WorldWideScience

Sample records for phosphorous substitutionally doped

  1. Effect of Thermal Annealing on Carbon in In-situ Phosphorous-Doped Si1-xCx films

    International Nuclear Information System (INIS)

    Adam, Thomas; Loubet, Nicolas; Reznicek, Alexander; Paruchuri, Vamsi; Sampson, Ron; Sadana, Devendra

    2012-01-01

    The effect of thermal heat treatment on carbon in in-situ phosphorous-doped silicon-carbon is studied as a function of annealing temperature and type. Films of 0 to 2% carbon were deposited using cyclic chemical vapor deposition at reduced pressures. Secondary ion-mass spectroscopy and high-resolution X-ray diffraction were employed to extract the total and substitutional carbon concentration in samples with phosphorous levels of mid-10 20 cm -3 . It was found that millisecond laser annealing drastically improves substitutionality while high thermal budget treatments (furnace, rapid-thermal, or spike annealing) resulted in an almost complete loss of substitutional carbon, independent of preceding or subsequent laser heat treatments.

  2. Color stable manganese-doped phosphors

    Science.gov (United States)

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  3. Considerable photoluminescence enhancement of LiEu(MoO4)2 red phosphors via Bi and/or Si doping for white LEDs

    International Nuclear Information System (INIS)

    Wang, Qing-Feng; Liu, Ying; Wang, Yu; Wang, Wenxi; Wan, Yi; Wang, Gui-Gen; Lu, Zhou-Guang

    2015-01-01

    Graphical abstract: Doping of Bi and Si into the lattice leads to an considerable increase of the excitation efficiency and luminous intensity, and obvious movement of the CIE chromaticity coordinates to the NTSC standard values of the LiEu(MoO 4 ) 2 , a promising red phosphors suitable for near UV excited white-light emitting diodes. - Highlights: • High performance red phosphors for near UV light excited white LEDs. • Lithium lanthanide molybdate red phosphors. • Bi and Si substitution. • Considerable enhancement of luminescence intensity and excitation efficiency. • CIE chromaticity coordinates very close to the NTSC standard values. - Abstract: Novel Bi and/or Si substituted LiEu(MoO 4 ) 2 phosphors, where Bi was used as sensitizer to enhance the emission intensity and Si was used as substitution to improve the excitation efficiency, were prepared using the sol–gel method, and the photoluminescent properties of the resulting phosphors were intensively investigated. All samples can be excited efficiently by UV (395 nm) light and emit bright red light at 614 nm, which are coupled well with the characteristic emission from a UV-LED. In the Bi 3+ -doped samples, the intensities of the main emission line ( 5 D 0 – 7 F 2 transition at 614 nm) are strengthened because of the energy transition from Bi 3+ to Eu 3+ . With the substitution of Mo 4+ by Si 4+ , there are no significant changes in the emission peak positions, but the emission intensity was significantly enhanced under 395 nm excitation. Particularly, the LiEu 0.9 Bi 0.1 (Mo 0.97 Si 0.03 O 4 ) 2 phosphor doped with both Bi and Si demonstrates superior comprehensive photoluminescence properties with an excellent combination of easy excitation in the near UV range, bright emission intensity, high PL quantum efficiency as well as suitable decay time, which are very suitable for application as red phosphor for near UV type LEDs

  4. Considerable photoluminescence enhancement of LiEu(MoO{sub 4}){sub 2} red phosphors via Bi and/or Si doping for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing-Feng [Department of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055 (China); Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Liu, Ying [Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Wang, Yu [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Wang, Wenxi; Wan, Yi [Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Wang, Gui-Gen [Department of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055 (China); Lu, Zhou-Guang [Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China)

    2015-03-15

    Graphical abstract: Doping of Bi and Si into the lattice leads to an considerable increase of the excitation efficiency and luminous intensity, and obvious movement of the CIE chromaticity coordinates to the NTSC standard values of the LiEu(MoO{sub 4}){sub 2}, a promising red phosphors suitable for near UV excited white-light emitting diodes. - Highlights: • High performance red phosphors for near UV light excited white LEDs. • Lithium lanthanide molybdate red phosphors. • Bi and Si substitution. • Considerable enhancement of luminescence intensity and excitation efficiency. • CIE chromaticity coordinates very close to the NTSC standard values. - Abstract: Novel Bi and/or Si substituted LiEu(MoO{sub 4}){sub 2} phosphors, where Bi was used as sensitizer to enhance the emission intensity and Si was used as substitution to improve the excitation efficiency, were prepared using the sol–gel method, and the photoluminescent properties of the resulting phosphors were intensively investigated. All samples can be excited efficiently by UV (395 nm) light and emit bright red light at 614 nm, which are coupled well with the characteristic emission from a UV-LED. In the Bi{sup 3+}-doped samples, the intensities of the main emission line ({sup 5}D{sub 0}–{sup 7}F{sub 2} transition at 614 nm) are strengthened because of the energy transition from Bi{sup 3+} to Eu{sup 3+}. With the substitution of Mo{sup 4+} by Si{sup 4+}, there are no significant changes in the emission peak positions, but the emission intensity was significantly enhanced under 395 nm excitation. Particularly, the LiEu{sub 0.9}Bi{sub 0.1}(Mo{sub 0.97}Si{sub 0.03}O{sub 4}){sub 2} phosphor doped with both Bi and Si demonstrates superior comprehensive photoluminescence properties with an excellent combination of easy excitation in the near UV range, bright emission intensity, high PL quantum efficiency as well as suitable decay time, which are very suitable for application as red phosphor for near UV

  5. Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: A photochromic phosphor

    Science.gov (United States)

    Yadav, Ram Sagar; Rai, Shyam Bahadur

    2018-03-01

    In this article, the Tb3+ doped Y2O3 nano-phosphor has been synthesized through solution combustion method. The structural measurements of the nano-phosphor have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, which reveal nano-crystalline nature. The Fourier transform infrared (FTIR) measurements reveal the presence of different molecular species in the nano-phosphor. The UV-Vis-NIR absorption spectrum of the nano-phosphor shows large number of bands due to charge transfer band (CTB) and 4f-4f electronic transitions of Tb3+ ion. The Tb3+ doped Y2O3 nano-phosphor emits intense green downshifting photoluminescence centered at 543 nm due to 5D4 → 7F5 transition on excitation with 350 nm. The emission intensity of the nano-phosphor is optimized at 1.0 mol% concentration of Tb3+ ion. When the as-synthesized nano-phosphor is annealed at higher temperature the emission intensity of the nano-phosphor enhances upto 5 times. The enhancement in the emission intensity is due to an increase in crystallinity of the nano-phosphor, reduction in surface defects and optical quenching centers. The CIE diagram reveals that the Tb3+ doped nano-phosphor samples show the photochromic nature (color tunability) with a change in the concentration of Tb3+ ion and excitation wavelength. The lifetime measurement indicates an increase in the lifetime for the annealed sample. Thus, the Tb3+ doped Y2O3 nano-phosphor may be used in photochromic displays and photonic devices.

  6. Thermoluminescence dosimetric characteristics of thulium doped ZnB2O4 phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Madhusoodanan, U.; Subramanian, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10 3 Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB 2 O 4 lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out

  7. Photoluminescence studies on holmium (III) and praseodymium (III) doped calcium borophosphate (CBP) phosphors

    Science.gov (United States)

    Reddy Prasad, V.; Damodaraiah, S.; Devara, S. N.; Ratnakaram, Y. C.

    2018-05-01

    Using solid state reaction method, Ho3+ and Pr3+ doped calcium borophosphate (CBP) phosphors were prepared. These phosphors were characterized using XRD, SEM, FT-IR, 31P solid state NMR, photoluminescence (PL) and decay profiles. Structural details were discussed from XRD and FT-IR spectra. From 31P NMR spectra of these phosphors, mono-phosphate complexes Q0-(PO43-) were observed. Photoluminescence spectra were measured for both Ho3+ and Pr3+ doped calcium borophosphate phosphors and the spectra were studied for different concentrations. Decay curves were obtained for the excited level, 5F4+5S2 of Ho3+ and 1D2 level of Pr3+ in these calcium borophosphate phosphors and lifetimes were measured. CIE color chromaticity diagrams are drawn for these two rare earth ions in calcium borophosphate phosphors. Results show that Ho3+ and Pr3+ doped CBP phosphors might be served as green and red luminescence materials.

