production in different media such as ASNIII, sea water enrichment medium and BG11. The sea water enrichment medium was found superior in enhancing the growth rate of these microalgae. Nitrogen depletion has less effect in total chlorophyll a content, at the same time the lipid content was increased in both Lyngbya sp. and Synechococcus sp. by 1.4 and 1.2 % respectively. Increase in salinity from 0.5-1.0 M also showed an increase in the lipid content to 2.0 and 0.8 % in these strains; but a salinity of 1.5 M has a total inhibitory effect in the growth. The total biomass yield was comparatively higher in tubular LED photobioreactor than the fluorescent flat plated photobioreactor. Lipid extraction was obtained maximum at 60 degrees C in 1:10 sample: solvent ratio. GC-MS analysis of biodiesel showed high content of polyunsaturated fatty acids (PUFA; 4.86 %) than saturated fatty acid (SFA; 4.10 %). Biodiesel production was found maximum in Synechococcus sp. than Lyngbya sp. The viscosity of the biodiesel was closely related to conventional diesel. The results strongly suggest that marine microalgae could be used as a renewable energy source for biodiesel production.

  4. Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight

    NARCIS (Netherlands)

    Michels, M.H.A.; Slegers, P.M.; Vermue, M.H.; Wijffels, R.H.

    2014-01-01

    The effect of biomass concentration on the net volumetric productivity, yield on light and nightly biomass loss rate of Tetraselmis suecica was studied using a pilot-scale tubular photobioreactor (PBR) under outdoor light conditions. The net average productivity and yield on light of Tetraselmis

  5. FINAL DESIGN REVIEW REPORT Subcritical Experiments Gen 2, 3-ft Confinement Vessel Weldment

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    A Final Design Review (FDR) of the Subcritical Experiments (SCE) Gen 2, 3-ft. Confinement Vessel Weldment was held at Los Alamos National Laboratory (LANL) on September 14, 2017. The review was a focused review on changes only to the confinement vessel weldment (versus a system design review). The changes resulted from lessons-learned in fabricating and inspecting the current set of confinement vessels used for the SCE Program. The baseline 3-ft. confinement vessel weldment design has successfully been used (to date) for three (3) high explosive (HE) over-tests, two (2) fragment tests, and five (5) integral HE experiments. The design team applied lessons learned from fabrication and inspection of these vessel weldments to enhance fit-up, weldability, inspection, and fitness for service evaluations. The review team consisted of five (5) independent subject matter experts with engineering design, analysis, testing, fabrication, and inspection experience. The

  6. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.

  7. Design principle of TVO's final repository and preliminary adaptation to site specific conditions

    International Nuclear Information System (INIS)

    Salo, J-P.; Reikkola, R.

    1995-01-01

    Teollisuuden Voima Oy (TVO) is responsible for the management of spent fuel produced by the Olkiluoto power plant. TVO's current programme of spent fuel management is based on the guidelines and time schedule set by the Finnish Government. TVO has studied a final disposal concept in which the spent fuel bundles are encapsulated in copper canisters and emplaced in Finnish bedrock. According to the plan the final repository for spent fuel will be in operation by 2020. TVO's updated technical plans for the disposal of spent fuel together with a performance analysis (TVO-92) were submitted to the authorities in 1992. The paper describes the design principle of TVO's final repository and preliminary adaptation of the repository to site specific conditions. (author). 10 refs., 5 figs

  8. Design, construction and conditions of the application of unreinforced concrete final lining in conventionally driven tunnels

    Science.gov (United States)

    Faltýnek, Jan; Hořejší, Jiří; Mařík, Libor; Růžička, Pavel

    2017-09-01

    The way to an economic design in the final lining in conventionally driven tunnels lies in structural analysing based on the actually encountered geotechnical conditions. Regarding reinforced concrete structures, many standards and regulations applicable to designing and building structures and taking them over by the client before their commissioning and before the end of the warranty period respectively exist in the Czech Republic. If the local conditions allow it, it is possible to design the final lining as an unreinforced concrete structure. In such a case it is necessary to take the differences into consideration in the structural design and in the possibilities of the lining behaviour and to set criteria for taking over the lining allowing for its use. Setting too stringent criteria for cracking can lead to an increase in the contract price, either because of the necessity for reinforcing the lining or because of the fact that the contractor reduces the risk by incorporating the assumed cost of repairs into the total cost. The paper describes basic differences in the approach to reinforced concrete and unreinforced concrete linings, the possibilities of limiting formation of cracks by means of the concrete mix design, by selection of the technological procedure of the work and the method of curing after stripping. The text contains a comparison of criteria for assessing the surface of an unreinforced concrete lining with criteria in foreign regulations.

  9. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical power generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)

  10. Sixty-five-year old final clarifier performance rivals that of modern designs.

    Science.gov (United States)

    Barnard, James L; Kunetz, Thomas E; Sobanski, Joseph P

    2008-01-01

    The Stickney plant of the Metropolitan Wastewater Reclamation District of Greater Chicago (MWRDGC), one of the largest wastewater treatment plants in the world, treats an average dry weather flow of 22 m3/s and a sustained wet weather flow of 52 m3/s that can peak to 63 m3/s. Most of the inner city of Chicago has combined sewers, and in order to reduce pollution through combined sewer overflows (CSO), the 175 km Tunnel and Reservoir Plan (TARP) tunnels, up to 9.1 m in diameter, were constructed to receive and convey CSO to a reservoir from where it will be pumped to the Stickney treatment plant. Pumping back storm flows will result in sustained wet weather flows over periods of weeks. Much of the success of the plant will depend on the ability of 96 circular final clarifiers to produce an effluent of acceptable quality. The nitrifying activated sludge plant is arranged in a plug-flow configuration, and some denitrification takes place as a result of the high oxygen demand in the first pass of the four-pass aeration basins that have a length to width ratio of 18:1. The SVI of the mixed liquor varies between 60 and 80 ml/g. The final clarifiers, which were designed by the District's design office in 1938, have functioned for more than 65 years without major changes and are still producing very high-quality effluent. This paper will discuss the design and operation of these final clarifiers and compare the design with more modern design practices. (c) IWA Publishing 2008.

  11. Pilot scale harvesting, separation and drying of microalgae biomass from compact photo-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Alberto Tadeu Martins; Luz Junior, Luiz Fernando de Lima [Dept. de Engenharia Quimica. Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mail: luzjr@ufpr.br; Mariano, Andre Bellin; Ghidini, Luiz Francisco Correa; Gnoatto, Victor Eduardo; Locatelli Junior, Vilson; Mello, Thiago Carvalho de; Vargas, Jose Viriato Coelho [Nucleo de Pesquisa e Desenvolvimento em Energia Autossustentavel (NPDEAS). Dept. de Engenharia Mecanica. Universidade Federal do Parana, Curitiba (Brazil)], E-mail: jvargas@demec.ufpr.br

    2010-07-01

    Bio diesel produced from microalgae lipids is gaining a substantial ground in the search for renewable energy sources. In order to optimize the operating conditions of a continuous process, several experiments were realized, both in laboratory and pilot scale. The microalgae cultivation can be conducted in a photo-bioreactor, a closed system which allows parameters control and necessarily involves the aquatic environment. Because of that, the use of separation unit operations is required. The process starts in a proposed compact photo-bioreactor, which consist of a chain of transparent tubes with 6 cm of diameter arranged in parallel where the cultivation media circulate with the help of a pump. This arrangement offers a closed culture with less risk of contamination and maintains a minimum contact with the environment. The microalgae grow inside the pipes under incidence of ambient light. In this paper, harvesting, separation and drying were studied, as part of the processes of a sustainable energy plant under construction at UFPR, as shown in Fig. 1. To control the production in a photo-bioreactor in continuous system, it is necessary to monitor the concentration of microalgae growth in suspension. To measure the cell concentration in this equipment, an optic sensor has been developed. The microalgae biomass separation from the culture media is achieved by microalgae flocculation. Several cultivation situations have been tested with different NaOH concentrations, increasing the pH to 10. The system was kept under agitation during the addition by an air pump into the tank. Thereafter the system was maintained static. After a short time, it was observed that the microalgae coagulated and settled. The clarified part water was removed, remaining a concentrated microalgae suspension. Our results suggest that pH increase is a suitable methodology for microalgae separation from the growth suspension. The microalgae sedimentation time was recorded, which allowed the

  12. Final design of the generic equatorial port plug structure for ITER diagnostic systems

    International Nuclear Information System (INIS)

    Udintsev, V.S.; Maquet, P.; Alexandrov, E.; Casal, N.; Cuenca, D.; Drevon, J.-M.; Feder, R.; Friconneau, J.P.; Giacomin, T.; Guirao, J.; Iglesias, S.; Josseaume, F.; Levesy, B.; Loesser, D.; Ordieres, J.; Quinn, E.; Pak, S.; Penot, C.; Pitcher, C.S.; Portalès, M.

    2015-01-01

    The Diagnostic Generic Equatorial Port Plug (GEPP) is designed to be common to all equatorial port-based diagnostic systems. It is designed to survive throughout the lifetime of ITER for 20 years, 30,000 discharges, and 3000 disruptions. The EPP structure dimensions (without Diagnostic First Walls and Diagnostic Shield Modules) are L2.9 × W1.9 × H2.4 m"3. The length of the fully integrated EPP is 3174 mm. The weight of the EPP structure is about 15 t, whereas the total weight of the integrated EPP may be up to 45 t. The EPP structure provides a flexible platform for a variety of diagnostics. The Diagnostic Shield Module assemblies, or drawers, allow a modular approach with respect to diagnostic integration and maintenance. In the nuclear phase of ITER operations, they will be remotely inserted into the EPP structure in the Hot Cell Facility. The port plug structure must also contribute to the nuclear shielding, or plugging, of the port and further contain circulated water to allow cooling during operation and heating during bake-out. The Final Design of the GEPP has been successfully passed in late 2013 and is now heading toward manufacturing. The final design of the GEPP includes interfaces, manufacturing, R&D, operation and maintenance, load cases and analysis of failure modes.

  13. Final design of the Korean AC/DC converters for the ITER coil power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Seok, E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, Jungwan; Suh, Jae-Hak; Choi, Jihyun [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lee, Lacksang; Kim, Changwoo; Park, Hyungjin; Jo, Seongman; Lee, Seungyun; Hwang, Kwangcheol; Liu, Hyoyol [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Hong, Ki-Don; Sim, Dong-Joon; Lee, Jang-Soo [Hyosung Corp., Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); Lee, Eui-Jae; Kwon, Yang-Hae; Lee, Dae-Yeol; Ko, Ki-Won; Kim, Jong-Min [Mobiis Corp., Yangjae-dong, Seoul 137-888 (Korea, Republic of); Song, Inho [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); and others

    2015-10-15

    The final design of the ITER TF, CS, CC and VS AC/DC converters has been completed to implement ITER requirements following the detailed design and refinements of the preliminary design. The number of parallel thyristors and the rating of fuses are coordinated to keep those devices within the explosion limit even under most severe fault conditions. The impedance of the converter transformer has been optimized taking into account the energization inrush current, short circuit current, reactive power consumption and the available DC voltage. To ensure system integrity, AC/DC converters are mechanically divided into transformers, AC busbars, 6-pulse bridges, DC interconnecting busbars and DC reactors, and then all subsystems are decoupled by flexible links. To provide stable real time network communication down to the converters, a one GbE link is deployed between master controllers and local controllers. IEEE 1588 is implemented to the embedded controllers for precision time synchronization. This paper describes the detailed solutions implemented in the final design for the ITER AC/DC converters with R&D results of converter prototypes.

  14. Los Angeles-Gateway Freight Advanced Traveler Information System : final system design and architecture for FRATIS prototype.

    Science.gov (United States)

    2013-05-01

    This Final Architecture and Design report has been prepared to describe the structure and design of all the system : components for the LA-Gateway FRATIS Demonstration Project. More specifically, this document provides: : Detailed descriptions of...

  15. From transient response of a compact photobioreactor for microalgae cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Dilay, Emerson; Ribeiro, Robert Luis Lara; Pulliam, Raevon; Mariano, Andre Bellin [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Nucleo de Pesquisa e Desenvolvimento em Energia Auto-Sustentavel; Ordonez, Juan Carlos [Florida State University, Tallahassee, FL (United States). Dept. of Mechanical Engineering and Center for Advanced Power Systems], E-mail: ordonez@caps.fsu.edu; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica

    2010-07-01

    Biofuels from microalgae are currently the subject of funded scientific research in many countries due to their high productivity of oil when compared with other crops. Microalgae can also be used in many important applications such as to obtain compounds of interest for food, chemicals, and pharmaceuticals. The high productivity of microalgae when compared with other crops is achieved because agricultural land is not mandatory for their cultivation, since they can be grown in open ponds, sea or vertical photo bioreactors. In this paper, a mathematical model is introduced for assessing the transient microalgae growth as a function of variable light intensity, temperature and environmental conditions in the daily cycle. Photo bioreactor geometry is considered as well. Light intensity is obtained from sun position, photo bioreactor geometry, and the installation location in the world. The photo bioreactor was discretized in space by the the volume element method. Balances of energy and species together with thermodynamics, heat transfer and chemistry empirical and theoretical correlations are applied to each volume element. Therefore, a system of ordinary differential equations with respect to time only is capable of delivering temperatures and concentrations as functions of space and time, even with a coarse mesh. The numerical results are capable of predicting the transient and steady state photo bioreactor biomass production with low computational time. Microalgae specific growth rate as a function of average light intensity inside the tubes and time was calculated. As a result, the model is expected to be a useful tool for simulation, design, and optimization of compact photo bioreactors. (author)

  16. Grid fault and design-basis for wind turbines - Final report

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Markou, Helen

    , have been performed and compared for two cases, i.e. one when the turbine is immediately disconnected from the grid when a grid fault occurs and one when the turbine is equipped with a fault ride-through controller and therefore it is able to remain connected to the grid during the grid fault......This is the final report of a Danish research project “Grid fault and design-basis for wind turbines”. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines....... The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO’s requirements are of vital importance in this design. Dynamic...

  17. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  18. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  19. Final design of the generic upper port plug structure for ITER diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sunil, E-mail: paksunil@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Feder, Russell [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Giacomin, Thibaud; Guirao, Julio; Iglesias, Silvia; Josseaume, Fabien [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kalish, Michael; Loesser, Douglas [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maquet, Philippe [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Ordieres, Javier; Panizo, Marcos [NATEC, Ingenieros, Gijón (Spain); Pitcher, Spencer; Portalès, Mickael [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Proust, Maxime [CEA, Cadarache, St. Paul-lez-Durance (France); Ronden, Dennis [FOM Institute DIFFER, Nieuwegein (Netherlands); Serikov, Arkady [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Suarez, Alejandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Tanchuk, Victor [NIIEFA, St.-Petersburg (Russian Federation); Udintsev, Victor; Vacas, Christian [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2016-01-15

    The generic upper port plug (GUPP) structure in ITER is a 6 m long metal box which deploys diagnostic components into the vacuum vessel. This structure is commonly used for all the diagnostic upper ports. The final design of the GUPP structure, which has successfully passed the final design review in 2013, is described here. The diagnostic port plug is cantilevered to the vacuum vessel with a heavy payload at the front, so called the diagnostic first wall (DFW) and the diagnostic shield module (DSM). Most of electromagnetic (EM) load (∼80%) occurs in DFW/DSM. Therefore, the mounting design to transfer the EM load from DFW/DSM to the GUPP structure is challenging, which should also comply with thermal expansion and tolerance for assembly and manufacturing. Another key design parameter to be considered is the gap between the port plug and the vacuum vessel port. The gap should be large enough to accommodate the remote handling of the heavy port plug (max. 25 t), the structural deflection due to external loads and machine assembly tolerance. At the same time, the gap should be minimized to stop the neutron streaming according to the ALARA (as low as reasonably achievable) principle. With these design constraints, the GUPP structure should also provide space for diagnostic integration as much as possible. This requirement has led to the single wall structure having the gun-drilled water channels inside the structure. Furthermore, intensive efforts have been made on the manufacturing study including material selection, manufacturing codes and French regulation related to nuclear equipment and safety. All these main design and manufacturing aspects are discussed in this paper, including requirements, interfaces, loads and structural assessment and maintenance.

  20. A novel closed system bubble column photobioreactor for detailed characterisation of micro- and macroalgal growth

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Christensen, L.; Iversen, J. J. L.

    2014-01-01

    was suited for cultivation of algae due to fast gas-to-liquid mass transfer (kLa) and fast mixing provided by split and dual sparging. Specific growth rates (SGRs) were measured using both offline and online measurements. The latter was possible, because rectilinear correlation was observed between carbon......Growth of the marine microalga Tetraselmis striata Butcher and the macroalga Chondrus crispus Stackhouse was investigated in batch cultures in a closed system bubble column photobioreactor. A laboratory cultivation system was constructed that allowed online monitoring of pH and dissolved oxygen...... changes in growth with up to three different SGRs in the different batch cultures of both micro- and macroalgae. The maximum SGRs found by online determination were 0.13 h-1 for T. striata and 0.12 day-1 for C. crispus. We have developed and described a system and presented some data handling tools...

  1. Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system.

    Science.gov (United States)

    Kwon, Jong-Hee; Rögner, Matthias; Rexroth, Sascha

    2012-11-30

    Application of photosynthetic micro-organisms, such as cyanobacteria and green algae, for the carbon neutral energy production raises the need for cost-efficient photobiological processes. Optimization of these processes requires permanent control of many independent and mutably dependent parameters, for which a continuous cultivation approach has significant advantages. As central factors like the cell density can be kept constant by turbidostatic control, light intensity and iron content with its strong impact on productivity can be optimized. Both are key parameters due to their strong dependence on photosynthetic activity. Here we introduce an engineered low-cost 5 L flat-plate photobioreactor in combination with a simple and efficient optimization procedure for continuous photo-cultivation of microalgae. Based on direct determination of the growth rate at constant cell densities and the continuous measurement of O₂ evolution, stress conditions and their effect on the photosynthetic productivity can be directly observed. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Simulating Growth Kinetics in a Data-Parallel 3D Lattice Photobioreactor

    Directory of Open Access Journals (Sweden)

    A. V. Husselmann

    2013-01-01

    Full Text Available Though there have been many attempts to address growth kinetics in algal photobioreactors, surprisingly little have attempted an agent-based modelling (ABM approach. ABM has been heralded as a method of practical scientific inquiry into systems of a complex nature and has been applied liberally in a range of disciplines including ecology, physics, social science, and microbiology with special emphasis on pathogenic bacterial growth. We bring together agent-based simulation with the Photosynthetic Factory (PSF model, as well as certain key bioreactor characteristics in a visual 3D, parallel computing fashion. Despite being at small scale, the simulation gives excellent visual cues on the dynamics of such a reactor, and we further investigate the model in a variety of ways. Our parallel implementation on graphical processing units of the simulation provides key advantages, which we also briefly discuss. We also provide some performance data, along with particular effort in visualisation, using volumetric and isosurface rendering.

  3. Final repository for spent nuclear fuel. Underground design Simpevarp, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    This report is a compilation of the results of the underground design work carried out in design phase D1 of the Repository Design Project within the Deep Repository Project for the Simpevarp site. Similar reports are also being produced for the Laxemar and Forsmark sites. The design phase coincides with the initial site investigation phase. The main purpose of phase D1 is to answer the question 'Can a final repository be accommodated within the designated site', but also to test the design methodology and provide feedback to the modelling project. Design was carried out in accordance with the methodology described in UDP (Underground Design Premises), SKB R-04-60, and was based on preliminary data from various disciplines in the site modelling project. The preliminary input data used were then cross-checked against data in the final Site Descriptive Model SDM v 1.2 and significant differences were integrated in the design work. The design results from each design topic were presented by the designer at presentation meetings for SKB's design management and the reviewers engaged by SKB for the specific topic. After the presentation meeting the designer wrote up the work reports for the topic in question. The work reports were then reviewed by SKB's review team. The results of the review were compiled in a statement that was submitted to the designer to be dealt with. In the statement the designer documented which comments were dealt with and how. This report is a compilation of the entire design phase D1 for Simpevarp. The 3D layout with coordinate lists for deposition holes and tunnels that was drawn to illustrate a possible layout was used in the Preliminary safety evaluation of the Simpevarp subarea and the hydro modelling of the Open Repository, both activities within the Deep Repository Project. According to current plans for the Swedish nuclear programme, the minimum required number of canister positions in the repository is estimated to be

  4. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  5. 76 FR 72928 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2011-11-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from Vitro Manufacturing in...

  6. 77 FR 15759 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2012-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  7. 78 FR 21955 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  8. 76 FR 7852 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2011-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from Texas City Chemicals...

  9. 76 FR 59701 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2011-09-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from the Sandia National...

  10. 78 FR 70949 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2013-11-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  11. 77 FR 60438 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2012-10-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  12. 75 FR 67364 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from the Blockson Chemical...

  13. 75 FR 51816 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2010-08-23

    ... Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a... Special Exposure Cohort (SEC) under the Energy Employees Occupational Illness Compensation Program Act of...

  14. 75 FR 27784 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2010-05-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees from Lawrence Livermore...

  15. 75 FR 27785 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2010-05-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the decision to designate a class of employees from Area IV of the Santa...

  16. 75 FR 37812 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2010-06-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... and Human Services (HHS) gives notice concerning the final effect of the HHS decision to designate a...

  17. 77 FR 60437 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2012-10-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  18. 77 FR 69845 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2012-11-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  19. 78 FR 21954 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2013-04-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health...). ACTION: Notice. SUMMARY: HHS gives notice concerning the final effect of the HHS decision to designate a...

  20. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Huertas, F.; Ulibarri, A.

    1992-01-01

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  1. Mechanical design of a pre-isolator for the CLIC final focusing magnets

    CERN Document Server

    Gaddi, A; Ramos, F; Siegrist, N

    2012-01-01

    Due to the very small vertical beam sizes, the final focusing elements at the future CLIC linear collider need to be stable against vibrations to below 0.15 nanometres at frequencies above about 4 Hz. One of the key elements in the strategy to achieve such a stable environment is a passive, heavy pre-isolator. In this report, the results from the dynamic finite element analyses of the proposed design for such a passive preisolator are summarized. Furthermore, the results from a low frequency, heavy mass passive vibration isolation test set-up used to validate the calculations are shown.

  2. Efficient design of two-dimensional recursive digital filters. Final report

    International Nuclear Information System (INIS)

    Twogood, R.E.; Mitra, S.K.

    1980-01-01

    This report outlines the research progress during the period August 1978 to July 1979. This work can be divided into seven basic project areas. Project 1 deals with a comparative study of 2-D recursive and nonrecursive digital filters. The second project addresses a new design technique for 2-D half-plane recursive filters, and Projects 3 thru 5 deal with implementation issues. The sixth project presents our recent study of the applicability of array processors to 2-D digital signal processing. The final project involves our investigation into techniques for incorporating symmetry constraints on 2-D recursive filters in order to yield more efficient implementations

  3. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  4. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    International Nuclear Information System (INIS)

    Saurwein, J.

    2011-01-01

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  5. Designing the central knowledge base for the purposes of final works in architecture

    Directory of Open Access Journals (Sweden)

    Aleksić Ljiljana

    2014-01-01

    Full Text Available The solution for many issues related to the selection of construction products, currently present on the market, could be a Central knowledge base, consisting of verified and reliable data of construction products. Beside previous participants: investor, architect and contractor, that were involved in the processes of design and construction, herein is equally introduced manufacturer construction materials and products. The Central knowledge base consists of: a catalog sheets of the graphics base, alphanumeric base and base with textual data, and represents a flexible system that is subject to amendments. It is built to support architects during processes design and construction, as well as for education of students attending subject Final works at the Faculty of Civil Engineering in Subotica.

  6. Design, construction and testing of a DC bioeffects test enclosure for small animals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, M J; Preache, M M

    1980-11-01

    This final report describes both the engineering development of a DC bioeffects test enclosure for small laboratory animals, and the biological protocol for the use of such enclosures in the testing of animals to determine possible biological effects of the environment associated with HVDC transmission lines. The test enclosure which has been designed is a modular unit, which will house up to eight rat-sized animals in individual compartments. Multiple test enclosures can be used to test larger numbers of animals. A prototype test enclosure has been fabricated and tested to characterize its electrical performance characteristics. The test enclosure provides a simulation of the dominant environment associated with HVDC transmission lines; namely, a static electric field and an ion current density. A biological experimental design has been developed for assessing the effects of the dominant components of the HVDC transmission line environment.

  7. Design and test of the final ALICE SDD CARLOS end ladder board

    CERN Document Server

    Antinori, S; Falchieri, D; Gabrielli, A; Gandolfi, E; Masetti, M; Tosellob, F

    2007-01-01

    The paper presents the design and test of the final prototype of the CARLOS (Compression And Run Length Encoding Subsystem) end ladder board that is going to be used in the ALICE experiment at CERN. This board is able to compress data coming from one Silicon Drift Detector (SDD) front-end electronics and to send them towards the data concentrator card CARLOSrx in counting room via a 800 Mb/s optical link. The board design faces several constraints, mainly size (54x49 mm) and radiation tolerance: for this reason the board contains several CERN developed ASICs. A test setup has been realized for selecting the good devices among the 500 cards already produced.

  8. Design optimization of the International Linear Collider Final Focus System with a long L*

    CERN Document Server

    Plassard, Fabien

    This Master's Thesis work has been done in the Aerospace Engineering master's programme framework and carried out at the European Organization for Nuclear Research (CERN). It was conducted under the 500 GeV e-e+ International Linear Collider (ILC) study and focused on the design and performance optimization of the Final Focus System (FFS). The purpose of the final focus system of the future linear colliders (ILC and CLIC) is to demagnify the beam to the required transverse size at the interaction point (IP). The FFS is designed for a flat-beam in a compact way based on a local chromaticity correction which corrects both horizontal and vertical chromaticities simultaneously. An alternative FFS configuration based on the traditional scheme with two dedicated chromatic correction sections for horizontal and vertical chromaticities and a long L * option has been developed. A longer free space between the last quadrupole and the IP allows to place the last quadrupole on a stable ground, with fewer engineering ...

  9. Experimental fusion power reactor conceptual design study. Final report. Volume II

    International Nuclear Information System (INIS)

    Baker, C.C.

    1976-12-01

    This document is the final report which describes the work carried out by General Atomic Company for the Electric Power Research Institute on a conceptual design study of a fusion experimental power reactor (EPR) and an overall EPR facility. The primary objective of the two-year program was to develop a conceptual design of an EPR that operates at ignition and produces continuous net power. A conceptual design was developed for a Doublet configuration based on indications that a noncircular tokamak offers the best potential of achieving a sufficiently high effective fuel containment to provide a viable reactor concept at reasonable cost. Other objectives included the development of a planning cost estimate and schedule for the plant and the identification of critical R and D programs required to support the physics development and engineering and construction of the EPR. This volume contains the following sections: (1) reactor components, (2) auxiliary systems, (3) operations, (4) facility design, (5) program considerations, and (6) conclusions and recommendations

  10. Dynamic Modeling of the Microalgae Cultivation Phase for Energy Production in Open Raceway Ponds and Flat Panel Photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Marsullo, Matteo [Department of Industrial Engineering, University of Padova, Padova (Italy); Mian, Alberto [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Ensinas, Adriano Viana [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Universidade Federal do ABC, Santo Andre (Brazil); Manente, Giovanni; Lazzaretto, Andrea, E-mail: andrea.lazzaretto@unipd.it [Department of Industrial Engineering, University of Padova, Padova (Italy); Marechal, François [Industrial Process and Energy System Engineering Group (IPESE), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2015-09-15

    A dynamic model of microalgae cultivation phase is presented in this work. Two cultivation technologies are taken into account: the open raceway pond and the flat panel photobioreactor. For each technology, the model is able to evaluate the microalgae areal and volumetric productivity and the energy production and consumption. Differently from the most common existing models in literature, which deal with a specific part of the overall cultivation process, the model presented here includes all physical and chemical quantities that mostly affect microalgae growth: the equation of the specific growth rate for the microalgae is influenced by CO{sub 2} and nutrients concentration in the water, light intensity, temperature of the water in the reactor, and by the microalgae species being considered. All these input parameters can be tuned to obtain reliable predictions. A comparison with experimental data taken from the literature shows that the predictions are consistent and slightly overestimating the productivity in the case of closed photobioreactor. The results obtained by the simulation runs are consistent with those found in literature, being the areal productivity for the open raceway pond between 50 and 70 t/(ha × year) in Southern Spain (Sevilla) and Brazil (Petrolina) and between 250 and 350 t/(ha × year) for the flat panel photobioreactor in the same locations.

