WorldWideScience

Sample records for phosphorus limitation enhances

  1. Enhancement of lipid accumulation by oleaginous yeast through phosphorus limitation under high content of ammonia.

    Science.gov (United States)

    Huang, Xiangfeng; Luo, Huijuan; Mu, Tianshuai; Shen, Yi; Yuan, Ming; Liu, Jia

    2018-04-18

    Low concentrations of acetic acid were used as carbon source to cultivate Cryptococcus curvatus MUCL 29819 for lipid production under high content of ammonia. Phosphorus limitation combined with initial pH regulation (pH = 6) weakened inhibition of free ammonia and promoted lipid accumulation. In batch cultivation, the produced lipid content and yield was 30.3% and 0.92 g/L, higher than those under unlimited condition (18.3% and 0.64 g/L). The content of monounsaturated fatty acid also increased from 37.3% (unlimited condition) to 45.8% (phosphorus-limited condition). During sequencing batch cultivation (SBC), the lipid content reached up to 51.02% under phosphorus-limited condition while only 31.88% under unlimited condition, which can be explained by the higher conversion efficiency of the carbon source to lipid. The total energy consumption including lipid extraction, transesterification and purification was 7.47 and 8.33 GJ under phosphorus-limited and unlimited condition, respectively. Copyright © 2018. Published by Elsevier Ltd.

  2. Nutrient-enhanced growth of Cladophora prolifera in harrington sound, bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem

    Science.gov (United States)

    Lapointe, Brian E.; O'Connell, Julie

    1989-04-01

    The green alga Cladophora prolifera (Chlorophyta, Cladophorales) has formed widespread blooms in Bermuda's inshore waters during the past 20 years, but, to date, no conclusive evidence links these blooms to nutrient enrichment. This study assessed the nutrient-dependance of productivity of Cladophora collected from Harrington Sound, a confined P-limited marine system where Cladophora first became abundant. Both N- and P-enrichment decreased the doubling time of Cladophora, which ranged from 14 days (with N and P enrichment) to 100 days (without enrichment). Nutrient enrichment also enhanced the light-saturated photosynthetic capacity (i.e. P max) of Cladophora, which ranged from 0·50 mg C g dry wt -1 h -1 (without enrichment) to 1·0 mg C g dry wt -1 h -1 (with enrichment). Tissue C:N, C:P and N:P ratios of unenriched Cladophora were elevated—25, 942, and 49, respectively—levels that suggest limitation by both N and P but primary limitation by P. Pore-waters under Cladophora mats had reduced salinities, elevated concentrations of NH 4, and high N:P ratios (N:P of 85), suggesting that N-rich groundwater seepage enriches Cladophora mats. The alkaline phosphatase capacity of Cladophora was high compared to other macroalgae in Harrington Sound, and its capacity was enhanced by N-enrichment and suppressed by P-enrichment. Because the productivity of Cladophora is nutrient-limited in shallow waters of Harrington Sound, enhanced growth and increased biomass of Cladophora result from cumulative seepage of N-rich groundwaters coupled with efficient utilization and recycling of dissolved organo-phosphorus compounds.

  3. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system

    DEFF Research Database (Denmark)

    Danhorn, T.; Hentzer, Morten; Givskov, Michael Christian

    2004-01-01

    The plant pathogen Agrobacterium tumefaciens forms architecturally complex biofilms on inert surfaces. Adherence of A. tumefaciens C58 was significantly enhanced under phosphate limitation compared to phosphate-replete conditions, despite slower overall growth under low-phosphate conditions...

  4. Phosphorus: a limiting nutrient for humanity?

    Science.gov (United States)

    Elser, James J

    2012-12-01

    Phosphorus is a chemical element that is essential to life because of its role in numerous key molecules, including DNA and RNA; indeed, organisms require large amounts of P to grow rapidly. However, the supply of P from the environment is often limiting to production, including to crops. Thus, large amounts of P are mined annually to produce fertilizer that is applied in support of the 'Green Revolution.' However, much of this fertilizer eventually ends up in rivers, lakes and oceans where it causes costly eutrophication. Furthermore, given increasing human population, expanding meat consumption, and proliferating bioenergy pressures, concerns have recently been raised about the long-term geological, economic, and geopolitical viability of mined P for fertilizer production. Together, these issues highlight the non-sustainable nature of current human P use. To achieve P sustainability, farms need to become more efficient in how they use P while society as a whole must develop technologies and practices to recycle P from the food chain. Such large-scale changes will probably require a radical restructuring of the entire food system, highlighting the need for prompt but sustained action. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The effects of phosphorus limitation on carbon metabolism in diatoms.

    Science.gov (United States)

    Brembu, Tore; Mühlroth, Alice; Alipanah, Leila; Bones, Atle M

    2017-09-05

    Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-limited diatom cells.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Authors.

  6. Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes

    Directory of Open Access Journals (Sweden)

    A. Laurent

    2012-11-01

    Full Text Available The continental shelf of the northern Gulf of Mexico receives high dissolved inorganic nitrogen and phosphorus loads from the Mississippi and Atchafalaya rivers. The nutrient load results in high primary production in the river plumes and contributes to the development of hypoxia on the Louisiana shelf in summer. While phytoplankton growth is considered to be typically nitrogen-limited in marine waters, phosphorus limitation has been observed in this region during periods of peak river discharge in spring and early summer. Here we investigate the presence, spatio-temporal distribution and implications of phosphorus limitation in the plume region using a circulation model of the northern Gulf of Mexico coupled to a multi-nutrient ecosystem model. Results from a 7-yr simulation (2001–2007 compare well with several sources of observations and suggest that phosphorus limitation develops every year between the Mississippi and Atchafalaya deltas. Model simulations show that phosphorus limitation results in a delay and westward shift of a fraction of river-stimulated primary production. The consequence is a reduced flux of particulate organic matter to the sediment near the Mississippi delta, but slightly enhanced fluxes west of Atchafalaya Bay. Simulations with altered river phosphate concentrations (±50% show that significant variation in the spatial extent of phosphorus limitation (±40% in July results from changes in phosphate load.

  7. Enhanced Biological Phosphorus Removal : Metabolic Insights and Salinity Effects

    NARCIS (Netherlands)

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison

  8. Possible complication regarding phosphorus removal with a continuous flow biofilm system: Diffusion limitation

    DEFF Research Database (Denmark)

    Falkentoft, C.M.; Arnz, P.; Henze, Mogens

    2001-01-01

    Diffusion limitation of phosphate possibly constitutes a serious problem regarding the use of a biofilm reactor for enhanced biological phosphorus removal. A lab-scale reactor for simultaneous removal of phosphorus and nitrate was operated in a continuous alternating mode of operation. For a steady.......4 ± 0.4% (equal to 24 ± 4 mg P/g TS). A simplified computer model indicated the reason to be phosphate diffusion limitation and the model revealed a delicate balance between the obtainable phosphorus contents of the biomass and operating parameters, such as backwash interval, biofilm thickness after...... backwash, and phase lengths. The aspect of diffusion is considered of crucial importance when evaluating the performance of a biofilter for phosphate removal. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng 76: 77–85, 2001....

  9. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water.

    Science.gov (United States)

    Wang, Zheng; He, Shengbing; Huang, Jungchen; Zhou, Weili; Chen, Wanning

    2018-03-29

    Phosphorus (P) limitation has been demonstrated for micro-polluted surface water denitrification treatment in previous study. In this paper, a lab-scale comparative study of autotrophic denitrification (ADN) and heterotrophic denitrification (HDN) in phosphorus-limited surface water was investigated, aiming to find out the optimal nitrogen/phosphorus (N/P) ratio and the mechanism of the effect of P limitation on ADN and HDN. Furthermore, the optimal denitrification process was applied to the West Lake denitrification project, aiming to improve the water quality of the West Lake from worse than grade V to grade IV (GB3838-2006). The lab-scale study showed that the lack of P indeed inhibited HDN more greatly than ADN. The optimal N/P ratio for ADN and HDN was 25 and a 0.15 mg PO 4 3- -P L -1 of microbial available phosphorus (MAP) was observed. P additions could greatly enhance the resistance of ADN and HDN to hydraulic loading shock. Besides, The P addition could effectively stimulate the HDN performance via enriching the heterotrophic denitrifiers and the denitrifying phosphate-accumulating organisms (DNPAOs). Additionally, HDN was more effective and cost-effective than ADN for treating P-limited surface water. The study of the full-scale HDBF (heterotrophic denitrification biofilter) indicated that the denitrification performance was periodically impacted by P limitation, particularly at low water temperatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Enhanced Biological Phosphorus Removal: Metabolic Insights and Salinity Effects

    OpenAIRE

    Welles, L.

    2015-01-01

    Enhanced biological phosphorus removal (EBPR) is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by polyphosphate-accumulating organisms (PAO) and subsequent removal of PAO from the system through wastage of sludge. In comparison to physical and chemical phosphorus removal processes, the biological process has several advantages such as high removal efficiency, low cost, and no chemical sludge production, but disturbances an...

  11. The location and nature of accumulated phosphorus in seven sludges from activated sludge plants which exhibited enhanced phosphorus removal

    International Nuclear Information System (INIS)

    Buchan, L.

    1981-01-01

    Electron microscopy combined with the energy dispersive analysis of X-rays (EDX) has been used to examine the nature of the phosphorus accumulated in sludges from seven activated sludge plants exhibiting enhanced phosphorus removal. Large phosphorus accumulations were located in identical structures in the sludges examined. The phosphorus was located in large electron-dense bodies, within large bacterial cells which were characteristically grouped in clusters. The calcium:phosphorus ratio of these electron-dense bodies precluded them from being any form of calcium phosphate precipitate. Quantitative analysis indicated that the electron-dense bodies contained in excess of 30% phosphorus. The results obtained are supportive of a biological mechanism of enhanced phosphorus uptake in activated sludge

  12. Pervasive phosphorus limitation of tree species but not communities in tropical forests

    Science.gov (United States)

    Turner, Benjamin L.; Brenes-Arguedas, Tania; Condit, Richard

    2018-03-01

    Phosphorus availability is widely assumed to limit primary productivity in tropical forests, but support for this paradigm is equivocal. Although biogeochemical theory predicts that phosphorus limitation should be prevalent on old, strongly weathered soils, experimental manipulations have failed to detect a consistent response to phosphorus addition in species-rich lowland tropical forests. Here we show, by quantifying the growth of 541 tropical tree species across a steep natural phosphorus gradient in Panama, that phosphorus limitation is widespread at the level of individual species and strengthens markedly below a threshold of two parts per million exchangeable soil phosphate. However, this pervasive species-specific phosphorus limitation does not translate into a community-wide response, because some species grow rapidly on infertile soils despite extremely low phosphorus availability. These results redefine our understanding of nutrient limitation in diverse plant communities and have important implications for attempts to predict the response of tropical forests to environmental change.

  13. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. How phosphorus limitation can control climatic gas sources and sinks

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-04-01

    Since the 1950's, anthropogenic activities severely increased river nutrient loads in European coastal areas. Subsequent implementation of nutrient reduction policies have considerably reduced phosphorus (P) loads from mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorous (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on the importance of phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 70% due to DOP uptake in limiting DIP conditions. Consequently, simulated DMS emissions double while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake. At the end of the simulated period (late 2000's), the net direction of air-sea CO2 annual flux, changed from a source to a sink for atmospheric CO2 in response to use of DOP and increase of primary production.

  15. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    Science.gov (United States)

    Gerecht, Andrea C.; Šupraha, Luka; Langer, Gerald; Henderiks, Jorijntje

    2018-02-01

    Calcifying haptophytes (coccolithophores) sequester carbon in the form of organic and inorganic cellular components (coccoliths). We examined the effect of phosphorus (P) limitation and heat stress on particulate organic and inorganic carbon (calcite) production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous) induce different physiologies. This affects the ratio of particulate inorganic (PIC) to organic carbon (POC) and complicates general predictions on the effect of P limitation on the PIC  /  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  16. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    A. C. Gerecht

    2018-02-01

    Full Text Available Calcifying haptophytes (coccolithophores sequester carbon in the form of organic and inorganic cellular components (coccoliths. We examined the effect of phosphorus (P limitation and heat stress on particulate organic and inorganic carbon (calcite production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous induce different physiologies. This affects the ratio of particulate inorganic (PIC to organic carbon (POC and complicates general predictions on the effect of P limitation on the PIC  ∕  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  17. Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency.

    Science.gov (United States)

    Adenan, Nurul Salma; Yusoff, Fatimah Md; Medipally, Srikanth Reddy; Shariff, M

    2016-07-01

    Microalgae are important food sources for aquaculture animals. Among the different factors which influence the biochemical composition of microalgae, nitrogen and phosphorus are two of the most important nutrient sources for growth and development. The present study aimed to assess the effects of nitrogen and phosphorus deficiency on lipid production of Chlorella sp. and Chaetoceros calcitrans. Early stationary phase culture of these species were exposed to different stress levels of nitrogen and phosphorus (25%, 50% and 75% of the full NO(3)-N and PO(4)-P concentration in the Conway media), and solvent extraction and gas-liquid chromatography methods were performed for analysis of lipid and fatty acid composition. The results revealed that lipid production in these two species significantly increased (Pnitrogen and phosphorus decreased. The fatty acid proportion remained unaffected under nitrogen deficiency, while phosphorus limitation resulted in a decrease of saturated fatty acids and promoted a higher content of omega-3 fatty acids in these species. The protein and carbohydrate levels were also altered under limited nutrients. Therefore, these conditions could be used for enhanced lipid production in microalgae for aquaculture and other industrial applications.

  18. Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean

    Science.gov (United States)

    Thingstad, T. F.; Krom, M. D.; Mantoura, R. F. C.; Flaten, G. A. F.; Groom, S.; Herut, B.; Kress, N.; Law, C. S.; Pasternak, A.; Pitta, P.; Psarra, S.; Rassoulzadegan, F.; Tanaka, T.; Tselepides, A.; Wassmann, P.; Woodward, E. M. S.; Riser, C. Wexels; Zodiatis, G.; Zohary, T.

    2005-08-01

    Phosphate addition to surface waters of the ultraoligotrophic, phosphorus-starved eastern Mediterranean in a Lagrangian experiment caused unexpected ecosystem responses. The system exhibited a decline in chlorophyll and an increase in bacterial production and copepod egg abundance. Although nitrogen and phosphorus colimitation hindered phytoplankton growth, phosphorous may have been transferred through the microbial food web to copepods via two, not mutually exclusive, pathways: (i) bypass of the phytoplankton compartment by phosphorus uptake in heterotrophic bacteria and (ii) tunnelling, whereby phosphate luxury consumption rapidly shifts the stoichiometric composition of copepod prey. Copepods may thus be coupled to lower trophic levels through interactions not usually considered.

  19. Species-rich grassland can persist under nitrogen-rich but phosphorus-limited conditions

    NARCIS (Netherlands)

    Dobben, van Han F.; Wamelink, Wieger; Slim, Pieter A.; Kamiński, Jan; Piórkowski, Hubert

    2017-01-01

    Aim: Deposition of nitrogen is assumed to cause loss of botanical diversity, probably through increased production and exclusion of less competitive species. However, if production is (co-)limited by phosphorus, acceleration of the phosphorus cycle may be responsible for the diversity loss and,

  20. Dynamic Responses of Phosphorus Metabolism to Acute and Chronic Dietary Phosphorus-Limitation in Daphnia

    Directory of Open Access Journals (Sweden)

    Nicole D. Wagner

    2017-06-01

    Full Text Available Food quality is highly dynamic within lake ecosystems and varies spatially and temporally over the growing season. Consumers may need to continuously adjust their metabolism in response to this variation in dietary nutrient content. However, the rates of metabolic responses to changes in food nutrient content has received little direct study. Here, we examine responses in two metabolic phosphorus (P pools, ribonucleic acids (RNA and adenosine triphosphate (ATP, along with body mass and body P content in Daphnia magna exposed to chronic and acute dietary P-limitation. First, we examined food quality effects on animals consuming different food carbon (C:P quality over a 14 day period. Then, we raised daphnids on one food quality for 4 days, switched them to contrasting dietary treatments, and measured changes in their metabolic responses at shorter time-scales (over 48 h. Animal P, RNA, and ATP content all changed through ontogeny with adults containing relatively less of these pools with increasing body mass. Irrespective of age, Daphnia consuming high C:P diets had lower body %P, %RNA, %ATP, and mass compared to animals eating low C:P diets. Diet switching experiments revealed diet dependent changes in body %P, %RNA, %ATP, and animal mass within 48 h. We found that Daphnia switched from low to high C:P diets had some metabolic buffering capacity with decreases in body %P occurring after 24 h but mass remaining similar to initial diet conditions for 36 h after the diet switch. Switching Daphnia from low to high C:P diets caused a decrease in the RNA:P ratio after 48 h. Daphnia switched from high to low C:P diets increased their body P, RNA, and ATP content within 8–24 h. This switch from high to low C:P diets also led to increased RNA:P ratios in animal bodies. Overall, our study revealed that consumer P metabolism reflects both current and past diet due to more dynamic and rapid changes in P biochemistry than total body mass. This metabolic

  1. Effect of phosphorus limiting on phytase activity, proton efflux and ...

    African Journals Online (AJOL)

    This work intended to measure the nodulated-roots oxygen consumption, proton efflux and phytase activity in 2 lines of common bean (Phaseolus vulgaris) (115, 147) at 2 levels of P supply. Rooted seedlings were inoculated with Rhizobium tropici CIAT 899 in hydroaeroponic cultivation under glasshouse. Phosphorus was ...

  2. Changes in phosphorus magnetic resonance spectra during the cell cycle of phosphorus limited phased culture of Candida utilis

    International Nuclear Information System (INIS)

    Dawson, P.S.S.; MacDonald, J.C.

    1987-01-01

    Cell extracts, serially obtained from Candida utilis grown in continuous (synchrony) culture under phosphate limitation during an 8-h cycle and examined by NMR spectroscopy, revealed changes in polyphosphate content during the cycle period: other phosphorus containing components showed relatively little change. Initially zero, the polyphosphate content increased rapidly to a maximum after 30 min that coincided with exhaustion of phosphate from the culture, and then decreased slowly back to zero at the end of the cycle. The results suggest that polyphosphate, usually considered to function as a reserve material, actively participates during the cell cycle. 12 refs.; 1 figure; 1 table

  3. Simulated reduction of hypoxia in the northern Gulf of Mexico due to phosphorus limitation

    Directory of Open Access Journals (Sweden)

    Arnaud Laurent

    2014-02-01

    Full Text Available Abstract Excess nutrient loading from the Mississippi-Atchafalaya River system promotes the seasonal development of hypoxic bottom waters on the Louisiana shelf with detrimental effects on the benthic fauna. In the Mississippi River plume, primary production becomes phosphorus-limited between May and July at the peak of nutrient loading, displacing a portion of primary production and depositional fluxes westward. Here we quantitatively assessed, for the first time, the effect of phosphorus limitation on hypoxia development in the Mississippi-Atchafalaya River plume using a realistic physical-biogeochemical model. Results indicate that, despite a redistribution of respiration processes toward the western shelf, phosphorus limitation does not promote a westward expansion or relocation of hypoxia, as previously speculated. Rather, the onset of hypoxia was delayed and the size of the hypoxic zone reduced. Sensitivity experiments showed that this feature is robust in our model. Results from simulations with altered river input indicate that, despite phosphorus limitation, the co-reduction of nitrogen and phosphorus loads remains the best strategy to reduce hypoxia. Yet, even though nutrient load reductions have an immediate effect on hypoxia in this analysis, a 50% reduction in both nutrients will not be sufficient to meet the Gulf Hypoxia action plan goal of a 5·103 km2 hypoxic area.

  4. Porous silicon damage enhanced phosphorus and aluminium gettering of p-type Czochralski silicon

    International Nuclear Information System (INIS)

    Hassen, M.; Ben Jaballah, A.; Hajji, M.; Rahmouni, H.; Selmi, A.; Ezzaouia, H.

    2005-01-01

    In this work, porous silicon damage (PSD) is presented as a simple sequence for efficient external purification techniques. The method consists of using thin nanoporous p-type silicon on both sides of the silicon substrates with randomly hemispherical voids. Then, two main sample types are processed. In the first type, thin aluminium layers (≥1 μm) are thermally evaporated followed by photo-thermal annealing treatments in N 2 atmosphere at one of several temperatures ranging between 600 and 800 deg. C. In the second type, phosphorus is continually diffused in N 2 /O 2 ambient in a solid phase from POCl 3 solution during heating at one of several temperatures ranging between 750 and 1000 deg. C for 1 h. Hall Effect and Van Der Pauw methods prove the existence of an optimum temperature in the case of phosphorus gettering at 900 deg. C yielding a Hall mobility of about 982 cm 2 V -1 s -1 . However, in the case of aluminium gettering, there is no gettering limit in the as mentioned temperature range. Metal/Si Schottky diodes are elaborated to clarify these improvements. In this study, we demonstrate that enhanced metal solubility model cannot explain the gettering effect. The solid solubility of aluminium is higher than that of P atoms in silicon; however, the device yield confirms the effectiveness of phosphorus as compared to aluminium

  5. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Science.gov (United States)

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  6. The Internal Recycle Reactor Enhances Porous Calcium Silicate Hydrates to Recover Phosphorus from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2017-01-01

    Full Text Available In this experiment, the porous calcium silicate hydrates (P-CSHs were prepared via a hydrothermal method and then modified by polyethylene glycol (PEG. The modified P-CSHs combined with an internal recycle reactor could successfully recover the phosphorus from electroplating wastewater. The modified P-CSHs were characterized by X-ray diffraction (XRD, N2 adsorption-desorption isotherms, and Fourier transform infrared spectroscopy (FT-IR. After compared with different samples, the modified P-CSHs-PEG2000 sample had larger specific surface area of 87.48 m2/g and higher pore volume of 0.33 cm3/g, indicating a high capacity for phosphorus recovery. In the process of phosphorus recovery, the pH value of solution was increased to 9.5, which would enhance the recovery efficiency of phosphorus. The dissolution rate of Ca2+ from P-CSH-PEG2000 was fast, which was favorable for phosphorus precipitation and phosphorus recovery. The effects of initial concentration of phosphorus, P-CSHs-PEG2000 dosage, and stirring speed on phosphorus recovery were analyzed, so the optimal operation conditions for phosphorus recovery were obtained. The deposition was analyzed by XRD, N2 adsorption-desorption, and SEM techniques; it was indicated that the pore volume and surface area of the P-CSHs-PEG2000 were significantly reduced, and the deposition on the surface of P-CSHs-PEG2000 was hydroxyapatite.

  7. Enhanced stability of black phosphorus field-effect transistors with SiO₂ passivation.

    Science.gov (United States)

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-30

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability.

  8. Modelling the influence of silicon and phosphorus limitation on the ...

    African Journals Online (AJOL)

    In the model, toxin production was related to C cell–1 and triggered by nutrient stress, defined by low values of the carbon-based cell quota of the limiting nutrient. The study therefore suggests that simple models, based on easily measured quantities, are capable of simulating Pseudo-nitzschia growth and toxin production.

  9. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  10. Extracellular Secretion of Phytase from Transgenic Wheat Roots Allows Utilization of Phytate for Enhanced Phosphorus Uptake.

    Science.gov (United States)

    Mohsin, Samreen; Maqbool, Asma; Ashraf, Mehwish; Malik, Kauser Abdulla

    2017-08-01

    A significant portion of organic phosphorus comprises of phytates which are not available to wheat for uptake. Hence for enabling wheat to utilize organic phosphorus in form of phytate, transgenic wheat expressing phytase from Aspergillus japonicus under barley root-specific promoter was developed. Transgenic events were initially screened via selection media containing BASTA, followed by PCR and BASTA leaf paint assay after hardening. Out of 138 successfully regenerated T o events, only 12 had complete constructs and thus further analyzed. Positive T1 transgenic plants, grown in sand, exhibited 0.08-1.77, 0.02-0.67 and 0.44-2.14 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, after 4 weeks of phosphorus stress. Based on these results, T2 generation of four best transgenic events was further analyzed which showed up to 1.32, 56.89, and 15.40 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, while in case of real-time PCR, maximum fold increase of 19.8 in gene expression was observed. Transgenic lines showed 0.01-1.18 fold increase in phosphorus efficiency along with higher phosphorus content when supplied phytate or inorganic phosphorus than control plants. Thus, this transgenic wheat may aid in reducing fertilizer utilization and enhancing wheat yield.

  11. Application of contact stabilization activated sludge for enhancing biological phosphorus removal (EBPR in domestic wastewater

    Directory of Open Access Journals (Sweden)

    Ehab M. Rashed

    2014-04-01

    Full Text Available The experiment has been performed in order to investigate the effect of using contact stabilization activated sludge as an application of enhancing biological phosphorous removal (EBPR by using contact tank as a phosphorus uptake zone and using thickening tank as a phosphorus release zone. The study involved the construction of a pilot plant which was setup in Quhafa waste water treatment plant (WWTP that included contact, final sedimentation, stabilization and thickening tanks, respectively with two returns sludge in this system one of them to contact tank and another to stabilization tank. Then observation of the uptake and release of total phosphorus by achievement through two batch test using sludge samples from thickener and final sedimentations. Results showed the removal efficiencies of COD, BOD and TP for this pilot plant with the range of 94%, 85.44% and 80.54%, respectively. On the other hand the results of batch tests showed that the reason of high ability of phosphorus removal for this pilot plant related to the high performance of microorganisms for phosphorus accumulating. Finally the mechanism of this pilot plant depends on the removal of the phosphorus from the domestic waste water as a concentrated TP solution from the supernatant above the thickening zone not through waste sludge like traditional systems.

  12. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment.

    Science.gov (United States)

    Heal, K V; Dobbie, K E; Bozika, E; McHaffie, H; Simpson, A E; Smith, K A

    2005-01-01

    No single end-use has yet been identified that is capable of consuming the projected production of ochre (mainly iron (III) oxides) from mine drainage treatment. However, the high sorption capacity of ochre for phosphorus (up to 26 mg kg(-1)) means that it could be used in constructed wetlands to enhance phosphorus removal. Laboratory batch experiments showed that coarse-grained ochre removes 90% of all phosphorus forms from sewage effluent after 15 minutes of shaking. From a larger-scale experiment, it is estimated that constructed wetlands with an ochre substrate should remove phosphorus from sewage effluent for up to 200-300 years. The suitability of ochre for phosphorus removal is being investigated at the field scale in a wastewater constructed wetland (175 m2 area) in Berwickshire, UK. The hydraulic and treatment performance of the wetland were monitored for 15 months prior to installation at the inlet in November 2003 of a tank containing approximately 1200 kg ochre. Results so far show that improved hydraulic design is required for ochre to increase the mean phosphorus removal efficiency of the system (27 +/- 28%), but potentially toxic metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, Zn) have not been released from the ochre into the wetland outflow.

  13. Metabolic factors affecting enhanced phosphorus uptake by activated sludge.

    Science.gov (United States)

    Boughton, W H; Gottfried, R J; Sinclair, N A; Yall, I

    1971-10-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and (32)P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl(2), iodoacetic acid, p-chloromercuribenzoic acid, NaN(3), and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10(-3)m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).

  14. Modeling the impact of iron and phosphorus limitations on nitrogen fixation in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    R. R. Hood

    2007-07-01

    Full Text Available The overarching goal of this study is to simulate subsurface N* (sensu, Gruber and Sarmiento, 1997; GS97 anomaly patterns in the North Atlantic Ocean and determine the basin wide rates of N2-fixation that are required to do so. We present results from a new Atlantic implementation of a coupled physical-biogeochemical model that includes an explicit, dynamic representation of N2-fixation with light, nitrogen, phosphorus and iron limitations, and variable stoichiometric ratios. The model is able to reproduce nitrogen, phosphorus and iron concentration variability to first order. The latter is achieved by incorporating iron deposition directly into the model's detrital iron compartment which allows the model to reproduce sharp near surface gradients in dissolved iron concentration off the west coast of Africa and deep dissolved iron concentrations that have been observed in recent observational studies. The model can reproduce the large scale N* anomaly patterns but requires relatively high rates of surface nitrogen fixation to do so (1.8×1012 moles N yr−1 from 10° N–30° N, 3.4×1012 moles N yr−1 from 25° S–65° N. In the model the surface nitrogen fixation rate patterns are not co-located with subsurface gradients in N*. Rather, the fixed nitrogen is advected away from its source prior to generating a subsurface N* anomaly. Changes in the phosphorus remineralization rate (relative to nitrogen linearly determine the surface nitrogen fixation rate because they change the degree of phosphorus limitation, which is the dominant limitation in the Atlantic in the model. Phosphorus remineralization rate must be increased by about a factor of 2 (relative to nitrogen in order to generate subsurface N* anomalies that are comparable to the observations. We conclude that N2-fixation rate estimates for the Atlantic (and globally may need to be revised upward, which

  15. Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution

    Directory of Open Access Journals (Sweden)

    Bus Agnieszka

    2017-09-01

    Full Text Available Assessment of sorption properties and kinetic reaction of phosphorus reactive material to limit diffuse pollution. Polonite® is an effective reactive material (manufactured from opoka rock for removing phosphorus from aqueous solutions. In conducted experiments, Polonite® of grain size of 2–5 mm was used as a potential reactive material which can be used as a filter fulfillment to reduce phosphorus diffuse pollution from agriculture areas. Kinetic and equilibrium studies (performed as a batch experiment were carried out as a function of time to evaluate the sorption properties of the material. The obtained results show that Polonite® effectively removes such contamination. All tested concentrations (0.998, 5.213, 10.965 mg P-PO4·L−1 are characterized by a better fit to pseudo-second kinetic order. The Langmuir isotherm the best reflects the mechanism of adsorption process in case of Polonite® and based on the isotherm, calculated maximum adsorption capacity equals 96.58 mg P-PO4·g−1.

  16. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil.

    Science.gov (United States)

    Wu, Xiaohong; Ge, Tida; Yan, Wende; Zhou, Juan; Wei, Xiaomeng; Chen, Liang; Chen, Xiangbi; Nannipieri, Paolo; Wu, Jinshui

    2017-12-01

    In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-01-01

    Graphical abstract: - Highlights: • P-doped g-C 3 N 4 has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C 3 N 4 . • A postannealing treatment further enhanced the activity of P-doped g-C 3 N 4 . • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C 3 N 4 , which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry

  18. Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal

    NARCIS (Netherlands)

    Kortstee, GJJ; Appeldoorn, KJ; Bonting, CFC; van Niel, EWJ; van Veen, HW

    Most of the genes encoding the enzymes involved in polyP synthesis and degradation and in phosphate transport have been studied in various Gram-negative bacteria. Progress has also been made in studying the biochemical mechanisms underlying the process of enhanced biological phosphorus removal

  19. Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal

    NARCIS (Netherlands)

    Kortstee, G.J.J.; Appeldoorn, K.J.; Bonting, C.F.C.; Niel, van E.W.J.; Veen, van H.W.

    2000-01-01

    Most of the genes encoding the enzymes involved in polyP synthesis and degradation and in phosphate transport have been studied in various Gram-negative bacteria. Progress has also been made in studying the biochemical mechanisms underlying the process of enhanced biological phosphorus removal

  20. How phosphorus limitation can control climate-active gas sources and sinks

    Science.gov (United States)

    Gypens, Nathalie; Borges, Alberto V.; Ghyoot, Caroline

    2017-06-01

    Since the 1950's, anthropogenic activities have increased nutrient river loads to European coastal areas. Subsequent implementation of nutrient reduction policies have led to considerably reduction of phosphorus (P) loads from the mid-1980's, while nitrogen (N) loads were maintained, inducing a P limitation of phytoplankton growth in many eutrophied coastal areas such as the Southern Bight of the North Sea (SBNS). When dissolved inorganic phosphorus (DIP) is limiting, most phytoplankton organisms are able to indirectly acquire P from dissolved organic P (DOP). We investigate the impact of DOP use on phytoplankton production and atmospheric fluxes of CO2 and dimethylsulfide (DMS) in the SBNS from 1951 to 2007 using an extended version of the R-MIRO-BIOGAS model. This model includes a description of the ability of phytoplankton organisms to use DOP as a source of P. Results show that primary production can increase up to 30% due to DOP uptake under limiting DIP conditions. Consequently, simulated DMS emissions also increase proportionally while CO2 emissions to the atmosphere decrease, relative to the reference simulation without DOP uptake.

  1. Optimization of enhanced biological phosphorus removal after periods of low loading.

    Science.gov (United States)

    Miyake, Haruo; Morgenroth, Eberhard

    2005-01-01

    Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.

  2. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    Science.gov (United States)

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  3. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    International Nuclear Information System (INIS)

    Li, Weibing; Yue, Jiguang; Hua, Fangxia; Feng, Chang; Bu, Yuyu; Chen, Zhuoyuan

    2015-01-01

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co 2+ catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l −1 in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained

  4. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weibing, E-mail: lwbing@qust.edu.cn [School of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042 (China); Yue, Jiguang; Hua, Fangxia; Feng, Chang [School of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042 (China); Bu, Yuyu; Chen, Zhuoyuan [Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071 (China)

    2015-10-15

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co{sup 2+} catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l{sup −1} in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained.

  5. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Bo, E-mail: willycb@163.com; Yan, Juntao; Wang, Chunlei; Ren, Zhandong; Zhu, Yuchan

    2017-01-01

    Highlights: • The phosphorus doped g-C{sub 3}N{sub 4} photocatalysts are synthesized by a co-pyrolysis procedure. • The crystal phase, morphology, and optical property of P doped g-C{sub 3}N{sub 4} are characterized. • The P doped g-C{sub 3}N{sub 4} photocatalysts show the improved photocatalytic activity. • The possible mechanism for enhanced photocatalytic activity is proposed. - Abstract: Phosphorus doped graphitic carbon nitride (g-C{sub 3}N{sub 4}) was easily synthesized using ammonium hexafluorophosphate (NH{sub 4}PF{sub 6}) as phosphorus source, and ammonium thiocyanate (NH{sub 4}SCN) as g-C{sub 3}N{sub 4} precursor, through a direct thermal co-polycondensation procedure. The obtained phosphorus doped g-C{sub 3}N{sub 4} was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectra (FTIR), UV–vis diffuse reflectance absorption spectra (UV-DRS), photoelectrochemical measurement and photoluminescence spectra (PL). The photocatalytic activities of phosphorus doped g-C{sub 3}N{sub 4} samples were evaluated by degradation of Rhodamine B (RhB) solution under visible light irradiation. The results showed that the phosphorus doped g-C{sub 3}N{sub 4} had a superior photocatalytic activity than that of pristine g-C{sub 3}N{sub 4}, attributing to the phosphorus atoms substituting carbon atoms of g-C{sub 3}N{sub 4} frameworks to result in light harvesting enhancement and delocalized π-conjugated system of this copolymer, beneficial for the increase of photocatalytic performance. The photoelectrochemical measurements also verified that the charge carrier separation efficiency was promoted by phosphorus doping g-C{sub 3}N{sub 4}. Moreover, the tests of radical scavengers demonstrated that the holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) were the main active species for the

  6. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-05-01

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  7. Quantifying the Limitation to World Cereal Production Due To Soil Phosphorus Status

    Science.gov (United States)

    Kvakić, Marko; Pellerin, Sylvain; Ciais, Philippe; Achat, David L.; Augusto, Laurent; Denoroy, Pascal; Gerber, James S.; Goll, Daniel; Mollier, Alain; Mueller, Nathaniel D.; Wang, Xuhui; Ringeval, Bruno

    2018-01-01

    Phosphorus (P) is an essential element for plant growth. Low P availability in soils is likely to limit crop yields in many parts of the world, but this effect has never been quantified at the global scale by process-based models. Here we attempt to estimate P limitation in three major cereals worldwide for the year 2000 by combining information on soil P distribution in croplands and a generic crop model, while accounting for the nature of soil-plant P transport. As a global average, the diffusion-limited soil P supply meets the crop's P demand corresponding to the climatic yield potential, due to the legacy soil P in highly fertilized areas. However, when focusing on the spatial distribution of P supply versus demand, we found strong limitation in regions like North and South America, Africa, and Eastern Europe. Averaged over grid cells where P supply is lower than demand, the global yield gap due to soil P is estimated at 22, 55, and 26% in winter wheat, maize, and rice. Assuming that a fraction (20%) of the annual P applied in fertilizers is directly available to the plant, the global P yield gap lowers by only 5-10%, underlying the importance of the existing soil P supply in sustaining crop yields. The study offers a base for exploring P limitation in crops worldwide but with certain limitations remaining. These could be better accounted for by describing the agricultural P cycle with a fully coupled and mechanistic soil-crop model.

  8. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal

    DEFF Research Database (Denmark)

    Kristiansen, Rikke; Nguyen, Hien Thi Thu; Saunders, Aaron Marc

    2013-01-01

    Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to ‘Candidatus Accumuliba......Members of the genus Tetrasphaera are considered to be putative polyphosphate accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) from wastewater. Although abundant in Danish full-scale wastewater EBPR plants, how similar their ecophysiology is to ‘Candidatus....... japonica and T. elongata. Based on the models, we propose that under anaerobic conditions the Tetrasphaerarelated PAOs take up glucose and ferment this to succinate and other components. They also synthesize glycogen as a storage polymer, using energy generated from the degradation of stored polyphosphate...... by ‘Candidatus Accumulibacter phosphatis’, and reveals Tetrasphaera populations to be unusual and physiologically versatile PAOs carrying out denitrification, fermentation and polyphosphate accumulation....

  9. Phosphorus deficiency enhances molybdenum uptake by tomato plants

    International Nuclear Information System (INIS)

    Heuwinkel, H.; Kirkby, E.A.; Le Bot, J.; Marschner, H.

    1992-01-01

    Water culture experiments are described which provide conclusive evidence that Mo uptake by tomato plants is markedly enhanced by P deficiency. In a longterm experiment, which ran for 11 days, in marked contrast to the uptake of other nutrients, a three fold higher Mo uptake rate was observed after only four days of withdrawal of P from the nutrient medium. In contrast to the gradual increase in pH of the nutrient medium of the plants supplied with P, the pH in the medium of the -P plants fell. Throughout the growth of these plants net H+ efflux could be accounted for by excess cation over anion uptake, indicating that organic acid extrusion plays no major role in the observed fall in pH. Further evidence that Mo uptake is enhanced in P deficient tomato plants is provided in short-term nutrient solution experiments (1h and 4h) using radioactive molybdenum (99Mo). Compared with P sufficient plants, the uptake rates of 99Mo by P deficient plants were three to five times higher after 1h and nine to twelve times higher after 4h. Resupplying P during the uptake periods to deficient plants reduced the uptake rate of 99Mo to values similar to those of P sufficient plants. It is concluded that the uptake of molybdate occurs via phosphate binding/ transporting sites at the plasma membrane of root cells. Further support for this conclusion comes from exchange experiments with non-labelled molybdenum, which show a much larger amount of 99Mo exchangeable from the roots of P deficient plants

  10. Trichodesmium’s strategies to alleviate phosphorus limitation in the future acidified oceans.

    Science.gov (United States)

    Spungin, Dina; Berman-Frank, Ilana; Levitan, Orly

    2014-06-01

    Global warming may exacerbate inorganic nutrient limitation, including phosphorus (P), in the surface waters of tropical oceans that are home to extensive blooms of the marine diazotrophic cyanobacterium, Trichodesmium. We examined the combined effects of P limitation and pCO(2), forecast under ocean acidification scenarios, on Trichodesmium erythraeum IMS101 cultures. We measured nitrogen acquisition,glutamine synthetase activity, C uptake rates, intracellular Adenosine Triphosphate (ATP) concentration and the pool sizes of related key proteins. Here, we present data supporting the idea that cellular energy re-allocation enables the higher growth and N(2) fixation rates detected in Trichodesmium cultured under high pCO(2). This is reflected in altered protein abundance and metabolic pools. Also modified are particulate organic carbon and nitrogen production rates,enzymatic activities, and cellular ATP concentrations. We suggest that adjusting these cellular pathways to changing environmental conditions enables Trichodesmium to compensate for low P availability and to thrive in acidified oceans. Moreover, elevated pCO(2) could provide Trichodesmium with a competitive dominance that would extend its niche, particularly in P-limited regions of the tropical and subtropical oceans.

  11. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga.

    Science.gov (United States)

    Mühlroth, Alice; Winge, Per; El Assimi, Aimen; Jouhet, Juliette; Maréchal, Eric; Hohmann-Marriott, Martin F; Vadstein, Olav; Bones, Atle M

    2017-12-01

    Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae. © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Quantification of carbon and phosphorus co-limitation in bacterioplankton: new insights on an old topic.

    Directory of Open Access Journals (Sweden)

    Irene Dorado-García

    Full Text Available Because the nature of the main resource that limits bacterioplankton (e.g. organic carbon [C] or phosphorus [P] has biogeochemical implications concerning organic C accumulation in freshwater ecosystems, empirical knowledge is needed concerning how bacteria respond to these two resources, available alone or together. We performed field experiments of resource manipulation (2×2 factorial design, with the addition of C, P, or both combined in two Mediterranean freshwater ecosystems with contrasting trophic states (oligotrophy vs. eutrophy and trophic natures (autotrophy vs. heterotrophy, measured as gross primary production:respiration ratio. Overall, the two resources synergistically co-limited bacterioplankton, i.e. the magnitude of the response of bacterial production and abundance to the two resources combined was higher than the additive response in both ecosystems. However, bacteria also responded positively to single P and C additions in the eutrophic ecosystem, but not to single C in the oligotrophic one, consistent with the value of the ratio between bacterial C demand and algal C supply. Accordingly, the trophic nature rather than the trophic state of the ecosystems proves to be a key feature determining the expected types of resource co-limitation of bacteria, as summarized in a proposed theoretical framework. The actual types of co-limitation shifted over time and partially deviated (a lesser degree of synergism from the theoretical expectations, particularly in the eutrophic ecosystem. These deviations may be explained by extrinsic ecological forces to physiological limitations of bacteria, such as predation, whose role in our experiments is supported by the relationship between the dynamics of bacteria and bacterivores tested by SEMs (structural equation models. Our study, in line with the increasingly recognized role of freshwater ecosystems in the global C cycle, suggests that further attention should be focussed on the biotic

  13. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Hao-Jie [Chinese Academy of Sciences, Xiamen (China). Key Lab. of Urban Environment and Health; Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Wang, Ming Kuang [National Taiwan Univ., Taipei (China). Dept. of Agricultural Chemistry; Fu, Ming-Lai [Chinese Academy of Sciences, Xiamen (China). Key Lab. of Urban Environment and Health; Ci, En [Southwest Univ., Chongquing (China). College of Resources and Environment

    2011-10-15

    Biochar amendments can alter phosphorus (P) availability in soils, though the influencing mechanisms are not yet fully understood. This work investigated the adsorption and desorption of P on ferrihydrite (F, a Fe-oxide widely distributed in surface environments) in order to evaluate the interactions between P and Fe-oxide in the absence or presence of biochar (F or ferrihydrite-biochar (F-B) interaction) in soils. Biochar was produced by pyrolysis of rice straw at 600 C in steel ring furnaces. Two-line ferrihydrite was synthesized by dropwise addition of 1 mol L{sup -1} KOH into Fe(NO{sub 3}){sub 3} solution until the pH reached 7-8 while stirring vigorously. An F-B complex was prepared under similar conditions, except that a mixture of 10 g biochar and the Fe(NO{sub 3}){sub 3} solution was used as the starting material instead of Fe(NO{sub 3}){sub 3} alone. A batch equilibration method was used to determine sorption or desorption of P. The mechanisms of P adsorption on F and F-B complex materials were discussed. Adsorption of P on F decreased as the pH was increased from 3.0 to 10, but the adsorption capacity of F decreased by about 30-40% in the presence of biochar. The P chemisorption rates on F also decreased in the presence of biochar. The Freundlich model showed that the active adsorption sites on the surface of the F-B complex were energetically heterogeneous. The desorbability of adsorbed P on F was enhanced by combination with biochar. The mechanisms of P adsorption on F and F-B complex materials are different. The results showed that the amount and rate of P adsorption on the surface of ferrihydrite decreased with the presence of biochar, and the desorbability of adsorbed P on ferrihydrite can be enhanced when combined with biochar. Thus, the presence of biochar can decrease P adsorption on the Fe-oxides and enhance P availability in soils.

  14. Does assimilate supply limit expansion in wheat grown in the field under low phosphorus availability

    NARCIS (Netherlands)

    Rodriguez, D.; Andrade, F.H.; Goudriaan, J.

    2000-01-01

    Under conditions of phosphorus deficiency, reductions in plant leaf area have been attributed to both direct effects of phosphorus (P) on the individual leaf expansion rate and a reduced availability of assimilates for leaf growth. Simulation techniques have been used to test the hypothesis of a

  15. Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability

    NARCIS (Netherlands)

    Firmansyah, I.; Spiller, M.; Ruijter, De F.J.; Carsjens, G.J.; Zeeman, G.

    2017-01-01

    Nitrogen (N) and phosphorus (P) are two essential macronutrients required in agricultural production. The
    major share of this production relies on chemical fertilizer that requires energy and relies on limited resources
    (P). Since these nutrients are lost to the environment, there is a need

  16. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis.

    Science.gov (United States)

    Li, Yong; Niu, Shuli; Yu, Guirui

    2016-02-01

    Nitrogen (N) and phosphorus (P), either individually or in combination, have been demonstrated to limit biomass production in terrestrial ecosystems. Field studies have been extensively synthesized to assess global patterns of N impacts on terrestrial ecosystem processes. However, to our knowledge, no synthesis has been done so far to reveal global patterns of P impacts on terrestrial ecosystems, especially under different nitrogen (N) levels. Here, we conducted a meta-analysis of impacts of P addition, either alone or with N addition, on aboveground (AGB) and belowground biomass production (BGB), plant and soil P concentrations, and N : P ratio in terrestrial ecosystems. Overall, our meta-analysis quantitatively confirmed existing notions: (i) colimitation of N and P on biomass production and (ii) more P limitation in tropical forest than other ecosystems. More importantly, our analysis revealed new findings: (i) P limitation on biomass production was aggravated by N enrichment and (ii) plant P concentration was a better indicator of P limitation than soil P availability. Specifically, P addition increased AGB and BGB by 34% and 13%, respectively. The effect size of P addition on biomass production was larger in tropical forest than grassland, wetland, and tundra and varied with P fertilizer forms, P addition rates, or experimental durations. The P-induced increase in biomass production and plant P concentration was larger under elevated than ambient N. Our findings suggest that the global limitation of P on biomass production will become severer under increasing N fertilizer and deposition in the future. © 2015 John Wiley & Sons Ltd.

  17. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  18. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models

    Science.gov (United States)

    Sun, Yan; Peng, Shushi; Goll, Daniel S.; Ciais, Philippe; Guenet, Bertrand; Guimberteau, Matthieu; Hinsinger, Philippe; Janssens, Ivan A.; Peñuelas, Josep; Piao, Shilong; Poulter, Benjamin; Violette, Aurélie; Yang, Xiaojuan; Yin, Yi; Zeng, Hui

    2017-07-01

    Most of the Earth System Models (ESMs) project increases in net primary productivity (NPP) and terrestrial carbon (C) storage during the 21st century. Despite empirical evidence that limited availability of phosphorus (P) may limit the response of NPP to increasing atmospheric CO2, none of the ESMs used in the previous Intergovernmental Panel on Climate Change assessment accounted for P limitation. We diagnosed from ESM simulations the amount of P need to support increases in carbon uptake by natural ecosystems using two approaches: the demand derived from (1) changes in C stocks and (2) changes in NPP. The C stock-based additional P demand was estimated to range between -31 and 193 Tg P and between -89 and 262 Tg P for Representative Concentration Pathway (RCP) 2.6 and RCP8.5, respectively, with negative values indicating a P surplus. The NPP-based demand, which takes ecosystem P recycling into account, results in a significantly higher P demand of 648-1606 Tg P for RCP2.6 and 924-2110 Tg P for RCP8.5. We found that the P demand is sensitive to the turnover of P in decomposing plant material, explaining the large differences between the NPP-based demand and C stock-based demand. The discrepancy between diagnosed P demand and actual P availability (potential P deficit) depends mainly on the assumptions about availability of the different soil P forms. Overall, future P limitation strongly depends on both soil P availability and P recycling on ecosystem scale.

  19. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    Science.gov (United States)

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The microbial community in a high-temperature enhanced biological phosphorus removal (EBPR process

    Directory of Open Access Journals (Sweden)

    Ying Hui Ong

    2016-01-01

    Full Text Available An enhanced biological phosphorus removal (EBPR process operated at a relatively high temperature, 28 °C, removed 85% carbon and 99% phosphorus from wastewater over a period of two years. This study investigated its microbial community through fluorescent in situ hybridization (FISH and clone library generation. Through FISH, considerably more Candidatus “Accumulibacter phosphatis” (Accumulibacter-polyphosphate accumulating organisms (PAOs than Candidatus ‘Competibacter phosphatis’ (Competibacter-glycogen accumulating organisms were detected in the reactor, at 36 and 7% of total bacterial population, respectively. A low ratio of Glycogen/Volatile Fatty Acid of 0.69 further indicated the dominance of PAOs in the reactor. From clone library generated, 26 operational taxonomy units were retrieved from the sludge and a diverse population was shown, comprising Proteobacteria (69.6%, Actinobacteria (13.7%, Bacteroidetes (9.8%, Firmicutes (2.94%, Planctomycetes (1.96%, and Acidobacteria (1.47%. Accumulibacter are the only recognized PAOs revealed by the clone library. Both the clone library and FISH results strongly suggest that Accumulibacter are the major PAOs responsible for the phosphorus removal in this long-term EBPR at relatively high temperature.