  8. Neutron scintillator using Ga-doped ZnO phosphor with high detection efficiency

    International Nuclear Information System (INIS)

    Koyama, Shin; Kinoshita, Atsushi; Fujiwara, Akihiko; Kobayashi, Haruki; Takei, Yoshinori; Nanto, Hidehito; Katagiri, Masaki

    2009-01-01

    Zinc Oxide (ZnO) family phosphors as phosphor for neutron detector have prepared using Spark Plasma Sintering (SPS) method. The optical properties of ZnO phosphor prepared are investigated. The following results were obtained. Two dominant photoluminescence (PL) emission peaks at 395 nm and 495 nm were observed. The lifetime of the PL emission peak at 395 nm (UV emission band) is about 20 ns, which is suitable for neutron detection. The Ga (30 mol%)-doped ZnO phosphor exhibited an intense UV emission band without the visible emission band. The Ga-doped ZnO phosphor can be prepared at the atmospheric pressure of about 8 Pa using SPS method. It was found that the PL intensity of UV emission band is increased with improving the crystallinity of the ZnO phosphor. (author)

  9. Synthesis and photoluminescence properties of Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped Ca{sub 2}ZnWO{sub 6} phosphors for phosphor converted LED

    Energy Technology Data Exchange (ETDEWEB)

    Dabre, K.V. [Department of Physics, Arts, Commerce and Science College, Koradi, Nagpur-441111, Maharashtra (India); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur-440033, Maharashtra (India)

    2014-06-01

    In this work, we report on the synthesis and photoluminescence (PL) properties of rare earth (Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+}) doped double perovskite tungstate Ca{sub 2}ZnWO{sub 6} phosphor. The phosphors were synthesized by two step modified solid state method. Phase purity and formation of phosphor were confirmed by XRD technique. PL spectra of Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped phosphor show intense emission peaks in red region at 615, 604 and 650 nm respectively, upon the visible excitation of 466 nm (Eu{sup 3+}), 410 nm (Sm{sup 3+}) and 491 nm (Pr{sup 3+}). The CIE coordinates of the phosphors are in the yellow (Sm{sup 3+} doped sample) and orange (Eu{sup 3+} and Pr{sup 3+} doped sample) regions near the edge of color space which confirms their applicability in LEDs. -- Highlights: •Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped and undoped samples of Ca{sub 2}ZnWO{sub 6} phosphor synthesized by Solid state method. •The phosphors have intense excitation in violet and blue region of visible spectrum. •Phosphors show intense emission peaks in red region. •CIE coordinates of phosphors are lie in yellow (Sm{sup 3+} doped phosphor) and orange (Eu{sup 3+} and Pr{sup 3+} doped phosphor) region near to edge of color space.

  10. Effect of annealing on structural and luminescence properties of Eu3+ doped NaYF4 phosphor

    Science.gov (United States)

    Pathak, Trilok K.; Kumar, Ashwini; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Eu3+ doped NaYF4 phosphors have been synthesized by the combustion method. The effect of annealing on the structural, morphological and luminescence properties has been investigated. X-ray diffraction analysis revealed that the Eu3+ doped NaYF4 phosphors consisted of mixed phases: α-phase and β-phase which were affected by the annealing of the phosphor. The surface morphology showed a significant change with annealing in the Eu3+ doped NaYF4 phosphors. The elemental mapping and energy dispersive X-ray spectroscopy spectra proved the formation of the desired materials. The photoluminescence spectra illustrated the optical properties of Eu3+ in the as-prepared and annealed Eu3+ doped NaYF4 phosphors. The intensity of the peaks 5D0 → 7F2 and 5D0 → 7F1 varied in as-prepared and annealed samples. The lifetime of the Eu3+ luminescence at 615 nm was also weakly affected by the Eu3+ doping and annealing temperature.

  11. Thermoluminescence dosimetric characteristics of thulium doped ZnB{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Madhusoodanan, U. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Subramanian, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India); Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India)

    2014-02-15

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10{sup 3} Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB{sub 2}O{sub 4} lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out.

  12. Emission spectra of phosphor MgSO4 doped with Dy and Mn

    International Nuclear Information System (INIS)

    Zhang Chunxiang; Chen Lixin; Tang Qiang; Luo Daling; Qiu Zhiren

    2001-01-01

    Emission spectra of phosphor MgSO 4 doped with Dy and Dy/Mn were measured with an optical multichannel analyzer and a linear heating system whose temperature was controlled by a microcomputer. The emission spectrum bands at 480 nm and 580 nm of phosphor MgSO 4 doped with Dy were observed in the three dimensional (3D) glow curves. Compared with the 3D spectrum of CaSO 4 :Dy and the spectrum bands of MgSO 4 :Dy shows the same wavelengths which resulted from the quantum transitions among the energy levels of Dy 3 '+ ions. The intensities of the glow peaks in both spectrum bands (480 nm and 580 nm) of phosphor MgSO 4 doped with Dy/Mn were dramatically reduced except the 380 degree C glow peak

  13. Photoluminescence properties of Li{sup +}-doped KNbO{sub 3}: Eu{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnaiah, R.; Kim, Dongwoo; Yi, Soungsoo; Kim, Sunghoon [Silla University, Busan (Korea, Republic of); Jang, Kiwan; Lee, Hosueb [Changwon National University, Changwon (Korea, Republic of); Moon, Byungkee; Jeong, Junghyun [Pukyong National University, Busan (Korea, Republic of)

    2010-12-15

    Different concentrations of Li{sup +}-ions doped KNbO{sub 3}:Eu polycrystalline powder phosphors were prepared by using the conventional solid state reaction method and were characterized by using X-ray diffraction, field emission scanning electron microscopy, and by using photoluminescence excitation and emission measurements. The morphological and the photoluminescence properties of the phosphors were effectively improved with Li-doping. The PL properties as a function of Li concentration in the Li-doped KNbO{sub 3}:Eu phosphors using different excitation wavelengths, along with a comparison of results with these in similar reported works, are discussed in the present work.

  14. Effect of Er doping on optical transmission and EL spectra of (Zn, Cd)S:Cu phosphors

    International Nuclear Information System (INIS)

    Patil, P.K.; Nandgave, J.K.; Lawangar Pawar, R.D.

    1991-01-01

    Powder phosphors((Znsub(0.4)Cdsub(0.6))S)doped with Cu and Er have been prepared under the inert atmosphere of argon. The optical transmission spectra of Cu doped phosphors have been investigated and explained on the basis of copper associated defect states. The improvement of optical transmission of the phosphors due to Er doping has been reported and explained. The EL emission spectrum of (Znsub(0.4)Cdsub(0.6))S:Cu:Er phosphors exhibits two broad bands characteristic of Cu. The absence of characteristic Er bands has been explained as an effect of thermal quenching of Er donor levels. (author). 9 refs., 2 figs

  15. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.

    2013-02-15

    In germanium, phosphorous and antimony diffuse quickly and as such their transport must be controlled in order to design efficient n-typed doped regions. Here, density functional theory based calculations are used to predict the influence of double donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy were formed. These clusters are energetically stable and can lead to the formation of even larger clusters involving a number of donor atoms around a vacancy, thereby affecting the properties of devices.

  16. Synthesis and luminescence properties of Eu"2"+ doped CaSO_4 phosphor

    International Nuclear Information System (INIS)

    Aghalte, G.A.; Dhoble, S.J.; Pawar, N.R.