  11. Dynamic modeling of the microalgae cultivation phase for energy production in open raceway ponds and flat panel photobioreactors

    Directory of Open Access Journals (Sweden)

    Matteo eMarsullo

    2015-09-01

    Full Text Available A dynamic model of microalgae cultivation phase is presented in this work. Two cultivation technologies are taken into account: the open raceway pond and the flat panel photobioreactor. For each technology, the model is able to evaluate the microalgae areal and volumetric productivity and the energy production and consumption. Differently from the most common existing models in literature, which deal with a specific part of the overall cultivation process, the model presented here includes all physical and chemical quantities that mostly affect microalgae growth: the equation of the specific growth rate for the microalgae is influenced by CO2 and nutrients concentration in the water, light intensity, temperature of the water in the reactor and by the microalgae species being considered. All these input parameters can be tuned to obtain reliable predictions. A comparison with experimental data taken from the literature shows that the predictions are consistent, slightly overestimating the productivity in case of closed photobioreactor. The results obtained by the simulation runs are consistent with those found in literature, being the areal productivity for the open raceway pond between 50 and 70 t/(ha*year in Southern Spain (Sevilla and Brazil (Petrolina and between 250 and 350 t/(ha*year for the flat panel photobioreactor in the same locations.

  12. Implementing Project-Based Learning (PBL) in Final Collection to Improve the Quality of Fashion Design Student

    OpenAIRE

    Indarti, Indarti

    2016-01-01

    Fashion design education is one of education that prepares students to work in fashion design field. Students research future fashion trends, sketch designs, select colors, fabrics and patterns, and give instructions on how to make the products they designed. Fashion design education not only nurture and develop student's creative skills, it also teaches essential practical skills such as production techniques and material properties, to create a final product. According to this, new educatio...

  13. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions

    Science.gov (United States)

    Gao, Baoyan; Chen, Ailing; Zhang, Wenyuan; Li, Aifen; Zhang, Chengwu

    2017-10-01

    The marine diatom Phaeodactylum tricornutum is a polymorphological, ecologically significant, and well-studied model of unicellular microalga. This diatom can accumulate diverse important metabolites. Herein, we cultured P. tricornutum in an internally installed tie-piece flat-plate photobioreactor under 14.5 m mol L-1 (high nitrogen, HN) and 2.9 m mol L-1 (low nitrogen, LN) of KNO3 and assessed its time-resolved changes in biochemical compositions. The results showed that HN was inductive to accumulate high biomass (4.1 g L-1). However, the LN condition could accelerate lipid accumulation in P. tricornutum. The maximum total lipid (TL) content under LN was up to 42.5% of biomass on day 12. Finally, neutral lipids (NLs) were 63.8% and 75.7% of TLs under HN and LN, respectively. The content of EPA ranged from 2.3% to 1.5% of dry weight during the growth period under the two culture conditions. Peak volumetric lipid productivity of 128.4 mg L-1d-1 was achieved in the HN group (on day 9). The highest volumetric productivity values of EPA, chrysolaminarin, and fucoxanthin were obtained in the exponential phase (on day 6) under HN, which were 9.6, 93.6, and 4.7 mg L-1d-1, respectively. In conclusion, extractable amounts of lipids, EPA, fucoxanthin, and chrysolaminarin could be obtained from P. tricornutum by regulating the culture conditions.

  14. Identification of characteristics which influence repository design domal salt, Task 1. Final report

    International Nuclear Information System (INIS)

    Rawlings, G.; Antonnen, G.; Chamness, M.

    1984-04-01

    The purpose of the complete project is to provide NRC with technical assistance to enable the focused, adequate review by NRC of the aspects related to design and construction of an underground test facility and final geologic repository as presented by the Department of Energy (DOE). The study presented in this report covers the identification of characteristics which influence design and construction of a geologic repository in domal salt. This report has identified five key issues, i.e., constructibility, thermal response, mechanical response, hydrologic response, and geochemical response. This report involves both short-term (up to closure) and long-term (post closure) effects. The characteristics of domal salt and its environment are described under the headings of stratigraphic/structural, tectonic, mechanical, thermal and hydrologic. Characteristics are separated into parameters (quantified and measured) and factors (qualitative). The characteristics are then subjectively ranked by their influence on the key issues. This takes into account the availability and suitability of conservative design/construction techniques, uncertainty in model and model sensitivity to the characteristic

  15. Proceedings of the second international workshop on design and construction of final repositories

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, G R

    1995-11-01

    Many international radioactive waste disposal programs are in the design and construction phases for underground laboratories and repositories. To provide a forum for discussion Svensk Kaernbraenslehantering AB (SKB) in 1992 initiated an international workshop series in which the organizations considering disposal in hard crystalline rock could meet to discuss issues relevant to The Design and Construction of Final Repositories. The first workshop with the theme `Excavation through water conducting major fracture zones` was hosted by SKB in Saestaholm, Sweden on 1993 March 30 to 31 and the workshop proceedings are SKB Technical Report 94-06. Atomic Energy of Canada Limited hosted the second workshop with the theme `Factors influencing repository design and layout` in Winnipeg, Canada on 1994 February 15 to 17. Thirty-eight people from organizations in eight countries and representative of the European Community participated in the Workshop. This report is the summary of the second workshop. The discussions at the Workshop were recorded and reproduced in the summary. Some editorial license was used to provide the text that follows. The participants were given the opportunity to comment on the text prior to publication. Unfortunately some individual speakers could not be identified on the recording of the Workshop discussions and are labelled `unidentified` in the text. (author).

  16. Proceedings of the second international workshop on design and construction of final repositories

    International Nuclear Information System (INIS)

    Simmons, G.R.

    1995-11-01

    Many international radioactive waste disposal programs are in the design and construction phases for underground laboratories and repositories. To provide a forum for discussion Svensk Kaernbraenslehantering AB (SKB) in 1992 initiated an international workshop series in which the organizations considering disposal in hard crystalline rock could meet to discuss issues relevant to The Design and Construction of Final Repositories. The first workshop with the theme 'Excavation through water conducting major fracture zones' was hosted by SKB in Saestaholm, Sweden on 1993 March 30 to 31 and the workshop proceedings are SKB Technical Report 94-06. Atomic Energy of Canada Limited hosted the second workshop with the theme 'Factors influencing repository design and layout' in Winnipeg, Canada on 1994 February 15 to 17. Thirty-eight people from organizations in eight countries and representative of the European Community participated in the Workshop. This report is the summary of the second workshop. The discussions at the Workshop were recorded and reproduced in the summary. Some editorial license was used to provide the text that follows. The participants were given the opportunity to comment on the text prior to publication. Unfortunately some individual speakers could not be identified on the recording of the Workshop discussions and are labelled 'unidentified' in the text. (author)

  17. Microgrid Design, Development and Demonstration - Final Report for Phase I and Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sumit [GE Global Research Center, Niskayuna, NY (United States); Krok, Michael [GE Global Research Center, Niskayuna, NY (United States)

    2011-02-08

    This document constitutes GE’s final report for the Microgrid Design, Development and Demonstration program for DOE’s Office of Electricity Delivery and Energy Reliability, Award DE-FC02-05CH11349. It contains the final report for Phase I in Appendix I, and the results the work performed in Phase II. The program goal was to develop and demonstrate a Microgrid Energy Management (MEM) framework for a broad set of Microgrid applications that provides unified controls, protection, and energy management. This project contributed to the achievement of the U.S. Department of Energy’s Renewable and Distributed Systems Integration Program goals by developing a fully automated power delivery microgrid network that: - Reduces carbon emissions and emissions of other air pollutants through increased use of optimally dispatched renewable energy, - Increases asset use through integration of distributed systems, - Enhances reliability, security, and resiliency from microgrid applications in critical infrastructure protection, constrained areas of the electric grid, etc. - Improves system efficiency with on-site, distributed generation and improved economic efficiency through demand-side management.

  18. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrickson, Daniel C [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  19. Experimental evaluation and design of unfilled and concrete-filled FRP composite piles : Task 7 : final report : thesis.

    Science.gov (United States)

    2015-05-01

    The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 7, Final Report - Thesis. : This final report covers Tasks 1, 2, 3, 5 ...

  20. Towards the final MRPC design. Performance test with heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Deppner, Ingo; Herrmann, Norbert [Physikalisches Institut Uni. Heidelberg, Heidelberg (Germany)

    2015-07-01

    The Compressed Baryonic Matter spectrometer (CBM) is a future heavy ion experiment located at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The key element in CBM providing hadron identification at incident energies between 2 and 35 AGeV will be a 120 m{sup 2} large Time-of-Flight (ToF) wall composed of Multi-gap Resistive Plate Chambers (MRPC) with a system time resolution better than 80 ps. Aiming for an interaction rate of 10 MHz for Au+Au collisions the MRPCs have to cope with an incident particle flux between 0.1 kHz/cm{sup 2} and 25 kHz/cm{sup 2} depending on their location. Characterized by granularity and rate capability the actual conceptual design of the ToF-wall foresees 4 different counter types called MRPC1 - MRPC4. In order to elaborate the final MRPC design of these counters a heavy ion test beam time was performed at GSI. In this contribution we present performance test results of 2 different MRPC3 full size prototypes developed at Heidelberg University and Tsinghua University, Beijing.

  1. Investigation of Chlorella vulgaris UTEX 265 Cultivation under Light and Low Temperature Stressed Conditions for Lutein Production in Flasks and the Coiled Tree Photo-Bioreactor (CTPBR).

    Science.gov (United States)

    Gong, Mengyue; Bassi, Amarjeet

    2017-10-01

    Lutein has an increasing share in the pharmaceutical and nutraceutical market due to its benefits to eye health. Microalgae may be a potential source for lutein production while the expense limits the commercialization. In this study, a coiled tubular tree photobioreactor (CTPBR) design was investigated for cultivating the cold tolerant microalgae Chlorella vulgaris UTEX 265 under various conditions for lutein production. The influence and interaction of light irradiance strength, lighting cycle, and temperature on microalgae and lutein production efficiency at low temperature range were also studied in flasks via response surface method (RSM). The results demonstrated that 14 h day-light, 120 μmol photons m -2  s -1 , and 10 °C was the optimal condition for algae growth and lutein production at low temperature experimental ranges. C. vulgaris UTEX 265 showed good potential to produce lutein in cold weather, and the optimum lutein production was contrary to the specific lutein content but corresponds to the trend of optimum growth. Additionally, fast growth (μ = 1.50 day -1 ) and good lutein recovery (11.98 mg g -1  day -1 ) in CTPBR were also achieved at the low irradiance stress condition and the low temperature photo-inhibition conditions.

  2. Dissolved organic matter (DOM) in microalgal photobioreactors: a potential loss in solar energy conversion?

    Science.gov (United States)

    Hulatt, Chris J; Thomas, David N

    2010-11-01

    Microalgae are considered to be a potential alternative to terrestrial crops for bio-energy production due to their relatively high productivity per unit area of land. In this work we examined the amount of dissolved organic matter exuded by algal cells cultured in photobioreactors, to examine whether a significant fraction of the photoassimilated biomass could potentially be lost from the harvestable biomass. We found that the mean maximum amount of dissolved organic carbon (DOC) released measured 6.4% and 17.3% of the total organic carbon in cultures of Chlorellavulgaris and Dunaliella tertiolecta, respectively. This DOM in turn supported a significant growth of bacterial biomass, representing a further loss of the algal assimilated carbon. The release of these levels of DOC indicates that a significant fraction of the photosynthetically fixed organic matter could be lost into the surrounding water, suggesting that the actual biomass yield per hectare for industrial purposes could be somewhat less than expected. A simple and inexpensive optical technique, based on chromophoric dissolved organic matter (CDOM) measurements, to monitor such losses in commercial PBRs is discussed.

  3. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal.

    Science.gov (United States)

    Ramos Tercero, E A; Sforza, E; Morandini, M; Bertucco, A

    2014-02-01

    The capability to grow microalgae in nonsterilized wastewater is essential for an application of this technology in an actual industrial process. Batch experiments were carried out with the species in nonsterilized urban wastewater from local treatment plants to measure both the algal growth and the nutrient consumption. Chlorella protothecoides showed a high specific growth rate (about 1 day(-1)), and no effects of bacterial contamination were observed. Then, this microalgae was grown in a continuous photobioreactor with CO₂-air aeration in order to verify the feasibility of an integrated process of the removal of nutrient from real wastewaters. Different residence times were tested, and biomass productivity and nutrients removal were measured. A maximum of microalgae productivity was found at around 0.8 day of residence time in agreement with theoretical expectation in the case of light-limited cultures. In addition, N-NH₄ and P-PO₄ removal rates were determined in order to model the kinetic of nutrients uptake. Results from batch and continuous experiments were used to propose an integrated process scheme of wastewater treatment at industrial scale including a section with C. protothecoides.

  4. Reaction engineering analysis of Scenedesmus ovalternus in a flat-plate gas-lift photobioreactor.

    Science.gov (United States)

    Koller, Anja Pia; Wolf, Lara; Weuster-Botz, Dirk

    2017-02-01

    Microalgal strains of the genus Scenedesmus are a promising resource for commercial biotechnological applications. The temperature-, pH- and light-dependent growth of Scenedesmus ovalternus has been investigated on a laboratory scale. Best batch process performance was obtained at 30°C, pH 8.0 and an incident photon flux density of 1300μmolphotonsm -2 s -1 using a flat-plate gas-lift photobioreactor. Highest growth rate (0.11h -1 ) and space-time yield (1.7±0.1g CDW L -1 d -1 ) were observed when applying these reaction conditions. Biomass concentrations of up to 7.5±0.1g CDW L -1 were achieved within six days (25.0±0.5g CDW m -2 d -1 ). The light-dependent growth kinetics of S. ovalternus was identified using Schuster's light transfer model and Andrews' light inhibition model (K S =545μmolphotonsm -2 s -1 ; K I =2744μmolphotonsm -2 s -1 ; μ max =0.21h -1 ). The optimal mean integral photon flux density for growth of S. ovalternus was estimated to be 1223μmolphotonsm -2 s -1 . Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis.

    Science.gov (United States)

    Pruvost, Jeremy; Cornet, J F; Goetz, Vincent; Legrand, Jack

    2012-01-01

    Modeling was done to simulate whole-year running of solar rectangular photobioreactors (PBRs). Introducing the concept of ideal reactor, the maximal biomass productivity that could be achieved on Earth on nitrate as N-source was calculated. Two additional factors were also analyzed with respect to dynamic calculations over the whole year: the effect of PBR location and the effects of given operating conditions on the resulting decrease in productivity compared with the ideal one. Simulations were conducted for the cyanobacterium Arthospira platensis, giving an ideal productivity (upper limit) in the range 55-60 tX ha(-1) year(-1) for a sun tracking system (and around 35-40 tX ha(-1) year(-1) for a fixed horizontal PBR). For an implantation in France (Nantes, west coast), the modification in irradiation conditions resulted in a decrease in biomass productivity of 40%. Various parameters were investigated, with special emphasis on the influence of the incident angle of solar illumination on resulting productivities, affecting both light capture and light transfer inside the bulk culture. It was also found that with appropriate optimization of the residence time as permitted by the model, productivities close to maximal could be achieved for a given location. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  6. Designing smart energy. Final report of the Tekes research project 2007-2008

    Energy Technology Data Exchange (ETDEWEB)

    Peltonen, S.; Pakkanen, M.; Pitkaejaervi, S.; Lautamaeki, S.; Oehman, C.; Baang, M.; Peltola, T.; Broms, L.; Gustafsson, M.-L.

    2009-07-01

    issue from a very fresh angle. This new approach was seen as very welcome by both experts and consumers. One of the most valuable findings was the five energy consumer segments that were identified: Passionate ecologists, Active energy savers, Insensitive energy users, Reluctant energy savers and Unaware energy consumers. These five energy consumer segments clearly differ from each other by their actions, awareness, attitudes and intentions regarding energy saving. In conclusion, several lessons were learned during the Desme project. First of all, it is important to realize that in order to be able to influence in the consumers' energy usage behaviour, it is extremely important to deeply understand their awareness, attitudes and current behaviour. Second, it must be understood that consumers are not a heterogeneous group of people and therefore they need to be approached by different ways and to be offered different solutions. Finally, not only communication, education and more energy efficient technology are needed in order to enhance the consumers to behave in a more energy efficient manner; also innovative and desirable products and services are needed. Industrial design can be a very effective tool for encouraging consumers to think about their energy usage more and use energy less. (orig.)

  7. 76 FR 17160 - Office of New Reactors; Final Interim Staff Guidance on the Review of Nuclear Power Plant Designs...

    Science.gov (United States)

    2011-03-28

    ... design certification (DC) application for new nuclear power reactors under Title 10 of the Code of... NUCLEAR REGULATORY COMMISSION [NRC-2010-0033; DC/COL-ISG-021] Office of New Reactors; Final Interim Staff Guidance on the Review of Nuclear Power Plant Designs Using a Gas Turbine Driven Standby...

  8. Grid fault and design-basis for wind turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Cutululis, N.A.; Markou, H.; Soerensen, Poul; Iov, F.

    2010-01-15

    This is the final report of a Danish research project 'Grid fault and design-basis for wind turbines'. The objective of this project has been to assess and analyze the consequences of the new grid connection requirements for the fatigue and ultimate structural loads of wind turbines. The fulfillment of the grid connection requirements poses challenges for the design of both the electrical system and the mechanical structure of wind turbines. The development of wind turbine models and novel control strategies to fulfill the TSO's requirements are of vital importance in this design. Dynamic models and different fault ride-through control strategies have been developed and assessed in this project for three different wind turbine concepts (active stall wind turbine, variable speed doublyfed induction generator wind turbine, variable speed multipole permanent magnet wind turbine). A computer approach for the quantification of the wind turbines structural loads caused by the fault ride-through grid requirement, has been proposed and exemplified for the case of an active stall wind turbine. This approach relies on the combination of knowledge from complimentary simulation tools, which have expertise in different specialized design areas for wind turbines. In order to quantify the impact of the grid faults and grid requirements fulfillment on wind turbines structural loads and thus on their lifetime, a rainflow and a statistical analysis for fatigue and ultimate structural loads, respectively, have been performed and compared for two cases, i.e. one when the turbine is immediately disconnected from the grid when a grid fault occurs and one when the turbine is equipped with a fault ride-through controller and therefore it is able to remain connected to the grid during the grid fault. Different storm control strategies, that enable variable speed wind turbines to produce power at wind speeds higher than 25m/s and up to 50m/s without substantially increasing

  9. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    International Nuclear Information System (INIS)

    Brantberger, Martin; Zetterqvist, Anders; Arnbjerg-Nielsen, Torben; Olsson, Tommy; Outters, Nils; Syrjaenen, Pauli

    2006-04-01

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due to the applied

  10. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    Brantberger, Martin; Zetterqvist, Anders [Ramboell Sweden AB, Stockholm (Sweden); Arnbjerg-Nielsen, Torben [Ramboell Denmark A/S, Virum (Denmark); Olsson, Tommy [IandT Olsson AB, Uppsala (Sweden); Outters, Nils [Golder Associates AB, Uppsala (Sweden); Syrjaenen, Pauli [Gridpoint Oy, Helsinki (Sweden)

    2006-04-15

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due

  11. Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Westerhoff, P.; Hu, Q.; Esparza-Soto, M.; Vermaas, W. [Dept. of Civil & Environmental Engineering, Tempe, AZ (United States)

    2010-07-01

    Microalgae can be cultured in photobioreactors to sequester carbon dioxide and produce potentially valuable biomaterials. The goal of the present study was to identify and utilize microalgal strains that are capable of tolerating up to 20% CO{sub 2} (gas phase) concentrations under variable light or flue-gas blend conditions and reactor configurations to produce biomass. Scenedesmus sp. and Chlorella sp., both cultured from a Sonoran desert mineral spring, grew well and tolerated exposure to a gas mixture containing up to 20% CO{sub 2} applied continuously in batch reactors to the culture. Experiments were conducted with simulated coal-powered acidic flue gases containing SOx/NOx at concentrations of 200 to 350 ppmV. Microalgae did not grow well without pH control, and high levels (> 250 mM) of nitrite or sulphite in the liquid media inhibited algal growth. Pseudo steady-state experiments were also conducted using helical tubular and flat-plate photobioreactors with continuous flow (water and gas) and with artificial or natural sunlight. With a 2 d hydraulic residence time (HRT), the helical tubular photobioreactor produced 0.50 {+-} 0.11 g C d{sup -1} (0.056 {+-} 0.012 g C L{sup -1} d{sup -1}) dry-weight cell mass during continuous fluorescent-lamp irradiance and 0.048 {+-} 0.018 g C L{sup -1} d{sup -1} during 12 h light/darkness cycling. The flat-plate photobioreactor (2 d HRT) produced 0.42 {+-} 0.28 g C L{sup -1} d{sup -1} with artificial lighting and with natural sunlight; a 4 d HRT produced 0.14 {+-} 0.02 g C L{sup -1} d{sup -1}. Reactor modelling indicated that a threshold of reactor size (i.e. HRT) and reactor depth (path-length of light) exists based upon the optical density of the cells in the water column and their growth rates.

  12. Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal

    International Nuclear Information System (INIS)

    Yang, Il-Seung; Salama, El-Sayed; Kim, Jong-Oh; Govindwar, Sanjay P.; Kurade, Mayur B.; Lee, Minsun; Roh, Hyun-Seog; Jeon, Byong-Hun

    2016-01-01

    Highlights: • Wastewater treatment with algal biomass production was evaluated in a bench-scale. • C. vulgaris and S. obliquus showed μ_o_p_t values of 1.39 and 1.41 day"−"1, respectively. • Complete removal (>99%) of TN and TP by both algal strains was observed. • Harvesting efficiency of M. oleifera was 81% for C. vulgaris and 92% for S. obliquus. - Abstract: Microalgae, Chlorella vulgaris and Scenedesmus obliquus were cultivated in a small scale vertical flat-plate photobioreactor (PBR) supplemented with municipal wastewater in order to achieve simultaneous wastewater treatment and biomass production for biofuel generation. Microalgal growth and nutrient removal including total nitrogen (TN), total phosphorus (TP), total inorganic carbon (TIC) and trace elements (Ca"2"+, Na"+, Mg"2"+ and Zn"2"+) were monitored during microalgae cultivation. C. vulgaris and S. obliquus showed optimal specific growth rates (μ_o_p_t) of 1.39 and 1.41 day"−"1, respectively, and the TN and TP were completely removed (>99%) from the wastewater within 8 days. Microalgal biomass in the PBR was harvested using a natural flocculant produced from Moringa oleifera seeds. The harvesting efficiency of M. oleifera was 81% for C. vulgaris and 92% for S. obliquus. The amounts of saturated, mono-unsaturated, and poly-unsaturated fatty acids in the harvested biomass accounted for 18.66%, 71.61% and 9.75% for C. vulgaris and 28.67%, 57.14% and 11.15% for S. obliquus, respectively. The accumulated fatty acids were suitable to produce high quality biodiesel with characteristics equivalent to crop seeds oil-derived biodiesel. This study demonstrates the potential of microalgae-based biodiesel production through the coupling of advanced wastewater treatment with microalgae cultivation for low-cost biomass production in a PBR.

  13. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 1. System criteria and design description. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    This volume documents the preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas. Current system, subsystem, and component designs are described and additional studies which support selection among significant design alternatives are presented. Overall system requirements which form the system design basis are presented. These include program objectives; performance and output load requirements; industrial, statutory, and regulatory standards; and site interface requirements. Material in this section will continue to be issued separately in the Systems Requirements Document and maintained current through revision throughout future phases of the project. Overall system design and detailed subsystem design descriptions are provided. Consideration of operation and maintenance is reflected in discussion of each subsystem design as well as in an integrated overall discussion. Included are the solar collector subsystem; the thermal storage subsystem, the power conversion sybsystem (including electrical generation and distribution); the heating/cooling and domestic hot water subsystems; overall instrumentation and control; and the STES building and physical plant. The design of several subsystems has progressed beyond the preliminary stage; descriptions for such subsystems are therefore provided in more detail than others to provide complete documentation of the work performed. In some cases, preliminary design parameters require specific verificaton in the definitive design phase and are identified in the text. Subsystem descriptions will continue to be issued and revised separately to maintain accuracy during future phases of the project. (WHK)

  14. Safety Evaluation Report related to the final design approval of the GESSAR II BWR/6 Nuclear Island Design (Docket No. 50-447). Supplement No. 3

    International Nuclear Information System (INIS)

    1985-01-01

    Supplement 3 to the Safety Evaluation Report (SER) for the application filed by General Electric Company for the final design approval for the GE BWR/6 nuclear island design has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. This report supplements the GESSAR II SER (NUREG-0979), issued in April 1983, summarizing the results of the staff's safety review of the GESSAR II BWR/6 nuclear island design. Subject to favorable resolution of the items discussed in this supplement, the staff concludes that the GESSAR II design satisfactorily addresses the severe-accident concerns described in draft NUREG-1070

  15. Development of a design basis tornado and structural design criteria for the Nevada Test Site, Nevada. Final report

    International Nuclear Information System (INIS)

    McDonald, J.R.; Minor, J.E.; Mehta, K.C.

    1975-06-01

    In order to evaluate the ability of critical facilities at the Nevada Test Site to withstand the possible damaging effects of extreme winds and tornadoes, parameters for the effects of tornadoes and extreme winds and structural design criteria for the design and evaluation of structures were developed. The meteorological investigations conducted are summarized, and techniques used for developing the combined tornado and extreme wind risk model are discussed. The guidelines for structural design include methods for calculating pressure distributions on walls and roofs of structures and methods for accommodating impact loads from wind-driven missiles. Calculations for determining the design loads for an example structure are included

  16. The effect of Diel temperature and light cycles on the growth of nannochloropsis oculata in a photobioreactor matrix.

    Directory of Open Access Journals (Sweden)

    Bojan Tamburic

    Full Text Available A matrix of photobioreactors integrated with metabolic sensors was used to examine the combined impact of light and temperature variations on the growth and physiology of the biofuel candidate microalgal species Nannochloropsis oculata. The experiments were performed with algal cultures maintained at a constant 20 °C versus a 15 °C to 25 °C diel temperature cycle, where light intensity also followed a diel cycle with a maximum irradiance of 1920 µmol photons m(-2 s(-1. No differences in algal growth (Chlorophyll a were found between the two environmental regimes; however, the metabolic processes responded differently throughout the day to the change in environmental conditions. The variable temperature treatment resulted in greater damage to photosystem II due to the combined effect of strong light and high temperature. Cellular functions responded differently to conditions before midday as opposed to the afternoon, leading to strong hysteresis in dissolved oxygen concentration, quantum yield of photosystem II and net photosynthesis. Overnight metabolism performed differently, probably as a result of the temperature impact on respiration. Our photobioreactor matrix has produced novel insights into the physiological response of Nannochloropsis oculata to simulated environmental conditions. This information can be used to predict the effectiveness of deploying Nannochloropsis oculata in similar field conditions for commercial biofuel production.

  17. Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production

    International Nuclear Information System (INIS)

    Lam, Man Kee; Lee, Keat Teong

    2014-01-01

    Highlights: • A new sequential baffled photobioreactor was developed to cultivate microalgae. • Organic fertilizer was used as the main nutrients source. • Negative energy balance was observed in producing microalgae biodiesel. - Abstract: Pilot-scale cultivation of Chlorella vulgaris in a 100 L sequential baffled photobioreactor was carried out in the present study. The highest biomass yield attained under indoor and outdoor environment was 0.52 g/L and 0.28 g/L, respectively. Although low microalgae biomass yield was attained under outdoor cultivation, however, the overall life cycle energy efficiency ratio was 3.3 times higher than the indoor cultivation. In addition, negative energy balance was observed in producing microalgae biodiesel under both indoor and outdoor cultivation. The minimum production cost of microalgae biodiesel was about RM 237/L (or USD 73.5/L), which was exceptionally high compared to the current petrol diesel price in Malaysia (RM 3.6/L or USD 1.1/L). On the other hand, the estimated production cost of dried microalgae biomass cultivated under outdoor environment was RM 46/kg (or USD 14.3/kg), which was lower than cultivation using chemical fertilizer (RM 111/kg or USD 34.4/kg) and current market price of Chlorella biomass (RM 145/kg or USD 45/kg)

  18. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor.