  1. Enhanced biological phosphorus removal. Carbon sources, nitrate as electron acceptor, and characterization of the sludge community

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, M

    1997-10-01

    Enhanced biological phosphorus removal (EBPR) was studied in laboratory scale experiments as well as in a full scale EBPR process. The studies were focused on carbon source transformations, the use of nitrate as an electron acceptor and characterisation of the microflora. A continuous anaerobic/aerobic laboratory system was operated on synthetic wastewater with acetate as sole carbon source. An efficient EBPR was obtained and mass balances over the anaerobic reactor showed a production of 1.45 g poly-{beta}-hydroxyalcanoic acids (PHA), measured as chemical oxygen demand (COD), per g of acetic acid (as COD) taken up. Furthermore, phosphate was released in the anaerobic reactor in a ratio of 0.33 g phosphorus (P) per g PHA (COD) formed and 0.64 g of glycogen (COD) was consumed per g of acetic acid (COD) taken up. Microscopic investigations revealed a high amount of polyphosphate accumulating organisms (PAO) in the sludge. Isolation and characterisation of bacteria indicated Acinetobacter spp. to be abundant in the sludge, while sequencing of clones obtained in a 16S rDNA clone library showed a large part of the bacteria to be related to the high mole % G+C Gram-positive bacteria and only a minor fraction to be related to the gamma-subclass of proteobacteria to which Acinetobacter belongs. Operation of a similar anaerobic/aerobic laboratory system with ethanol as sole carbon source showed that a high EBPR can be achieved with this compound as carbon source. However, a prolonged detention time in the anaerobic reactor was required. PHA were produced in the anaerobic reactor in an amount of 1.24 g COD per g of soluble DOC taken up, phosphate was released in an amount of 0.4-0.6 g P per g PHA (COD) produced and 0.46 g glycogen (COD) was consumed per g of soluble COD taken up. Studies of the EBPR in the UCT process at the sewage treatment plant in Helsingborg, Sweden, showed the amount of volatile fatty acids (VFA) available to the PAO in the anaerobic stage to be

  2. Phosphorus limitation in Daphnia: Evidence from a long term study of three hypereutrophic Dutch lakes

    NARCIS (Netherlands)

    DeMott, W.R.; Gulati, R.D.

    1999-01-01

    The Loosdrecht lakes comprise three shallow, interconnected hypereutrophic lakes in The Netherlands. A lake restoration project conducted during the 1980s resulted in reduced phosphorus loading. However, no changes in phytoplankton abundance or species composition were noted, although seston

  3. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    Science.gov (United States)

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Preparation of graphene-enhanced nickel-phosphorus composite films by ultrasonic-assisted electroless plating

    Science.gov (United States)

    Yu, Qian; Zhou, Tianfeng; Jiang, Yonggang; Yan, Xing; An, Zhonglie; Wang, Xibin; Zhang, Deyuan; Ono, Takahito

    2018-03-01

    To improve the mechanical properties of nickel-phosphorus (Ni-P) mold material for glass molding, an ultrasonic-assisted electroless plating method is proposed for the synthesis of graphene-enhanced nickel-phosphorus (G-Ni-P) composite films on heat-resistant stainless steel (06Cr25Ni20). Graphene flakes are prepared by an electrochemical exfoliation method. The surface roughness of the as-plated G-Ni-P composite plating is Ra 2.84 μm, which is higher than that of the Ni-P plating deposited using the same method. After annealing at 400 ºC for 2 h, the main phase of the G-Ni-P composite is transformed to crystalline Ni3P with an average grain size of 32.8 nm. The Vickers hardness and Young's modulus of the G-Ni-P composite are increased by 8.0% and 8.2% compared with the values of Ni-P, respectively. The detailed plating process is of great significance for the fabrication of G-Ni-P mold materials with enhanced mechanical properties.

  5. Novel Differential Measurement of Natural and Added Phosphorus in Preserved versus Non-Enhanced Ham

    Science.gov (United States)

    Cupisti, Adamasco; Benini, Omar; Ferretti, Valerio; Gianfaldoni, Daniela; Kalantar-Zadeh, Kamyar

    2018-01-01

    Accurate assessment of the quantity and chemical type of phosphorus (P) content in processed meat products may have major clinical implications for management of kidney disease patients. We examined 40 lots of cooked ham including 20 without and 20 with P-containing preservatives. Novel spectro-photometrical methods were employed to measure total P and 3 different P subtypes, i.e., water-soluble (inorganic) P including added preservatives and natural P derived from phospholipids and phosphoproteins separately. Total Nitrogen and fat contents were assayed, as well. There was 66% more inorganic P in preserved vs. non-enhanced ham, i.e., 169±36 vs. 102±16 mg/100g (p0.05), indicating a small portion of unspecified P and/or undermeasurement Novel differential dietary P measurement detects added P-containing preservatives. Processed cooked ham has 66% more measurable inorganic P and 64% higher P-to-protein ratio than non-enhanced product. The contribution of processed food to global dietary phosphorus burden can negatively influence CKD outcome and counteract the efficacy of P-binder medications. PMID:22406120

  6. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    Science.gov (United States)

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.

  7. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  8. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    Science.gov (United States)

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Effect of Phytase Superdoses and Citric Acid on Growth Performance, Plasma Phosphorus and Tibia Ash in Broilers Fed Canola Meal-Based Diets Severely Limited in Available Phosphorus

    Directory of Open Access Journals (Sweden)

    Taheri HR

    2015-06-01

    Full Text Available This experiment was conducted to investigate the effect of phytase superdoses alone or in combination with citric acid (CA in canola meal-based diets severely limited in available phosphorus (Pa on growth performance, plasma phosphorus (P, and tibia ash (TA in broilers from 22 to 42 d of age. Two hundreds and eighty 21-d-old male broilers were used in 28 pens of 10 birds per each. The experimental diets consisted of a positive control (PC diet and six negative control (NC diets which consisted of two levels of CA (0 and 20 g/Kg and three levels of phytase (0, 1000 and 4000 U/Kg in a 2 × 3 factorial arrangement. The PC diet contained 4.3 g/Kg Pa, but all NC diets contained 1.5 g/Kg Pa. Results indicated that the birds fed the PC diet had a significantly higher average daily gain (ADG, plasma P and TA, but a lower feed conversion ratio (FCR than those fed the NC diet. The ADG, FCR and plasma P values in birds fed NC diets supplemented with 4000 U/Kg phytase enzyme (with or without CA significantly reached those of birds fed the PC diet. But, addition of phytase enzyme at 1000 U/Kg only plus CA to the NC diet could significantly improve FCR and plasma P. A significant interaction was observed between phytase and CA for FCR and plasma P. Although TA values in NC + 1000 U/Kg phytase treatments (with or without CA were similar to the PC treatment, TA values of NC + 4000 U/Kg phytase treatments (with or without CA was greater than that of the PC treatment. Results of this study showed that, in severely limited Pa corn-canola meal-based diets, supplementing 4000 U/Kg phytase or also 1000 U/Kg phytase plus CA will be sufficient to obtain the comparable feed efficiency in broilers to those fed the adequate Pa diet.

  10. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    Science.gov (United States)

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Reliability and limits of soil phosphated fertility diagnostic determined from isotopically dilutable phosphorus and fixing power

    International Nuclear Information System (INIS)

    Gachon, Louis; Triboi, Eugene

    1979-01-01

    On the soils of about forty experiment fields, are measured the E and L values, the fixing capacity and phosphorus uptake during 100/120 days by ray-grass cultivated in vegetation pots. The fertility indices Isub(E) and Isub(L) joining the fixing capacity to the E or L values respectively provide an excellent appreciation of the potential flux of phosphate ions offered by the soil to the plant. But the soil climate and the root system geometry influence the concrete interception of this flux by the roots and consequently, the responses of crops to phosphate fertilizers. The interpretation norms are suggested and discussed [fr

  12. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  13. Prospective evidence for independent nitrogen and phosphorus limitation of grasshopper (Chorthippus curtipennis) growth in a tallgrass prairie.

    Science.gov (United States)

    Rode, Madison; Lemoine, Nathan P; Smith, Melinda D

    2017-01-01

    Insect herbivores play a pivotal role in regulating plant production and community composition, and their role in terrestrial ecosystems is partly determined by their feeding behavior and performance among plants of differing nutritional quality. Historically, nitrogen (N) has been considered the primary limiting nutrient of herbivorous insects, but N is only one of many potential nutrients important to insect performance. Of these nutrients, phosphorus (P) is perhaps the most important because somatic growth depends upon P-rich ribosomal RNA. Yet relatively few studies have assessed the strength of P-limitation for terrestrial insects and even fewer have simultaneously manipulated both N and P to assess the relative strengths of N- and P-limitation. Here, we tested for potential N and P limitation, as well as N:P co-limitation, on Chorthippis curtipennis (Orthoptera, Acrididae), an abundant member of arthropod communities of central US prairies. Our results demonstrate weak evidence for both N and P limitation of C. curtipennis growth rates in laboratory feeding assays. Importantly, P-limitation was just as strong as N-limitation, but we found no evidence for NP co-limitation in our study. Furthermore, nutrient limitation was not apparent in field studies, suggesting that insect growth rates may be predominately controlled by other factors, including temperature and predation. Our results suggest that P should be jointly considered, along with N, as a primary determinant of herbivore feeding behavior under both current and future climate conditions.

  14. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  15. Enhanced Cr(VI) removal by polyethylenimine- and phosphorus-codoped hierarchical porous carbons.

    Science.gov (United States)

    Chen, Shixia; Wang, Jun; Wu, Zeliang; Deng, Qiang; Tu, Wenfeng; Dai, Guiping; Zeng, Zheling; Deng, Shuguang

    2018-08-01

    The amino- and phosphorus-codoped (N,P-codoped) porous carbons derived from oil-tea shells were facilely fabricated through a combination of phosphoric acid (H 3 PO 4 ) activation and amino (polyethylenimine, PEI) modification method. The as-synthesized carbon adsorbents were systematically characterized and evaluated for Cr(VI) removal in aqueous solutions. The relationship between adsorbent properties and adsorption behaviors was illustrated. Moreover, the influences of contact time, initial Cr(VI) concentration, pH, coexisting anions and temperature were also investigated. The adsorption behavior of Cr(VI) could be perfectly described by the pseudo-second-order kinetic model and Sips adsorption model. The maximum adsorption capacity of Cr(VI) on the carbon adsorbents synthesized in this work was 355.0 mg/g, and this excellent Cr(VI) capacity could be sustained with other coexisting anions. In addition to high surface area and suitable pore size distribution, the high Cr(VI) removal capacity is induced by rich heteroatoms incorporation and the Cr(VI) removal mechanism was clearly illustrated. Furthermore, the continuous column breakthrough experiment on obtained N,P-codoped carbon was conducted and well fitted by the Thomas model. This work revealed that PEI modification and P-containing groups could significantly enhance Cr(VI) adsorption capacity and make these N,P-codoped biomass-derived carbons potent adsorbents in practical water treatment applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Influence of climate variability, fire and phosphorus limitation on vegetation structure and dynamics of the Amazon-Cerrado border

    Science.gov (United States)

    Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.

    2018-02-01

    Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.

  17. Photonic limiters with enhanced dynamic range

    Science.gov (United States)

    Kononchuk, Rodion; Limberopoulos, Nicholaos; Anisimov, Igor; Vitebskiy, Ilya; Chabanov, Andrey

    2018-02-01

    Optical limiters transmit low intensity input light while blocking input light with the intensity exceeding certain limiting threshold. Conventional passive limiters utilize nonlinear optical materials, which are transparent at low light intensity and turn absorptive at high intensity. Strong nonlinear absorption, though, can result in over- heating and destruction of the limiter. Another problem is that the limiting threshold provided by the available optical material with nonlinear absorption is too high for many applications. To address the above problems, the nonlinear material can be incorporated in a photonic structure with engineered dispersion. At low intensity, the photonic structure can display resonant transmission via localized mode(s), while at high intensity the resonant transmission can disappear, and the entire stack can become highly re ective (not absorptive) within a broad frequency range. In the proposed design, the transition from the resonant transmission at low intensity to nearly total re ectivity at high intensity does not rely on nonlinear absorption; instead, it requires only a modest change in the refractive index of the nonlinear material. The latter implies a dramatic increase in the dynamic range of the limiter. The main idea is to eliminate the high-intensity resonant transmission by decoupling the localized (resonant) modes from the input light, rather than suppressing those modes using nonlinear absorption. Similar approach can be used for light modulation and switching.

  18. Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems.

    Directory of Open Access Journals (Sweden)

    Duncan N L Menge

    Full Text Available Nutrient limitation to net primary production (NPP displays a diversity of patterns as ecosystems develop over a range of timescales. For example, some ecosystems transition from N limitation on young soils to P limitation on geologically old soils, whereas others appear to remain N limited. Under what conditions should N limitation and P limitation prevail? When do transitions between N and P limitation occur? We analyzed transient dynamics of multiple timescales in an ecosystem model to investigate these questions. Post-disturbance dynamics in our model are controlled by a cascade of rates, from plant uptake (very fast to litter turnover (fast to plant mortality (intermediate to plant-unavailable nutrient loss (slow to weathering (very slow. Young ecosystems are N limited when symbiotic N fixation (SNF is constrained and P weathering inputs are high relative to atmospheric N deposition and plant N:P demand, but P limited under opposite conditions. In the absence of SNF, N limitation is likely to worsen through succession (decades to centuries because P is mineralized faster than N. Over long timescales (centuries and longer this preferential P mineralization increases the N:P ratio of soil organic matter, leading to greater losses of plant-unavailable N versus P relative to plant N:P demand. These loss dynamics favor N limitation on older soils despite the rising organic matter N:P ratio. However, weathering depletion favors P limitation on older soils when continual P inputs (e.g., dust deposition are low, so nutrient limitation at the terminal equilibrium depends on the balance of these input and loss effects. If NPP switches from N to P limitation over long time periods, the transition time depends most strongly on the P weathering rate. At all timescales SNF has the capacity to overcome N limitation, so nutrient limitation depends critically on limits to SNF.

  19. First-principles study of hydrogen-enhanced phosphorus diffusion in silicon

    International Nuclear Information System (INIS)

    The Anh, Le; Lam, Pham Tien; Manoharan, Muruganathan; Matsumura, Hideki; Otsuka, Nobuo; Hieu Chi, Dam; Tien Cuong, Nguyen; Mizuta, Hiroshi

    2016-01-01

    We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs with P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies

  20. Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T

    2017-05-15

    Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.

    Science.gov (United States)

    Pijuan, M; Saunders, A M; Guisasola, A; Baeza, J A; Casas, C; Blackall, L L

    2004-01-05

    An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. Copyright 2003 Wiley Periodicals, Inc.

  2. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Phosphorus as a Limiting Nutrient in Zooplankton Communities Above a Reef Dominated by the Invasive Quagga Mussel

    Science.gov (United States)

    Hughes, J.; Cuhel, R. L.; Aguilar, C.

    2008-12-01

    Comprehensive water column data were retrieved from three sites in open waters of Lake Michigan during the summer of 2008. At two, the invasive quagga mussel (Dreissena rostriformis bugensis) functioned as a phosphorus sink. One of these sites, Sheboygan Reef (SR04), exhibited a lower average soluble reactive phosphorus (SRP) value throughout its water column. The large size fraction of the phytoplankton community at this site contained proportionally less of the total seston phosphorus than at other comparable sites. Instead of this simply being a reflection of less large phytoplankton, phosphorus enrichment experiments conducted along with other lines of evidence indicate it may, in fact, reflect less phosphorus per unit of weight in the large phytoplankton community. In these experiments, larger phytoplankton were observed to be less efficient at assimilating phosphate after low-level additions (0.1 μM) were made to simulate the amount of phosphorus added during for example a rainstorm. The relatively inefficient uptake of short-term injections of phosphate observed in the large phytoplankton class is more influential on the overall uptake of phosphorus at a site like SR04 which ordinarily has low levels of available phosphorus (quagga mussel community at this site (>10,000 m-2) dominated the phosphorus inventory (mmol P/m2). Furthermore, C:N:P ratios indicate that zooplankton at all three sites may be suffering from a phosphorus deficit. A dominant presence of quagga mussels at Sheboygan Reef was correlated with decreased SRP levels and relatively low levels of phosphorus at the producer and consumer levels in the water column.

  5. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling

    Directory of Open Access Journals (Sweden)

    D. S. Goll

    2012-09-01

    Full Text Available Terrestrial carbon (C cycle models applied for climate projections simulate a strong increase in net primary productivity (NPP due to elevated atmospheric CO2 concentration during the 21st century. These models usually neglect the limited availability of nitrogen (N and phosphorus (P, nutrients that commonly limit plant growth and soil carbon turnover. To investigate how the projected C sequestration is altered when stoichiometric constraints on C cycling are considered, we incorporated a P cycle into the land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg, which already includes representations of coupled C and N cycles.

    The model reveals a distinct geographic pattern of P and N limitation. Under the SRES (Special Report on Emissions Scenarios A1B scenario, the accumulated land C uptake between 1860 and 2100 is 13% (particularly at high latitudes and 16% (particularly at low latitudes lower in simulations with N and P cycling, respectively, than in simulations without nutrient cycles. The combined effect of both nutrients reduces land C uptake by 25% compared to simulations without N or P cycling. Nutrient limitation in general may be biased by the model simplicity, but the ranking of limitations is robust against the parameterization and the inflexibility of stoichiometry. After 2100, increased temperature and high CO2 concentration cause a shift from N to P limitation at high latitudes, while nutrient limitation in the tropics declines. The increase in P limitation at high-latitudes is induced by a strong increase in NPP and the low P sorption capacity of soils, while a decline in tropical NPP due to high autotrophic respiration rates alleviates N and P limitations. The quantification of P limitation remains challenging. The poorly constrained processes of soil P sorption and biochemical mineralization are identified as the main uncertainties in the strength of P limitation

  6. Limits to human enhancement: nature, disease, therapy or betterment?

    Science.gov (United States)

    Hofmann, Bjørn

    2017-10-10

    New technologies facilitate the enhancement of a wide range of human dispositions, capacities, or abilities. While it is argued that we need to set limits to human enhancement, it is unclear where we should find resources to set such limits. Traditional routes for setting limits, such as referring to nature, the therapy-enhancement distinction, and the health-disease distinction, turn out to have some shortcomings. However, upon closer scrutiny the concept of enhancement is based on vague conceptions of what is to be enhanced. Explaining why it is better to become older, stronger, and more intelligent presupposes a clear conception of goodness, which is seldom provided. In particular, the qualitative better is frequently confused with the quantitative more. We may therefore not need "external" measures for setting its limits - they are available in the concept of enhancement itself. While there may be shortcomings in traditional sources of limit setting to human enhancement, such as nature, therapy, and disease, such approaches may not be necessary. The specification-of-betterment problem inherent in the conception of human enhancement itself provides means to restrict its unwarranted proliferation. We only need to demand clear, sustainable, obtainable goals for enhancement that are based on evidence, and not on lofty speculations, hypes, analogies, or weak associations. Human enhancements that specify what will become better, and provide adequate evidence, are good and should be pursued. Others should not be accepted.

  7. The roles of loosely-bound and tightly-bound extracellular polymer substances in enhanced biological phosphorus removal.

    Science.gov (United States)

    Long, Xiangyu; Tang, Ran; Fang, Zhendong; Xie, Chaoxin; Li, Yongqin; Xian, Guang

    2017-12-01

    Extracellular polymeric substances (EPS) have be founded to participate in the process of enhanced biological phosphorus removal (EBPR), but the exact role of EPS in EBPR process is unclear. In this work, the roles of loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS) and microbial cell in EBPR were explored, taking the activated sludge from 4 lab-scale A/O-SBR reactors with different temperatures and organic substrates as objects. It was founded that the P of EBPR activated sludge was mainly stored in TB-EPS, but the P of non-EBPR activated sludge was primarily located in microbial cell. The P release and uptake of EBPR activated sludge was attributed to the combined action of TB-EPS and microbial cell. Furthermore, TB-EPS played an more important role than microbial cell in EBPR process. With the analysis of 31 P NMR spectroscopy, both polyP and orthoP were the main phosphorus species of TB-EPS in EBPR sludge, but only orthoP was the main phosphorus species of LB-EPS and microbial cell. During the anaerobic-aerobic cycle, the roles of LB-EPS, TB-EPS and microbial cell in transfer and transformation of P in EBPR sludge were obviously different. LB-EPS transported and retained orthoP, and microbial cell directly anaerobically released or aerobically absorbed orthoP. Importantly, TB-EPS not only transported and retained orthoP, but also participated in biological phosphorus accumulation. The EBPR performance of sludge was closely related with the polyp in TB-EPS, which might be synthesized and decomposed by extracellular enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Responses of a bacterial pathogen to phosphorus limitation of its aquatic invertebrate host

    OpenAIRE

    Frost, P. C.; Ebert, D.; Smith, V. H.

    2008-01-01

    Host nutrition is thought to affect the establishment, persistence, and severity of pathogenic infections. Nutrient-deficient foods possibly benefit pathogens by constraining host immune function or benefit hosts by limiting parasite growth and reproduction. However, the effects of poor elemental food quality on a host's susceptibility to infection and disease have received little study. Here we show that the bacterial microparasite Pasteuria ramosa is affected by the elemental nutrition of i...

  9. Management of Natural and Added Dietary Phosphorus Burden in Kidney Disease

    Science.gov (United States)

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2018-01-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (~60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular low-cost foods. In a non-enhanced mixed diet, the digestible phosphorus is closely correlated with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is more appropriately limited in pre-dialysis patients who are on low protein diets (~0.6 g/kg/day), whereas dialysis patients who require higher protein intake (~1.2 g/kg/day) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Protein-rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counselling to address the foregoing aspects of dietary phosphorus management is instrumental for achieving reduction of phosphorus load. PMID:23465504

  10. Phosphorus dynamics and limitation of fast- and slow-growing temperate seaweeds in Oslofjord, Norway

    DEFF Research Database (Denmark)

    Pedersen, Morten Foldager; Borum, Jens; Fotel, Frank Leck

    2010-01-01

    During coastal eutrophication, fast-growing, ephemeral macroalgae bloom at the expense of slow-growing, perennial macroalgae. This change in community composition has been explained by a differential ability to exploit and utilize inorganic nitrogen among macroalgae with different growth strategies......-growing algae (Ulva and Ceramium) took up dissolved inorganic P (DIP) much faster than thicker, slower growing species (belonging to Fucus, Ascophyllum and Laminaria) but also had much higher P-demands per unit biomass and time. DIP concentrations in the Oslofjord were low from April through August, and fast......-growing species were unable to meet their P-demand from uptake for several months during summer. Hence, Ceramium and Ulva were potentially P-limited during summer, whereas Ascophyllum and Laminaria were able to acquire sufficient external DIP to remain P-replete throughout the year. Storage of P prevented Fucus...

  11. Phosphorus-limited photosynthesis and growth of Sargassum natans and Sargassum fluitans (Phaeophyceae) in the western North Atlantic

    Science.gov (United States)

    Lapointe, Brian E.

    1986-03-01

    Growth enrichment studies utilizing in vitu cage cultures and a shipboard flowing seawater culture system were conducted with whole-plant populations of pelagic Sargassum-S. natans and S. fluitans (Phaeophyceaa)-in the western Sargasso Sea and at Looe Key Marine Sanctuary adjacent to the Straits of Florida. Growth rates of both species ranged from 0.03 to 0.04 doublings d -1 in control cultures receiving no enrichment and in cultures receiving either NO 3- or NH 4+ enrichment; in contrast, growth rates ranged from 0.05 to 0.08 doublings d -1 in cultures receiving PO 43- enrichment. Midday photosynthetic rates of S. natans and S. fluitans were also two-fold higher with PO 43- enrichment, ca. 2.3 mgC g dryw-1 h -1 compared to 1.0 to 1.5 mgC g dry wt -1 h -1 in the NH 4+, NO 3-, and control treatments. These data suggest the pelagic Sargassum may grow faster than previously thought and that phosphorus, rather than nitroge, may be the primary nutrient limiting growth and productivity of these plants.

  12. Mangrove isotopic (δ15N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient

    Science.gov (United States)

    Mckee, Karen L.; Feller, Ilka C.; Popp, Marianne; Wanek, Wolfgang

    2002-01-01

    Mangrove islands in Belize are characterized by a unique switching from nitrogen (N) to phosphorus (P) limitation to tree growth from shoreline to interior. Fertilization has previously shown that Rhizophora mangle (red mangrove) fringe trees (5–6 m tall) growing along the shoreline are N limited; dwarf trees (!1.5 m tall) in the forestinterior are P limited; and transition trees (2–4 m tall) are co-limited by both N and P.  Growth patterns paralleled a landward decrease in soil flushing by tides and an increase in bioavailable N, but P availability remained consistently low across the gradient. Stable isotopic composition was measured in R. mangle leaves to aid in explaining this nutrient switching pattern and growth variation. Along control transects, leaf !15N decreased from "0.10‰ (fringe) to #5.38‰ (dwarf). The !15N of N-fertilized trees also varied spatially, but the values were consistently more negative (by $3‰) compared to control trees. Spatial variation in !15N values disappeared when the trees were fertilized with P, and values averaged "0.12‰, similar to that in control fringe trees. Neither variation in source inputs nor microbial fractionation could fully account for the observed patterns in !15N. The results instead suggest that the lower !15N values in transition and dwarf control trees were due to plant fractionation as a consequence of slower growth and lower N demand. P fertilization increased N demand and decreased fractionation. Although leaf !13C was unaffected by fertilization, values increased from fringe (#28.6‰) to transition (#27.9‰) to dwarf (#26.4‰) zones, indicating spatial variation in environmental stresses affecting stomatal conductance or carboxylation. The results thus suggest an interaction of external supply, internal demand, and plant ability to acquire nutrients under different hydro-edaphic conditions that vary across this tree-height gradient. The findings not only aid in understanding

  13. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  14. Effect of high calcium concentration influents on enhanced biological phosphorus removal process

    International Nuclear Information System (INIS)

    Montoya Martinez, T.; Aguado Garcia, D.; Ferrer Polo, J.

    2010-01-01

    In this work, the effect of calcium concentration in wastewater on the polyphosphate accumulating organisms (PAO) is investigated as well as its influence in PAO metabolism, specifically in the Y P O4 (ratio between phosphorus release and acetic acid uptake). For this study a sequencing batch reactor (SBR) anaerobic-aerobic was used, in which the PAO enriched biomass was exposed to different calcium concentrations in the influent wastewater. The results indicate that until a given calcium level in the influent wastewater (35 mg Ca/l) the metabolism is not affect, but higher calcium concentrations lead to significant Y P O4 decline. (Author) 18 refs.

  15. Dietary acidification enhances phosphorus digestibility but decreases H+/K+-ATPase expression in rainbow trout.

    Science.gov (United States)

    Sugiura, Shozo H; Roy, Prabir K; Ferraris, Ronaldo P

    2006-10-01

    Oxynticopeptic cells of fish stomach are thought to secrete less acid than the specialized parietal cells of mammalian stomach. Gastric acidity, however, has not been directly compared between fish and mammals. We therefore fed rainbow trout and rats the same meal, and found that the lowest postprandial pH of trout stomach was 2.7, which was only transiently sustained for 1 h, whereas that of rat stomach was 1.3, which was sustained for 3 h. Postprandial pH of the small intestine was slightly higher in trout (approximately 8.0) than in rats (approximately 7.6), but pH of the large intestine was similar (approximately 8.0). Addition of acids to fish feeds, in an attempt to aid the weak acidity of fish stomach, has been known to improve phosphorus digestibility, but its physiological effect on fish stomach is not known. Exogenous acids did improve phosphorus digestibility but also decreased steady-state mRNA expression of trout H(+)/K(+)-ATPase (ATP4A, the proton pump) as well as Na(+)/bicarbonate cotransporter (NBC), and had no effect on gastrin-like mRNA and somastostatin (SST) mRNA abundance. Gastrin-like mRNA and SST-2 mRNA were equally distributed between corpus and antrum. ATP4A mRNA and NBC mRNA were in the corpus, whereas SST-1 mRNA was in the antrum. Trout gastrin-like EST had modest homology to halibut and pufferfish gastrin, whereas trout ATP4A mRNA had > or = 95% amino acid homology with mammalian, Xenopus and flounder ATP4A. Although ATP4A seems highly conserved among vertebrates, gastric acidity is much less in trout than in rats, explaining the low digestibility of bone phosphorus, abundant in fish diets. Dietary acidification does not reduce acidity enough to markedly improve phosphorus digestibility, perhaps because exogenous acids may inhibit endogenous acid production.

  16. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater.

    Science.gov (United States)

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-05-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.

  17. Effect of High Phytase Inclusion Rates on Performance of Broilers Fed Diets Not Severely Limited in Available Phosphorus

    Directory of Open Access Journals (Sweden)

    T. T. dos Santos

    2013-02-01

    Full Text Available Phytate is not only an unavailable source of phosphorus (P for broilers but it also acts as an anti-nutrient, reducing protein and mineral absorption, increasing endogenous losses and reducing broiler performance. The objective of this study was to investigate the anti-nutritional effects of phytate by including high levels of phytase in diets not severely limited in available P. A total of 768 male Arbor Acres broilers were distributed in six treatments of eight replicate pens of 16 birds each consisting of a positive control diet (PC, positive control with 500 FTU/kg phytase, negative control (NC diet with lower available P and calcium (Ca levels and the same NC diet with 500, 1,000 or 1,500 FTU/kg phytase. Body weight gain (BWG, feed intake (FI, feed conversion ratio (FCR and mortality were determined at 21 and 35 d of age while foot ash was determined in four birds per pen at 21 d of age. FI, FCR and foot ash where not affected by the lower mineral diets at 21 d of age nor by the enzyme inclusion but broilers fed lower Ca and available P diets had lower BWG. At 35 d of age no difference was observed between broilers fed the positive or NC diets but broilers fed 500, 1,000 and 1,500 FTU/kg on top of the NC diet had better FCR than broilers fed the positive control diet. When compared to birds fed a diet adequate in P, birds fed the same diet included with 500, 1,000 and 1,500 FTU/kg of phytase in marginally deficient available P and Ca diets had an improvement of performance. These results support the concept that hydrolysing phytate and reducing the anti-nutritional effects of phytate improves bird performance on marginally deficient diets that were not covering the P requirement of birds.

  18. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater

    DEFF Research Database (Denmark)

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-01-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were...... arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used...

  19. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    Science.gov (United States)

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Ponderomotive enhancement of charged particle beam limiting current

    International Nuclear Information System (INIS)

    Grebogi, C.; Uhm, H.S.

    1987-01-01

    The space charge limiting current problem is investigated for a magnetized particle beam propagating in a cylindrical drift tube and in presence of a waveguide mode. It is shown that with a proper choice of a waveguide mode, the limiting current can be greatly enhanced due to ponderomotive effects. Physically, this is accomplished by using the ponderomotive energy to reduce the potential depression due to the beam's self space charge field. Formulas for the limiting current as a function of beam energy and waveguide r.f. field for solid and hollow beams are derived. It is found from these formulas that, in appropriate parameter regimes, the space charge limiting current, say, of a 250kV bem can be enhanced by 70%

  1. Sediment–water exchange of nutrients in the Marsdiep basin, western Wadden Sea: Phosphorus limitation induced by a controlled release?

    NARCIS (Netherlands)

    Leote, C.; Epping, E.

    2015-01-01

    To quantify the release of inorganic phosphorus from the sediments and assess its contribution to present primary production, a basin-wide study of the Marsdiep (western Wadden Sea, The Netherlands) was performed. Two distinct sedimentary zones were identified: a depositional area characterized by a

  2. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor.

    Science.gov (United States)

    Geng, Yi-Kun; Wang, Yunkun; Pan, Xin-Rong; Sheng, Guo-Ping

    2018-01-01

    In this study, a novel electrodialysis membrane bioreactor was used for EBPR sludge treatment for energy and phosphorus resource recovery simultaneously. After 30days stable voltage outputting, the maximum power density reached 0.32W/m 3 . Over 90% of phosphorus in EBPR sludge was released while about 50% of phosphorus was concentrated to 4mmol/L as relatively pure phosphate solution. Nitrogen could be removed from EBPR sludge by desalination and denitrification processes. This study provides an optimized way treating sludge for energy production and in situ phosphorus recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    Science.gov (United States)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  4. Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination.

    Science.gov (United States)

    Xu, Peng; Xiao, Enrong; Xu, Dan; Li, Juan; Zhang, Yi; Dai, Zhigang; Zhou, Qiaohong; Wu, Zhenbin

    2018-05-01

    The phosphorus reduction in water column was attempted by integrating sediment microbial fuel cells (SMFCs) with the submerged macrophyte Vallisneria spiralis. A comparative study was conducted to treat simulated water rich in phosphate with a control and three treatments: SMFC alone (SMFC), submerged macrophytes alone (macophyte), and combined macrophytes and fuel cells (M-SMFC). All treatments promoted phosphorus flux from the water column to sediments. Maximum phosphorus reduction was obtained in proportion to the highest stable phosphorus level in sediments in M-SMFC. For the initial phosphate concentrations of 0.2, 1, 2, and 4 mg/L, average phosphate values in the overlying water during four phases decreased by 33.3% (25.0%, 8.3%), 30.8% (5.1%, 17.9%), 36.5% (27.8%, 15.7%), and 36.2% (0.7%, 22.1%) for M-SMFC (macrophyte, SMFC), compared with the control. With macrophyte treatment, the obvious phosphorus release from sediments was observed during the declining period. However, such phenomenon was significantly inhibited with M-SMFC. The electrogenesis bacteria achieved stronger phosphorus adsorption and assimilation was significantly enriched on the closed-circuit anodes. The higher abundance of Geobacter and Pseudomonas in M-SMFC might in part explain the highest phosphorus reduction in the water column. M-SMFC treatment could be promising to control the phosphorus in eutrophic water bodies.

  5. Redox-controlled carbon and phosphorus burial: A mechanism for enhanced organic carbon sequestration during the PETM

    Science.gov (United States)

    Komar, Nemanja; Zeebe, Richard E.

    2017-12-01

    Geological records reveal a major perturbation in carbon cycling during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma), marked by global warming of more than 5 °C and a prominent negative carbon isotope excursion of at least 2.5‰ within the marine realm. The entire event lasted about 200,000 yr and was associated with a massive release of light carbon into the ocean-atmosphere system over several thousands of years. Here we focus on the terminal stage of the PETM, during which the ocean-atmosphere system rapidly recovered from the carbon cycle perturbation. We employ a carbon-cycle box model to examine the feedbacks between surface ocean biological production, carbon, oxygen, phosphorus, and carbonate chemistry during massive CO2 release events, such as the PETM. The model results indicate that the redox-controlled carbon-phosphorus feedback is capable of producing enhanced organic carbon sequestration during large carbon emission events. The locale of carbon oxidation (ocean vs. atmosphere) does not affect the amount of carbon sequestered. However, even though the model produces trends consistent with oxygen, excess accumulation rates of organic carbon (∼1700 Pg C during the recovery stage), export production and δ13 C data, it fails to reproduce the magnitude of change of sediment carbonate content and the CCD over-deepening during the recovery stage. The CCD and sediment carbonate content overshoot during the recovery stage is muted by a predicted increase in CaCO3 rain. Nonetheless, there are indications that the CaCO3 export remained relatively constant during the PETM. If this was indeed true, then an initial pulse of 3,000 Pg C followed by an additional, slow leak of 2,500 Pg C could have triggered an accelerated nutrient supply to the surface ocean instigating enhanced organic carbon export, consequently increasing organic carbon sequestration, resulting in an accelerated restoration of ocean-atmosphere biogeochemistry during the termination

  6. Controlled biomass removal - the key parameter to achieve enhanced biological phosphorus removal in biofilm systems

    DEFF Research Database (Denmark)

    Morgenroth, E.

    1999-01-01

    the influence of the following processes on EBPR in biofilms was evaluated: (1) mass transfer limitation for oxygen (2) mass transfer limitation for organic substrate, (3) lack of controlled removal of biomass from the system. It was shown that mass transfer of soluble components (oxygen and organic substrate...

  7. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes.

    Science.gov (United States)

    Marques, Ricardo; Ribera-Guardia, Anna; Santos, Jorge; Carvalho, Gilda; Reis, Maria A M; Pijuan, Maite; Oehmen, Adrian

    2018-06-15

    Denitrifying enhanced biological phosphorus removal (EBPR) systems can be an efficient means of removing phosphate (P) and nitrate (NO 3 - ) with low carbon source and oxygen requirements. Tetrasphaera is one of the most abundant polyphosphate accumulating organisms present in EBPR systems, but their capacity to achieve denitrifying EBPR has not previously been determined. An enriched Tetrasphaera culture, comprising over 80% of the bacterial biovolume was obtained in this work. Despite the denitrification capacity of Tetrasphaera, this culture achieved only low levels of anoxic P-uptake. Batch tests with different combinations of NO 3 - , nitrite (NO 2 - ) and nitrous oxide (N 2 O) revealed lower N 2 O accumulation by Tetrasphaera as compared to Accumulibacter and Competibacter when multiple electron acceptors were added. Electron competition was observed during the addition of multiple nitrogen electron acceptors species, where P uptake appeared to be slightly favoured over glycogen production in these situations. This study increases our understanding of the role of Tetrasphaera-related organisms in denitrifying EBPR systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Phragmites australis + Typha latifolia Community Enhanced the Enrichment of Nitrogen and Phosphorus in the Soil of Qin Lake Wetland

    Directory of Open Access Journals (Sweden)

    Zhiwei Ge

    2017-01-01

    Full Text Available Aquatic plants play an essential role and are effective in mitigating lake eutrophication by forming complex plant-soil system and retaining total nitrogen (TN and phosphorus (TP in soils to ultimately reduce their quantities in aquatic systems. Two main vegetation types (Phragmites australis community and P. australis + Typha latifolia community of Qin Lake wetland were sampled in this study for the analysis of TN and TP contents and reserves in the wetland soils. The results showed that (1 the consumption effect of Qin Lake wetland on soluble N was much more significant than on soluble P. (2 The efficiency of TN enrichment in wetland soil was enhanced by vegetation covering of P. australis and T. latifolia. (3 Wetland soil P was consumed by P. australis community and this pattern was relieved with the introduction of T. latifolia. (4 According to the grey relativity analysis, the most intensive interaction between plants and soil occurred in summer. In addition, the exchange of N in soil-vegetation system primarily occurred in the 0–15 cm soil layer. Our results indicated that vegetation covering was essential to the enrichment of TN and TP, referring to the biology-related fixation in the wetland soil.

  9. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    Science.gov (United States)

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure.

  10. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    Science.gov (United States)

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability.

    Science.gov (United States)

    Luo, Shaojuan; Zhao, Jinlai; Zou, Jifei; He, Zhiliang; Xu, Changwen; Liu, Fuwei; Huang, Yang; Dong, Lei; Wang, Lei; Zhang, Han

    2018-01-31

    With the rapid development of portable electronics, solid-state flexible supercapacitors (SCs) are considered as one of the promising energy devices in powering electronics because of their intrinsic advantages. Polypyrrole (PPy) is an ideal electrode material in constructing flexible SCs owing to its high electrochemical activity and inherent flexibility, although its relatively low capacitance and poor cycling stability are still worthy of improvement. Herein, through the innovative introduction of black phosphorus (BP) nanosheets, we developed a laminated PPy/BP self-standing film with enhanced capacitance and cycling stability via a facile one-step electrochemical deposition method. The film exhibits a high capacitance of 497.5 F g -1 (551.7 F cm -3 ) and outstanding cycling stability of 10 000 charging/discharging cycles, thanks to BP nanosheets inducing laminated assembly which hinder dense and disordered stacking of PPy during electrodeposition, consequently providing a precise pathway for ion diffusion and electron transport together with alleviation of the structural deterioration during charge/discharge. The flexible SC fabricated by laminated films delivers a high capacitance of 452.8 F g -1 (7.7 F cm -3 ) besides its remarkable mechanical flexibility and cycling stability. Our facile strategy paves the way to improve the electrochemical performance of PPy-based SC that could serve as promising flexible energy device for portable electronics.

  12. Psychosocial Pain Management Moderation: The Limit, Activate, and Enhance Model.

    Science.gov (United States)

    Day, Melissa A; Ehde, Dawn M; Jensen, Mark P

    2015-10-01

    There is a growing emphasis in the pain literature on understanding the following second-order research questions: Why do psychosocial pain treatments work? For whom do various treatments work? This critical review summarizes research that addresses the latter question and proposes a moderation model to help guide future research. A theoretical moderation framework for matching individuals to specific psychosocial pain interventions has been lacking. However, several such frameworks have been proposed in the broad psychotherapy and implementation science literature. Drawing on these theories and adapting them specifically for psychosocial pain treatment, here we propose a Limit, Activate, and Enhance model of pain treatment moderation. This model is unique in that it includes algorithms not only for matching treatments on the basis of patient weaknesses but also for directing patients to interventions that build on their strengths. Critically, this model provides a basis for specific a priori hypothesis generation, and a selection of the possible hypotheses drawn from the model are proposed and discussed. Future research considerations are presented that could refine and expand the model based on theoretically driven empirical evidence. The Limit, Activate, and Enhance model presented here is a theoretically derived framework that provides an a priori basis for hypothesis generation regarding psychosocial pain treatment moderators. The model will advance moderation research via its unique focus on matching patients to specific treatments that (1) limit maladaptive responses, (2) activate adaptive responses, and (3) enhance treatment outcomes based on patient strengths and resources. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus removal.

    Science.gov (United States)

    Kim, Jeong Myeong; Lee, Hyo Jung; Lee, Dae Sung; Jeon, Che Ok

    2013-03-01

    To characterize the denitrifying phosphorus (P) uptake properties of "Candidatus Accumulibacter phosphatis," a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of "Ca. Accumulibacter" and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized "Ca. Accumulibacter" subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and "Candidatus Competibacter phosphatis" [from 16.4% to 20.0%]), while the overall "Ca. Accumulibacter" abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the "Ca. Accumulibacter" clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all "Ca. Accumulibacter" clades successfully took up phosphorus in the presence of nitrate. However, the "Ca. Accumulibacter" clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by "Ca. Accumulibacter" clades occurred when nitrite was added. These results suggest that the "Ca. Accumulibacter" cells lack nitrate reduction capabilities and that P uptake by "Ca. Accumulibacter" is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and "Ca. Competibacter."

  14. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  15. A metagenome of a full-scale microbial community carrying out Enhanced Biological Phosphorus Removal

    DEFF Research Database (Denmark)

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc

    2012-01-01

    in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without....... The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity....

  16. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.

    Science.gov (United States)

    Zhu, Wenqi; Crozier, Kenneth B

    2014-10-14

    Plasmonic nanostructures enable light to be concentrated into nanoscale 'hotspots', wherein the intensity of light can be enhanced by orders of magnitude. This plasmonic enhancement significantly boosts the efficiency of nanoscale light-matter interactions, enabling unique linear and nonlinear optical applications. Large enhancements are often observed within narrow gaps or at sharp tips, as predicted by the classical electromagnetic theory. Only recently has it become appreciated that quantum mechanical effects could emerge as the feature size approaches atomic length-scale. Here we experimentally demonstrate, through observations of surface-enhanced Raman scattering, that the emergence of electron tunnelling at optical frequencies limits the maximum achievable plasmonic enhancement. Such quantum mechanical effects are revealed for metallic nanostructures with gap-widths in the single-digit angstrom range by correlating each structure with its optical properties. This work furthers our understanding of quantum mechanical effects in plasmonic systems and could enable future applications of quantum plasmonics.

  17. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.

    Science.gov (United States)

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y; Rentzepis, Peter M; Yuan, Joshua S

    2016-12-13

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.

  18. Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure.

    Science.gov (United States)

    Ding, Yi-Min; Shi, Jun-Jie; Xia, Congxin; Zhang, Min; Du, Juan; Huang, Pu; Wu, Meng; Wang, Hui; Cen, Yu-Lang; Pan, Shu-Hang

    2017-10-05

    To enhance the low hole mobility (∼40 cm 2 V -1 s -1 ) of InSe monolayer, a novel two-dimensional (2D) van der Waals heterostructure made of InSe and black phosphorus (BP) monolayers with high hole mobility (∼10 3 cm 2 V -1 s -1 ) has been constructed and its structural and electronic properties are investigated using first-principles calculations. We find that the InSe/BP heterostructure exhibits a direct band gap of 1.39 eV and type-II band alignment with electrons (holes) located in the InSe (BP) layer. The band offsets of InSe and BP are 0.78 eV for the conduction band minimum and 0.86 eV for the valence band maximum, respectively. Surprisingly, the hole mobility in the InSe/BP heterostructure exceeds 10 4 cm 2 V -1 s -1 , which is one order of magnitude larger than the hole mobility of BP and three orders larger than that of the InSe monolayer. The electron mobility is also increased to 3 × 10 3 cm 2 V -1 s -1 . The physical reason has been analyzed deeply, and a universal method is proposed to improve the carrier mobility of 2D materials by forming heterostructures with them and other 2D materials with complementary properties. The InSe/BP heterostructure can thus be widely used in nanoscale InSe-based field-effect transistors, photodetectors and photovoltaic devices due to its type-II band alignment and high carrier mobility.

  19. Slow light enhancement and limitations in periodic media

    DEFF Research Database (Denmark)

    Grgic, Jure

    in the vicinity of the band edge. The minimum attainable group velocity will depend on the amount of imperfections. Since imperfections are inherited as part of any periodic structure it is necessary to take them into account when we are interested in slow light applications. Slowly propagating light gives rise......Properties of periodic dielectric media have attracted a big interest in the last two decades due to numerous exciting physical phenomena that cannot occur in homogeneous media. Due to their strong dispersive properties, the speed of light can be significantly slowed down in periodic structures....... When light velocity is much smaller than the speed of light in a vacuum, we describe this phenomena as slow light. In this thesis, we analyze important properties of slow light enhancement and limitations in periodic structures. We analyze quantitatively and qualitatively different technologies...

  20. Limitations to CO2-induced growth enhancement in pot studies.

    Science.gov (United States)

    McConnaughay, K D M; Berntson, G M; Bazzaz, F A

    1993-07-01

    Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.

  1. Performance limits of plasmon-enhanced organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karatay, Durmus U.; Ginger, David S., E-mail: ginger@chem.washington.edu [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Salvador, Michael [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Yao, Kai [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Jen, Alex K.-Y. [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-07-21

    We use a combination of experiment and modeling to explore the promise and limitations of using plasmon-resonant metal nanoparticles to enhance the device performance of organic photovoltaics (OPVs). We focus on optical properties typical of the current generation of low-bandgap donor polymers blended with the fullerene (6,6)-phenyl C{sub 71}-butyric acid methyl ester (PC{sub 71}BM) and use the polymer poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline) (PIDT-PhanQ) as our test case. We model the optical properties and performance of these devices both in the presence and absence of a variety of colloidal silver nanoparticles. We show that for these materials, device performance is sensitive to the relative z-position and the density of nanoparticles inside the active layer. Using conservative estimates of the internal quantum efficiency for the PIDT-PhanQ/PC{sub 71}BM blend, we calculate that optimally placed silver nanoparticles could yield an enhancement in short-circuit current density of over 31% when used with ∼ 80-nm-thick active layers, resulting in an absolute increase in power conversion efficiency of up to ∼2% for the device based on optical engineering.

  2. Laser-enhanced ionization spectroscopy around the ionization limit

    International Nuclear Information System (INIS)

    Axner, O.; Berglind, T.; Sjoestroem, S.

    1986-01-01

    Laser-induced photoionization and Laser-Enhanced collision Ionization (LEI) of Na, Tl, and Li in flames are detected by measuring the production of charges following a laser excitation. The ionization signal is investigated for excitations of the atoms from lower lying states both to Rydberg states close to the ionization limit, as well as to continuum states, i.e. the process of collision ionization is compared with that of photoionization. The qualitative behaviour of the ionization signal when scanning across the ionization limit is studied. It is shown that the ionization signal has a smooth behaviour when passing from bound states into continuum states. The laser-induced photoionization signal strength of atoms in flames is both calculated and measured and a good agreement is obtained. A calculation of wavelength dependent photoionization signal strengths for a number of elements is also presented. Photoionization is used to determine flame- and geometry-dependent parameters. An implication of photoionization in connection with LEI spectrometry for trace element analysis is that there will be a significant increase in background noise if the sample contains high concentrations of easily photoionizing elements and short wavelength light is used. (orig.)

  3. The modelling of irradiation-enhanced phosphorus segregation in neutron irradiated reactor pressure vessel submerged-arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.G.; English, C.A.; Foreman, A.J.E.; McElroy, R.J.; Vatter, I.A. [AEA Technology, Didcot (United Kingdom). Harwell Lab.; Bolton, C.J.; Buswell, J.T.; Jones, R.B. [Nuclear Electric, Berkeley (United Kingdom). Berkeley Technology Centre

    1996-12-31

    Recent results on neutron-irradiated RPV submerged-arc welds have revealed grain boundary segregation of phosphorus during irradiation, which may lead to intergranular fracture. However, the experimental database is insufficient to define the dependence of the process on variables such ad dose, dose-rate and temperature. This paper describes work in which two existing models of phosphorus segregation, under thermal or irradiation conditions, have been developed to obtain predictions of these dependencies. The critical parameters in the models have been adjusted to give consistency with the available reference data, and predictions have been made of the dependence of segregation on a number of variables.

  4. Influence of integrated phosphorus supply and plant growth ...

    African Journals Online (AJOL)

    To guarantee a sufficient phosphorus supply for plants, a rapid and permanent mobilization of phosphorus from the labile phosphorus fractions is necessary, because phosphorus concentrations in soil solution are generally low. Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance ...

  5. Phosphorus in agricultural soils:

    NARCIS (Netherlands)

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  6. Wastewater resource recovery via the Enhanced Biological Phosphorus Removal and Recovery (EBP2R) process coupled with green microalgae cultivation

    DEFF Research Database (Denmark)

    Valverde Perez, Borja

    compatible to interface with ASM-2d. Therefore, the third part of the PhD project focusses on the development of a process model for micro-algal growth and substrate storage kinetics (referred to as ASM-A). To facilitate the integration in already well-stablished simulation platforms for wastewater treatment......, e.g., the Benchmark Simulation Models 1 and 2, ASM-A was implemented as an extension to the ASM-2d. A set of experiments at different laboratory-scales (microbatch, 1-litre and 24-litre SBR) was designed to generate data for model identification. Furthermore, an independent data set was used...... for model evaluation. The ASM-A can effectively predict the algal biomass growth, as well as the ammonium and phosphorus concentrations in the bulk liquid and the microbial stored phosphorus. Conversely, our results suggest that the maximum uptake rate parameter for nitrate can be significantly affected...

  7. Enhanced electrical activation of Zn and Be implants in GaAs by the co-implantation of phosphorus

    International Nuclear Information System (INIS)

    Tang, A.C.T.; Sealy, B.J.; Rezazadeh, A.A.