    2016-01-01

    Eu"2"+ doped CaSO_4 Phosphor were synthesized by precipitation method. PL analysis of Eu"2"+ activated CaSO_4 phosphor exhibited characteristic emission properties; CaSO_4:Eu Phosphor has received considerable attention because of its high sensitivity to X-ray and λ ray irradiation. CaSO_4:Eu phosphor powder was successfully synthesized by the wet chemical co-precipitation method. The structure morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy

  17. Study of effect of co-doping on CIE coordinates of strontium cerium oxide phosphor (Sr_2CeO_4)

    International Nuclear Information System (INIS)

    Zambare, Pradip Z.; Ahirrao, P.B.; Chaudhari, D.B.; Zambare, A.P.; Mahajan, O.H.

    2016-01-01

    The phosphors Sr_2CeO_4 doped europium and gadolinium were synthesized by modified solid state diffusion method. From emission spectra, the CIE coordinates (x, y) of x% Eu"3"+ and 0.5 %Gd"3"+ doped Sr_2CeO_4 phosphors was calculated. In present paper, we investigate luminescence properties and colorimetric study of Sr_2CeO_4 doped 0.5% Gd"3"+, x% Eu"3"+. The phosphors Sr_2CeO_4 doped europium and gadolinium were successfully synthesized by modified solid state diffusion method. X-ray diffraction (XRD) profile confirms the orthorhombic nature of Eu"3"+ and 0.5% Gd"3"+ doped Sr_2CeO_4 phosphors. In addition, scanning electron Microscopy (SEM), Fourier-Transformation IR spectroscopy (FTIR), was also used to study the synthesized phosphors

  18. Spectral properties of Dy3+ doped ZnAl2O4 phosphor

    Science.gov (United States)

    Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.

  19. Lanthanide-doped upconverting phosphors for bioassay and therapy

    Science.gov (United States)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  20. Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors

    Science.gov (United States)

    Chun, Fengjun; Zhang, Binbin; Li, Wen; Liu, Honggang; Deng, Wen; Chu, Xiang; Osman, Hanan; Zhang, Haitao; Yang, Weiqing

    2018-04-01

    Reddish orange SrCa3Si2O8 phosphors, prepared by the facile solid state reaction method, are a luminescent enhancement of Na+ and Sm3+ co-doping luminescent material. Na+ was designed to compensate the charge imbalance of Sm3+ ion substituting for the Sr2+ ion of orthorhombic SrCa3Si2O8 crystals. The results suggest that Na+ can effectively enhance the luminescent intensity of the reddish orange light peaked at about 562 nm (4 G 5/2 → 6 H 5/2), 600 nm (4 G 5/2 → 6 H 7/2) and 645 nm (4 G 5/2 → 6 H 9/2) excited by the near ultraviolet excited light 404 nm (4 L 13/2 → 6 H 5/2). The energy transfer has been further verified by the florescence lifetime. Additionally, the luminescent lifetime τ of as-grown phosphors was separated into two parts, a rapid lifetime and a slow lifetime. The average lifetime results ranged from 2.098 to 1.329 ms which were influenced by the concentration of Sm3+ doping. The systematic researches of as-grown phosphors have clearly suggested a potential application for white-light-emitting diodes ( w-LEDs).

  1. Photovoltaic Performance Characterization of Textured Silicon Solar Cells Using Luminescent Down-Shifting Eu-Doped Phosphor Particles of Various Dimensions.

    Science.gov (United States)

    Ho, Wen-Jeng; Deng, Yu-Jie; Liu, Jheng-Jie; Feng, Sheng-Kai; Lin, Jian-Cheng

    2017-01-01

    This paper reports on efforts to enhance the photovoltaic performance of textured silicon solar cells through the application of a layer of Eu-doped silicate phosphor with particles of various dimensions using the spin-on film technique. We examined the surface profile and dimensions of the Eu-doped phosphors in the silicate layer using optical microscopy with J-image software. Optical reflectance, photoluminescence, and external quantum efficiency were used to characterize the luminescent downshifting (LDS) and light scattering of the Eu-doped silicate phosphor layer. Current density-voltage curves under AM 1.5G simulation were used to confirm the contribution of LDS and light scattering produced by phosphor particles of various dimensions. Experiment results reveal that smaller phosphor particles have a more pronounced effect on LDS and a slight shading of incident light. The application of small Eu-doped phosphor particles increased the conversion efficiency by 9.2% (from 12.56% to 13.86%), far exceeding the 5.6% improvement (from 12.54% to 13.32%) achieved by applying a 250 nm layer of SiO₂ and the 4.5% improvement (from 12.37% to 12.98%) observed in cells with large Eu-doped phosphor particles.

  2. Sol–gel synthesis and photoluminescence studies on colour tuneable Dy3+/Tm3+ co-doped NaGd(WO4)2 phosphor for white light emission

    International Nuclear Information System (INIS)

    Durairajan, A.; Balaji, D.; Rasu, K. Kavi; Moorthy Babu, S.; Hayakawa, Y.; Valente, M.A.

    2015-01-01

    A series of Dy 3+ /Tm 3+ ion co-doped NaGd(WO 4 ) 2 (NGW) phosphors were synthesised by a sol–gel method at low temperature for white light emission. The structural and luminescence properties of the synthesised phosphors were studied by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman and photoluminescence techniques. In Dy 3+ /Tm 3+ :NGW phosphors, the dopant ions substituted Gd 3+ ions that are located in S 4 sites of NGW host lattice. In NGW host, under UV excitation the Dy 3+ ions have shown strong yellow ( 4 F 9/2 → 6 H 13/2 ) and comparatively weak blue ( 4 F 9/2 → 6 H 15/2 ) emission transitions at 575 and 488 nm, respectively. Due to deficient blue colour the overall emission falls in yellow region. Hence, Tm 3+ ions having strong blue emission at 455 nm corresponding to the transition 1 D 2 → 3 F 4 were co-activated along with Dy 3+ ions in NGW matrix. By changing the doping concentrations of Tm 3+ and Dy 3+ ions in NGW, white light emission was tuned by 353 nm excitation wavelength. Their corresponding colour co-ordinates were calculated and found to be very close to the white colour chromaticity co-ordinates (0.333, 0.333). - Highlights: • Dy 3+ and Dy 3+ /Tm 3+ :NGW phosphors were synthesised by sol–gel methods. • The excitation spectrum confirmed the strong absorption in near-UV region. • The emission spectrum shows the yellow and white emission to doped and co-doped phosphors respectively. • The CIE co-ordinate conforms close to daylight emission

  3. Structure, electronic properties, luminescence and chromaticity investigations of rare earth doped KMgBO{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianghui; Cheng, Qijin [School of Energy Research, Xiamen University, Xiamen 361005 (China); Wu, Shunqing [Department of Physics, Xiamen University, Xiamen, 361005 (China); Zhuang, Yixi [College of Materials, Xiamen University, Xiamen 361005 (China); Guo, Ziquan; Lu, Yijun [Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University, Xiamen 361005 (China); Chen, Chao, E-mail: cchen@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Department of Physics, Xiamen University, Xiamen, 361005 (China); Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University, Xiamen 361005 (China)

    2015-09-01

    In this work, the optimization of the geometry and the electronic properties of the host matrix KMgBO{sub 3} were investigated using density functional theory, and the comprehensive photoluminescence and chromaticity properties on five rare earth ion-doped (RE = Ce{sup 3+}, Tm{sup 3+}, Tb{sup 3+}, Eu{sup 3+}, Dy{sup 3+}) KMgBO{sub 3} phosphors were also studied. By introducing RE ions into the KMgBO{sub 3} host, excellent purple, blue, green, red and white emitting light could be obtained under the near-ultraviolet light excitation. The results suggest that rare earth doped KMgBO{sub 3} phosphors are potential luminescence materials for the application in the near-ultraviolet white light-emitting diodes. - Highlights: • The electronic properties of the host matrix KMgBO{sub 3} were investigated. • The PL properties on rare earth ions doped KMgBO{sub 3} phosphors were studied. • The chromaticity properties on rare earth ions doped KMgBO{sub 3} samples were studied. • Tm{sup 3+} and Eu{sup 3+} doped KMgBO{sub 3} samples show higher color purity than commercial phosphors.