    Science.gov (United States)

    Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen

    2018-08-01

    Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6  cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1  h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Productivity CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2006-01-01

    Roč. 18,-, (2006), s. 811-826 ISSN 0921-8971 R&D Projects: GA ČR(CZ) GV104/97/S055; GA ČR(CZ) GA104/02/0410 Institutional research plan: CEZ:AV0Z50200510 Keywords : performance * photobioreactor * thin layer Subject RIV: EE - Microbiology, Virology Impact factor: 0.746, year: 2006

  20. Rock quality designation of the hydraulic properties in the near field of a final repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Carlsson, Hans; Carlsson, Leif; Pusch, Roland

    1989-06-01

    Quality assurance of a final repository for spent nuclear fuel requires detailed information on the characteristics of the rock, backfill, canisters and the waste itself. Furthermore, and of fundamental importance, is the knowledge of the behaviour of the integrated system of the waste and the different barriers. The in-situ characteristics of the rock must therefore be assessed and their influence on and interactions with the remaining barriers must be predicted and verified. A rock quality designation process of the hydraulic properties in the near-field is out-lined both for the KBS-3 system as well as for the WP-cave system. The process, once updated and approved, will be included in a Quality Assurance Program for the final repository for spent nuclear fuel. Some of the available methods for the near-field designation process are presented as well as techniques that need further development or are not developed at all. Finally, a presentation is given of a generic designation process of the KBS-3 and WP-cave repository systems in the previously investigated area in Central Sweden, where the final repository for reactor waste, SFR, is located. Geological and hydrogeological data are here at hand and it is therefore possible to carry out a simulation of how the designation process would be accomplished. (authors) (72 figs., 12 tabs., 43 refs.)

  1. Final design and progress of WEAVE : the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nic; Rey, Jeurg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Schallig, Ellen; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc; Tosh, Ian; Rogers, Kevin; Lee, Martin; Steele, Iain; Stuik, Remko; Tromp, Niels; Jaskó, Attila; Carrasco, Esperanza; Farcas, Szigfrid; Kragt, Jan; Lesman, Dirk; Kroes, Gabby; Mottram, Chris; Bates, Stuart; Rodriguez, Luis Fernando; Gribbin, Frank; Delgado, José Miguel; Herreros, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; Murphy, David; Worley, Clare; Bassom, Richard; O'Mahoney, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Martin, Adrian; Vallenari, Antonella; Salasnich, Bernardo; Baruffolo, Andrea; Jin, Shoko; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Pieri, Mat; Dominquez Palmero, Lillian; Farina, Cecilia

    2016-01-01

    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also

  2. Final design and progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nic; Rey, Jeurg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Schallig, Ellen; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc; Tosh, Ian; Rogers, Kevin; Lee, Martin; Steele, Iain; Stuik, Remko; Tromp, Niels; Jaskó, Attila; Carrasco, Esperanza; Farcas, Szigfrid; Kragt, Jan; Lesman, Dirk; Kroes, Gabby; Mottram, Chris; Bates, Stuart; Rodriguez, Luis Fernando; Gribbin, Frank; Delgado, José Miguel; Herreros, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; Murphy, David; Worley, Clare; Bassom, Richard; O'Mahoney, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Martin, Adrian; Vallenari, Antonella; Salasnich, Bernardo; Baruffolo, Andrea; Jin, Shoko; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Pieri, Mat; Dominquez Palmero, Lillian; Farina, Cecilia

    2016-01-01

    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also

  3. 78 FR 3897 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2013-01-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... number of work days aggregating at least 250 work days, occurring either solely under this employment or...

  4. 78 FR 3898 - Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort

    Science.gov (United States)

    2013-01-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... number of work days aggregating at least 250 work days, occurring either solely under this employment or...

  5. Aespoe Pillar Stability Experiment. Final experiment design, monitoring results and observations

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Eng, Anders [Acuo Engineering AB, Linkoeping (Sweden)

    2005-12-15

    The field part of the Aespoe Pillar Stability Experiment at the Aespoe Hard Rock Laboratory (HRL) was finished in 2004. The experiment was designed to induce and monitor the process of brittle failure, spalling, in a fractured rock mass under controlled conditions. The field part was successfully conducted and a large data set was obtained. This report presents the final design of the experiment, the results of the monitoring, and the observations made during the spalling process and when the spalled rock was removed. When heating of the rock was initiated the rock responded quickly. After only a few days the spalling process was activated in the notch, as indicated by the acoustic emission system, and shortly thereafter displacement readings were recorded. Contraction (radial expansion) of the rock was recorded by several instruments before the notch reached the instrument levels. This contraction is probably the result of a 3D re-distribution of the stresses. The temperature increase in the system was both slower and reached a steady state much earlier than predicted by the numerical models. The propagation of the notch was therefore halted after approximately one month of heating. The power to the electrical heaters was therefore doubled. Spalling then started up again, and in one month's time it had propagated to a depth of approximately five metres in the hole. A second steady state was now reached, but this time the heater power was kept constant for a while to let the rock settle before the confinement pressure was reduced from 700 kPa to 0 in decrements of 50 kPa. The rock mass response to the pressure drop was very limited until the pressure was lowered to approximately 200 kPa (the atmospheric pressure is not included in the given pressure values). Large displacements and a high acoustic emission hit frequency were then measured in the open hole. After the de-pressurization of the confined hole, the heaters were left on for approximately one week

  6. Process and reactor design for biophotolytic hydrogen production.

    Science.gov (United States)

    Tamburic, Bojan; Dechatiwongse, Pongsathorn; Zemichael, Fessehaye W; Maitland, Geoffrey C; Hellgardt, Klaus

    2013-07-14

    The green alga Chlamydomonas reinhardtii has the ability to produce molecular hydrogen (H2), a clean and renewable fuel, through the biophotolysis of water under sulphur-deprived anaerobic conditions. The aim of this study was to advance the development of a practical and scalable biophotolytic H2 production process. Experiments were carried out using a purpose-built flat-plate photobioreactor, designed to facilitate green algal H2 production at the laboratory scale and equipped with a membrane-inlet mass spectrometry system to accurately measure H2 production rates in real time. The nutrient control method of sulphur deprivation was used to achieve spontaneous H2 production following algal growth. Sulphur dilution and sulphur feed techniques were used to extend algal lifetime in order to increase the duration of H2 production. The sulphur dilution technique proved effective at encouraging cyclic H2 production, resulting in alternating Chlamydomonas reinhardtii recovery and H2 production stages. The sulphur feed technique enabled photobioreactor operation in chemostat mode, resulting in a small improvement in H2 production duration. A conceptual design for a large-scale photobioreactor was proposed based on these experimental results. This photobioreactor has the capacity to enable continuous and economical H2 and biomass production using green algae. The success of these complementary approaches demonstrate that engineering advances can lead to improvements in the scalability and affordability of biophotolytic H2 production, giving increased confidence that H2 can fulfil its potential as a sustainable fuel of the future.

  7. Final report for fuel acquisition and design of a fast subcritical blanket facility

    International Nuclear Information System (INIS)

    Clikeman, F.M.; Ott, K.O.

    1976-01-01

    A summary is presented of work leading to the design of a subcritical facility for the study of fast reactor blankets. Included are activities related to fuel acquisition, design of the facility, and experiment planning

  8. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for Inertial Confinement reactor. This second of three volumes discussions is some detail the following: Objectives, requirements, and assumptions; rationale for design option selection; key technical issues and R&D requirements; and conceptual design selection and description.

  9. A Comparison of Problem-Solving Alternatives Used by Environmental Designers. Final Report.

    Science.gov (United States)

    Murtha, D. Michael; Nadler, Gerald

    This study compared the effectiveness of three design strategies using nine architecture graduate students to solve three typical room design problems. Open-ended (5 step), traditional (10 step), and systematic (15 step) strategies were developed based on a national survey of design methodologists. Each strategy was applied by three subjects…

  10. Engineering Design Thinking and Information Gathering. Final Report. Research in Engineering and Technology Education

    Science.gov (United States)

    Mentzer, Nathan

    2011-01-01

    The objective of this research was to explore the relationship between information access and design solution quality of high school students presented with an engineering design problem. This objective is encompassed in the research question driving this inquiry: How does information access impact the design process? This question has emerged in…

  11. The AP600 advanced simplified nuclear power plant. Results of the test program and progress made toward final design approval

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    1996-01-01

    At the 1994 Pacific Basin Conference, Mr. Bruschi presented a paper describing the AP600, Westinghouse's advanced light water reactor design with passive safety features. Since then, a rigorous test program was completed and AP600 became the most thoroughly tested advanced reactor system design in history. Westinghouse is now well on its way toward receiving Final Design Approval from the U.S. Nuclear Regulatory Commission for AP600. In this paper, the results of the test program will be discussed and an update on prospects for building the plant will be covered. (author)

  12. The AP600 advanced simplified nuclear power plant. Results of the test program and progress made toward final design approval

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, H.J. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1996-10-01

    At the 1994 Pacific Basin Conference, Mr. Bruschi presented a paper describing the AP600, Westinghouse`s advanced light water reactor design with passive safety features. Since then, a rigorous test program was completed and AP600 became the most thoroughly tested advanced reactor system design in history. Westinghouse is now well on its way toward receiving Final Design Approval from the U.S. Nuclear Regulatory Commission for AP600. In this paper, the results of the test program will be discussed and an update on prospects for building the plant will be covered. (author)

  13. Safety Evaluation Report related to the final design approval of the GESSAR II BWR/6 Nuclear Island design, Docket No. 50-447

    International Nuclear Information System (INIS)

    1983-04-01

    The Safety Evaluation Report for the application filed by General Electric Company for the Final Design Approval for the General Electric Standard Safety Analysis Report (GESSAR II FSAR) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. This report summarizes the results of the staff's safety review of the GESSAR II BWR/6 Nuclear Island Design. Subject to favorable resolution of items discussed in the Safety Evaluation Report, the staff concludes that the facilities referencing GESSAR II, subject to approval of the balance-of-plant design, can conform with the provisions of the Act and the regulations of the Nuclear Regulatory Commission

  14. 76 FR 66805 - Endangered and Threatened Wildlife and Plants: Final Rulemaking To Designate Critical Habitat for...

    Science.gov (United States)

    2011-10-27

    ... Raimondi, University of California Santa Cruz (UCSC), in 2005). Black abalone generally inhabit coastal and... final rules through press releases, the Federal Register, and posting of the rules and supporting... CHRT, comprised of seven Federal biologists from NMFS, the National Park Service (NPS), US Geological...

  15. Systematic Process Synthesis and Design Methods for Cost Effective Waste Minimization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Biegler, L.T.; Grossmann, I.E.; Westerberg, A.W.

    1998-02-14

    This report focuses on research done over the past four years under the grant with the above title. In addition, the report also includes a brief summary of work done before 1994 under grant DOE-DE-FG02-85ER13396. Finally, a complete list of publications that acknowledge support from this grant is listed at the end.

  16. Systematic Process Synthesis and Design Methods for Cost Effective Waste Minimization. Final report

    International Nuclear Information System (INIS)

    Biegler, L.T.; Grossmann, I.E.; Westerberg, A.W.

    1998-01-01

    This report focuses on research done over the past four years under the grant with the above title. In addition, the report also includes a brief summary of work done before 1994 under grant DOE-DE-FG02-85ER13396. Finally, a complete list of publications that acknowledge support from this grant is listed at the end

  17. GROWTH AND COMPOSITION OF Arthrospira (Spirulina platensis IN A TUBULAR PHOTOBIOREACTOR USING AMMONIUM NITRATE AS THE NITROGEN SOURCE IN A FED-BATCH PROCESS

    Directory of Open Access Journals (Sweden)

    C. Cruz-Martínez

    2015-06-01

    Full Text Available AbstractNH4NO3 simultaneously provides a readily assimilable nitrogen source (ammonia and a reserve of nitrogen (nitrate, allowing for an increase in Arthrospira platensis biomass production while reducing the cost of the cultivation medium. In this study, a 22plus star central composite experimental design combined with response surface methodology was employed to analyze the influence of light intensity (I and the total amount of added NH4NO3 (Mt on a bench-scale tubular photobioreactor for fed-batch cultures. The maximum cell concentration (Xm, cell productivity (PX and biomass yield on nitrogen (YX/N were evaluated, as were the protein and lipid contents. Under optimized conditions (I = 148 μmol·photons·m-2·s-1 and Mt = 9.7 mM NH4NO3, Xm = 4710 ±34.4 mg·L-1, PX = 478.9 ±3.8 mg·L-1·d-1 and YX/N = 15.87 ±0.13 mg·mg-1 were obtained. The best conditions for protein content in the biomass (63.2% were not the same as those that maximized cell growth (I = 180 μmol·photons·m-2·s-1 and Mt = 22.5 mM NH4NO3. Based on these results, it is possible to conclude that ammonium nitrate is an interesting alternate nitrogen source for the cultivation of A. platensisin a fed-batch process and could be used for other photosynthetic microorganisms.

  18. Human-system interface design review guideline -- Process and guidelines: Final report. Revision 1, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant`s HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 1 consists of two major parts. Part 1 describes those aspects of the review process of the HSI design that are important to identifying and resolving human engineering discrepancies. Part 2 contains detailed guidelines for a human factors engineering review which identify criteria for assessing the implementation of an applicant`s or licensee`s HSI design.

  19. Ocean thermal energy conversion (OTEC) power system development. Preliminary design report, Appendices, Part 1 (Final)

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The objective of this project is the development of a preliminary design for a full-sized, closed cycle, ammonia power system module for the 100 MWe OTEC demonstration plant. In turn, this demonstration plant is to demonstrate, by 1984, the operation and performance of an Ocean Thermal Power Plant having sufficiently advanced heat exchanger design to project economic viability for commercial utilization in the late 1980's and beyond. Included in this power system development are the preliminary designs for a proof-of-concept pilot plant and test article heat exchangers which are scaled in such a manner as to support a logically sequential, relatively low-cost development of the full-scale power system module. The conceptual designs are presented for the demonstration plant power module, the proof-of-concept pilot plant, and for a pair of test article heat exchangers. Costs associated with the design, development, fabrication, checkout, delivery, installation, and operation are included. The accompanying design and producibilty studies on the full-scale power system module project the performance/economics for the commercial plant. This section of the report contains appendices on the developed computer models, water system dynamic studies, miscellaneous performance analysis, materials and processes, detailed equipment lists, turbine design studies, tube cleaner design, ammonia leak detection, and heat exchanger design supporting data. (WHK)

  20. Human-system interface design review guideline -- Process and guidelines: Final report. Revision 1, Volume 1

    International Nuclear Information System (INIS)

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant's HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 1 consists of two major parts. Part 1 describes those aspects of the review process of the HSI design that are important to identifying and resolving human engineering discrepancies. Part 2 contains detailed guidelines for a human factors engineering review which identify criteria for assessing the implementation of an applicant's or licensee's HSI design

  1. An ion-optical design study of a carbon-ion rotating gantry with a superconducting final bending magnet

    International Nuclear Information System (INIS)

    Bokor, J.; Pavlovič, M.

    2016-01-01

    Ion-optical designs of an isocentric ion gantry with a compact curved superconducting final bending magnet are presented. The gantry is designed for transporting carbon-therapy beams with nominal kinetic energy of 400 MeV/u, which corresponds to the penetration range of C"6"+ beam in water of about 28 cm. In contrast to other existing designs, we present a “hybrid” beam transport system containing a single superconducting element – the last bending magnet. All other elements are based on conventional warm technology. Ion-optical properties of such a hybrid system are investigated in case of transporting non-symmetric (i.e. different emittance patterns in the horizontal and vertical plane) beams. Different conditions for transporting the non-symmetric beams are analyzed aiming at finding the optimal, i.e. the most compact, gantry version. The final gantry layout is presented including a 2D parallel scanning. The ion-optical and scanning properties of the final gantry design are described, discussed and illustrated by computer simulations performed by WinAGILE.

  2. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY; FINAL

    International Nuclear Information System (INIS)

    None

    1998-01-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC)

  3. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    International Nuclear Information System (INIS)

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff's review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff's review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE's application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design

  4. Final safety evaluation report related to the certification of the Advanced Boiling Water Reactor design. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the US Advanced Boiling Water Reactor (ABWR) standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1503 in July 1994 to document the NRC staff`s review of the US ABWR design. The US ABWR design was submitted by GE Nuclear Energy (GE) in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff`s review of the changes to the US ABWR design documentation since the issuance of the FSER. GE made these changes primarily as a result of first-of-a-kind-engineering (FOAKE) and as a result of the design certification rulemaking for the ABWR design. On the basis of its evaluations, the NRC staff concludes that the confirmatory issues in NUREG-1503 are resolved, that the changes to the ABWR design documentation are acceptable, and that GE`s application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the US ABWR design.

  5. Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report

    International Nuclear Information System (INIS)

    Bird, W.L. Jr.; Woodson, H.H.

    1980-03-01

    The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules

  6. Ocean thermal energy conversion (OTEC). Power system development. Preliminary design report, final

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-04

    The preliminary design of the 10 MWe OTEC power module and the 200 kWe test articles is given in detail. System operation and performance; power system cost estimates; 10 MWe heat exchangers; 200 kWe heat exchanger articles; biofouling control;ammonia leak detection, and leak repair; rotating machinery; support subsystem; instrumentation and control; electrical subsystem; installation approach; net energy and resource analysis; and operability, maintainability, and safety are discussed. The conceptual design of the 40 MWe electrical power system includes four or five 10 MWe modules as designed for the 10 MWe pilot plant. (WHK)

  7. Design of strong wooden box coated with fiberglass reinforced resin for shipping and burial of contaminated glove boxes. Final report

    International Nuclear Information System (INIS)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of al bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This attachment contains design of strong wooden box coated with fiberglass reinforced resin for shipping and burial of contaminated glove boxes

  8. Detail design of a 10.4-m stretched-membrane dish. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    This report describes efforts conducted under Tasks 3 and 4 of the second phase of the project to develop a single-element stretched-membrane dish concept to reduce the cost of a high-performance concentrating solar collector. We completed the detailed design for such a collector suitable to drive a 25-kWe Stirling motor generator. The design includes the collectors, optical element, the drive, and support systems. The aperture of the optical element was sized to provide the required energy to the engine based on test data and analytical models of the concentrator receiver, and engine. The design of the optical element was improved based on experience gained from the design, fabrication, and testing of several prototypes.

  9. TIBER II/ETR final design report: Volume 2, 3.0 Engineering

    International Nuclear Information System (INIS)

    Lee, J.D.

    1987-09-01

    This paper discusses the design of the TIBER II Tokamak. This particular volume discusses: mechanical systems; electrical systems; shield nuclear analysis and tritium issues; reactor building facilities; and tritium systems

  10. Pavement subgrade MR design values for Michigan's seasonal changes : final report.

    Science.gov (United States)

    2009-07-22

    The resilient modulus (MR) of roadbed soil plays an integral role in the design of pavement systems. Currently, the : various regions of the Michigan Department of Transportation (MDOT) use different procedures to determine the : MR values. Most of t...

  11. Design, fabricate, and test a 1.06μ repetitively pulsed laser. Final report

    International Nuclear Information System (INIS)

    Eggleston, J.M.; Crawford, E.A.

    1985-01-01

    The results of a program to develop the Thomson scattering diagnostic laser are described. Background material and technical justification for the design approach are given. Principal results of the developmental program were the construction of a rep rated slab glass amplifier, and the accumulation of the design knowledge necessary to build such amplifiers for maximum performance. Significant advances were made in reducing second order optical distortions

  12. Digital Smile Design concept delineates the final potential result of crown lengthening and porcelain veneers to correct a gummy smile.

    Science.gov (United States)

    Trushkowsky, Richard; Arias, David Montalvo; David, Steven

    Prior to initiating any treatment, it is necessary to visualize the desired outcomes. It then becomes possible to formulate the steps required to achieve this result. Digital Smile Design (DSD) utilizes patient input and information gathered through diagnostic procedures to create an esthetic treatment scheme. In the case presented here, the NYUCD Esthetic Evaluation Form, intraoral and extraoral photographs, mounted diagnostic casts, physical examination, and radiographs were the diagnostic modalities. The gathered information served as a starting point for a wax-up and intraoral mock-up. This case report demonstrates how the DSD served as a template for crown lengthening procedures and design of the final porcelain veneer restorations.

  13. SUNSTORE 3. Phase 1. Project design and tender. Final report; SUNSTORE 3. Fase 1. Projektering og udbud. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.A. (PlanEnergi, Skoerping (Denmark)); Moeller Nielsen, C. (Dronninglund Fjernvarme, Dronninglund (Denmark)); Baunwall, M. (NIRAS Aalborg (Denmark)); Munkholt, H. (GG-Construction, Aalborg (Denmark)); Paaske, B. (Teknologisk Institut, AArhus (Denmark)); Schmidt, T. (SOLITES, Stuttgart (Germany))

    2011-03-15

    The objective of the project has been to carry out detailed design and tendering for a heat production plant consisting of: - 35.000 m{sub 2} solar thermal collectors, - 60.000 m{sub 3} pit heat storage, - 3 MW{sub heat} heat pump, covering app. 50% of the heat production at Dronninglund district heating plant (Denmark). The final report for the project includes detailed design of the pit heat storage (a further development of a 10.000 m{sub 3} storage implemented in Marstal) and simulation of the total production system in the simulation software TRNSYS. (ln)

  14. Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

  15. Final safety evaluation report related to the certification of the System 80+ design: Docket Number 52-002. Supplement 1

    International Nuclear Information System (INIS)

    1997-05-01

    This report supplements the final safety evaluation report (FSER) for the System 80+ standard design. The FSER was issued by the US Nuclear Regulatory Commission (NRC) staff as NUREG-1462 in August 1994 to document the NRC staff's review of the System 80+ design. The System 80+ design was submitted by Asea Brown Boveri-Combustion Engineering (ABB-CE), in accordance with the procedures of Subpart B to Part 52 of Title 10 of the Code of Federal Regulations. This supplement documents the NRC staff's review of the changes to the System 80+ design documentation since the issuance of the FSER. ABB-CE made these changes as a result of its review of the System 80+ design details. The NRC staff concludes that the changes to the System 80+ design documentation are acceptable, and that ABB-CE's application for design certification meets the requirements of Subpart B to 10 CFR Part 52 that are applicable and technically relevant to the System 80+ design

  16. Final Report for 'Design calculations for high-space-charge beam-to-RF conversion'

    International Nuclear Information System (INIS)

    Smithe, David N.

    2008-01-01

    Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference 'cut-cell' boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimum energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT's, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of 'stair-step' geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other

  17. Design and optimization of wing tips for wind turbines. Final report; Design og optimering af vingetipper for vindmoeller. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.N.; Shen, W.Z.; Zhu, W.J.; Borbye, J.; Okulov, V.L.; Mikkelsen, R. (DTU Mekanik, Kgs. Lyngby (Denmark)); Gaunaa, M.; Rethore, P.-E.; Soerensen, N.N. (Danmarks Tekniske Univ. Risoe DTU, Afd. for Vindenergi, Roskilde (Denmark))

    2011-03-15

    The aim of the project was to suggest and analyse new shapes of wing tips for wind turbines to optimize their performance. Several simple wing tips and their flow topology were analysed, and the impact of different design variables was determined in order to establish which design has the best effect for the performance. For the numerical flow calculations, primarily the Navier-Stokes code EllipSys was used. As a supplement to the viscous Navier-Stokes calculations, in-viscous calculations were made using a lifting-line theory. This is a simple technique to determine the load distribution along the wing tip in those cases where viscous effects can be neglected. A large part of the project has focused on improving accuracy of the lifting-line method. Besides forming the basis for improved tip configurations, the calculations were also used to improve the so-called tip correction. Based on the numerical results from CFD calculations an improved tip correction was developed. (ln)

  18. Conceptual design of a KrF scaling module. Final report

    International Nuclear Information System (INIS)

    1980-10-01

    A conceptual design of an angular multiplexed 50 kJ KrF laser module for Inertial Confinement Fusion is presented. Optical designs for encoding, beam packing and beam transfer between amplifier stages are developed; emphasis is placed on reducing prepulse problems and achieving acceptable optical quality. An axisymmetric optical design is identified as optimum in terms of simplicity, optical quality, cost and alignment. A kinetic code model was developed for the KrF amplifier and was used to derive scaling maps for the 50 kJ module. Attention was given to reducing parasitics, achieving acceptable extraction efficiency and accounting for amplified spontaneous emission effects. The size of the module is constrained by parasitic suppression and damage thresholds; the power gain is constrained by demanding 40% extraction efficiency in a double pass extraction geometry; and, the run time is constrained by the pulsed power technology (PFN or PFL) and acceptable values of g 0 L. The bounds imposed on the design by the pulsed power technology were examined. Both PFLs and PFNs were considered along with their associated diode, hibachi and guide field requirements. A base line design for a 50 kJ module including amplifier staging, layout and overall size is discussed. Cost analysis and scaling for optical components, pulsed power technology and the guide field are also presented

  19. Radiological engineering services for the design of special contamination containments. Final report

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this study was to provide radiological engineering services for the design of special contamination containments. These containments were to be used during the replacement of leaking and damaged gaskets on the glove boxes in Technical Area-55 (TA-55). The damaged gaskets involved 18 windows and 5 interconnecting spool pieces in fuel processing glove boxes. The work scope included the design and manufacture of special contamination containment enclosures (containments), the preparation of procedures and tool lists to support gasket replacement while using the containments, and the training of appropriate TA-55 personnel in the proper installation, operation and removal of the containments. It was originally anticipated that two basic containment designs would be required, one for the windows and one for spool pieces. Upon examination of the glove boxes it was evident that the individual space envelopes and interferences associated with each glove box would require uniquely designed containments for effective gasket replacement. This resulted in 13 individual containment designs that accommodated the interferences and allowed gasket replacement within the containment. Successful use of the containments for glove box gasket replacement was a significant accomplishment. The operation has proven that a properly managed containment program can enhance routine maintenance of the glove boxes while preventing a contamination release. The ability to perform these operations in containments reduces costs by preventing a contaminant release and eliminating the associated cleanup expenses, reduced radioactive waste and fuel processing down time

  20. Urban wastewater photobiotreatment with microalgae in a continuously operated photobioreactor: growth, nutrient removal kinetics and biomass coagulation-flocculation.

    Science.gov (United States)

    Mennaa, Fatima Zahra; Arbib, Zouhayr; Perales, José Antonio

    2017-11-03

    The aim of this study was to investigate the growth, nutrient removal and harvesting of a natural microalgae bloom cultivated in urban wastewater in a bubble column photobioreactor. Batch and continuous mode experiments were carried out with and without pH control by means of CO 2 dosage. Four coagulants (aluminium sulphate, ferric sulphate, ferric chloride and polyaluminium chloride (PAC)) and five flocculants (Chemifloc CM/25, FO 4498SH, cationic polymers Zetag (Z8165, Z7550 and Z8160)) were tested to determine the optimal dosage to reach 90% of biomass recovery. The maximum volumetric productivity obtained was 0.11 g SS L -1  d -1 during the continuous mode. Results indicated that the removal of total dissolved nitrogen and total dissolved phosphorous under continuous operation were greater than 99%. PAC, Fe 2 (SO 4 ) 3 and Al 2 (SO 4 ) 3 were the best options from an economical point of view for microalgae harvesting.

  1. GROWTH KINETIC STUDY OF CHLORELLA VULGARIS USING LAB-SCALE AND PILOT-SCALE PHOTOBIOREACTOR: EFFECT OF CO2 CONCENTRATION

    Directory of Open Access Journals (Sweden)

    MAN KEE LAM

    2016-07-01

    Full Text Available In the present study, growth kinetic of Chlorella vulgaris was performed when the microalgae was cultivated with different concentrations of CO2 . The experiments were carried out using lab-scale and pilot-scale photobioreactors, and the growth results were analyzed using POLYMATH 6.0 with different growth kinetic models. The growth of the microalgae was found fitted well to the Richards growth model with attainable high R2 values as demonstrated in all studied cases, in concert with low values of root mean squares deviation (RMSD and variance. In addition, the output from the plots of experimental values versus predicted values and residual plots further confirmed the good fit of Richards model. The predicted specific growth rate from Richards model was similar to the experimental specific growth rate with deviation lesser than 5%. The attained results paved a preliminary prediction of microalgae growth characteristic when the cultivation is scaled-up to commercial scale.

  2. Cultivation of Chlorella Vulgaris Using Airlift Photobioreactor Sparged with 5%CO 2 -Air as a Biofixing Process

    Directory of Open Access Journals (Sweden)

    Mahmood Khazzal Hummadi AL-Mashhadani

    2017-04-01

    Full Text Available The present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant growth rate, since the bioreactors become more thermodynamically favorable and provide impetus for a higher level of production. biofixing process

  3. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.