    1989-01-01

    In this paper, we report that, through the use of rapid thermal annealing (RTA) and the co-implantation of phosphorus, an effective way of preventing the in- and out-diffusion of zinc and beryllium has been achieved in GaAs. This is of particular significance in the case of the beryllium implanted samples because, to date, there has been no method for preventing the out-diffusion of beryllium atoms at high annealing temperatures. We have observed that the reverse annealing behaviour of the Be-implanted samples has been modified after the co-implantation of phosphorus. Furthermore, abrupt electrical profiles with hole concentrations of the order of 6x10 19 cm -3 have been achieved with the Zn+P implants after annealing at 850 0 C for 30 s. (author)

  8. Magnetic-field enhancement beyond the skin-depth limit

    Science.gov (United States)

    Shin, Jonghwa; Park, Namkyoo; Fan, Shanhui; Lee, Yong-Hee

    2010-02-01

    Electric field enhancement has been actively studied recently and many metallic structures that are capable of locally enhancing electric field have been reported. The Babinet's principle can be utilized, especially in the form of Booker's extension, to transform the known electric field enhancing structures into magnetic field enhancing structures. The authors explain this transformation process and discuss the regime in which this principle breaks down. Unless the metals used can be well approximated with a PEC model, the principle's predictions fails to hold true. Authors confirm this aspect using numerical simulations based on realistic material parameters for actual metals. There is large discrepancy especially when the structural dimensions are comparable or less than the skin-depth at the wavelength of interest. An alternative way to achieve magnetic field enhancement is presented and the design of a connected bow-tie structure is proposed as an example. FDTD simulation results confirm the operation of the proposed structure.

  9. Quasistatic limit for plasmon-enhanced optical chirality

    Science.gov (United States)

    Finazzi, Marco; Biagioni, Paolo; Celebrano, Michele; Duò, Lamberto

    2015-05-01

    We discuss the possibility of enhancing the chiroptical response from molecules uniformly distributed around nanostructures that sustain localized plasmon resonances. We demonstrate that the average optical chirality in the near field of any plasmonic nanostructure cannot be significantly higher than that in a plane wave. This conclusion stems from the quasistatic nature of the nanoparticle-enhanced electromagnetic fields and from the fact that, at optical frequencies, the magnetic response of matter is much weaker than the electric one.

  10. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    Science.gov (United States)

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland

  11. Comparative X-ray photoelectron spectroscopy study of plasma enhanced chemical vapor deposition and micro pressure chemical vapor deposition of phosphorus silicate glass layers after rapid thermal annealing

    International Nuclear Information System (INIS)

    Beshkov, G.; Krastev, V.; Gogova, D.; Talik, E.; Adamies, M.

    2008-01-01

    In this paper the bonding state of Phosphorus Silicate Glass (PSG) layers obtained by two different technological approaches, i.e. in two types of reactors: Plasma Enhanced Chemical Vapor Deposition (PECVD) and Micro Pressure Chemical Vapor Deposition (MPCVD) are investigated employing XPS and AES. The PSG layers are deposited at 380 0 C and 420 0 C in corresponding reactors. XPS and AES analyses show that Si2p peak recorded from PECVD layers are not as expected at their position characteristics of silicon dioxide but instead they are at the characteristic of elemental silicon. Plasma enhancement during deposition leads to less oxidized and more inhomogeneous layer. After rapid thermal annealing the Si2p peak is situated at position characteristic of silicon dioxide. (authors)

  12. The challenges of modelling phosphorus in a headwater catchment: Applying a 'limits of acceptability' uncertainty framework to a water quality model

    Science.gov (United States)

    Hollaway, M. J.; Beven, K. J.; Benskin, C. McW. H.; Collins, A. L.; Evans, R.; Falloon, P. D.; Forber, K. J.; Hiscock, K. M.; Kahana, R.; Macleod, C. J. A.; Ockenden, M. C.; Villamizar, M. L.; Wearing, C.; Withers, P. J. A.; Zhou, J. G.; Barber, N. J.; Haygarth, P. M.

    2018-03-01

    There is a need to model and predict the transfer of phosphorus (P) from land to water, but this is challenging because of the large number of complex physical and biogeochemical processes involved. This study presents, for the first time, a 'limits of acceptability' approach of the Generalized Likelihood Uncertainty Estimation (GLUE) framework to the Soil and Water Assessment Tool (SWAT), in an application to a water quality problem in the Newby Beck catchment (12.5 km2), Cumbria, United Kingdom (UK). Using high frequency outlet data (discharge and P), individual evaluation criteria (limits of acceptability) were assigned to observed discharge and P loads for all evaluation time steps, identifying where the model was performing well/poorly and to infer which processes required improvement in the model structure. Initial limits of acceptability were required to be relaxed by a substantial amount (by factors of between 5.3 and 6.7 on a normalized scale depending on the evaluation criteria used) in order to gain a set of behavioral simulations (1001 and 1016, respectively out of 5,000,000). Of the 39 model parameters tested, the representation of subsurface processes and associated parameters, were consistently shown as critical to the model not meeting the evaluation criteria, irrespective of the chosen evaluation metric. It is therefore concluded that SWAT is not an appropriate model to guide P management in this catchment. This approach highlights the importance of high frequency monitoring data for setting robust model evaluation criteria. It also raises the question as to whether it is possible to have sufficient input data available to drive such models so that we can have confidence in their predictions and their ability to inform catchment management strategies to tackle the problem of diffuse pollution from agriculture.

  13. Paleolimnological assessment of nutrient enrichment on diatom assemblages in a priori defined nitrogen- and phosphorus-limited lakes downwind of the Athabasca Oil Sands, Canada

    Directory of Open Access Journals (Sweden)

    Kathleen R. Laird

    2017-04-01

    Full Text Available As the industrial footprint of the Athabasca Oil Sands Region (AOSR continues to expand, concern about the potential impacts of pollutants on the surrounding terrestrial and aquatic ecosystems need to be assessed. An emerging issue is whether recent increases in lake production downwind of the development can be linked to AOSR activities, and/or whether changing climatic conditions are influencing lake nutrient status. To decipher the importance of pollutants, particularly atmospheric deposition of reactive nitrogen (Nr, and the effects of climate change as potential sources of increasing lake production, lakes from both within and outside of the nitrogen deposition zone were analyzed for historical changes in diatom assemblages. Lake sediment cores were collected from a priori defined nitrogen (N - and phosphorus (P - limited lakes within and outside the N plume associated with the AOSR. Diatom assemblages were quantified at sub-decadal resolution since ca. 1890 to compare conditions prior to oil sands expansion and regional climate warming, to the more recent conditions in each group of lakes (Reference and Impacted, N- and P-limited lakes. Analyses of changes in assemblage similarity and species turnover indicates that changes in diatom assemblages were minimal both within and across all lake groups.  Small changes in percent composition of planktonic taxa, particularly small centric taxa (Discostella and Cyclotella species and pennate taxa, such as Asterionella formosa and Fragilaria crotonensis, occurred in some of the lakes. While these changes were consistent with potential climate effects on algal growth, water column stability and other factors; the timing and direction of biotic changes were variable among sites suggesting that any apparent response to climate was lake dependent. The absence of a consistent pattern of diatom changes associated with receipt of reactive nitrogen or intrinsic nutrient-limitation status of the lake

  14. Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study.

    Science.gov (United States)

    Everaert, Maarten; da Silva, Rodrigo C; Degryse, Fien; McLaughlin, Mike J; Smolders, Erik

    2018-03-01

    The enrichment of P in surface waters has been linked to P runoff from agricultural fields amended with fertilizers. Novel slow-release mineral fertilizers, such as struvite and P-exchanged layered double hydroxides (LDHs), have received increasing attention for P recycling from waste streams, and these fertilizers may potentially reduce the risk of runoff losses. Here, a rainfall simulation experiment was performed to evaluate P runoff associated with the application of recycled slow-release fertilizers relative to that of a soluble fertilizer. Monoammonium phosphate (MAP), struvite, and LDH granular fertilizers were broadcasted at equal total P doses on soil packed in trays (5% slope) and covered with perennial ryegrass ( L.). Four rainfall simulation events of 30 min were performed at 1, 5, 15, and 30 d after the fertilizer application. Runoff water from the trays was collected, filtered, and analyzed for dissolved P. For the MAP treatment, P runoff losses were high in the first two rain events and leveled off in later rain events. In total, 42% of the applied P in the MAP treatment was lost due to runoff. In the slow-release fertilizer treatments, P runoff losses were limited to 1.9 (struvite) and 2.4% (LDH) of the applied doses and were more similar over the different rain events. The use of these novel P fertilizer forms could be beneficial in areas with a high risk of surface water eutrophication and a history of intensive fertilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Fundamental Limitations to Gain Enhancement in Periodic Media and Waveguides

    DEFF Research Database (Denmark)

    Grgic, Jure; Ott, Johan Raunkjær; Wang, Fengwen

    2012-01-01

    A common strategy to compensate for losses in optical nanostructures is to add gain material in the system. By exploiting slow-light effects it is expected that the gain may be enhanced beyond its bulk value. Here we show that this route cannot be followed uncritically: inclusion of gain inevitably...

  16. Approaches to the dimensioning of enhanced biological phosphorus elimination systems, taking dynamic simulation into account; Bemessungshinweise zur vermehrten biologischen Phosphorelimination unter Beruecksichtigung der dynamischen Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, H

    1998-12-31

    With so many projects either planned or under construction, the question of the dimensioning of sewage treatment plants with enhanced biological phosphorus elimination (BIO-P) is becoming more and more important. A detailed search of literature established in how far dimensioning approaches or models were already available in the spring of 1994. These modelling approaches were critically examined and compared as to their practical applicability by means of parameter and sensitivity studies. For this purpose, they were programmed and the relevance of certain dimensioning parameters to biological phosphorus elimination was studied by means of a pilot plant. (orig./SR) [Deutsch] Der Auslegung von Klaeranlagen mit vermehrter biologischer Phosphorelimination (BIO-P) kommt bei der Vielzahl von Planungs- und Baumassnahmen eine immer wichtigere Bedeutung zu. Inwieweit fuer die Bemessung von Klaeranlagen mit BIO-P im Fruehjahr 1994 bereits auf vorhandene Bemessungsansaetze und -modelle zurueckgegriffen werden konnte, wurde mittels einer detaillierten Literaturstudie, untersucht. Diese Modellansaetze wurden im Hinblick auf ihre praxisorietierte Anwendbarkeit durch Parameter- und Sensitivitaetsstudien kritisch untersucht und verglichen. Hierzu wurden die verschiedenen, zum damaligen Zeitpunkt vorhandenen Ansaetze programmiert und die Auswirkungen wichtiger bemessungsrelevanter Parameter auf die BIO-P anhand einer Modellklaeranlage abgeschaetzt. (orig./SR)

  17. Approaches to the dimensioning of enhanced biological phosphorus elimination systems, taking dynamic simulation into account; Bemessungshinweise zur vermehrten biologischen Phosphorelimination unter Beruecksichtigung der dynamischen Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, H.

    1997-12-31

    With so many projects either planned or under construction, the question of the dimensioning of sewage treatment plants with enhanced biological phosphorus elimination (BIO-P) is becoming more and more important. A detailed search of literature established in how far dimensioning approaches or models were already available in the spring of 1994. These modelling approaches were critically examined and compared as to their practical applicability by means of parameter and sensitivity studies. For this purpose, they were programmed and the relevance of certain dimensioning parameters to biological phosphorus elimination was studied by means of a pilot plant. (orig./SR) [Deutsch] Der Auslegung von Klaeranlagen mit vermehrter biologischer Phosphorelimination (BIO-P) kommt bei der Vielzahl von Planungs- und Baumassnahmen eine immer wichtigere Bedeutung zu. Inwieweit fuer die Bemessung von Klaeranlagen mit BIO-P im Fruehjahr 1994 bereits auf vorhandene Bemessungsansaetze und -modelle zurueckgegriffen werden konnte, wurde mittels einer detaillierten Literaturstudie, untersucht. Diese Modellansaetze wurden im Hinblick auf ihre praxisorietierte Anwendbarkeit durch Parameter- und Sensitivitaetsstudien kritisch untersucht und verglichen. Hierzu wurden die verschiedenen, zum damaligen Zeitpunkt vorhandenen Ansaetze programmiert und die Auswirkungen wichtiger bemessungsrelevanter Parameter auf die BIO-P anhand einer Modellklaeranlage abgeschaetzt. (orig./SR)

  18. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    Science.gov (United States)

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  19. Phosphorus Enhanced Intermolecular Interactions of SnO2 and Graphene as an Ultrastable Lithium Battery Anode.

    Science.gov (United States)

    Zhang, Lei; Zhao, Kangning; Yu, Ruohan; Yan, Mengyu; Xu, Wangwang; Dong, Yifan; Ren, Wenhao; Xu, Xu; Tang, Chunjuan; Mai, Liqiang

    2017-05-01

    SnO 2 suffers from fast capacity fading in lithium-ion batteries due to large volume expansion as well as unstable solid electrolyte interphase. Herein, the design and synthesis of phosphorus bridging SnO 2 and graphene through covalent bonding are demonstrated to achieve a robust structure. In this unique structure, the phosphorus is able to covalently "bridge" graphene and tin oxide nanocrystal through PC and SnOP bonding, respectively, and act as a buffer layer to keep the structure stable during charging-discharging. As a result, when applied as a lithium battery anode, SnO 2 @P@GO shows very stable performance and retains 95% of 2nd capacity onward after 700 cycles. Such unique structural design opens up new avenues for the rational design of other high-capacity materials for lithium battery, and as a proof-of-concept, creates new opportunities in the synthesis of advanced functional materials for high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils

    International Nuclear Information System (INIS)

    Pan Gang; Li Lei; Zhao Dongye; Chen Hao

    2010-01-01

    Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized 'nanomagnetite' could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase. - CMC-stabilized magnetite nanoparticles can effectively penetrate soil columns and immobilize phosphate in situ.

  1. Online Nutrition Education: Enhancing Opportunities for Limited-Resource Learners

    Science.gov (United States)

    Case, Patty; Cluskey, Mary; Hino, Jeff

    2011-01-01

    Delivering nutrition education using the Internet could allow educators to reach larger audiences at lower cost. Low-income adults living in a rural community participated in focus groups to examine their interest in, experience with, and motivators to accessing nutrition education online. This audience described limited motivation in seeking…

  2. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA.

    Science.gov (United States)

    Lin, Xueju; Tfaily, Malak M; Steinweg, J Megan; Chanton, Patrick; Esson, Kaitlin; Yang, Zamin K; Chanton, Jeffrey P; Cooper, William; Schadt, Christopher W; Kostka, Joel E

    2014-06-01

    This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at

  3. Enhanced optical limiting effect in fluorine-functionalized graphene oxide

    Science.gov (United States)

    Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang

    2017-09-01

    Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.

  4. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: a review of the theory, methodologies, and limitations

    International Nuclear Information System (INIS)

    Di, H. J.; Cameron, K. C.; McLaren, R. G.

    2000-01-01

    The rates at which nutrients are released to, and removed from, the mineral nutrient pool are important in regulating the nutrient supply to plants. These nutrient transformation rates need to be taken into account when developing nutrient management strategies for economical and sustainable production. A method that is gaining popularity for determining the gross transformation rates of nutrients in the soil is the isotopic dilution technique. The technique involves labelling a soil mineral nutrient pool, e.g. NH 4 + , NO 3 - , PO 4 3- , or SO 4 2- , and monitoring the changes with time of the size of the labelled nutrient pool and the excess tracer abundance (atom %, if stable isotope tracer is used) or specific activity (if radioisotope is used) in the nutrient pool. Because of the complexity of the concepts and procedures involved, the method has sometimes been used incorrectly, and results misinterpreted. This paper discusses the isotopic dilution technique, including the theoretical background, the methodologies to determine the gross flux rates of nitrogen, phosphorus, and sulfur, and the limitations of the technique. The assumptions, conceptual models, experimental procedures, and compounding factors are discussed. Possible effects on the results by factors such as the uniformity of tracer distribution in the soil, changes in soil moisture content, substrate concentration, and aeration status, and duration of the experiment are also discussed. The influx and out-flux transformation rates derived from this technique are often contributed by several processes simultaneously, and thus cannot always be attributed to a particular nutrient transformation process. Despite the various constraints or possible compounding factors, the technique is a valuable tool that can provide important quantitative information on nutrient dynamics in the soil-plant system. Copyright (2000) CSIRO Publishing

  5. The better human, the better than human: Limits of enhancement

    Directory of Open Access Journals (Sweden)

    Krstić Predrag

    2012-01-01

    Full Text Available Using the representations of science, fiction and science fiction, this article attempts to sketch out a certain line of development in the history of representation of the enhanced human. First it was thought that chemicals could temporarily or permanently improve his natural abilities, then artificial substitutes, inserts and accessories dominated the vision of his improvement. The most recent possibility announced is the fundamental morphological transformation of his biological composition into a completely unrecognizable, amorphous “entity” capable of taking any form. This trajectory of “improvement” of human capacities could be regarded as a gradual advancement in the realization of the pledge of traditional humanism: that man is special precisely for being able to become anything he chooses. [Projekat Ministarstva nauke Republike Srbije, br. 41004: Retke bolesti: molekularna patofiziologija, dijagnostički i terapijski modaliteti i socijalni, etički i pravni aspekti

  6. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress.

    Science.gov (United States)

    Chu, Fei-Fei; Chu, Pei-Na; Shen, Xiao-Fei; Lam, Paul K S; Zeng, Raymond J

    2014-01-01

    In order to study the effect of phosphorus on biodiesel production from Scenedesmus obliquus especially under nitrogen deficiency conditions, six types of media with combinations of nitrogen repletion/depletion and phosphorus repletion/limitation/depletion were investigated in this study. It was found that nitrogen starvation compared to nitrogen repletion enhanced biodiesel productivity. Moreover, biodiesel productivity was further strengthened by varying the supply level of phosphorus from depletion, limitation, through to repletion. The maximum FAMEs productivity of 24.2 mg/L/day was obtained in nitrogen depletion with phosphorus repletion, which was two times higher than that in nutrient complete medium. More phosphorus was accumulated in cells under the nitrogen starvation with sufficient phosphorus condition, but no polyphosphate was formed. This study indicated that nitrogen starvation plus sufficient P supply might be the real "lipid trigger". Furthermore, results of the current study suggest a potential application for utilizing microalgae to combine phosphorus removal from wastewater with biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Environmental Phosphorus Recovery Based on Molecular Bioscavengers

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix

    Phosphorus is a ubiquitous element of all known life and as such it is found throughout numerous key molecules related to various cellular functions. The supply of phosphorus is tightly linked to global food security, since phosphorus is used to produce agricultural fertilizers, without which...... it would not be possible to feed the world population. Sadly, the current supply of phosphorus is based on the gradual depletion of limited fossil reserves, and some estimates predict that within 15-25 years we will consume more phosphorus than we can produce. There is therefore a strong international...... pressure to develop sustainable phosphorus practices as well as new technologies for phosphorus recovery. Nature has spent billions of years refining proteins that interact with phosphates. This has inspired the present work where the overall ambitions are: to facilitate the development of a recovery...

  8. Enhanced optical limiting effects of graphene materials in polyimide

    International Nuclear Information System (INIS)

    Gan, Yao; Feng, Miao; Zhan, Hongbing

    2014-01-01

    Three different graphene nanostructure suspensions of graphene oxide nanosheets (GONSs), graphene oxide nanoribbons (GONRs), and graphene oxide quantum dots (GOQDs) are prepared and characterized. Using a typical two-step method, the GONSs, GONRs, and GOQDs are incorporated into a polyimide (PI) matrix to synthesize graphene/PI composite films, whose nonlinear optical (NLO) and optical limiting (OL) properties are investigated at 532 nm in the nanosecond regime. The GONR suspension exhibits superior NLO and OL effects compared with those of GONSs and GOQDs because of its stronger nonlinear scattering and excited-state absorption. The graphene/PI composite films exhibit NLO and OL performance superior to that of their corresponding suspensions, which is attributed primarily to a combination of nonlinear mechanisms, charge transfer between graphene materials and PI, and the matrix effect

  9. Recovery rates, enhanced oil recovery and technological limits.

    Science.gov (United States)

    Muggeridge, Ann; Cockin, Andrew; Webb, Kevin; Frampton, Harry; Collins, Ian; Moulds, Tim; Salino, Peter

    2014-01-13

    Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.

  10. The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery.

    Science.gov (United States)

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-15

    Extensive research in recent years has explored numerous new features in the forward osmosis membrane bioreactor (FOMBR) process. However, there is an aspect, which is revolutionary but not yet been investigated. In FOMBR, FO membrane shows high rejection for a wide range of soluble contaminants. As a result, hydraulic retention time (HRT) does not correctly reflect the nominal retention of these dissolved contaminants in the bioreactor. This decoupling of contaminants retention time (CRT, i.e. the nominal retention of the dissolved contaminants) from HRT endows FOMBR a potential in significantly reducing the HRT for wastewater treatment. In this work, we report our results in this unexplored treatment potential. Using real municipal wastewater as feed, both a hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) and a newly developed hybrid biofilm-forward osmosis membrane bioreactor (BF-FOMBR) achieved high removal of organic matter and nitrogen under HRT of down to 2.0 h, with significantly enhanced phosphorus recovery capacities. In the BF-FOMBR, the used of fixed bed biofilm not only obviated the need of additional solid/liquid separation (e.g. MF) to extract the side-stream for salt accumulation control and phosphorus recovery, but effectively quarantined the biomass from the FO membrane. The absence of MF in the side-stream further allowed suspended growth to be continuously removed from the system, which produced a selection pressure for the predominance of attached growth. As a result, a significant reduction in FO membrane fouling (by 24.7-54.5%) was achieved in the BF-FOMBR due to substantially reduced bacteria deposition and colonization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Genomic and in Situ Analyses Reveal the Micropruina spp. as Abundant Fermentative Glycogen Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems

    Directory of Open Access Journals (Sweden)

    Simon J. McIlroy

    2018-05-01

    Full Text Available Enhanced biological phosphorus removal (EBPR involves the cycling of biomass through carbon-rich (feast and carbon-deficient (famine conditions, promoting the activity of polyphosphate accumulating organisms (PAOs. However, several alternate metabolic strategies, without polyphosphate storage, are possessed by other organisms, which can compete with the PAO for carbon at the potential expense of EBPR efficiency. The most studied are the glycogen accumulating organisms (GAOs, which utilize aerobically stored glycogen to energize anaerobic substrate uptake and storage. In full-scale systems the Micropruina spp. are among the most abundant of the proposed GAO, yet little is known about their ecophysiology. In the current study, genomic and metabolomic studies were performed on Micropruina glycogenica str. Lg2T and compared to the in situ physiology of members of the genus in EBPR plants using state-of-the-art single cell techniques. The Micropruina spp. were observed to take up carbon, including sugars and amino acids, under anaerobic conditions, which were partly fermented to lactic acid, acetate, propionate, and ethanol, and partly stored as glycogen for potential aerobic use. Fermentation was not directly demonstrated for the abundant members of the genus in situ, but was strongly supported by the confirmation of anaerobic uptake of carbon and glycogen storage in the absence of detectable polyhydroxyalkanoates or polyphosphate reserves. This physiology is markedly different from the classical GAO model. The amount of carbon stored by fermentative organisms has potentially important implications for phosphorus removal – as they compete for substrates with the Tetrasphaera PAO and stored carbon is not made available to the “Candidatus Accumulibacter” PAO under anaerobic conditions. This study shows that the current models of the competition between PAO and GAO are too simplistic and may need to be revised to take into account the impact of

  12. Effect of high-dose phytase and citric acid, alone or in combination, on growth performance of broilers given diets severely limited in available phosphorus.

    Science.gov (United States)

    Taheri, H R; Jabbari, Z; Adibnia, S; Shahir, M H; Hosseini, S A

    2015-01-01

    1. Two trials were conducted to evaluate the effect of high-dose phytase alone or in combination with citric acid (CA) in the diet severely limited in available phosphorus (P) on performance, plasma P and plasma Ca of broilers from 22 to 42 d of age. 2. In Trial 1, 297 21-d-old female chicks were placed into 27 pens and allocated to 9 maize-soybean meal-based dietary treatments, which were a positive control [PC, 4.23 g/kg non-phytate P (NPP)] and 8 negative control (NC, 1.35 g/kg NPP) groups consisting of two concentrations of CA (0 and 20 g/kg) and 4 concentrations of phytase (0, 1000, 2000 and 4000 U/kg) in a 2 × 4 factorial arrangement. In Trial 2, 192 21-d-old male chicks were placed into 24 pens and allocated to 6 wheat-canola meal-based dietary treatments, which were a PC (4.2 g/kg NPP), a NC (1.68 g/kg NPP) and 4 NC groups consisting of two concentrations of CA (0 and 20 g/kg) and two concentrations of phytase (2000 and 4000 U/kg) in a 2 × 2 factorial arrangement. 3. In both trials, birds fed on the PC had significantly higher average daily gain (ADG), average daily feed intake (ADFI), plasma P and lower feed conversion ratio (FCR) and plasma Ca than those of birds fed on the NC. CA supplementation significantly increased ADG and ADFI. There was a significant interaction between CA and phytase on plasma P where CA improved the effect of phytase on plasma P. In Trial 1, phytase addition improved ADG, ADFI, FCR and plasma Ca linearly. 4. Briefly, this research showed the interaction effect between CA and phytase on plasma P when broilers were fed on diets based on maize-soybean meal or wheat-canola meal. The results showed that CA supplementation lowered the concentration of phytase that is needed in low NPP diets to increase plasma P.

  13. Effect of high-dose phytase supplementation in broilers from 22 to 42 days post-hatch given diets severely limited in available phosphorus.

    Science.gov (United States)

    Taheri, H R; Heidari, A; Shahir, M H

    2015-01-01

    1. Two trials were conducted from 22 to 42 d post-hatch to evaluate the effectiveness of high concentrations of supplemental phytase in maize-soya bean meal-based diets severely limited in available phosphorus (P). Growth performance, plasma P and tibia ash (TA) were measured. 2. Each trial used 220 21-d-old male broilers in 20 pens with 11 birds per pen. Dietary treatments included a positive control [PC, 4.3 g/kg nonphytate P (NPP)], negative control [NC, 2.3 g/kg NPP (Trial 1) or 1.4 g/kg NPP (Trial 2)] and NC plus 1000, 2000 or 4000 phytase U/kg of the diet. 3. Birds fed on the PC diet had higher average daily gain (ADG), gain to feed ratio (G:F), plasma P (Trials 1 and 2) and TA (Trial 2) than those fed on the NC. 4. In Trial 1, ADG and G:F values of the NC plus 1000, 2000 or 4000 phytase U/kg reached those of the PC. Plasma P values of the NC plus 2000 or 4000 phytase U/kg reached that of the PC. Although TA values of the NC, NC + 1000 or NC + 2000 reached that of the PC, TA of the NC + 4000 was more than that of the PC. 5. In Trial 2, ADG and G:F values of the NC plus 4000 phytase U/kg reached those of the PC; nevertheless, plasma P values of the NC diets did not come up to that of the PC. While TA values of the NC, NC + 1000 or NC + 2000 did not reach that of the PC, TA of the NC + 4000 was greater than that of the PC. 6. Results of this study showed that, in the diets with 2.3 and 1.4 g/kg NPP, respectively, 1000 and 4000 phytase U/kg can be sufficient to obtain a comparable performance in broilers to those given diets adequate in available P.

  14. The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Majewska, Marta L; Rola, Kaja; Zubek, Szymon

    2017-02-01

    While a number of recent studies have revealed that arbuscular mycorrhizal fungi (AMF) can mediate invasive plant success, the influence of these symbionts on the most successful and high-impact invaders is largely unexplored. Two perennial herbs of this category of invasive plants, Rudbeckia laciniata and Solidago gigantea (Asteraceae), were thus tested in a pot experiment to determine whether AMF influence their growth, the concentration of phosphorus in biomass, and photosynthesis. The following treatments, including three common AMF species, were prepared on soils representative of two habitats that are frequently invaded by both plants, namely fallow and river valley: (1) control-soil without AMF, (2) Rhizophagus irregularis, (3) Funneliformis mosseae, and (4) Claroideoglomus claroideum. The invaders were strongly dependent on AMF for their growth. The mycorrhizal dependency of R. laciniata was 88 and 63 % and of S. gigantea 90 and 82 % for valley and fallow soils, respectively. The fungi also increased P concentration in their biomass. However, we found different effects of the fungal species in the stimulation of plant growth and P acquisition, with R. irregularis and C. claroideum being the most and least effective symbionts, respectively. None of AMF species had an impact on the photosynthetic performance indexes of both plants. Our findings indicate that AMF have a direct effect on the early stages of R. laciniata and S. gigantea growth. The magnitude of the response of both plant species to AMF was dependent on the fungal and soil identities. Therefore, the presence of particular AMF species in a site may determine the success of their invasion.

  15. Configuration-dependent conformational transmission in trigonal-bipyramidal phosphorus(V) compounds. Enhanced gauche (-) population around the C(5)-C(6) linkage in 6-phosphorus(V) phosphorylated tetramethyl-a-D-galactopyranoside

    NARCIS (Netherlands)

    Vries, de N.K.; Buck, H.M.

    1986-01-01

    A 300-MHz 1H NMR variable-temperature study of the 1'-phosphorylated trigonal-bipyramidal (TBP) tetrahydropyran-2-methyl model compound 4 is reported. For this compound, in which both the equatorial and axial sites undergoing phosphorus pseudorotation bear a tetrahydro-pyran-2-methyl group, a

  16. Phosphorus availability and microbial respiration across biomes :  from plantation forest to tundra

    OpenAIRE

    Esberg, Camilla

    2010-01-01

    Phosphorus is the main limiting nutrient for plant growth in large areas of the world and the availability of phosphorus to plants and microbes can be strongly affected by soil properties. Even though the phosphorus cycle has been studied extensively, much remains unknown about the key processes governing phosphorus availability in different environments. In this thesis the complex dynamics of soil phosphorus and its availability were studied by relating various phosphorus fractions and soil ...

  17. Estimate of dietary phosphorus intake using 24-h urine collection

    Science.gov (United States)

    Morimoto, Yuuka; Sakuma, Masae; Ohta, Hiroyuki; Suzuki, Akitsu; Matsushita, Asami; Umeda, Minako; Ishikawa, Makoto; Taketani, Yutaka; Takeda, Eiji; Arai, Hidekazu

    2014-01-01

    Increases in serum phosphorus levels and dietary phosphorus intake induces vascular calcification, arterial sclerosis and cardiovascular diseases. Limiting phosphorus intake is advisable, however, no assessment methods are capable of estimating dietary phosphorus intake. We hypothesized that urinary phosphorus excretion can be translated into estimation of dietary phosphorus intake, and we evaluated whether a 24-h urine collection method could estimate dietary phosphorus intake. Thirty two healthy subjects were recruited for this study. Subjects collected urine samples over 24 h and weighed dietary records. We calculated dietary protein intake and phosphorus intake from dietary records and urine collection, and investigated associations between the two methods in estimating protein and phosphorus intake. Significant positive correlations were observed between dietary records and UC for protein and phosphorus intake. The average intakes determined from dietary records were significantly higher than from urine collection for both protein and phosphorus. There was a significant positive correlation between both the phosphorus and protein difference in dietary records and urine collection. The phosphorus-protein ratio in urine collection was significantly higher than in dietary records. Our data indicated that the 24-h urine collection method can estimate the amount of dietary phosphorus intake, and the results were superior to estimation by weighed dietary record. PMID:25120281

  18. Estimation of phosphorus flux in rivers during flooding.

    Science.gov (United States)

    Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang

    2013-07-01

    Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in

  19. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  20. Enhancement drugs: are there limits to what we should enhance and why?

    Directory of Open Access Journals (Sweden)

    Hesse Morten

    2010-08-01

    Full Text Available Abstract Substances, such as alcohol, opiates and cannabis, have been used by humans for millennia. Today, a much wider range of substances are used for a range of purposes, including the enhancement of performance during university studies, sexual experiences, sports, exercise, at celebrations, socializing and the experience of art and music. Substance use is also associated with a range of harmful effects to the individual and society as a whole. Prohibitions, regulation, prevention and treatment have all been used to protect against this harm. In this commentary, it is argued that public health interventions should target relevant harms and not to evaluate which aspects of human endeavors and experiences should be enhanced and which should not. It is argued that interventions should directly target the harmful effects, using the best available evidence. Two examples are given of substances that may be altered to prevent serious harm - one for alcohol and one for cannabis. In the case of alcohol, the addition of dissolved oxygen could reduce both the risk of accidents and the risk of liver damage associated with alcohol consumption. In the case of cannabis, there is strong indication that the reduction of content Δ-tetrahydrocannabinol and the increase of cannabidiol could reduce the risk of psychoses and the addiction associated with its use. The aim of this article is to show that responsible regulation should not necessarily be restricted to preventing the use and/or (in the case of alcohol a reduction in the amounts and frequency of its use, but should also aim to include a range of other strategies that could reduce the burden of illness associated with illicit substance use.

  1. AN ILLUMINATION INVARIANT FACE RECOGNITION BY ENHANCED CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALIZATION

    Directory of Open Access Journals (Sweden)

    A. Thamizharasi

    2016-05-01

    Full Text Available Face recognition system is gaining more importance in social networks and surveillance. The face recognition task is complex due to the variations in illumination, expression, occlusion, aging and pose. The illumination variations in image are due to changes in lighting conditions, poor illumination, low contrast or increased brightness. The variations in illumination adversely affect the quality of image and recognition accuracy. The illumination variations in face image have to be pre-processed prior to face recognition. The Contrast Limited Adaptive Histogram Equalization (CLAHE is an image enhancement technique popular in enhancing medical images. The proposed work is to create illumination invariant face recognition system by enhancing Contrast Limited Adaptive Histogram Equalization technique. This method is termed as “Enhanced CLAHE”. The efficiency of Enhanced CLAHE is tested using Fuzzy K Nearest Neighbour classifier and fisher face subspace projection method. The face recognition accuracy percentage rate, Equal Error Rate and False Acceptance Rate at 1% are calculated. The performance of CLAHE and Enhanced CLAHE methods is compared. The efficiency of the Enhanced CLAHE method is tested with three public face databases AR, Yale and ORL. The Enhanced CLAHE has very high recognition accuracy percentage rate when compared to CLAHE.

  2. Substoichiometric extraction of phosphorus

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1981-01-01

    A study of the substoichiometric extraction of phosphorus is described. Phosphorus was extracted in the form of ternary compounds such as ammonium phosphomolybdate, 8-hydroxyquinolinium phosphomolybdate, tetraphenylarsonium phosphomolybdate and tri-n-octylamine phosphomolybdate. Consequently, phosphorus was extracted substoichiometrically by the addition of a substoichiometric amount of molybdenum for the four phosphomolybdate compounds. On the other hand, phosphorus could be separated substoichiometrically with a substoichiometric amount of tetraphenylarsonium chloride or tri-n-octylamine. Stoichiometric ratios of these ternary compounds obtained substoichiometrically were 1:12:3 for phosphorus, molybdenum and organic reagent. The applicability of these compounds to phosphorus determination is also discussed. (author)

  3. The Adequacy of Phosphorus Binder Prescriptions Among American Hemodialysis Patients

    Science.gov (United States)

    Huml, Anne M.; Sullivan, Catherine M.; Leon, Janeen B.; Sehgal, Ashwini R.

    2013-01-01

    Because hemodialysis treatment has a limited ability to remove phosphorus, dialysis patients must restrict dietary phosphorus intake and use phosphorus binding medication. Among patients with restricted dietary phosphorus intake (1000 mg/d), phosphorus binders must bind about 250 mg of excess phosphorus per day and among patients with more typical phosphorus intake (1500 mg/d), binders must bind about 750 mg per day. To determine the phosphorus binding capacity of binder prescriptions among American hemodialysis patients, we undertook a cross-sectional study of a random sample of in-center chronic hemodialysis patients. We obtained data for one randomly selected patient from 244 facilities nationwide. About one-third of patients had hyperphosphatemia (serum phosphorus level > 5.5 mg/dL). Among the 224 patients prescribed binders, the mean phosphorus binding capacity was 256 mg/d (SD 143). 59% of prescriptions had insufficient binding capacity for restricted dietary phosphorus intake, and 100% had insufficient binding capacity for typical dietary phosphorus intake. Patients using two binders had a higher binding capacity than patients using one binder (451 vs. 236 mg/d, p phosphorus balance. Use of two binders results in higher binder capacity. Further work is needed to understand the impact of binder prescriptions on mineral balance and metabolism and to determine the value of substantially increasing binder prescriptions. PMID:23013171

  4. Use of Phosphorus Isotopes for Improving Phosphorus Management in Agricultural Systems

    International Nuclear Information System (INIS)

    2016-10-01

    Phosphorus is an essential element in plant, human and animal nutrition. Soils with low levels of phosphorus are widespread in many regions of the world, and the deficiency limits plant growth and reduces crop production and food quality. This publication provides comprehensive and up to date information on several topics related to phosphorus in soil–plant systems, in agricultural systems and in the environment. It presents the theoretical background as well as practical information on how to use nuclear and radioisotope tracer techniques in both laboratory and greenhouse experiments to assess soil phosphorus forms and plant-available soil phosphorus pools, and to understand the cycling processes in soil–plant systems. The publication focuses on practical applications of radiotracer techniques and can serve as resource material for research projects on improving sustainable phosphorus management in agricultural systems and as practical guidance on the use of phosphate isotopes in soil–plant research

  5. Phosphorus blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003478.htm Phosphorus blood test To use the sharing features on this page, please enable JavaScript. The phosphorus blood test measures the amount of phosphate in the blood. ...

  6. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    Science.gov (United States)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  7. Phosphorus-defect interactions during thermal annealing of ion implanted silicon

    Science.gov (United States)

    Keys, Patrick Henry

    Ion implantation of dopant atoms into silicon generates nonequilibrium levels of crystal defects that can lead to the detrimental effects of transient enhanced diffusion (TED), incomplete dopant activation, and p-n junction leakage. In order to control these effects, it is vital to have a clear understanding of dopant-defect interactions and develop models that account for these interactions. This research focuses on experimentally investigating and modeling the clustering of phosphorus dopant atoms with silicon interstitials. Damage recovery of 40keV Si+ implants in phosphorus doped wells is experimentally analyzed. The effects of background phosphorus concentration, self implant dose, and anneal temperature are investigated. Phosphorus concentrations ranging from 2.0 x 1017 to 4.0 x 1019 cm-3 and Si+ doses ranging from 5.0 x 1013 cm-2 to 2.0 x 1014 cm-2 are studied during 650-800°C anneals. A dramatic reduction in the number of interstitials bound in {311} defects with increasing phosphorus background concentration is observed. It is suggested that the reduction of interstitials in {311} defects at high phosphorus concentrations is due to the formation of phosphorus-interstitial clusters (PICs). The critical concentration for clustering (approximately 1.0 x 1019 cm-3 at 750°C) is strongly temperature dependent and in close agreement with the kink concentration of phosphorus diffusion. Information gained from these "well experiments" is applied to the study of direct phosphorus implantation. An experimental study is conducted on 40keV phosphorus implanted to a dose of 1.0 x 1014 cm-2 during 650-800°C anneals. Electrically inactive PICs are shown to form at concentrations below the solid solubility limit due to high interstitial supersaturations. Data useful for developing a model to accurately predict phosphorus diffusion under nonequilibrium conditions are extracted from the experimental results. A cluster-mediated diffusion model is developed using the

  8. Determination of phosphorus using derivative neutron activation

    International Nuclear Information System (INIS)

    Scindia, Y.M.; Nair, A.G.C.; Reddy, A.V.R.; Manohar, S.B.

    2002-01-01

    For the determination of phosphorus in different matrices, the derivative neutron activation analysis is especially applicable to aqueous samples, since the conventional neutron activation analysis is not useful for the determination of phosphorus. Phosphorus when reacted with ammonium molybdate 4 hydrate and ammonium metavanadate forms molybdo vanado phosphoric acid. This complex is preconcentrated by extracting into methyl isobutyl ketone. The organic phase containing the molybdo vanado phosphoric acid is neutron activated and the phosphorus is determined through the activation product of 52 V. Preparation of this complex, its stoichiometry, application to trace level determination of phosphorus and improved detection limit are discussed. This method was applied for the analysis of industrial effluent samples. (author)

  9. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    DEFF Research Database (Denmark)

    Casey, John R; Mardinoglu, Adil; Nielsen, Jens

    2016-01-01

    Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture...... and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794...... through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies...

  10. 76 FR 78145 - Enhancing Airline Passenger Protections: Limited Extension of Effect Date for Full Fare Price...

    Science.gov (United States)

    2011-12-16

    ...] RIN 2105-AD92 Enhancing Airline Passenger Protections: Limited Extension of Effect Date for Full Fare Price Advertising AGENCY: Office of the Secretary (OST), Department of Transportation (DOT). ACTION... regarding the time period for compliance with a portion of the full fare and other advertising requirements...

  11. A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems

    Science.gov (United States)

    Seo, Sangsoo; Kim, Seog-Joo; Moon, Young-Hwan; Lee, Byongjun

    2013-11-01

    Additional power generation sites have been limited in Korea, despite the fact load demands are gradually increasing. In order to meet these increasing demands, Korea’s power system company has begun constructing new generators at existing sites. Thus, multi-unit plants can create problems in terms of transient stability when a large disturbance occurs. This paper proposes a hybrid superconducting fault current limiter (SFCL) application to enhance the transient stability of multi-unit power plants. SFCLs reduce fault currents, and limitation currents decrease the imbalance of the mechanical and electrical torque of the generators, resulting in an improvement in transient stability.

  12. Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus.

    Science.gov (United States)

    Bougaran, Gaël; Bernard, Olivier; Sciandra, Antoine

    2010-08-07

    It is well documented that the combination of low nitrogen and phosphorus resources can lead to situations where colimitation of phytoplankton growth arises, yet the underlying mechanisms are not fully understood. Here, we propose a Droop-based model built on the idea that colimitation by nitrogen and phosphorus arises from the uptake of nitrogen. Indeed, since N-porters are active systems, they require energy that could be related to the phosphorus status of the cell. Therefore, we assumed that N uptake is enhanced by the P quota. Our model also accounts for the biological observations that uptake of a nutrient can be down-regulated by its own internal quota, and succeeds in describing the strong contrast for the non-limiting quotas under N-limited and P-limited conditions that was observed on continuous cultures with Selenastrum minutum and with Isochrysis affinis galbana. Our analysis suggests that, regarding the colimitation concept, N and P would be better considered as biochemically dependent rather than biochemically independent nutrients. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    Science.gov (United States)

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  14. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  15. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  16. Screening crops for efficient phosphorus acquisition in a low phosphorus soil using radiotracer technique

    International Nuclear Information System (INIS)

    Meena, S.; Malarvizhi, P.; Rajeswari, R.

    2017-01-01

    Deficiency of phosphorus (P) is the major limitation to agricultural production. Identification of cultivars with greater capacity to grow in soils having low P availability (phosphorus efficiency) will help in P management in a sustainable way. Green house experiment with maize (CO 6) and cotton (MCU 13) as test crops with four levels of phosphorus (0, 3.75, 7.50 and 15 mg P kg -1 soil) was conducted in a P deficient soil (7.2 kg ha -1 ) to study the phosphorus acquisition characteristics and to select efficient crop using 32 P radiotracer technique. Carrier free 32 P obtained as orthophosphoric acid in dilute hydrochloric acid medium from the Board of Radiation and Isotope Technology, Mumbai was used for labeling the soil @ 3200 kBq pot -1 . After 60 days the crops were harvested and the radioactivity was measured in the plant samples using Liquid scintillation counter (PerkinElmer - Tricarb 2810 TR). Different values of specific radioactivity and Isotopically Exchangeable Phosphorus for maize and cotton indicated that chemically different pools of soil P were utilized and maize accessing a larger pool than cotton. Maize having recorded high Phosphorus Use Efficiency, Phosphorus Efficiency and low Phosphorus Stress Factor values, it is a better choice for P deficient soils. Higher Phosphorus Acquisition Efficiency of maize (59 %) than cotton (48%) can be related to the ability of maize to take up P from insoluble inorganic P forms. (author)

  17. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems.

    Science.gov (United States)

    Stokholm-Bjerregaard, Mikkel; McIlroy, Simon J; Nierychlo, Marta; Karst, Søren M; Albertsen, Mads; Nielsen, Per H

    2017-01-01

    Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The " Candidatus Accumulibacter" PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus , and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio , the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not

  18. A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems

    Directory of Open Access Journals (Sweden)

    Per H. Nielsen

    2017-04-01

    Full Text Available Understanding the microbiology of phosphorus (P removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs. Also considered important to EBPR are the glycogen accumulating organisms (GAOs, which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads, P removal performance was maintained, indicating that these organisms

  19. Measurement of phosphorus in metals by RNAA

    International Nuclear Information System (INIS)

    Paul, R.L.

    2000-01-01

    An RNAA procedure has been developed for measurement of low-level phosphorus in metals. Samples are irradiated at a neutron flux of 2.7 x 10 13 n x cm -2 x s -1 then mixed with carrier and dissolved in acid. After chemical separation and purification of the phosphorus and gravimetric determination of carrier yield, 32 P is determined using a beta proportional counter. The detection limit for a 0.1 g sample irradiated for 30 minutes is 5 μg/kg. The method has been used to determine 6.4 ± 0.6 mg/kg phosphorus is SRM 2175 refractory alloy. (author)

  20. Effects of sole and mixed culture of wheat crop and phosphorus fertilization on the solubility of phosphorus in the soil

    International Nuclear Information System (INIS)

    Mahmood, H. R.; Ali, M. A.; Ahmad, N.

    2016-01-01

    Farmers face a challenging task to harvest yield potential of crops as well as improving fertilizer use-efficiency under their limited farm resources. Among the macronutrients, the relative efficiency of phosphorus fertilizer is very low in alkaline-calcareous soils under arid and semi-arid environments. Therefore, a field study was undertaken to quantify the interactive effects of wheat varieties and phosphorous fertilization on grain yield and solubility of phosphorous nutrient in the rhizosphere. The treatments consisted of (a) two wheat varieties (Sehr-2006, Shafaq-2006, mixed culture) and (b) three phosphorus levels (0, 45, 85 kg P/sub 2/O/sub 5/ per hectare) were arranged in randomized complete block design and replicated four times. The Results showed that biological grain yield and 1000-grain weight of wheat increased by 8.7 percent, 14.46 percent and 8.48 percent under mixed culture of varieties sehr-2006 and shafaq-2006, respectively over the solely grown varieties. The application of phosphorus at the rate 85 kg P/sub 2/O/sub 5/ ha/sup -1/ resulted in increased quantity of total biological yield, grain yield and 1000-grain weight compared to unfertilized crop. The uptake of nitrogen and phosphorus contents were substantially enhanced under mixed culture cropping pattern over sole wheat cultivars. The availability of phosphorus was increased by 19.70 percent under mixed cropping over sole culture. It is inferred from the study that mixed cropping produced synergetic effects on the availability of nutrients in the rhizosphere, and thereby resulted in the higher production of wheat crop. (author)

  1. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation

    DEFF Research Database (Denmark)

    Boyle, Richard; Dahl, Tais Wittchen; Dale, A. W.

    2014-01-01

    Animal burrowing and sediment-mixing (bioturbation) began during the run up to the Ediacaran/Cambrian boundary(1-3), initiating a transition(4,5) between the stratified Precambrian(6) and more well-mixed Phanerozoic(7) sedimentary records, against the backdrop of a variable(8,9) global oxygen...... reservoir probably smaller in size than present(10,11). Phosphorus is the long-term(12) limiting nutrient for oxygen production via burial of organic carbon(13), and its retention (relative to carbon) within organic matter in marine sediments is enhanced by bioturbation(14-18). Here we explore...... the biogeochemical implications of a bioturbation-induced organic phosphorus sink in a simple model. We show that increased bioturbation robustly triggers a net decrease in the size of the global oxygen reservoir-the magnitude of which is contingent upon the prescribed difference in carbon to phosphorus ratios...

  2. Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL.

    Science.gov (United States)

    Haest, P J; Springael, D; Seuntjens, P; Smolders, E

    2012-11-01

    Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Phosphorus poisoning in waterfowl

    Science.gov (United States)

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  4. Lie-algebraic classification of effective theories with enhanced soft limits

    Science.gov (United States)

    Bogers, Mark P.; Brauner, Tomáš

    2018-05-01

    A great deal of effort has recently been invested in developing methods of calculating scattering amplitudes that bypass the traditional construction based on Lagrangians and Feynman rules. Motivated by this progress, we investigate the long-wavelength behavior of scattering amplitudes of massless scalar particles: Nambu-Goldstone (NG) bosons. The low-energy dynamics of NG bosons is governed by the underlying spontaneously broken symmetry, which likewise allows one to bypass the Lagrangian and connect the scaling of the scattering amplitudes directly to the Lie algebra of the symmetry generators. We focus on theories with enhanced soft limits, where the scattering amplitudes scale with a higher power of momentum than expected based on the mere existence of Adler's zero. Our approach is complementary to that developed recently in ref. [1], and in the first step we reproduce their result. That is, as far as Lorentz-invariant theories with a single physical NG boson are concerned, we find no other nontrivial theories featuring enhanced soft limits beyond the already well-known ones: the Galileon and the Dirac-Born-Infeld (DBI) scalar. Next, we show that in a certain sense, these theories do not admit a nontrivial generalization to non-Abelian internal symmetries. Namely, for compact internal symmetry groups, all NG bosons featuring enhanced soft limits necessarily belong to the center of the group. For noncompact symmetry groups such as the ISO( n) group featured by some multi-Galileon theories, these NG bosons then necessarily belong to an Abelian normal subgroup. The Lie-algebraic consistency constraints admit two infinite classes of solutions, generalizing the known multi-Galileon and multi-flavor DBI theories.

  5. Advances in understanding phosphorus cycling in inland waters - Their significance for South African limnology

    CSIR Research Space (South Africa)

    Twinch, AJ

    1980-02-01

    Full Text Available The definitions of the different phosphorus compound fractions present in inland waters are reviewed and the limitations of the definitions discussed. The development of models of phosphorus cycling is summarized. Attempts to establish...

  6. A new model of anomalous phosphorus diffusion in silicon

    International Nuclear Information System (INIS)

    Budil, M.; Poetzl, H.; Stingeder, G.; Grasserbauer, M.