  4. Enhanced red emission of LaVO4:Eu3+ phosphors by Li-doping

    International Nuclear Information System (INIS)

    Park, Sung Wook; Yang, Hyun Kyoung; Chung, Jong Won; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun; Jang, Ki Wan; Lee, Ho Sueb; Yi, Soung Soo

    2010-01-01

    LaVO 4 phosphors were synthesized by using a solid state reaction, and were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The XRD patterns of the Li-doped LaVO 4 :Eu 3+ powder phosphors revealed a mixture of tetragonal and monoclinic phases. The tetragonal phase of the LaVO 4 :Eu 3+ phosphor showed a higher PL intensity than the monoclinic one, despite the presence of both monoclinic and tetragonal structures. The Li-doped LaVO 4 :Eu 3+ powder phosphors absorbed strongly at 396 nm and exhibited strong red emission at approximately 619.5 nm due to the 5 D 0 → 7 F 2 transition. The incorporation of Li + ions into the LaVO 4 :Eu 3+ powder can lead to a remarkable increase in photoluminescence. The enhanced luminescence is attributed to the incorporation of Li + ions that may act as a sensitizers for effective energy transfer. This phosphor has promising applications in near-UV light-emitting diodes(LEDs).

  5. Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation.

    Science.gov (United States)

    Mendiola-Alvarez, Sandra Yadira; Hernández-Ramírez, Ma Aracely; Guzmán-Mar, Jorge Luis; Garza-Tovar, Lorena Leticia; Hinojosa-Reyes, Laura

    2018-05-24

    Mesoporous phosphorous-doped TiO 2 (TP) with different wt% of P (0.5, 1.0, and 1.5) was synthetized by microwave-assisted sol-gel method. The obtained materials were characterized by XRD with cell parameters refinement approach, Raman, BET-specific surface area analysis, SEM, ICP-OES, UV-Vis with diffuse reflectance, photoluminescence, FTIR, and XPS. The photocatalytic activity under visible light was evaluated on the degradation of sulfamethazine (SMTZ) at pH 8. The characterization of the phosphorous materials (TP) showed that incorporation of P in the lattice of TiO 2 stabilizes the anatase crystalline phase, even increasing the annealing temperature. The mesoporous P-doped materials showed higher surface area and lower average crystallite size, band gap, and particle size; besides, more intense bands attributed to O-H bond were observed by FTIR analysis compared with bare TiO 2 . The P was substitutionally incorporated in the TiO 2 lattice network as P 5+ replacing Ti 4+ to form Ti-O-P bonds and additionally present as PO 4 3-  on the TiO 2 surface. All these characteristics explain the observed superior photocatalytic activity on degradation (100%) and mineralization (32%) of SMTZ under visible radiation by TP catalysts, especially for P-doped TiO 2 1.0 wt% calcined at 450 °C (TP1.0-450). Ammonium, nitrate, and sulfate ions released during the photocatalytic degradation were quantified by ion chromatography; the nitrogen and sulfur mass balance evidenced the partial mineralization of this recalcitrant molecule.

  6. TL characterization of Ag co-doped SrSO{sub 4}:Eu phosphor for gamma dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Jayasudha, S., E-mail: jsnair.india@gmail.com [Mahatma Gandhi College, Pattom Palace P.O., Thiruvananthapuram 695004 (India); Madhukumar, K.; Nair, C.M.K.; Nair, Resmi G.; Anandakumar, V.M. [Mahatma Gandhi College, Pattom Palace P.O., Thiruvananthapuram 695004 (India); Elias, T.S. [State Institute of Cancer Research, Medical College P.O., Thiruvananthapuram 695011 (India); Rajesh, S. [Campus Universitario de Santiago, Aveiro (Portugal)

    2017-04-15

    High temperature thermoluminescence (TL) emissions and improvement in fading due to the co-doping ofr Ag in the SrSO{sub 4}:Eu phosphor synthesized through chemical precipitation technique when subjected to γ-excitation is discussed. The dopant concentrations were tuned for optimum TL sensitivity. Preliminary crystallographic and structural studies of the phosphors were done using PXRD, SEM, and TEM. The phosphor has a single phase orthorhombic lattice structure and the crystallites are found to be nanostructured. The presence of dopants in the host matrix is established through EDS and ICP-AES studies. The TL glow curve shows a single intense emission at 314 ├ó┬ü┬░C under γ- exposure of dose 1 Gy, which is given from a {sup 60}Co build-up. The dosimetric properties such as sensitivity, dose dependence, fading and reusability of SrSO{sub 4}:Eu,Ag phosphor were also studied. It is observed that co-doping with Ag improves the fading rate of the SrSO{sub 4}:Eu phosphor by about 5%. Even though the luminescence intensity is found to be less than that of SrSO{sub 4}:Eu phosphor, the Ag co-doped phosphor becomes significant owing to its improved fading rate and high temperature afterglow. The gamma sensitivity of the SrSO{sub 4}:Eu,Ag(0.5,0.5 mol%) phosphor is compared to that of the standard CaSO{sub 4}:Dy TLD phosphor. The TL kinetic parameters were calculated using IR, Chen's peak shape method and verified by the theoretical fit using GCD functions. - Highlights: • A High temperature TL emission is observed for the SrSO{sub 4}:Eu,Ag phosphor. • TL intensity is 10 times higher than that of standard CaSO{sub 4}:Dy. • Fading rate of SrSO{sub 4}:Eu phosphor is improved by 5% with Ag co-doping. • Linear dose response in the range 10mGy-10Gy. • t .

  7. NIR to visible upconversion in Er3+/Yb3+ co-doped CaYAl3O7 phosphor obtained by solution combustion process

    International Nuclear Information System (INIS)

    Singh, Vijay; Rai, Vineet Kumar; Al-Shamery, Katharina; Nordmann, Joerg; Haase, Markus

    2011-01-01

    Using the combustion synthesis, CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared at low temperatures (550 o C) in a few minutes. Formation of the compound was confirmed by X-ray powder diffraction. Near-infrared to visible upconversion fluorescence emission in the Er 3+ doped CaYAl 3 O 7 phosphor powder has been observed. The effect of co-doping with triply ionized ytterbium in the CaYAl 3 O 7 :Er 3+ phosphor has been studied and the process involved is discussed. - Highlights: → The green emitting up-conversion CaYAl 3 O 7 :Er 3+ phosphor powders co-doped with Yb 3+ have been prepared by easy combustion method. → The combustion method is a simple, energy saving, fast and economical viable process. → The luminescence intensity in the co-doped phosphor is enhanced by several times compared to that of the singly (Er 3+ ) doped phosphor.

  8. Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Wan Jing; Cheng Lihong; Sun Jiashi; Zhong Haiyang; Li Xiangping; Lu Weili; Tian Yue; Lin Hai; Chen Baojiu

    2010-01-01

    Dy 3+ single-doped and Eu 3+ /Dy 3+ co-doped gadolinium molybdate (Gd 2 (MoO 4 ) 3 ) phosphors were synthesized by a traditional solid-state reaction method. The XRD was used to confirm the crystal structure of the phosphors. The energy transfer between Eu 3+ and Dy 3+ was observed and studied. The Eu 3+ concentration can hardly affect the blue and yellow emission intensities of Dy 3+ , and the Eu 3+ emission intensity increases with the increase of Eu 3+ concentration. Co-doping with Eu 3+ compensated the red emission component of the Dy 3+ doped Gd 2 (MoO 4 ) 3 phosphor. Introducing proper amount of Eu 3+ can improve the colorimetric performance of the phosphors.