    Science.gov (United States)

    Discart, V; Bilad, M R; Marbelia, L; Vankelecom, I F J

    2014-01-01

    A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    Science.gov (United States)

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ocean thermal energy conversion power system development. Final design report: PSD-I, Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-30

    The PSD-I program provides a heat exchanger sytem consisting of an evaporator, condenser and various ancillaries with ammonia used as a working fluid in a closed simulated Rankine cycle. It is to be installed on the Chepachet Research Vessel for test and evaluation of a number of OTEC concepts in a true ocean environment. It is one of several test articles to be tested. Primary design concerns include control of biofouling, corrosion and erosion of aluminum tubes, selection of materials, and the development of a basis for scale-up to large heat exchangers so as to ultimately demonstrate economic feasibility on a commercial scale. The PSD-I test article is devised to verify thermodynamic, environmental, and mechanical performance of basic design concepts. The detailed design, development, fabrication, checklist, delivery, installation support, and operation support for the Test Article Heat Exchangers are described. (WHK)

  6. Design and development of a continuously variable ratio transmission for automotive vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-30

    Work accomplished between July 1974 and October 1978 in a program directed toward the design and development of a continuously variable ratio transmission (CVT) for an automotive vehicle is reported. The following major accomplishments were achieved: the laboratory and mathematical projections establishing the viability of the program and the predicted attainment of the primary goal of fuel economy were verified; the proposed Concept Demonstration prototype hydromechanical transmission (HMT) was completed from design to operation; the HMT was thoroughly tested in the laboratory and on the road and its in-vehicle performance was verified by independent testing laboratories; and design of a second generation Pre-Production HMT has proceeded to the point of confirming the practicality of the automotive HMT size and weight; most of the necessary information has been generated which could permit its production cost/competitiveness to be evaluated. (LCL)

  7. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  8. Literature survey, numerical examples, and recommended design studies for main-coolant pumps. Final report

    International Nuclear Information System (INIS)

    Allaire, P.E.; Barrett, L.E.

    1982-06-01

    This report presents an up-to-date literature survey, examples of calculations of seal forces or other pump properties, and recommendations for future work pertaining to primary coolant pumps and primary recirculating pumps in the nuclear power industry. Five main areas are covered: pump impeller forces, fluid annuli, bearings, seals, and rotor calculations. The main conclusion is that forces in pump impellers is perhaps the least well understood area, seals have had some good design work done on them recently, fluid annuli effects are being discussed in the literature, bearing designs are fairly well known, and rotor calculations have been discussed widely in the literature. It should be noted, however, that usually the literature in a given area is not applied to pumps in nuclear power stations. The most immediate need for a combined theoretical and experimental design capability exists in mechanical face seals

  9. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation

    International Nuclear Information System (INIS)

    Tentner, A.M.; Parma, E.; Wei, T.; Wigeland, R.

    2010-01-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  10. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

    2010-03-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  11. Free-piston Stirling engine conceptual design and technologies for space power, Phase 1. Final Report

    International Nuclear Information System (INIS)

    Penswick, L.B.; Beale, W.T.; Wood, J.G.

    1990-01-01

    As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis

  12. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    Science.gov (United States)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  13. Human factors review of nuclear power plant control room design. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Gonzalez, W.R.; Parsons, S.O.

    1976-11-01

    The human factors aspects of five representative nuclear power plant control rooms were evaluated using such methods as a checklist guided observation system, structured interviews with operators and trainers, direct observations of operator behavior, task analyses and procedure evaluation, and historical error analyses. The human factors aspects of design practices are illustrated, and many improvements in current practices are suggested. The study recommends that a detailed set of applicable human factors standards be developed to stimulate a uniform and systematic concern for human factors in design considerations

  14. Final report of the cooperative study on seismic isolation design. The second stage

    Energy Technology Data Exchange (ETDEWEB)

    Uryu, Mitsuru; Terada, Syuji; Shioya, Tsutomu (and others)

    1999-05-01

    The applicability of the seismic isolation design onto the nuclear fuel facilities, which must clear severe criteria of integrity, has been examined. Following the first stage of the cooperative study, conducted from 1988 to 1991, the second stage included critical vibration testing, seismic observation of seismic isolation building and founded buildings of non-isolation, with the objectives of clarifying the policies on critical design of seismic isolation building. Integrity of the seismic isolation piping system was tested by means of static deformation test, with variable inner water pressure and relative deformation. (Yamamoto, A.)

  15. NSSS design and cycle 1 operating history data for Arkansas Nuclear One, Unit-2. Final report

    International Nuclear Information System (INIS)

    Gagne, P.A.

    1981-03-01

    This report contains design and cycle 1 operating data for the Arkansas Nuclear One, Unit-2 nuclear steam supply system. The design data include descriptions of the reactor core, reactor coolant system, and control systems which are a part of the nuclear steam supply system. Operating history data are provided for the period of December 1978 through January 1980. The most important operating history data provided include reactor power, cumulative fuel burnup, control rod position, primary coolant temperature, and a series of power distribution state points

  16. Tornado missile simulation and design methodology. Volume 1: simulation methodology, design applications, and TORMIS computer code. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and risk has been assessed for a hypothetical nuclear power plant design case study

  17. Hollow ceramic block: containment of water for thermal storage in passive solar design. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Winship, C.T.

    1983-12-27

    The project activity has been the development of designs, material compositions and production procedures to manufacture hollow ceramic blocks which contain water (or other heat absorptive liquids). The blocks are designed to serve, in plurality, a dual purpose: as an unobtrusive and efficient thermal storage element, and as a durable and aesthetically appealing surface for floors and walls of passive solar building interiors. Throughout the grant period, numerous ceramic formulas have been tested for their workabilty, thermal properties, maturing temperatures and color. Blocks have been designed to have structural integrity, and textured surfaces. Methods of slip-casting and extrusion have been developed for manufacturing of the blocks. The thermal storage capacity of the water-loaded block has been demonstrated to be 2.25 times greater than that of brick and 2.03 times greater than that of concrete (taking an average of commonly used materials). Although this represents a technical advance in thermal storage, the decorative effects provided by application of the blocks lend them a more significant advantage by reducing constraints on interior design in passive solar architecture.

  18. Passive solar design strategies: Remodeling guidelines for conserving energy at home. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler`s typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house`s need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

  19. Planning, design, and construction of nuclear power plants: an overview. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, D.A.; Rad, P.F.

    1977-12-01

    Chapters are included on generation system descriptions and alternative energy sources; load forecasting and growth projections; utility studies, program development, and analytical models; organizational alternatives and contract arrangements; project control in the design and construction phase; site management activities; construction activities; and startup and testing.

  20. To Design and Evaluate a 12th Grade Course in the Principles of Economics; Final Report.

    Science.gov (United States)

    Wiggins, Suzanne E.; Sperling, John G.

    Reported is the design, development, and evaluation of a one-semester course on the principles of economics for twelfth grade students. The course is intended to develop students' capacity for economic reasoning through economic theory and empirical research. To do this, teaching materials and innovative techniques for teacher training were…

  1. Evaluation of j-turn intersection design performance in Missouri, final report.

    Science.gov (United States)

    2013-12-01

    Research shows that a high percentage of crashes that take place on high-speed rural expressways occur at intersections : with minor roads. One low-cost alternative design for improving the safety of at-grade intersections on such expressways is : th...

  2. Ocean Thermal Energy Conversion (OTEC) platform configuration and integration. Volume II. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of this project is to evaluate six candidate hullforms as candidates for the OTEC commercial plant. This volume is a summary of the conceptual design including facility requirements, cost, schedule, and site sensitivity. Two OTEC commercial plant configurations are considered in this study: the ship and the semi-submersible. Engineering drawings are presented. (WHR)

  3. TIBER II/ETR final design report: Volume 1, 1. 0 Introduction; 2. 0 plasma engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D. (ed.)

    1987-09-01

    This paper discusses the design of the TIBER II tokamak test reactor. Specific topics discussed are the physics objectives for Tiber, magnetics, baseline operating point, pulsed inductive operation, edge physics and impurity control, fueling, disruption control, vertical stability and impurity flow reversal. (LSP)

  4. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    Energy Technology Data Exchange (ETDEWEB)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  5. Computer Assisted Instructional Design for Computer-Based Instruction. Final Report. Working Papers.

    Science.gov (United States)

    Russell, Daniel M.; Pirolli, Peter

    Recent advances in artificial intelligence and the cognitive sciences have made it possible to develop successful intelligent computer-aided instructional systems for technical and scientific training. In addition, computer-aided design (CAD) environments that support the rapid development of such computer-based instruction have also been recently…

  6. SEAFP cooling system design. Task M8 - water coolant option (final report)

    International Nuclear Information System (INIS)

    Stubley, P.; Natalizio, A.

    1994-01-01

    This report contains the ex-vessel portions of the outline designs for first wall, blanket and divertor cooling using water as the heat transport fluid. Equipment layout, key components and main system parameters are also described. (author). 7 tabs., 14 figs

  7. Planning, design, and construction of nuclear power plants: an overview. Final report

    International Nuclear Information System (INIS)

    Rhodes, D.A.; Rad, P.F.

    1977-12-01

    Chapters are included on generation system descriptions and alternative energy sources; load forecasting and growth projections; utility studies, program development, and analytical models; organizational alternatives and contract arrangements; project control in the design and construction phase; site management activities; construction activities; and startup and testing

  8. 78 FR 34918 - Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and...

    Science.gov (United States)

    2013-06-11

    ... Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... to control air pollutants from ``Sewage Sludge Incinerators'' (SSI). The Indiana Department of... unit,'' in part, as any device that combusts sewage sludge for the purpose of reducing the volume of...

  9. Design, engineering and evaluation of refractory liners for slagging gasifiers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    deTineo, B J; Booth, G; Firestone, R F; Greaves, M J; Hales, C; Lamoureux, J P; Ledford, R R

    1982-08-01

    The contract for this program was awarded at the end of September 1978. Work was started on 1 October 1978, on Tasks A, B, and E. Task A, Conceptual Liner Designs, and Task B, Test System Design and Construction, were completed. Task C, Liner Tests, and Task D, Liner Design Evaluation, were to begin upon completion of Task B. Task E, Liner Model Development, is inactive after an initial data compilation and theoretical model development effort. It was to be activated as soon as data were available from Task D. Task F, Liner Design Handbook, was active along with Task A since the reports of both tasks were to use the same format. At this time, Tasks C, D, and F are not to be completed since funding of this project was phased out by DOE directive. The refractory text facility, which was constructed, was tested and found to perform satisfactorily. It is described in detail, including a hazard analysis which was performed. (LTN)

  10. Fellowship Program in the Design and Development of Instructional Materials. Final Report.

    Science.gov (United States)

    Fleming, Malcolm; Pett, Dennis

    A two-year graduate program leading to a specialists's degree was administered to train individuals in the design of instructional materials for elementary, secondary, vocational and special education curricula. The program sought to achieve a multiplier effect by placing its graduates in positions in which they could help other educators to…

  11. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs. Final summary report

    International Nuclear Information System (INIS)

    Greenspan, E

    2006-01-01

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity in particular for BWR's, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR's and BWR's without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR's and BWR's were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density ? on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR's more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fueled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ∼2/3 that of the MOX fuel and the discharged hydride fuel is

  12. Mixed waste landfill monitoring prototype test design for Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    Keller, C.

    1994-09-01

    The purpose of this contract is to design the prototype tests necessary for the verification of the measurement methods proposed for the Mixed Waste Disposal Facility. The design is limited to the hydrological performance of the measurement methods. It does not include the mechanical testing of the methods proposed. The test site is to be selected and when approved, construction drawings provided. The contract also includes testing of vitrified clay pipe as the liner of choice for the passages under the landfill. The tests are to be done of both he hydrologic and the mechanical capability of the pipe. The test bed construction is to be supervised as it is being done by the construction contractor monitored by LANL. This contract does not include the logical subsequent work of performance of the measurements in the test bed. Since this contract was received by September 15, with the work to be completed by September 30, only that work possible in the short time was performed. That included the design of the test bed, the purchase of the vitrified clay pipe and the mechanical tests of the pipe, and the purchase of the SEAMIST systems for testing in the clay pipe. None of those could be delivered in time for flow tests to be done on the clay pipe. The mechanical tests were done as part of the pipe purchase and are reported here. The contract was not extended beyond September 30 for lack of funds. This report is therefore limited to the preliminary design of the test bed and to the specification of the orders for the materials. The hope is that funding will be restored to the program for the completion of the design and measurement effort

  13. A product designed for final disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Baboescu, E.; Popescu, I. V.

    2001-01-01

    The product 'metallic barrel - concrete - low level radioactive wastes - 1' (ABBD - 1) was certified according to the company's standard SF ICN/1994, updated 1. The product ABBD -1 is produced according to the following certified technologies: - technology for processing and conditioning of low level radioactive solid wastes; - technology for processing and conditioning of waste ion exchangers from the TRIGA reactor; - technology for conditioning the β - γ radioactive compacts. The product is constituted of a protection shield, the concrete block - radioactive waste, securing high mechanical strength and a high degree of radionuclides retaining, thus ensuring the necessary condition for long time disposal and, finally, the metallic container fulfilling the National Standards of Nuclear Safety for Radioactive Materials Transportation. The metallic container is made of pickled slab, with a 220 l capacity, according to STAS 7683/88 standards. The main characteristics of the product 'ABBD - 1' are: - size: height, 915 ± 10 mm, diameter, 600 ± 5 mm; - mass, 300 - 600 kg; - maximum permissible activity, 6 x 10 9 Bq/ barrel (0.164 Ci/barrel); - equivalent dose rate for gamma radiation at barrel's wall, max. 1 mSv/h (200 mrem/h); - unfixed external contamination, 2 ; - compression strength of concrete block alone, > 5 x 10 6 N/m 2 ; - lixiviation rate, -3 cm/day; - the compact concrete block-radioactive waste is leak-proof and crack-free. The final product is transferred from INR Pitesti to National Repository for Radioactive Waste by railway and road transportation according to the provisions of the National Commission for Nuclear Activity Control as stipulated in the National Standards of Nuclear Safety of Radioactive Materials Transportation

  14. ITER vacuum vessel design (D201 subtask 1.3 and subtask 3). Final report

    International Nuclear Information System (INIS)

    1996-01-01

    ITER Task No. D201, Vacuum Vessel Design (Subtask 1.3 and Subtask 3), was initiated to propose and evaluate local vacuum vessel reinforcement alternatives in proximity to the Neutral Beam, Radial Mid-Plane, Top, and Divertor Ports. These areas were reported to be highly stressed regions based on the results of preliminary stress analyses performed by the USHT (US Home Team) and the ITER Joint Central Team (JCT) at the Garching JWS (Joint Work Site). Initial design activities focused on the divertor port region which was reported to experience the highest stress intensities. Existing stress analysis models and results were reviewed with the USHT stress analysts to obtain an overall understanding of the vessel response to the various applied loads. These reviews indicated that the reported stress intensities in the divertor port region were significantly affected by the loads applied to the vessel in adjacent regions

  15. HTGR process heat program design and analysis. Final report, FY-79

    International Nuclear Information System (INIS)

    1979-12-01

    This report summarizes the results of concept design studies at General Atomic Company during FY-79 for an 842-MW(t) Very High Temperature Reactor (VHTR) utilizing an intermediate helium heat transfer loop to provide thermal energy for the production of hydrogen or reducing gas (H 2 + CO) by steam-reforming of a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. The report summarizes conceptual design tasks conducted on the prestressed concrete reactor vessel, thermal barrier, intermediate heat exchanger, reformer, and steam generator. The substantial completion of first generation programming for a performance/optimization code and the preparation of a topical safety report and other safety evaluation studies are reported. The completion of balance of plant criteria specifications and a balance of plant cost estimate is also reported

  16. AIFTDS-8000 - A next generation PCM system: Concept through final design

    Science.gov (United States)

    Trover, William F.

    The development of a new modular PCM system composed of nineteen different types of functional modules is reported. The system is based on the loaf-of-bread packaging concept eliminating the classical fixed size box. The successful design of this packaging concept has been made possible by the building and testing of proof-of-concept models. Thermally driven PC payouts using multilayer PC boards with copper planes for power distribution and heat transfer are essential in achieving the high-end operating temperature of 85 C with a significant margin of safety. The modularity of the design permits low-cost periodic upgrades of key system elements by slice replacement without obsolescence of the majority of the hardware.

  17. ITER Building Design (D230-B), Task No. 28. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The International Thermonuclear Experimental Reactor (ITER) Project requires a set of buildings, each with its own distinct function, to support ITER`s mission. The Joint Central Team (JCT) has identified all the buildings in the set and has placed them in an efficient arrangement on the site. The JCT has developed a conceptual layout of each individual building. The buildings have been categorized into two main groups: (1) {open_quotes}Level 1 Buildings{close_quotes} which are on the construction schedule critical path and (2) {open_quotes}Level 2 Buildings{close_quotes} which, while important, are not on the critical path. The buildings are further categorized according to construction material, that is, {open_quotes}reinforced concrete{close_quotes} or {open_quotes}steel-frame on concrete slab{close_quotes}. This Report responds to the Project`s request to perform the initial structural steel design for all the {open_quotes}steel-frame on concrete slab{close_quotes} buildings. Of the twelve (12) {open_quotes}steel-frame on concrete slab{close_quotes} buildings, four (4) are Level 1 and eight (8) are Level 2 Buildings. This Report is a deliverable for the ITER Task Assignment entitled {open_quotes}ITER Buildings Design (D230-B){close_quotes}, also designated as Task No. 28. ITER U.S. Home Team Industrial Consortium members, Raytheon Engineers & Constructors (RE&C) and Stone & Webster Engineering Corporation (SWEC), teamed to perform Task 28. This task commenced in May 1995. It was performed in accordance with the design criteria specified by the ITER-JCT, San Diego Joint Work Site.

  18. Design of a borehole data-acquisition/transmission system. Final report, Volume I

    International Nuclear Information System (INIS)

    Hancock, R.L.; Bowden, J.C.

    1981-06-01

    Objective of the BDATS program was to design, construct, and demonstrate a borehole probe and associated uphole modules that would allow downhole collection of data from any of several borehole probes and would allow digital transmission of that data uphole to a computer. Specifically, the system was electrically and mechanically configured to interface to six separate borehole probes and a computer in a R and D logging vehicle. However, the system can be used with other types of probes

  19. ITER Building Design (D230-B), Task No. 28. Final report

    International Nuclear Information System (INIS)

    1995-12-01

    The International Thermonuclear Experimental Reactor (ITER) Project requires a set of buildings, each with its own distinct function, to support ITER's mission. The Joint Central Team (JCT) has identified all the buildings in the set and has placed them in an efficient arrangement on the site. The JCT has developed a conceptual layout of each individual building. The buildings have been categorized into two main groups: (1) open-quotes Level 1 Buildingsclose quotes which are on the construction schedule critical path and (2) open-quotes Level 2 Buildingsclose quotes which, while important, are not on the critical path. The buildings are further categorized according to construction material, that is, open-quotes reinforced concreteclose quotes or open-quotes steel-frame on concrete slabclose quotes. This Report responds to the Project's request to perform the initial structural steel design for all the open-quotes steel-frame on concrete slabclose quotes buildings. Of the twelve (12) open-quotes steel-frame on concrete slabclose quotes buildings, four (4) are Level 1 and eight (8) are Level 2 Buildings. This Report is a deliverable for the ITER Task Assignment entitled open-quotes ITER Buildings Design (D230-B)close quotes, also designated as Task No. 28. ITER U.S. Home Team Industrial Consortium members, Raytheon Engineers ampersand Constructors (RE ampersand C) and Stone ampersand Webster Engineering Corporation (SWEC), teamed to perform Task 28. This task commenced in May 1995. It was performed in accordance with the design criteria specified by the ITER-JCT, San Diego Joint Work Site

  20. Conceptual design for muon detectors using resistive plastic tubes. Final technical report

    International Nuclear Information System (INIS)

    Border, P.; Courant, H.; Heller, K.; Jones, A.; Lin, J.; Maxam, D.; Ruddick, K.

    1998-01-01

    Reliable low cost detectors which can be built in quantity require a simple design consisting of as few separate pieces as possible using inexpensive materials. For example, ordinary insulating plastics with good structural strength, such as polyethylene or polystyrene, have about 1/3 the cost of aluminum per unit weight. Since plastic is also about 1/3 the density of aluminum, the material cost for a drift tube would be reduced by an order of magnitude. This substitution of plastic for aluminum alone would save the muon system for the SDC more than $2M. Additional savings of greater magnitude can be expected since an entire drift tube, including a field shaping electrode structure, can be manufactured as a single piece by the technique of co-extrusion. A symmetric design with all walls far from the wire will also eliminate critical tolerances in the relative position of the electrodes with respect to the wire. Furthermore, module assembly and mounting costs will surely be reduced if the muon detectors were light weight and, as far as possible, had the same shape and size. With the 8 cm diameter plastic tube of the design, the electric drift field is nearly uniform as shown. This field is determined by a simple symmetric electrode structure, so that the necessary drift/position relationship can be achieved without precisely controlling the position of the electrode structure with respect to the wire. If the positioning of the electrode structure relative to the wire is not a critical dimension, the structural support for the tube need not be maintained to a high tolerance reducing the cost of the structure. Using a resistive plastic to shape the potential gives a simple electrode structure that will require a minimum number of electronic connections. The basic element of this design is the cylindrical plastic drift tube constructed from co-extruded plastics of different conductivity

  1. Design of passive piezoelectric damping for space structures. Final Report Ph.D. Thesis

    Science.gov (United States)

    Hagood, Nesbitt W., IV; Aldrich, Jack B.; Vonflotow, Andreas H.

    1994-01-01

    Passive damping of structural dynamics using piezoceramic electromechanical energy conversion and passive electrical networks is a relatively recent concept with little implementation experience base. This report describes an implementation case study, starting from conceptual design and technique selection, through detailed component design and testing to simulation on the structure to be damped. About 0.5kg. of piezoelectric material was employed to damp the ASTREX testbed, a 500kg structure. Emphasis was placed upon designing the damping to enable high bandwidth robust feedback control. Resistive piezoelectric shunting provided the necessary broadband damping. The piezoelectric element was incorporated into a mechanically-tuned vibration absorber in order to concentrate damping into the 30 to 40 Hz frequency modes at the rolloff region of the proposed compensator. A prototype of a steel flex-tensional motion amplification device was built and tested. The effective stiffness and damping of the flex-tensional device was experimentally verified. When six of these effective springs are placed in an orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a 90kg. mass. A NASTRAN finite element model of the testbed was modified to include the six-spring damping system. An analytical model was developed for the spring in order to see how the flex-tensional device and piezoelectric dimensions effect the critical stress and strain energy distribution throughout the component. Simulation of the testbed demonstrated the damping levels achievable in the completed system.

  2. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Final report: Pilot plant conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    LaJeunesse, C.A.; Chan, Jennifer P.; Raber, T.N.; Macmillan, D.C.; Rice, S.F.; Tschritter, K.L.

    1993-11-01

    The existing demilitarization stockpile contains large quantities of colored smoke, spotting dye, and pyrotechnic munitions. For many years, these munitions have been stored in magazines at locations within the continental United States awaiting completion of the life-cycle. The open air burning of these munitions has been shown to produce toxic gases that are detrimental to human health and harmful to the environment. Prior efforts to incinerate these compositions have also produced toxic emissions and have been unsuccessful. Supercritical water oxidation (SCWO) is a rapidly developing hazardous waste treatment method that can be an alternative to incineration for many types of wastes. The primary advantage SCWO affords for the treatment of this selected set of obsolete munitions is that toxic gas and particulate emissions will not occur as part of the effluent stream. Sandia is currently designing a SCWO reactor for the US Army Armament Research, Development & Engineering Center (ARDEC) to destroy colored smoke, spotting dye, and pyrotechnic munitions. This report summarizes the design status of the ARDEC reactor. Process and equipment operation parameters, process flow equations or mass balances, and utility requirements for six wastes of interest are developed in this report. Two conceptual designs are also developed with all process and instrumentation detailed.

  3. Cell and stack design alternatives. Final report, August 1, 1978-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Jr., D. Q.; King, Robert B.

    1980-02-01

    The work described comprised the first phase of a planned six phase program to develop commercially viable phosphoric acid fuel cell (PAFC) driven on-site integrated energy systems (OS/IES). The Phase I effort was organized as three major technical tasks; (1) study of system design alternatives; (2) fuel cell design alternatives; and (3) methane conditioner study. It was decided that comprehensive modeling of one application would most effectively utilize the resources available for the study of systems design alternatives. A 48 unit apartment complex located in Albany, New York and built to HUD minimum standards was selected as being typical of the applications that will be served by the systems. The time varying space conditioning (HVAC) and electrical requirements including the effects of varying weather conditions, living habits and occupancy patterns were modeled. These requirements formed the basis for comparing the performance and cost of the alternative configurations with each other and with a conventional system. Five basic alternative OS/IES configurations plus four variations were selected from a preliminary list of 13 basic configurations for detailed performance nd cost evaluations. Study procedures and results are presented in detail. (WHK)

  4. MLNSC instrument design and simulation package, task order 57 (modified). Final report, September 30, 1997

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1997-01-01

    The objectives of this task as described in Statement of Work have been met and the documents required as Deliverables have been prepared and submitted to the requester. Specifically, a document titled ''The MCLIB Library: Monte Carlo Simulation of Neutron Scattering Instruments,'' revised September 23, 1997, includes documentation of new standards, code revisions and additions, and some improved efficiency due to improved optimization strategies. The procedures for user implementation of new optical devices, and information on using the package and reading and viewing the output have also been included. Second, a new document entitled ''MCLIB Element Definitions and Help'' was written and revised through the duration of the task, to supply the needed input to group CIC-15 for the purpose of integrating the MCLIB package with a web-based user interface. Finally, an application of the package was presented and a (successful) demonstration of the new user interface was given at a workshop at Argonne National Laboratory, August 24--26, 1997, as described in the modification to the Statement of Work

  5. Conceptual design and the simulation of final cooling section for a muon collider

    International Nuclear Information System (INIS)

    Skrinsky, A.N.; Zolkin, T.V.

    2009-01-01

    The scheme of final cooling for muon beams, based on using current-carrying liquid-lithium rods, is discussed. The dynamics of particles in the course of cooling taking into account the non-paraxial motion has been studied with the help of computer simulation. It is suggested to minimize the effective increase of the longitudinal emittance caused by fluctuations of ionization losses and large angular spread, by the rotation of the longitudinal phase-space portrait for arranging self-action. We have considered the non-dissipative multiple successive full emittance redistribution from the longitudinal dimension to transverse one, necessary for cooling of all degrees of freedom. This redistribution is based on special rotations of the particle six-dimensional phase space by the beam division in several streams and their consequent merging with the minimum increment of full emittance and minimal beam losses taking into account their local phase-space density. Some of the basic technical parameters of the cooling system elements have been estimated.

  6. Geomechanical Analysis and Design Considerations for Thin-Bedded Salt Caverns. Final Report

    International Nuclear Information System (INIS)

    Michael S. Bruno

    2005-01-01

    The bedded salt formations located throughout the United States are layered and interspersed with non-salt materials such as anhydrite, shale, dolomite and limestone. The salt layers often contain significant impurities. GRI and DOE have initialized this research proposal in order to increase the gas storage capabilities by providing operators with improved geotechnical design and operating guidelines for thin bedded salt caverns. Terralog has summarized the geologic conditions, pressure conditions, and critical design factors that may lead to: (1) Fracture in heterogeneous materials; (2) Differential deformation and bedding plane slip; (3) Propagation of damage around single and multiple cavern; and (4) Improved design recommendations for single and multiple cavern configurations in various bedded salt environments. The existing caverns within both the Permian Basin Complex and the Michigan and Appalachian Basins are normally found between 300 m to 1,000 m (1,000 ft to 3,300 ft) depth depending on local geology and salt dissolution depth. Currently, active cavern operations are found in the Midland and Anadarko Basins within the Permian Basin Complex and in the Appalachian and Michigan Basins. The Palo Duro and Delaware Basins within the Permian Basin Complex also offer salt cavern development potential. Terralog developed a number of numerical models for caverns located in thin bedded salt. A modified creep viscoplastic model has been developed and implemented in Flac3D to simulate the response of salt at the Permian, Michigan and Appalachian Basins. The formulation of the viscoplastic salt model, which is based on an empirical creep law developed for Waste Isolation Pilot Plant (WIPP) Program, is combined with the Drucker-Prager model to include the formation of damage and failure. The Permian salt lab test data provided by Pfeifle et al. 1983, are used to validate the assumptions made in the material model development. For the actual cavern simulations two

  7. Design study of a fusion-driven tokamak hybrid reactor for fissile fuel production. Final report

    International Nuclear Information System (INIS)

    Rose, R.P.