    1989-01-01

    A model is presented to describe the 'kink and tail' diffusion of phosphorus. The diffusion behaviour of phosphorus is expplained by the motion of phosphorus-interstitial and phosphorus-vacancy pairs in different charge states. The model yields the enhancement of diffusion in the tail region depending on surface concentration. Furthermore it yields the same selfdiffusion coefficient for interstitials as the gold diffusion experiments. A transformation of the diffusion equation was found to reduce the number of simulation equations. (author) 7 refs., 5 figs

  7. Effects of phosphorus, silicon and sulphur on microstructural evolution in austenitic stainless steels during electron irradiation

    International Nuclear Information System (INIS)

    Fukuya, K.; Nakahigashi, S.; Ozaki, S.; Shima, S.

    1991-01-01

    Fe-18Cr-9Ni-1,5Mn austenitic alloys containing phosphorus, silicon and sulphur were irradiated by 1 MeV electrons at 573-773 K. Phosphorus increased the interstitial loop nucleation and decreased the void swelling by increasing void number density and suppressing void growth. Silicon had a similar effect to phosphorus but its effect was weaker than phosphorus. Sulphur enhanced void swelling through increasing the void density. Nickel enrichment at grain boundaries was suppressed only in the alloy containing phosphorus. These phosphorus effects may be explained by a strong interaction with interstitials resulting in a high density of sinks for point defects. (orig.)

  8. Quadrant Dynamic with Automatic Plateau Limit Histogram Equalization for Image Enhancement

    Directory of Open Access Journals (Sweden)

    P. Jagatheeswari

    2014-01-01

    Full Text Available The fundamental and important preprocessing stage in image processing is the image contrast enhancement technique. Histogram equalization is an effective contrast enhancement technique. In this paper, a histogram equalization based technique called quadrant dynamic with automatic plateau limit histogram equalization (QDAPLHE is introduced. In this method, a hybrid of dynamic and clipped histogram equalization methods are used to increase the brightness preservation and to reduce the overenhancement. Initially, the proposed QDAPLHE algorithm passes the input image through a median filter to remove the noises present in the image. Then the histogram of the filtered image is divided into four subhistograms while maintaining second separated point as the mean brightness. Then the clipping process is implemented by calculating automatically the plateau limit as the clipped level. The clipped portion of the histogram is modified to reduce the loss of image intensity value. Finally the clipped portion is redistributed uniformly to the entire dynamic range and the conventional histogram equalization is executed in each subhistogram independently. Based on the qualitative and the quantitative analysis, the QDAPLHE method outperforms some existing methods in literature.

  9. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling

    International Nuclear Information System (INIS)

    Li, Jiaming; Luo, Le; Carvell, Jeff; Cheng, Ruihua; Lai, Tianshu; Wang, Zixin

    2014-01-01

    We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10 −9  rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absence of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10 −9 rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film

  10. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    Science.gov (United States)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard; Strachan, Alejandro

    2015-05-01

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.

  11. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    International Nuclear Information System (INIS)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard; Strachan, Alejandro

    2015-01-01

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement

  12. Optimal Ge/SiGe nanofin geometries for hole mobility enhancement: Technology limit from atomic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, Ravi Pramod; Mehrotra, Saumitra; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Strachan, Alejandro, E-mail: strachan@purdue.edu [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)

    2015-05-07

    We use first principles simulations to engineer Ge nanofins for maximum hole mobility by controlling strain tri-axially through nano-patterning. Large-scale molecular dynamics predict fully relaxed, atomic structures for experimentally achievable nanofins, and orthogonal tight binding is used to obtain the corresponding electronic structure. Hole transport properties are then obtained via a linearized Boltzmann formalism. This approach explicitly accounts for free surfaces and associated strain relaxation as well as strain gradients which are critical for quantitative predictions in nanoscale structures. We show that the transverse strain relaxation resulting from the reduction in the aspect ratio of the fins leads to a significant enhancement in phonon limited hole mobility (7× over unstrained, bulk Ge, and 3.5× over biaxially strained Ge). Maximum enhancement is achieved by reducing the width to be approximately 1.5 times the height and further reduction in width does not result in additional gains. These results indicate significant room for improvement over current-generation Ge nanofins, provide geometrical guidelines to design optimized geometries and insight into the physics behind the significant mobility enhancement.

  13. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 701124 (China); Huang, Zhongliang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  14. Performance of fertigation technique for phosphorus application in cotton

    Directory of Open Access Journals (Sweden)

    M. Aslam

    2009-05-01

    Full Text Available Low native soil phosphorus availability coupled with poor utilization of added phosphorus is one of the major constraints limiting the productivity of the crops. With a view of addressing this issue, field studies were conducted to compare the relative efficacy of broadcast and fertigation techniques for phosphorus application during 2005-2006 using cotton as a test crop. Two methods of phosphorus application i.e. broadcast and fertigation were evaluated using five levels of P2O5 (0, 30, 45, 60 and 75 kg P2O5 ha -1. Fertigation showed an edge over broadcast method at all levels of phosphorus application. The highest seed cotton yield was recorded with 75 kg P2O5 ha-1. Fertilizer phosphorus applied at the rate of 60 kg ha-1 through fertigation produced 3.4 tons ha-1 of seed cotton yield, which was statistically identical to 3.3 tons recorded with 75 kg ha-1 of broadcast phosphorus. Agronomic performance of phosphorus was influenced considerably by either method of fertilizer application. The seed cotton yield per kg of fertigation phosphorus was 48% higher than the corresponding broadcast application. The results of these studies showed that fertigation was the most efficient method of phosphorus application compared with the conventional broadcast application of fertilizers.

  15. Above- and below-ground responses of Calamagrostis purpurea to UV-B radiation and elevated CO{sub 2} under phosphorus limitation

    Energy Technology Data Exchange (ETDEWEB)

    Bussell, J.S.; Gwynn-Jones, D.; Griffith, G.W.; Scullion, J. (Aberystwyth Univ., IBERS, Wales (United Kingdom))

    2012-08-15

    UV-B radiation and elevated CO{sub 2} may impact rhizosphere processes through altered below-ground plant resource allocation and root exudation, changes that may have implications for nutrient acquisition. As nutrients limit plant growth in many habitats, their supply may dictate plant response under elevated CO{sub 2}. This study investigated UV-B exposure and elevated CO{sub 2} effects, including interactions, on plant growth, tissue chemistry and rooting responses relating to P acquisition. The sub-arctic grass Calamagrostis purpurea was subjected to UV-B (0 or 3.04 kJ m-2day-1) and CO{sub 2} (ambient 380 or 650 ppmv) treatments in a factorial glasshouse experiment, with sparingly soluble P (0 or 0.152 mg P per plant as FePO{sub 4}) a further factor. It was hypothesized that UV-B exposure and elevated CO{sub 2} would change plant resource allocation, with CO{sub 2} mitigating adverse responses to UV-B exposure and aiding P uptake. Plant biomass and morphology, tissue composition and rhizosphere leachate properties were measured. UV-B directly affected chemical composition of shoots and interacted with CO{sub 2} to give a greater root biomass. Elevated CO{sub 2} altered the composition of both shoots and roots and increased shoot biomass and secondary root length, while leachate pH decreased. Below-ground responses to CO{sub 2} did not affect P acquisition although P limitation progressively reduced leachate pH and increased secondary root length. Although direct plant growth, foliar composition and below-ground nutrient acquisition responses were dominated by CO{sub 2} treatments, UV-B modified these CO{sub 2} responses significantly. These interactions have implications for plant responses to future atmospheric conditions. (Author)

  16. Effect of phosphorus sources on phosphorus and nitrogen utilization by three sweet potato cultivars

    International Nuclear Information System (INIS)

    Montanez, A.; Zapata, F.; Kumarasinghe, K.S.

    1996-01-01

    A greenhouse experiment was conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf, Austria using three sweet potato cultivars, TIS 2, TIS 3053 and TIS 1487. The three sweet potato cultivars were grown at two levels of phosphorus (0 kg P/kg soil and 60 kg P/kg soil). The fertilizer treatments consisted of two sources of phosphorus, Gafza rock Phosphate and triple super phosphate with 14.19 and 19.76% total phosphorus, respectively. 15 N labelled urea was used to study the nitrogen recovery in tubers from the applied nitrogen fertilizer. The results from these preliminary studies indicate that there is considerable genotypic variation among cultivars in the efficiency with which phosphorus and nitrogen are taken up and used to produce biomass. Their response to different sources of phosphorus are also variable. TIS-2 and TIS-1487 have a greater ability to absorb phosphorus from Gafza rock phosphate and produce higher tube yields indicating their greater potential for using alternative sources of natural phosphate fertilizers more effectively. Gafza rock phosphate also increased accumulation of nitrogen in TIS-1487, a characteristic which will place this cultivar at an advantage when growing in soils low in nitrogen. On an overall basis taking into account tuber yield, phosphorus use efficiency, and nitrogen use efficiency, TIS-2 may be considered the better candidate for introduction into soils poor in resources particularly phosphorus. This study was conducted with a limited number of cultivars due to limitation in the availability of germplasma. In spite of this, the differences in their abilities for phosphorus and nitrogen uptake and use are clearly visible which justifies large scale screening experiments using a broader germplasm base, in the future. (author). 14 refs, 1 fig., 3 tabs

  17. Effect of phosphorus sources on phosphorus and nitrogen utilization by three sweet potato cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Montanez, A; Zapata, F [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit; Kumarasinghe, K S [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section

    1996-07-01

    A greenhouse experiment was conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf, Austria using three sweet potato cultivars, TIS 2, TIS 3053 and TIS 1487. The three sweet potato cultivars were grown at two levels of phosphorus (0 kg P/kg soil and 60 kg P/kg soil). The fertilizer treatments consisted of two sources of phosphorus, Gafza rock Phosphate and triple super phosphate with 14.19 and 19.76% total phosphorus, respectively. {sup 15}N labelled urea was used to study the nitrogen recovery in tubers from the applied nitrogen fertilizer. The results from these preliminary studies indicate that there is considerable genotypic variation among cultivars in the efficiency with which phosphorus and nitrogen are taken up and used to produce biomass. Their response to different sources of phosphorus are also variable. TIS-2 and TIS-1487 have a greater ability to absorb phosphorus from Gafza rock phosphate and produce higher tube yields indicating their greater potential for using alternative sources of natural phosphate fertilizers more effectively. Gafza rock phosphate also increased accumulation of nitrogen in TIS-1487, a characteristic which will place this cultivar at an advantage when growing in soils low in nitrogen. On an overall basis taking into account tuber yield, phosphorus use efficiency, and nitrogen use efficiency, TIS-2 may be considered the better candidate for introduction into soils poor in resources particularly phosphorus. This study was conducted with a limited number of cultivars due to limitation in the availability of germplasma. In spite of this, the differences in their abilities for phosphorus and nitrogen uptake and use are clearly visible which justifies large scale screening experiments using a broader germplasm base, in the future. (author). 14 refs, 1 fig., 3 tabs.

  18. Improving visibility in limited-view scenarios with dynamic particle-enhanced optoacoustic tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; Ding, Lu; Razansky, Daniel

    2017-03-01

    Limited-view artefacts affect most optoacoustic (photoacoustic) imaging systems due to geometrical constraints that impede achieving full tomographic coverage as well as limited light penetration into scattering and absorbing objects. Indeed, it has been theoretically established and experimentally verified that accurate optoacoustic images can only be obtained if the imaged sample is fully enclosed (orientations is hampered. These effects are of particular relevance in the case of hand-held scanners with the imaged volume only accessible from one side. Herein, a new approach termed dynamic particle-enhanced optoacoustic tomography (DPOT) is described for accurate structural imaging in limited-view scenarios. The method is based on the non-linear combination of a sequence of tomographic reconstructions representing sparsely distributed moving particles. Good performance of the method is demonstrated in experiments consisting of dynamic visualization of flow of suspended microspheres in three-dimensions. The method is expected to be applicable for improving accuracy of angiographic optoacoustic imaging in living organisms.

  19. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    International Nuclear Information System (INIS)

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  20. [Research progress on phosphorus budgets and regulations in reservoirs].

    Science.gov (United States)

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches.

  1. Visualizing alternative phosphorus scenarios for future food security

    Directory of Open Access Journals (Sweden)

    Tina-Simone Neset

    2016-10-01

    Full Text Available The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialogue on the technical, behavioral and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real-time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialogue to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1 the potential of full recovery of human excreta, (2 the challenge of a potential increase in non-food phosphorus demand, (3 the potential of a decreased animal product consumption, and (4 the potential decrease in phosphorus demand from increased efficiency

  2. Visualizing Alternative Phosphorus Scenarios for Future Food Security.

    Science.gov (United States)

    Neset, Tina-Simone; Cordell, Dana; Mohr, Steve; VanRiper, Froggi; White, Stuart

    2016-01-01

    The impact of global phosphorus scarcity on food security has increasingly been the focus of scientific studies over the past decade. However, systematic analyses of alternative futures for phosphorus supply and demand throughout the food system are still rare and provide limited inclusion of key stakeholders. Addressing global phosphorus scarcity requires an integrated approach exploring potential demand reduction as well as recycling opportunities. This implies recovering phosphorus from multiple sources, such as food waste, manure, and excreta, as well as exploring novel opportunities to reduce the long-term demand for phosphorus in food production such as changing diets. Presently, there is a lack of stakeholder and scientific consensus around priority measures. To therefore enable exploration of multiple pathways and facilitate a stakeholder dialog on the technical, behavioral, and institutional changes required to meet long-term future phosphorus demand, this paper introduces an interactive web-based tool, designed for visualizing global phosphorus scenarios in real time. The interactive global phosphorus scenario tool builds on several demand and supply side measures that can be selected and manipulated interactively by the user. It provides a platform to facilitate stakeholder dialog to plan for a soft landing and identify a suite of concrete priority options, such as investing in agricultural phosphorus use efficiency, or renewable fertilizers derived from phosphorus recovered from wastewater and food waste, to determine how phosphorus demand to meet future food security could be attained on a global scale in 2040 and 2070. This paper presents four example scenarios, including (1) the potential of full recovery of human excreta, (2) the challenge of a potential increase in non-food phosphorus demand, (3) the potential of decreased animal product consumption, and (4) the potential decrease in phosphorus demand from increased efficiency and yield gains in

  3. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.

    2015-01-01

    As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...... that is preserved as banded iron formations (BIFs) today. Here we show that Ca2+, Mg2+, and silica in seawater control phosphorus sorption onto iron oxides, influencing the record of seawater phosphorus preserved in BIFs. Using a model for seawater cation chemistry through time, combined with the phosphorus...... waters shifted from phosphorus to iron limiting....

  4. Macroalgal blooms favor heterotrophic diazotrophic bacteria in nitrogen-rich and phosphorus-limited coastal surface waters in the Yellow Sea

    Science.gov (United States)

    Zhang, Xiaoli; Song, Yanjing; Liu, Dongyan; Keesing, John K.; Gong, Jun

    2015-09-01

    Macroalgal blooms may lead to dramatic changes in physicochemical variables and biogeochemical cycling in affected waters. However, little is known about the effects of macroalgal blooms on marine bacteria, especially those functioning in nutrient cycles. We measured environmental factors and investigated bacterial diazotrophs in two niches, surface waters that were covered (CC) and non-covered (CF) with massive macroalgal canopies of Ulva prolifera, in the Yellow Sea in the summer of 2011 using real-time PCR and clone library analysis of nifH genes. We found that heterotrophic diazotrophs (Gammaproteobacteria) dominated the communities and were mostly represented by Vibrio-related phylotypes in both CC and CF. Desulfovibrio-related phylotypes were only detected in CC. There were significant differences in community composition in these two environments (p diazotrophic abundance and community composition and that vibrios and Desulfovibrio-related heterotrophic diazotrophs adapt well to the (N-rich but P-limited) environment during blooming. Potential ecological and microbiological mechanisms behind this scenario are discussed.

  5. Phosphorus dendrimers for nanomedicine.

    Science.gov (United States)

    Caminade, Anne-Marie

    2017-08-31

    From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.

  6. Evaluation of phosphorus sorption characteristics of soils from the ...

    African Journals Online (AJOL)

    The evaluation of phosphorus sorption characteristics of soils and their relation to soil properties from the Bambouto sequence of Baranka 1, Baranka 2, Femock 1 and Femock 2 has been studied. Phosphorus, an essential plant nutrient, is often not readily available to plants and this deficiency tends to limit plant growth.

  7. Phosphorus recycling and availability in the western Wadden Sea

    NARCIS (Netherlands)

    De Freixo Leote, C.M.

    2014-01-01

    Phosphorus is a main and often limiting nutrient for phytoplankton growth, as suggested for the western Wadden Sea. In this area, freshwater discharge was a major nutrient source in the past. However, pollution reduction measures dramatically reduced its contribution, particularly for phosphorus. In

  8. Variability of Jovian ion winds: an upper limit for enhanced Joule heating

    Directory of Open Access Journals (Sweden)

    M. B. Lystrup

    2007-05-01

    Full Text Available It has been proposed that short-timescale fluctuations about the mean electric field can significantly increase the upper atmospheric energy inputs at Jupiter, which may help to explain the high observed thermospheric temperatures. We present data from the first attempt to detect such variations in the Jovian ionosphere. Line-of-sight ionospheric velocity profiles in the Southern Jovian auroral/polar region are shown, derived from the Doppler shifting of H3+ infrared emission spectra. These data were recently obtained from the high-resolution CSHELL spectrometer at the NASA Infrared Telescope Facility. We find that there is no variability within this data set on timescales of the order of one minute and spatial scales of 640 km, putting upper limits on the timescales of fluctuations that would be needed to enhance Joule heating.

  9. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  10. Total phosphorus, phytate phosphorus contents and the correlation of phytates with amylose in selected edible beans in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Keerthana Sivakumaran

    2018-02-01

    Full Text Available Phytate a major anti nutritional factors in legumes and it accounts for larger portion of the total phosphorus, while limiting the bioavailablity of certain divalent cations to the human body. Legumes of eleven varieties cultivated in Sri Lanka, Mung bean (MI5, MI6, Cowpea (Waruni, MICP1, Bombay, Dhawala, ANKCP1, Soybean (MISB1, Pb1 and Horse gram (ANKBlack, ANKBrown were analyzed for phosphorus content and phytate content. Total phosphorus content was quantified by dry ashing followed by spectrophotometrical measurement of the blue colour intensity of acid soluble phosphate with sodium molybdate in the presence of ascorbic acid while phytate phosphorus using anion exchange chromatographic technique followed by spectrometrical measurement of the digested organic phosphorus and amylose content by Simple Iodine-Colourimetric method. Where the least value for phosphorus was observed 275.04 ±1.44 mg.100g-1 in ANKBlack (Horse gram and the highest in MISB1 (Soyabean with 654.94 ±0.05 mg.100g-1. The phytate phosphorus content (which is a ratio of phyate to total phosphorus was highest in Dhawala (Cowpea. The phytate phosphorus (which is a ratio of phyate to total phosphorus was highest in Dhawala with 67.42% and least in Bombay (Cowpea with 24.87%. The amylose content of the legumes was least in Pb1 with 8.71 ±0.13 mg.100mg-1 and the highest in MI6 22.58 ±0.71 mg.100mg-1. The correlation between phyate and total phosphorus was significant (p <0.05 and positive (r = 0.62. Similarly the correlation coefficient for phytate phosphorus and total phosphorus was significant (p <0.05 and positive (r = 0.63. Amylose content of legumes was significantly correlated negatively (p <0.05 with the total phytates content (r = -0.82.

  11. Pictorial enhancement of text memory: limitations imposed by picture type and comprehension skill.

    Science.gov (United States)

    Waddill, P J; McDaniel, M A

    1992-09-01

    We examined the kinds of information in a prose passage that is better remembered when depictive illustrations are embedded in the passage than when the passage contains no illustrations. Experiment 1 showed that (1) pictures depicting details effectively increased recall of those details and (2) pictures depicting relationships effectively increased recall of that relational information (relative to a no-picture control condition). In Experiment 2, comprehension skill was found to modulate the general effects obtained in Experiment 1. Detail pictures enhanced the recall of targeted details for all skill levels. Relational pictures enhanced recall of pictured relational information for highly skilled and moderately skilled comprehenders, but not for less skilled comprehenders. Because there were no recall differences across the different skill levels in the no-picture control condition, it is suggested that pictures may serve to enable processing in which readers would not necessarily engage under ordinary circumstances. Pictures, however, did not appear to compensate for limitations reflected in lower scores on a standardized test of reading comprehension.

  12. Diffusion Limitation and Hyperoxic Enhancement of Oxygen Consumption in Zooxanthellate Sea Anemones, Zoanthids, and Corals.

    Science.gov (United States)

    Shick, J M

    1990-08-01

    Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.

  13. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  14. Electronic white cane with GPS radar-based concept as blind mobility enhancement without distance limitation

    Science.gov (United States)

    Halim, Suharsono; Handafiah, Finna; Aprilliyani, Ria; Udhiarto, Arief

    2018-02-01

    The Indonesian Ministry of Social Affairs, in July 2012, informed that the number of blind in Indonesia has been the largest among to the people with other disabilities. The most common tools utilized to help the blind was a conventional cane which has limited features and therefore it was difficult to be used as a mobilization tools. Moreover, the conventional cane cannot assist them or their family when the blind gets lost. In this research, we designed and implemented an electronic white cane with the concept of radar and global positioning system (GPS). The purpose of this research was to design and develop an electronic white cane which can enhance the mobility of the blind without distance coverage limitation. Utilizing ultrasonic sensors as a distance measurement and a servo motor as an actuator, the produced radar system is able to map an area with maximum distance and coverage angle of 5 meters and 180° respectively. The blind senses the obstacle around them from the vibration generated by five vibration motors. The vibration becomes more intense when the obstacle is detected closer. In addition, we implemented a GPS to monitor the blind's position and allow their family to find them easily when the blind need a help. Based on the tests performed, we have successfully developed an electronic white cane that can be a solution to improve the blind's mobility.

  15. Serum Phosphorus Concentrations in the Third National Health and Nutrition Examination Survey (NHANES III)

    Science.gov (United States)

    de Boer, Ian H.; Rue, Tessa C.; Kestenbaum, Bryan

    2011-01-01

    Background Higher serum phosphorus concentrations within the normal laboratory range have been associated with cardiovascular events and mortality in large prospective cohort studies of individuals with and without kidney disease. Reasons for interindividual variation in steady-state serum phosphorus concentrations are largely unknown. Study Design Cross-sectional study. Setting & Participants 15,513 participants in the Third National Health and Nutrition Examination Survey. Predictors Demographic data, dietary intake measured by means of 24-hour dietary recall and food-frequency questionnaire, and established cardiovascular risk factors. Outcome & Measurements Serum phosphorus concentration. Results Mean serum phosphorus concentrations were significantly greater in women (+0.16 mg/dL versus men; P phosphorus and phosphorus-rich foods were associated only weakly with circulating serum phosphorus concentrations, if at all. Higher serum phosphorus levels were associated with lower calculated Framingham coronary heart disease risk scores, which are based on traditional atherosclerosis risk factors. In aggregate, demographic, nutritional, cardiovascular, and kidney function variables explained only 12% of the variation in circulating serum phosphorus concentrations. Limitations Results may differ with advanced kidney disease. Conclusions Serum phosphorus concentration is weakly related to dietary phosphorus and not related to a diverse array of phosphorus-rich foods in the general population. Factors determining serum phosphorus concentration are largely unknown. Previously observed associations of serum phosphorus concentrations with cardiovascular events are unlikely to be a result of differences in dietary intake or traditional cardiovascular risk factors. PMID:18992979

  16. Further developments and field deployment of phosphorus functionalized polymeric scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Malcolm J.; Thornton, Alex R.; Wylde, Jonathan J.; Strachan, Catherine J.; Moir, Gordon [Clariant Oil Services, Muttenz (Switzerland); Goulding, John [John Goulding Consultancy, York (United Kingdom)

    2012-07-01

    As the oil and gas industry strives to replace ageing, environmentally undesirable scale inhibitors there is an ever increasing use of polymeric inhibitors. The incorporation of phosphorous functionality into a polymer backbone has been shown to improve inhibition efficiency, enhance adsorption characteristics and allow the polymer concentration to be analyzed by elemental phosphorus. It is known that some phosphorus tagged polymers can be problematic to analyze in oil field brines as they typically have a low phosphorus content which is difficult to determine from the background. The development of novel phosphorus functionalized polymeric scale inhibitors was previously described (IBP3530-10). This paper follows the development of the inhibitor class. Utilizing extensive laboratory testing the interactive nature of the scale inhibitors and reservoir lithology was studied. These novel phosphorus functionalized inhibitors were compared to a number of other available scale inhibitors. The incorporation of phosphorus functionality into polymeric inhibitors can be expensive utilizing traditional methods as the phosphorus containing monomers are the financially limiting factor. These are typically vinyl phosphonic acid (VPA), or vinyl diphosphonic acid (VDPA). The novel phosphorus functionalized monomers utilized herein are simpler to manufacture allowing higher phosphorus content within the polymer backbone. The addition of phosphorus into a polymer backbone has previously been known to exacerbate analysis issues in some commercially available scale inhibitors. This is due to incomplete polymerization reactions leaving free and/or inorganic phosphorus containing moieties which can interfere with the analysis, or low levels of phosphorus within end-capped polymers can make it difficult to determine the active concentration accurately within field brines which contain many impuritie. Polymeric inhibitors are known to contain a range of molecular weights with varying

  17. Patient education for phosphorus management in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Kalantar-Zadeh K

    2013-05-01

    Full Text Available Kamyar Kalantar-ZadehHarold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine’s School of Medicine, Irvine, CA, USAObjectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia.Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed.Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels.Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism.Keywords: hyperphosphatemia, renal diet, phosphorus binders, educational programs, food fatigue, concordance

  18. The future of phosphorus in our hands

    NARCIS (Netherlands)

    Shepherd, J.G.; Kleemann, Rosanna; Bahri-Esfahani, Jaleh; Hudek, Lee; Suriyagoda, Lalith; Vandamme, Elke; Dijk, van K.C.

    2016-01-01

    We live in a global phosphorus (P) system paradox. P access is becoming increasingly limiting, leading to food insecurity but at the same time an over-application or abundance of P in many agricultural and urban settings is causing environmental degradation. This has been recognised in the

  19. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, B.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2004-01-01

    The article describes the potential and limitations for recovery of phosphate from secondary materials in the production process for white phosphorus. This thermal process involves the feeding of phosphate rock, cokes and pebbles to a furnace. The reducing conditions in the furnace promote the

  20. Organic chemistry of elemental phosphorus

    International Nuclear Information System (INIS)

    Milyukov, V A; Budnikova, Yulia H; Sinyashin, Oleg G

    2005-01-01

    The principal achievements and the modern trends in the development of the chemistry of elemental phosphorus are analysed, described systematically and generalised. The possibilities and advantages of the preparation of organophosphorus compounds directly from white phosphorus are demonstrated. Attention is focused on the activation and transformation of elemental phosphorus in the coordination sphere of transition metal complexes. The mechanisms of the reactions of white phosphorus with nucleophilic and electrophilic reagents are discussed. Electrochemical approaches to the synthesis of organic phosphorus derivatives based on white phosphorus are considered.

  1. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability.

    Science.gov (United States)

    Yan, Mang; Yu, Liufang; Zhang, Liang; Guo, Yuexia; Dai, Kewei; Chen, Yuru

    2014-11-01

    Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form of organic phosphorus, which is unavailable for root uptake unless hydrolyzed by secretory acid phosphatases. Thus, many microorganisms with the ability to produce phosphatase have been exploited. In this work, the activity of an extracellular acid phosphatase and yeast biomass from Candida mycoderma was measured under different culture conditions, such as pH, temperature, and carbon source. A maximal phosphatase activity of 8.47×10(5)±0.11×10(5)U/g was achieved by C. Mycoderma in 36 hr under the optimal conditions. The extracellular acid phosphatase has high activity over a wide pH tolerance range from 2.5 to 5.0 (optimum pH3.5). The effects of different phosphorus compounds on the acid phosphatase production were also studied. The presence of phytin, lecithin or calcium phosphate reduced the phosphatase activity and biomass yield significantly. In addition, the pH of the culture medium was reduced significantly by lecithin. The efficiency of the strain in releasing orthophosphate from organic phosphorus was studied in red soil (used in planting trees) and rice soil (originating as red soil). The available phosphorus content was increased by 230% after inoculating 20 days in rice soil and decreased by 50% after inoculating 10 days in red soil. This work indicates that the yeast strain C. mycoderma has potential application for enhancing phosphorus utilization in plants that grow in rice soil. Copyright © 2014. Published by Elsevier B.V.

  2. Adaptive Transmitter Optimization in Multiuser Multiantenna Systems: Theoretical Limits, Effect of Delays, and Performance Enhancements

    Directory of Open Access Journals (Sweden)

    Samardzija Dragan

    2005-01-01

    Full Text Available The advances in programmable and reconfigurable radios have rendered feasible transmitter optimization schemes that can greatly improve the performance of multiple-antenna multiuser systems. Reconfigurable radio platforms are particularly suitable for implementation of transmitter optimization at the base station. We consider the downlink of a wireless system with multiple transmit antennas at the base station and a number of mobile terminals (i.e., users each with a single receive antenna. Under an average transmit power constraint, we consider the maximum achievable sum data rates in the case of (1 zero-forcing (ZF spatial prefilter, (2 modified zero-forcing (MZF spatial prefilter, and (3 triangularization spatial prefilter coupled with dirty-paper coding (DPC transmission scheme. We show that the triangularization with DPC approaches the closed-loop MIMO rates (upper bound for higher SNRs. Further, the MZF solution performs very well for lower SNRs, while for higher SNRs, the rates for the ZF solution converge to the MZF rates. An important impediment that degrades the performance of such transmitter optimization schemes is the delay in channel state information (CSI. We characterize the fundamental limits of performance in the presence of delayed CSI and then propose performance enhancements using a linear MMSE predictor of the CSI that can be used in conjunction with transmitter optimization in multiple-antenna multiuser systems.

  3. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit.

    Science.gov (United States)

    Ceccon, Alberto; Marius Clore, G; Tugarinov, Vitali

    2016-09-01

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ 2 (app) ) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k ex between the species is fast on the PRE time scale (k ex ≫ Γ2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789-5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd(3+), we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k ex ≫ Γ2) the ratio of the apparent proton to carbon methyl PREs, ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γΗ/γC)(2). However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ2 is comparable in magnitude to k ex) the ((1)Hm-Γ 2 (app) )/((13)Cm-Γ 2 (app) ) ratio provides a reliable measure of the 'true' methyl PREs.

  4. Overview of phosphorus diffusion and gettering in multicrystalline silicon

    International Nuclear Information System (INIS)

    Bentzen, A.; Holt, A.

    2009-01-01

    This paper gives an overview of phosphorus emitter diffusion and gettering as experienced in multicrystalline silicon solar cell processing. The paper gives a brief summary of the diffusion properties of phosphorus in silicon, explaining the nature behind the characteristic kink-and-tail profiles often encountered in silicon solar cells. Then, phosphorus diffusion gettering is discussed with particular focus to the inhomogeneous nature of multicrystalline silicon, and it is discussed how the abundant presence of dislocations in the areas of the material having a low recombination lifetime can cause only minor lifetime enhancements in such areas upon phosphorus diffusion. Attributed to dissociation of precipitated impurities in combination with longer effective diffusion lengths of the impurities, it is then seen that even poor areas of multicrystalline can exhibit a noticeable improvement by phosphorus diffusion gettering when applying a lower diffusion temperature for a longer duration.

  5. phosphorus sorption capacity as a guide for phosphorus availability

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    drained, light yellowish brown, loamy sand ... Dongola 2 Akked series: Deep, dark grayish brown, clay ... energy. Statistical analysis. Data collected were statistically analysed using ANOVA of MStatc ... phosphorus sorbed versus phosphorus.

  6. Enhanced removal of chemical oxygen demand, nitrogen and phosphorus using the ameliorative anoxic/anaerobic/oxic process and micro-electrolysis.

    Science.gov (United States)

    Bao, K Q; Gao, J Q; Wang, Z B; Zhang, R Q; Zhang, Z Y; Sugiura, N

    2012-01-01

    Synthetic wastewater was treated using a novel system integrating the reversed anoxic/anaerobic/oxic (RAAO) process, a micro-electrolysis (ME) bed and complex biological media. The system showed superior chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal rates. Performance of the system was optimised by considering the influences of three major controlling factors, namely, hydraulic retention time (HRT), organic loading rate (OLR) and mixed liquor recirculation (MLR). TP removal efficiencies were 69, 87, 87 and 83% under the HRTs of 4, 8, 12 and 16 h. In contrast, HRT had negligible effects on the COD and TN removal efficiencies. COD, TN and TP removal efficiencies from synthetic wastewater were 95, 63 and 87%, respectively, at an OLR of 1.9 g/(L·d). The concentrations of COD, TN and TP in the effluent were less than 50, 15 and 1 mg/L, respectively, at the controlled MLR range of 75-100%. In this system, organics, TN and TP were primarily removed from anoxic tank regardless of the operational conditions.

  7. Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries

    Science.gov (United States)

    Li, Desheng; Wang, Dongya; Rui, Kun; Ma, Zhongyuan; Xie, Ling; Liu, Jinhua; Zhang, Yu; Chen, Runfeng; Yan, Yan; Lin, Huijuan; Xie, Xiaoji; Zhu, Jixin; Huang, Wei

    2018-04-01

    The emerging wearable and foldable electronic devices drive the development of flexible lithium ion batteries (LIBs). Carbon materials are considered as one of the most promising electrode materials for LIBs due to their light weight, low cost and good structural stability against repeated deformations. However, the specific capacity, rate capability and long-term cycling performance still need to be improved for their applications in next-generation LIBs. Herein, we report a facile approach for immobilizing phosphorus into a large-area carbon nanosheets/nanofibers interwoven free-standing paper for LIBs. As an anode material for LIBs, it shows high reversible capacity of 1100 mAh g-1 at a current density of 200 mA g-1, excellent rate capabilities (e.g., 200 mAh g-1 at 20,000 mA g-1). Even at a high current density of 1000 mA g-1, it still maintains a superior specific capacity of 607 mAh g-1 without obvious decay.

  8. Nanostructure design for surface-enhanced Raman spectroscopy - prospects and limits

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger; Jauho, Antti-Pekka

    2008-01-01

    suppresses the enhancement, as well as shifts the optimal frequency. Our simulations indicate that the geometric enhancement factors are unlikely to exceed ~10^8 for real samples, and that it is necessary to consider the geometric uncertainty to reliably predict the frequency for maximum enhancement....

  9. Preparation of phosphorus targets using the compound phosphorus nitride

    International Nuclear Information System (INIS)

    Maier-Komor, P.

    1987-01-01

    Commercially available phosphorus nitride (P 3 N 5 ) shows a high oxygen content. Nevertheless, this material is attractive for use as phosphorus targets in experiments where red phosphorus would disappear due to its high vapor pressure and where a metal partner in the phosphide must be excluded due to its high atomic number. Methods are described to produce phosphorus nitride targets by vacuum evaporation condensation. (orig.)

  10. III. Quantitative aspects of phosphorus excretionin ruminants

    OpenAIRE

    Bravo , David; Sauvant , Daniel; Bogaert , Catherine; Meschy , François

    2003-01-01

    International audience; Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus...

  11. Traps for phosphorus adsorption

    International Nuclear Information System (INIS)

    Montoya, Nawer D; Villegas, Wilson E; Rodriguez, Lino M; Taborda, Nelson; Montes de C, Consuelo

    2001-01-01

    Several AL 2 O 3 supported oxides such as: NiO, CuO, Co 2 O 3 BaO, CeO 2 and ZnO were investigated for phosphorus adsorption. Zno/y-Al 2 O 3 exhibited the highest phosphorus adsorption capacity. However, since it diminishes the activity of to the reaction mixture it should be located upstream of the NoX catalyst, i.e. 0,3% Pd-H-MOR, in order to protect it against p poisoning. The treatment procedure with citric acid was effective for the removal of more than 70% phosphorus from the adsorbent, ZnO/y-Al 2 O 3

  12. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    International Nuclear Information System (INIS)

    Xu Pengliang; Christie, Peter; Liu Yu; Zhang Junling; Li Xiaolin

    2008-01-01

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg -1 ) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition

  13. The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake

    Energy Technology Data Exchange (ETDEWEB)

    Xu Pengliang [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Christie, Peter [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom); Liu Yu [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China); Zhang Junling [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)], E-mail: junlingz@cau.edu.cn; Li Xiaolin [Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094 (China)

    2008-11-15

    A pot experiment examined the biomass and As uptake of Medicago truncatula colonized by the arbuscular mycorrhizal (AM) fungus Glomus mosseae in low-P soil experimentally contaminated with different levels of arsenate. The biomass of G. mosseae external mycelium was unaffected by the highest addition level of As studied (200 mg kg{sup -1}) but shoot and root biomass declined in both mycorrhizal and non-mycorrhizal plants, indicating that the AM fungus was more tolerant than M. truncatula to arsenate. Mycorrhizal inoculation increased shoot and root dry weights by enhancing host plant P nutrition and lowering shoot and root As concentrations compared with uninoculated plants. The AM fungus may have been highly tolerant to As and conferred enhanced tolerance to arsenate on the host plant by enhancing P nutrition and restricting root As uptake. - G. mosseae was more tolerant than M. truncatula to As and may have conferred enhanced host tolerance by restricting root As uptake and enhancing P nutrition.

  14. Chromatography of phosphorus oxoacids

    International Nuclear Information System (INIS)

    Ohashi, S.

    1975-01-01

    The present state of studies on the chromatographic separation of phosphorus oxoacids is surveyed. In this paper, chromatographic techniques are divided into four groups, i.e. paper and thin-layer chromatography, paper electrophoresis, ion-exchange chromatography, and gel chromatography. The separation mechanisms and characteristics for these chromatographic methods are discussed and some examples for the separation of phosphorus oxoacids are described. As examples of the application of ion-exchange and gel chromatography, studies on the hot atom chemistry of 32 P in solid inorganic phosphates and those on the substitution reactions between diphosphonate (diphosphite) and polyphosphates are reported. (author)

  15. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit

    Energy Technology Data Exchange (ETDEWEB)

    Ceccon, Alberto; Marius Clore, G., E-mail: mariusc@mail.nih.gov; Tugarinov, Vitali, E-mail: vitali.tugarinov@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2016-09-15

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ{sub 2}{sup app}) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k{sub ex} between the species is fast on the PRE time scale (k{sub ex} ≫ Γ{sub 2}). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789–5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd{sup 3+}, we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k{sub ex} ≫ Γ{sub 2}) the ratio of the apparent proton to carbon methyl PREs, ({sup 1}H{sub m}–Γ{sub 2}{sup app})/({sup 13}C{sub m}–Γ{sub 2}{sup app}), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γ{sub Η}/γ{sub C}){sup 2}. However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ{sub 2} is comparable in magnitude to k{sub ex}) the ({sup 1}H{sub m}–Γ{sub 2}{sup app})/({sup 13}C{sub m}–Γ{sub 2}{sup app}) ratio provides a reliable measure of the ‘true’ methyl PREs.

  16. Towards interpretation of intermolecular paramagnetic relaxation enhancement outside the fast exchange limit

    International Nuclear Information System (INIS)

    Ceccon, Alberto; Marius Clore, G.; Tugarinov, Vitali

    2016-01-01

    In an exchanging system between major and minor species, the transverse paramagnetic relaxation enhancement rate observed on the resonances of the major species (Γ_2"a"p"p) is dependent upon the exchange regime between the species. Quantitative analysis of PRE data in such systems typically assumes that the overall exchange rate k_e_x between the species is fast on the PRE time scale (k_e_x ≫ Γ_2). Recently, we have characterized the kinetics of binding of the model protein ubiquitin to large (LUV) and small (SUV) unilamellar lipid-based nanoparticles or liposomes (Ceccon A, Tugarinov V, Bax A, Clore GM (2016). J Am Chem Soc 138:5789–5792). Building upon these results and taking advantage of a strong paramagnetic agent with an isotropic g-tensor, Gd"3"+, we were able to measure intermolecular methyl carbon and proton PREs between paramagnetically-tagged liposomes and ubiquitin. In the limit of fast exchange (k_e_x ≫ Γ_2) the ratio of the apparent proton to carbon methyl PREs, ("1H_m–Γ_2"a"p"p)/("1"3C_m–Γ_2"a"p"p), is equal to the square of the ratio of the gyromagnetic ratios of the two nuclei, (γ_Η/γ_C)"2. However, outside the fast exchange regime, under intermediate exchange conditions (e.g. when Γ_2 is comparable in magnitude to k_e_x) the ("1H_m–Γ_2"a"p"p)/("1"3C_m–Γ_2"a"p"p) ratio provides a reliable measure of the ‘true’ methyl PREs.

  17. Phosphorus in Agriculture : 100 % Zero

    NARCIS (Netherlands)

    Schnug, Ewald; De Kok, Luit J.

    2016-01-01

    Phosphorus is essential for all living organisms, reserves in geogenic deposits are finite, and phosphorus nutrient mining and oversupply are common phenomenons on agricultural soils. Only if the agricultural phosphorus cycle can be closed and the fertilized nutrient been utilized completely,

  18. Quantum-Noise-Limited Sensitivity-Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing an intracavity dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noiselimited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantumnoise- limited measurement precision, by temperature tuning a low-pressure vapor of noninteracting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  19. Genetic variations in phosphorus utilization in rice investigation by tracer technique using Phosphorus-32

    International Nuclear Information System (INIS)

    Sanjivkumar, V.; Malarvizhi, P.; Meena, S.; Latha, K.R.

    2012-01-01

    In most soils, soil and fertilizer P are easily bound by either soil organic matter or chemicals and thus are unavailable to plants unless hydrolyzed to release inorganic phosphate. Therefore, the development of P-efficient rice varieties that can grow and yield better with low P supply is a key to improve crop production. P efficient plants play a major role in increasing crop yields due to shortage of inorganic P fertilizer resources, limited land and water resources and increasing environmental concerns. Based on the P uptake efficiency, four rice genotypes were selected from the field experiment and used in pot culture experiment with three levels of P using radio isotope technique to quantify the P acquisition efficiency (PAE) and P use efficiency (PUE) and also to determine the native P supplying power of the soils using 32 P in low P soils. Growth and yield parameters, grain and straw yield and major nutrients uptake of rice genotypes were increased with enhanced level of phosphorus application. Among the four genotypes, TNRH 180 recorded the highest grain yield and uptake. Increasing the P application rate from 25 to 50 kg P 2 O 5 ha -1 increased the %Pdff in grain and straw for all the genotypes. The mean per cent phosphorus utilization (PPU) ranged between 18.74 and 23.72. The PPU of the genotypes followed the order TNRH 180 (23.72 %) > CO08504 (23.36 %) > CO06732 (20.54%) > ADT 47 (18.74%) . The PPU values were higher at lower level of P application (25 kg P 2 O 5 ha -1 ) for the genotypes TNRH 180, CB08504 and CB06732. (author)

  20. Use of Carbon -14 and Phosphorus -32 to study phosphorus acquisition efficiency in crop plants

    International Nuclear Information System (INIS)

    Pandey, Renu; Vengavasi, Krishnapriya

    2017-01-01

    Low bioavailability of phosphorus (P) in soils is one of the major limiting factors to crop production throughout the world. P nutrition improves yield, with significant influences on the above- (leaf area, photosynthesis, dry matter accumulation, leaf P content) and below-ground (root morphology, exudation, symbiosis) processes (Pandey et al., 2015). Plants, however, are known to possess potential adaptive mechanisms at morphological, physiological, biochemical, and molecular levels to overcome P deficiency. Such adaptive mechanisms mainly include an increase in total root length and root hair growth (Pandey et al., unpublished), enhancement of organic acids (Vengavasi and Pandey, 2016a, b), acid phosphatase (Pandey, 2006) and ribonuclease (RNase) secretion into the rhizosphere (Hocking, 2001), increase in expression of proteins such as phosphatase, inorganic phosphate (Pi) transporter, RNase and phosphoenolpyruvate carboxylase (PEPcase) in plant tissues (Ragothama, 1999). Of all the above, rhizosphere acidification provides maximum exploration of soil volume around the rooting zone leading to conversion of non-available nutrients into available forms thus, resulting in enhanced uptake efficiency

  1. Quantum-Noise-Limited Sensitivity Enhancement of a Passive Optical Cavity by a Fast-Light Medium

    Science.gov (United States)

    Smith, David D.; Luckay, H. A.; Chang, Hongrok; Myneni, Krishna

    2016-01-01

    We demonstrate for a passive optical cavity containing a dispersive atomic medium, the increase in scale factor near the critical anomalous dispersion is not cancelled by mode broadening or attenuation, resulting in an overall increase in the predicted quantum-noise-limited sensitivity. Enhancements of over two orders of magnitude are measured in the scale factor, which translates to greater than an order-of-magnitude enhancement in the predicted quantum-noise-limited measurement precision, by temperature tuning a low-pressure vapor of non-interacting atoms in a low-finesse cavity close to the critical anomalous dispersion condition. The predicted enhancement in sensitivity is confirmed through Monte-Carlo numerical simulations.

  2. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  3. Attaining 2D Black Phosphorus and Investigations into Floating-Electrode Dielectric Barrier Discharge Treatment of Solutions

    Science.gov (United States)

    Smith, Joshua Benjamin

    Since the discovery and isolation of the 2D carbon allotrope, graphene, research into additional 2D materials has significantly expanded. Electrical components continue to decrease in size so there is an ever-growing need for smaller circuitry to keep up with the demand. Research with graphene and additional 2D layered materials, such as transition metal dichalcogenides, brought about a realization of many unique properties that have never been previously explored for applications in electronics, photonics, and optoelectronics. Phosphorene, a novel 2D material isolated from bulk black phosphorus, is an intrinsic p-type material with a variable band gap for a variety of applications. However, these applications are limited by the inability to isolate films of phosphorene. This work investigates some of the previously found techniques for use with graphene isolation and their adaptations to phosphorene. Isolation of phosphorene from black phosphorus was investigated by exfoliation from bulk, chemical vapor deposition, and thin film conversion. Mechanical exfoliation with a tape method, drawing method, and tape/drawing method were used to isolate few-layer black phosphorus samples from bulk material. These methods were also briefly compared to liquid exfoliation of black phosphorus. A chemical vapor deposition approach led to the discovery of a novel method for growth of amorphous red phosphorus thin films from bulk red phosphorus/black phosphorus. An in situ chemical vapor deposition type approach was developed using these thin films for growth of a variety of 2D phosphorus allotropes. Successful conversion has provided fibrous phosphorus wires and hexagons, along with violet phosphorus and eventually black phosphorus. This approach demonstrates progress towards direct growth of 2D black phosphorus onto substrates with average areas >3 microm2 and thicknesses representing samples around 4 layers. Thicker samples were also observed with average areas >100 microm2. X

  4. Assessment of conservation easements, total phosphorus, and total suspended solids in West Fork Beaver Creek, Minnesota, 1999-2012

    Science.gov (United States)

    Christensen, Victoria G.; Kieta, Kristen A.

    2014-01-01

    This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids

  5. A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties.

    Science.gov (United States)

    Zhao, Dan; Li, Beibei; Zhang, Jinying; Li, Xin; Xiao, Dingbin; Fu, Chengcheng; Zhang, Lihui; Li, Zhihui; Li, Jun; Cao, Daxian; Niu, Chunming

    2017-06-14

    Nanostructured phosphorus-carbon composites are promising materials for Li-ion and Na-ion battery anodes. A hierarchical phosphorus hybrid, SiC@graphene@P, has been synthesized by the chemical vapor deposition of phosphorus on the surfaces of barbed nanowires, where the barbs are vertically grown graphene nanosheets and the cores are SiC nanowires. A temperature-gradient vaporization-condensation method has been used to remove the unhybridized phosphorus particles formed by homogeneous nucleation. The vertically grown barb shaped graphene nanosheets and a high concentration of edge carbon atoms induced a fibrous red phosphorus (f-RP) growth with its {001} planes in parallel to {002} planes of nanographene sheets and led to a strong interpenetrated interface interaction between phosphorus and the surfaces of graphene nanosheets. This hybridization has been demonstrated to significantly enhance the electrochemical performances of phosphorus.

  6. Fundamental limitations to gain enhancement in slow-light photonic structures

    DEFF Research Database (Denmark)

    Grgic, Jure; Ott, Johan Raunkjar; Wang, Fengwen

    2012-01-01

    We present a non-perturbative analysis of light-matter interaction in active photonic crystal waveguides in the slow-light regime. Inclusion of gain is shown to modify the underlying dispersion law, thereby degrading the slow-light enhancement.......We present a non-perturbative analysis of light-matter interaction in active photonic crystal waveguides in the slow-light regime. Inclusion of gain is shown to modify the underlying dispersion law, thereby degrading the slow-light enhancement....

  7. Prevalence of ‘Candidatus Accumulibacter phosphatis’ type II under phosphate limiting conditions

    NARCIS (Netherlands)

    Welles, L.; Lopez Vazquez, C.M.; Hooijmans, C. M.; van Loosdrecht, Mark C.M.; Brdjanovic, D

    2016-01-01

    P-limitation in enhanced biological phosphorus removal (EBPR) systems fed with acetate, has generally been considered as a condition leading to enrichment of organisms of the genotype’ Candidatus Competibacter phosphatis’ expressing the glycogen-accumulating organisms (GAO) phenotype. Recent

  8. The White Ocean hypothesis: a late Pleistocene Southern Ocean governed by Coccolithophores and driven by phosphorus

    Directory of Open Access Journals (Sweden)

    Jose Abel Flores

    2012-07-01

    Full Text Available Paleoproductivity is a critical component in past ocean biogeochemistry, but accurate reconstructions of productivity are often hindered by limited integration of proxies. Here, we integrate geochemical (phosphorus and micropaleontological proxies at millennial timescales, revealing that the coccolithophore record in the Subantarctic zone of the South Atlantic Ocean is driven largely by variations in marine phosphorus availability. A quantitative micropaleontological and geochemical analysis carried out in sediments retrieved from ODP Site 1089 (Subantarctic Zone reveals that most of the export productivity in this region over the last 0.5 my was due to coccolithophores. Glacial periods were generally intervals of high productivity, with productivity reaching a peak at terminations. Particularly high productivity was observed at Termination V and Termination IV, events that are characterized by high abundance of coccolithophores and maxima in the phosphorus/titanium and strontium/titanium records. We link the increase in productivity both to regional oceanographic phenomena, i.e., the northward displacement of the upwelling cell of the Antarctic divergence when the ice-sheet expanded, and to the increase in the inventory of phosphorus in the ocean due to enhanced transfer of this nutrient from continental margins during glacial lowstands in sea level. The Mid-Brunhes interval stands out from the rest of the record, being dominated by the small and highly-calcified species Gephyrocapsa caribbeanica that provides most of the carbonate in these sediments. This likely represents higher availability of phosphorus in the surface ocean, especially in mesotrophic and oligotrophic zones. Under these condition, some coccolithophore species developed an r-strategy (opportunistic species; growth rate maximized resulting in the bloom of G. caribbeanica. These seasonal blooms of may have inducedwhite tides similar to those observed today in Emiliania huxleyi.