  9. Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    He, Ronghuan; Li, Qingfeng; Jensen, Jens Oluf

    2007-01-01

    Polybenzimidazole (PBI) membranes were doped in phosphoric acid solutions of different concentrations at room temperature. The doping chemistry was studied using the Scatchard method. The energy distribution of the acid complexation in polymer membranes is heterogeneous, that is, there are two...... different types of sites in PBI for the acid doping. The protonation constants of PBI by phosphoric acid are found to be 12.7 L mol(-1) (K-1) for acid complexing sites with higher affinity, and 0.19 L mol(-1) (K-2) for the sites with lower affinity. The dissociation constants for the complexing acid onto...... these two types of PBI sites are found to be 5.4 X 10(-4) and 3.6 X 10(-2), respectively, that is, about 10 times smaller than that of aqueous phosphoric acid in the first case but 5 times higher in the second. The proton conducting mechanism is also discussed....

  10. Co-doping with antimony to control phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander; Grimes, R. W.; Schwingenschlö gl, Udo

    2013-01-01

    donor co-doping on the migration activation energies of vacancy-mediated diffusion processes. The migration energy barriers for phosphorous and antimony were found to be increased significantly when larger clusters involving two donor atoms and a vacancy

  11. UV, blue and red upconversion emission in Tm3+ doped Y2O3 phosphor

    International Nuclear Information System (INIS)

    Pandey, Anurag; Kaushal Kumar; Rai, Vineet Kumar

    2012-01-01

    Optimized solution combustion route has been adopted to prepare Tm 3+ doped Y 2 O 3 phosphor. The X-ray diffraction analysis of the doped phosphor for getting the structural information has been performed. Intense UV, blue and red emissions exhibiting narrow band have been monitored using 980 nm diode laser excitation. The origin of UV, blue and red upconversion emissions has been explained based on the available data. (author)

  12. Radiation-induced defects in manganese-doped lithium tetraborate phosphor.

    Science.gov (United States)

    Annalakshmi, O; Jose, M T; Madhusoodanan, U; Sridevi, J; Venkatraman, B; Amarendra, G; Mandal, A B

    2015-01-01

    Lithium tetraborate doped with manganese synthesised by solid-state sintering technique exhibits a dosimetric peak at 280°C. The high-temperature glow curve results in no fading for three months. The sensitivity of Li2B4O7:Mn is determined to be 0.9 times that of TLD-100. The infrared spectrum of this phosphor indicates the presence of bond vibrations corresponding to BO4 tetrahedral and BO3 triangles. The mechanism for thermoluminescence in this phosphor was proposed based on the thermoluminescence (TL) emission spectra, kinetic analysis of TL glow curves and electron paramagnetic resonance (EPR) measurements on non-irradiated and gamma-irradiated phosphors. It was identified that oxygen vacancies and Boron oxygen hole centre (BOHC) are the electron and hole trap centres for TL in this phosphor. When the phosphor is heated, the electrons are released from the electron trap and recombine with the trapped holes. The excitation energy during the recombination is transferred to the nearby Mn(2+) ions, which emit light at 580 nm. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Long afterglow property of Er"3"+ doped Ca_2SnO_4 phosphor

    International Nuclear Information System (INIS)

    Zhang, Dongyun; Shi, Mingming; Sun, Yiwen; Guo, Yunyun; Chang, Chengkang

    2016-01-01

    A novel green emitting long afterglow phosphor, Er"3"+ -doped Ca_2SnO_4 (Ca_2SnO_4:Er"3"+), was prepared successfully via a traditional high temperature solid–state reaction method. Its properties have been characterized and analyzed by utilizing x-ray diffraction (XRD), photoluminescence spectroscope (PLS), afterglow decay curve (ADC) and thermal luminescence spectroscope (TLS). Three main emission peaks of PLS locate at 524, 550 and 668 nm, corresponding to CIE chromaticity coordinates of x = 0.326, y = 0.6592. An optimal doping concentration of Er"3"+ of 2% was determined. The Ca_2SnO_4:Er"3"+ phosphors showed a typical triple-exponential afterglow decay behavior when the UV source was switched off. Thermal simulated luminescence study indicated that the persistent afterglow of Ca_2SnO_4:2 mol% Er"3"+ phosphors was generated by the suitable electron or hole traps which were resulted from the doping the Ca_2SnO_4 host with rare-earth ions (Er"3"+). - Highlights: • A novel green emitting long afterglow phosphor, Ca_2SnO_4:Er"3"+, was prepared. • An optimal doping concentration of Er"3"+ of 2% was determined. • After the UV source was turned off, the Ca_2SnO_4:Er"3"+ showed a typical triple-exponential afterglow decay behavior. • CIE chromaticity coordinates results confirmed a green light emitting of the Ca_2SnO_4:Er"3"+. • The persistent afterglow of the Ca_2SnO_4:Er"3"+ was attributed to suitable electron or hole traps.

  14. TL process in europium doped alkaline earth sulphate phosphors- a review

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    2003-01-01

    CaSO 4 doped with the rare earth (RE) ion dysprosium or thulium is used routinely as a thermoluminescent dosimeter (TLD) to monitor personal exposure to x- and γ-radiation. The CaSO 4 :Eu phosphor is potentially important for radio photoluminescence (RPL) and ultraviolet (UV) dosimetry. Eu 3+ → Eu 2+ conversion is suggested to play a pivotal role in UV and γ-ray induced thermoluminescence. However, there is disagreement among different workers on the mechanism of gamma and UV induced TL in this phosphor system. This paper will review the work reported on CaSO 4 :Eu and make effects to project overall picture on this phosphor system. (author)

  15. Thermoluminescent phosphor

    Science.gov (United States)

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  16. Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors

    Directory of Open Access Journals (Sweden)

    H. H. Xiong

    2014-01-01

    Full Text Available Single-phased Sm3+ doped lanthanum calcium borate (SmxLa2−xCaB10O19, SLCB, x=0.06 polycrystalline red phosphor was prepared by solid-state reaction method. The phosphor has two main excitation peaks located at 398.5 nm and 469.0 nm, which are nicely in accordance with the emitting wavelengths of commercial near-UV and blue light emitting diode chips. Under the excitation of 398.0 nm, the dominant red emission of Sm3+ in SLCB phosphor is centered at 598.0 nm corresponding to the transition of 4G5/2 → 6H7/2. The Eu3+ fluorescence in the red spectral region is applied as a spectroscopic probe to reveal the local site symmetry in the host lattice and, hence, Judd-Ofelt parameters Ωt  (t=2, 4 of Eu3+ in the phosphor matrix are derived to be 3.62×10-20 and 1.97×10-20 cm2, indicating a high asymmetrical and strong covalent environment around rare earth luminescence centers. Herein, the red phosphors are promising good candidates employed in white light emitting diodes (LEDs illumination.

  17. Color tunable emission through energy transfer from Yb3+ co-doped SrSnO3: Ho3+ perovskite nano-phosphor

    Science.gov (United States)

    Jain, Neha; Singh, Rajan Kr.; Sinha, Shriya; Singh, R. A.; Singh, Jai

    2018-04-01

    First time color tunable lighting observed from Ho3+ and Yb3+ co-doped SrSnO3 perovskite. Down-conversion and up-conversion (UC) photoluminescence emission spectra were recorded to understand the whole mechanism of energy migration between Ho3+ and Yb3+ ions. The intensity of green and red emission varies with Yb3+ doping which causes multicolour emissions from nano-phosphor. The intensity of UC red emission (654 nm) obtained from 1 at.% Ho3+ and 3 at.% Yb3+ co-doped nano-phosphor is nine times higher than from 1 at.% Ho3+ doped SrSnO3 nano-phosphor. Enhanced brightness of 654 nm in UC process belongs in biological transparency window so that it might be a promising phosphor in the bio-medical field. Moreover, for the other Yb3+ co-doped nano-phosphor, Commission Internationale de l'Éclairage chromaticity co-ordinates were found near the white region and their CCT values lie in the range 4900-5100 K indicating cool white. Decay time was measured for 545 nm emission of Ho3+ ion found in 7.652 and 8.734 µs at 355 nm excitation. The variation in lifetime was observed in ascending order with increasing Yb3+ concentration which supports PL emission spectra observation that with increasing Yb3+ concentration, rate of transition has changed. These studies reveal that Ho3+ and Yb3+ co-doped phosphor is useful for fabrication of white LEDs.