    1979-05-01

    This study evaluated conceptual approaches for a tokamak fusion-driven fuel producing reactor. The conceptual design of this hybrid reactor was based on using projected state-of-the-art technology for the late 1980s. This reactor would be a demonstration plant and, therefore, first-of-a-kind considerations have been included. The conceptual definitions of two alternatives for the fusion driver were evaluated. A Two-Component Tokamak (TCT) concept, based on the TFTR plasma physics parameters, was compared to a Beam-Driven Thermonuclear (BDTN) concept, based on the USSR T-20 plasma physics parameters

  8. Experimental Design for CMIP6: Aerosol, Land Use, and Future Scenarios Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Arnott, James [AGCI

    2015-10-30

    The Aspen Global Change Institute hosted a technical science workshop entitled, “Experimental design for CMIP6: Aerosol, Land Use, and Future Scenarios,” on August 3-8, 2014 in Aspen, CO. Claudia Tebaldi (NCAR) and Brian O’Neill (NCAR) served as co-chairs for the workshop. The Organizing committee also included Dave Lawrence (NCAR), Jean-Francois Lamarque (NCAR), George Hurtt (University of Maryland), & Detlef van Vuuren (PBL Netherlands Environmental Change). The meeting included the participation of 22 scientists representing many of the major climate modeling centers for a total of 110 participant days.

  9. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    Martone, M.

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  10. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  11. Introduction to the second international workshop on the design and construction of final repositories

    International Nuclear Information System (INIS)

    Simmons, G.R.

    1995-01-01

    Canadian repository design studies are reviewed. Two conceptual designs are described. The first is a single-level spent-fuel repository using the in-floor borehole emplacement configuration. The disposal container for 72 bundles is made of titanium. The depth will probably be 1000 m. Maximum temperature must not exceed 100 deg C. The near-surface extension zone must not exceed 100 m in depth. The cost for disposal of 10.1 million bundles over 89 years is estimated to be about C$13 billion. The second concept, a single level spent-fuel repository using the in-room emplacement configuration, may be more suitable for the stress conditions that may be encountered in the plutonic rocks of the Canadian shield at a depth greater than 500 m. In this case, the container is made of copper, and the capacity of the repository will be determined by maintaining the emplacement area at about 2 km square, and the required container to container and room to room spacing to satisfy the temperature criterion. A concrete floor will be provided.The buffer material will be formed in pre-compacted blocks. 10 refs., 1 tab., 4 figs

  12. An innovative fuel design concept for improved light water reactor performance and safety. Final technical report

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Connell, R.G.

    1995-07-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. The purpose of this research was to explore a technique for extending fuel performance by thermally bonding LWR fuel with a non-alkaline liquid metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide (UO 2 ) fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Due to the thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high conductivity liquid metal thermally bonds the fuel to the cladding, and eliminates the large temperature change across the gap, while preserving the expansion and pellet loading capabilities. The resultant lower fuel temperature directly impacts fuel performance limit margins and also core transient performance. The application of liquid bonding techniques to LWR fuel was explored for the purposes of increasing LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) has been developed under the program to analyze the in-reactor performance of the liquid metal bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of Liquid Metal Bonded LWR fuel

  13. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  14. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    International Nuclear Information System (INIS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-01-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K.Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions

  15. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    Science.gov (United States)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  16. Final design proposal: Theta Group-The Hotbox. A proposal in response to a commercial air transportation study

    Science.gov (United States)

    1991-01-01

    The Hotbox is a 40 passenger commercial aircraft designed to have a minimum range of 5500 ft and cruise at a velocity of 30 ft/sec. The aircraft is designed to serve the longer range overseas market in Aeroworld. In order to serve all the airports in the overseas market, the Hotbox was required to be able to use a five foot gate. A weight requirement was set a 4.5 lbs in order to maximize aircraft efficiency. Finally, a single engine system was chosen because it minimized system weight, complexity and cost. The Hotbox is estimated to cost $152,000 Aeroworld dollars and will sell for $200.000. The propulsion system for the Hotbox consists of a nose mounted Astro 15 electric powered motor and a Top Flight 12-6 propeller. A Spica airfoil was selected for the Hotbox based on the ease of construction of its flat bottom and its positive lift and drag characteristics. A fuselage of rectangular cross section will internally contain the propulsion system, control system, and a passenger bay with 2x20 seating. A combination of directional and longitudinal control will enable the Hotbox to maneuver. The final design of the Hotbox provides for takeoff distance in 26.5 ft and normal cruise range of 17,000 ft.

  17. Design, Observing and Data Systems, and Final Installation of the NEPTUNE Canada Regional Cabled Ocean Observatory

    Science.gov (United States)

    Barnes, C. R.; Best, M. M.; Johnson, F. R.; Phibbs, P.; Pirenne, B.

    2009-05-01

    NEPTUNE Canada (NC; www.neptunecanada.ca) will complete most of the installation of the world's first regional cabled ocean observatory in late 2009 off Canada's west coast. It will comprise five main observatory nodes (100-2700m water depths) linked by an 800km backbone cable delivering 10kVDC power and 10Gbps communications bandwidth to hundreds of sensors, with a 25-year design life. Infrastructure (100M) and initial operational funding (20M) is secured. University of Victoria (UVic) leads a consortium of 12 Canadian universities, hosts the coastal VENUS cabled observatory, with Ocean Networks Canada (ONC) providing management oversight. Observatory architecture has a trunk and branch topology. Installed in late 2007, the backbone cable loops from/to UVic's Port Alberni shore station. The wet plant's design, manufacture and installation was contracted to Alcatel-Lucent. Each node provides six interface ports for connection of science instrument arrays or extensions. Each port provides dual optical Ethernet links and up to 9kW of electrical power at 400VDC. Junction boxes, designed and built by OceanWorks support up to 10 instruments each and can be daisy- chained. They accommodate both serial and 10/100 Ethernet instruments, and provide a variety of voltages (400V, 48V, 24V, 15V). Backbone equipment has all been qualified and installed; shore station re-equipping is complete; junction boxes are manufactured. A major marine program will deploy nodes and instruments in July-September 2009; instruments to one node will probably be deferred until 2010. Observatory instruments will be deployed in subsurface (boreholes), on seabed, and buoyed through the water column. Over 130 instruments (over 40 different types) will host several hundred sensors; mobile assets include a tethered crawler and a 400m vertical profiler. Experiments will address: earthquake dynamics and tsunami hazards; fluid fluxes in both ocean crust and sediments, including gas hydrates; ocean

  18. Final Report: Conceptual Design of an Electron Accelerator for Bio-Solid Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Charles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-09-20

    Several studies have identified electron beam (EB) irradiation of municipal wastewater and bio-solids as an effective and promising approach to the environmental remediation of the enormous quantities of human waste created by a growing world-wide population and increased urbanization. However, despite the technical success of experimental and pilot programs over the last several decades, the technique is still not in commercial use anywhere in the world. In addition, the report also identifies the need for “Financial and infrastructure participation from a utility for demonstration project” and “Education and awareness of safety of utilizing electron beam technology” as two additional roadblocks preventing technology adoption of EB treatment for bio-solids. In this concept design, we begin to address these barriers by working with Metropolitan Water Reclamation District of Greater Chicago (MWRD) and by the applying the latest accelerator technologies developed at Fermilab and within the DOE Office of Science laboratory complex.

  19. Final Report: Enabling Exascale Hardware and Software Design through Scalable System Virtualization

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, Patrick G.

    2015-02-01

    In this grant, we enhanced the Palacios virtual machine monitor to increase its scalability and suitability for addressing exascale system software design issues. This included a wide range of research on core Palacios features, large-scale system emulation, fault injection, perfomrance monitoring, and VMM extensibility. This research resulted in large number of high-impact publications in well-known venues, the support of a number of students, and the graduation of two Ph.D. students and one M.S. student. In addition, our enhanced version of the Palacios virtual machine monitor has been adopted as a core element of the Hobbes operating system under active DOE-funded research and development.

  20. High-level waste canister storage final design, installation, and testing. Topical report

    International Nuclear Information System (INIS)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project's radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project's vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access

  1. High-level waste canister storage final design, installation, and testing. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

    1998-04-01

    This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

  2. Wheelchair-mounted robotic arm to hold and move a communication device - final design.

    Science.gov (United States)

    Barrett, Graham; Kurley, Kyle; Brauchie, Casey; Morton, Scott; Barrett, Steven

    2015-01-01

    At the 51st Rocky Mountain Bioengineering Symposium we presented a preliminary design for a robotic arm to assist an individual living within an assistive technology smart home. The individual controls much of their environment with a Dynavox Maestro communication device. However, the device obstructs the individual’s line of site when navigating about the smart home. A robotic arm was developed to move the communication device in and out of the user’s field of view as desired. The robotic arm is controlled by a conveniently mounted jelly switch. The jelly switch sends control signals to a four state (up, off, down, off) single-axis robotic arm interfaced to a DC motor by high power electronic relays. This paper describes the system, control circuitry, and multiple safety features. The arm will be delivered for use later in 2015.

  3. Final report: Seven-layer membrane electrode assembly - an innovative approach to PEM fuel cell design

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.

    2005-07-01

    Costs of materials and fabrication, rather than appropriateness of technology, are the major barriers to the sales of fuel cells. With the objective of reducing costs, potential alternative component materials for (a) the fluid flow plate (FFP) and (b) the gas diffusion layers were investigated. The concept of a 7-layer membrane electrode assembly (MEA), in which components are bonded into a unitised module, was also studied. The advantages of the bonded cell, and the flow field design, are expounded. Low-cost carbon particle composites were developed for the FFPs. The modular 7-layer MEA has an order of magnitude saving over current materials. Overall, the study has led to a greater volumetric power output, lower costs and greater reliability. The work was carried out by Morgan Group Technology Limited and funded by the DTI.

  4. Final Report, Validation of Novel Planar Cell Design for MW-Scale SOFC Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Dr Scott L.; Thrun, Dr Lora B.; Arkenberg, Mr Gene B.; Chenault, Ms Kellie M.

    2012-01-03

    This report describes the work completed by NexTech Materials, Ltd. during a three-year project to validate an electrolyte-supported planar solid oxide fuel cell design, termed the FlexCell, for coal-based, megawatt-scale power generation systems. This project was focused on the fabrication and testing of electrolyte-supported FlexCells with yttria-stabilized zirconia (YSZ) as the electrolyte material. YSZ based FlexCells were made with sizes ranging from 100 to 500 cm2. Single-cell testing was performed to confirm high electrochemical performance, both with diluted hydrogen and simulated coal gas as fuels. Finite element analysis modeling was performed at The Ohio State University was performed to establish FlexCell architectures with optimum mechanical robustness. A manufacturing cost analysis was completed, which confirmed that manufacturing costs of less than $50/kW are achievable at high volumes (500 MW/year).

  5. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    Science.gov (United States)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  6. Evaluation and design of drained low-level radioactive disposal sites. Final report

    International Nuclear Information System (INIS)

    Eichholz, G.G.

    1984-12-01

    Low-level disposal in shallow trenches has been the subject of much critical assessment in recent years. Historically most trenches have been located in fairly permeable settings and any liquid waste stored has migrated at rates limited mainly by hydraulic effects and the ion exchange capacity of underlying soil minerals. Attempts to minimize such seepage by choosing sites in very impermeable settings lead to overflow and surface runoff, whenever the trench cap is breached by subsidence or erosion. The work described in this report was directed to an optimum compromise situation where less reliance is placed on cap permanence, any ground seepage is directed and controlled, and the amount of waste leaching that would occur is minimized by keeping the soil surrounding the waste at only residual moisture levels at all times. Measurements have been conducted to determine these residual levels for some representative soils, to estimate the impact on waste migration of mainly unsaturated flow conditions, and to generate a conceptual design of a disposal facility which would provide adequate drainage to keep the waste from being exposed to continuous leaching by standing water. An attempt has also been made to quantify the reduced source terms under such periodic, unsaturated flow conditions, but those tests have not been conclusive to date. For low-permeability soils the waste should be placed about 1 ft. above the saturated layer formed by suction forces immediately above the gravel layer. Since most disposal sites, even in humid regions of the United States, are exposed only to intermittent rainfall and as most trench designs incorporate some gravel base for drainage, the results of this project have broader applications in assessing actual migration conditions in shallow trench disposal sites. Similar considerations may also apply to disposal of hazardous wastes

  7. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  8. Prototypical spent nuclear fuel rod consolidation equipment: Phase 2, Final design report: Volume 3, Appendices: Part 2

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of this report is to identify and analyze a range of credible events and accident occurrences (from minor to the design basis accidents) and their causes and consequences. For each situation, the considerations to prevent or mitigate the event or accident are to be addressed. The report includes a description of the approach used to identify the potential events or accidents (Section 3.0), a discussion of Off-Normal Events (Section 4.0), and finally a discussion of Accidents (Section 5.0)

  9. Prototypical spent nuclear nuclear fuel rod consolidation equipment, Phase 2: Final design report: Volume 2, Appendices: Part 1

    International Nuclear Information System (INIS)

    Ciez, A.P.

    1987-01-01

    The purpose of this specification is to establish functional and design requirements for the Prototypical Spent Nuclear Fuel Rod Consolidation System. The Department of Energy-Idaho Operations Office (DOE-ID) is responsible for the implementation of the Prototypic Dry Rod Consolidation Demonstration Project. This program is to develop and demonstrate a fully qualified, licensable, cost-effective, dry spent fuel rod consolidation system by July 1989. The work is divided into four phases as follows: Phase I--Preliminary Design, Phase II--Final Design Option, Phase III--Fabrication and System Checkout Option, and Phase IV--Installation and Hot Demonstration Option. This specification is part of the Phase II effort. The objectives of this specification are to provide functional and design requirements for the Prototypical Spent Nuclear Fuel Rod Consolidation equipment; establish specific tool and subsystem requirements such that the integrated and overall system requirements are satisfied; and establish positioning, envelope and size interface control requirements for each tool or subsystem such that the individual components will interface properly with the overall system design

  10. Final Scientific/Technical Report for "Enabling Exascale Hardware and Software Design through Scalable System Virtualization"

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, Peter August [Northwestern Univ., Evanston, IL (United States)

    2015-03-17

    This report describes the activities, findings, and products of the Northwestern University component of the "Enabling Exascale Hardware and Software Design through Scalable System Virtualization" project. The purpose of this project has been to extend the state of the art of systems software for high-end computing (HEC) platforms, and to use systems software to better enable the evaluation of potential future HEC platforms, for example exascale platforms. Such platforms, and their systems software, have the goal of providing scientific computation at new scales, thus enabling new research in the physical sciences and engineering. Over time, the innovations in systems software for such platforms also become applicable to more widely used computing clusters, data centers, and clouds. This was a five-institution project, centered on the Palacios virtual machine monitor (VMM) systems software, a project begun at Northwestern, and originally developed in a previous collaboration between Northwestern University and the University of New Mexico. In this project, Northwestern (including via our subcontract to the University of Pittsburgh) contributed to the continued development of Palacios, along with other team members. We took the leadership role in (1) continued extension of support for emerging Intel and AMD hardware, (2) integration and performance enhancement of overlay networking, (3) connectivity with architectural simulation, (4) binary translation, and (5) support for modern Non-Uniform Memory Access (NUMA) hosts and guests. We also took a supporting role in support for specialized hardware for I/O virtualization, profiling, configurability, and integration with configuration tools. The efforts we led (1-5) were largely successful and executed as expected, with code and papers resulting from them. The project demonstrated the feasibility of a virtualization layer for HEC computing, similar to such layers for cloud or datacenter computing. For effort (3

  11. Suspended-Bed Reactor preliminary design, 233U--232Th cycle. Final report (revised)

    International Nuclear Information System (INIS)

    Karam, R.A.; Alapour, A.; Lee, C.C.

    1977-11-01

    The preliminary design Suspended-Bed Reactor is described. Coated particles about 2 mm in diameter are used as the fuel. The coatings consist of three layers: (1) low density pyrolytic graphite, 70 μ thick, (2) silicon carbide pressure vessel, 30 μ thick, and (3) ZrC layer, 50 μ thick, to protect the pressure vessel from moisture and oxygen. The fuel kernel can be either uranium-thorium dicarbide or metal. The coated particles are suspended by helium gas (coolant) in a cluster of pressurized tubes. The upward flow of helium fluidizes the coated particles. As the flow rate increases, the bed of particles is lifted upward to the core section. The particles are restrained at the upper end of the core by a suitable screen. The overall particle density in the core is just enough for criticality condition. Should the helium flow cease, the bed in the core section will collapse, and the particles will flow downward into the section where the increased physical spacings among the tubes brings about a safe shutdown. By immersing this section of the tubes in a large graphite block to serve as a heat sink, dissipation of decay heat becomes manageable. This eliminates the need for emergency core cooling systems

  12. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char-for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests

  13. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    International Nuclear Information System (INIS)

    Minyard, G.

    1998-01-01

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redisgn of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products

  14. Design and manufacture of radar absorbing wind turbine blades - final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    This report describes the results of a collaborative project between QinetiQ Ltd and NOI (Scotland) Ltd to design and manufacture radar absorbent wind turbine blades. The main objectives were to: use predictive modelling to understand the contribution made by the blade to radar cross section (RCS) of the complete turbine; confirm that the turbine RCS could feasibility be reduced to appropriate levels through the use of radar absorbent material (RAM); and to demonstrate that introduction of stealth technology within current composite sections would allow RAM variants of the blade materials to be manufactured with minimal impact on the structure. The RCS of a turbine was predicted at frequencies at which representative air traffic control (ATC), weather and marine navigation radar systems operate. The material compositions that exist on the blades produced by NOI were studied and methods by which RAM could be introduced to each region were identified. RCS predictions for a blade having RAM over its surface were then repeated. The study showed that it was possible to modify all material regions of the NOI blades to create RAM with little or no degradation in structural properties, thus reducing detection by non-Doppler radar and ATC radars. A full practical demonstration of a stealthy turbine is recommended to allow the benefits of RCS reduction through the use of RAM to be quantified by all stakeholders.

  15. Final report on the radiological surveys of designated DX firing sites at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    1996-01-01

    CHEMRAD was contracted by Los Alamos National Laboratory to perform USRADS reg-sign (UltraSonic Ranging And Data System) radiation scanning surveys at designated DX Sites at the Los Alamos National Laboratory. The primary purpose of these scanning surveys was to identify the presence of Depleted Uranium (D-38) resulting from activities at the DX Firing Sites. This effort was conducted to update the most recent surveys of these areas. This current effort was initiated with site orientation on August 12, 1996. Surveys were completed in the field on September 4, 1996. This Executive Summary briefly presents the major findings of this work. The detail survey results are presented in the balance of this report and are organized by Technical Area and Site number in section 2. This organization is not in chronological order. USRADS and the related survey methods are described in section 3. Quality Control issues are addressed in section 4. Surveys were conducted with an array of radiation detectors either mounted on a backpack frame for man-carried use (Manual mode) or on a tricycle cart (RadCart mode). The array included radiation detectors for gamma and beta surface near surface contamination as well as dose rate at 1 meter above grade. The radiation detectors were interfaced directly to an USRADS 2100 Data Pack

  16. Planning for a program design for energy environmental analysis. Final report, draft

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J; Saaty, T; Blair, P; Ma, F; Buneman, P

    1976-04-01

    The objective of the work reported here is to assist BER/ERDA in program planning with respect to a regional assessment study program for energy environmental analysis. The focus of the work was to examine the use of operational gaming fof regional assessment studies. Specific concerns were gaming applications (1) in regional assessment or management and direction of regional assessments; (2) for achieving a higher level of public understanding of environmental, health, and safety problems of energy; (3) with respect to the supply of adequately trained manpower for energy; (4) with respect to computational requirements; and (5) with respect to current state-of-the-art in computer simulation. In order to investigate these concerns and examine the feasibility of using operational gaming in a regional assessment study program, a Regional Energy Environment Game (REEG) was designed and implemented on an IBM 370/168 digital computer employing APL (A Programming Language). The applicability of interactive operational gaming has been demonstrated by the REEG as applied to a region consisting of Delaware, Maryland, New Jersey, Pennsylvania, and the District of Columbia.

  17. Design basis for the copper/steel canister. Stage four. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, W.H. [Meadow End Farm, Farnham (United Kingdom)

    1998-06-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste has been studied from the points of view of choice of materials, manufacturing technology and quality assurance. Cast steel has been rejected in favour of cast iron as a candidate material for the load bearing liner. Nodular (or ductile) iron is selected and this is capable of providing mechanical properties which are equally suitable as those of the originally selected high strength low alloy steel. The material specified for the overpack is Oxygen free copper with 50 ppm of phosphorus added. Corrosion studies supported by SKB indicate that in the absence of mechanical failure or accelerated localised corrosion the overpack should provide corrosion shielding of the canister for its full design life. Published work claiming that the nodular iron liner would have corrosion characteristics similar to the carbon steel which had been examined in depth is flawed since the microstructures of the iron and carbon steel specimens used were not investigated. It is highly unlikely that nodular irons in the form used for the experiments would have similar structures to nodular iron in the canisters by chance. If the overpack were breached during the aerobic period of the repository life then very rapid penetration of the inner liner could occur. It has been recognised that the roll forming method is not suitable for serial production and alternatives are being sought. The electron beam welding process has been explored with tenacity but has so far failed to produce a satisfactory lid weld. A new welder is being developed for supply to the SKB pilot plant where development will be continued. An alternative welding process, friction stir welding, is being examined as a candidate for attaching lids. Surface breaking defects may be detected using eddy current methods but there is currently no reliable way of detecting small sub surface defects in the overpack

  18. Final Report for 'Gyrotron Design and Evaluation using New Particle-in-Cell Capability'

    International Nuclear Information System (INIS)

    Smithe, David N.

    2008-01-01

    ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO's) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R and D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO's, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.

  19. Design basis for the copper/steel canister. Stage five. Final report

    International Nuclear Information System (INIS)

    Bowyer, W.H.

    1999-05-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste in the Swedish Program, has been studied by the present author from the points of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress that has been made between May-1-1998 and April-30-1999 and the result of further literature studies. Cast steel has been rejected in favour of cast iron as a candidate material for the load bearing liner. The nodular iron that was selected has been the subject of casting trials at several foundries. Early trials, using uphill feeding, met with limited success owing to difficulties feeding during solidification. Lessons from this trial led to a modification to the casting design to include extra cores that have the effect of reducing the need for feeding in the heaviest sections. Results using the new design and direct (downhill) casting are very promising. Castings appear to be sound and mechanical test results cast-on bars are within specification. Tensile test results from specimens cut from the casting have reduced ductility compared with the cast-on bars and this may be evidence of microstructural variations within the casting. The material specified for the overpack is OF (Oxygen Free) copper with 50 ppm of phosphorus added. Concentration limits have now been placed on impurity elements which are below those allowed in the OF specification. All current trials are using material from Outokompu produced from cathode on their OF(E) line, which delivers total impurity levels of less than 30 ppm excluding silver and phosphorus. The phosphorus addition is made using a master alloy added to the launder and this does not give good control of phosphorus level either within or between castings. Phosphorus is added to improve creep rates and creep strain to failure. The level is limited to 50 ppm in order to avoid difficulties, which it might

  20. Design basis for the copper/steel canister. Stage five. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, W.H. [Meadow End Farm, Farnham (United Kingdom)

    1999-05-01

    The development of the copper/iron canister which has been proposed by SKB for the containment of high level nuclear waste in the Swedish Program, has been studied by the present author from the points of view of choice of materials, manufacturing technology and quality assurance. This report describes the observations on progress that has been made between May-1-1998 and April-30-1999 and the result of further literature studies. Cast steel has been rejected in favour of cast iron as a candidate material for the load bearing liner. The nodular ironthat was selected has been the subject of casting trials at several foundries. Early trials, using uphill feeding, met with limited success owing to difficulties feeding during solidification. Lessons from this trial led to a modification to the casting design to include extra cores that have the effect of reducing the need for feeding in the heaviest sections. Results using the new design and direct (downhill) casting are very promising. Castings appear to be sound and mechanical test results cast-on bars are within specification. Tensile test results from specimens cut from the casting have reduced ductility compared with the cast-on bars and this may be evidence of microstructural variations within the casting. The material specified for the overpack is OF (Oxygen Free) copper with 50 ppm of phosphorus added. Concentration limits have now been placed on impurity elements which are below those allowed in the OF specification. All current trials are using material from Outokompu produced from cathode on their OF(E) line, which delivers total impurity levels of less than 30 ppm excluding silver and phosphorus. The phosphorus addition is made using a master alloy added to the launder and this does not give good control of phosphorus level either within or between castings. Phosphorus is added to improve creep rates and creep strain to failure. The level is limited to 50 ppm in order to avoid difficulties, which it might

  1. New process modeling[sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report; FINAL

    International Nuclear Information System (INIS)

    Ray, W. Harmon

    2002-01-01

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice

  2. Elements of power plant design for inertial fusion energy. Final report of a coordinated research project 2000-2004

    International Nuclear Information System (INIS)

    2005-06-01

    There are two major approaches in fusion energy research: magnetic fusion energy (MFE) and inertial fusion energy (IFE). The basic physics of IFE (compression and ignition of small fuel pellets containing deuterium and tritium) is being increasingly understood. Based on recent advances by individual countries, IFE has reached a stage at which benefits could be obtained from a coordinated approach in the form of an IAEA Coordinated Research Project (CRP) on Elements of Power Plant Design for Inertial Fusion Energy. This CRP helped Member States to promote the development of plasma/fusion technology transfer and to emphasize safety and environmental advantages of fusion energy. The CRP was focused on interface issues including those related to, - the driver/target interface (e.g. focusing and beam uniformity required by the target), - the driver/chamber interface (e.g. final optics and magnets protection and shielding), - and the target/chamber interface (e.g. target survival during injection, target positioning and tracking in the chamber). The final report includes an assessment of the state of the art of the technologies required for an IFE power plant (drivers, chambers, targets) and systems integration as presented and evaluated by members of the CRP. Additional contributions by cost free invited experts to the final RCM are included. The overall objective of this CRP was to foster the inertial fusion energy development by improving international cooperation. The variety of contributions compiled in this TECDOC reflects, that the goal of stimulating the exchange of knowledge was well achieved. Further the CRP led to the creation of a network, which not only exchanged their scientific results, but also developed healthy professional relations and strong mutual interest in the work of the group members

  3. Grid-Connected Integrated Community Energy System. Phase II: detailed feasibility analysis and preliminary design. Final report, Stage 2

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    The purpose of this study was to determine the economic and environmental feasibility of a Grid-Connected Integrated Community Energy System (ICES) based on a multifuel (gas, oil, treated solid wastes, and coal) design with which to serve any or all the institutions within the Louisiana Medical Complex in cooperation with the Health Education Authority of Louisiana (HEAL). In this context, a preliminary design is presented which consists of ICES plant description and engineering analyses. This demonstration system is capable of meeting 1982 system demands by providing 10,000 tons of air conditioning and, from a boiler plant with a high-pressure steam capacity of 200,000 lb/h, approximately 125,000 lb/h of 185 psig steam to the HEAL institutions, and at the same time generating up to 7600 kW of electrical power as byproduct energy. The plant will consist of multiple-fuel steam boilers, turbine generator, turbine driven chillers and necessary auxiliaries and ancillary systems. The preliminary design for these systems and for the building to house the central plant systems are presented along with equipment and instrumentation schedules and outline specifications for major components. Costs were updated to reflect revised data. The final preliminary cost estimate includes allowances for contingencies and escalation, as well as cost for the plant site and professional fees. This design is for a facility specifically with coal burning capability, recognizing that it is more capital-intensive than a gas/oil facility. In the opinion of the Louisiana Department of Natural Resources (DNR), the relatively modest allocations made for scrubbing and ash removal involve less than is implied in standard industry (EPRI) cost increments of over 30% for these duties. The preliminary environmental assessment is included. (LCL)

  4. Full-scale photobioreactor for biotreatment of olive washing water: Structure and diversity of the microalgae-bacteria consortium.

    Science.gov (United States)

    Maza-Márquez, P; González-Martínez, A; Rodelas, B; González-López, J

    2017-08-01

    The performance of a full-scale photobioreactor (PBR) for the treatment of olive washing water (OWW) was evaluated under different HRTs (5-2days). The system was able to treat up to 3926L OWWday -1 , and consisted of an activated-carbon pretreatment column and a tubular PBR unit (80 tubes, 98.17L volume, 2-m height, 0.25m diameter). PBR was an effective and environmentally friendly method for the removal of phenols, COD, BOD 5 , turbidity and color from OWW (average efficiencies 94.84±0.55%, 85.86±1.24%, 99.12±0.17%, 95.86±0.98% and 87.24±0.91%, respectively). The diversity of total bacteria and microalgae in the PBR was analyzed using Illumina-sequencing, evaluating the efficiency of two DNA extraction methods. A stable microalgae-bacteria consortium was developed throughout the whole experimentation period, regardless of changes in HRT, temperature or solar radiation. MDS analyses revealed that the interplay between green algae (Sphaeropleales), cyanobacteria (Hapalosiphon) and Proteobacteria (Rhodopseudomonas, Azotobacter) played important roles in OWW bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Investigation and modeling of the effects of light spectrum and incident angle on the growth of Chlorella vulgaris in photobioreactors.