  9. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  10. Au/La{sub 2}Ti{sub 2}O{sub 7} nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Mingshan; Fujitsuka, Mamoru; Majima, Tetsuro [The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki (Japan); Cai, Xiaoyan [The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki (Japan); Department of Physics, Beihang University, Beijing (China); Zhang, Junying [Department of Physics, Beihang University, Beijing (China)

    2017-02-13

    Efficient utilization of solar energy is a high-priority target and the search for suitable materials as photocatalysts that not only can harvest the broad wavelength of solar light, from UV to near-infrared (NIR) region, but also can achieve high and efficient solar-to-hydrogen conversion is one of the most challenging missions. Herein, using Au/La{sub 2}Ti{sub 2}O{sub 7} (BP-Au/LTO) sensitized with black phosphorus (BP), a broadband solar response photocatalyst was designed and used as efficient photocatalyst for H{sub 2} production. The optimum H{sub 2} production rates of BP-Au/LTO were about 0.74 and 0.30 mmol g{sup -1} h{sup -1} at wavelengths longer than 420 nm and 780 nm, respectively. The broad absorption of BP and plasmonic Au contribute to the enhanced photocatalytic activity in the visible and NIR light regions. Time-resolved diffuse reflectance spectroscopy revealed efficient interfacial electron transfer from excited BP and Au to LTO which is in accordance with the observed high photoactivities. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Substoichiometric determination of phosphorus

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1981-01-01

    Phosphorus in orchard leaves (NBS SRM-1571) and spinach (SRM-1570) was determined by various substoichiometric analytical methods such as the direct method, Gravshchenko's method and the method of carrier amount variation. All samples were labelled with 32 P radioisotope. The data obtained by the method of carrier amount variation were also treated by the method of least squares instead of De Voe's method. Phosphorus concentration in orchard leaves was 0.206+-0.011% by the direct method, 0.219+-0.011% by Gravshchenko's method, 0.211+-0.011% by the method of carrier amount variation and 0.207+-0.007% by the method of least squares, respectively. These values agree with the value reported by NBS (0.21+-0.01%). Furthermore, these concentrations obtained by various substoichiometric methods were compared with those by radioactivation reported in a previous paper. (author)

  12. Phosphorus Transport in Rivers.

    Science.gov (United States)

    1978-11-01

    be attributed to excessive nutrient inputs to the lake. These nutrients sti- mulate the phytoplankton (algae) growth which yields excess growth. The...phosphorus in relation to the restoration of Lake Erie. The various computational techniques presented herein aid in the understanding of total...as caused by the absorption on clay materials and by assimilation by periphyton . Other investigators have found correlations between flow and other

  13. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    International Nuclear Information System (INIS)

    Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2012-01-01

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  14. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    International Nuclear Information System (INIS)

    Choi, Yong Ju; Kim, Young-Jin; Nam, Kyoungphile

    2009-01-01

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  15. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ju; Kim, Young-Jin [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of)

    2009-08-15

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  16. Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security

    Directory of Open Access Journals (Sweden)

    Stuart White

    2013-01-01

    Full Text Available Phosphorus underpins the world’s food systems by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately food security. Yet increasing concerns around long-term availability and accessibility of the world’s main source of phosphorus—phosphate rock, means there is a need to investigate sustainable measures to buffer the world’s food systems against the long and short-term impacts of global phosphorus scarcity. While the timeline of phosphorus scarcity is contested, there is consensus that more efficient use and recycling of phosphorus is required. While the agricultural sector will be crucial in achieving this, sustainable phosphorus measures in sectors upstream and downstream of agriculture from mine to fork will also need to be addressed. This paper presents a comprehensive classification of all potential phosphorus supply- and demand-side measures to meet long-term phosphorus needs for food production. Examples range from increasing efficiency in the agricultural and mining sector, to technologies for recovering phosphorus from urine and food waste. Such measures are often undertaken in isolation from one another rather than linked in an integrated strategy. This integrated approach will enable scientists and policy-makers to take a systematic approach when identifying potential sustainable phosphorus measures. If a systematic approach is not taken, there is a risk of inappropriate investment in research and implementation of technologies and that will not ultimately ensure sufficient access to phosphorus to produce food in the future. The paper concludes by introducing a framework to assess and compare sustainable phosphorus measures and to determine the least cost options in a given context.

  17. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  18. Phosphorus and the dairy cow

    OpenAIRE

    Ekelund, Adrienne

    2003-01-01

    The general aim of the present work was to investigate phosphorus balance in the dairy cow, with reference to the amount and source of phosphorus. Furthermore, biochemical bone markers were used to study the bone turnover during the lactation and dry period. Phosphorus is located in every cell of the body and has more known functions than any other mineral element in the animal body. Phosphorus is also an important constituent of milk, and is therefore required in large amounts in a high yiel...

  19. Current Enhancement with Contact-Area-Limited Doping for Bottom-Gate, Bottom-Contact Organic Thin-Film Transistors

    Science.gov (United States)

    Noda, Kei; Wakatsuki, Yusuke; Yamagishi, Yuji; Wada, Yasuo; Toyabe, Toru; Matsushige, Kazumi

    2013-02-01

    The current enhancement mechanism in contact-area-limited doping for bottom-gate, bottom-contact (BGBC) p-channel organic thin-film transistors (OTFTs) was investigated both by simulation and experiment. Simulation results suggest that carrier shortage and large potential drop occur in the source-electrode/channel interface region in a conventional BGBC OTFT during operation, which results in a decrease in the effective field-effect mobility. These phenomena are attributed to the low carrier concentration of active semiconductor layers in OTFTs and can be alleviated by contact-area-limited doping, where highly doped layers are prepared over source-drain electrodes. According to two-dimensional current distribution obtained from the device simulation, a current flow from the source electrode to the channel region via highly doped layers is generated in addition to the direct carrier injection from the source electrode to the channel, leading to the enhancement of the drain current and effective field-effect mobility. The expected current enhancement mechanism in contact-area-limited doping was experimentally confirmed in typical α-sexithiophene (α-6T) BGBC thin-film transistors.

  20. Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions

    DEFF Research Database (Denmark)

    Pavlovic, Jelena; Samardzic, Jelena; Kostic, Ljiljana

    2016-01-01

    leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated. METHODS: Iron ((57)Fe or naturally occurring isotopes) was measured in leaves at different positions on plants hydroponically growing with or without...

  1. Enhancing Teaching and Learning Wi-Fi Networking Using Limited Resources to Undergraduates

    Science.gov (United States)

    Sarkar, Nurul I.

    2013-01-01

    Motivating students to learn Wi-Fi (wireless fidelity) wireless networking to undergraduate students is often difficult because many students find the subject rather technical and abstract when presented in traditional lecture format. This paper focuses on the teaching and learning aspects of Wi-Fi networking using limited hardware resources. It…

  2. Enhanced production of recombinant nattokinase in Bacillus subtilis by the elimination of limiting factors.

    Science.gov (United States)

    Chen, Po Ting; Chao, Yun-Peng

    2006-10-01

    By systematic investigation, glutamate and a mixture of metal ions were identified as factors limiting the production of nattokinase in Bacillus subtilis. Consequently, in medium supplemented with these materials, the recombinant strain secreted 4 times more nattokinase (260 mg l(-1)) than when grown in the unsupplemented medium.

  3. Music-Based Memory Enhancement in Alzheimer’s Disease: Promise and Limitations

    Science.gov (United States)

    Simmons-Stern, Nicholas R.; Deason, Rebecca G.; Brandler, Brian J.; Frustace, Bruno S.; O’Connor, Maureen K.; Ally, Brandon A.; Budson, Andrew E.

    2012-01-01

    In a previous study (Simmons-Stern, Budson, & Ally 2010), we found that patients with Alzheimer’s disease (AD) better recognized visually presented lyrics when the lyrics were also sung rather than spoken at encoding. The present study sought to further investigate the effects of music on memory in patients with AD by making the content of the song lyrics relevant for the daily life of an older adult and by examining how musical encoding alters several different aspects of episodic memory. Patients with AD and healthy older adults studied visually presented novel song lyrics related to instrumental activities of daily living (IADL) that were accompanied by either a sung or a spoken recording. Overall, participants performed better on a memory test of general lyric content for lyrics that were studied sung as compared to spoken. However, on a memory test of specific lyric content, participants performed equally well for sung and spoken lyrics. We interpret these results in terms of a dual-process model of recognition memory such that the general content questions represent a familiarity-based representation that is preferentially sensitive to enhancement via music, while the specific content questions represent a recollection-based representation unaided by musical encoding. Additionally, in a test of basic recognition memory for the audio stimuli, patients with AD demonstrated equal discrimination for sung and spoken stimuli. We propose that the perceptual distinctiveness of musical stimuli enhanced metamemorial awareness in AD patients via a non-selective distinctiveness heuristic, thereby reducing false recognition while at the same time reducing true recognition and eliminating the mnemonic benefit of music. These results are discussed in the context of potential music-based memory enhancement interventions for the care of patients with AD. PMID:23000133

  4. Music-based memory enhancement in Alzheimer's disease: promise and limitations.

    Science.gov (United States)

    Simmons-Stern, Nicholas R; Deason, Rebecca G; Brandler, Brian J; Frustace, Bruno S; O'Connor, Maureen K; Ally, Brandon A; Budson, Andrew E

    2012-12-01

    In a previous study (Simmons-Stern, Budson & Ally, 2010), we found that patients with Alzheimer's disease (AD) better recognized visually presented lyrics when the lyrics were also sung rather than spoken at encoding. The present study sought to further investigate the effects of music on memory in patients with AD by making the content of the song lyrics relevant for the daily life of an older adult and by examining how musical encoding alters several different aspects of episodic memory. Patients with AD and healthy older adults studied visually presented novel song lyrics related to instrumental activities of daily living (IADL) that were accompanied by either a sung or a spoken recording. Overall, participants performed better on a memory test of general lyric content for lyrics that were studied sung as compared to spoken. However, on a memory test of specific lyric content, participants performed equally well for sung and spoken lyrics. We interpret these results in terms of a dual-process model of recognition memory such that the general content questions represent a familiarity-based representation that is preferentially sensitive to enhancement via music, while the specific content questions represent a recollection-based representation unaided by musical encoding. Additionally, in a test of basic recognition memory for the audio stimuli, patients with AD demonstrated equal discrimination for sung and spoken stimuli. We propose that the perceptual distinctiveness of musical stimuli enhanced metamemorial awareness in AD patients via a non-selective distinctiveness heuristic, thereby reducing false recognition while at the same time reducing true recognition and eliminating the mnemonic benefit of music. These results are discussed in the context of potential music-based memory enhancement interventions for the care of patients with AD. Published by Elsevier Ltd.

  5. A representation of the phosphorus cycle for ORCHIDEE (revision 4520)

    Science.gov (United States)

    Goll, Daniel S.; Vuichard, Nicolas; Maignan, Fabienne; Jornet-Puig, Albert; Sardans, Jordi; Violette, Aurelie; Peng, Shushi; Sun, Yan; Kvakic, Marko; Guimberteau, Matthieu; Guenet, Bertrand; Zaehle, Soenke; Penuelas, Josep; Janssens, Ivan; Ciais, Philippe

    2017-10-01

    Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the ORCHIDEE land surface model, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for the influence of the nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization, and biological nitrogen fixation. Changes in the nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from the soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300-year) and a late (4.1 Myr) stage of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus, or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower than observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient addition.

  6. Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads.

    Science.gov (United States)

    Fritz, C; van Dijk, G; Smolders, A J P; Pancotto, V A; Elzenga, T J T M; Roelofs, J G M; Grootjans, A P

    2012-05-01

    Sphagnum-bog ecosystems have a limited capability to retain carbon and nutrients when subjected to increased nitrogen (N) deposition. Although it has been proposed that phosphorus (P) can dilute negative effects of nitrogen by increasing biomass production of Sphagnum mosses, it is still unclear whether P-addition can alleviate physiological N-stress in Sphagnum plants. A 3-year fertilisation experiment was conducted in lawns of a pristine Sphagnum magellanicum bog in Patagonia, where competing vascular plants were practically absent. Background wet deposition of nitrogen was low (≈ 0.1-0.2 g · N · m(-2) · year(-1)). Nitrogen (4 g · N · m(-2) · year(-1)) and phosphorus (1 g · P · m(-2) · year(-1)) were applied, separately and in combination, six times during the growing season. P-addition substantially increased biomass production of Sphagnum. Nitrogen and phosphorus changed the morphology of Sphagnum mosses by enhancing height increment, but lowering moss stem density. In contrast to expectations, phosphorus failed to alleviate physiological stress imposed by excess nitrogen (e.g. amino acid accumulation, N-saturation and decline in photosynthetic rates). We conclude that despite improving growth conditions by P-addition, Sphagnum-bog ecosystems remain highly susceptible to nitrogen additions. Increased susceptibility to desiccation by nutrients may even worsen the negative effects of excess nitrogen especially in windy climates like in Patagonia. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Paviet-Salomon, B.; Gall, S.; Slaoui, A.

    2013-01-01

    Highlights: ► We investigate the properties of phosphorus and boron-doped silicon nitride films. ► Phosphorus-doped layers yield higher lifetimes than undoped ones. ► The fixed charges density decreases when increasing the films phosphorus content. ► Boron-doped films feature very low lifetimes. ► These doped layers are of particular interest for crystalline silicon solar cells. -- Abstract: Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as anti-reflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q fix ) and the effective lifetimes (τ eff ) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher τ eff than standard undoped layers. In contrast, B-doped layers exhibit lower τ eff . A strong Q fix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges

  8. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  9. Limitations of ZAF correction factors in the determination of calcium/phosphorus ratios: Important forensic science considerations relevant to the analysis of bone fragments using scanning electron microscopy and energy-dispersive x-ray microanalysis

    International Nuclear Information System (INIS)

    Payne, C.M.; Cromey, D.W.

    1990-01-01

    A series of calcium phosphate standards having calcium/phosphorus (Ca/P) molar ratios of 0.50, 1.00, 1.50, and 1.67, respectively, was prepared for bulk specimen analysis using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDXA). The standards were mounted on carbon planchettes as either pure crystals or crystals embedded in epoxy resin. Ten different samples of each embedded and non-embedded standard were analyzed in a JEOL 100 CX electron microscope interfaced with a Kevex 8000 EDXA system using a lithium-drifted silicon detector and a multichannel analyzer. The Ca/P ratios were determined by calculating both net peak intensities without matrix corrections and atomic kappa-ratios using the MAGIC V computer program with ZAF correction factors for quantitative analysis. There was such extensive absorption of phosphorus X-rays in standards embedded in an epoxy matrix that the observed Ca/P ratios were statistically compatible with four different standards ranging in theoretical Ca/P ratios from 1.0 to 1.67. Although the non-embedded crystals showed a greater separation in the Ca/P ratios, both methods of preparation produced serious flaws in analysis. Direct application of the discovery of this caveat to the identification of suspected bone fragments for forensic science purposes is discussed

  10. Charged particle activation analysis of phosphorus in biological materials

    International Nuclear Information System (INIS)

    Masumoto, K.; Yagi, M.

    1983-01-01

    Charged particle activation analysis of phosphorus in biological materials using the 31 P(α,n) sup(34m)Cl reaction has been studied. Since sup(34m)Cl is also produced by the 32 S(α,pn) and the 35 Cl(α,α'n) reactions, the thick-target yield curves on phosphorus, sulfur and chlorine were determined in order to choose the optimum irradiation conditions. As a result, it was found that the activation analysis for phosphorus without interferences from sulfur and chlorine is possible by bombarding with less than 17 MeV alphas. The applicability of this method to biological samples was then examined by irradiating several standard reference materials. It was confirmed that phosphorus can readily be determined at the detection limit of 1μg free from interferences due to the matrix elements. (author)

  11. A single phosphorus treatment doubles growth of cyanobacterial lichen transplants.

    Science.gov (United States)

    McCune, Bruce; Caldwell, Bruce A

    2009-02-01

    Lichens are reputedly slow growing and become unhealthy or die in response to supplements of the usual limiting resources, such as water and nitrogen. We found, however, that the tripartite cyanobacterial lichen Lobaria pulmonaria doubled in annual biomass growth after a single 20-minute immersion in a phosphorus solution (K2HPO4), as compared to controls receiving no supplemental phosphorus. This stimulation of cyanolichens by phosphorus has direct relevance to community and population ecology of lichens, including improving models of lichen performance in relation to air quality, improving forest management practices affecting old-growth associated cyanolichens, and understanding the distribution and abundance of cyanolichens on the landscape. Phosphorus may be as important a stimulant to cyanobacterial-rich lichen communities as it is to cyanobacteria in aquatic ecosystems.

  12. The value and limitations of contrast-enhanced transrectal ultrasonography for the detection of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Han-Xue, E-mail: zhaohx861@163.com [Department of Diagnostic Ultrasound, Beijing Tongren Hospital, Capital Medical University, Dong-Jiao-Min-Xiang, Dong Cheng District, Beijing 100730 (China); Xia, Chun-Xia, E-mail: star9901482@163.com [Department of Diagnostic Ultrasound, Beijing Tongren Hospital, Capital Medical University, Dong-Jiao-Min-Xiang, Dong Cheng District, Beijing 100730 (China); Yin, Hong-Xia, E-mail: hongxia_yin79@yahoo.com.cn [Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Dong-Jiao-Min-Xiang, Dong Cheng District, Beijing 100730 (China); Guo, Ning, E-mail: ningguo99@sina.com.cn [Department of Diagnostic Ultrasound, Beijing Tongren Hospital, Capital Medical University, Dong-Jiao-Min-Xiang, Dong Cheng District, Beijing 100730 (China); Zhu, Qiang, E-mail: qzhutrhos@gmail.com [Department of Diagnostic Ultrasound, Beijing Tongren Hospital, Capital Medical University, Dong-Jiao-Min-Xiang, Dong Cheng District, Beijing 100730 (China)

    2013-11-01

    Objectives: To evaluate the role of contrast-enhanced transrectal ultrasonography (CE-TRUS) for detecting prostate carcinoma. Methods: Sixty-five patients with elevated serum prostate-specific antigen (PSA) and/or abnormal digital rectal examination (DRE) were assessed using transrectal ultrasound (TRUS) and CE-TRUS. In all the patients, CE-TRUS was performed with intravenous injection of contrast agent (SonoVue, 2.4 ml) before biopsy. The cancer detection rates of the two techniques were compared. False-positive and false-negative findings related to CE-TRUS were analyzed in comparison to the pathological results of biopsy or radical prostatectomy. The targeted biopsy to abnormal CE-TRUS areas was also compared to systematic biopsy. Results: Prostate cancer was detected in 29 of the 65 patients. CE-TRUS showed rapid focal enhancement or asymmetric vessels of peripheral zones in 28 patients; 23 of them had prostate cancer. CE-TRUS had 79.3% sensitivity, compared to 65.5% of TRUS (P < 0.05). There were five false-positive and six false-negative findings from CE-TRUS. Benign prostate hyperplasia, and acute and chronic prostatitis were important causes related to the false-positive results of CE-TRUS. Prostate cancer originating from the transition zone or peripheral zone with lower PSA levels, small-size foci, and moderately or well-differentiated tumor was missed by CE-TRUS. The cancer detection rate of targeted biopsy (75%, 33/44 cores) was significantly higher than one of systematic biopsy (48.2%, 162/336) in those 28 cases (P < 0.05). In addition, no significant correlation was found between the cancer detection rate with CE-TRUS and serum PSA levels. Conclusion: CE-TRUS may improve the detection rate of prostate cancer through targeted biopsy of contrast-enhanced abnormalities. Our findings indicate that systematic biopsies should not be eliminated on the basis of false-positive and false-negative findings related to CE-TRUS.

  13. Phosphorus, sulfur and pyridine

    OpenAIRE

    Schönberger, Stefanie

    2013-01-01

    The synthesis of distinct neutral or anionic P,S compounds in solution provides a great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and S–S bonds nearly solely a mixture of compounds with different composition and charge is obtained. Our interest focuses on the system consisting of phosphorus, sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. The combination of these three components offers the opportunity...

  14. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  15. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  16. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies

    International Nuclear Information System (INIS)

    Zhou Pei; Wagner, Gerhard

    2010-01-01

    Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.

  17. Neutron-activation determination of phosphorus using extraction separation of phosphate-ion with dialkylti dinitrates

    International Nuclear Information System (INIS)

    Yakovlev, Yu.V.; Kolotov, V.P.

    1981-01-01

    The selectivity of phosphorus (5) separation has been studied using dialkyltin dinitrates-promising reagents for extraction of oxygen-containing anions. Procedures have been developed for separating phosphorus in the presence of macro amounts of some interfering-elements (Al, Fe, Mo and Zr). The procedure was used for neutron activation determination of phosphorus in aluminium. The limit of detection was 5x10 -10 g [ru

  18. Beyond the Lambertian limit: Novel low-symmetry gratings for ultimate light trapping enhancement in next-generation photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, Robert [Univ. of Delaware, Newark, DE (United States); Hu, Juejun [Univ. of Delaware, Newark, DE (United States); Richardson, Kathleen [Univ. of Central Florida, Orlando, FL (United States). College of Optics and Photonics, Center for Research and Education in Optics and Lasers (CREOL)

    2016-05-20

    This project aims at addressing the efficiency limit and high fabrication cost of current light trapping methods by developing novel low-symmetry gratings (LSG) for next-generation thin c-Si photovoltaic (PV) cells. The LSG design achieves light trapping enhancement exceeding the 4n2 Lambertian limit and can be fabricated over large areas using low-cost, single-step nanoimprint techniques. We further explored the use of deposited high-refractive-index glass materials for low-temperature LSG processing, which enables direct imprint sculpting of even complex grating geometries in glass without requiring an additional pattern transfer step, which minimizes processing cost and surface damage to PV cells. In the project, we have demonstrated fabrication and integration of sub-wavelength LSG with thin c-Si wafers and bifacial solar cells with low defect density. Optical absorption measurements indicate that LSGs demonstrated superior absorption enhancement compared to their traditional symmetric counterparts as predicted by our simulations. Efficiency enhancement was observed in solar cells integrated with LSGs although fabrication yield of the LSG-integrated cells remains a challenge

  19. Towards a closed phosphorus cycle

    NARCIS (Netherlands)

    Keyzer, M.A.

    2010-01-01

    Summary: This paper stresses the need to address upcoming scarcity of phosphorus, a mineral nutrient that is essential for all life on Earth. Agricultural crops obtain phosphorus from the pool in the soil that can be replenished by recycling of organic material, or by application of inorganic

  20. Use of phosphorus release batch tests for modelling an EBPR pilot plant

    DEFF Research Database (Denmark)

    Tykesson, E.; Aspegren, H.; Henze, Mogens

    2002-01-01

    The aim of this study was to evaluate how routinely performed phosphorus release tests could be used when modelling enhanced biological phosphorus removal (EBPR) using activated sludge models such as ASM2d. A pilot plant with an extensive analysis programme was used as basis for the simulations...

  1. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    Science.gov (United States)

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  2. Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit

    Directory of Open Access Journals (Sweden)

    Flávio Oliveira

    2015-12-01

    Full Text Available This paper have studied the dynamic of a 2.0 MW Doubly Fed Induction Generator (DFIG during a severe voltage sag. Using the dynamic model of a DFIG, it was possible to determine the current, Electromagnetic Force and flux behavior during three-phase symmetrical voltage dip. Among the technologies of wind turbines the DFIG is widely employed; however, this machine is extremely susceptible to disturbances from the grid. In order to improve DFIG Low Voltage Ride-Through (LVRT, it is proposed a novel solution, using Superconducting Current Limiter (SCL in two arrangements: one, the SCL is placed between the machine rotor and the rotor side converter (RSC, and another placed in the RSC DC-link. The proposal is validated through simulation using PSCAD™/EMTDC™ and according to requirements of specific regulations. The analysis ensure that both SCL arrangements behave likewise, and are effective in decrement the rotor currents during the disturbance.

  3. Methyl gallate limits infection in mice challenged with Brucella abortus while enhancing the inflammatory response.

    Science.gov (United States)

    Reyes, A W B; Kim, D G; Simborio, H L T; Hop, H T; Arayan, L T; Min, W; Lee, J J; Chang, H H; Kim, S

    2016-03-01

    To investigate the effects of methyl gallate (MG) on murine macrophages, cytokine production and treatment of Brucella abortus infection using a mouse model. MG-treated cells displayed increased F-actin polymerization and modest increase in ERK, JNK and p38α phosphorylation levels. The mice were intraperitoneally infected with Br. abortus and were orally treated with PBS or MG for 14 days. The weight and bacterial number from each spleen were monitored, and the serum was evaluated for cytokine production. The spleen proliferation and bacterial burden were lower in the MG-treated group than in the MG-untreated control. The noninfected MG-treated mice displayed increased production of TNF, IFN-γ, and the chemokine MCP-1, whereas the Br. abortus-infected MG-treated mice revealed enhanced induction of IL-12p70, TNF and IL-10 compared to the MG-untreated control. MG induced F-actin polymerization and modest upregulation of MAPKs. Furthermore, oral treatment with MG induced an immune response and decreased bacterial proliferation in Br. abortus-infected mice, suggesting that MG may be an alternative treatment for brucellosis. The present study demonstrates the therapeutic effects of MG against Brucella infection through induction of cytokine production and protection from bacterial proliferation in the spleens of mice. © 2015 The Society for Applied Microbiology.

  4. The influence of excess vacancy generation on the diffusion of ion implanted phosphorus into silicon

    International Nuclear Information System (INIS)

    Bakowski, A.

    1985-01-01

    The diffusion of ion implanted phosphorus in silicon has been studied. It was found that the diffusion coefficient is not only dependent on the phosphorus surface concentration (the concentration effect) but also on the conditions at the silicon surface (the surface effect). The phosphorus diffusion coefficient is considerably lower when the silicon surface during annealing is covered with a CVD oxide layer. It is suggested that excess vacancies generated at the surface are reponsible for both the concentration and surface effects. Enhanced phosphorus diffusion is attributed to the disturbance of thermodynamic equilibrium in the crystal through phosphorus-vacancy part formation by vacancies introduced into silicon at the surface. On the basis of the data presented, it can be concluded that two mechanisms for excess vacancy generation are involved. Assuming that phosphorus diffuses via E-centers, calculations of the concentration profiles and the diffusion coefficient were performed for different concentrations and surface conditions. (orig.)

  5. Limitations of Single Slice Dynamic Contrast Enhanced MR in Pharmacokinetic Modeling of Bone Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Toms, Andoni P. (Dept. of Radiology, The Norfolk and Norwich Univ. Hospital, Norwich, Norfolk (United Kingdom)); White, Lawrence M.; Bleakney, Robert R. (Dept. of Medical Imaging, Mount Sinai Hospital, Toronto, ON (Canada)); Kandel, Rita (Dept. of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON (Canada)); Noseworthy, Michael (Health Sciences Centre, Faculty of Health Sciences, McMaster Univ., Hamilton, ON (Canada)); Lee, Shepstone (Institute of Health, Univ. of East Anglia, Norwich, Norfolk (United Kingdom)); Blackstein, Martin E. (Dept. of Oncology, Mount Sinai Hospital, Toronto, ON (Canada)); Wunder, Jay (Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON (Canada))

    2009-06-15

    Background: Single slice dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) appears to provide perfusion data about sarcomas in vivo that correlate with tumor necrosis on equivalent pathological sections. However, sarcomas are heterogeneous and therefore single slice DCE-MRI may not correlate with total tumor necrosis. Purpose: To determine whether changes in pharmacokinetic modeling of DCE-MRI, during chemotherapy for primary bone sarcomas correlated with histological measures of total tumor necrosis. Material and Methods: Twelve patients with appendicular primary bone sarcomas were included in the study. Each patient had DCE-MRI before, and after completion, of pre-operative chemotherapy. The mean arterial slope (A), endothelial permeability coefficient (Ktrans), and extravascular extracellular volume (Ve) were derived from each data set using a modified two compartment pharmacokinetic model. Total tumor necrosis rates were compared with changes in A, Ktrans, and Ve. Results: Six patients had total tumor necrosis of =90% and six had a measure of <90%. The median percentage changes in A, Ktrans, and Ve for the =90% necrosis group were -52.5% (-83 to 6), -66% (-82 to 26), and 23.5% (-26 to 40), respectively. For the <90% necrosis group, A = - 35% (-75 to 132), Ktrans= - 53 (-66 to 149) and Ve= - 14.5% (-42 to 40). One patient with >90% necrosis had increases in all three measures. Comparison of the two groups generated P-values of 0.699 for A, 0.18 for Ktrans, and 0.31 for Ve. Conclusion: There was no statistically significant correlation between changes in pharmacokinetic perfusion parameters and total tumor necrosis. When using single slice DCE-MRI heterogeneous histology of primary bone sarcomas and repair mediated angiogenesis might both be confounding factors

  6. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni.

    Directory of Open Access Journals (Sweden)

    Claire Barbet-Massin

    Full Text Available The need for medicinal and aromatic plants for industrial uses creates an opportunity for farmers to produce alternative crops. Stevia rebaudiana Bertoni, a perennial shrub originating from Paraguay, is of increasing interest as a source of zero-calorie natural sweeteners: the steviol glycosides (SVglys. The aim of this study was to investigate the relevance of nitrogen (N supply for leaf yield and for SVgly concentrations in leaves, which are the two major components of S. rebaudiana productivity. In this regard, the relationship between leaf N concentration, CO2 assimilation, leaf production and SVgly accumulation was investigated. The experiments were conducted consecutively in growth-chamber (CC: controlled conditions, in greenhouse (SCC: semi-controlled conditions and in field conditions (FC on two genotypes. In CC and SCC, three levels of N fertilization were applied. Plants were grown on four locations in the FC experiment. Both N supply (CC and SCC and location (FC had a significant effect on N content in leaves. When light was not limiting (SCC and FC N content in leaves was positively correlated with CO2 assimilation rate and biomass accumulation. Irrespective of the growth conditions, N content in leaves was negatively correlated with SVgly content. However, increased SVgly content was correlated with a decreased ratio of rebaudioside A over stevioside. The evidence that the increased SVgly accumulation compensates for the negative effect on biomass production suggests that adequate SVgly productivity per plant may be achieved with relatively low fertilization.

  7. Nitrogen Limitation Alters Biomass Production but Enhances Steviol Glycoside Concentration in Stevia rebaudiana Bertoni

    Science.gov (United States)

    Barbet-Massin, Claire; Giuliano, Simon; Alletto, Lionel; Daydé, Jean; Berger, Monique

    2015-01-01

    The need for medicinal and aromatic plants for industrial uses creates an opportunity for farmers to produce alternative crops. Stevia rebaudiana Bertoni, a perennial shrub originating from Paraguay, is of increasing interest as a source of zero-calorie natural sweeteners: the steviol glycosides (SVglys). The aim of this study was to investigate the relevance of nitrogen (N) supply for leaf yield and for SVgly concentrations in leaves, which are the two major components of S. rebaudiana productivity. In this regard, the relationship between leaf N concentration, CO2 assimilation, leaf production and SVgly accumulation was investigated. The experiments were conducted consecutively in growth-chamber (CC: controlled conditions), in greenhouse (SCC: semi-controlled conditions) and in field conditions (FC) on two genotypes. In CC and SCC, three levels of N fertilization were applied. Plants were grown on four locations in the FC experiment. Both N supply (CC and SCC) and location (FC) had a significant effect on N content in leaves. When light was not limiting (SCC and FC) N content in leaves was positively correlated with CO2 assimilation rate and biomass accumulation. Irrespective of the growth conditions, N content in leaves was negatively correlated with SVgly content. However, increased SVgly content was correlated with a decreased ratio of rebaudioside A over stevioside. The evidence that the increased SVgly accumulation compensates for the negative effect on biomass production suggests that adequate SVgly productivity per plant may be achieved with relatively low fertilization. PMID:26192921

  8. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants.

    Science.gov (United States)

    Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez

    2012-01-01

    Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Contribution of food additives to sodium and phosphorus content of diets rich in processed foods.

    Science.gov (United States)

    Carrigan, Anna; Klinger, Andrew; Choquette, Suzanne S; Luzuriaga-McPherson, Alexandra; Bell, Emmy K; Darnell, Betty; Gutiérrez, Orlando M

    2014-01-01

    Phosphorus-based food additives increase the total phosphorus content of processed foods. However, the extent to which these additives augment total phosphorus intake per day is unclear. To examine the contribution of phosphorus-based food additives to the total phosphorus content of processed foods, separate 4-day menus for a low-additive and additive-enhanced diet were developed using Nutrition Data System for Research (NDSR) software. The low-additive diet was designed to conform to U.S. Department of Agriculture guidelines for energy and phosphorus intake (∼2,000 kcal/day and 900 mg of phosphorus per day), and it contained minimally processed foods. The additive-enhanced diet contained the same food items as the low-additive diet except that highly processed foods were substituted for minimally processed foods. Food items from both diets were collected, blended, and sent for measurement of energy and nutrient intake. The low-additive and additive-enhanced diet provided approximately 2,200 kcal, 700 mg of calcium, and 3,000 mg of potassium per day on average. Measured sodium and phosphorus content standardized per 100 mg of food was higher each day of the additive-enhanced diet as compared with the low-additive diet. When averaged over the 4 menu days, the measured phosphorus and sodium contents of the additive-enhanced diet were 606 ± 125 and 1,329 ± 642 mg higher than the low-additive diet, respectively, representing a 60% increase in total phosphorus and sodium content on average. When comparing the measured values of the additive-enhanced diet to NDSR-estimated values, there were no statistically significant differences in measured versus estimated phosphorus contents. Phosphorus and sodium additives in processed foods can substantially augment phosphorus and sodium intake, even in relatively healthy diets. Current dietary software may provide reasonable estimates of the phosphorus content in processed foods. Copyright © 2014 National Kidney

  10. Ocean acidification: One potential driver of phosphorus eutrophication.

    Science.gov (United States)

    Ge, Changzi; Chai, Yanchao; Wang, Haiqing; Kan, Manman

    2017-02-15

    Harmful algal blooms which may be limited by phosphorus outbreak increases currently and ocean acidification worsens presently, which implies that ocean acidification might lead to phosphorus eutrophication. To verify the hypothesis, oxic sediments were exposed to seawater with different pH 30days. If pH was 8.1 and 7.7, the total phosphorus (TP) content in sediments was 1.52±0.50 and 1.29±0.40mg/g. The inorganic phosphorus (IP) content in sediments exposed to seawater with pH8.1 and 7.7 was 1.39±0.10 and 1.06±0.20mg/g, respectively. The exchangeable phosphorus (Ex-P) content in sediments was 4.40±0.45 and 2.82±0.15μg/g, if seawater pH was 8.1 and 7.7. Ex-P and IP contents in oxic sediments were reduced by ocean acidification significantly (pocean acidification was one potential facilitator of phosphorus eutrophication in oxic conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Total Value of Phosphorus Recovery.

    Science.gov (United States)

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-05

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies.

  12. Impact of Phosphorus-Based Food Additives on Bone and Mineral Metabolism.

    Science.gov (United States)

    Gutiérrez, Orlando M; Luzuriaga-McPherson, Alexandra; Lin, Yiming; Gilbert, Linda C; Ha, Shin-Woo; Beck, George R

    2015-11-01

    Phosphorus-based food additives can substantially increase total phosphorus intake per day, but the effect of these additives on endocrine factors regulating bone and mineral metabolism is unclear. This study aimed to examine the effect of phosphorus additives on markers of bone and mineral metabolism. Design and Setting, and Participants: This was a feeding study of 10 healthy individuals fed a diet providing ∼1000 mg of phosphorus/d using foods known to be free of phosphorus additives for 1 week (low-additive diet), immediately followed by a diet containing identical food items; however, the foods contained phosphorus additives (additive-enhanced diet). Parallel studies were conducted in animals fed low- (0.2%) and high- (1.8%) phosphorus diets for 5 or 15 weeks. The changes in markers of mineral metabolism after each diet period were measured. Participants were 32 ± 8 years old, 30% male, and 70% black. The measured phosphorus content of the additive-enhanced diet was 606 ± 125 mg higher than the low-additive diet (P additive diet, consuming the additive-enhanced diet for 1 week significantly increased circulating fibroblast growth factor 23 (FGF23), osteopontin, and osteocalcin concentrations by 23, 10, and 11%, respectively, and decreased mean sclerostin concentrations (P foods can disturb bone and mineral metabolism in humans. The results of the animal studies suggest that this may compromise bone health.

  13. Phosphorus Balance in Adolescent Girls and the Effect of Supplemental Dietary Calcium.

    Science.gov (United States)

    Vorland, Colby J; Martin, Berdine R; Weaver, Connie M; Peacock, Munro; Gallant, Kathleen M Hill

    2018-03-01

    There are limited data on phosphorus balance and the effect of dietary calcium supplements on phosphorus balance in adolescents. The purpose of this study was to determine phosphorus balance and the effect of increasing dietary calcium intake with a supplement on net phosphorus absorption and balance in healthy adolescent girls. This study utilized stored urine, fecal, and diet samples from a previously conducted study that focused on calcium balance. Eleven healthy girls ages 11 to 14 years participated in a randomized crossover study, which consisted of two 3-week periods of a controlled diet with low (817 ± 19.5 mg/d) or high (1418 ± 11.1 mg/d) calcium, separated by a 1-week washout period. Phosphorus intake was controlled at the same level during both placebo and calcium supplementation (1435 ± 23.5 and 1453 ± 28.0 mg/d, respectively, p = 0.611). Mean phosphorus balance was positive by about 200 mg/d and was unaffected by the calcium supplement ( p = 0.826). Urinary phosphorus excretion was lower with the calcium supplement (535 ± 42 versus 649 ± 41 mg/d, p = 0.013), but fecal phosphorus and net phosphorus absorption were not significantly different between placebo and calcium supplement (553 ± 60 versus 678 ± 63 versus mg/d, p = 0.143; 876 ± 62 versus 774 ± 64 mg/d, p = 0.231, respectively). Dietary phosphorus underestimates using a nutrient database compared with the content measured chemically from meal composites by ~40%. These results show that phosphorus balance is positive in girls during adolescent growth and that a calcium dietary supplement to near the current recommended level does not affect phosphorus balance when phosphorus intake is at 1400 mg/d, a typical US intake level. © 2017 American Society for Bone and Mineral Research.

  14. Effects of serum phosphorus on vascular calcification in a healthy, adult population: A systematic review.

    Science.gov (United States)

    Sheridan, Kristin; Logomarsino, John V

    2017-09-01

    Cardiovascular disease has been associated with elevated serum phosphorus levels, which have been associated with cardiovascular mortality. This is commonly seen in the chronic kidney disease (CKD) population where studies have shown that high phosphorus levels cause coronary artery calcification. Although studies have independently associated vascular stiffness and serum phosphorus in those with and without CKD, there are fewer data in individuals without CKD. Therefore, the aim of this systematic review was to analyze whether serum phosphorus levels are associated with cardiovascular calcification in healthy individuals. A systematic review of the literature that was conducted revealed 10 articles, all cross-sectional studies, that met eligibility criteria. These criteria were peer-reviewed studies on a healthy, adult population written in the English language. Studies lacking data on serum phosphorus and measured to assess its association with vascular calcification were excluded. Studies on subjects with CKD, other chronic diseases, or on children were also excluded. Of the 10 studies located, 8 indicated an association between serum phosphorus and vascular calcification. One study did not indicate an association. One study indicated a statistically significant association between serum phosphorus and vascular calcification prevalence, but not incidence. Studies were limited since no randomized controlled trials were available. This systematic review generates gaps in research. Due to considerable amounts of phosphorus additives in the food supply, there may be a connection to dietary phosphorus and vascular calcification. Additionally, phosphorus binders may assist in the prevention of vascular calcification but have not been studied in a healthy population. Further study on both dietary phosphorus restriction and phosphorus binders is needed. While 8 out of 10 cross-sectional studies found an association in this systematic review, the topic of vascular

  15. Phosphorus and Fluorine - The Union for Bioregulators

    Directory of Open Access Journals (Sweden)

    Romanenko, V.

    2007-06-01

    Full Text Available The review demonstrates the very high efficiency and usefulness of the fluorine-phosphorus combination in order to synthesize organic molecules for purposes of modern life science. For biochemistry, the "P-F-union" in" biomolecules enables investigation of the enzyme structure and mechanism of action more correctly, as well as creation of new anti-body enzymes. Enhancing or regulation of inhibitor properties of these compounds, their stability or selectivity allows creation of new drugs for treatment of numerous serious diseases, especially viral infections and cancer.

  16. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei, E-mail: stclchen1982@163.com [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui [School of Electrical Engineering, Wuhan University, Wuhan 430072 (China); Zhu, Lin [Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville 37996 (United States); Guo, Fang [Department of Substation, Guang Dong Electric Power Design Institute, Guangzhou 510663 (China)

    2015-11-15

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  17. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    International Nuclear Information System (INIS)

    Chen, Lei; Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui; Zhu, Lin; Guo, Fang

    2015-01-01

    Highlights: • A modified flux-coupling type SFCL is suggested to enhance the transient performance of a micro-grid. • The SFCL’s main contribution is to improve the micro-grid’s fault ride-through capability. • The SFCL also can make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. • The simulations show that the SFCL can availably strengthen the micro-grid’s voltage and frequency stability. - Abstract: Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid’s operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid’s fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL’s contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  18. Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi.

    Science.gov (United States)

    Shemi, Adva; Schatz, Daniella; Fredricks, Helen F; Van Mooy, Benjamin A S; Porat, Ziv; Vardi, Assaf

    2016-08-01

    Nutrient availability is an important factor controlling phytoplankton productivity. Phytoplankton contribute c. 50% of the global photosynthesis and possess efficient acclimation mechanisms to cope with nutrient stress. We investigate the cellular response of the bloom-forming coccolithophore Emiliania huxleyi to phosphorus (P) scarcity, which is often a limiting factor in marine ecosystems. We combined mass spectrometry, fluorescence microscopy, transmission electron microscopy (TEM) and gene expression analyses in order to assess diverse cellular features in cells exposed to P limitation and recovery. Early starvation-induced substitution of phospholipids in the cells' membranes with galacto- and betaine lipids. Lipid remodeling was rapid and reversible upon P resupply. The PI3K inhibitor wortmannin reduced phospholipid substitution, suggesting a possible involvement of PI3K- signaling in this process. In addition, P limitation enhanced the formation and acidification of membrane vesicles in the cytoplasm. Intracellular vesicles may facilitate the recycling of cytoplasmic content, which is engulfed in the vesicles and delivered to the main vacuole. Long-term starvation was characterized by a profound increase in cell size and morphological alterations in cellular ultrastructure. This study provides cellular and molecular basis for future ecophysiological assessment of natural E. huxleyi populations in oligotrophic regions. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.

    Science.gov (United States)

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao

    2016-05-15

    A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD

  20. The impacts of phosphorus deficiency on the photosynthetic electron transport chain

    DEFF Research Database (Denmark)

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund

    2018-01-01

    light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and hence reduces CO2 fixation. In parallel, lumen acidification activates the qE component of the non-photochemical quenching (NPQ) mechanism......Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency...... accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol (PQH2) oxidation retards electron transport to the cytochrome (Cyt) b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high...

  1. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    International Nuclear Information System (INIS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-01-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together

  2. Fault Ride Through Capability Enhancement of a Large-Scale PMSG Wind System with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    ALAM, M. S.

    2018-02-01

    Full Text Available In this paper, bridge type fault current limiter (BFCL is proposed as a potential solution to the fault problems of permanent magnet synchronous generator (PMSG based large-scale wind energy system. As PMSG wind system is more vulnerable to disturbances, it is essential to guarantee the stability during severe disturbances by enhancing the fault ride through capability. BFCL controller has been designed to insert resistance and inductance during the inception of system disturbances in order to limit fault current. Constant capacitor voltage has been maintained by the grid voltage source converter (GVSC controller while current extraction or injection has been achieved by machine VSC (MVSC controller. Symmetrical and unsymmetrical faults have been applied in the system to show the effectiveness of the proposed BFCL solution. PMSG wind system, BFCL and their controllers have been implemented by real time hardware in loop (RTHIL setup with real time digital simulator (RTDS and dSPACE. Another significant feature of this work is that the performance of the proposed BFCL is compared with that of series dynamic braking resistor (SDBR. Comparative RTHIL implementation results show that the proposed BFCL is very efficient in improving system fault ride through capability by limiting the fault current and outperforms SDBR.

  3. Thinking about a limited future enhances the positivity of younger and older adults' recall: Support for socioemotional selectivity theory.

    Science.gov (United States)

    Barber, Sarah J; Opitz, Philipp C; Martins, Bruna; Sakaki, Michiko; Mather, Mara

    2016-08-01

    Compared with younger adults, older adults have a relative preference to attend to and remember positive over negative information. This is known as the "positivity effect," and researchers have typically evoked socioemotional selectivity theory to explain it. According to socioemotional selectivity theory, as people get older they begin to perceive their time left in life as more limited. These reduced time horizons prompt older adults to prioritize achieving emotional gratification and thus exhibit increased positivity in attention and recall. Although this is the most commonly cited explanation of the positivity effect, there is currently a lack of clear experimental evidence demonstrating a link between time horizons and positivity. The goal of the current research was to address this issue. In two separate experiments, we asked participants to complete a writing activity, which directed them to think of time as being either limited or expansive (Experiments 1 and 2) or did not orient them to think about time in a particular manner (Experiment 2). Participants were then shown a series of emotional pictures, which they subsequently tried to recall. Results from both studies showed that regardless of chronological age, thinking about a limited future enhanced the relative positivity of participants' recall. Furthermore, the results of Experiment 2 showed that this effect was not driven by changes in mood. Thus, the fact that older adults' recall is typically more positive than younger adults' recall may index naturally shifting time horizons and goals with age.

  4. Thinking about a Limited Future Enhances the Positivity of Younger and Older Adults’ Recall: Support for Socioemotional Selectivity Theory

    Science.gov (United States)

    Barber, Sarah J.; Opitz, Philipp C.; Martins, Bruna; Sakaki, Michiko; Mather, Mara

    2016-01-01

    Compared with younger adults, older adults have a relative preference to attend to and remember positive over negative information. This is known as the “positivity effect,” and researchers have typically evoked socioemotional selectivity theory to explain it. According to socioemotional selectivity theory, as people get older they begin to perceive their time left in life as more limited. These reduced time horizons prompt older adults to prioritize achieving emotional gratification and thus exhibit increased positivity in attention and recall. Although this is the most commonly cited explanation of the positivity effect, there is currently a lack of clear experimental evidence demonstrating a link between time horizons and positivity. The goal of the current research was to address this issue. In two separate experiments, we asked participants to complete a writing activity, which directed them to think of time as being either limited or expansive (Experiments 1 and 2) or did not orient them to think about time in a particular manner (Experiment 2). Participants were then shown a series of emotional pictures, which they subsequently tried to recall. Results from both studies showed that regardless of chronological age, thinking about a limited future enhanced the relative positivity of participants’ recall. Furthermore, the results of Experiment 2 showed that this effect was not driven by changes in mood. Thus, the fact that older adults’ recall is typically more positive than younger adults’ recall may index naturally shifting time horizons and goals with age. PMID:27112461

  5. Nitrogen limitation in the coastal heath at Anholt, Denmark

    DEFF Research Database (Denmark)

    Johnsen, Ib; Christensen, Steen; Riis-Nielsen, Torben

    2014-01-01

    ) and phosphorus as KH2PO4 (P-addition) was carried out in the coastal grey dune vegetation of Anholt. The Naddition corresponded to 40 kg N ha−1 year−1 and the Paddition to 7 kg P ha−1 year−1 The experiment included N-, P-, N + P-addition and control. Lichens (genera: mainly Cladonia, Stereocaulon, Cetraria......The purpose of the study was to investigate, whether the coastal grey dune vegetation at Anholt, Denmark, is limited by nitrogen or phosphorus. The island Anholt (22,37 km2) is situated in the centre of Kattegat A two factor fertilization experiment with nitrogen as NH4NO3 (Naddition...... significantly following N and N + P addition. No effect was observed by P addition alone. N limitation of this coastal heath vegetation remote from agricultural and industrial activities was evident. The effect on the plant species of the single application was short-lived. After two-three years of enhanced...

  6. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  7. Phosphorus chemistry in everyday living

    National Research Council Canada - National Science Library

    Toy, Arthur D. F

    1976-01-01

    The author has drawn on his 35 years of experience as a research scientist in phosphorus chemistry to produce a book that is not only readable to the non-chemist but sophisticated enough to interest...

  8. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Dinesh Adhikari

    2017-12-01

    Full Text Available Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil’s ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples (R2 = 0.25, and this relationship became significantly stronger at near-neutral pH (6.0–7.3; R2 = 0.67. No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0 or alkaline (pH > 7.3 pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH (R2 = 0.72 and 0.73, respectively, as well as for Ca at alkaline pH (R2 = 0.64. Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  9. phosphorus retention data and metadata

    Science.gov (United States)

    phosphorus retention in wetlands data and metadataThis dataset is associated with the following publication:Lane , C., and B. Autrey. Phosphorus retention of forested and emergent marsh depressional wetlands in differing land uses in Florida, USA. Wetlands Ecology and Management. Springer Science and Business Media B.V;Formerly Kluwer Academic Publishers B.V., GERMANY, 24(1): 45-60, (2016).