  18. Eu/Tb ions co-doped white light luminescence Y2O3 phosphors

    International Nuclear Information System (INIS)

    Tu Dong; Liang Yujun; Liu Rong; Li Daoyi

    2011-01-01

    Y 2 O 3 :Eu 3+ , Tb 3+ phosphors with white emission are prepared with different doping concentration of Eu 3+ and Tb 3+ ions and synthesizing temperatures from 750 to 950 deg. C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu 3+ and Tb 3+ co-doped Y 2 O 3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu 3+ and two at 481 and 541 nm originate from Tb 3+ , under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu 3+ and Tb 3+ ions were induced into the Y 2 O 3 lattice and the energy transfer from Tb 3+ →Eu 3+ ions in these phosphors was found. The Commission International de l'Eclairage (CIE) chromaticity shows that the Y 2 O 3 :Eu 3+ , Tb 3+ phosphors can obtain an intense white emission. - Highlights: → Novel phosphors Y 2 O 3 :Eu 3+ , Tb 3+ have been synthesized by co-precipitation method. → Samples emit white light with excellent color coordinates under UV excitation. → Luminescence color could be changed by varying the excitation wavelength. → Energy transfer from Tb 3+ →Eu 3+ ions in these phosphors was found.

  19. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    Science.gov (United States)

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  20. Luminescence properties of Sm{sup 3+}-doped Sr{sub 3}Sn{sub 2}O{sub 7} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Lei Bingfu, E-mail: tleibf@jnu.edu.cn [Department of Physics, Jinan University, Guangzhou 510632 (China); Department of Chemistry and Nanochemistry Institute, Jinan University, Guangzhou 510632 (China); Man Shiqing [Department of Chemistry and Nanochemistry Institute, Jinan University, Guangzhou 510632 (China); Department of Electronic Engineering, Jinan University, Guangzhou 510632 (China); Liu Yingliang [Department of Chemistry and Nanochemistry Institute, Jinan University, Guangzhou 510632 (China); Yue Song [Department of Physics, Jinan University, Guangzhou 510632 (China)

    2010-12-01

    We report on a luminescent phenomenon in Sm{sup 3+}-doped Sr{sub 3}Sn{sub 2}O{sub 7} afterglow phosphor. XRD, photoluminescence, afterglow emission spectra and long-lasting phosphorescence decay curve are used to characterize this phosphor. After irradiation by a 267-nm UV light for 5 min, the Sm{sup 3+}-doped Sr{sub 3}Sn{sub 2}O{sub 7} phosphor emits intense reddish-orange emitting afterglow from the {sup 4}G{sub 5/2} to {sup 6}H{sub J} (J = 5/2, 7/2, 9/2) transitions, and its afterglow can be seen with the naked eye in the dark clearly for more than 1 h after removal of the excitation source. Photoluminescence spectra reveal that the reddish-orange light-emitting long-lasting phosphorescence originate from the mixture of Sm{sup 3+} characteristic transitions. The afterglow decay curve of the Sm{sup 3+}-doped Sr{sub 3}Sn{sub 2}O{sub 7} phosphor contains a fast decay component and another slow decay one. The possible mechanism of this reddish-orange light-emitting LLP phosphor is also discussed based on the experiment results.

  1. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance

    Science.gov (United States)

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-07-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  2. Studies in crystal structure and luminescence properties of Eu3+-doped metal tungstate phosphors for white LEDs

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Kang, Shinhoo

    2011-01-01

    The correlation between the crystal structure and luminescent properties of Eu 3+ -doped metal tungstate phosphors for white LEDs was investigated. Red-emitting A 4-3x (WO 4 ) 2 :Eu x 3+ (A=Li, Na, K) and B (4-3x)/2 (WO 4 ) 2 :Eu x 3+ (B=Mg, Ca, Sr) phosphors were synthesized by solid-state reactions. The findings confirmed that these phosphors exhibited a strong absorption in the near UV to green range, due to the intra-configurational 4f-4f electron transition of Eu 3+ ions. The high doping concentration of Eu 3+ enhanced the absorption of near UV light and red emission without any detectable concentration quenching. Based on the results of a Rietveld refinement, it was attributed to the unique crystal structure. In the crystal structure of the Eu 3+ -doped metal tungstate phosphor, the critical energy transfer distance is larger than 5 A so that exchange interactions between Eu 3+ ions would occur with difficulty, even at a high doping concentration. The energy transfer between Eu 3+ ions, which causes a decrease in red emission with increasing concentration of Eu 3+ , appears to be due to electric multi-polar interactions. In addition, the Eu-O distance in the host lattice affected the shape of emission spectrum by splitting of emission peak at the 5 D 0 → 7 F 2 transition of Eu 3+ . - Highlights: → Eu 3+ -doped metal tungstate was synthesized as a red phosphor for white LEDs. → Crystal structure is tetragonal with a space group of I4 1 /c. → A strong absorption in the near UV to green range was observed. → High doping of Eu 3+ enhanced the absorption of near UV light and red emission.

  3. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+ ,Dy3+ co-doped Ba2 MgSi2 O7 phosphors.

    Science.gov (United States)

    Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali

    2016-11-01

    In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The

  4. Enhanced red emission of LaVO{sub 4}:Eu{sup 3+} phosphors by Li-doping

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Wook; Yang, Hyun Kyoung; Chung, Jong Won; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun [Pukyoung National University, Busan (Korea, Republic of); Jang, Ki Wan; Lee, Ho Sueb [Changwon National University, Changwon (Korea, Republic of); Yi, Soung Soo [Silla University, Busan (Korea, Republic of)

    2010-12-15

    LaVO{sub 4} phosphors were synthesized by using a solid state reaction, and were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The XRD patterns of the Li-doped LaVO{sub 4}:Eu{sup 3+} powder phosphors revealed a mixture of tetragonal and monoclinic phases. The tetragonal phase of the LaVO{sub 4}:Eu{sup 3+} phosphor showed a higher PL intensity than the monoclinic one, despite the presence of both monoclinic and tetragonal structures. The Li-doped LaVO{sub 4}:Eu{sup 3+} powder phosphors absorbed strongly at 396 nm and exhibited strong red emission at approximately 619.5 nm due to the {sup 5}D{sub 0} {yields} {sup 7}F{sub 2} transition. The incorporation of Li{sup +} ions into the LaVO{sub 4}:Eu{sup 3+} powder can lead to a remarkable increase in photoluminescence. The enhanced luminescence is attributed to the incorporation of Li{sup +} ions that may act as a sensitizers for effective energy transfer. This phosphor has promising applications in near-UV light-emitting diodes(LEDs).

  5. Enhanced luminescence properties of YBO{sub 3}:Eu{sup 3+} phosphors by Li-doping

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnaiah, R. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Yi, Soung Soo, E-mail: ssyi@silla.ac.kr [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Moon, Byung Kee; Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2011-04-15

    Different concentrations of Li-doped YBO{sub 3}:Eu{sup 3+} phosphors have been prepared by the conventional solid state reaction method and were characterized by X-ray diffraction, field emission scanning electron microscopy, photoluminescence excitation and emission measurements. An intense reddish orange emission is observed under UV excitation and the emitted radiation was dominated by an orange peak at 594 nm resulted from the {sup 5}D{sub 0} {yields} {sup 7}F{sub 1} transitions of Eu{sup 3+} ions. The brightness of the YBO{sub 3}:Eu{sup 3+} phosphor was found greatly improved with Li-doping accompanied by slight improvement in the purity of the color which might be attributed to improvement in crystallinity, grain sizes and creation of oxygen vacancies with Li-doping. The observed results have been discussed in comparison with similar reported works.

  6. Optical properties, luminescence quenching mechanism and radiation hardness of Eu-doped GaN red powder phosphor

    International Nuclear Information System (INIS)

    Jadwisienczak, W.; Wisniewski, K.; Spencer, M.; Thomas, T.; Ingram, D.