    Science.gov (United States)

    Souliès, Antoine; Legrand, Jack; Marec, Hélène; Pruvost, Jérémy; Castelain, Cathy; Burghelea, Teodor; Cornet, Jean-François

    2016-03-01

    An in-depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab-scale PBRs, a torus PBR and a thin flat-panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat-panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247-261, 2016. © 2016 American Institute of Chemical Engineers.

  6. A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement

    International Nuclear Information System (INIS)

    Hu, Jin-Yang; Sato, Toru

    2017-01-01

    Highlights: • This bioreactor for microalgae provides the optimized arrangement of internal LEDs. • Flashing-light effect of the photosynthesis was demonstrated. • A cell density of 67% of that of the ideal condition was measured. • Numerical simulations predict the largest growth rate of 10.18 g/L/day. - Abstract: In this study, a photobioreactor for mass-culturing microalgae was developed. Because of the optimized arrangement of internal light-emitting diode (LED) illumination, a major advantage to this reactor is that the volume of the reactor vessel is not limited. Using Dunaliella tertiolecta as the microalgae, the bioreactor displayed the flashing-light effect of the microalgae photosynthesis process. This phenomenon was achieved using a series of blue and red LEDs set at appropriate positions within the reactor to evenly distribute the light intensity. Our experimental results suggested that the maximum cell density in the culture experiment was 1.88 × 10"3 cells L"−"1, which is approximately 67% of the maximum density under ideal conditions. The harvest yield of the algae was estimated by a numerical model using measured parameters; it was predicted that the bioreactor developed in this study can attain a high growth rate of D. tertiolecta by controlling the distance between LEDs.

  7. IER-297 CED-2: Final Design for Thermal/Epithermal eXperiments with Jemima Plates with Polyethylene and Hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zywiec, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-11

    This report presents the final design (CED-2) for IER-297, and focuses on 15 critical configurations using highly enriched uranium (HEU) Jemima plates moderated by polyethylene with and without hafnium diluent. The goal of the U.S. Nuclear Criticality Safety Program’s Thermal/Epithermal eXperiments (TEX) is to design and conduct new critical experiments to address high priority nuclear data needs from the nuclear criticality safety and nuclear data communities, with special emphasis on intermediate energy (0.625 eV – 100 keV) assemblies that can be easily modified to include various high priority diluent materials. The TEX (IER 184) CED-1 Report [1], completed in 2012, demonstrated the feasibility of meeting the TEX goals with two existing NCSP fissile assets, plutonium Zero Power Physics Reactor (ZPPR) plates and highly enriched uranium (HEU) Jemima plates. The first set of TEX experiments will focus on using the plutonium ZPPR plates with polyethylene moderator and tantalum diluents.

  8. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1. Volume 2, Calculations, Final design for construction

    International Nuclear Information System (INIS)

    1995-09-01

    Volume two contains calculations for: embankment design--slope stability analysis; embankment design--excavation stability; embankment design--settlement and cover cracking analysis; radon barrier design--statistical analysis of ra-226 concentrations for North Continent and Union Carbide sites; radon barrier design--RAECOM input data; radon barrier design--design thickness; and cover design--frost penetration depth

  9. A near-peer teaching program designed, developed and delivered exclusively by recent medical graduates for final year medical students sitting the final objective structured clinical examination (OSCE

    Directory of Open Access Journals (Sweden)

    Sobowale Oluwaseun

    2011-03-01

    Full Text Available Abstract Background The General Medical Council states that teaching doctors and students is important for the care of patients. Our aim was to deliver a structured teaching program to final year medical students, evaluate the efficacy of teaching given by junior doctors and review the pertinent literature. Methods We developed a revision package for final year medical students sitting the Objective Structured Clinical Examination (OSCE. The package was created and delivered exclusively by recent medical graduates and consisted of lectures and small group seminars covering the core areas of medicine and surgery, with a focus on specific OSCE station examples. Students were asked to complete a feedback questionnaire during and immediately after the program. Results One hundred and eighteen completed feedback questionnaires were analysed. All participants stated that the content covered was relevant to their revision. 73.2% stated that junior doctors delivered teaching that is comparable to that of consultant - led teaching. 97.9% stated the revision course had a positive influence on their learning. Conclusions Our study showed that recent medical graduates are able to create and deliver a structured, formal revision program and provide a unique perspective to exam preparation that was very well received by our student cohort. The role of junior doctors teaching medical students in a formal structured environment is very valuable and should be encouraged.

  10. Comment and response document for the final remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1996-05-01

    This document for the final remedial action plan and site design has been prepared for US Department of Energy Environmental Restoration Division as part of the Uranium Mill Tailings Remedial Action plan. Comments and responses are included for the site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

  11. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Final review (DR-MA-03)

    Science.gov (United States)

    Clausen, O. W.

    1976-01-01

    Systems design for an initial atmospheric cloud physics laboratory to study microphysical processes in zero gravity is presented. Included are descriptions of the fluid, thermal, mechanical, control and data, and electrical distribution interfaces with Spacelab. Schedule and cost analysis are discussed.

  12. W.A. Parish Post Combustion CO2 Capture and Sequestration Project Final Public Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Armpriester, Anthony [Petra Nova Parish Holdings, Washington, DC (United States)

    2017-02-17

    The Petra Nova Project is a commercial scale post-combustion carbon dioxide capture project that is being developed by a joint venture between NRG Energy (NRG) and JX Nippon Oil and Gas Exploration (JX). The project is designed to separate and capture carbon dioxide from an existing coal-fired unit's flue gas slipstream at NRG's W.A. Parish Generation Station located southwest of Houston, Texas. The captured carbon dioxide will be transported by pipeline and injected into the West Ranch oil field to boost oil production. The project, which is partially funded by financial assistance from the U.S. Department of Energy will use Mitsubishi Heavy Industries of America, Inc.'s Kansai Mitsubishi Carbon Dioxide Recovery (KM-CDR(R)) advanced amine-based carbon dioxide absorption technology to treat and capture at least 90% of the carbon dioxide from a 240 megawatt equivalent flue gas slipstream off of Unit 8 at W.A. Parish. The project will capture approximately 5,000 tons of carbon dioxide per day or 1.5 million tons per year that Unit 8 would otherwise emit, representing the largest commercial scale deployment of post-combustion carbon dioxide capture at a coal power plant to date. The joint venture issued full notice to proceed in July 2014 and when complete, the project is expected to be the world's largest post-combustion carbon dioxide capture facility on an existing coal plant. The detailed engineering is sufficiently complete to prepare and issue the Final Public Design Report.

  13. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  14. A closed solar photobioreactor for cultivation of microalgac under supra-high irradiance: basic design and performance

    Czech Academy of Sciences Publication Activity Database

    Masojídek, Jiří; Papáček, Štěpán; Sergejevova, Magda; Jirka, V.; Červený, J.; Kunc, J.; Korečko, J.; Verbovikova, O.; Kopecký, Jiří; Štys, Dalibor; Torzillo, G.

    2003-01-01

    Roč. 15, - (2003), s. 239-248 ISSN 0921-8971 R&D Projects: GA MŠk LN00A141 Institutional research plan: CEZ:AV0Z5020903 Keywords : cyanobacterium * spirulina * photoinhibition Subject RIV: CE - Biochemistry Impact factor: 0.828, year: 2003

  15. Chlorella vulgaris as a lipid source: Cultivation on air and seawater-simulating medium in a helicoidal photobioreactor.

    Science.gov (United States)

    Frumento, Davide; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Converti, Attilio; Al Arni, Saleh; da Silva, Milena Fernandes

    2016-03-01

    The freshwater microalga Chlorella vulgaris was cultured batchwise on the seawater-simulating Schlösser medium either in a 1.1-L-working volume helicoidal photobioreactor (HeP) or Erlenmeyer flask (EF) as control and continuously supplying air as CO2 source. In these systems, maximum biomass concentration reached 1.65 ± 0.17 g L(-1) and 1.25 ± 0.06 g L(-1) , and maximum cell productivity 197.6 ± 20.4 mg L(-1)  day(-1) and 160.8 ± 12.2 mg L(-1)  day(-1) , respectively. Compared to the Bold's Basal medium, commonly employed to cultivate this microorganism on a bench-scale, the Schlösser medium ensured significant increases in all the growth parameters, namely maximum cell concentration (268% in EF and 126% in HeP), maximum biomass productivity (554% in EF and 72% in HeP), average specific growth rate (67% in EF and 42% in HeP), and maximum specific growth rate (233% in EF and 22% in HeP). The lipid fraction of biomass collected at the end of runs was analyzed in terms of both lipid content and fatty acid profile. It was found that the seawater-simulating medium, despite of a 56-63% reduction of the overall biomass lipid content compared to the Bold's Basal one, led in HeP to significant increases in both the glycerides-to-total lipid ratio and polyunsaturated fatty acid content compared to the other conditions taken as an average. These results as a whole suggest that the HeP configuration could be a successful alternative to the present means to cultivate C. vulgaris as a lipid source. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:279-284, 2016. © 2016 American Institute of Chemical Engineers.

  16. Scenedesmus dimorphus (Turpin) Kützing growth with digestate from biogas plant in outdoor bag photobioreactors.

    Science.gov (United States)

    Barbato, F; Venditti, A; Bianco, A; Guarcini, L; Bottari, E; Festa, M R; Cogliani, E; Pignatelli, V

    2016-01-01

    Digestate coming from an Anaerobic Digestion unit in a Biogas Plant, feeded on cow manure and vegetable waste from markets, has been used. About 8-35 L polyethylene transparent bags have been employed as cultivation container, outdoor. Different aliquots of digestate, alone or mixed with commercial liquid fertiliser, were employed to cultivate in batch Scenedesus dimorphus, a freshwater green microalga, in the ENEA facilities of Casaccia Research Center, near Rome, Italy. The cultivation period was June-July 2013. The average daily yields of dry microalgae biomass varied from 20 mg/L/d to 60 mg/L/d, mean 38.2 mg/L/d. Final dry biomass concentration varied from 0.18 to 1.29 g/L, mean 0.55 g/L. S. dimorphus proved to be very efficient in removing N and P from the culture medium. Another fact emerged from these trials is that S. dimorphus inner composition resulted to be variable in response to the tested different culture conditions.

  17. A static analysis method for barge-impact design of bridges with consideration of dynamic amplification : final report, November 2009.

    Science.gov (United States)

    2009-11-01

    Current practice with regard to designing bridge structures to resist impact loads associated with barge collisions relies upon the : use of the American Association of State Highway and Transportation Officials (AASHTO) bridge design specifications....

  18. Human factors methods for nuclear control room design. Volume I. Human factors enhancement of existing nuclear control rooms. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Seidenstein, S.; Eckert, S.K.; Smith, D.L.

    1979-11-01

    Human factors engineering is an interdisciplinary specialty concerned with influencing the design of equipment systems, facilities, and operational environments to promote safe, efficient, and reliable operator performance. Human factors approaches were applied in the design of representative nuclear power plant control panels. First, methods for upgrading existing operational control panels were examined. Then, based on detailed human factors analyses of operator information and control requirements, designs of reactor, feedwater, and turbine-generator control panels were developed to improve the operator-control board interface, thereby reducing the potential for operator errors. In addition to examining present-generation concepts, human factors aspects of advanced systems and of hybrid combinations of advanced and conventional designs were investigated. Special attention was given to warning system designs. Also, a survey was conducted among control board designers to (1) develop an overview of design practices in the industry, and (2) establish appropriate measures leading to a more systematic concern for human factors in control board design

  19. Review and assessment of research relevant to design aspects of nuclear power plant piping systems. Final report

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Maxey, W.A.; Eiber, R.J.

    1977-06-01

    Significant research on piping systems is evaluated, and the correlation of that research with design practices is presented. The objective is to quantify the research/design practices in terms of the reliability of piping used in nuclear power plants

  20. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  1. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  2. Remedial action plan and site conceptual design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Appendix D, Final report

    International Nuclear Information System (INIS)

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two designated inactive uranium mill tailings sites near Rifle, Colorado, and the proposed disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions

  3. New Concepts in Fish Ladder Design, Part I of IV, Summary Report, 1982-1984 Final Project Report.

    Energy Technology Data Exchange (ETDEWEB)

    Orsborn, John F.

    1985-08-01

    The report looks at the most active periods of fishway research since 1938 as background for a project to apply fundamental fluid and bio-mechanics to fishway design, and develop more cost effective fish passage facilities with primary application to small scale hydropower facilities. Also discussed are new concepts in fishway design, an assessment of fishway development and design, and an analysis of barriers to upstream migration. (ACR)

  4. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    International Nuclear Information System (INIS)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR section 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE's application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design

  5. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR section 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE's application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design

  6. Final safety evaluation report related to the certification of the advanced boiling water reactor design. Volume 1: Main report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This safety evaluation report (SER) documents the technical review of the US Advanced Boiling Water Reactor (ABWR) standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the ABWR design was initially submitted by the General Electric Company, now GE Nuclear Energy (GE), in accordance with the procedures of Appendix O of Part 50 of Title 10 of the Code of Federal Regulations (10 CFR Part 50). Later GE requested that its application be considered as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. The ABWR is a single-cycle, forced-circulation, boiling water reactor (BWR) with a rated power of 3,926 megawatts thermal (MWt) and a design power of 4,005 MWt. To the extent feasible and appropriate, the staff relied on earlier reviews for those ABWR design features that are substantially the same as those previously considered. Unique features of the ABWR design include internal recirculation pumps, fine-motion control rod drives, microprocessor-based digital logic and control systems, and digital safety systems. On the basis of its evaluation and independent analyses, the NRC staff concludes that, subject to satisfactory resolution of the confirmatory items identified in Section 1.8 of this SER, GE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the US ABWR standard design.

  7. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a spacelab mission payload

    Science.gov (United States)

    1976-01-01

    The Atmospheric Cloud Physics Laboratory (ACPL) task flow is shown. Current progress is identified. The requirements generated in task 1 have been used to formulate an initial ACPL baseline design concept. ACPL design/functional features are illustrated. A timetable is presented of the routines for ACPL integration with the spacelab system.

  8. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  9. Ocean thermal energy conversion power system development-I. Phase I. Preliminary design report. Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The results of a conceptual and preliminary design study of Ocean Thermal Energy Conversion (OTEC) closed loop ammonia power system modules performed by Lockheed Missiles and Space Company, Inc. (LMSC) are presented. This design study is the second of 3 tasks in Phase I of the Power System Development-I Project. The Task 2 objectives were to develop: 1) conceptual designs for a 40 to 50-MW(e) closed cycle ammonia commercial plant size power module whose heat exchangers are immersed in seawater and whose ancillary equipments are in a shirt sleeve environment; preliminary designs for a modular application power system sized at 10-MW(e) whose design, construction and material selection is analogous to the 50 MW(e) module, except that titanium tubes are to be used in the heat exchangers; and 3) preliminary designs for heat exchanger test articles (evaporator and condenser) representative of the 50-MW(e) heat exchangers using aluminum alloy, suitable for seawater service, for testing on OTEC-1. The reference ocean platform was specified by DOE as a surface vessel with the heat exchanger immersed in seawater to a design depth of 0 to 20 ft measured from the top of the heat exchanger. For the 50-MW(e) module, the OTEC 400-MW(e) Plant Ship, defined in the Platform Configuration and Integration study, was used as the reference platform. System design, performance, and cost are presented. (WHK)

  10. Human-system interface design review guideline -- Reviewer`s checklist: Final report. Revision 1, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant`s HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 2 is a complete set of the guidelines contained in Volume 1, Part 2, but in a checklist format that can be used by reviewers to assemble sets of individual guidelines for use in specific design reviews. The checklist provides space for reviewers to enter guidelines evaluations and comments.

  11. Human-system interface design review guideline -- Review software and user's guide: Final report. Revision 1, Volume 3

    International Nuclear Information System (INIS)

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant's HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 3 contains an interactive software application of the NUREG-0700, Revision 1 guidance and a user's guide for this software. The software supports reviewers during review preparation, evaluation design using the human factors engineering guidelines, and in report preparation. The user's guide provides system requirements and installation instructions, detailed explanations of the software's functions and features, and a tutorial on using the software

  12. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    DEFF Research Database (Denmark)

    Safafar, Hamed; Hass, Michael Z.; Møller, Per

    2016-01-01

    salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality...... of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scaleusing a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large...... after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark.The resulting biomass is a rich source of EPA and also a good...

  13. Dynamic model of a thin layer photobioreactor, used for the cultivation of the microalga Chlorella sp. and bacteria in wastewater of high organic load

    Directory of Open Access Journals (Sweden)

    Orlando Gines Alfaro-Vives

    2017-01-01

    Full Text Available A dynamic mathematical model is presented to describe the symbiotic growth of the microalgae Chlorella sp. and bacteria in a photobioreactor thin film used in the wastewater treatment of high organic load. A good correlation is shown by the experimental results, since the variations of the process parameters (pH, dissolved oxygen concentration, concentration of dissolved carbon dioxide and substrate concentration in the culture medium were compared with the experimental results and in 95 % of cases coincide with an error of + -3%. Furthermore, the influence of the operating parameters on the performance of algae obtained is evaluated, using the model, the total net productivity per unit area was obtained with a maximum error of + -2, 5 % with respect to the experimental values.

  14. Greenhouse gas emissions and energy balance of biodiesel production from microalgae cultivated in photobioreactors in Denmark: a life-cycle modeling

    DEFF Research Database (Denmark)

    Monari, Chiara; Righi, Serena; Olsen, Stig Irving

    2016-01-01

    difficulties with both microalgae cultivation in wastewater as well as transportation and injection of waste CO2. In any way, a positive energy balance is still far from being achieved. Considerable improvements must be made to develop an environmentally beneficial microalgae biodiesel production...... of algal biodiesel from Nannochloropsis cultivated at industrial scale in photobioreactors in Denmark. Both consolidated and pioneering technologies are analyzed focusing on strengths and weaknesses which influence the performance. Based on literature data, energy balance and greenhouse gas emissions...... are determined in a comparative 'well-to-tank' Life Cycle Assessment against fossil diesel. Use of by-products from biodiesel production such as glycerol obtained from transesterification and anaerobic digestion of residual biomass are included. Different technologies and methods are considered in cultivation...

  15. Final safety evaluation report related to the certification of the System 80{sup +} design (Docket No. 52-002). Volume 2, Chapters 15--22 and appendices

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the system 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of ABB-CE`s System 80 design from which it evolved. Unique features of the System 80+ design include: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 2, contains Chapters 15 through 22 and Appendices A through E.

  16. Final safety evaluation report related to the certification of the System 80{sup +} design (Docket No. 52-002). Volume 1, Chapters 1--14

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the System 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR {section} 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of Abb-CE`s System 80 design from which it evolved. Unique features of the System 80+ design included: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors, and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE`s application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 1, contains Chapters 1 through 14 of this report.

  17. Final safety evaluation report related to the certification of the System 80+ design (Docket No. 52-002). Volume 2, Chapters 15--22 and appendices

    International Nuclear Information System (INIS)

    1994-08-01

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the system 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR section 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of ABB-CE's System 80 design from which it evolved. Unique features of the System 80+ design include: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE's application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 2, contains Chapters 15 through 22 and Appendices A through E

  18. Final safety evaluation report related to the certification of the System 80+ design (Docket No. 52-002). Volume 1, Chapters 1--14

    International Nuclear Information System (INIS)

    1994-08-01

    This final safety evaluation report (FSER) documents the technical review of the System 80+ standard design by the US Nuclear Regulatory Commission (NRC) staff. The application for the System 80+ design was submitted by Combustion Engineering, Inc., now Asea Brown Boveri-Combustion Engineering (ABB-CE) as an application for design approval and subsequent design certification pursuant to 10 CFR section 52.45. System 80+ is a pressurized water reactor with a rated power of 3914 megawatts thermal (MWt) and a design power of 3992 MWt at which accidents are analyzed. Many features of the System 80+ are similar to those of Abb-CE's System 80 design from which it evolved. Unique features of the System 80+ design included: a large spherical, steel containment; an in-containment refueling water storage tank; a reactor cavity flooding system, hydrogen ignitors, and a safety depressurization system for severe accident mitigation; a combustion gas turbine for an alternate ac source; and an advanced digitally based control room. On the basis of its evaluation and independent analyses, the NRC staff concludes that ABB-CE's application for design certification meets the requirements of Subpart B of 10 CFR Part 52 that are applicable and technically relevant to the System 80+ standard design. This document, Volume 1, contains Chapters 1 through 14 of this report

  19. Design, building and test of one prototype and four final position sensor assemblies: Hall effect position sensors

    Science.gov (United States)

    1976-01-01

    This report covers the development of a three channel Hall effect position sensing system for the commutation of a three phase dc torquer motor. The effort consisted of the evaluation, modification and re-packaging of a commercial position sensor and the design of a target configuration unique to this application. The resulting design meets the contract requirements and, furthermore, the test results indicate not only the practicality and versatility of the design, but also that there may be higher limits of resolution and accuracy achievable.

  20. Final report of the documentation of the methodology designed by PESENCA for the development of local concepts of energy supply

    International Nuclear Information System (INIS)

    1991-01-01

    A report is presented about the methodology designed by PESENCA for the development of local concepts of energy supply in the Atlantic Costa of Colombia; are includes localization, executor institutions, their organization, the global studies and database in the different projects. It is indicated the selection of investigation and planning areas, the consulted entities and the design of methodological instruments as forms of surveys control. The sampling strategies and the design of preparation of databases are described. It is indicated the selection, training and the specific activities for each area like the delimitation of the work area, the design of the work and the field work; equally the analysis of results in electric power terms, firewood and rest of biomass. An analysis of the socioeconomic situation of the area is made and concepts are elaborated on energy solutions

  1. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1. Volume 1, Calculations, Final design for construction

    International Nuclear Information System (INIS)

    1995-09-01

    Volume one contains calculations for: embankment design--embankment material properties; Union Carbide site--bedrock contours; vicinity properties--origin of contamination; North Continent and Union Carbide sites contaminated materials--excavation quantities; and demolition debris--quantity estimate

  2. Conceptual design of retrieval systems for emplaced transuranic waste containers in a salt bed depository. Final report

    International Nuclear Information System (INIS)

    Fogleman, S.F.

    1980-04-01

    The US Department of Energy and the Nuclear Regulatory Commission have jurisdiction over the nuclear waste management program. Design studies were previously made of proposed repository site configurations for the receiving, processing, and storage of nuclear wastes. However, these studies did not provide operational designs that were suitable for highly reliable TRU retrieval in the deep geologic salt environment for the required 60-year period. The purpose of this report is to develop a conceptual design of a baseline retrieval system for emplaced transuranic waste containers in a salt bed depository. The conceptual design is to serve as a working model for the analysis of the performance available from the current state-of-the-art equipment and systems. Suggested regulations would be based upon the results of the performance analyses

  3. Economic impact of multi-span, prestressed concrete girder bridges designed as simple span versus continuous span : final report.

    Science.gov (United States)

    2016-10-01

    The objective of this study was to determine the economic impact of designing pre-tensioned prestressed concrete beam (PPCB) : bridges utilizing the continuity developed in the bridge deck as opposed to the current Iowa Department of Transportation (...

  4. Dynamic Isotope Power System (DIPS) Applications Study. Volume II. Nuclear Integrated Multimission Spacecraft (NIMS) design definition. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The design requirements for the Nuclear Integrated Multimission Spacecraft. (NIMS) are discussed in detail. The requirements are a function of mission specifications, payload, control system requirements, electric system specifications, and cost limitations

  5. Design of 3x3 Focusing Array for Heavy Ion Driver Final Report on CRADA TC-02082-04

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This memo presents a design of a 3x3 quadrupole array for HIF. It contains 3 D magnetic field computations of the array build with racetrack coils with and without different shields. It is shown that it is possible to have a low error magnetic field in the cells and shield the stray fields to acceptable levels. The array design seems to be a practical solution to any size array for future multi-beam heavy ion fusion drivers.

  6. Joint application of AI techniques, PRA and disturbance analysis methodology to problems in the maintenance and design of nuclear power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Okrent, D.

    1989-03-01

    This final report summarizes the accomplishments of a two year research project entitled ``Joint Application of Artificial Intelligence Techniques, Probabilistic Risk Analysis, and Disturbance Analysis Methodology to Problems in the Maintenance and Design of Nuclear Power Plants. The objective of this project is to develop and apply appropriate combinations of techniques from artificial intelligence, (AI), reliability and risk analysis and disturbance analysis to well-defined programmatic problems of nuclear power plants. Reactor operations issues were added to those of design and maintenance as the project progressed.

  7. Fort Hood Solar Total Energy Project. Volume II. Preliminary design. Part 2. System performance and supporting studies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1979-01-01

    The preliminary design developed for the Solar Total Energy System to be installed at Fort Hood, Texas, is presented. System performance analysis and evaluation are described. Feedback of completed performance analyses on current system design and operating philosophy is discussed. The basic computer simulation techniques and assumptions are described and the resulting energy displacement analysis is presented. Supporting technical studies are presented. These include health and safety and reliability assessments; solar collector component evaluation; weather analysis; and a review of selected trade studies which address significant design alternatives. Additional supporting studies which are generally specific to the installation site are reported. These include solar availability analysis; energy load measurements; environmental impact assessment; life cycle cost and economic analysis; heat transfer fluid testing; meteorological/solar station planning; and information dissemination. (WHK)

  8. Georgetown University Integrated Community Energy System (GU-ICES). Phase III, Stage II. Preliminary design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    Results are presented for two elements in the Georgetown University ICES program - the installation of a 2500-kW backpressure steam-turbine generator within a new extension to the heating and cooling plant (cogeneration) and the provision of four additional ash silos for the university's atmospheric fluidized-bed boiler plant (added storage scheme). The preliminary design and supporting documentation for the work items and architectural drawings are presented. Section 1 discusses the basis for the report, followed by sections on: feasibility analysis update; preliminary design documents; instrumentation and testing; revised work management plan; and appendices including outline constructions, turbine-generator prepurchase specification, design calculations, cost estimates, and Potomac Electric Company data. (MCW)

  9. Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Demler, R.L.

    1977-09-01

    Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

  10. Oxygen accumulation in photobioreactors

    NARCIS (Netherlands)

    Fonseca e Sousa, da C.A.

    2013-01-01

    Phototropic microalgae are regarded as a promising feedstock for sustainable biodiesel production, as microalgae can use natural sunlight as light source and are able to utilize CO2from flue gases and nutrients (P, N) from waste streams. To make large-scale outdoor microalgae

  11. FY05 LDRD Final Report A Computational Design Tool for Microdevices and Components in Pathogen Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, D

    2006-02-07

    We have developed new algorithms to model complex biological flows in integrated biodetection microdevice components. The proposed work is important because the design strategy for the next-generation Autonomous Pathogen Detection System at LLNL is the microfluidic-based Biobriefcase, being developed under the Chemical and Biological Countermeasures Program in the Homeland Security Organization. This miniaturization strategy introduces a new flow regime to systems where biological flow is already complex and not well understood. Also, design and fabrication of MEMS devices is time-consuming and costly due to the current trial-and-error approach. Furthermore, existing devices, in general, are not optimized. There are several MEMS CAD capabilities currently available, but their computational fluid dynamics modeling capabilities are rudimentary at best. Therefore, we proposed a collaboration to develop computational tools at LLNL which will (1) provide critical understanding of the fundamental flow physics involved in bioMEMS devices, (2) shorten the design and fabrication process, and thus reduce costs, (3) optimize current prototypes and (4) provide a prediction capability for the design of new, more advanced microfluidic systems. Computational expertise was provided by Comp-CASC and UC Davis-DAS. The simulation work was supported by key experiments for guidance and validation at UC Berkeley-BioE.

  12. Design of a Computer-Controlled, Random-Access Slide Projector Interface. Final Report (April 1974 - November 1974).

    Science.gov (United States)

    Kirby, Paul J.; And Others

    The design, development, test, and evaluation of an electronic hardware device interfacing a commercially available slide projector with a plasma panel computer terminal is reported. The interface device allows an instructional computer program to select slides for viewing based upon the lesson student situation parameters of the instructional…

  13. STANFORD-OHWAKI-KOHS TACTILE BLOCK DESIGN INTELLIGENCE TEST FOR THE BLIND. PART ONE-FINAL REPORT.

    Science.gov (United States)

    DAUTERMAN, WILLIAM L.; SUINN, RICHARD M.

    THIS TEST WAS DEVELOPED TO MEASURE THE INTELLIGENCE OF BLIND ADOLESCENTS AND ADULTS. SIX HUNDRED AND THIRTY BLIND SUBJECTS 14 YEARS OF AGE AND OLDER WERE USED IN REFINING AND STANDARDIZING THE NONVERBAL, PERFORMANCE OHWAKI-KOHS BLOCK DESIGN TEST FOR USE BY BLIND INDIVIDUALS IN THE UNITED STATES. RESULTS INDICATED STATISTICALLY SIGNIFICANT…

  14. TIBER II/ETR final design report: Volume 1, 1.0 Introduction; 2.0 plasma engineering

    International Nuclear Information System (INIS)

    Lee, J.D.