  10. Changes in water quality of the River Frome (UK) from 1965 to 2009: Is phosphorus mitigation finally working?

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, M.J., E-mail: mibo@ceh.ac.uk [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB (United Kingdom); Smith, J.T. [School of Earth and Environmental Sciences, Burnaby Building, University of Portsmouth, Portsmouth PO1 3QL (United Kingdom); Neal, C. [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB (United Kingdom); Leach, D.V. [formally Centre for Ecology and Hydrology, Winfrith Technology Centre, Dorchester, Dorset, DT2 8ZD (United Kingdom); Scarlett, P.M.; Wickham, H.D.; Harman, S.A.; Armstrong, L.K. [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB (United Kingdom); Davy-Bowker, J. [Freshwater Biological Association, River Laboratory, East Stoke, Wareham, Dorset, BH20 6BB (United Kingdom); Haft, M. [Freshwater Biological Association, Ferry Landing, Far Sawrey, Ambleside, Cumbria, LA22 0LP (United Kingdom); Davies, C.E. [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB (United Kingdom)

    2011-08-15

    The water quality of the River Frome, Dorset, southern England, was monitored at weekly intervals from 1965 until 2009. Determinands included phosphorus, nitrogen, silicon, potassium, calcium, sodium, magnesium, pH, alkalinity and temperature. Nitrate-N concentrations increased from an annual average of 2.4 mg l{sup -1} in the mid to late 1960s to 6.0 mg l{sup -1} in 2008-2009, but the rate of increase was beginning to slow. Annual soluble reactive phosphorus (SRP) concentrations increased from 101 {mu}g l{sup -1} in the mid 1960s to a maximum of 190 {mu}g l{sup -1} in 1989. In 2002, there was a step reduction in SRP concentration (average = 88 {mu}g l{sup -1} in 2002-2005), with further improvement in 2007-2009 (average = 49 {mu}g l{sup -1}), due to the introduction of phosphorus stripping at sewage treatment works. Phosphorus and nitrate concentrations showed clear annual cycles, related to the timing of inputs from the catchment, and within-stream bioaccumulation and release. Annual depressions in silicon concentration each spring (due to diatom proliferation) reached a maximum between 1980 and 1991, (the period of maximum SRP concentration) indicating that algal biomass had increased within the river. The timing of these silicon depressions was closely related to temperature. Excess carbon dioxide partial pressures (EpCO{sub 2}) of 60 times atmospheric CO{sub 2} were also observed through the winter periods from 1980 to 1992, when phosphorus concentration was greatest, indicating very high respiration rates due to microbial decomposition of this enhanced biomass. Declining phosphorus concentrations since 2002 reduced productivity and algal biomass in the summer, and EpCO{sub 2} through the winter, indicating that sewage treatment improvements had improved riverine ecology. Algal blooms were limited by phosphorus, rather than silicon concentration. The value of long-term water quality data sets is discussed. The data from this monitoring programme are made

  11. Application of a combined superconducting fault current limiter and STATCOM to enhancement of power system transient stability

    Energy Technology Data Exchange (ETDEWEB)

    Mahdad, Belkacem, E-mail: bemahdad@mselab.org; Srairi, K.

    2013-12-15

    Highlights: •A simple interactive model SFCL–STATCOM Controller is proposed to enhance the transient stability. •The STATCOM controller is integrated in coordination with the SFCL to support the excessive reactive power during fault. •Voltage stability index based continuation power flow is used to locate the STATCOM and the SFCL. •The clearing time improved compared to other cases (with only SFCL, with only STATCOM). •The choice of the STATCOM parameters is very important to exploit efficiently the integration of STATCOM Controller. -- Abstract: Stable and reliable operation of the power system network is dependent on the dynamic equilibrium between energy production and power demand under large disturbance such as short circuit or important line tripping. This paper investigates the use of combined model based superconducting fault current limiter (SFCL) and shunt FACTS Controller (STATCOM) for assessing the transient stability of a power system considering the automatic voltage regulator. The combined model located at a specified branch based on voltage stability index using continuation power flow. The main role of the proposed combined model is to achieve simultaneously a flexible control of reactive power using STATCOM Controller and to reduce fault current using superconducting technology based SFCL. The proposed combined model has been successfully adapted within the transient stability program and applied to enhance the transient power system stability of the WSCC9-Bus system. Critical clearing time (CCT) has been used as an index to evaluate and validate the contribution of the proposed coordinated Controller. Simulation results confirm the effectiveness and perspective of this combined Controller to enhance the dynamic power system performances.

  12. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion.

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea

    2011-01-01

    Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s(-1).

  13. Evaluating the significance of wetland restoration scenarios on phosphorus removal.

    Science.gov (United States)

    Daneshvar, Fariborz; Nejadhashemi, A Pouyan; Adhikari, Umesh; Elahi, Behin; Abouali, Mohammad; Herman, Matthew R; Martinez-Martinez, Edwin; Calappi, Timothy J; Rohn, Bridget G

    2017-05-01

    Freshwater resources are vital for human and natural systems. However, anthropogenic activities, such as agricultural practices, have led to the degradation of the quality of these limited resources through pollutant loading. Agricultural Best Management Practices (BMPs), such as wetlands, are recommended as a valuable solution for pollutant removal. However, evaluation of their long-term impacts is difficult and requires modeling since performing in-situ monitoring is expensive and not feasible at the watershed scale. In this study, the impact of natural wetland implementation on total phosphorus reduction was evaluated both at the subwatershed and watershed levels. The study area is the Saginaw River Watershed, which is largest watershed in Michigan. The phosphorus reduction performances of four different wetland sizes (2, 4, 6, and 8 ha) were evaluated within this study area by implementing one wetland at a time in areas identified to have the highest potential for wetland restoration. The subwatershed level phosphorus loads were obtained from a calibrated Soil and Water Assessment Tool (SWAT) model. These loads were then incorporated into a wetland model (System for Urban Stormwater Treatment and Analysis IntegratioN-SUSTAIN) to evaluate phosphorus reduction at the subwatershed level and then the SWAT model was again used to route phosphorus transport to the watershed outlet. Statistical analyses were performed to evaluate the spatial impact of wetland size and placement on phosphorus reduction. Overall, the performance of 2 ha wetlands in total phosphorus reduction was significantly lower than the larger sizes at both the subwatershed and watershed levels. Regarding wetland implementation sites, wetlands located in headwaters and downstream had significantly higher phosphorus reduction than the ones located in the middle of the watershed. More specifically, wetlands implemented at distances ranging from 200 to 250 km and 50-100 km from the outlet had the

  14. Rated-voltage enhancement by fast-breaking of the fault current for a resistive superconducting fault current limiter component

    International Nuclear Information System (INIS)

    Park, C.-R.; Kim, M.-J.; Yu, S.-D.; Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.

    2010-01-01

    Performance of a resistive superconducting fault current limiter (SFCL) component is usually limited by temperature rise associated with energy input by fault current application during a fault. Therefore, it is expected that short application of the fault current may enhance the power ratings of the component. This can be accomplished by a combination of a HTS component and a mechanical switch. The fast switch (FS) developed recently enables the fault duration to be as short as 1/2 cycle after a fault. Various second-generation (2G) high temperature superconductors (HTS) and YBCO thin films have been tested. The relation between the rated voltage V and the fault duration time t was found to be V 2 ∼ t -1 . Based upon the relation, we predict that when the FS break the fault current within 1/2 cycle after a fault, the amount of HTS components required to build an SFCL can be reduced by as much as about 60%, of that when breaking the fault current at three cycles.

  15. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity

    Directory of Open Access Journals (Sweden)

    Monika Dabrzalska

    2017-02-01

    Full Text Available The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer—methylene blue (MB. As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  16. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    Science.gov (United States)

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant

  17. Municipal sludge as source of nitrogen and phosphorus in perennial ...

    African Journals Online (AJOL)

    Land application of sludge has been shown to improve soil properties and aid crop growth, but the possibility of constituent nutrients such as nitrogen and phosphorus reaching environmentally toxic levels has caused governing authorities to set limits to how much sludge can be applied to agronomic land. The high nitrogen ...

  18. Structural insights into the bacterial carbon - phosphorus lyase machinery

    DEFF Research Database (Denmark)

    Seweryn, Paulina; Van, Lan Bich; Kjeldgaard, Morten

    2015-01-01

    Phosphorus is required for all life and microorganisms can extract it from their environment through several metabolic pathways. When phosphate is in limited supply, some bacteria are able to use phosphonate compounds, which require specialized enzymatic machinery to break the stable carbon......–phosphorus (C–P) bond. Despite its importance, the details of how this machinery catabolizes phosphonates remain unknown. Here we determine the crystal structure of the 240-kilodalton Escherichia coli C–P lyase core complex (PhnG–PhnH–PhnI–PhnJ; PhnGHIJ), and show that it is a two-fold symmetric hetero...

  19. Simultaneous determination of aluminium and phosphorus by neutron activation analysis

    International Nuclear Information System (INIS)

    Gatschke, W.; Gawlik, D.

    1980-01-01

    With the use of the pneumatic tube system of the BER II reactor, the irradiation position of which is equipped with a movable cadmium shield, the aluminium and phosphorus levels in bone powder and in human bone biopsies were determined. The contribution of aluminium and phosphorus to the 28 Al activity could be separated mathematically after the samples had been irradiated with and without cadmium shielding. The sensitivity and limit of quantitative determination of the analytical procedure were determined using the addition method and the fact that the levels of each element measured was independent of the amount of the other element was proved. (author)

  20. Phosphorus oxide gate dielectric for black phosphorus field effect transistors

    Science.gov (United States)

    Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.

    2018-04-01

    The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.

  1. Studies of the utilization of phosphorus and nitrogen fertilizers by 32P and 15N isotopes

    International Nuclear Information System (INIS)

    Dombovari, Janos; Kiss, A.S.

    1983-01-01

    The utilization of phosphorus and nitrogen fertilizers in crop enhancement was studied with different plants and soils, using 15 N nad 32 P labelling. 15 N was determined by mass spectrometry, 32 P by radiometry. For nitrogen fertilizers better results were achieved by sequential small doses than by single higher doses. The utilization of phosphorus fertilizer strongly depends, in addition to the plant species, on the quality of the soil, especially on its Ca and N contents. Low and high soil liming increased and decreased the utilization of phosphorus, respectively, while nitrogen fertilizers increased it in each case. Measurement of the isotopically exchangable phosphorus content of soils represents a new technique for the determination of the phosphorus uptake. (A.L.)

  2. Simultaneous effects of light intensity and phosphorus supply on the sterol content of phytoplankton.

    Directory of Open Access Journals (Sweden)

    Maike Piepho

    Full Text Available Sterol profiles of microalgae and their change with environmental conditions are of great interest in ecological food web research and taxonomic studies alike. Here, we investigated effects of light intensity and phosphorus supply on the sterol content of phytoplankton and assessed potential interactive effects of these important environmental factors on the sterol composition of algae. We identified sterol contents of four common phytoplankton genera, Scenedesmus, Chlamydomonas, Cryptomonas and Cyclotella, and analysed the change in sterol content with varying light intensities in both a high-phosphorus and a low-phosphorus approach. Sterol contents increased significantly with increasing light in three out of four species. Phosphorus-limitation reversed the change of sterol content with light intensity, i.e., sterol content decreased with increasing light at low phosphorus supply. Generally sterol contents were lower in low-phosphorus cultures. In conclusion, both light and phosphorus conditions strongly affect the sterol composition of algae and hence should be considered in ecological and taxonomic studies investigating the biochemical composition of algae. Data suggest a possible sterol limitation of growth and reproduction of herbivorous crustacean zooplankton during summer when high light intensities and low phosphorus supply decrease sterol contents of algae.

  3. Comparison of three persulfate digestion methods for total phosphorus analysis and estimation of suspended sediments

    International Nuclear Information System (INIS)

    Dayton, Elizabeth Ann; Whitacre, Shane; Holloman, Christopher

    2017-01-01

    As a result of impairments to fresh surface water quality due to phosphorus enrichment, substantial research effort has been put forth to quantify agricultural runoff phosphorus as related to on-field practices. While the analysis of runoff dissolved phosphorus is well prescribed and leaves little room for variability in methodology, there are several methods and variations of sample preparation reagents as well as analysis procedures for determining runoff total phosphorus. Due to the variation in methodology for determination of total phosphorus and an additional laboratory procedure required to measure suspended solids, the objectives of the current study are to i. compare the performance of three persulfate digestion methods (Acid Persulfate, USGS, and Alkaline Persulfate) for total phosphorus percent recovery across a wide range of suspended sediments (SS), and ii. evaluate the ability of using Al and/or Fe in digestion solution to predict SS as a surrogate to the traditional gravimetric method. Percent recovery of total phosphorus was determined using suspensions prepared from soils collected from 21 agricultural fields in Ohio. The Acid Persulfate method was most effective, with an average total phosphorus percent recovery of 96.6%. The second most effective method was the USGS with an average total phosphorus recovery of 76.1%. However, the Alkaline Persulfate method performed poorly with an average 24.5% total phosphorus recovery. As a result application of Alkaline Persulfate digestion to edge of field monitoring may drastically underestimated runoff total phosphorus. In addition to excellent recovery of total phosphorus, the Acid Persulfate method combined with analysis of Al and Fe by inductively coupled plasma atomic emission spectrometry provides a robust estimate of total SS. Due to the large quantity of samples that can result from water quality monitoring, an indirect measure of total SS could be very valuable when time and budget constraints limit

  4. Selenium and phosphorus interaction in pea (pisum sativum L.)

    International Nuclear Information System (INIS)

    Singh, Mahendra; Bhandari, D.K.

    1975-01-01

    The interaction of selenium and phosphorus on the dry matter yield and concentration and uptake of phosphorus, sulfur and selenium was studied in pea (Pisum sativnum) var. T 163. The fertilizer was tagged with P 32 . It was observed that increased concentration of applied selenium in soil decreased the dry matter yield and increased the concentration and uptake of total P, soil P and selenium in pea plants. Increased concentration of P alone increased dry matter yield, concentration and uptake of total, soil and fertilizer P and selenium which was beyond safe limits, and decreased concentration and uptake of sulphur. Selenium and phosphorus showed strong synergetic relationship by increasing the concentration of each other in plants while both showed antagonistic effect on the concentration of sulphur. Phosphorus compensated the toxic effect of selenium and improved the growth and dry matter yield of pea plants. The highest selenium concentration of 22.4 ppm was observed in 100 ppm phosphorus with 5 ppm selenium treated pots while lowest (0.10 ppm) in control. (author)

  5. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Doganov, Rostislav A.; Özyilmaz, Barbaros [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore (Singapore); Koenig, Steven P.; Yeo, Yuting [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  6. Structural Insights Into The Bacterial Carbon-Phosphorus Lyase Machinery

    DEFF Research Database (Denmark)

    Brodersen, Ditlev Egeskov

    the proteins encoded in the phn operon act in concert to catabolise phosphonate remain unknown. We have determined the crystal structure of a 240 kDa Escherichia coli carbon-phosphorus lyase core complex at 1.7 Å and show that it comprises a highly intertwined network of subunits with several unexpected......Phosphonate compounds act as a nutrient source for some microorganisms when phosphate is limiting but require a specialised enzymatic machinery due to the presence of the highly stable carbon-phosphorus bond. Despite the fundamental importance to microbial metabolism, the details of how...... structural features. The complex contains at least two different active sites and suggest a revision of current models of carbon-phosphorus bond cleavage. Using electron microscopy, we map the binding site of an additional protein subunit, which may use ATP for driving conformational changes during...

  7. Neutron activation determination of phosphorus in semiconductor materials

    International Nuclear Information System (INIS)

    Verevkin, G.V.; Gil'bert, Eh.N.; Gol'dshtejn, M.M.; Yudelevich, I.G.; Yurchenko, V.K.

    1976-01-01

    The solvent extraction of molybdophosphoric acid (MPA) with benzene and dichloroethane solutions of dioctylsulphoxide has been studied. A neutron-activation method has been worked out of determining phosphorus in semiconductor silicon, high purity gallium, and homoepitaxial films of gallium arsenide. The method is based on separation of radiochemically pure phosphorus in the form of MPA by extraction with 0.2 M solution of dioctylsulphoxide in benzene and measurement of 32 P activity on a liquid scintillation spectrometer. The method makes it possible to determine phosphorus in the materials enumerated with a limit of detection of 1.9x10 -10 g and a relative standard deviation of not more than 0.05

  8. Efficiency and response of conilon coffee clones to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    Lima Deleon Martins

    2013-06-01

    Full Text Available Studies on nutritional efficiency of phosphorus in conilon coffee plants are important tools to unravel the high limitation that natural low levels of this nutrient in soil impose to these species cultivars. Therefore, this study aimed at evaluating the nutritional efficiency and the response to phosphorus of conilon coffee clones. Plants were managed during 150 days in pots containing 10 dm³ of soil, in greenhouse. A factorial scheme 13 x 2 was used, with three replications, being the factors: 13 clones constituting the clonal cultivar "Vitória Incaper 8142" and two levels of phosphate fertilization (0% and 150% of the P2O5 usualy recommended, in a completely randomized design (CRD. The results indicate a differentiated response of dry matter production and of phosphorus content on each level of phosphate fertilization for the conilon coffee clones and that CV-04, CV-05 and CV-08 clones are nutritionally efficient and responsive to the phosphate fertilization.

  9. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    International Nuclear Information System (INIS)

    Saravanan, M.; Sabari Girisun, T.C.

    2017-01-01

    Highlights: • Nanospindle and nanosphere ZnFe_2O_4 were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe_2O_4 upon GO were achieved. • ZnFe_2O_4-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe_2O_4-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe_2O_4 decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe_2O_4. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10"−"1"0 m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe_2O_4-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp"3) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe_2O_4 upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe_2O_4 along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable properties which are exceedingly required in both optoelectronics and photothermal therapy

  10. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, M.; Sabari Girisun, T.C., E-mail: sabarigirisun@bdu.ac.in

    2017-01-15

    Highlights: • Nanospindle and nanosphere ZnFe{sub 2}O{sub 4} were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe{sub 2}O{sub 4} upon GO were achieved. • ZnFe{sub 2}O{sub 4}-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe{sub 2}O{sub 4}-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe{sub 2}O{sub 4} decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe{sub 2}O{sub 4}. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10{sup −10} m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe{sub 2}O{sub 4}-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp{sup 3}) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe{sub 2}O{sub 4} upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe{sub 2}O{sub 4} along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable

  11. Effect of phytase supplementation on apparent phosphorus digestibility and phosphorus output in broiler chicks fed low-phosphorus diets

    Directory of Open Access Journals (Sweden)

    Xian-Ren Jiang

    2015-04-01

    Full Text Available This study was conducted to evaluate the effect of supplemental phytase in broiler chicks fed different low levels of total phosphorus (P on the apparent phosphorus digestibility (APD and phosphorus output (PO in the faeces and ileal digesta. After fed a standard broiler starter diet from day 0 to 14 post-hatch, a total of 144 male broiler chicks were allocated to 6 groups for a 7-d experiment with a 2 × 3 factorial design comparing phytase (supplemented without (CTR or with 400 FTU/kg phytase (PHY and total P levels (2.0, 2.5 and 3.0 g/kg. The faecal samples were collected from day 17 to 21 post-hatch. At 22 days of age, all the chicks were slaughtered and collected the ileal digesta. Phytase supplementation significantly (P < 0.01 increased APD and decreased PO in the faeces and ileal digesta in comparison with the CTR group. In addition, PO in the faeces expressed as g/kg DM diets and faeces (Diet × P level, P = 0.047 and < 0.01, respectively as well as PO in the ileal digesta expressed as g/kg DM digesta (Diet × P level, P = 0.04 were affected by diet and P level, which were due to the significant reduction (P < 0.01 by PHY supplementation to the diets with 3.0 g/kg total P. The results evidenced that supplemental phytase improved the APD and PO when chicks was fed 3.0 g/kg total P diet, while lower total P levels may limit exogenous phytase efficacy.

  12. Limited evidence for CO2 -related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients.

    Science.gov (United States)

    Reed, Charlotte C; Ballantyne, Ashley P; Cooper, Leila Annie; Sala, Anna

    2018-04-15

    Forests sequester large amounts of carbon annually and are integral in buffering against effects of global change. Increasing atmospheric CO 2 may enhance photosynthesis and/or decrease stomatal conductance (g s ) thereby enhancing intrinsic water-use efficiency (iWUE), having potential indirect and direct benefits to tree growth. While increasing iWUE has been observed in most trees globally, enhanced growth is not ubiquitous, possibly due to concurrent climatic constraints on growth. To investigate our incomplete understanding of interactions between climate and CO 2 and their impacts on tree physiology and growth, we used an environmental gradient approach. We combined dendrochronology with carbon isotope analysis (δ 13 C) to assess the covariation of basal area increment (BAI) and iWUE over time in lodgepole pine. Trees were sampled at 18 sites spanning two climatically distinct elevation transects on the lee and windward sides of the Continental Divide, encompassing the majority of lodgepole pine's northern Rocky Mountain elevational range. We analyzed BAI and iWUE from 1950 to 2015, and explored correlations with monthly climate variables. As expected, iWUE increased at all sites. However, concurrent growth trends depended on site climatic water deficit (CWD). Significant growth increases occurred only at the driest sites, where increases in iWUE were strongest, while growth decreases were greatest at sites where CWD has been historically lowest. Late summer drought of the previous year negatively affected growth across sites. These results suggest that increasing iWUE, if strong enough, may indirectly benefit growth at drier sites by effectively extending the growing season via reductions in g s . Strong growth decreases at high elevation windward sites may reflect increasing water stress as a result of decreasing snowpack, which was not offset by greater iWUE. Our results imply that increasing iWUE driven by decreasing g s may benefit tree growth in

  13. First experimental proof for aberration correction in XPEEM: Resolution, transmission enhancement, and limitation by space charge effects

    International Nuclear Information System (INIS)

    Schmidt, Th.; Sala, A.; Marchetto, H.; Umbach, E.; Freund, H.-J.

    2013-01-01

    The positive effect of double aberration correction in x-ray induced Photoelectron Emission Microscopy (XPEEM) has been successfully demonstrated for both, the lateral resolution and the transmission, using the Au 4f XPS peak for element specific imaging at a kinetic energy of 113 eV. The lateral resolution is improved by a factor of four, compared to a non-corrected system, whereas the transmission is enhanced by a factor of 5 at a moderate resolution of 80 nm. With an optimized system setting, a lateral resolution of 18 nm could be achieved, which is up to now the best value reported for energy filtered XPEEM imaging. However, the absolute resolution does not yet reach the theoretical limit of 2 nm, which is due to space charge limitation. This occurs along the entire optical axis up to the contrast aperture. In XPEEM the pulsed time structure of the exciting soft x-ray light source causes a short and highly intense electron pulse, which results in an image blurring. In contrast, the imaging with elastically reflected electrons in the low energy electron microscopy (LEEM) mode yields a resolution clearly below 5 nm. Technical solutions to reduce the space charge effect in an aberration-corrected spectro-microscope are discussed. - Highlights: ► First successful double aberration correction in XPEEM. ► Improvement of resolution and transmission by aberration correction. ► Lateral resolution of 18 nm in energy filtered XPEEM is the best up to now reported value. ► First investigation of space charge effects in aberrations corrected PEEM

  14. Electric Conductivity of Phosphorus Nanowires

    International Nuclear Information System (INIS)

    Jing-Xiang, Zhang; Hui, Li; Xue-Qing, Zhang; Kim-Meow, Liew

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them, the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I – V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures. (condensed matter: structure, mechanical and thermal properties)

  15. Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit

    International Nuclear Information System (INIS)

    Patsha, Avinash; Dhara, Sandip; Tyagi, A. K.

    2015-01-01

    The localized effect of impurities in single GaN nanowires in the sub-diffraction limit is reported using the study of lattice vibrational modes in the evanescent field of Au nanoparticle assisted tip enhanced Raman spectroscopy (TERS). GaN nanowires with the O impurity and the Mg dopants were grown by the chemical vapor deposition technique in the catalyst assisted vapor-liquid-solid process. Symmetry allowed Raman modes of wurtzite GaN are observed for undoped and doped nanowires. Unusually very strong intensity of the non-zone center zone boundary mode is observed for the TERS studies of both the undoped and the Mg doped GaN single nanowires. Surface optical mode of A 1 symmetry is also observed for both the undoped and the Mg doped GaN samples. A strong coupling of longitudinal optical (LO) phonons with free electrons, however, is reported only in the O rich single nanowires with the asymmetric A 1 (LO) mode. Study of the local vibration mode shows the presence of Mg as dopant in the single GaN nanowires

  16. Localized tip enhanced Raman spectroscopic study of impurity incorporated single GaN nanowire in the sub-diffraction limit

    Energy Technology Data Exchange (ETDEWEB)

    Patsha, Avinash, E-mail: avinash.phy@gmail.com, E-mail: dhara@igcar.gov.in; Dhara, Sandip; Tyagi, A. K. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2015-09-21

    The localized effect of impurities in single GaN nanowires in the sub-diffraction limit is reported using the study of lattice vibrational modes in the evanescent field of Au nanoparticle assisted tip enhanced Raman spectroscopy (TERS). GaN nanowires with the O impurity and the Mg dopants were grown by the chemical vapor deposition technique in the catalyst assisted vapor-liquid-solid process. Symmetry allowed Raman modes of wurtzite GaN are observed for undoped and doped nanowires. Unusually very strong intensity of the non-zone center zone boundary mode is observed for the TERS studies of both the undoped and the Mg doped GaN single nanowires. Surface optical mode of A{sub 1} symmetry is also observed for both the undoped and the Mg doped GaN samples. A strong coupling of longitudinal optical (LO) phonons with free electrons, however, is reported only in the O rich single nanowires with the asymmetric A{sub 1}(LO) mode. Study of the local vibration mode shows the presence of Mg as dopant in the single GaN nanowires.

  17. Toxicity of acid mine pit lake water remediated with limestone and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Neil, L.L.; McCullough, C.D.; Lund, M.A.; Evans, L.H.; Tsvetnenko, Y. [Edith Cowan University, Joondalup, WA (Australia)

    2009-11-15

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH similar to 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  18. Toxicity of acid mine pit lake water remediated with limestone and phosphorus.

    Science.gov (United States)

    Neil, Luke L; McCullough, Clint D; Lund, Mark A; Evans, Louis H; Tsvetnenko, Yuri

    2009-11-01

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH approximately 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and (c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  19. Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.

    Science.gov (United States)

    Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo

    2017-10-11

    Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.

  20. Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix

    International Nuclear Information System (INIS)

    Hao, X.J.; Cho, E.-C.; Scardera, G.; Bellet-Amalric, E.; Bellet, D.; Shen, Y.S.; Huang, S.; Huang, Y.D.; Conibeer, G.; Green, M.A.

    2009-01-01

    Promise of Si nanocrystals highly depends on tailoring their behaviour through doping. Phosphorus-doped silicon nanocrystals embedded in a silicon dioxide matrix have been realized by a co-sputtering process. The effects of phosphorus-doping on the properties of Si nanocrystals are investigated. Phosphorus diffuses from P-P and/or P-Si to P-O upon high temperature annealing. The dominant X-ray photoelectron spectroscopy P 2p signal attributable to Si-P and/or P-P (130 eV) at 1100 o C indicates that the phosphorus may exist inside Si nanocrystals. It is found that existence of phosphorus enhances phase separation of silicon rich oxide and thereby Si crystallization. In addition, phosphorus has a considerable effect on the optical absorption and photoluminescence properties as a function of annealing temperature.

  1. Guiding phosphorus stewardship for multiple ecosystem services

    Science.gov (United States)

    Phosphorus is vital to agricultural production and water quality regulation. While the role of phosphorus in agriculture and water quality has been studied for decades, the benefits of sustainable phosphorus use and management for society due to its downstream impacts on multiple ecosystem services...

  2. Biological phosphorus cycling in dryland regions

    Science.gov (United States)

    Belnap, Jayne; Bunemann, Else; Oberson, Astrid; Frossard, Emmanuel

    2011-01-01

    The relatively few studies done on phosphorus (P) cycling in arid and semiarid lands (drylands) show many factors that distinguish P cycling in drylands from that in more mesic regions. In drylands, most biologically relevant P inputs and losses are from the deposition and loss of dust. Horizontal and vertical redistribution of P is an important process. P is concentrated at the soil surface and thus vulnerable to loss via erosion. High pH and CaCO3 limit P bioavailability, and low rainfall limits microbe and plant ability to free abiotically bound P via exudates, thus making it available for uptake. Many invasive plants are able to access recalcitrant P more effectively than are native plants. As P availability depends on soil moisture and temperature, climate change is expected to have large impacts on P cycling

  3. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease?

    Science.gov (United States)

    Shinaberger, Christian S; Greenland, Sander; Kopple, Joel D; Van Wyck, David; Mehrotra, Rajnish; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2008-12-01

    Dietary restrictions to control serum phosphorus, which are routinely recommended to persons with chronic kidney disease, are usually associated with a reduction in protein intake. This may lead to protein-energy wasting and poor survival. We aimed to ascertain whether a decline in serum phosphorus and a concomitant decline in protein intake are associated with an increase in the risk of death. In a 3-y study (7/2001-6/2004) of 30 075 prevalent maintenance hemodialysis (MHD) patients, we examined changes in serum phosphorus and in normalized protein nitrogen appearance (nPNA), a surrogate of dietary protein intake, during the first 6 mo and the subsequent mortality. Four groups of MHD patients were defined on the basis of the direction of the changes in serum phosphorus and nPNA. Baseline phosphorus had a J-shaped association with mortality, whereas higher baseline nPNA was linearly associated with greater survival. Compared with MHD patients whose serum phosphorus and nPNA both rose over 6 mo, those whose serum phosphorus decreased but whose nPNA increased had greater survival, with a case mix-adjusted death risk ratio of 0.90 (95% confidence limits: 0.86, 0.95; P protein intake may outweigh the benefit of controlled phosphorus and may lead to greater mortality. Additional studies including randomized controlled trials should examine whether nondietary control of phosphorus or restriction of nonprotein sources of phosphorus is safer and more effective.

  4. Phosphorus requirement in laying hens

    NARCIS (Netherlands)

    Lambert, W.; Krimpen, van M.M.; Star, L.

    2014-01-01

    It was hypothesized that P supply by feed in alternative housing systems can be lowered without negative effects on bone quality and production performance. Therefore, the objectives of the current study were 1) to update the retainable phosphorus (rP) needs of two modern laying hen breeds from 36

  5. Greening the global phosphorus cycle

    NARCIS (Netherlands)

    Withers, Paul J.A.; Elser, James J.; Hilton, Julian; Ohtake, Hisao; Schipper, Willem J.; Dijk, Van Kimo C.

    2015-01-01

    The sustainability of global phosphorus (P) use is emerging as a major societal goal to secure future food, energy, and water security for a growing population. Phosphate rock (PR) is a critical raw material whose inefficiency of use is leading to widespread eutrophication and uncertainties about

  6. Anthropogenic phosphorus flows in Denmark

    DEFF Research Database (Denmark)

    Klinglmair, Manfred

    Phosphorus (P) is an essential plant nutrient mined from the earth’s crust as phosphate rock. It cannot be substituted, making it a crucial resource for food production. For the EU, future phosphate scarcity is a potential geopolitical and strategic threat. An increasing worldwide phosphate demand...

  7. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    International Nuclear Information System (INIS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-01-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions

  8. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete’s urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as ‘T-equivalent’ concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact. PMID:26998755

  9. Advantages and Limitations of Androgen Receptor-Based Methods for Detecting Anabolic Androgenic Steroid Abuse as Performance Enhancing Drugs.

    Science.gov (United States)

    Bailey, Kathy; Yazdi, Tahmineh; Masharani, Umesh; Tyrrell, Blake; Butch, Anthony; Schaufele, Fred

    2016-01-01

    Testosterone (T) and related androgens are performance enhancing drugs (PEDs) abused by some athletes to gain competitive advantage. To monitor unauthorized androgen abuse, doping control programs use mass spectrometry (MS) to detect androgens, synthetic anabolic-androgenic steroids (AASs) and their metabolites in an athlete's urine. AASs of unknown composition will not be detected by these procedures. Since AASs achieve their anabolic effects by activating the Androgen Receptor (AR), cell-based bioassays that measure the effect of a urine sample on AR activity are under investigation as complementary, pan-androgen detection methods. We evaluated an AR BioAssay as a monitor for androgen activity in urine pre-treated with glucuronidase, which releases T from the inactive T-glucuronide that predominates in urine. AR BioAssay activity levels were expressed as 'T-equivalent' concentrations by comparison to a T dose response curve. The T-equivalent concentrations of androgens in the urine of hypogonadal participants supplemented with T (in whom all androgenic activity should arise from T) were quantitatively identical to the T measurements conducted by MS at the UCLA Olympic Analytical Laboratory (0.96 ± 0.22). All 17 AASs studied were active in the AR BioAssay; other steroids were inactive. 12 metabolites of 10 commonly abused AASs, which are used for MS monitoring of AAS doping because of their prolonged presence in urine, had reduced or no AR BioAssay activity. Thus, the AR BioAssay can accurately and inexpensively monitor T, but its ability to monitor urinary AASs will be limited to a period immediately following doping in which the active AASs remain intact.

  10. Efficiency enhancement of slow-wave electron-cyclotron maser by a second-order shaping of the magnetic field in the low-gain limit

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Si-Jia; Zhang, Yu-Fei; Wang, Kang [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Yong-Ming [Information Science and Engineering College, XinJiang University, Urumqi XinJiang 830046 (China); Jing, Jian, E-mail: jingjian@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China)

    2017-03-15

    Based on the anomalous Doppler effect, we put forward a proposal to enhance the conversion efficiency of the slow-wave electron cyclotron masers (ECM) under the resonance condition. Compared with previous studies, we add a second-order shaping term in the guild magnetic field. Theoretical analyses and numerical calculations show that it can enhance the conversion efficiency in the low-gain limit. The case of the initial velocity spread of electrons satisfying the Gaussian distribution is also analysed numerically.

  11. Few-layer black phosphorus nanoparticles.

    Science.gov (United States)

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  12. SEQUENTIAL ELECTRODIALYTIC EXTRACTION OF PHOSPHORUS COMPOUNDS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an apparatus for electrodialytic extraction of phosphorus from a particulate material in suspension and to a method for electrodialytic phosphorus recovery, which uses the apparatus. The method may be applied for wastewater treatment, and/or treatment of particulate...... material rich in phosphorus. The present invention provides an apparatus for electrodialytic extraction of phosphorus from a particulate material comprising acidic and/or alkaline soluble phosphorus compounds, in suspension, comprising: • a first electrodialytic cell comprising a first anolyte compartment...

  13. Speciation of phosphorus in Lake Dang of Ngaoundere-Cameroon.

    Science.gov (United States)

    Bertrand, Noumi Guy; Marie, Sieliechi Joseph; Fidèle, Fabane; Jean-Marie, Dangwang Dikdim

    2015-02-01

    In this study, we investigated the nature of phosphate phase present in sediment of Lake Dang. The phosphate speciation was determined by sequential extraction method. The concentration of phosphate in solution was measured by the ammonium molybdate method with ascorbic acid as the reducing agent. Water and sediment (surface and bottom) were sampled at eight points around the lake by taking into account activities around the lake during dry and rainy seasons. The results showed five forms of phosphorus presents in the sediments. The rank order obtained was Res-P phosphorus (P-L + P-Ca + P-Fe) than organic phase. The average phosphorus (P) content was 133, 86, and 52 μg g(-1) for the surface layer (A, 0-5 cm), medium layer (B, 5-10 cm), and bottom layer (C, 10-15 cm), respectively. This P-content depletion with depth can be explained mainly by oxygen depletion with depth which enhance P desorption. Except P-L form, the P contents were higher in rainy season compared to the dry season. The results of principal component analysis indicate that inorganic phosphorus (P-L + P-Ca + P-Fe) were linked and were provided mainly by car-washing. It appears clearly that phosphorus content vary significantly during the seasons. These results showed also that the amount of (P-Fe) is higher than the others whatever the season. This P form is easily labile and bioavailable which suggest that it can unfortunately enhance greatly the eutrophication of Lake Dang.

  14. Species-specific variation in the phosphorus nutritional sources by microphytoplankton in a Mediterranean estuary

    Directory of Open Access Journals (Sweden)

    MARLY CAROLINA MARTINEZ SOTO

    2015-08-01

    Full Text Available We investigated the species-specific phosphorus (P nutrition sources in the microphytoplankton community in the Mahon estuary (Minorca, Western Mediterranean in 2011, under two contrasting hydrographic scenarios. Estuarine flow, nutrient concentrations, phytoplankton community composition and enzyme-labeled fluorescence (ELF were measured in June and October, corresponding to the beginning and the end of summer. Dissolved inorganic nitrogen (DIN and inorganic phosphate (Pi exhibited enhanced concentrations in the inner estuary where N:P molar ratios suggested P-limitation in both surveys. Pi was low and variable (0.09±0.02 μmol•l-1 in June and 0.06±0.02 μmol•l-1 in October, whereas organic phosphorus remained a more reliable P source. Even though ambient Pi concentrations were slightly higher on June, when the microphytoplankton assemblage was dominated by dinoflagellates, the percentage of cells expressing ELF labeling was notably higher (65% of total cells than in October (12%, when the presence of diatoms characterized the microphytoplankton community. ELF was mainly expressed by dinoflagellate taxa, whereas diatoms only expressed significant AP in the inner estuary during the June survey. A P-addition bioassay in which response of AP to Pi enrichment was evaluated showed remarkable reduction in AP with increasing Pi. However, some dinoflagellate species maintained AP even when Pi was supplied in excess. We suggest that in the case of some dinoflagellate species AP is not as tightly controlled by ambient Pi as previously believed. AP activity in these species could indicate selective use of organic phosphorus, or slow metabolic response to changes in P forms, rather than physiological stress to low Pi availability. We emphasize the importance of identifying the links between the different P sources and the species-specific requirements, in order to understand the ecological response to anthropogenic biogeochemical perturbations.

  15. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    Science.gov (United States)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  16. Biogeochemical cycling of iron and phosphorus under low oxygen conditions

    OpenAIRE

    Lomnitz, Ulrike

    2017-01-01

    Benthic release of the key nutrients iron (Fe) and phosphorus (P) is enhanced from sediments that are impinged by oxygen-deficient bottom waters due to its diminished retention capacity for such redox sensitive elements. Suboxic to anoxic and sometimes even euxinic conditions are recently found in open ocean oxygen minimum zones (OMZs, e.g. Eastern Boundary Upwelling Systems) and marginal seas (e.g. the Black Sea and the Baltic Sea). Recent studies showed that OMZs expanded in the last decade...

  17. Considerations regarding the dominance of Cylindrospermopsis raciborskii under low light availability in a low phosphorus lake

    Directory of Open Access Journals (Sweden)

    Denise Tonetta

    2015-09-01

    Full Text Available ABSTRACTAlthough many studies have shown that the dispersion, increased abundance and dominance of cyanobacteria can be attributed to nutrient enrichment, we discuss features contributing to the dominance of Cylindrospermopsis raciborskii in a shallow, polymictic, subtropical coastal lake with low phosphorus and light limitation (Peri Lake. The presence and dominance of C. raciborskii in an environment with such characteristics emphasizes the idea that nutrients alone do not explain the high density of this cyanobacterium. Other features should be considered in explaining this species dominance, such as phosphorus storage and physiological flexibilitywhich seem to be key features to high densities in low phosphorus systems.

  18. The separation of sulphur-35 and phosphorus-32 from urine and their subsequent estimation

    International Nuclear Information System (INIS)

    Kramer, G.H.

    1981-07-01

    A method has been developed that will specifically separate sulphur-35 and phosphorus-32 from urine. Interfering cations are removed by cation exchange and differential precipitation is used to remove the unwanted anion(s). The anion of interest is estimated by liquid scintillation counting and recoveries are 95% for sulphur-35 and 70% for phosphorus-32. The detection limits for sulphur-35 and phosphorus-32 are estimated to be 1.5 pCi and 1.3 pCi, respectively (1 pCi = 37 mBq)

  19. The measurement of phosphorus in low alloy steels by electrochemical methods

    International Nuclear Information System (INIS)

    Rahier, A.; Campsteyn, A.; Verheyen, E.; Verpoucke, G.

    2008-01-01

    The oscillo-polarographic method reported by Chen for the determination of phosphorus in silicates, iron ores, carbonates and tea leaves has been thoroughly studied and enhanced in view of the determination of P in various steels. Together with a carefully selected sample dissolution method, the chromatographic separation reported by Hanada et al. for eliminating the matrix has also been examined. The results of these investigations allowed finding out a path towards the successful electrochemical measurement of P in low alloy ferritic steels without eliminating the matrix. The limit of detection is 5.2 micro gram -1 in the metal. The precision ranges between 5 and 15 % relative to the mean measured values. The finely tuned method has been successfully validated using five NIST standard steels. The chromatographic method remains an option for addressing other metals in the future, should they contain unacceptable levels of possibly interfering elements.. Detailed experimental procedures are given.

  20. The measurement of phosphorus in low alloy steels by electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rahier, A.; Campsteyn, A.; Verheyen, E.; Verpoucke, G.

    2008-08-15

    The oscillo-polarographic method reported by Chen for the determination of phosphorus in silicates, iron ores, carbonates and tea leaves has been thoroughly studied and enhanced in view of the determination of P in various steels. Together with a carefully selected sample dissolution method, the chromatographic separation reported by Hanada et al. for eliminating the matrix has also been examined. The results of these investigations allowed finding out a path towards the successful electrochemical measurement of P in low alloy ferritic steels without eliminating the matrix. The limit of detection is 5.2 micro gram{sup -1} in the metal. The precision ranges between 5 and 15 % relative to the mean measured values. The finely tuned method has been successfully validated using five NIST standard steels. The chromatographic method remains an option for addressing other metals in the future, should they contain unacceptable levels of possibly interfering elements.. Detailed experimental procedures are given.

  1. [Phosphorus application effects and input threshold of Chinese cabbage in the oasis irrigation region.

    Science.gov (United States)

    Lian, Cai Yun; Ma, Zhong Ming

    2018-02-01

    To resolve the problem of higher application and lower use efficiency of phosphorus fertilizer of Chinese cabbage (Brassica pekinensis), the yield, use efficiency of phosphate fertilizer and soil phosphate balance were examined by a located field trial in Zhangye Observation and Experiment Station of the Agro-ecological Environment in oasis irrigation region from 2011 to 2013. The results showed that the yield increased with the increase of phosphorus fertilization rate from 0 to 112.52 kg P·hm -2 , beyond which there would be no further enhancement. The yield was 5489.1 kg·hm -2 at 112.52 kg P·hm -2 treatment. This treatment increased the yield by 13.3%-23.8%, under which the phosphorus use efficiency was 14.2%. Soil Olsen-P and CaCl 2 -P were positively correlated. For 111.1 kg P·hm -2 treatment, the content of soil Olsen-P was 24.22 mg·kg -1 , with no phosphorus leaching and no pollution. At the rate of 60.17 kg P·hm -2 , there was a balance between phosphorus input and output and the phosphate demand of Chinese cabbage being met. In conclusion, the optimal phosphorus threshold was 60.17-112.52 kg·hm -2 for Chinese cabbage, the amount at which could reduce the risk of phosphorus pollution.

  2. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.

    Science.gov (United States)

    Liu, Ying; Chen, Shi; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-10-30

    Microcystis aeruginosa was cultured with 0.05-5 mg L(-1) of phosphorus and exposed to 200-500 ng L(-1) of amoxicillin for seven days. Amoxicillin presented no significant effect (p>0.05) on the growth of M. aeruginosa at phosphorus levels of 0.05 and 0.2 mg L(-1), but stimulated algal growth as a hormesis effect at phosphorus levels of 1 and 5 mg L(-1). Phosphorus and amoxicillin affected the contents of chlorophyll-a, adenosine triphosphate (ATP) and malondialdehyde, the expression of psbA and rbcL, as well as the activities of adenosinetriphosphatase and glutathione S-transferase in similar manners, but regulated the production and release of microcystins and the activities of superoxide dismutase and peroxidase in different ways. Increased photosynthesis activity was related with the ATP consumption for the stress response to amoxicillin, and the stress response was enhanced as the phosphorus concentration increased. The biodegradation of amoxicillin by M. aeruginosa increased from 11.5% to 28.2% as the phosphorus concentration increased. Coexisting amoxicillin aggravated M. aeruginosa pollution by increasing cell density and concentration of microcystins, while M. aeruginosa alleviated amoxicillin pollution via biodegradation. The interactions between M. aeruginosa and amoxicillin were significantly regulated by phosphorus (p<0.05) and led to a complicated situation of combined pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  4. Influence of phosphorus on the creep ductility of copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Wu, Rui

    2013-01-01

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180–250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper

  5. Phytoextraction of excess soil phosphorus

    International Nuclear Information System (INIS)

    Sharma, Nilesh C.; Starnes, Daniel L.; Sahi, Shivendra V.

    2007-01-01

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils

  6. Phytoextraction of excess soil phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nilesh C. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Starnes, Daniel L. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Sahi, Shivendra V. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States)]. E-mail: shiv.sahi@wku.edu

    2007-03-15

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils.

  7. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    International Nuclear Information System (INIS)

    Sun, Mingming; Ye, Mao; Hu, Feng; Li, Huixin; Teng, Ying; Luo, Yongming; Jiang, Xin; Kengara, Fredrick Orori

    2014-01-01

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies

  8. Tenax extraction for exploring rate-limiting factors in methyl-β-cyclodextrin enhanced anaerobic biodegradation of PAHs under denitrifying conditions in a red paddy soil

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingming, E-mail: sunmingming@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Key Laboratory of Soil Environmental and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Ye, Mao [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Feng, E-mail: fenghu@njau.edu.cn [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Li, Huixin [Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Teng, Ying [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Jiang, Xin [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Kengara, Fredrick Orori [Department of Chemistry, Maseno University, Private Bag, Maseno 40105 (Kenya)

    2014-01-15

    Highlights: • Enhanced anaerobic bioremediation of a red paddy soil polluted with PAHs. • 1% (w/w) methyl-β-cyclodextrin (MCD) and 20 mM nitrate addition acted as solubility-enhancing agent and electron acceptor respectively. • Tenax extraction and a first-three-compartment modeling were applicable to explore the rate-limiting factors in the biodegradation. • Lack of PAH-degraders hindered biodegradation in control and MCD addition treatments. • Inadequate bioaccessible PAHs was vital rate-limiting factor in nitrate addition treatments. -- Abstract: The effectiveness of anaerobic bioremediation systems for PAH-contaminated soil may be constrained by low contaminants bioaccessibility due to limited aqueous solubility and lack of suitable electron acceptors. Information on what is the rate-limiting factor in bioremediation process is of vital importance in the decision in what measures can be taken to assist the biodegradation efficacy. In the present study, four different microcosms were set to study the effect of methyl-β-cyclodextrin (MCD) and nitrate addition (N) on PAHs biodegradation under anaerobic conditions in a red paddy soil. Meanwhile, sequential Tenax extraction combined with a first-three-compartment model was employed to evaluate the rate-limiting factors in MCD enhanced anaerobic biodegradation of PAHs. Microcosms with both 1% (w/w) MCD and 20 mM N addition produced maximum biodegradation of total PAHs of up to 61.7%. It appears rate-limiting factors vary with microcosms: low activity of degrading microorganisms is the vital rate-limiting factor for control and MCD addition treatments (CK and M treatments); and lack of bioaccessible PAHs is the main rate-limiting factor for nitrate addition treatments (N and MN treatments). These results have practical implications for site risk assessment and cleanup strategies.

  9. 40 CFR 426.73 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... limitations establish the quantity or quality of pollutants or pollutant properties, controlled by this... units (q/sq m of products) Phosphorus 0.30 .30 English units (lb/1,000 sq ft of product) Phosphorus 0.06...

  10. 40 CFR 426.53 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... limitations establish the quantity or quality of pollutants or pollutant properties, controlled by this... units (g/kg of product) Phosphorus 0.05 .05 English units (lb/ton of product) Phosphorus 0.0001 .0001...

  11. Effect of phosphorus addition on the reductive transformation of pentachlorophenol (PCP) and iron reduction with microorganism involvement.

    Science.gov (United States)

    Wang, Yongkui; Liu, Xianli; Huang, Jiexun; Xiao, Wensheng; Zhang, Jiaquan; Yin, Chunqin

    2017-10-01

    The transformation of phosphorus added to the soil environment has been proven to be influenced by the Fe biochemical process, which thereby may affect the transformation of organic chlorinated contaminants. However, the amount of related literatures regarding this topic is limited. This study aimed to determine the effects of phosphorus addition on pentachlorophenol (PCP) anaerobic transformation, iron reduction, and paddy soil microbial community structure. Results showed that the transformation of phosphorus, iron, and PCP were closely related to the microorganisms. Moreover, phosphorus addition significantly influenced PCP transformation and iron reduction, which promoted and inhibited these processes at low and high concentrations, respectively. Both the maximum reaction rate of PCP transformation and the maximum Fe(II) amount produced were obtained at 1 mmol/L phosphorus concentration. Among the various phosphorus species, dissolved P and NaOH-P considerably changed, whereas only slight changes were observed for the remaining phosphorus species. Microbial community structure analysis demonstrated that adding low concentration of phosphorus promoted the growth of Clostridium bowmanii, Clostridium hungatei, and Clostridium intestinale and Pseudomonas veronii. By contrast, high-concentration phosphorus inhibited growth of these microorganisms, similar to the curves of PCP transformation and iron reduction. These observations indicated that Clostridium and P. veronii, especially Clostridium, played a vital role in the transformation of related substances in the system. All these findings may serve as a reference for the complicated reactions among the multiple components of soils.

  12. Potential Phosphorus Mobilisation in Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Re-establishment of wetlands on peat soils containing phosphorus bound to iron(III)-oxides can lead to an undesirable phosphorus loss to the aquatic environment due to the reductive dissolution of iron(III)-oxides. Thus it is important to be able to assess the potential phosphorus mobilisation from...... peat soils before a re-establishment takes place. The potential phosphorus mobilisation from a peat soil depends not only on the geochemical characteristics but also on the redox conditions, the hydrological regime in the area as well as the hydro-physical properties of the soil. The hypothesis...... for this study is (i) the release of phosphorus in peat is controlled by the geochemistry; (ii) the mobilisation of phosphorus is controlled by both geochemistry and hydro-physics of the soil. For this study, 10 Danish riparian lowland areas with peat soil were selected based on their geochemical characteristics...

  13. Modeling of phosphorus fluxes produced by wild fires at watershed scales.

    Science.gov (United States)

    Matyjasik, M.; Hernandez, M.; Shaw, N.; Baker, M.; Fowles, M. T.; Cisney, T. A.; Jex, A. P.; Moisen, G.