    2010-01-01

    We report on the luminescence quenching mechanism of Eu-doped GaN powder phosphor produced with a low-cost, high yield rapid-ammonothermal method. We have studied as-synthesized and acid rinsed Eu-doped GaN powders with the Eu concentration of ∼0.5 at.%. The Eu-doped GaN photoluminescence (PL) was investigated with 325 nm excitation wavelength at hydrostatic pressures up to 7.7 GPa in temperature range between 12 K and 300 K. The room temperature integrated Eu 3+ ion PL intensity from acid rinsed material is a few times stronger than from the as-synthesized material. The temperature dependent PL studies revealed that the thermal quenching of the dominant Eu 3+ ion transition ( 5 D 0 → 7 F 2 ) at 622 nm is stronger in the chemically modified phosphor indicating more efficient coupling between the Eu 3+ ion and passivated GaN powder grains. Furthermore, it was found that thermal quenching of Eu 3+ ion emission intensity can be completely suppressed in studied materials by applied pressure. This is due to stronger localization of bound exciton on Eu 3+ ion trap induced by hydrostatic pressure. Furthermore, the effect of 2 MeV oxygen irradiation on the PL properties has been investigated for highly efficient Eu-doped GaN phosphor embedded in KBr-GaN:Eu 3+ composite. Fairly good radiation damage resistance was obtained for 1.7 x 10 12 to 5 x 10 13 cm -2 oxygen fluence. Preliminary data indicate that Eu-doped GaN powder phosphor can be considered for devices in a radiation environment.

  7. Ce3+-Doped garnet phosphors : Composition modification, luminescence properties and applications

    NARCIS (Netherlands)

    Xia, Zhiguo; Meijerink, Andries

    2017-01-01

    Garnets have the general formula of A3B2C3O12 and form a wide range of inorganic compounds, occurring both naturally (gemstones) and synthetically. Their physical and chemical properties are closely related to the structure and composition. In particular, Ce3+-doped garnet phosphors have a long

  8. Luminescence enhancement in Eu3+, Sm3+ co-doped liy(MoO4)2 nano-phosphors by sol-gel process.

    Science.gov (United States)

    Zhou, Xianju; Wang, Guangchuan; Zhou, Tonghui; Zhou, Kaining; Li, Qingxu; Wang, Zhongqing

    2014-05-01

    A series of LiY(0.95-x)Eu(0.05)Sm(x)(MoO4)2 red light emitting phosphors were synthesized by sol-gel technique. The phase impurity and spectroscopic properties were characterized by X-ray Diffraction (XRD), Photo-Luminescence (PL) and Photo-Luminescence Excitation (PLE) spectra, respectively. It is found that the PLE spectra of the Eu3+, Sm3+ co-doped nanoparticles are enhanced and broadened as compared with the solely doped samples, which will make the co-doped phosphors match better with blue and/or UV GaN based LED chips. The red emission intensity of Eu3+ is largely enhanced by the energy transfer from Sm3+. The mechanism of the enhancement is clearly proven to be the increase in the quantum efficiency of 5D0 state of Eu3+ rather than the increase in the absorption of Eu3+. Meanwhile, the characteristic f-f transitions of Sm3+ are greatly reduced, resulting in little influence in the color purity of the co-doped phosphors. The present material is an amendatory promising red light emitting phosphor for white LEDs.

  9. Photovoltaic Performance Enhancement of Silicon Solar Cells Based on Combined Ratios of Three Species of Europium-Doped Phosphors.

    Science.gov (United States)

    Ho, Wen-Jeng; You, Bang-Jin; Liu, Jheng-Jie; Bai, Wen-Bin; Syu, Hong-Jhang; Lin, Ching-Fuh

    2018-05-18

    This paper presents a scheme for the enhancement of silicon solar cells in terms of luminescent emission band and photovoltaic performance. The proposed devices are coated with an luminescent down-shifting (LDS) layer comprising three species of europium (Eu)-doped phosphors mixed within a silicate film (SiO₂) using a spin-on film deposition. The three species of phosphor were mixed at ratios of 0.5:1:1.5, 1:1:1, or 1.5:1:0.5 in weight percentage (wt %). The total quantity of Eu-doped phosphors in the silicate solution was fixed at 3 wt %. The emission wavelengths of the Eu-doped phosphors were as follows: 518 nm (specie-A), 551 nm (specie-B), and 609 nm (specie-C). We examined the extended luminescent emission bands via photoluminescence measurements at room temperature. Closely matching the luminescent emission band to the high responsivity band of the silicon semiconductor resulted in good photovoltaic performance. Impressive improvements in efficiency were observed in all three samples: 0.5:1:1.5 (20.43%), 1:1:1 (19.67%), 1.5:1:0.5 (16.81%), compared to the control with a layer of pure SiO₂ (13.80%).

  10. Enhancement of the mechanoluminescence properties on Ca2MgSi2O7:Dy3+ phosphor by co-doping of charge compensator ions

    Science.gov (United States)

    Sahu, Ishwar Prasad

    2016-08-01

    In the present article, effect of charge compensator ions (R+ = Li+, Na+ and K+) on dysprosium-doped di-calcium magnesium di-silicate (Ca2MgSi2O7:Dy3+) phosphors were investigated. The Ca2MgSi2O7:Dy3+ and Ca2MgSi2O7:Dy3+, R+ phosphors, were prepared by solid-state reaction method. The crystal structures of sintered phosphors were an akermanite-type structure which belongs to the tetragonal crystallography. The peaks of mechanoluminescence (ML) intensity were increased linearly with increasing impact velocity of the moving piston. Thus, present investigation indicates that the piezoelectricity was responsible to produce ML in prepared phosphors. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity. Addition of charge compensator ions enhances the luminescence intensity of prepared Ca2MgSi2O7:Dy3+ phosphors, because they neutralize the charge generated by Dy3+ substitution for Ca2+ ions. The role of Li+ ions among all charge compensator ions (Na+ or K+) used was found to be most effective for enhanced Dy3+ ion emission. These ML materials can be used in the devices such as stress sensor, fracture sensor, impact sensor, damage sensors, safety management monitoring system and fuse system for army warheads.

  11. NIR optimized dual mode photoluminescence in Nd doped Y{sub 2}O{sub 3} ceramic phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sukul, Prasenjit Prasad; Mahata, Manoj Kumar; Kumar, Kaushal, E-mail: kumar.bhu@gmail.com

    2017-05-15

    Authors here report the dual mode photo luminescence emission in neodymium doped yttrium oxide ceramic phosphor upon 808 nm diode laser excitation. Single cubic phase Nd{sup 3+} doped Y{sub 2}O{sub 3} phosphor was synthesized using urea assisted combustion route. Nd{sup 3+} doped Y{sub 2}O{sub 3} ceramic phosphor has given photoluminescence in a wide wavelength range covering near infrared window (850–1100 nm) to the visible region i.e. green (525 nm) and red (680 nm) upon 808 nm diode laser excitation. The two most intense bands on 808 nm excitation were observed at 750 nm and 1064 nm due to the upconversion and downconversion emission processes. The sample was also tested for emission using 980 nm and intense green emission due to the trace presence of Er{sup 3+} in the raw materials was seen in the sample. The excitation power dependent upconversion measurements have shown that transitions {sup 4}F{sub 9/2}→{sup 4}I{sub 9/2} and {sup 4}S{sub 3/2}→{sup 4}I{sub 9/2} are thermally coupled and can be used to estimate the sample temperature using Boltzmann relation.

  12. Luminescence enhancement of (Sr1-x Mx )2 SiO4 :Eu2+ phosphors with M (Ca2+ /Zn2+ ) partial substitution for white light-emitting diodes.