    1987-09-01

    This paper discusses the design of the TIBER II tokamak test reactor. Specific topics discussed are the physics objectives for Tiber, magnetics, baseline operating point, pulsed inductive operation, edge physics and impurity control, fueling, disruption control, vertical stability and impurity flow reversal

  15. Consultancy on Large-Scale Submerged Aerobic Cultivation Process Design - Final Technical Report: February 1, 2016 -- June 30, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Crater, Jason [Gemomatica, Inc., San Diego, CA (United States); Galleher, Connor [Gemomatica, Inc., San Diego, CA (United States); Lievense, Jeff [Gemomatica, Inc., San Diego, CA (United States)

    2017-05-12

    NREL is developing an advanced aerobic bubble column model using Aspen Custom Modeler (ACM). The objective of this work is to integrate the new fermentor model with existing techno-economic models in Aspen Plus and Excel to establish a new methodology for guiding process design. To assist this effort, NREL has contracted Genomatica to critique and make recommendations for improving NREL's bioreactor model and large scale aerobic bioreactor design for biologically producing lipids at commercial scale. Genomatica has highlighted a few areas for improving the functionality and effectiveness of the model. Genomatica recommends using a compartment model approach with an integrated black-box kinetic model of the production microbe. We also suggest including calculations for stirred tank reactors to extend the models functionality and adaptability for future process designs. Genomatica also suggests making several modifications to NREL's large-scale lipid production process design. The recommended process modifications are based on Genomatica's internal techno-economic assessment experience and are focused primarily on minimizing capital and operating costs. These recommendations include selecting/engineering a thermotolerant yeast strain with lipid excretion; using bubble column fermentors; increasing the size of production fermentors; reducing the number of vessels; employing semi-continuous operation; and recycling cell mass.

  16. Skewed steel bridges, part ii : cross-frame and connection design to ensure brace effectiveness : final report.

    Science.gov (United States)

    2017-08-01

    Skewed bridges in Kansas are often designed such that the cross-frames are carried parallel to the skew angle up to 40, while many other states place cross-frames perpendicular to the girder for skew angles greater than 20. Skewed-parallel cross-...

  17. Grid connected integrated community energy system. Phase II: final stage 2 report. Preliminary design of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The preliminary design of a dual-purpose power plant to be located on the University of Minnesota is described. This coal-fired plant will produce steam and electric power for a grid-connected Integrated Community Energy System. (LCL)

  18. RTI photovoltaic concentrator applications experiment. Phase I. System design. Final report, 1 June 1978-28 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    Burger, R M; Whisnant, R A; Drake, W C; Daluge, D R; Alberts, R D

    1979-03-01

    An experiment has been designed in which a 100 kW photovoltaic concentrator system serving the electrical load provided by an energy-efficient office-laboratory building will be built and operated in the Research Triangle Park of North Carolina. Since the purpose of the experiment is to provide the essential data for design and installation of future operational systems, the system is designed for operational flexibility. In its main operational mode, a defined primary load is diverted from the utility during all peak-demand periods. This requires the use of 1000 kWh of lead-acid batteries for energy storage. Other operational modes provide for obtaining data on peak demand reduction, on alternative battery use strategies, and on system performance with an isolated load. Operation of the system in parallel with utility-supplied power requires that the photovoltaic array outputs be inverted and that the power be controlled to achieve the operational objectives. Ten 2-axis tracking arrays consisting of 70X parabolic concentrators are used. The system will provide approximately 103 megawatt-hours of power annually to the load and the design is compatible with future retrofits including more efficient solar cells, higher concentration ratios, thermal energy collection, and other technological developments, ensuring its usefulness in research and development beyond the PRDA-35 experiment.

  19. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    International Nuclear Information System (INIS)

    Bjarnadottir, H.; Hilding-Rydevik, T.

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented. Our perception of

  20. Report on the design and operation of a full-scale anaerobic dairy manure digester. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Coppinger, E.; Brautigam, J.; Lenart, J.; Baylon, D.

    1979-12-01

    A full-scale anaerobic digester on the Monroe State Dairy Farm was operated and monitored for 24 months with funding provided by the United States Department of Energy, Fuels from Biomass Systems Branch. During the period of operation, operating parameters were varied and the impact of those changes is described. Operational experiences and system component performance are discussed. Internal digester mixing equipment was found to be unnecessary, and data supporting this conclusion are given. An influent/effluent heat exchanger was installed and tested, and results of the tests are included. Recommendations for digester design and operation are presented. Biological stability was monitored, and test results are given. Gas production rates and system net energy are analyzed. The economics of anaerobic digestion are evaluated based on various financing options, design scales, and expected benefits. Under many circumstances digesters are feasible today, and a means of analysis is given.

  1. Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, J.M.

    1980-05-01

    This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

  2. Design, Fabrication, and Operation of Innovative Microalgae Culture Experiments for the Purpose of Producing Fuels: Final Report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    A conceptual design was developed for a 1000-acre (water surface) algae culture facility for the production of fuels. The system is modeled after the shallow raceway system with mixing foils that is now being operated at the University of Hawaii. A computer economic model was created to calculate the discounted breakeven price of algae or fuels produced by the culture facility. A sensitivity analysis was done to estimate the impact of changes in important biological, engineering, and financial parameters on product price.

  3. Solar central receiver hybrid power system, Phase I. Volume 2. Conceptual design. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The objectives of this study were to develop a hybrid power system design that (1) produces minimum cost electric power, (2) minimizes the capital investment and operating cost, (3) permits capacity displacement, (4) and achieves utility acceptance for market penetration. We have met the first three of these objectives and therefore believe that the fourth, utility acceptance, will become a reality. These objectives have been met by utilizing the Martin Marietta concept that combines the alternate central receiver power system design and a high-temperature salt primary heat transfer fluid and thermal storage media system with a fossil-fired nonsolar energy source. Task 1 reviewed the requirements definition document and comments and recommendations were provided to DOE/San Francisco. Task 2 consisted of a market analysis to evaluate the potential market of solar hybrid power plants. Twenty-two utilities were selected within nine regions of the country. Both written and verbal correspondence was used to assess solar hybrid power plants with respect to the utilities' future requirements and plans. The parametric analysis of Task 3 evaluated a wide range of subsystem configurations and sizes. These analyses included subsystems from the solar standalone alternate central receiver power system using high-temperature molten salt and from fossil fuel nonsolar subsystems. Task 4, selection of the preferred commerical system configuration, utilized the parametric analyses developed in Task 3 to select system and subsystem configurations for the commercial plant design. Task 5 developed a conceptual design of the selected commercial plant configuration and assessed the related cost and performance. Task 6 assessed the economics and performance of the selected configuration as well as future potential improvements or limitations of the hybrid power plants.

  4. Time-Dependent Deformation Modelling for a Chopped-Glass Fiber Composite for Automotive Durability Design Criteria; FINAL

    International Nuclear Information System (INIS)

    Ren, W

    2001-01-01

    Time-dependent deformation behavior of a polymeric composite with chopped-glass-fiber reinforcement was investigated for automotive applications, The material under stress was exposed to representative automobile service environments. Results show that environment has substantial effects on time-dependent deformation behavior of the material. The data were analyzed and experimentally-based models developed for the time-dependent deformation behavior as a basis for automotive structural durability design criteria

  5. Investigation on Stress-Rupture Behavior of a Chopped-Glass-Fiber Composite for Automotive Durability Design Criteria; FINAL

    International Nuclear Information System (INIS)

    Ren, W

    2001-01-01

    Practical and inexpensive testing methods were developed to investigate stress-rupture properties of a polymeric composite with chopped glass fiber reinforcement for automotive applications. The material was tested in representative automotive environments to generate experimental data. The results indicate that environments have substantial effects on the stress-rupture behavior. The data were analyzed and developed into stress-rupture design criteria to address one of the durability aspects of the material for automotive structural applications

  6. Final design proposal: Zeta group-Valkyrie. A proposal in response to a commercial air transportation study

    Science.gov (United States)

    1991-01-01

    The Valkyrie flying wing concept is a remotely piloted technology demonstrator designed to serve as a high volume commuter transport in Aeroworld. The 5.02 lb Valkyrie has a planform area of 1440 sq in and a wingspan of 84 in, which results in an aspect ratio of 4.9. The Valkyrie uses the NACA 2R(2)12 airfoil section. A leading edge wing sweep of 13.2 deg and a 2 deg dihedral were incorporated to provide lateral stability. The Valkyrie is semi-monocoque structure manufactured from spruce and balsa wood covered in plastic Mylar skin. The AstroFlight Cobolt 25 electric engine will power the Valkyrie with a Tornado 10-6 propeller. The Valkyrie is designed to take off in less than 20 ft. To eliminate the difficulties associated with rotating the aircraft at takeoff, the wing is mounted on its landing gear at the take off angle of attack of 8 deg. The Valkyrie provides a greater payload to weight ratio than a conventionally configured aircraft of comparable weight. Considering the requirements, the Valkyrie is the most efficient design for the specified mission.

  7. Integrated Design for Marketing and Manufacturing team: An examination of LA-ICP-AES in a mobile configuration. Final report

    International Nuclear Information System (INIS)

    1994-05-01

    The Department of Energy (DOE) has identified the need for field-deployable elemental analysis devices that are safer, faster, and less expensive than the fixed laboratory procedures now used to screen hazardous waste sites. As a response to this need, the Technology Integration Program (TIP) created a mobile, field-deployable laser ablation-inductively coupled plasma-atomic emission spectrometry (LA-ICP-AES) sampling and analysis prototype. Although the elemental. screening prototype has been successfully field-tested, continued marketing and technical development efforts are required to transfer LA-ICP-AES technology to the commercial sector. TIP established and supported a student research and design group called the Integrated Design for Marketing and Manufacturing (IDMM) team to advance the technology transfer of mobile, field-deployable LA-ICP-AES. The IDMM team developed a conceptual design (which is detailed in this report) for a mobile, field-deployable LA-ICP-AES sampling and analysis system, and reports the following findings: Mobile, field-deployable LA-ICP-AES is commercially viable. Eventual regulatory acceptance of field-deployable LA-ICP-AES, while not a simple process, is likely. Further refinement of certain processes and components of LA-ICP-AES will enhance the device's sensitivity and accuracy

  8. New Concepts in Fish Ladder Design, Volume III of IV, Assessment of Fishway Development and Design, 1982-1983 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Patrick D.; Orsborn, John F.

    1985-08-01

    This volume covers the broad, though relatively short, historical basis for this project. The historical developments of certain design features, criteria and research activities are traced. Current design practices are summarized based on the results of an international survey and interviews with agency personnel and consultants. The fluid mechanics and hydraulics of fishway systems are discussed. Fishways (or fishpasses) can be classified in two ways: (1) on the basis of the method of water control (chutes, steps (ladders), or slots); and (2) on the basis of the degree and type of water control. This degree of control ranges from a natural waterfall to a totally artificial environment at a hatchery. Systematic procedures for analyzing fishways based on their configuration, species, and hydraulics are presented. Discussions of fish capabilities, energy expenditure, attraction flow, stress and other factors are included.

  9. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1, Volume 3. Calculations, Final design for construction

    International Nuclear Information System (INIS)

    1995-09-01

    Volume three contains calculations for: site hydrology--rainfall intensity, duration, and frequency relations; site hydrology-- probable maximum precipitation; erosion protection--rock quality evaluation; erosion protection--embankment top and side slope; erosion protection--embankment toe apron; erosion protection-- gradations and layer thicknesses; Union Carbide site--temporary drainage ditch design; Union Carbide site--retention basin sediment volume; Union Carbide site--retention basin sizing; Burro Canyon site temporary drainage--temporary drainage facilities; and Union Carbide site temporary drainage--water balance

  10. The project to design and develop an energy-related program for public housing residents: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    This demonstration project studied how to minimize the costs associated with public housing tenants in standard public housing as well as under homeownership transfers. A related problem was how to graduate the tenants to another level of responsibility and self-sufficiency through resident business developments and training in energy-related fields. The goal that emanated was the design and development of an energy-related demonstration program that educates public housing residents, facilities indigenous business development where appropriate, and trains residents to provide needed services.

  11. Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report

    International Nuclear Information System (INIS)

    Anghaie, S.; Saraph, G.

    1995-01-01

    A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses

  12. Designation of Alpha-Phenylacetoacetonitrile (APAAN), a Precursor Chemical Used in the Illicit Manufacture of Phenylacetone, Methamphetamine, and Amphetamine, as a List I Chemical. Final rule.

    Science.gov (United States)

    2017-07-14

    The Drug Enforcement Administration (DEA) is finalizing the designation of the chemical alpha-phenylacetoacetonitrile (APAAN) and its salts, optical isomers, and salts of optical isomers, as a list I chemical under the Controlled Substances Act (CSA). The DEA proposed control of APAAN, due to its use in clandestine laboratories to illicitly manufacture the schedule II controlled substances phenylacetone (also known as phenyl-2-propanone or P2P), methamphetamine, and amphetamine. This rulemaking finalizes, without change, the control of APAAN as a list I chemical. This action does not establish a threshold for domestic and international transactions of APAAN. As such, all transactions involving APAAN, regardless of size, shall be regulated. In addition, chemical mixtures containing APAAN are not exempt from regulatory requirements at any concentration. Therefore, all transactions of chemical mixtures containing any quantity of APAAN shall be regulated pursuant to the CSA. However, manufacturers may submit an application for exemption for those mixtures that do not qualify for automatic exemption.

  13. Accident analysis for new reactor concepts and VVER type reactor design with advanced fuel. STC with Russia. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.; Mittag, S.; Rohde, U.; Seidel, A.

    2000-10-01

    In the frame of a project on scientific-technical cooperation funded by BMBF/BMWi, the 3D reactor dynamics code DYN3D developed at Forschungszentrum Rossendorf (FZR), has been transferred to the Institute of Physics and Power Engineering (IPPE) Obninsk in Russia and integrated into the software package of IPPE. DYN3D has been coupled to a thermohydraulic system code used in IPPE making available 3D neutron kinetics within this software package. A new macroscopic cross section library has been created using a modified version of the WIMS/D4 code. This library includes data for modernized fuel design containing burnable absorbers in different concentrations, which is tested in VVER-1000 type reactors. The cross section library has been connected to DYN3D. Calculations were performed to check the library in comparison with other data libraries and codes. The code DYN3D and the coupled 3D neutron kinetics/thermal hydraulics code system were used to perform analyses of Anticipated Transients Without Scram (ATWS) for the reactor design ABV-67, an integral reactor concept with small power developed under participation of IPPE. The fluid dynamics code DINCOR developed at IPPE was transferred to FZR. It was used in validation calculations on test problems for the short-term core melt behaviour (CORVIS experiments). (orig.) [de

  14. Critical Design Review of a Powder HIPed Shield Concept. Final Report for the contract EFDA/01-601

    International Nuclear Information System (INIS)

    Lind, Anders

    2002-05-01

    The Shield of the ITER Primary Wall Module Option A consists of a 316L Stainless Steel block with front and back side radially cooled through water headers. In order to avoid structural welds located in high irradiation fields or highly mechanically loaded, powder HIPing was proposed by the EU Home Team as a possible fabrication method. This choice was motivated by the good results obtained through an extensive R and D programme performed within Associations and Industries. However, this fabrication technique has some implications on the design of the component, which shall be considered from the very beginning to achieve good performance and low cost. A critical review was therefore needed to optimise the concept before the fabrication of a Shield prototype. The contractor, based on its own experience on powder HIP technology and on the support from appropriate industry, did check the fabrication feasibility of the proposed Shield concept. The concept was judged to be feasible to a combined powder/solid HIPing route. Some adjustments of the design were proposed. The price for producing one shield block in a series of 400 items was estimated to fall into the range 150,000 - 175,000 Euro/pc

  15. Simple visualization techniques for die casting part and die design. Final report, July 1, 1995--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.A.; Lu, S.C.; Rebello, A.B.

    1998-05-01

    The objective of this work was to develop and test die casting design evaluation techniques based on the visualization of geometric data that is related to potential defects of problems. Specifically, thickness information is used to provide insight into potential thermal problems in the part and die. Distance from the gate and a special type of animation of the fill pattern is used to provide an assessment of gate, vent and overflow locations. Techniques have been developed to convert part design information in the form of STL files to a volume-based representation called a voxel model. The use of STL files makes the process CAD system independent. Once in voxel form, methods that were developed in this work are used to identify thick regions in the part, thin regions in the part and/or die, distance from user specified entry locations (gates), and the qualitative depiction of the fill pattern. The methods were tested with a prototype implementation on the UNIX platform. The results of comparisons with numerical simulation and field reported defects were surprisingly good. The fill-related methods were also compared against short-shots and a water analog study using high speed video. The report contains the results of the testing plus detailed background material on the construction of voxel models, the methods used for displaying results, and the computational geometric reasoning methods used to create die casting-related information from the voxel model for display to the user.

  16. Grid-connected integrated community energy system. Phase II, Stage 1, final report. Conceptual design: pyrolysis and waste management systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-08

    The University of Minnesota is studying and planning a grid-connected integrated community energy system to include disposal of wastes from health centers and utilizing the heat generated. Following initial definition of the 7-county metropolitan region for which the solid waste management system is to be planned, information is then necessary about the nature of the waste generated within this region. Estimates of the quantities generated, generation rates, and properties of the waste to be collected and disposed of are required in order to determine the appropriate size and capacity of the system. These estimates are designated and subsequently referred to as ''system input''. Institutional information is also necessary in designing the planned system, to be compatible with existing institutional operations and procedures, or to offer a minimum amount of problems to the participating institution in the region. Initial considerations of health care institutions generating solid waste within the defined region are made on a comprehensive basis without any attempt to select out or include feasible candidate institutions, or institutional categories. As the study progresses, various criteria are used in selecting potential candidate institutional categories and institutions within the 7-county region as offering the most feasible solid waste system input to be successfully developed into a centralized program; however, it is hoped that such a system if developed could be maintained for the entire 7-county region, and remain comprehensive to the entire health care industry. (MCW)

  17. Simple visualization techniques for die casting part and die design. Final report, July 1, 1995--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.A.; Lu, S.C.; Rebello, A.B.

    1998-05-01

    The objective of this work was to develop and test die casting design evaluation techniques based on the visualization of geometric data that is related to potential defects of problems. Specifically, thickness information is used to provide insight into potential thermal problems in the part and die. Distance from the gate and a special type of animation of the fill pattern is used to provide an assessment of gate, vent and overflow locations. Techniques have been developed to convert part design information in the form of STL files to a volume-based representation called a voxel model. The use of STL files makes the process CAD system independent. Once in voxel form, methods that were developed in this work are used to identify thick regions in the part, thin regions in the part and/or die, distance from user specified entry locations (gates), and the qualitative depiction of the fill pattern. The methods were tested with a prototype implementation on the UNIX platform. The results of comparisons with numerical simulation and field reported defects were surprisingly good. The fill-related methods were also compared against short-shots and a water analog study using high speed video. The report contains the results of the testing plus detailed background material on the construction of voxel models, the methods used for displaying results, and the computational geometric reasoning methods used to create die casting-related information form the voxel model for display to the user.

  18. Opportunities for Russian Nuclear Weapons Institute developing computer-aided design programs for pharmaceutical drug discovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-23

    The goal of this study is to determine whether physicists at the Russian Nuclear Weapons Institute can profitably service the need for computer aided drug design (CADD) programs. The Russian physicists` primary competitive advantage is their ability to write particularly efficient code able to work with limited computing power; a history of working with very large, complex modeling systems; an extensive knowledge of physics and mathematics, and price competitiveness. Their primary competitive disadvantage is their lack of biology, and cultural and geographic issues. The first phase of the study focused on defining the competitive landscape, primarily through interviews with and literature searches on the key providers of CADD software. The second phase focused on users of CADD technology to determine deficiencies in the current product offerings, to understand what product they most desired, and to define the potential demand for such a product.

  19. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  20. Project to design and develop an energy-related program: For public housing residents and renters: Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This demonstration project was undertaken as a result of an unsolicited proposal submitted by THE ASSIGNMENT GROUP (TAG) to the Office of Minority Economic Impact, Department of Energy (DOE). The problem to which the proposal responded was how to minimize the costs associated with public housing tenants in standard public housing as well as under homeownership transfers. A related problem was how to graduate the tenants to another level of responsibility and self-sufficiency through resident business developments and training in energy-related fields. The size and gravity of the problem necessitated a purpose or aim that had nationwide application, yet lent itself to a microscopic look. Consequently, the goal that emanated was the design and development of an energy-related demonstration program that educates public housing residents, facilitates indigenous business development where appropriate, and trains residents to provide needed services.

  1. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  2. Analysis and Design of a Fiber-optic Probe for DNA Sensors Final Report CRADA No. TSB-1147-95

    Energy Technology Data Exchange (ETDEWEB)

    Molau, Nicole [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vail, Curtis [Accu.Photonics, Inc., Ann Arbor, MI (United States)

    2018-01-24

    In 1995, a challenge in the field of genetics dealt with the acquisition of efficient DNA sequencing techniques for reading the 3 billion base-pairs that comprised the human genome. AccuPhotonics, Inc. proposed to develop and manufacture a state-of-the-art near-field scanning optical microscopy (NSOM) fiber-optic probe that was expected to increase probe efficiency by two orders of magnitude over the existing state-of-the-art and to improve resolution to 10Å. The detailed design calculation and optimization of electrical properties of the fiber-optic probe tip geometry would be performed at LLNL, using existing finite-difference time-domain (FDTD) electromagnetic (EM) codes.

  3. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    Science.gov (United States)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we

  4. Worksite interventions for preventing physical deterioration among employees in job-groups with high physical work demands: background, design and conceptual model of FINALE

    DEFF Research Database (Denmark)

    Holtermann, Andreas; Jørgensen, Marie B; Gram, Bibi

    2010-01-01

    physical demands remains to be established. This paper describes the background, design and conceptual model of the FINALE programme, a framework for health promoting interventions at 4 Danish job groups (i.e. cleaners, health-care workers, construction workers and industrial workers) characterized by high......A mismatch between individual physical capacities and physical work demands enhance the risk for musculoskeletal disorders, poor work ability and sickness absence, termed physical deterioration. However, effective intervention strategies for preventing physical deterioration in job groups with high...... physical work demands, musculoskeletal disorders, poor work ability and sickness absence....

  5. Safety-evaluation report related to the final design of the Standard Nuclear Steam Supply Reference System - CESSAR System 80. Docket No. STN 50-470

    International Nuclear Information System (INIS)

    1983-03-01

    Supplement No. 1 to the Safety Evaluation Report for the application filed by Combustion Engineering, Inc. for a Final Design Approval for the Combustion Engineering Standard Safety Analysis Report (STN 50-470) has been prepared by the Office of Nuclear Reactor Regulation of the Nuclear Regulatory Commission. The purpose of this supplement is to update the Safety Evaluation by providing: (1) the evaluation of additional information submitted by the applicant since the Safety Evaluation Report was issued, (2) the evaluation of the matters the staff had under review when the Safety Evaluation Report was issued, and (3) the response to comments made by the Advisory Committee on Reactor Safeguards

  6. Final Design for an International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV: IER-148 CED-2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Heinrichs, Dave [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beller, Tim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Burch, Jennifer [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cummings, Rick [National Security Technologies, LLC. (NSTec), Mercury, NV (United States) Nevada National Security Site; Duluc, Matthieu [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Gadd, Milan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goda, Joetta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hickman, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McAvoy, Doug [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rathbone, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Randy [Savannah River Site (SRS), Aiken, SC (United States); Trompier, Francois [Inst. de Radioprotection et de Sûrete Nucleaire (ISRN), Fontenay-aux-Roses (France); Veinot, Ken [Y-12 National Security Complex, Oak Ridge, TN (United States); Ward, Dann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Will, Rashelle [National Security Technologies, LLC. (NSTec), Mercury, NV (United States) Nevada National Security Site; Wilson, Chris [Atomic Weapons Establishment (AWE), Berkshire (United Kingdom); Zieziulewicz, Thomas [Knolls Atomic Power Lab. (KAPL), Niskayuna, NY (United States)

    2014-09-30

    This document is the Final Design (CED-2) Report for IER-148, “International Inter-comparison Exercise for Nuclear Accident Dosimetry at the DAF Using Godiva-IV.” The report describes the structure of the exercise consisting of three irradiations; identifies the participating laboratories and their points of contact; provides the details of all dosimetry elements and their placement in proximity to Godiva-IV on support stands or phantoms ; and lists the counting and spectroscopy equipment each laboratory will utilize in the Mercury NAD Lab. The exercise is tentatively scheduled for one week in August 2015.

  7. Final focus nomenclature

    International Nuclear Information System (INIS)

    Erickson, R.

    1986-01-01

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number

  8. Final focus nomenclature

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  9. Preliminary design of a landfill and revetment on Bikini Island, Republic of the Marshall Islands. February 1987. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Orson P; Yenhsi, Chu [Coastal Engineering Research Center, Department of the Army, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS (United States)

    1987-07-01

    Topsoil on Bikini Island, which is located 2500 miles southwest of Hawaii at 110351 N, 1650251 E, was contaminated by radioactive fallout from nuclear weapons tests in the late 1940's and early 1950's. The uptake of this radioactive fallout, primarily cesium-137 in plants, has prevented resettlement of the island by the native population. One alternative solution proposed by the congressionally appointed Bikini Atoll Rehabilitation Committee involves removal of the contaminated topsoil and placement of the excavated material as a landfill on the 2,500-ft-wide reef flat adjacent to the eastern (windward) shore of the island. This paper explores that alternative by first developing an extremal wave climatology offshore of Bikini Island from 21 years 1959-1979) of typhoon data published by the Joint Typhoon Warning Center on Guam. Deepwater wave conditions just offshore of the reef are estimated and transformed to the point of breaking at the edge of the reef. Storm surge Is estimated based on these same parameters. Wave setup on the reef flat is estimated based on the simulated breaking conditions. Given an estimate of the elevated water level across the reef caused by storm surge and wave setup, depth limitations and fractional decay are estimated to define wave conditions at the toe of the proposed revetment. A rubble-mound revetment design stable in these conditions, armored by coral limestone quarried from the reef flat, is then formulated and corresponding material quantities estimated. (author)

  10. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado: Final report

    International Nuclear Information System (INIS)

    1990-02-01

    This radiologic characterization of tho two inactive uranium millsites at Rifle, Colorado, was conducted by Bendix Field Engineering Corporation (Bendix) for the US Department of Energy (DOE), Grand Junction Projects Office, in accord with a Statement of Work prepared by the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor, Jacobs Engineering Group, Inc. (Jacobs). The purpose of this project is to define the extent of radioactive contamination at the Rifle sites that exceeds US Environmental Protection Agency, (EPA) standards for UMTRA sites. The data presented in this report are required for characterization of the areas adjacent to the tailings piles and for the subsequent design of cleanup activities. An orientation visit to the study area was conducted on 31 July--1 August 1984, in conjunction with Jacobs, to determine the approximate extent of contaminated area surrounding tho piles. During that visit, survey control points were located and baselines were defined from which survey grids would later be established; drilling requirements were assessed; and radiologic and geochemical data were collected for use in planning the radiologic fieldwork. The information gained from this visit was used by Jacobs, with cooperation by Bendix, to determine the scope of work required for the radiologic characterization of the Rifle sites. Fieldwork at Rifle was conducted from 1 October through 16 November 1984

  11. HEAL G-C ICES, Phase II: detailed feasibility analysis and preliminary design. Final report, Stage 1

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    In this preliminary report for Phase II of Health Education Authority of Louisiana's (HEAL) ICES program, specific elements of the basic intitutional issues were readdressed, as requested by the U.S. Department of Energy. The draft environmental assessment was reassessed and updated. Thermal energy demand profiles for the major community sectors, i.e., the five institutions comprising the HEAL Complex, were refined on a month-by-month basis and resulted in establishing ICES plant systems design capacities of 121,500 pounds per hour demand and 418,175,000 pounds per year for steam; 10,000 tons demand and 38,885,000 ton-hours per year for cooling. From these values the concept of the plant was developed. The Phase I capital cost estimate was updated. Total capital cost is now indicated as $29,960,500. The Phase I operating cost estimate was updated, with that figure now $8,468,479. The Phase I financial analysis was updated, producing an estimated annual revenue level of $9,907,062.