    2017-12-01

    River runoff is one of the controlling processes in the terrestrial phosphorus cycle. Phosphorus is often a limiting factor in fresh water. One of the factors that has not been studied and modeled in detail is phosporus flux produced from forest wild fires. Phosphate released by weathering is quickly absorbed in soils. Forest wild fires expose barren soils to intensive erosion, thus releasing relatively large fluxes of phosphorus. Measurements from three control burn sites were used to correlate erosion with phosphorus fluxes. These results were used to model phosphorus fluxes from burned watersheds during a five year long period after fires occurred. Erosion in our model is simulated using a combination of two models: the WEPP (USDA Water Erosion Prediction Project) and the GeoWEPP (GIS-based Water Erosion Prediction Project). Erosion produced from forest disturbances is predicted for any watershed using hydrologic, soil, and meteorological data unique to the individual watersheds or individual slopes. The erosion results are modified for different textural soil classes and slope angles to model fluxes of phosphorus. The results of these models are calibrated using measured concentrations of phosphorus for three watersheds located in the Interior Western United States. The results will help the United States Forest Service manage phosporus fluxes in national forests.

  14. Growth and nutrient efficiency of Betula alnoides clones in response to phosphorus supply

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2016-12-01

    Full Text Available As phosphorus deficiency limits the productivity of many plantation forests in Asia, there is considerable interest in developing phosphorus-efficient clones for the region through targeted breeding programs. Therefore, we determined growth, nutrient concentrations and nutrient absorption and utility efficiencies of four Betula alnoides clones (C5, C6, 1-202 and BY1 in response to six phosphorus levels of 0, 17, 52, 70, 140 and 209 mg P plant-1 coded as P1 to P6, respectively. Maximum growth occurred in the P4, P5 and P6 plants since they had the largest height, biomass, leaf area and branch number. Phosphorus application increased the phosphorus concentrations of all clones. Nutrient loading was achieved with the P6 treatment because growth and biomass were not significantly higher, but root, stem and leaf phosphorus concentrations were approximately twice those of P4 plants. Clone BY1 had the highest phosphorus-efficiency, and is recommended for field application due to its maximum root collar diameter, biomass, root/shoot ratio, leaf area, nutrient absorption and utility efficiency among the four clones. The findings will help to improve the nutrient efficiency of this species in plantation forestry in Asia.

  15. Effect of phosphorus deficiency in photoassimilated /sup 14/C metabolism in sunflower

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, V.; Angelov, M.; Popov, G. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fiziologiya na Rasteniyata)

    1981-01-01

    Phosphorus deficiency in photoassimilated /sup 14/C metabolism in plants is a controversial problem. The effect of the total removal of phosphorus from the nutrient medium is investigated. The experiments are carried out with sunflower of the Peredovic variety, grown as hydroponics with Hellriegel's nutrient solution. The investigations are performed after a 19-day removal of phosphorus from the nutrient medium. An enhanced labelling of aspartate and malate, products of the carboxylation of phosphoenolpyruvate is observed, which indicates that the flow of the newly assimilated /sup 14/C is directed to a higher degree towards the reaction of carboxylation of phosphoenolpyruvate and its compounds (malate and aspartate). Possibly on disturbing the initial CO/sub 2/ assimilation by ribulosediphosphate, phosphorus deficiency induces a stronger CO/sub 2/ fixation through the C/sub 4/ pathway in order to compensate to a certain extent the strongly decreased supply of carbon skeletons for metabolism in plants.

  16. Chromosomal location of traits associated with wheat seedling water and phosphorus use efficiency under different water and phosphorus stresses.

    Science.gov (United States)

    Cao, Hong-Xing; Zhang, Zheng-Bin; Sun, Cheng-Xu; Shao, Hong-Bo; Song, Wei-Yi; Xu, Ping

    2009-09-18

    The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring-Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient) and Egyptian Red (donor) cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE) and phosphorus use efficiency (PUE) under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUE(l) = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate) under W-P (Hoagland solution with 1/2P), -W-P (Hoagland solution with 1/2P and 10% PEG). Chromosomes 7A, 3D, 2B, 3B, and 4B may carry genes for positive effects on individual plant water use efficiency (WUE(p) = biomass/TWC; TWC = total water consumption) under WP (Hoagland solution), W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement under WP, -WP (Hoagland solution with 10% PEG) and W-P treatment. Chromosome 7A possibly has genes for controlling WUE and PUE simultaneously, which indicates that WUE and PUE may share the same genetic background. Phenotypic and genetic analysis of the investigated traits showed that photosynthetic rate (Pn) and transpiration rate (Tr), Tr and WUE(l) showed significant positive and negative correlations under WP, W-P, -WP and -W-P, W-P, -WP treatments, respectively. Dry mass (DM), WUE(P), PUT (phosphorus uptake) all showed significant positive correlation under WP, W-P and -WP treatment. PUE and phosphorus uptake (PUT = P uptake per plant) showed significant negative correlation under the four treatments. The results might provide useful information for improving WUE and PUE in wheat genetics.

  17. Chromosomal Location of Traits Associated with Wheat Seedling Water and Phosphorus Use Efficiency under Different Water and Phosphorus Stresses

    Directory of Open Access Journals (Sweden)

    Wei-Yi Song

    2009-09-01

    Full Text Available The objective of this study was to locate chromosomes for improving water and phosphorus-deficiency tolerance of wheat at the seedling stage. A set of Chinese Spring- Egyptian Red wheat substitution lines and their parent Chinese Spring (recipient and Egyptian Red (donor cultivars were measured to determine the chromosomal locations of genes controlling water use efficiency (WUE and phosphorus use efficiency (PUE under different water and phosphorus conditions. The results underlined that chromosomes 1A, 7A, 7B, and 3A showed higher leaf water use efficiency (WUEl = Pn/Tr; Pn = photosynthetic rate; Tr = transpiration rate under W-P (Hoagland solution with1/2P, -W-P (Hoagland solution with 1/2P and 10% PEG. Chromosomes 7A, 3D, 2B, 3B, and 4B may carry genes for positive effects on individual plant water use efficiency (WUEp = biomass/TWC; TWC = total water consumption under WP (Hoagland solution, W-P and -W-P treatment. Chromosomes 7A and 7D carry genes for PUE enhancement under WP, -WP (Hoagland solution with 10% PEG and W-P treatment. Chromosome 7A possibly has genes for controlling WUE and PUE simultaneously, which indicates that WUE and PUE may share the same genetic background. Phenotypic and genetic analysis of the investigated traits showed that photosynthetic rate (Pn and transpiration rate (Tr, Tr and WUEl showed significant positive and negative correlations under WP, W-P, -WP and -W-P, W-P, -WP treatments, respectively. Dry mass (DM, WUEP, PUT (phosphorus uptake all showed significant positive correlation under WP, W-P and -WP treatment. PUE and phosphorus uptake (PUT = P uptake per plant showed significant negative correlation under the four treatments. The results might provide useful information for improving WUE and PUE in wheat genetics.

  18. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    Science.gov (United States)

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments

  19. Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants

    Energy Technology Data Exchange (ETDEWEB)

    Ning, J.C.; Cumming, J.R.

    2001-07-01

    Broomsedge (Andropogon virginicus L.) is a dominant grass revegetating many abandoned coal-mined lands in West Virginia, USA. Residual soils on such sites are often characterized by low pH, low nutrients, and high aluminium. Experiments were conducted to assess the resistance of broomsedge to limited phosphorus (Pi) availability and to investigate the role that arbuscular mycorrhizal (AM) fungi play in aiding plant growth under low Pi conditions. Pregerminated mycorrhizal and non-mycorrhizal seedlings were grown in a sand-culture system with nutrient solutions containing Pi concentrations ranging from 10 to 100 {mu}M for 8 weeks. Non-mycorrhizal plants exhibited severe inhibition of growth under Pi limitation ({lt}60 {mu}M). Colonization by AM fungi greatly enhanced host plant growth at low Pi concentrations, but did not benefit growth when Pi was readily available (100 {mu}M). In comparison to non-mycorrhizal plants, mycorrhizal plants had higher phosphorus use efficiency at low Pi concentrations and maintained nearly constant tissue nutrient concentrations across the gradient of Pi concentrations investigated. Manganese (Mn) and sodium (Na) accumulated in shoots of nonmycorrhizal plants under Pi limitation. Mycorrhizal plants exhibited lower instantaneous Pi uptake rates and significantly lower C-min values compared to non-mycorrhizal plants. These patterns suggest that the symbiotic association between broomsedge roots and AM fungi effectively maintains nutrient homeostasis through changes in physiological properties, including nutrient uptake, allocation and use. The mycorrhizal association is thus a major adaptation that allows broomsedge to become established on infertile mined lands.

  20. Fertilizer phosphorus in some Finnish soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1961-01-01

    Full Text Available In the present paper it is tried to trace the fate of fertilizer phosphorus in soil by comparing the analyses of soils from treated and untreated plots of field trials. This indirect approach cannot be expected to provide exact values, but it is likely to give an approximate answer. The results reported above do not in any marked degree change our present conception of the forms in which fertilizer phosphorus accumulates in soils. In the acid soils studied (pH 4—6.4 in 0.02 N CaCl2 superphosphate tended to increase the fractions which were extracted by NH4F or NaOH. Hyperphosphate phosphorus was mostly found in the acid-soluble fraction. During a longer period of dressing with phosphate an increase in the organic phosphorus content of a peat soil could be detected. In the incubation experiments the mineralization of organic phosphorus occurred at a higher rate in the samples from the plots treated with superphosphate than in those from the untreated one. It might be supposed that the organic phosphorus mineralized mainly originated from the plant residues. It seems that the fractionation method developed by CHANG and JACKSON (4 for the estimation of discrete forms of soil phosphorus is not quite satisfactory for tracing the fertilizer phosphorus in soils recently dressed with phosphates. In particular, it may be fallacious to conclude that the fraction extracted by NH4F would only represent phosphorus bound to aluminium and its compounds. At least in the absence of soil, a large part of phosphorus in dicalcium phosphate dihydrate falls into this fraction, and also a small amount of hyperphosphate phosphorus may be found in it. The test values for »available» phosphorus showed the effect of fertilizers in accordance with previous observations (9, 13. Acetic acid soluble P revealed the treatment with hyperphosphate, but only slightly the application of superphosphate. The test value for the sorbed P of BRAY and KURTZ (2, or phosphorus

  1. Phosphorus and Nutrition in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Emilio González-Parra

    2012-01-01

    Full Text Available Patients with renal impairment progressively lose the ability to excrete phosphorus. Decreased glomerular filtration of phosphorus is initially compensated by decreased tubular reabsorption, regulated by PTH and FGF23, maintaining normal serum phosphorus concentrations. There is a close relationship between protein and phosphorus intake. In chronic renal disease, a low dietary protein content slows the progression of kidney disease, especially in patients with proteinuria and decreases the supply of phosphorus, which has been directly related with progression of kidney disease and with patient survival. However, not all animal proteins and vegetables have the same proportion of phosphorus in their composition. Adequate labeling of food requires showing the phosphorus-to-protein ratio. The diet in patients with advanced-stage CKD has been controversial, because a diet with too low protein content can favor malnutrition and increase morbidity and mortality. Phosphorus binders lower serum phosphorus and also FGF23 levels, without decreasing diet protein content. But the interaction between intestinal dysbacteriosis in dialysis patients, phosphate binder efficacy, and patient tolerance to the binder could reduce their efficiency.

  2. Arctic water tracks retain phosphorus and transport ammonium

    Science.gov (United States)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  3. Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades

    International Nuclear Information System (INIS)

    Craft, C.B.; Richardson, C.J.

    1993-01-01

    Recent rates of peat accretion (as determined by Cs-137) and N, P, organic C, Ca and Na accumulation were measured along a 10 km eutrophication gradient in the northern Everglades area of Water Conservation Area 2A (WCA 2A) that has received agricultural drainage from the Hillsboro canal for the past 25-30 yrs. Rates of peat accretion were highest at sampling locations closest to the Hillsboro canal. Phosphorus and Na accumulation were a function of both peat accretion and soil P and Na concentrations. Although sodium enrichment of the peat was limited to 1.6 km downstream of the Hillsboro canal, increased rates of Na accumulation penetrated 5.2 km downstream of the Hillsboro canal, the extent of the area of enhanced peat accretion. In contrast to P and Na, there was no difference in the concentration of soil organic C, N and Ca along the eutrophication gradient. However, there was a gradient of organic C, N and Ca accumulation corresponding to the area of enhanced peat accretion. The areal extent of enhanced peat accretion and organic C, N, Ca and Na accumulation encompasses approximately 7700 ha of the northern part of WCA 2A. The area of enhanced P accumulation is larger, covering 11,500 ha or 26% of the total area of WCA 2A. The findings suggest that P accumulation is dependent on the P concentration in the water column and that decreasing P loadings per unit area result in less P storage per unit area

  4. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options

    NARCIS (Netherlands)

    Cordell, D.; Rosemarin, A.; Schroder, J.J.; Smit, A.L.

    2011-01-01

    Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus

  5. Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments

    Science.gov (United States)

    Reed, Daniel C.; Gustafsson, Bo G.; Slomp, Caroline P.

    2016-01-01

    Coastal hypoxia is a growing and persistent problem largely attributable to enhanced terrestrial nutrient (i.e., nitrogen and phosphorus) loading. Recent studies suggest phosphorus removal through burial of iron (II) phosphates, putatively vivianite, plays an important role in nutrient cycling in the Baltic Sea - the world's largest anthropogenic dead zone - yet the dynamics of iron (II) phosphate formation are poorly constrained. To address this, a reactive-transport model was used to reconstruct the diagenetic and depositional history of sediments in the Fårö basin, a deep anoxic and sulphidic region of the Baltic Sea where iron (II) phosphates have been observed. Simulations demonstrate that transport of iron from shelf sediments to deep basins enhances vivianite formation while sulphide concentrations are low, but that pyrite forms preferentially over vivianite when sulphate reduction intensifies due to elevated organic loading. Episodic reoxygenation events, associated with major inflows of oxic waters, encourage the retention of iron oxyhydroxides and iron-bound phosphorus in sediments, increasing vivianite precipitation as a result. Results suggest that artificial reoxygenation of the Baltic Sea bottom waters could sequester up to 3% of the annual external phosphorus loads as iron (II) phosphates, but this is negligible when compared to potential internal phosphorus loads due to dissolution of iron oxyhydroxides when low oxygen conditions prevail. Thus, enhancing vivianite formation through artificial reoxygenation of deep waters is not a viable engineering solution to eutrophication in the Baltic Sea. Finally, simulations suggest that regions with limited sulphate reduction and hypoxic intervals, such as eutrophic estuaries, could act as important phosphorus sinks by sequestering vivianite. This could potentially alleviate eutrophication in shelf and slope environments.

  6. Independent colimitation for carbon dioxide and inorganic phosphorus.

    Directory of Open Access Journals (Sweden)

    Elly Spijkerman

    Full Text Available Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO(2 and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO(2 and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation. In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation.We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO(2 and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants.

  7. Independent Colimitation for Carbon Dioxide and Inorganic Phosphorus

    Science.gov (United States)

    Spijkerman, Elly; de Castro, Francisco; Gaedke, Ursula

    2011-01-01

    Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO2 and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO2 and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation. We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO2 and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants. PMID:22145031

  8. Independent colimitation for carbon dioxide and inorganic phosphorus.

    Science.gov (United States)

    Spijkerman, Elly; de Castro, Francisco; Gaedke, Ursula

    2011-01-01

    Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO(2) and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO(2) and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation.We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO(2) and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants.

  9. Development of the natural gas engine Mercedes-Benz 12 liters given the limits of the law of EEV (Enhanced Environmentally Friendly Vehicle) emissions below the prescribed limits; Desenvolvimento do motor a gas natural Mercedes-Bens 12 litros atendendo os limites da legislacao de emissoes EEV (Enhanced Environmentally Friendly Vehicle) inferiores aos limites prescritos para Euro 5

    Energy Technology Data Exchange (ETDEWEB)

    Marques Neto, J.A.; Wunderlich, C.; Miletovic, C.; Biazetti, W. [DaimlerChrysler do Brasil Ltda., Sao Bernardo do Campo, SP (Brazil)

    2004-07-01

    The development of combustion for engines, has been focused in reducing of pollutants emissions limits and the compressed natural gas, as a fuel, achieves good results, resulted by the combustion dynamic from Otto cycle, values under the lower specific emissions limits, if compared with diesel cycle engines. Although the optimization of fuel maps and the using of a two-ways oxidation catalysator, in function of the lower particulate matters emissions, was possible to get the engine certification by TUV Germany in agreement with the EEV emissions limits. To sum up, this paper has principal subject to present the natural gas engine M447hLAG powered by Mercedes-Benz with power 240 kW and torque 1250 Nm , as a commercial advantage for markets with the respective legislation with lower emissions limits. (author)

  10. A representation of the phosphorus cycle for ORCHIDEE (revision 4520

    Directory of Open Access Journals (Sweden)

    D. S. Goll

    2017-10-01

    Full Text Available Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the ORCHIDEE land surface model, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for the influence of the nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated mineralization, and biological nitrogen fixation. Changes in the nutrient content (quality of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from the soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300-year and a late (4.1 Myr stage of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus, or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower than observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient

  11. Determination of phosphorus in semiconductor grade silicon by neutron activation analysis

    International Nuclear Information System (INIS)

    Jaskolska, H.; Rowinska, L.

    1975-01-01

    A method of determination of phosphorus in silicon has been elaborated. The separation of phosphorus is based on the extraction of phosphomolybdic complex in the presence of hold-back carriers of Ta and Au. Contamination factors for various impurities were determined. The lower limit of determination equals 3.10 -11 g P. Types of errors in the determination of concentration profiles are discussed. The method meets the following requirements: 1./ It ensures good separation of phosphorus from elements occuring in silicon plates (i.e. Ta, Au, Sn, Ge, Ce, Sb, As, Cu, and Na). 2./ It ensures high chemical yield of phosphorus separation. 3./ It ensures high efficiency of the measurement of 32 P β-activity. 4./ It is simple and rapid, since, for the determination of a implantation profile, it is necessary to analyse several tens of layers. (T.G.)

  12. Determination of phosphorus and silicon in tungsten trioxide as reduced molybdotungsten complexes without matrix separation

    International Nuclear Information System (INIS)

    Chkanikova, O.K.; Dorokhova, E.N.

    1979-01-01

    Studied are conditions of formation and reduction of molybdotungsten phosphorus (MTPC) and molybdotungsten silicon (MTSC) complexes at high excess of the ligand. It is established that MTPC are formed in a wide pH range, limited by aggregate stability of the solution (pH 4.5). Using the method of isomolar series it is shown that at pH 1.2 a complex with one Mo atom in coordination sphere is formed, at pH 3.2 - with two Mo atoms. Spectrophotometric method of phosphorus and silicon determination of tungsten trioxide without the base separation is developed. The method is based on silicon determination after MTPC decomposition in the presence of citric acid and determination of silicon and phosphorus sum under conditions of MTPC formation in the presence of oxalic acid. Phosphorus amount is determined according to the difference

  13. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    Science.gov (United States)

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  14. Phosphorus-32: practical radiation protection

    International Nuclear Information System (INIS)

    Ballance, P.E.; Morgan, J.

    1987-01-01

    This monograph offers practical advice to Radiation Protection Advisors, Radiation Protection Supervisors and Research Supervisors, together with research workers, particularly those in the field of molecular biological research. The subject is dealt with under the following headings: physical properties, radiation and measurement methods, radiation units, phosphorus metabolism and health risks, protection standards and practical radiation protection, administrative arrangements, accidents, decontamination, emergency procedures, a basic written system for radiochemical work, with specialised recommendations for 32 P, and guidance notes of accident situations involving 32 P. (U.K.)

  15. Global Fertilizer and Manure, Version 1: Phosphorus Fertilizer Application

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phosphorus Fertilizer Application dataset of the Global Fertilizer and Manure, Version 1 Data Collection represents the amount of phosphorus fertilizer nutrients...

  16. Enhanced

    Directory of Open Access Journals (Sweden)

    Martin I. Bayala

    2014-06-01

    Full Text Available Land Surface Temperature (LST is a key parameter in the energy balance model. However, the spatial resolution of the retrieved LST from sensors with high temporal resolution is not accurate enough to be used in local-scale studies. To explore the LST–Normalised Difference Vegetation Index relationship potential and obtain thermal images with high spatial resolution, six enhanced image sharpening techniques were assessed: the disaggregation procedure for radiometric surface temperatures (TsHARP, the Dry Edge Quadratic Function, the Difference of Edges (Ts∗DL and three models supported by the relationship of surface temperature and water stress of vegetation (Normalised Difference Water Index, Normalised Difference Infrared Index and Soil wetness index. Energy Balance Station data and in situ measurements were used to validate the enhanced LST images over a mixed agricultural landscape in the sub-humid Pampean Region of Argentina (PRA, during 2006–2010. Landsat Thematic Mapper (TM and Moderate Resolution Imaging Spectroradiometer (EOS-MODIS thermal datasets were assessed for different spatial resolutions (e.g., 960, 720 and 240 m and the performances were compared with global and local TsHARP procedures. Results suggest that the Ts∗DL technique is the most adequate for simulating LST to high spatial resolution over the heterogeneous landscape of a sub-humid region, showing an average root mean square error of less than 1 K.

  17. Accounting for the risks of phosphorus losses through tile drains in a phosphorus index.

    Science.gov (United States)

    Reid, D Keith; Ball, Bonnie; Zhang, T Q

    2012-01-01

    Tile drainage systems have been identified as a significant conduit for phosphorus (P) losses to surface water, but P indices do not currently account for this transport pathway in a meaningful way. Several P indices mention tile drains, but most account for either the reduction in surface runoff or the enhanced transport through tiles rather than both simultaneously. A summary of the current state of how tile drains are accounted for within P indices is provided, and the challenges in predicting the risk of P losses through tile drains that are relative to actual losses are discussed. A framework for a component P Index is described, along with a proposal to incorporate predictions of losses through tile drains as a component within this framework. Options for calibrating and testing this component are discussed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Anomalous Temperature Dependence in Metal-Black Phosphorus Contact.

    Science.gov (United States)

    Li, Xuefei; Grassi, Roberto; Li, Sichao; Li, Tiaoyang; Xiong, Xiong; Low, Tony; Wu, Yanqing

    2018-01-10

    Metal-semiconductor contact has been the performance limiting problem for electronic devices and also dictates the scaling potential for future generation devices based on novel channel materials. Two-dimensional semiconductors beyond graphene, particularly few layer black phosphorus, have attracted much attention due to their exceptional electronic properties such as anisotropy and high mobility. However, due to its ultrathin body nature, few layer black phosphorus-metal contact behaves differently than conventional Schottky barrier (SB) junctions, and the mechanisms of its carrier transport across such a barrier remain elusive. In this work, we examine the transport characteristic of metal-black phosphorus contact under varying temperature. We elucidated the origin of apparent negative SB heights extracted from classical thermionic emission model and also the phenomenon of metal-insulator transition observed in the current-temperature transistor characteristic. In essence, we found that the SB height can be modulated by the back-gate voltage, which beyond a certain critical point becomes so low that the injected carrier can no longer be described by the conventional thermionic emission theory. The transition from transport dominated by a Maxwell-Boltzmann distribution for the high energy tail states, to that of a Fermi distribution by low energy Fermi sea electrons, is the physical origin of the observed metal-insulator transition. We identified two distinctive tunneling limited transport regimes in the contact: vertical and longitudinal tunneling.

  19. Sustainable use of phosphorus: a finite resource.

    Science.gov (United States)

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Validation of ultraviolet method to determine serum phosphorus level

    International Nuclear Information System (INIS)

    Garcia Borges, Lisandra; Perez Prieto, Teresa Maria; Valdes Diez, Lilliam

    2009-01-01

    Validation of a spectrophotometry method applicable in clinic labs was proposed to analytical assessment of serum phosphates using a kit UV-phosphorus of domestic production from 'Carlos J. Finlay' Biologics Production Enterprise (Havana, Cuba). Analysis method was based on phosphorus reaction to ammonium molybdenum to acid pH to creating a measurable complex to 340 nm. Specificity and precision were measured considering the method strength, linearity, accuracy and sensitivity. Analytical method was linear up to 4,8 mmol/L, precise (CV 30 .999) during clinical interest concentration interval where there were not interferences by matrix. Detection limit values were of 0.037 mmol/L and of quantification of 0.13 mmol/L both were satisfactory for product use

  1. Olefination reactions of phosphorus-stabilized carbon nucleophiles.

    Science.gov (United States)

    Gu, Yonghong; Tian, Shi-Kai

    2012-01-01

    A range of phosphorus-stabilized carbon nucleophiles have been employed for alkene synthesis with high chemo-, regio-, and stereoselectivity. The Wittig, Horner-Wadsworth-Emmons, Horner-Wittig, and Evans-Akiba reactions utilize phosphonium-, phosphonate-, phosphine oxide-, and pentacoordinated phosphorane-stabilized carbanions as nucleophiles, respectively, to undergo olefination with aldehydes or ketones, and each of these transformations has its own advantages and limitations. Modifying the structures of these nucleophiles along with optimizing reaction conditions results in the formation of a wide variety of polysubstituted alkenes in a highly stereoselective manner. The olefination of imines with phosphonium ylides has recently emerged as a useful approach to tune the stereoselectivity for alkene synthesis. This review focuses on recent advances in the stereoselective olefination of phosphorus-stabilized carbon nucleophiles.

  2. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies.

    Science.gov (United States)

    Sakarika, Myrsini; Kornaros, Michael

    2017-11-01

    The present study aimed at: (1) determining the effect of sulfur addition on biomass growth and (2) assessing the effect of sulfur, phosphorus and nitrogen limitation on lipid accumulation by C. vulgaris SAG 211-11b. The sulfur cellular content was more than two-fold higher under nitrogen and phosphorus limitation (0.52% and 0.54%ww -1 , respectively) compared to sulfur requirements (0.20%ww -1 ) under sulfur limiting conditions. The nitrogen needs are significantly lower (2.81-3.35%ww -1 ) when compared to other microalgae and become 23% lower under nitrogen or phosphorus limitation. The microalga exhibited substrate inhibition above 30gL -1 initial glucose concentration. Sulfur limitation had the most significant effect on lipid accumulation, resulting in maximum total lipid content of 53.43±3.93%gg DW -1 . In addition to enhancing lipid productivity, adopting the optimal nutrient limitation strategy can result in cost savings by avoiding unnecessary nutrient additions and eliminate the environmental burden due to wasted resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fault ride-through enhancement of fixed speed wind turbine using bridge-type fault current limiter

    Directory of Open Access Journals (Sweden)

    Mostafa I. Marei

    2016-05-01

    Full Text Available The interaction between wind energy turbines and the grid results in two main problems, increasing the short-circuit level and reducing the Fault Ride-Through (FRT capability during faults. The objective of this paper is to solve these problems, for fixed speed Wind Energy Systems (WECS, utilizing the bridge-type Fault Current Limiter (FCL with a discharging resistor. A simple cascaded control system is proposed for the FCL to regulate the terminal voltage of the generator and limit the current. The system is simulated on PSCAD/EMTDC software to evaluate the dynamic performance of the proposed WECS compensated by FCL. The simulation results show the potentials of the FCL as a simple and effective method for solving grid interconnection problems of WECS.

  4. The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages

    OpenAIRE

    Czimmerer, Zsolt; Daniel, Bence; Horvath, Attila; Rückerl, Dominik; Nagy, Gergely; Kiss, Mate; Peloquin, Matthew; Budai, Marietta M.; Cuaranta-Monroy, Ixchelt; Simandi, Zoltan; Steiner, Laszlo; Nagy, Bela; Poliska, Szilard; Banko, Csaba; Bacso, Zsolt

    2018-01-01

    Summary The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription fac...

  5. Thinking about a Limited Future Enhances the Positivity of Younger and Older Adults’ Recall: Support for Socioemotional Selectivity Theory

    OpenAIRE

    Barber, Sarah J.; Opitz, Philipp C.; Martins, Bruna; Sakaki, Michiko; Mather, Mara

    2016-01-01

    Compared with younger adults, older adults have a relative preference to attend to and remember positive over negative information. This is known as the “positivity effect,” and researchers have typically evoked socioemotional selectivity theory to explain it. According to socioemotional selectivity theory, as people get older they begin to perceive their time left in life as more limited. These reduced time horizons prompt older adults to prioritize achieving emotional gratification and thus...

  6. Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism

    International Nuclear Information System (INIS)

    Han, Zhizhong; Wang, Jiejie; Liao, Lan; Pan, Haibo; Shen, Shuifa; Chen, Jianzhong

    2013-01-01

    Nano-scale TiO 2 powders doped with phosphorus were prepared by sol–gel method. The characterization of the materials was performed by XRD, BET, FT-IR spectroscopy, Zeta potential measurement and XPS analysis. The results indicate that the phosphorus suppresses the crystal growth and phase transformation and, at the same time, increases the surface area and enhances the sensitivity and selectivity for the P-doped TiO 2 oxygen sensors. In this system, the operating temperature is low, only 116 °C, and the response time is short. The spectra of FT-IR and XPS show that the phosphorus dopant presents as the pentavalent-oxidation state in TiO 2 , further phosphorus can connect with Ti 4+ through the bond of Ti-O-P. The positive shifts of XPS peaks indicate that electron depleted layer of P-doped TiO 2 is narrowed compared with that of pure TiO 2 , and the results of Zeta potential illuminate that the density of surface charge carrier is intensified. The adsorptive active site and Lewis acid characteristics of the surface are reinforced by phosphorus doping, where phosphorus ions act as a new active site. Thus, the sensitivity of P-doped TiO 2 is improved, and the 5 mol% P-doped sample has the optimal oxygen sensing properties.

  7. Phosphorus Regulation in Chronic Kidney Disease.

    Science.gov (United States)

    Suki, Wadi N; Moore, Linda W

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors-such as parathyroid hormone, fibroblast growth factor 23, and vitamin D-on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances.

  8. Understanding and removing surface states limiting charge transport in TiO2 nanowire arrays for enhanced optoelectronic device performance.

    Science.gov (United States)

    Sheng, Xia; Chen, Liping; Xu, Tao; Zhu, Kai; Feng, Xinjian

    2016-03-01

    Charge transport within electrode materials plays a key role in determining the optoelectronic device performance. Aligned single-crystal TiO 2 nanowire arrays offer an ideal electron transport path and are expected to have higher electron mobility. Unfortunately, their transport is found not to be superior to that in nanoparticle films. Here we show that the low electron transport in rutile TiO 2 nanowires is mainly caused by surface traps in relatively deep energy levels, which cannot be removed by conventional approaches, such as oxygen annealing treatment. Moreover, we demonstrate an effective wet-chemistry approach to minimize these trap states, leading to over 20-fold enhancement in electron diffusion coefficient and 62% improvement in solar cell performance. On the basis of our results, the potential of TiO 2 NWs can be developed and well-utilized, which is significantly important for their practical applications.

  9. Increasing Aridity is Enhancing Silver Fir (Abies Alba Mill). Water Stress in its South-Western Distribution Limit

    Energy Technology Data Exchange (ETDEWEB)

    Macias, M. [Department of Geology, University of Helsinki, Gustaf Haellstroeminkatu 2, P.O. Box 64, FI-00014 Helsinki (Finland); Andreu, L.; Bosch, O.; Gutierrez, E. [Departament d' Ecologia, Universitat de Barcelona, Avgda. Diagonal, 645, Barcelona, 08028, Catalonia (Spain); Camarero, J.J. [Unidad de Recursos Forestales, Centro de Investigacion Agroalimentaria, Gobierno de Aragon, Apdo. 727, Zaragoza, 50080, Aragon (Spain)

    2006-12-15

    Tree populations located at the geographical distribution limit of the species may provide valuable information about the response of tree growth to climate warming across climatic gradients. Dendroclimatic information was extracted from a network of 10 silver-fir (Abies alba) populations in the south-western distribution limit of the species (Pyrenees, NE Iberian Peninsula). Ring-width chronologies were built for five stands sampled in mesic sites from the Main Range in the Pyrenees, and for five forests located in the southern Peripheral Ranges where summer drought is more pronounced. The radial growth of silver-fir in this region is constrained by water stress during the summer previous to growth, as suggested by the negative relationship with previous September temperature and, to a lesser degree, by a positive relationship with previous end of summer precipitation. Climatic data showed a warming trend since the 1970s across the Pyrenees, with more severe summer droughts. The recent warming changed the climate-growth relationships, causing higher growth synchrony among sites, and a higher year-to-year growth variation, especially in the southernmost forests. Moving-interval response functions suggested an increasing water-stress effect on radial growth during the last half of the 20th century. The growth period under water stress has extended from summer up to early autumn. Forests located in the southern Peripheral Ranges experienced a more intense water stress, as seen in a shift of their response to precipitation and temperature. The Main-Range sites mainly showed a response to warming. The intensification of water-stress during the late 20th century might affect the future growth performance of the highly-fragmented A. alba populations in the southwestern distribution limit of the species.

  10. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    Science.gov (United States)

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  11. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    Science.gov (United States)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  12. Phosphorus metabolism and estimation of phosphorus requirements for sheep

    International Nuclear Information System (INIS)

    Louvandini, H.; Vitti, D.M.S.S.

    1996-01-01

    The main objective of the present work was to determine the effects of different dietary phosphorus (P) levels on endogenous faecal loss and to estimate the minimum daily requirement of P for sheep. The study was conducted with 24 Suffolk sheep which received a basic diet consisting of a hay-concentrate mixture. The treatment consisted of different amounts of bone meal, added to the basic diet, so as to obtain supplementary P levels of 0, 2 and 3 g/day. Twenty-one days after the introduction of the experimental diet, 7.4 MBq radioactive P ( 32 P) was injected in the left jugular vein of each sheep and blood, feces and urine were collected daily for 8 days at 24-hour intervals. The samples were analysed for inorganic P and for radioactive specific activities. Mean endogenous faecal losses of P were 10.00, 31.79, 39.35 and 38.06 mg/kg live weight (LW) per day in sheep supplemented with 0, 1, 2 and 3 g respectively. A positive linear relation ship was observed between endogenous faecal loss and consumed P, indicating that this loss was linked to dietary P. Total P excretion in the faeces, as well as P absorption, retention urinary excretion and salivary secretion were also directly related to P intake, as part of the mechanism of homeostatic control of organism animal. The minimum endogenous faecal loss for zero P intake, calculated by interpolation, was 8.27 mg/kg LW per day, and for zero balance, the calculated phosphorus consumption was 21.36 mg/kg LW per day. (author)

  13. Social familiarity relaxes the constraints of limited attention and enhances reproduction of group-living predatory mites

    Science.gov (United States)

    Strodl, Markus A; Schausberger, Peter

    2013-01-01

    In many group-living animals, within-group associations are determined by familiarity, i.e. familiar individuals, independent of genetic relatedness, preferentially associate with each other. The ultimate causes of this behaviour are poorly understood and rigorous documentation of its adaptive significance is scarce. Limited attention theory states that focusing on a given task has interrelated cognitive, behavioural and physiological costs with respect to the attention paid to other tasks. In multiple signal environments attention has thus to be shared among signals. Assuming that familiar neighbours require less attention than unfamiliar ones, associating with familiar individuals should increase the efficiency in other tasks and ultimately increase fitness. We tested this prediction in adult females of the group-living, plant-inhabiting predatory mite Phytoseiulus persimilis. We evaluated the influence of social familiarity on within-group association behaviour, activity, predation and reproduction. In mixed groups (familiar and unfamiliar), familiar predator females preferentially associated with each other. In pure groups (either familiar or unfamiliar), familiar predator females produced more eggs than unfamiliar females at similar predation rates. Higher egg production was correlated with lower activity levels, indicating decreased restlessness. In light of limited attention theory, we argue that the ability to discriminate between familiar and unfamiliar individuals and preferential association with familiar individuals confers a selective advantage because familiar social environments are cognitively and physiologically less taxing than unfamiliar social environments. PMID:24273345

  14. Metagenomic analysis of phosphorus removing sludgecommunities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Martin, Hector; Ivanova, Natalia; Kunin, Victor; Warnecke,Falk; Barry, Kerrie; McHardy, Alice C.; Yeates, Christine; He, Shaomei; Salamov, Asaf; Szeto, Ernest; Dalin, Eileen; Putnam, Nik; Shapiro, HarrisJ.; Pangilinan, Jasmyn L.; Rigoutsos, Isidore; Kyrpides, Nikos C.; Blackall, Linda Louise; McMahon, Katherine D.; Hugenholtz, Philip

    2006-02-01

    Enhanced Biological Phosphorus Removal (EBPR) is not wellunderstood at the metabolic level despite being one of the best-studiedmicrobially-mediated industrial processes due to its ecological andeconomic relevance. Here we present a metagenomic analysis of twolab-scale EBPR sludges dominated by the uncultured bacterium, "CandidatusAccumulibacter phosphatis." This analysis resolves several controversiesin EBPR metabolic models and provides hypotheses explaining the dominanceof A. phosphatis in this habitat, its lifestyle outside EBPR and probablecultivation requirements. Comparison of the same species from differentEBPR sludges highlights recent evolutionary dynamics in the A. phosphatisgenome that could be linked to mechanisms for environmental adaptation.In spite of an apparent lack of phylogenetic overlap in the flankingcommunities of the two sludges studied, common functional themes werefound, at least one of them complementary to the inferred metabolism ofthe dominant organism. The present study provides a much-needed blueprintfor a systems-level understanding of EBPR and illustrates thatmetagenomics enables detailed, often novel, insights into evenwell-studied biological systems.

  15. Graphene/black phosphorus heterostructured photodetector

    Science.gov (United States)

    Xu, Jiao; Song, Young Jae; Park, Jin-Hong; Lee, Sungjoo

    2018-06-01

    Graphene photodetectors exhibit a low photoresponsivity due to their weak light absorbance. In this study, we fabricated a graphene/black phosphorus (BP) heterostructure, in which the multilayer BP flake with a ∼0.3 eV direct band gap functions as an enhanced light-absorption material. Further, the photoexcited electrons are trapped in the trap states of the BP, which creates a photogating effect and causes holes to flow into the graphene layer driven by the built-in potential between BP and graphene. The photocarrier lifetime is therefore prolonged by trapping, and as a result of the high carrier mobility of graphene, the holes that transfer into the graphene channel can travel through the circuit before they recombine with trapped electrons. These combined effects result in a high photoresponsivity: 55.75 A/W at λ = 655 nm, 1.82 A/W at λ = 785 nm, and 0.66 A/W at λ = 980 nm.

  16. Effects of phosphorus on the δ-Ni3Nb phase precipitation and the stress rupture properties in alloy 718

    International Nuclear Information System (INIS)

    Sun, W.R.; Guo, S.R.; Hu, Z.Q.; Park, N.K.; Yoo, Y.S.; Choe, S.J.

    1998-01-01

    The effects of phosphorus on the phase transformation and stress rupture properties of alloy 718 were investigated. The nucleation of δ-phase, which does not contain phosphorus, was suppressed by the enrichment of phosphorus at grain boundaries. A low level of phosphorus resulted in the formation of faults-containing film-like δ-phase along the grain boundaries, while a higher level of phosphorus favored the long lath-like δ-phase precipitation. Phosphorus greatly prolonged the stress rupture life of the alloy in the range of 0.0008-0.013 wt.%, while it reduced the stress rupture life in the range of 0.013-0.049 wt.%. The effect of phosphorus on the stress rupture properties was closely related to its interaction with oxygen. Phosphorus atoms, in the range of 0.0008-0.013 wt.%, enhanced the resistance to oxygen intrusion along the grain boundaries, protected the grain boundaries from decohesion by oxygen atoms and oxidation, and subsequently prolonged the rupture life of the alloy. The protection effect of P is clearly demonstrated by the phenomenon that the crack initiation site was shifted from the surface to the center in the stress-ruptured samples with increasing addition of P. Over 0.013 wt.%, the protection effect of phosphorus is excessive and phosphorus began to display its inherent effect of damaging the grain boundary strength: the stress rupture life of the alloy was reduced accordingly. Maximum stress rupture life was thus obtained at ∼0.013 wt.% P. (orig.)

  17. Phosphorus determination by various substoichiometric methods

    International Nuclear Information System (INIS)

    Shigematsu, Toshio; Kudo, Kiyoshi

    1981-01-01

    Various substoichiometric methods have been classified from a view point of the substoichiometric separation. Based upon the substoichiometric separation, phosphorus was determined substoichiometrically by a direct method, a method of carrier amount variation and a comparison method for the irradiated sample. The direct method was applied to the determination of phosphorus in orchard leaves (SRM-1571). The analytical value was 0.23 +- 0.01%. Phosphorus in orchard leaves and spinach (SRM-1570) was determined by an ordinary method which devided the sample into equal parts in the method of carrier amount variation. Analytical values of orchard leaves and spinach were 0.22 +- 0.02% and 0.56 +- 0.04%, respectively. Moreover, a new modification of the method of carrier amount variation was studied by the use of various standard samples such as red phosphorus, spinach and orchard leaves. These standard samples were also employed for the determination of phosphorus in orchard leaves and 0.21 +- 0.01% was obtained. All these results are in good agreement with the value reported by NBS. The comparison method was applied to the determination of phosphorus in a semiconductor silicon single crystal. As a result of the correction of 32 P activity induced by the secondary nuclear reaction of 30 Si, 7.9 ppb and 3.1 ppb were obtained for the phosphorus concentrations in the single crystal silicon. (author)

  18. Combined equilibrium and non-equilibrium phosphorus segregation to grain boundaries in a 2.25Cr1Mo steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.; Weng, L.-Q.

    2003-01-01

    Grain boundary segregation of phosphorus in a P-doped 2.25Cr1Mo steel during ageing at 540 deg. C after quenching from 980 deg. C is examined by Auger electron spectroscopy. The segregation is a combined effect of equilibrium segregation and non-equilibrium segregation. The effect of phosphorus non-equilibrium segregation is to enhance the kinetics of its equilibrium segregation

  19. Prevalence of phosphorus containing food additives in grocery stores

    Directory of Open Access Journals (Sweden)

    Janeen B. Leon

    2012-06-01

    In conclusion, phosphorus additives are commonly present in groceries and contribute significantly to the phosphorus content of foods. Moreover, phosphorus additive foods are less costly than additive-free foods. As a result, phosphorus additives may be an important contributor to hyperphosphatemia among persons with chronic kidney disease

  20. Modelling of in-stream nitrogen and phosphorus concentrations using different sampling strategies for calibration data

    Science.gov (United States)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    It is known that a good evaluation and prediction of surface water pollution is mainly limited by the monitoring strategy and the capability of the hydrological water quality model to reproduce the internal processes. To this end, a compromise sampling frequency, which can reflect the dynamical behaviour of leached nutrient fluxes responding to changes in land use, agriculture practices and point sources, and appropriate process-based water quality model are required. The objective of this study was to test the identification of hydrological water quality model parameters (nitrogen and phosphorus) under two different monitoring strategies: (1) regular grab-sampling approach and (2) regular grab-sampling with additional monitoring during the hydrological events using automatic samplers. First, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was successfully calibrated (1994-1998) for discharge (NSE = 0.86), nitrate-N (lowest NSE for nitrate-N load = 0.69), particulate phosphorus and soluble phosphorus in the Selke catchment (463 km2, central Germany) for the period 1994-1998 using regular grab-sampling approach (biweekly to monthly for nitrogen and phosphorus concentrations). Second, the model was successfully validated during the period 1999-2010 for discharge, nitrate-N, particulate-phosphorus and soluble-phosphorus (lowest NSE for soluble phosphorus load = 0.54). Results, showed that when additional sampling during the events with random grab-sampling approach was used (period 2011-2013), the hydrological model could reproduce only the nitrate-N and soluble phosphorus concentrations reasonably well. However, when additional sampling during the hydrological events was considered, the HYPE model could not represent the measured particulate phosphorus. This reflects the importance of suspended sediment during the hydrological events increasing the concentrations of particulate phosphorus. The HYPE model could

  1. Radiochemical analysis of phosphorus in milk samples

    International Nuclear Information System (INIS)

    Oliveira, R.M. de; Cunha, I.I.L.

    1991-01-01

    The determination of phosphorus in milk samples by thermal neutron activation analysis employing radiochemical separation is described. The radiochemical separation consists of the simultaneous irradiation of samples and standards, dissolution of the milk samples in a perchloric acid and nitric acid mixture, addition of zinc hold-back carrier, precipitation of phosphorus as ammonium phospho molybdate (A.M.P.) and sample counting in a Geiger-Mueller detector. The analysis sources of error were studied and the established method was applied to phosphorus analyses in commercial milk samples. (author)

  2. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.

    Science.gov (United States)

    Marklein, Alison R; Houlton, Benjamin Z

    2012-02-01

    • Biologically essential elements--especially nitrogen (N) and phosphorus (P)--constrain plant growth and microbial functioning; however, human activities are drastically altering the magnitude and pattern of such nutrient limitations on land. Here we examine interactions between N and P cycles of P mineralizing enzyme activities (phosphatase enzymes) across a wide variety of terrestrial biomes. • We synthesized results from 34 separate studies and used meta-analysis to evaluate phosphatase activity with N, P, or N×P fertilization. • Our results show that N fertilization enhances phosphatase activity, from the tropics to the extra-tropics, both on plant roots and in bulk soils. By contrast, P fertilization strongly suppresses rates of phosphatase activity. • These results imply that phosphatase enzymes are strongly responsive to changes in local nutrient cycle conditions. We also show that plant phosphatases respond more strongly to fertilization than soil phosphatases. The tight coupling between N and P provides a mechanism for recent observations of N and P co-limitation on land. Moreover, our results suggest that terrestrial plants and microbes can allocate excess N to phosphatase enzymes, thus delaying the onset of single P limitation to plant productivity as can occur via human modifications to the global N cycle. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  3. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain1[OPEN

    Science.gov (United States)

    2018-01-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. PMID:29540590

  4. The Impacts of Phosphorus Deficiency on the Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Carstensen, Andreas; Herdean, Andrei; Schmidt, Sidsel Birkelund; Sharma, Anurag; Spetea, Cornelia; Pribil, Mathias; Husted, Søren

    2018-05-01

    Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley ( Hordeum vulgare ). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b 6 f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO 2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue. © 2018 American Society of Plant Biologists. All Rights Reserved.

  5. Combined metals and EDTA control: An integrated and scalable lipid enhancement strategy to alleviate biomass constraints in microalgae under nitrogen limited conditions

    International Nuclear Information System (INIS)

    Singh, Poonam; Guldhe, Abhishek; Kumari, Sheena; Rawat, Ismail; Bux, Faizal

    2016-01-01

    Highlights: • A. obliquus showed highest lipid productivity amongst all seven microalgal strains. • Combined metals stress eased the constraint of low biomass under limited nitrogen. • Combined metals stress enhanced the overall lipid productivity (1.99 fold). • EDTA addition further improved the lipid productivity (2.18 fold). • This strategy showed 2.08 fold increase in lipid productivity at 3000 L cultivation. - Abstract: The commercial realization of microalgal biodiesel production necessitates substantial impulsion towards development of strategies to improve lipid yields upstream. Nitrogen stress is the most widely used lipid enhancement strategy; yet, it is associated with compromised biomass productivity. In this novel approach, combined effect of metals and EDTA on lipid productivity of Acutodesmus obliquus was investigated under nitrogen limited conditions. The effect of metal concentrations, individually and in combination, on microalgal lipids and biomass production is a scarcely exploited area. Combined metal stress alleviates the constraint of low biomass production under nitrogen limitation and improved the overall lipid productivity. Highest lipid productivity of 73.23 mg L"−"1 d"−"1 was achieved with a combination of iron 9 mg L"−"1, magnesium 100 mg L"−"1 and calcium 27 mg L"−"1 at limited nitrogen (750 mg L"−"1). This was 1.72 fold higher than nitrogen stress alone and 1.99 fold higher than BG11 medium. Iron was found to be most significantly influencing metal followed by magnesium in response surface methodology data analysis. The enhanced photosynthetic performance and chlorophyll content further confirmed the significant impact of iron and magnesium on the microalgal biomass. The addition of EDTA to the optimised metal combination further improved the lipid productivity to 80.23 mg L"−"1 d"−"1 (2.18 fold). At 3000 L open cultivation pond this strategy has resulted in an increase of 2.08 fold in lipid productivity

  6. Strategies to overcome oxygen transfer limitations during hairy root cultivation of Azadiracta indica for enhanced azadirachtin production.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O(2) in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20-100% (v/v) O(2) in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O(2) in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3-2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1-4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).

  7. Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter.

    Science.gov (United States)

    Ginige, Maneesha P; Kayaalp, Ahmet S; Cheng, Ka Yu; Wylie, Jason; Kaksonen, Anna H

    2013-01-01

    Removal of phosphorus (P) and nitrogen (N) from municipal wastewaters is required to mitigate eutrophication of receiving water bodies. While most treatment plants achieve good N removal using influent carbon (C), the use of influent C to facilitate enhanced biological phosphorus removal (EBPR) is poorly explored. A number of operational parameters can facilitate optimum use of influent C and this study investigated the effects of cycle length, dissolved oxygen (DO) concentration during aerobic period and influent solids on biological P and N removal in sequencing batch reactors (SRBs) using municipal wastewaters. Increasing cycle length from 3 to 6 h increased P removal efficiency, which was attributed to larger portion of N being removed via nitrite pathway and more biodegradable organic C becoming available for EBPR. Further increasing cycle length from 6 to 8 h decreased P removal efficiencies as the demand for biodegradable organic C for denitrification increased as a result of complete nitrification. Decreasing DO concentration in the aerobic period from 2 to 0.8 mg L(-1) increased P removal efficiency but decreased nitrification rates possibly due to oxygen limitation. Further, sedimented wastewater was proved to be a better influent stream than non-sedimented wastewater possibility due to the detrimental effect of particulate matter on biological nutrient removal.

  8. Assessing the Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    OpenAIRE

    Yuan, Yongping; Bingner, Ronald L.; Locke, Martin A.; Stafford, Jim; Theurer, Fred D.

    2011-01-01

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the ...