  12. Preliminary design of a landfill and revetment on Bikini Island, Republic of the Marshall Islands. February 1987. Final report

    International Nuclear Information System (INIS)

    Smith, Orson P.; Chu Yenhsi

    1987-01-01

    Topsoil on Bikini Island, which is located 2500 miles southwest of Hawaii at 110351 N, 1650251 E, was contaminated by radioactive fallout from nuclear weapons tests in the late 1940's and early 1950's. The uptake of this radioactive fallout, primarily cesium-137 in plants, has prevented resettlement of the island by the native population. One alternative solution proposed by the congressionally appointed Bikini Atoll Rehabilitation Committee involves removal of the contaminated topsoil and placement of the excavated material as a landfill on the 2,500-ft-wide reef flat adjacent to the eastern (windward) shore of the island. This paper explores that alternative by first developing an extremal wave climatology offshore of Bikini Island from 21 years 1959-1979) of typhoon data published by the Joint Typhoon Warning Center on Guam. Deepwater wave conditions just offshore of the reef are estimated and transformed to the point of breaking at the edge of the reef. Storm surge Is estimated based on these same parameters. Wave setup on the reef flat is estimated based on the simulated breaking conditions. Given an estimate of the elevated water level across the reef caused by storm surge and wave setup, depth limitations and fractional decay are estimated to define wave conditions at the toe of the proposed revetment. A rubble-mound revetment design stable in these conditions, armored by coral limestone quarried from the reef flat, is then formulated and corresponding material quantities estimated. (author)

  13. Molecular design concept for multi-kilovolt x-ray amplification. Final report, December 13, 1990--December 14, 1993

    International Nuclear Information System (INIS)

    Rhodes, C.K.; McPherson, A.; Boyer, K.

    1994-01-01

    The goal of this program is the construction of an X-ray laser in the multi-kilovolt regime which can serve as a vital enabling technology in the broad and fundamental field of materials science. Experimental findings indicate that an entirely new technique for amplification at X-ray wavelengths is feasible. This method involves the combination of (a) a recently discovered mode of multiphoton coupling to molecules which efficiently yields core excited ions, (b) a new channeled mode of propagation for spatial organization, and (c) an ultrahigh brightness subpicosecond laser technology. The concept of molecular X-ray laser design, which involves matching the conditions of excitation to the molecular structure, enables the inner-shell excitation to be selectively achieved. Basically, the molecular approach enables the copious generation of a highly excited species to occur rapidly in an environment characteristic of dense cold matter, a situation exceptionally conducive to X-ray amplification. High energy efficiency and wavelength tunability also appear as intrinsic features of this method. Experimental data concerning the study of five cases [Xe(N), Xe(M), Xe(L), Kr(M), and Kr(L)], spanning-spectrally from ∼ 80 eV to ∼ 5 keV, have (1) established the important role of cluster formation, (2) verified the scaling of this phenomenon into the kilovolt region, (3) demonstrated the production of hollow atoms having multiple inner-shell vacancies, (4) provided evidence for the crucial influence of coherent electronic motions on the strength of the multiphoton coupling, (5) led to the conclusion that a regime of strong-coupling exists in which multi-electron ejection from an inner-shell can occur with high probability, (6) revealed the scaling in atomic number which potently favors heavy atoms, and (7) combined the multiphoton induced X-ray emission from clusters with channeled propagation

  14. Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report

    International Nuclear Information System (INIS)

    Boer, B.; Sen, R.S.; Pope, M.A.; Ougouag, A.M.

    2011-01-01

    The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO 2 kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 (micro)mm kernel diameter, 100 (micro)mm buffer, 35 (micro)mm IPyC, 35 (micro)mm SiC, 40 (micro)mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10 -2 failure probability. For a 'best-estimate' FGR fraction of 50

  15. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 1. Commercial plant conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The conceptual design of the 100-MW solar tower focus commercial power plant is described in detail. Sodium is pumped up to the top of a tall tower where the receiver is located. The sodium is heated in the receiver and then flows down the tower, through a pressure reducing device, and thence into a large, hot storage tank which is located at ground level and whose size is made to meet a specific thermal energy storage capacity requirement. From this tank, the sodium is pumped by a separate pump, through a system of sodium-to-water steam generators. The steam generator system consists of a separate superheater and reheater operating in parallel and an evaporator unit operating in series with the other two units. The sodium flowing from the evaporator unit is piped to a cold storage tank. From the cold storage tank, sodium is then pumped up to the tip of the tower to complete the cycle. The steam generated in the steam generators is fed to a conventional off-the-shelf, high-efficiency turbine. The steam loop operates in a conventional rankine cycle with the steam generators serving the same purpose as a conventional boiler and water being fed to the evaporator with conventional feedwater pumps. The pressure reducing device (a standard drag valve, for example) serves to mitigate the pressure caused by the static head of sodium and thus allows the large tanks to operate at ambient pressure conditions. (WHK)

  16. LCA-ship. Design tool for energy efficient ships. A Life Cycle Analysis Program for Ships. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jiven, Karl; Sjoebris, Anders [MariTerm AB, Goeteborg (Sweden); Nilsson, Maria [Lund Univ. (Sweden). Stiftelsen TEM; Ellis, Joanne; Traegaardh, Peter; Nordstroem, Malin [SSPA Sweden AB, Goeteborg (Sweden)

    2004-05-01

    In order to make it easier to include aspects during ship design that will improve environmental performance, general methods for life cycle calculations and a prototype tool for LCA calculations of ships and marine transportation have been developed. The base of the life cycle analyses is a comprehensive set of life cycle data that was collected for the materials and consumables used in ship construction and vessel operations. The computer tool developed makes it possible to quickly and simply specify (and calculate) the use of consumables over the vessel's life time cycle. Special effort has been made to allow the tool to be used for different types of vessels and sea transport. The main result from the project is the computer tool LCA ship, which incorporates collected and developed life cycle data for some of the most important materials and consumables used in ships and their operation. The computer application also contains a module for propulsion power calculations and a module for defining and optimising the energy system onboard the vessel. The tool itself is described in more detail in the Computer application manual. The input to the application should, as much as possible, be the kind of information that is normally found in a shipping company concerning vessel data and vessel movements. It all starts with defining the ship to be analysed and continues with defining how the ship is used over the lifetime. The tool contains compiled and processed background information about specific materials and processes (LCA data) connected to shipping operations. The LCA data is included in the tool in a processed form. LCA data for steel will for example include the environmental load from the steel production, the process to build the steel structure of the ship, the scrapping and the recycling phase. To be able to calculate the environmental load from the use of steel the total amount of steel used over the life cycle of the ship is also needed. The

  17. The influence of design and fuel parameters on the particle emissions from wood pellets combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiinikka, Henrik; Gebart, Rikard [Energy Technology Centre, Piteaa (Sweden)

    2005-02-01

    Combustion of solid biomass under fixed bed conditions is a common technique to generate heat and power in both small and large scale grate furnaces (domestic boilers, stoves, district heating plants). Unfortunately, combustion of biomass will generate particle emissions containing both large fly ash particles and fine particles that consist of fly ash and soot. The large fly ash particles have been produced from fusion of non-volatile ash-forming species in burning char particle. The inorganic fine particles have been produced from nucleation of volatilised ash elements (K, Na, S, Cl and Zn). If the combustion is incomplete, soot particles are also produced from secondary reaction of tar. The particles in the fine fraction grows by coagulation and coalescence to a particle diameter around 0.1 pm. Since the smallest particles are very hard to collect in ordinary cleaning devices they contribute to the ambient air pollution. Furthermore, fine airborne particles have been correlated to adverse effects on the human health. It is therefore essential to minimize particle formation from the combustion process and thereby reduce the emissions of particulates to the ambient air. The aim with this project is to study particle emissions from small scale combustion of wood pellets and to investigate the impact of different operating, construction and fuel parameters on the amount and characteristic of the combustion generated particles. To address these issues, experiments were carried out in a 10 kW updraft fired wood pellets reactor that has been custom designed for systematic investigations of particle emissions. In the flue gas stack, particle emissions were sampled on a filter. The particle mass and number size distributions were analysed by a low pressure cascade impactor and a SMPS (Scanning Electron Mobility Particle Sizer). The results showed that the temperature and the flow pattern in the combustion zone affect the particle emissions. Increasing combustion

  18. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  19. Ocean thermal energy conversion power system development-I. Preliminary design report. Volume 3. Appendixes D, E, and F. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-18

    The conceptual design of a 40 to 50 MW closed cycle ammonia OTEC commercial plant, the preliminary design of a 10 MW OTEC module analogous to the 50 MW module, and the preliminary design of heat exchanger test articles (evaporator and condenser) representative of the 50 MW heat exchangers for testing in OTEC-1 are presented. This volume includes the appendices: D) system equipment (hardware breakdown structure; 10-MW hardware listing; list of support and maintenance equipment, tools and spare parts; sacrificial anodes; M.A.N. brush; and Alclad 3004 data); E) heat exchanger supporting data (analyses/configuration, contract tooling, manufacturing plan, specification, and evaporator ammonia liquid distribution system); and F) rotating machinery (performance characteristics, radial inflow turbine; item descriptions; weight calculation-rotor; producibility analysis; long lead-time items; spares; support equipment; non recurring costs; performance characteristics-axial flow turbine; Worthington pump data; and American M.A.N. Corporation data). Also included is attachment 1 to the phase I final report which presents details of the system modeling; design, materials considerations, and systems analysis of the baseline module; system cost analysis; and supporting data. (WHK)

  20. Final disposal of spent nuclear fuel in Sweden. Some unresolved issues and challenges in the design and implementation of the forthcoming planning and EIA processes

    Energy Technology Data Exchange (ETDEWEB)

    Bjarnadottir, H.; Hilding-Rydevik, T. [Nordregio, Stockholm (Sweden)

    2001-06-01

    The aim of the study is to highlight some unresolved and challenging issues in the forthcoming approximately six year long Environmental Impact Assessment (EIA) and planning process of the long-term disposal of spent nuclear fuel in Sweden. Different international and Nordic experiences of the processes for final disposal as well as from other development of similar scope, where experiences assumed to be of importance for final disposal of nuclear waste, have been described. Furthermore, issues relating to 'good EIA practice' as well as certain aspects of planning theory have also been presented. The current Swedish situation for the planning and EIA process of the final disposal of spent nuclear fuel was also been summarized. These different 'knowledge areas' have been compared and measured against our perception of the expectations towards the forthcoming process, put forward by different Swedish actors in the field. The result is a presentation of a number of questions and identification issues that the authors consider need special attention in the design and conduction of the planning and EIA process. The study has been realized through a literature survey and followed by reading and analysis of the written material. The main focus of the literature search was on material describing planning processes, actor perspectives and EIA. Material and literature on the technical and scientific aspects of spent nuclear fuel disposal was however deliberately avoided. There is a wealth of international and Swedish literature concerning final disposal of spent nuclear fuel - concerning both technical issues and issues concerning for example public participation and risk perception. But material of a more systematic and comparative nature (relating to both empirical and theoretical issues, and to practical experiences) in relation to EIA processes and communicative planning for final disposal of spent nuclear fuel seems to be more sparsely represented

  1. Field Demonstration of Active Desiccant Modules Designed to Integrate with Standard Unitary Rooftop Package Equipment - Final Report: Phase 3

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J

    2004-03-15

    This report summarizes the investigation of two active desiccant module (ADM) pilot site installations initiated in 2001. Both pilot installations were retrofits at existing facilities served by conventional heating, ventilating, and air-conditioning (HVAC) systems that had encountered frequent humidity control, indoor air quality (IAQ), and other operational problems. Each installation involved combining a SEMCO, Inc., ADM (as described in Fischer and Sand 2002) with a standard packaged rooftop unit built by the Trane Company. A direct digital control (DDC) system integral to the ADM performed the dual function of controlling the ADM/rooftop combination and facilitating data collection, trending, and remote performance monitoring. The first installation involved providing preconditioned outdoor air to replace air exhausted from the large kitchen hood and bathrooms of a Hooters restaurant located in Rome, Georgia. This facility had previously added an additional rooftop unit in an attempt to achieve occupant comfort without success. The second involved conditioning the outdoor air delivered to each room of a wing of the Mountain Creek Inn at the Callaway Gardens resort. This hotel, designed in the ''motor lodge'' format with each room opening to the outdoors, is located in southwest Georgia. Controlling the space humidity always presented a serious challenge. Uncomfortable conditions and musty odors had caused many guests to request to move to other areas within the resort. This is the first field demonstration performed by Oak Ridge National Laboratory where significant energy savings, operating cost savings, and dramatically improved indoor environmental conditions can all be claimed as the results of a retrofit desiccant equipment field installation. The ADM/rooftop combination installed at the restaurant resulted in a reduction of about 34% in the electricity used by the building's air-conditioning system. This represents a reduction of

  2. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    International Nuclear Information System (INIS)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd 3 ) (2.1 million cubic meters [m 3 ]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m 3 ) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd 3 (420,000 m 3 ). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd 3 (2.58 million m 3 ). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations

  3. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  4. Worksite interventions for preventing physical deterioration among employees in job-groups with high physical work demands: Background, design and conceptual model of FINALE

    Directory of Open Access Journals (Sweden)

    Mortensen Ole S

    2010-03-01

    Full Text Available Abstract Background A mismatch between individual physical capacities and physical work demands enhance the risk for musculoskeletal disorders, poor work ability and sickness absence, termed physical deterioration. However, effective intervention strategies for preventing physical deterioration in job groups with high physical demands remains to be established. This paper describes the background, design and conceptual model of the FINALE programme, a framework for health promoting interventions at 4 Danish job groups (i.e. cleaners, health-care workers, construction workers and industrial workers characterized by high physical work demands, musculoskeletal disorders, poor work ability and sickness absence. Methods/Design A novel approach of the FINALE programme is that the interventions, i.e. 3 randomized controlled trials (RCT and 1 exploratory case-control study are tailored to the physical work demands, physical capacities and health profile of workers in each job-group. The RCT among cleaners, characterized by repetitive work tasks and musculoskeletal disorders, aims at making the cleaners less susceptible to musculoskeletal disorders by physical coordination training or cognitive behavioral theory based training (CBTr. Because health-care workers are reported to have high prevalence of overweight and heavy lifts, the aim of the RCT is long-term weight-loss by combined physical exercise training, CBTr and diet. Construction work, characterized by heavy lifting, pushing and pulling, the RCT aims at improving physical capacity and promoting musculoskeletal and cardiovascular health. At the industrial work-place characterized by repetitive work tasks, the intervention aims at reducing physical exertion and musculoskeletal disorders by combined physical exercise training, CBTr and participatory ergonomics. The overall aim of the FINALE programme is to improve the safety margin between individual resources (i.e. physical capacities, and

  5. Study of cultivation and growth rate kinetic for mixed cultures of local microalgae as third generation (G-3) bioethanol feedstock in thin layer photobioreactor

    Science.gov (United States)

    Prihastuti Yuarrina, Wahyu; Surya Pradana, Yano; Budiman, Arief; Majid, Akmal Irfan; Indarto; Agus Suyono, Eko

    2018-05-01

    The increasing use of fossil fuels causes the depletion in supply and contributes to climate change by GHG emissions into the atmosphere. Microalgae indicate as renewable and sustainable energy sources as they have a high potential for producing large amounts of biomass for third-generation biofuels (bioethanol and biodiesel) feedstock. However, there are several parameters which should be considered for microalgae cultivation, such as environmental conditions, medium composition and microalgae species. The aim of this research was to study cultivation of mixed microalgae cultures (Glagah consortium and Arthrospira maxima) in a thin layer photobioreactor. Farmpion medium, Bold’s Basal Medium (BBM) and Thoriq Eko Arief (TEA) medium were investigated as cultivation medium for bioethanol feedstock for 7 days. The results showed that the highest dry weight concentration of microalgae was in Farmpion medium (0.35 mg/ml) and the highest carbohydrate concentration of microalgae was in BBM (0.14 mg/ml). Thus, the optimum medium of microalgae cultivation for bioethanol feedstock was BBM because of the highest carbohydrate-dry weight ratio (0.88). In addition, mathematical approach by using Contois model was used to find out the growth rate of microalgae cultivation in each medium.

  6. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor.

    Science.gov (United States)

    Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun

    2017-11-01

    Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    Science.gov (United States)

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-12-01

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL -1 with the maximum biomass productivity of 460mgL -1 d -1 TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL -1 waste glycerol addition, the average biomass production of 16.7gm -2 d -1 , lipid content of 23.6%, and the removal of 2.4gm -2 d -1 NH 4 + -N, 2.7gm -2 d -1 total nitrogen, 3.0gm -2 d -1 total phosphorous, and 103.0gm -2 d -1 of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Growth and biochemical characteristics of an indigenous freshwater microalga, Scenedesmus obtusus, cultivated in an airlift photobioreactor: effect of reactor hydrodynamics, light intensity, and photoperiod.

    Science.gov (United States)

    Sarat Chandra, T; Aditi, S; Maneesh Kumar, M; Mukherji, S; Modak, J; Chauhan, V S; Sarada, R; Mudliar, S N

    2017-07-01

    The freshwater green algae, Scenedesmus obtusus, was cultivated in a 3.4 L airlift photobioreactor. The hydrodynamic parameters were estimated at different inlet gas flow rates (1, 2, 3, and 4 LPM) and their subsequent impact on the growth and biochemical characteristics of microalgae was studied. The biomass concentration and productivity increased with an increase in flow rates from 1 to 4 LPM. A maximum of 0.07 g L -1  day -1 productivity of biomass was attained at 3 LPM. An increase of total carbohydrate content from 19.6 to 26.4% was noticed with increment in the inlet flow rate of gas from 1 to 4 LPM. Major variations in total fatty acid content were not observed. The impact of light irradiance on growth and biochemical characteristics of S. obtusus was also evaluated. A maximum biomass productivity of 0.103 g L -1  day -1 was attained at an illumination of 150 μmol m -2  s -1 under continuous light. The major fatty acids reported were palmitic acid (C16:0), α-linolenic acid (C18:3), linoleic acid (C18:2), and oleic acid (C18:1). Biodiesel properties of the microalgae were estimated under various culture conditions. The light profile inside the airlift reactor was experimentally measured and the predictive modelling of light profile was also attempted.

  9. Remediation of the effect of adding cyanides on an algal/bacterial treatment of a mixture of organic pollutants in a continuous photobioreactor.

    Science.gov (United States)

    Essam, Tamer; ElRakaiby, Marwa; Agha, Azza

    2014-09-01

    The effect of inorganic pollutants on the treatment of organic pollutants using algal/bacterial microcosm was investigated in a continuous photobioreactor. The microcosm was composed of Chlorella vulgaris MM1 and Pseudomonas MT1 and was able to efficiently treat artificial waste-water contaminated with 6.4 salicylate and 2.2 mM phenol at a hydraulic retention time of 4 days. No negative effect was recorded when the waste-water was supplemented with 1.6 mM thiocyanate; however, the treatment efficiency severely deteriorated when the system was challenged with 0.74 mM cyanide. Addition of 2 g NaHCO3 l(-1) did not improve the efficiency of the treatment. Toxicity of the pollutants to the alga was cyanide > thiocyanate > phenol > salicylate. The high toxicity of the waste-water was eliminated either by a 25-fold dilution or by photocatalytic pre-treatment which allowed the subsequent efficient biological treatment.

  10. Performance, carotenoids yield and microbial population dynamics in a photobioreactor system treating acidic wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR).

    Science.gov (United States)

    Liu, Shuli; Zhang, Guangming; Zhang, Jie; Li, Xiangkun; Li, Jianzheng

    2016-01-01

    Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodopseudomonas palustris)-chemoheterotrophic bacteria to treat volatile fatty acid wastewater. Pollutants removal, biomass production and carotenoids yield in different phases were investigated in together with functional microbial population dynamics. The results indicated that properly decreasing HRT and increasing OLR improved the nutrient removal performance as well as the biomass and carotenoids productions. 85.7% COD, 89.9% TN and 91.8% TP removals were achieved under the optimal HRT of 48h and OLR of 2.51g/L/d. Meanwhile, the highest biomass production and carotenoids yield were 2719.3mg/L and 3.91mg/g-biomass respectively. In addition, HRT and OLR have obvious impacts on PNSB and total bacteria dynamics. Statistical analyses indicated that the COD removal exhibited a positive relationship with OLR, biomass and carotenoids production. PNSB/total bacteria ratio had a positive correlation with the carotenoids yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A conceptual design and structural stabilities of in-pit assembly tools for the completion of final sector assembly at tokamak hall

    International Nuclear Information System (INIS)

    Nam, K.O.; Park, H.K.; Kim, D.J.; Ahn, H.J.; Kim, K.K.; Im, K.; Shaw, R.

    2010-01-01

    The final assembly of main components of the International Thermonuclear Experimental Reactor (ITER) tokamak, Vacuum Vessel (VV) and Toroidal Field Coils (TFCs), is achieved by the sequential assembly of the nine sub-assembled 40 o sectors in tokamak pit. Each sub-assembled 40 o sector is composed of one VV 40 o sector, two TFCs, and in-between Vacuum Vessel Thermal Shield (VVTS) segments. Sub-assembly is carried out in the assembly building and then the sub-assembled sectors are transferred into tokamak pit, in sequence, to complete sector assembly. The role of in-pit assembly tool is to support and align the sub-assembled sectors in tokamak pit. It also plays the role of reference datum during assembly until the completion of main components assembly. Korea Domestic Agency (KO DA) has developed the conceptual design of most ITER purpose-built assembly tools under the collaboration with the ITER Organization. Among the conceptual designs carried out, this paper describes the function, the structure, the selected material and the design results of the in-pit assembly tools comprising central column, radial beams and their supports, TF inner supports and in-pit working floor. The results of structural analysis using ANSYS for the various loading cases are given as well. The resultant stresses and deflections turned out to fall within the allowable ranges.

  12. Innovative small and medium sized reactors: Design features, safety approaches and R and D trends. Final report of a technical meeting

    International Nuclear Information System (INIS)

    2005-05-01

    meeting and presents its final report, which summarizes the major features and identifies the technology and infrastructure development needs common to certain groups of the SMR concepts and designs considered at the meeting

  13. Worksite interventions for preventing physical deterioration among employees in job-groups with high physical work demands: background, design and conceptual model of FINALE.

    Science.gov (United States)

    Holtermann, Andreas; Jørgensen, Marie B; Gram, Bibi; Christensen, Jeanette R; Faber, Anne; Overgaard, Kristian; Ektor-Andersen, John; Mortensen, Ole S; Sjøgaard, Gisela; Søgaard, Karen

    2010-03-09

    A mismatch between individual physical capacities and physical work demands enhance the risk for musculoskeletal disorders, poor work ability and sickness absence, termed physical deterioration. However, effective intervention strategies for preventing physical deterioration in job groups with high physical demands remains to be established. This paper describes the background, design and conceptual model of the FINALE programme, a framework for health promoting interventions at 4 Danish job groups (i.e. cleaners, health-care workers, construction workers and industrial workers) characterized by high physical work demands, musculoskeletal disorders, poor work ability and sickness absence. A novel approach of the FINALE programme is that the interventions, i.e. 3 randomized controlled trials (RCT) and 1 exploratory case-control study are tailored to the physical work demands, physical capacities and health profile of workers in each job-group. The RCT among cleaners, characterized by repetitive work tasks and musculoskeletal disorders, aims at making the cleaners less susceptible to musculoskeletal disorders by physical coordination training or cognitive behavioral theory based training (CBTr). Because health-care workers are reported to have high prevalence of overweight and heavy lifts, the aim of the RCT is long-term weight-loss by combined physical exercise training, CBTr and diet. Construction work, characterized by heavy lifting, pushing and pulling, the RCT aims at improving physical capacity and promoting musculoskeletal and cardiovascular health. At the industrial work-place characterized by repetitive work tasks, the intervention aims at reducing physical exertion and musculoskeletal disorders by combined physical exercise training, CBTr and participatory ergonomics. The overall aim of the FINALE programme is to improve the safety margin between individual resources (i.e. physical capacities, and cognitive and behavioral skills) and physical work demands

  14. Evaluation of ITER design criteria applied to RAFM steels. Final report tasks - TW2-TTMS-005b, D2 and TW5-TTMS-005, D8

    International Nuclear Information System (INIS)

    Sunyk, R.; Aktaa, J.

    2006-08-01

    In the first line, the aim of the activity represented in this work is an application of two advanced material models to a simulation of the test blanket module (TBM) undergoing cyclic thermal and mechanical loadings. The first model is thereby the ABAQUS standard combined non-linear isotropic-kinematic hardening model whereas the second is a viscoplastic material model considering material damage and being newly implemented as an ABAQUS user material (UMAT). Material parameters for both models are adjusted using results of isothermal tensile and cyclic experiments performed at Forschungszentrum Karlsruhe GmbH (FZK) on EUROFER 97. As is generally known, EUROFER 97 is an important blanket material for the future fusion reactor and belongs to reduced activation ferriticmartensitic steels (RAFM), which soften under cyclic loading in contrast to austenitic steels exhibiting cyclic hardening. Moreover, the work is focused on the application of some existing design rules considered for austenitic steels and further evaluation of the rules by comparison of their predictions with results of cyclic simulations using the advanced material models mentioned above. Thereby, some important allowable stress limits are calculated under consideration of the cyclic softening of RAFM. Finally, new considerations concerning a mock-up experiment allowing to verify the advanced material models used in the present work and to assess a capability of the actual TBM design are represented here. (orig.) [de

  15. IER 203 CED-2 Report: LLNL Final Design for BERP Ball With a Composite Reflector of Thin Polyethylene Backed by Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, S. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-18

    This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings have resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017.

  16. C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Science.gov (United States)

    Hall, Edward; Isaacs, James; Henriksen, Steve; Zelkin, Natalie

    2011-01-01

    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers.

  17. Final focus test beam

    International Nuclear Information System (INIS)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  18. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations.

    Science.gov (United States)

    Ortiz Montoya, Erika Y; Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia; Converti, Attilio; de Carvalho, João C Monteiro

    2014-01-01

    To reduce CO2 emissions and simultaneously produce biomass rich in essential fatty acids, Chlorella vulgaris CCAP 211 was continuously grown in a tubular photobioreactor using air alone or air enriched with CO2 as the sole carbon source. While on one hand, nitrogen-limited conditions strongly affected biomass growth, conversely, they almost doubled its lipid fraction. Under these conditions using air enriched with 0, 2, 4, 8, and 16% (v/v) CO2 , the maximum biomass concentration was 1.4, 5.8, 6.6, 6.8, and 6.4 gDB L(-1) on a dry basis, the CO2 consumption rate 62, 380, 391, 433, and 430 mgCO2 L(-1) day(-1) , and the lipid productivity 3.7, 23.7, 24.8, 29.5, and 24.4 mg L(-1) day(-1) , respectively. C. vulgaris was able to grow effectively using CO2 -enriched air, but its chlorophyll a (3.0-3.5 g 100gDB (-1) ), chlorophyll b (2.6-3.0 g 100gDB (-1) ), and lipid contents (10.7-12.0 g 100gDB (-1) ) were not significantly influenced by the presence of CO2 in the air. Most of the fatty acids in C. vulgaris biomass were of the saturated series, mainly myristic, palmitic, and stearic acids, but a portion of no less than 45% consisted of unsaturated fatty acids, and about 80% of these were high added-value essential fatty acids belonging to the ω3 and ω6 series. These results highlight that C. vulgaris biomass could be of great importance for human health when used as food additive or for functional food production. © 2014 American Institute of Chemical Engineers.

  19. Development of a hybrid photo-bioreactor and nanoparticle adsorbent system for the removal of CO2, and selected organic and metal co-pollutants.

    Science.gov (United States)

    Rocha, Andrea A; Wilde, Christian; Hu, Zhenzhong; Nepotchatykh, Oleg; Nazarenko, Yevgen; Ariya, Parisa A

    2017-07-01

    Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide (CO 2 ) which contribute to climate change and atmospheric pollution. There is a need for green and sustainable solutions to remove air pollutants, as opposed to conventional techniques which can be expensive, consume additional energy and generate further waste. We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces, to remove CO 2, and undesired organic air pollutants using natural particles, while generating oxygen. This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO 2 with a conversion rate of approximately 4% CO 2 per hour, generating a steady supply of oxygen (6mmol/hr), while nanoparticles effectively remove several undesired organic by-products. We also showed algal waste of the bioreactor can be used for mercury remediation. We estimated the potential CO 2 emissions that could be captured from our new method for three industrial cases in which, coal, oil and natural gas were used. With a 30% carbon capture system, the reduction of CO 2 was estimated to decrease by about 420,000, 320,000 and 240,000 metric tonnes, respectively for a typical 500MW power plant. The cost analysis we conducted showed potential to scale-up, and the entire system is recyclable and sustainable. We further discuss the implications of usage of this complete system, or as individual units, that could provide a hybrid option to existing industrial setups. Copyright © 2016. Published by Elsevier B.V.

  20. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-07-01

    Full Text Available Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA. Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids, tocopherols and carotenoids for potential use in aquaculture feed industry.