  9. Phosphorus K4 Crystal: A New Stable Allotrope

    OpenAIRE

    Jie Liu; Shunhong Zhang; Yaguang Guo; Qian Wang

    2016-01-01

    The intriguing properties of phosphorene motivate scientists to further explore the structures and properties of phosphorus materials. Here, we report a new allotrope named K 4 phosphorus composed of three-coordinated phosphorus atoms in non-layered structure which is not only dynamically and mechanically stable, but also possesses thermal stability comparable to that of the orthorhombic black phosphorus (A17). Due to its unique configuration, K 4 phosphorus exhibits exceptional properties: i...

  10. Electric-dipole-moment enhancement factor for the thallium atom, and a new upper limit on the electric dipole moment of the electron

    International Nuclear Information System (INIS)

    Sandars, P.G.H.; Sternheimer, R.M.

    1975-01-01

    Some time ago, an accurate upper limit on a possible permanent electric dipole moment of the thallium atom in the 6 2 P 1 / 2 ground state was obtained by Gould. The result was D/sub Tl/ = [(1.3 +- 2.4) x 10 -21 cm]e. In connection with this value, a calculation of the electric dipole enhancement factor R/sub Tl/, which is defined as the ratio D/sub Tl//D/sub e/, where D/sub e/is the corresponding upper limit on a possible electric dipole moment of the (valence) electron was carried out. A value R/subTl/ = 700 was obtained, which leads to an upper limit D/sub e/ = [(1.9 +- 3.4) x 10 -24 cm]e. This result is comparable with the value D/sub e/ -24 cm)e previously obtained by Weisskopf et al. from measurements on the cesium atom, and with the result of Player and Sandars of [(0.7 +- 2.2) x 10 -24 cm]e obtained from the search for an electric dipole moment in the 3 P 2 metastable state of xenon. All three results set a stringent upper limit on the amount of a possible violation of T and P invariance in electromagnetic interactions. (U.S.)

  11. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  12. The phosphorus and the transition metals chemistry

    International Nuclear Information System (INIS)

    Mathey, F.

    1988-01-01

    The 1988 progress report, concerning the Polytechnic School unit (France), which studies the phosphorus and the transition metals chemistry, is presented. The laboratory activities are related to the following topics: the phosporus heterocyclic chemistry, the phosphorus-carbon double bonds chemistry, the new transition metals phosphorus compounds, the phosphonates and their uses. Some practical applications of homogeneous catalysis and new materials synthesis are investigated. The main results obtained are: the discovery of the tetra-phosphafulvalenes, the utilization of a new synthesis method of the phosphorus-carbon double bonds and the stabilization of the α-phosphonyled carbanions by the lithium diisopropylamidourea. The papers, the congress communications and the thesis are also shown [fr

  13. short communication synthesis of stabilized phosphorus ylides

    African Journals Online (AJOL)

    Preferred Customer

    made from phosphine and an alkyl halide [1], and they are also obtained by the Michael ... have established a convenient, one-pot method for preparing stabilized phosphorus ylides ... The ylides are converted to electron-poor alkenes via.

  14. Yellow phosphorus-induced Brugada phenocopy.

    Science.gov (United States)

    Dharanipradab, Mayakrishnan; Viswanathan, Stalin; Kumar, Gokula Raman; Krishnamurthy, Vijayalatchumy; Stanley, Daphene Divya

    Metallic phosphides (of aluminum and phosphide) and yellow phosphorus are commonly used rodenticide compounds in developing countries. Toxicity of yellow phosphorus mostly pertains to the liver, kidney, heart, pancreas and the brain. Cardiotoxicity with associated Brugada ECG pattern has been reported only in poisoning with metallic phosphides. Brugada phenocopy and hepatic dysfunction were observed in a 29-year-old male following yellow phosphorus consumption. He had both type 1 (day1) and type 2 (day2) Brugada patterns in the electrocardiogram, which resolved spontaneously by the third day without hemodynamic compromise. Toxins such as aluminum and zinc phosphide have been reported to induce Brugada ECG patterns due to the generation of phosphine. We report the first case of yellow phosphorus-related Brugada phenocopy, without hemodynamic compromise or malignant arrhythmia. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Electrical activation of phosphorus in silicon

    International Nuclear Information System (INIS)

    Goh, K.E.J.; Oberbeck, L.; Simmons, M.Y.; Clark, R.G.

    2003-01-01

    Full text: We present studies of phosphorus δ-doping in silicon with a view to determining the degree of electrical activation of the dopants. These results have a direct consequence for the use of phosphorus as a qubit in a silicon-based quantum computer such as that proposed by Kane. Room temperature and 4 K Hall effect measurements are presented for phosphorus δ-doped layers grown in n-type silicon using two different methods. In the first method, the δ-layer was deposited by a phosphorus effusion cell in an MBE chamber. In the second method, the Si surface was dosed with phosphine gas and then annealed to 550 deg C to incorporate P into the substrate. In both methods, the P δ-doped layer was subsequently encapsulated by ∼25 nm of Si grown epitaxially. We discuss the implications of our results on the fabrication of the Kane quantum computer

  16. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2016-01-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube

  17. Influence of the detergent formulation on the concentration of phosphorus in the sewage inflows to the WWTPs: the Brazilian experience.

    Science.gov (United States)

    Quevedo, Claudia Maria Gomes de; Piveli, Roque Passos; Paganini, Wanderley da Silva

    2018-05-01

    This work seeks to discuss the presence of phosphorus in raw sewage considering the formulation of the powder detergent for cleaning fabrics currently sold in Brazil. Based on the results of laboratory analyses performed in the sewage inflows to three wastewater treatment plants (WWTPs) located in São Paulo state, it evaluates the different fractions of this element and sizes the impact caused by the product. The average concentration of total phosphorus (total-P) in sewage inflows has shown a reduction trend over the years, and it is currently between 5.3 and 7.6 mg/L. The participation of organic phosphorus (org-P) tends to be higher than that of the inorganic phosphorus (inorg-P) with average around 64% of total-P. This situation indicates a change from the default and it may be influenced by the reduced contribution of phosphorus in the powder detergents. It was concluded that the formulation of the Brazilian products, which have a very low phosphate content, less than 0.01% by weight, may have altered the phosphorus dynamics in sewage. In other respects, results have shown the need to enhance actions aimed at controlling the sources of phosphorus in sewage, with a view to assure preventive measures to water pollution processes.

  18. Limitations on the concentration of radioactive elements substances (natural or enhanced by human activity) in building materials - a proposal for draft Israeli regulations

    International Nuclear Information System (INIS)

    Schlesinger, T.; Hareuveny, R.; Margaliot, M.

    1997-01-01

    Natural radioactive elements 40 K 228 U and 232 Th and their decay product such as 226 Ra and its short lived daughters occur in building materials in relatively high concentrations. 40 K and part of the above mentioned radionuclides cause external exposure while the inhalation of 222 Ra and its short lived progeny lead to internal exposure of the respiratory tract to alpha particles. In recent years there is a growing tendency to use new construction materials with naturally or technologically enhanced levels of radioactivity (e.g. phosphogypsum, fly ash, exotic minerals etc). This trend causes a growing health concern.The result of this concern is legislation activity and publication of guidance notes by national authorities and international professional organizations related to the radiological implications of these novel technologies. The Ministry of the Environment in Israel is authorized by Israeli legislation to control the exposure of the public to ionising radiation. The ministry asked in 1996 a professional group in the Radiation Protection Division in the Soreq NRC (the authors of this presentation) to study the radiological implications of the use of building materials with naturally or technologically enhanced concentrations of radioactive substances, and to submit draft regulations setting primary limits on excess exposure of the public to ionizing radiation from building materials, and derived limits related to concentrations of specific radionuclides in these materials.The draft regulations will be presented and the way of their derivation will be reviewed (authors)

  19. Water Quality Criteria for White Phosphorus

    Science.gov (United States)

    1987-08-01

    the number of eggs produced per adult , Chronic tests using inidges exposed to elemental phosphorus through contaminated sediments were also performed by...hemoglobinemia, hemoglobinuria, hematuria, bilirubinemia, mild (Cases 2 and 3) to severe (Case 1) hypocalcemia , -61- r. ., TABLE 14. SUMMARY OF CASUALTIES...day yellow phosphorus in corn oil for 30 days or less, lost weight. Young adult rats injected with 0.5 mg/kg/day lost less weight than fully mature or

  20. Physicochemical properties of mixed phosphorus halides

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Tugarinova, N.S.

    1996-01-01

    Certain physicochemical properties (thermodynamic characteristics at boiling point, critical constants, density of liquid on the saturation line) of mixed phosphorus halides (PI 3 , PI 2 F, PIF 2 , PI 2 Cl, PICl 2 , PI 1 Br, PIBr 2 , PIClF, PIBrCl, etc.) are determined by means of approximate methods. Reliability of the results obtained is confirmed by comparison of calculated and experimental data for phosphorus compounds of the same type. 7 refs., 3 figs., 4 tabs

  1. Phosphorus and phytase levels for layer hens

    OpenAIRE

    Juliana Cristina Ramos Rezende; Antonio Carlos de Laurentiz; Rosemeire da Silva Filardi; Vitor Barbosa Fascina; Daniella Aparecida Berto; Sérgio Turra Sobrane Filho

    2013-01-01

    The objective of this research was to evaluate the performance and bone quality of laying hens after peak production fed diets containing phosphorus levels and phytase. An experiment was conducted with 384 Hy-line distributed in a completely randomized in a factorial 4 x 3 with 4 levels of available phosphorus and 3 levels of phytase. The experimental period was divided into four periods of 28 days, at the end of each cycle were determined experimental feed intake, egg production, egg weight,...

  2. Phosphorus Processing—Potentials for Higher Efficiency

    OpenAIRE

    Ludwig Hermann; Fabian Kraus; Ralf Hermann

    2018-01-01

    In the aftermath of the adoption of the Sustainable Development Goals (SDGs) and the Paris Agreement (COP21) by virtually all United Nations, producing more with less is imperative. In this context, phosphorus processing, despite its high efficiency compared to other steps in the value chain, needs to be revisited by science and industry. During processing, phosphorus is lost to phosphogypsum, disposed of in stacks globally piling up to 3–4 billion tons and growing by about 200 million ...

  3. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    Science.gov (United States)

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  4. Phosphorus availability from bottom sediments of lakes using a nuclear technique

    International Nuclear Information System (INIS)

    Flores, F.; Facetti, J.F.

    1991-01-01

    Availability of phosphorus from the bottom sediments of a lake plays an import role in the development of aquatic biota and in the enhancement of eutrophication process. In this work the 31 P↔ 32 P isotopic exchange (E values) technique was applied to assess the potential influence of this phosphorus reservoir on the water quality of Acaray and Yguazu Dams, at the Eastern Region of Paraguay. Samples analyzed were taken from the bottom sediments of the water bodies at different sites as well as from the shores. The method is reliable and yields information of ecological significance

  5. Phosphorus availability from bottom sediments of lakes using a nuclear technique

    International Nuclear Information System (INIS)

    Flores, F.; Facetti, J.F.

    1992-01-01

    Availability of phosphorus from the bottom sediments of a lake plays an import role in the development of aquatic biota and in the enhancement of the eutrophication process. In this work, the 31 P- 32 P isotopic exchange (E values) technique was applied to assess the potential influence of this phosphorus 'reservoir' on the water quality of the Acaray and Yguazu Dams in the Easter Region of Paraguay. Samples analyzed were taken from the bottom sediments of the water body at different sites as well as from the shores. The method is reliable and yields information of potential ecological significance. (author) 14 refs.; 2 tabs

  6. Recovery of phosphorus from sewerage treatment sludge

    Energy Technology Data Exchange (ETDEWEB)

    Manuilova, Anastasia

    1999-07-01

    This thesis is a review of the current state of technologies for the removal of phosphorus from wastewater and sludge, and the recovery and re-use of phosphorus. It explains the need for phosphorus removal and describes the current removal processes. Focus is given to phosphorus crystallisation processes and to the processes which treat sewage treatment sludges into potential sources of phosphorus. An interesting possibility to recover phosphorus from sewage sludge by use of Psenner fractionation is also discussed. By this method, the following phosphate fractions of technological significance may be distinguished: (1) redox sensitive phosphates, mainly bound to Fe(OH){sub 3}; (2) phosphate adsorbed to surfaces (Al{sub 2}O{sub 3}), exchangeable against OH{sup -}, and alkali-soluble phosphate; (3) phosphate bound to CaCO{sub 3}, MgCO{sub 3} and in apatite; and (4) organically bound phosphate. The basic removal mechanisms, process schemes and treatment results are described. Two experiments with three different types of sludges from Henriksdal wastewater treatment plant in Stockholm were performed in the laboratory. It was shown that the addition of sodium hydroxide or hydrochloric acid cause the significant release of phosphate (about 80%) for all types of sludges. If a whole Psenner fractionation was performed the phosphate release is approximately 100%.

  7. Effects of white phosphorus on mallard reproduction

    Science.gov (United States)

    Vann, S.I.; Sparling, D.W.; Ottinger, M.A.

    2000-01-01

    Extensive waterfowl mortality involving thousands of ducks, geese, and swans has occurred annually at Eagle River Flats, Alaska since at least 1982. The primary agent for this mortality has been identified as white phosphorus. Although acute and subacute lethality have been described, sublethal effects are less well known. This study reports on the effects of white phosphorus on reproductive function in the mallard (Anas platyrhynchos) in captivity. Fertility, hatching success, teratogenicity, and egg laying frequency were examined in 70 adult female mallards who received up to 7 daily doses of 0, 0.5, 1.0, and 2.0 mg/kg of white phosphorus. Measurements of fertility and hatchability were reduced by the white phosphorus. Teratogenic effects were observed in embryos from hens dosed at all treatment levels. Egg laying frequency was reduced even at the lowest treatment level; treated hens required a greater number of days to lay a clutch of 12 eggs than control hens. After two doses at 2.0 mg/kg, all females stopped laying completely for a minimum of 10 days and laying frequency was depressed for at least 45 days. Fertility of 10 adult male mallards dosed with 1.0 mg/kg of white phosphorus did not differ from 10 controls, but plasma testosterone levels were significantly (p free-ranging mallards may be impaired if they are exposed to white phosphorus at typical field levels.

  8. The renaissance of black phosphorus.

    Science.gov (United States)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S

    2015-04-14

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  9. The Chemical Evolution of Phosphorus

    Science.gov (United States)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning -3.3 production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246. Other portions of this work are based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the McDonald Observatory of the University of Texas at Austin.

  10. Fibroblast growth factor-23 and phosphorus related factors in young Japanese women: a cross-sectional study.

    Science.gov (United States)

    Ito, Sanae; Ishida, Hiromi; Uenishi, Kazuhiro

    2016-01-01

    Phosphorus homeostasis is determined by dietary intake, intestinal absorption, and renal tubular reabsorption of phosphorus. Serum fibroblast growth factor-23 (FGF-23) is considered to be a sensitive early biomarker of disordered phosphorus metabolism in both patients with chronic kidney diseases and healthy subjects. However, the number of studies evaluating serum FGF-23 concentrations in healthy subjects is limited. The objective of this cross-sectional study was to examine the relationship between serum FGF-23 concentrations and phosphorus related factors in 182 young Japanese women (mean age, 19.5±0.4 years). We found that higher serum concentrations of inorganic phosphorus and lower serum concentrations of 1,25-dihydroxy vitamin D as well as lower fat but higher phosphorus and calcium intake were weakly but significantly associated with high serum concentrations of FGF-23, adjusted for postmenarcheal age and body weight. These results suggested that in young Japanese women, serum FGF-23 might be indicative of phosphorus nutrition status. However, it is worthy of note that maturity factors, including postmenarcheal age and physical attributes, such as body weight, might be related to serum FGF-23 concentrations.

  11. Sources and transport of phosphorus to rivers in California and adjacent states, U.S., as determined by SPARROW modeling

    Science.gov (United States)

    Domagalski, Joseph L.; Saleh, Dina

    2015-01-01

    The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de-trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small- and intermediate-sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.

  12. RNA function and phosphorus use by photosynthetic organisms

    Directory of Open Access Journals (Sweden)

    John Albert Raven

    2013-12-01

    Full Text Available Phosphorus (P in RNA accounts for half or more of the total non-storage P in oxygenic photolithotrophs grown in either P-replete or P-limiting growth conditions. Since many natural environments are P-limited for photosynthetic primary productivity, and peak phosphorus fertilizer production is forecast for the next few decades, the paper analyses what economies in P allocation to RNA could, in principle, increase P use efficiency of growth (rate of dry matter production per unit organism P. The possibilities of decreasing P allocation to RNA without decreasing growth rate include a more widespread down-regulation of RNA production in P-limited organisms (as in the growth rate hypothesis, optimal allocation of P to RNA spatially among cell compartments and organs, and temporally depending on the stage of growth, and, for exponentially growing organisms with a constant fraction of P in RNA, a constant rate of protein synthesis through the diel cycle. Acting on these suggestions would be technically demanding, and could have unintended consequences for other aspect of metabolism.

  13. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    Science.gov (United States)

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal.

  14. n-type diamond growth by phosphorus doping on (0 0 1)-oriented surface

    International Nuclear Information System (INIS)

    Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Okushi, Hideyo

    2007-01-01

    The properties of phosphorus incorporation for n-type doping of diamond are discussed and summarized. Doping of (0 0 1)-oriented diamond is introduced and compared with results achieved on (1 1 1) diamond. This review describes detailed procedures and conditions of plasma-enhanced chemical vapour deposition (CVD) growth and characteristics of electrical properties of phosphorus-doped diamond. The phosphorus incorporation was characterized by SIMS analysis including mapping. n-type conductivity is evaluated by Hall-effect measurements over a temperature regime of 300-1000 K. The crystal perfection of (0 0 1)-oriented n-type diamond is also evaluated by x-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction and cathodoluminescence analyses. The results show that phosphorus atoms are incorporated into the diamond network during (0 0 1) CVD diamond growth and that phosphorus acts as a donor as in (1 1 1)-oriented diamond. This result eliminates the restriction on substrate orientation, which had previously created a bottleneck in the development of diamond electronic devices. (review article)

  15. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.

    Science.gov (United States)

    Vadas, Peter A; Joern, Brad C; Moore, Philip A

    2012-01-01

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Sustainable Phosphorus Chemistry: A Silylphosphide Synthon for the Generation of Value-Added Phosphorus Chemicals.

    Science.gov (United States)

    Slootweg, J Chris

    2018-05-07

    Avoiding white phosphorus: Cummins and Geeson have recently described the conversion of phosphoric acid into the novel bis(trichlorosilyl)phosphide anion, which serves as a key intermediate in the synthesis of organophosphines, hexafluorophosphate, and phosphine gas in a reaction sequence that does not rely on white phosphorus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Phosphorus use efficiency of maize: an investigation using radiotracer phosphorus (32P)

    International Nuclear Information System (INIS)

    Meena, S.

    2017-01-01

    A better understanding on the nutrient uptake and utilization by plants is essential for developing better nutrient efficient cultivars suited for optimal production. Precise information on the PUE of crops and P dynamics can be obtained with the help of radiotracer technique. To study the phosphorus acquisition and phosphorus use efficiency of added sources in maize using 32 P, a pot culture experiment was conducted in a medium P soil (21.26 kg ha -1 ). The treatments were P as Single Superphosphate, Enriched FYM with Single Superphosphate (EFYM), DAP, Nutriseed pack (SSP), Nutriseed pack (DAP). The above treatments were applied along with phosphobacteria. Totally there were ten treatments replicated four times. Phosphorus sources were tagged with 32 P (obtained as 32 P in orthophosphoric medium from the Board of Radiation and Isotope Technology) and applied as per the treatments. Radioactive 32 P in the grain and stover sample was determined using Liquid Scintillation Counter (Perkin Elmer Tricarb 2810 R). Using the data, per cent phosphorus derived from fertilizer (%Pdff), per cent phosphorus derived from soil (%Pdfs), Phosphorus Use Efficiency (PUE) and A value were determined. Application of Phosphorus (SSP, DAP, enriched FYM with SSP, Nutriseed pack (SSP) and Nutriseed pack (DAP)) along with PB increased the per cent phosphorus derived from fertilizer (% Pdff), P uptake from fertilizer and PUE. The highest PUE of 25.38 was recorded in the treatment where enriched FYM with SSP was applied along with PB. (author)

  18. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou

    Directory of Open Access Journals (Sweden)

    Ron Moen

    1998-03-01

    Full Text Available We added antler growth and mineral metabolism modules to a previously developed energetics model for ruminants to simulate energy and mineral balance of male and female caribou throughout an annual cycle. Body watet, fat, protein, and ash are monitored on a daily time step, and energy costs associated with reproduction and body mass changes are simulated. In order to simulate antler growth, we had to predict calcium and phosphorus metabolism as it is affected by antler growth, gestation, and lactation. We used data on dietary digestibility, protein, calcium and phosphorus content, and seasonal patterns in body mass to predict the energy, nitrogen, calcium, and phosphorus balances of a "generic" male and female caribou. Antler growth in males increased energy requirements during antler growth by 8 to 16%, depending on the efficiency with which energy was used for antler growth. Female energy requirements for antler growth were proportionately much smaller because of the smaller size of female antlers. Protein requirements for antler growth in both males and females were met by forage intake. Calcium and phosphorus must be resorbed from bone during peak antler growth in males, when > 25 g/day of calcium and > 12 g/day of phosphorus are being deposited in antlers. Females are capable of meeting calcium needs during antler growth without bone resorption, but phosphorus was resorbed from bone during the final stages of antler mineralization. After energy, phosphorus was most likely to limit growth of antlers for both males and females in our simulations. Input parameters can be easily changed to represent caribou from specific geographic regions in which dietary nutrient content or body mass patterns differ from those in our "generic" caribou. The model can be used to quantitatively analyze the evolutionary basis for development of antlers in female caribou, and the relationship between body mass and antler size in the Cervidae.

  19. Numerical Simulation of the Interaction between Phosphorus and Sediment Based on the Modified Langmuir Equation

    Directory of Open Access Journals (Sweden)

    Pengjie Hu

    2018-06-01

    Full Text Available Phosphorus is the primary factor that limits eutrophication of surface waters in aquatic environments. Sediment particles have a strong affinity to phosphorus due to the high specific surface areas and surface active sites. In this paper, a numerical model containing hydrodynamics, sediment, and phosphorus module based on improved Langmuir equation is established, where the processes of adsorption and desorption are considered. Through the statistical analysis of the physical experiment data, the fitting formulas of two important parameters in the Langmuir equation are obtained, which are the adsorption coefficient, ka, and the ratio k between the adsorption coefficient and the desorption coefficient. In order to simulate the experimental flume and get a constant and uniform water flow, a periodical numerical flume is built by adding a streamwise body force, Fx. The adsorbed phosphorus by sediment and the dissolved phosphorus in the water are separately added into the Advection Diffusion equation as a source term to simulate the interaction between them. The result of the numerical model turns out to be well matched with that of the physical experiment and can thus provide the basis for further analysis. With the application of the numerical model to some new and relative cases, the conclusion will be drawn through an afterwards analysis. The concentration of dissolved phosphorus proves to be unevenly distributed along the depth and the maximum value approximately appears in the 3/4 water depth because both the high velocity in the top layer and the high turbulence intensity in the bottom layer can promote sediment adsorption on phosphorus.

  20. Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security

    Directory of Open Access Journals (Sweden)

    Stuart White

    2011-10-01

    Full Text Available This paper reviews the latest information and perspectives on global phosphorus scarcity. Phosphorus is essential for food production and modern agriculture currently sources phosphorus fertilizers from finite phosphate rock. The 2008 food and phosphate fertilizer price spikes triggered increased concerns regarding the depletion timeline of phosphate rock reserves. While estimates range from 30 to 300 years and are shrouded by lack of publicly available data and substantial uncertainty, there is a general consensus that the quality and accessibility of remaining reserves are decreasing and costs will increase. This paper clarifies common sources of misunderstandings about phosphorus scarcity and identifies areas of consensus. It then asks, despite some persistent uncertainty, what would it take to achieve global phosphorus security? What would a ‘hard-landing’ response look like and how could preferred ‘soft-landing’ responses be achieved?

  1. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil.

    Science.gov (United States)

    Sun, Mingming; Luo, Yongming; Teng, Ying; Christie, Peter; Jia, Zhongjun; Li, Zhengao

    2013-06-01

    The effectiveness of many bioremediation systems for PAH-contaminated soil may be constrained by low contaminant bioaccessibility due to limited aqueous solubility or large sorption capacity. Information on the extent to which PAHs can be readily biodegraded is of vital importance in the decision whether or not to remediate a contaminated soil. In the present study the rate-limiting factors in methyl-β-cyclodextrin (MCD)-enhanced bioremediation of PAH-contaminated soil were evaluated. MCD amendment at 10 % (w/w) combined with inoculation with the PAH-degrading bacterium Paracoccus sp. strain HPD-2 produced maximum removal of total PAHs of up to 35 %. The desorption of PAHs from contaminated soil was determined before and after 32 weeks of bioremediation. 10 % (w/w) MCD amendment (M2) increased the Tenax extraction of total PAHs from 12 to 30 % and promoted degradation by up to 26 % compared to 6 % in the control. However, the percentage of Tenax extraction for total PAHs was much larger than that of degradation. Thus, in the control and M2 treatment it is likely that during the initial phase the bioaccessibility of PAHs is high and biodegradation rates may be limited by microbial processes. On the other hand, when the soil was inoculated with the PAH-degrading bacterium (CKB and MB2), the slowly and very slowly desorbing fractions (F sl and F vl ) became larger and the rate constants of slow and very slow desorption (k sl and k vl ) became extremely small after bioremediation, suggesting that desorption is likely rate limiting during the second, slow phase of biotransformation. These results have practical implications for site risk assessment and cleanup strategies.

  2. Determinants of total and available phosphorus in forested Alfisols and Ultisols of the Ozark Highlands, USA

    Science.gov (United States)

    Gurbir Singh; Keith W. Goyne; John M. Kabrick

    2015-01-01

    Phosphorus is an important nutrient limiting forest growth in many parts of world, and soil P forms and concentrations may be associated with a host of soil and environmental attributes in a complex soil landscape. The objective of this study was to identify key environmental and soil properties influencing total and available soil P concentrations in a mixed oak (

  3. Future supply of phosphorus in agriculture and the need to maximise efficiency of use and reuse

    NARCIS (Netherlands)

    Rosemarin, A.; Schroder, J.J.; Dagerskog, L.; Cordell, D.; Smit, A.L.

    2011-01-01

    Commercially viable reserves of rock phosphate are limited and only a few countries are significant producers. China and the US will play a much smaller role within 50 years time and the bulk of the world's mined phosphorus will come from Morocco. A conservative estimate of longevity of the resource

  4. Analysis of phosphorus by 31PNMR in Oxisols under agroforestry land conventional coffee systems in Brazil

    NARCIS (Netherlands)

    Cardoso, I.M.; Meer, van der P.; Oenema, O.; Janssen, B.H.; Kuyper, T.W.

    2003-01-01

    Phosphorus (P) is the primary limiting nutrient for crop production in highly weathered tropical soils. The deficiency is mainly caused by strong adsorption of H2PO4¿ to Al- and Fe-(hydr)oxides, which turns large proportions of total P into a form that is unavailable to plants. Soil management

  5. Nitrogen and phosphorus requirements of an Alexandrium minutum bloom in the Penze' Estuary, France

    Digital Repository Service at National Institute of Oceanography (India)

    Maguer, J.-F.; Wafar, M.V.M.; Madec, C.; Morin, P.; Denn, E.E.

    . The role of NO3 was restricted to sustenance of the bloom, whereas warm conditions resulting in a water column stability seem to have triggered the bloom, and a self-shading, probably coupled with a phosphorus limitation, caused its decline...

  6. Sedimentary iron–phosphorus cycling under contrasting redox conditions in a eutrophic estuary

    NARCIS (Netherlands)

    Kraal, Peter; Burton, Edward D.; Rose, Andrew L.; Kocar, Benjamin D.; Lockhart, Robert S.; Grice, Kliti; Bush, Richard T.; Tan, Eileen; Webb, Samuel M.

    2015-01-01

    Phosphorus (P) is often a limiting nutrient within freshwater and estuarine systems, thus excess inputs of P from anthropogenic activities (dominantly agriculture) can induce eutrophication in receiving water bodies. The sequestration of P within estuarine sediments is controlled by sorption and

  7. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    Science.gov (United States)

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation

  8. Effect of nitrogen and phosphate limitation on utilization of bitumen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... utilization of bitumen and production of bitu-oil and gas by a bacterial ... nitrogen and phosphorus, with a consequent limitation on degradation of the ..... concluded that in industrial setting, carbon starvation in anaerobic ...

  9. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhui [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Bai, Leilei [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate University of Chinese Academy of Sciences (China); Jiang, He-Long, E-mail: hljiang@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Xu, Huacheng [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-07-01

    Lake eutrophication typically occurs with a syndrome of algae breeding and biomass accumulation (e.g., algal blooms). Therefore, the effect of algal bloom sedimentation on eutrophication control by phosphorus (P) inactivating agents was assessed herein. Three commercial products, including aluminum (Al) sulfate, iron (Fe) sulfate, and a lanthanum-modified clay (Phoslock®), as well as one easily available by-product, drinking water treatment residue (DWTR), were selected. The most important finding was that during algae sedimentation, P immobilization from the overlying water by Al, Phoslock®, and DWTR was dominated by a long-term slow phase (> 150 d), while Fe has limited effectiveness on the immobilization. Further analysis indicated that the algae sedimentation effect was mainly due to the slow release of P from algae, leading to relatively limited P available for the inactivating agents. Then, a more unfavorable effect on the P immobilization capability of inactivating agents was caused by the induced anaerobic conditions, the released organic matter from algae, and the increased sulfide in the overlying water and sediments during sedimentation. Overall, algae sedimentation induced variable control of eutrophication by P inactivating agents. Accordingly, recommendations for future works about algal lake restoration were also proposed. - Highlights: • A long-term P immobilization by Phoslock®, DWTR, and Al was observed. • Fe had limited effectiveness on P pollution control for overlying water. • Al and Fe enhanced sulfur reduction, while DWTR and Phoslock® had minor effect. • The sedimentation reduced Al and La release from agents, but enhanced Fe release. • The agents changed organic matter compositions and structures in water columns.

  10. Algal bloom sedimentation induces variable control of lake eutrophication by phosphorus inactivating agents

    International Nuclear Information System (INIS)

    Wang, Changhui; Bai, Leilei; Jiang, He-Long; Xu, Huacheng

    2016-01-01

    Lake eutrophication typically occurs with a syndrome of algae breeding and biomass accumulation (e.g., algal blooms). Therefore, the effect of algal bloom sedimentation on eutrophication control by phosphorus (P) inactivating agents was assessed herein. Three commercial products, including aluminum (Al) sulfate, iron (Fe) sulfate, and a lanthanum-modified clay (Phoslock®), as well as one easily available by-product, drinking water treatment residue (DWTR), were selected. The most important finding was that during algae sedimentation, P immobilization from the overlying water by Al, Phoslock®, and DWTR was dominated by a long-term slow phase (> 150 d), while Fe has limited effectiveness on the immobilization. Further analysis indicated that the algae sedimentation effect was mainly due to the slow release of P from algae, leading to relatively limited P available for the inactivating agents. Then, a more unfavorable effect on the P immobilization capability of inactivating agents was caused by the induced anaerobic conditions, the released organic matter from algae, and the increased sulfide in the overlying water and sediments during sedimentation. Overall, algae sedimentation induced variable control of eutrophication by P inactivating agents. Accordingly, recommendations for future works about algal lake restoration were also proposed. - Highlights: • A long-term P immobilization by Phoslock®, DWTR, and Al was observed. • Fe had limited effectiveness on P pollution control for overlying water. • Al and Fe enhanced sulfur reduction, while DWTR and Phoslock® had minor effect. • The sedimentation reduced Al and La release from agents, but enhanced Fe release. • The agents changed organic matter compositions and structures in water columns.

  11. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  12. Phosphorus-31 magnetic resonance spectroscopy of experimentally induced arthritis in rats

    International Nuclear Information System (INIS)

    Blatter, D.D.

    1987-01-01

    Phosphorus-31 magnetic resonance spectroscopy (MRS) of the hind paws of rats was performed at 1.5 Tesla before and during the course of an experimentally-induced inflammatory arthritis. Arthritis was induced by daily subcutaneous administration of 6-sulfanilamidoindazole, an antibacterial sulfa known to produce an acute, self-limited arthritis and periarthritis in the hind paws of rats. Phosphorus-31 spectra obtained after the development of clinical arthritis showed a significant (p 31 P MRS may permit evaluation of the severity of an inflammatory arthritis with greater accuracy than the bony changes definable by plain roentgenograms. (orig.)

  13. Phosphorus effect on structure and physical properties of iron-nickel alloys

    International Nuclear Information System (INIS)

    Berseneva, F.N.; Kalinin, V.M.; Rybalko, O.F.

    1982-01-01

    The structure and properties of iron-nickel alloys (30-50 % Ni) containing from 0.02 to 0.5 wt. % P have been investigated. It has been found that phosphorus solubility in iron-nickel alloys at most purified from impurities exceeds limiting solubility values usually observed for commercial alloys. Phosphide eutectics precipitation over the grain boundaries of studied alloys occurs but with phosphorus content equal 0.45 wt. %. The 0.4 wt. % P addition in invar alloys increases saturation magnetization and the Curie point and leads to a more homogeneous structure

  14. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2014-06-23

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  15. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Oberbeck, Lars; Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y.; Schofield, Steven R.; Curson, Neil J.

    2014-01-01

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  16. MEAL-BASED ENHANCEMENT OF PROTEIN QUALITY AND QUANTITY DURING WEIGHT LOSS IN OBESE OLDER ADULTS WITH MOBILITY LIMITATIONS: RATIONALE AND DESIGN FOR THE MEASUR-UP TRIAL

    Science.gov (United States)

    McDonald, Shelley R.; Starr, Kathryn N. Porter; Mauceri, Luisa; Orenduff, Melissa; Granville, Esther; Ocampo, Christine; Payne, Martha E.; Pieper, Carl F.; Bales, Connie W.

    2015-01-01

    Obese older adults with even modest functional limitations are at a disadvantage for maintaining their independence into late life. However, there is no established intervention for obesity in older individuals. The Measuring Eating, Activity and Strength: Understanding the Response --Using Protein (MEASUR-UP) trial is a randomized controlled pilot study of obese women and men aged ≥60 years with mild to moderate functional impairments. Changes in body composition (lean and fat mass) and function (Short Physical Performance Battery) in an enhanced protein weight reduction (Protein) arm will be compared to those in a traditional weight loss (Control) arm. The Protein intervention is based on evidence that older adults achieve optimal rates of muscle protein synthesis when consuming about 25-30 grams of high quality protein per meal; these participants will consume −30 g of animal protein at each meal via a combination of provided protein (beef) servings and diet counseling. This trial will provide information on the feasibility and efficacy of enhancing protein quantity and quality in the context of a weight reduction regimen and determine the impact of this intervention on body weight, functional status, and lean muscle mass. We hypothesize that the enhancement of protein quantity and quality in the Protein arm will result in better outcomes for function and/or lean muscle mass than in the Control arm. Ultimately, we hope our findings will help identify a safe weight loss approach that can delay or prevent late life disability by changing the trajectory of age-associated functional impairment associated with obesity. PMID:25461495

  17. Secondary poisoning of kestrels by white phosphorus

    Science.gov (United States)

    Sparling, D.W.; Federoff, N.E.

    1997-01-01

    Since 1982, extensive waterfowl mortality due to white phosphorus (P4) has been observed at Eagle River Flats, a tidal marsh near Anchorage, Alaska. Ducks and swans that ingest P4 pellets become lethargic and may display severe convulsions. Intoxicated waterfowl attract raptors and gulls that feed on dead or dying birds. To determine if avian predators can be affected by secondary poisoning, we fed American kestrels (Falco sparverius) 10-day-old domestic chickens that had been dosed with white phosphorus. Eight of 15 kestrels fed intact chicks with a pellet of P4 implanted in their crops died within seven days. Three of 15 kestrels fed chicks that had their upper digestive tracts removed to eliminate any pellets of white phosphorus also died. Hematocrit and hemoglobin in kestrels decreased whereas lactate dehydrogenaseL, glucose, and alanine aminotransferase levels in plasma increased with exposure to contaminated chicks. Histological examination of liver and kidneys showed that the incidence and severity of lesions increased when kestrels were fed contaminated chicks. White phosphorus residues were measurable in 87% of the kestrels dying on study and 20% of the survivors. This study shows that raptors can become intoxicated either by ingesting portions of digestive tracts containing white phosphorus pellets or by consuming tissues of P4 contaminated prey.

  18. Determination of organic phosphorus in UO2C2O4·TRPO complex

    International Nuclear Information System (INIS)

    Guo Yifei; Yuan Jianhua; Liang Junfu; Jiao Rongzhou; Liu Xiuqin

    2001-01-01

    Organic phosphorus in UO 2 C 2 O 4 ·TRPO complex is converted to inorganic phosphorous with H 2 SO 4 -HNO 3 -H 2 O 2 wet cinefaction method. In 0.14 mol/L H 2 SO 4 solution containing water soluble poly vinylalcohol as stabilizing agent, the highly sensitive ion-associates are formed by the reaction of basic dye ethyl violet with heteropoly molybdophosphoric blue. Spectrophotometric method is used for determination of phosphorus with these ion-associates. The absorbance maximum is at 620 nm. Determination of phosphorus is not affected with mass ratios R(UO 2 2+ /P) ≤ 1.4 x 10 3 , R(C 2 O 4 2- /P) ≤ 8.8 x 10 2 and R(C 2 O 4 2- /P ≤ 3.6 x 10 4 (one time wet cinefaction must be carried out). In aqueous phase, phosphorus can be directly developed and determined. This method is contrasted with poly vinylalcohol-Rodamine B-heteropoly molybdophosphoric blue, analytical results are in good coincidence. Conversion ratio of phosphorus is 99.8% - 101.1%. The minimum detection limit is 0.02 mg/L. The relative standard deviation is 3%. The recovery ratio is 97% - 103%

  19. Coral skeletons provide historical evidence of phosphorus runoff on the great barrier reef.

    Directory of Open Access Journals (Sweden)

    Jennie Mallela

    Full Text Available Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs.

  20. Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent

    International Nuclear Information System (INIS)

    Bowes, Michael J.; Neal, Colin; Jarvie, Helen P.; Smith, Jim T.; Davies, Helen N.

    2010-01-01

    Phosphorus (P) concentration and flow data gathered during the 1990s for a range of British rivers were used to determine the relative contributions of point and diffuse inputs to the total P load, using the Load Apportionment Model (LAM). Heavily urbanised catchments were dominated by sewage inputs, but the majority of the study catchments received most of their annual phosphorus load from diffuse sources. Despite this, almost 80% of the study sites were dominated by point source inputs for the majority of the year, particularly during summer periods when eutrophication risk is greatest. This highlights the need to reduce sewage P inputs to improve the ecological status of British rivers. These modelled source apportionment estimates were validated against land-use data and boron load (a chemical marker for sewage). The LAM was applied to river flow data in subsequent years, to give predicted P concentrations (assuming no change in P source inputs), and these estimates were compared with observed concentration data. This showed that there had been significant reductions in P concentration in the River Thames, Aire and Ouse in the period 1999 to 2002, which were attributable to the introduction of P stripping at sewage treatment works (STW). The model was then used to forecast P concentrations resulting from the introduction of P removal at STW to a 2 or 1 mg l -1 consent limit. For the urbanised rivers in this study, the introduction of phosphorus stripping to a 1 mg l -1 consent level at all STW in the catchment would not reduce P concentrations in the rivers to potentially limiting concentrations. Therefore, further sewage P stripping will be required to comply with the Water Framework Directive. Diffuse P inputs may also need to be reduced before some of the highly nutrient-enriched rivers achieve good ecological status.

  1. Quantum Monte Carlo Studies of Bulk and Few- or Single-Layer Black Phosphorus

    Science.gov (United States)

    Shulenburger, Luke; Baczewski, Andrew; Zhu, Zhen; Guan, Jie; Tomanek, David

    2015-03-01

    The electronic and optical properties of phosphorus depend strongly on the structural properties of the material. Given the limited experimental information on the structure of phosphorene, it is natural to turn to electronic structure calculations to provide this information. Unfortunately, given phosphorus' propensity to form layered structures bound by van der Waals interactions, standard density functional theory methods provide results of uncertain accuracy. Recently, it has been demonstrated that Quantum Monte Carlo (QMC) methods achieve high accuracy when applied to solids in which van der Waals forces play a significant role. In this talk, we will present QMC results from our recent calculations on black phosphorus, focusing on the structural and energetic properties of monolayers, bilayers and bulk structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  2. Innovative process scheme for removal of organic matter, phosphorus and nitrogen from pig manure

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Schmidt, Jens Ejbye; Angelidaki, Irini

    2008-01-01

    blanket (UASB) reactor, partial oxidation), nitrogen (oxygen-limited autotrophic nitrification-denitrification, OLAND) and phosphorus (phosphorus removal by precipitation as struvite, PRS) from pig manure were tested. Results obtained showed that microfiltration was unsuitable for pig manure treatment....... PRS treated effluent was negatively affecting the further processing of the pig manure in UASB, and was therefore not included in the final process flow scheme. In a final scheme (PIGMAN concept) combination of the following successive process steps was used: thermophilic anaerobic digestion...... with sequential separation by decanter centrifuge, post-digestion in UASB reactor, partial oxidation and finally OLAND process. This combination resulted in reduction of the total organic, nitrogen and phosphorus contents by 96%, 88%, and 81%, respectively....

  3. Layered Black Phosphorus as a Selective Vapor Sensor.

    Science.gov (United States)

    Mayorga-Martinez, Carmen C; Sofer, Zdeněk; Pumera, Martin

    2015-11-23

    Black phosphorus is a layered material that is sensitive to the surrounding atmosphere. This is generally considered as a disadvantage, especially when compared to more stable layered compounds, such as graphite or MoS2. This sensitivity is now turned into an advantage. A vapor sensor that is based on layered black phosphorus and uses electrochemical impedance spectroscopy as the detection method is presented; the device selectively detects methanol vapor. The impedance phase measured at a constant frequency is used as a distinctive parameter for the selective quantification of methanol, and increases with the methanol concentration. The low detection limit of 28 ppm is well below the approved exposure limit of 200 ppm. The results are highly reproducible, and the vapor sensor is shown to be very selective in the presence of other vapors and to have long-term stability. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  4. Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    Md Shafiul Alam

    2017-11-01

    Full Text Available This paper proposes the use of bridge type fault current limiters (BFCLs as a potential solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC (VSC-HVDC systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance the fault ride-through (FRT capability with auxiliary control devices like BFCLs. BFCL controllers have been developed to limit the fault current during the inception of system disturbances. Real and reactive power controllers for the VSC-HVDC have been developed based on current control mode. DC link voltage control has been achieved by a feedback mechanism such that net power exchange with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented in a real time digital simulator (RTDS. Symmetrical three phase as well as different types of unsymmetrical faults have been applied in the systems in order to show the effectiveness of the proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation have been greatly suppressed with the proposed BFCL. Another significant feature of this work is that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series dynamic braking resistor (SDBR. Comparative results show that the proposed BFCL is superior over SDBR in limiting fault current as well as improving system fault ride through (FRT capability.

  5. Assessment of the minimal available phosphorus needs of laying hens: Implications for phosphorus management strategies.

    Science.gov (United States)

    Jing, M; Zhao, S; Rogiewicz, A; Slominski, B A; House, J D

    2018-03-28

    The oversupply of dietary phosphorus (P) leads to increased feed costs and discharge of excessive P to the environment, thus directly impacting the sustainability of egg production practices. The present study was conducted to better define the minimal available P needs of laying hens. Fifty-six Lohmann white laying hens were individually caged and fed one of 7 diets with graded levels of available P (0.15, 0.20, 0.25, 0.30, 0.35, 0.40, or 0.45%) for 12 weeks. Records were maintained for body weight, feed intake, and egg production during the experimental period. Blood and egg samples were collected and digestibility studies conducted at wk 6 and 12 of the experiment. At the end of the experiment, tibia characteristics and expression of the P transporters in the small intestine and kidney were determined. Lowering dietary available P from 0.45 to 0.15% generally reduced plasma P concentrations (P data indicate that reducing dietary available P up to 0.15% is adequate to maintain health and performance of layers. As such, this minimal available P estimate should serve as a benchmark for the assessment of P contents of commercial laying hen rations, with the goal of enhancing the sustainability of egg production.

  6. Sensitivity of soil phosphorus tests in predicting the potential risk of phosphorus loss from pasture soil

    Directory of Open Access Journals (Sweden)

    H. SOINNE

    2008-12-01

    Full Text Available The objective of this study was to examine the effects of urine and dung additions on the phosphorus (P chemistry of pasture land and to compare the sensitivity of two soil extraction methods in assessing the P-loading risk. In a field experiment, urine and dung were added to soil in amounts corresponding to single excrement portions and the soil samples, taken at certain intervals, were analysed for pHH2O, acid ammonium acetate extractable P (PAc and water extractable total P (TPw, and molybdate reactive P (MRPw. Urine additions immediately increased soil pH and MRPw, but no such response was observed in PAc extraction due to the low pH (4.65 of the extractant enhancing the resorption of P. The PAc responded to the dunginduced increase in soil total P similarly as did Pw, which suggests that both tests can serve to detect areas of high P concentration. However, water extraction was a more sensitive method for estimating short-term changes in P solubility. In pasture soils, the risk of P loss increases as a result of the interaction of urination and high P concentration in the topsoil resulting from continuous dung excretion.;

  7. Genetics evaluation of phosphorus utilization in tropical cowpea ...

    African Journals Online (AJOL)

    Genetics evaluation of phosphorus utilization in tropical cowpea (Vigna ... that responds negatively to RP, using generation mean analysis of the parents, their ... was observed to be below the critical level, phosphorus uptake in the F1 and the ...

  8. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP

    Directory of Open Access Journals (Sweden)

    M. W. Lomas

    2010-02-01

    Full Text Available Inorganic phosphorus (SRP concentrations in the subtropical North Atlantic are some of the lowest in the global ocean and have been hypothesized to constrain primary production. Based upon data from several transect cruises in this region, it has been hypothesized that dissolved organic phosphorus (DOP supports a significant fraction of primary production in the subtropical North Atlantic. In this study, a time-series of phosphorus biogeochemistry is presented for the Bermuda Atlantic Time-series Study site, including rates of phosphorus export. Most parameters have a seasonal pattern, although year-over-year variability in the seasonal pattern is substantial, likely due to differences in external forcing. Suspended particulate phosphorus exhibits a seasonal maximum during the spring bloom, despite the absence of a seasonal peak in SRP. However, DOP concentrations are at an annual maximum prior to the winter/spring bloom and decline over the course of the spring bloom while whole community alkaline phosphatase activities are highest. As a result of DOP bioavailability, the growth of particles during the spring bloom occurs in Redfield proportions, though particles exported from the euphotic zone show rapid and significant remineralization of phosphorus within the first 50 m below the euphotic zone. Based upon DOP data from transect cruises in this region, the southward cross gyral flux of DOP is estimated to support ~25% of annual primary production and ~100% of phosphorus export. These estimates are consistent with other research in the subtropical North Atlantic and reinforce the hypothesis that while the subtropics may be phosphorus stressed (a physiological response to low inorganic phosphorus, utilization of the DOP pool allows production and accumulation of microbial biomass at Redfield proportions.

  9. Dissolved oxygen and dietary phosphorus modulate utilization and effluent partitioning of phosphorus in rainbow trout (Oncorhynchus mykiss) aquaculture

    International Nuclear Information System (INIS)

    McDaniel, Nichole K.; Sugiura, Shozo H.; Kehler, Thomas; Fletcher, John W.; Coloso, Relicardo M.; Weis, Peddrick; Ferraris, Ronaldo P.

    2005-01-01

    Phosphorus (P) is the limiting nutrient in freshwater primary production, and excessive levels cause premature eutrophication. P levels in aquaculture effluents are now tightly regulated. Increasing our understanding of waste P partitioning into soluble, particulate, and settleable fractions is important in the management of effluent P. When water supply is limited, dissolved oxygen concentration (DO) decreases below the optimum levels. Therefore, we studied effects of DO (6 and 10 mg/L) and dietary P (0.7 and 1.0% P) on rainbow trout growth, P utilization, and effluent P partitioning. Biomass increased by 40% after 3 weeks. DO at 10 mg/L significantly increased fish growth and feed efficiency, and increased the amount of P in the soluble fraction of the effluent. Soluble effluent P was greater in fish fed 1.0% P. DO increases fish growth and modulates P partitioning in aquaculture effluent. - Dissolved oxygen concentration not only influences fish growth rate, but also affects dietary phosphorus utilization by fish in intensive aquaculture

  10. Regulating phosphorus from the agricultural sector

    DEFF Research Database (Denmark)

    Hansen, Line Block; Hansen, Lars Gårn; Rubæk, Gitte Holton

    2010-01-01

      Loss of phosphorus (P) from agricultural areas is one of the main contributors to eutrophication of water systems in many European countries. Regulatory systems such as ambient taxes or discharge taxes which are suitable for regulation of N are insufficient for regulating P because these systems...... do not take into account the importance of P already stored in the soils. Phosphorus stored in the soils is the major source of P losses to surface waters, but at the same time crucial for the soils ability to sustain a viable crop production. Even if measures on P losses from agricultural areas...

  11. Determination of traces of phosphorus using isotope exchange

    International Nuclear Information System (INIS)

    Zeman, A.; Kratzer, K.

    1976-01-01

    A simple and selective radioanalytical method for the determination of phosphorus (0.015 - 5 μg in a 5 ml sample), based on the heterogeneous isotope exchange, has been developed. The sample containing phosphorus is shaken in the presence of molybdate with a standard solution of tetraphenylarsonium molybdophosphate labelled with phosphorus-32 in 1-2 dicloroethan. From the distribution of the activity between the aqueous and organic phases the amount of phosphorus in the sample can be determined. (Authors)

  12. Phosphorus-containing macrocyclic compounds: synthesis and properties

    International Nuclear Information System (INIS)

    Knyazeva, I R; Burilov, Alexander R; Pudovik, Michael A; Habicher, Wolf D

    2013-01-01

    Main trends in the development of methods for the synthesis of phosphorus-containing macrocyclic compounds in the past 15 years are considered. Emphasis is given to reactions producing macrocyclic structures with the participation of a phosphorus atom and other functional groups involved in organophosphorus molecules and to modifications of macrocycles by phosphorus compounds in different valence states. Possibilities of the practical appli