    Science.gov (United States)

    Wang, Yulong; Zhang, Wentao; Gao, Yang; Long, Jianping; Li, Junfeng

    2017-02-01

    Eu 2 + -doped Sr 2 SiO 4 phosphor with Ca 2 + /Zn 2 + substitution, (Sr 1-x M x ) 2 SiO 4 :Eu 2 + (M = Ca, Zn), was prepared using a high-temperature solid-state reaction method. The structure and luminescence properties of Ca 2 + /Zn 2 + partially substituted Sr 2 SiO 4 :Eu 2 + phosphors were investigated in detail. With Ca 2 + or Zn 2 + added to the silicate host, the crystal phase could be transformed between the α-form and the β-form of the Sr 2 SiO 4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f 6 5d 1  → 4f 7 transition of Eu 2 + ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu 2 + ions occupying the ten-fold oxygen-coordinated Sr.(I) site and the nine-fold oxygen-coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr 2 SiO 4 :Eu 2 + phosphors, improved remarkably on Ca 2 + /Zn 2 + addition, and promote its application in white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Eu-doped barium aluminium oxynitride with the ß-alumina-type structure as new blue-emitting phosphor

    NARCIS (Netherlands)

    Jansen, S.R.; Migchels, J.M.; Hintzen, H.T.J.M.; Metselaar, R.

    1999-01-01

    Attractive new blue-emitting phosphors for use in low-pressure mercury gas discharge lamps are synthesized by Eu-substitution in the barium aluminum oxynitride host lattice with the -alumina-type structure. The emission spectra of these phosphors for 254 nm excitation show a band at about 450 nm

  14. Photocatalytic characteristics for the nanocrystalline TiO{sub 2} on the Ag-doped CaAl{sub 2}O{sub 4}:(Eu,Nd) phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Sik, E-mail: jskim@uos.ac.kr; Sung, Hyun-Je; Kim, Bum-Joon

    2015-04-15

    Highlights: • The photocatalytic reactivity of the TiO{sub 2}-coated on the Ag-doped long-lasting phosphor (CaAl{sub 2}O{sub 4}:Eu{sup 2+},Nd{sup 3+}). • The photodecomposition of benzene gas under visible light irradiation. • The TiO{sub 2}-coated on the Ag-doped long-lasting phosphor showed much higher photocatalytic reactivity. • The light emitted from the long-lasting phosphors contributed to the photo generation of TiO{sub 2}. - Abstract: This study investigated the photocatalytic behavior of nanocrystalline TiO{sub 2} deposited on Ag-doped long-lasting phosphor (CaAl{sub 2}O{sub 4}:Eu{sup 2+},Nd{sup 3+}). The CaAl{sub 2}O{sub 4}:Eu{sup 2+},Nd{sup 3+} phosphor powders were prepared via conventional sintering using CaCO{sub 3}, Al{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, and Nd{sub 2}O{sub 3} as raw materials according to the appropriate molar ratios. Silver nanoparticles were loaded on the phosphor by mixing with an aqueous Ag-dispersion solution. Nanocrystalline TiO{sub 2} was deposited on Ag-doped CaAl{sub 2}O{sub 4}:Eu{sup 2+},Nd{sup 3+} powders via low-pressure chemical vapor deposition (LPCVD). The TiO{sub 2} coated on the phosphor was actively photo-reactive under irradiation with visible light and showed much faster benzene degradation than pure TiO{sub 2}, which is almost non-reactive. The coupling of TiO{sub 2} with phosphor may result in an energy band bending in the junction region, which then induces the TiO{sub 2} crystal at the interface to be photo-reactive under irradiation with visible light. In addition, the intermetallic compound of CaTiO{sub 3} that formed at the interface between TiO{sub 2} and the CaAl{sub 2}O{sub 4}:(Eu{sup 2+},Nd{sup 3+}) phosphor results in the formation of oxygen vacancies and additional electrons that promote the photodecomposition of benzene gas. The addition of Ag nanoparticles enhanced the photocatalytic reactivity of the TiO{sub 2}/CaAl{sub 2}O{sub 4}:Eu{sup 2+},Nd{sup 3+} phosphor. TiO{sub 2} on the Ag-doped

  15. Improved efficiency of dye-sensitized solar cells by doping of strontium aluminate phosphor in TiO2 photoelectrode

    Directory of Open Access Journals (Sweden)

    Hwangbo Seung

    2015-06-01

    Full Text Available SrAl2O4:Eu2+, Dy3+ phosphor was synthesized by chemical solution route to use as a dopant in TiO2 layer employed as a photoelectrode for down conversion of ultraviolet and near-ultraviolet to visible and near-infrared light in a dye-sensitized solar cell. Nano-crystalline structure of the SrAl2O4:Eu2+, Dy3+ powder was confirmed by X-ray diffraction analysis and field emission scanning electron microscopy. Monitored at 520 nm, SrAl2O4:Eu2+, Dy3+ phosphor showed emission peaks at 460 to 610 nm due to 4f6 4f7 transitions of Eu2+ ions. For the study, SrAl2O4:Eu2+, Dy3+ phosphor-doped TiO2 layer was deposited on fluorine-doped tin oxide coated glass by electrostatic spray deposition. The short circuit current, open circuit voltage, fill factor, and conversion efficiency of the cells were measured. Experimental results revealed that the device efficiency for the SrAl2O4:Eu2+, Dy3+ phosphor-doped TiO2 layer increased to 7.20 %, whereas that of the pure-TiO2 photoelectrode was 4.13 %.

  16. Photovoltaic Performance Enhancement of Silicon Solar Cells Based on Combined Ratios of Three Species of Europium-Doped Phosphors

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2018-05-01

    Full Text Available This paper presents a scheme for the enhancement of silicon solar cells in terms of luminescent emission band and photovoltaic performance. The proposed devices are coated with an luminescent down-shifting (LDS layer comprising three species of europium (Eu-doped phosphors mixed within a silicate film (SiO2 using a spin-on film deposition. The three species of phosphor were mixed at ratios of 0.5:1:1.5, 1:1:1, or 1.5:1:0.5 in weight percentage (wt %. The total quantity of Eu-doped phosphors in the silicate solution was fixed at 3 wt %. The emission wavelengths of the Eu-doped phosphors were as follows: 518 nm (specie-A, 551 nm (specie-B, and 609 nm (specie-C. We examined the extended luminescent emission bands via photoluminescence measurements at room temperature. Closely matching the luminescent emission band to the high responsivity band of the silicon semiconductor resulted in good photovoltaic performance. Impressive improvements in efficiency were observed in all three samples: 0.5:1:1.5 (20.43%, 1:1:1 (19.67%, 1.5:1:0.5 (16.81%, compared to the control with a layer of pure SiO2 (13.80%.

  17. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    International Nuclear Information System (INIS)

    Gouveia-Neto, A.S.; Silva, A.F. da; Bueno, L.A.; Costa, E.B. da

    2012-01-01

    Rare-earth doped oxyfluoride 75SiO 2 :25PbF 2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu 3+ , Sm 3+ , Tb 3+ , Eu 3+ /Tb 3+ , and Sm 3+ /Tb 3+ ions incorporated into low-phonon-energy PbF 2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO 2 :25PbF 2 host herein reported is a promising contender for white-light LED applications. - Highlights: ► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

  18. Luminescence in Eu2+ and Ce3+ doped SrCaP2O7 phosphors

    Directory of Open Access Journals (Sweden)

    K.N. Shinde

    Full Text Available Eu2+ and Ce3+ doped SrCaP2O7 has been achieved by modified solid state diffusion in reducing atmosphere. The prepared phosphor powders have been identified by their characteristic X-ray diffraction patterns. The mixed phases of α-Sr2P2O7 type with orthorhombic and α-Ca2P2O7 type with monoclinic form were investigated. Its excitation wavelength ranging from 250 to 430 nm fits well with the characteristic emission of UV light-emitting diode (LED. The excitation and emission spectra indicate that these phosphors can be effectively excited by the near-UV light, and emits blue (visible range due to 4f7 → 4f65d1 transition of Eu2+ particularly, SrCaP2O7: Eu2+ whereas, photoluminescence excitation spectrum measurements of Ce3+ activated SrCaP2O7 shows that the phosphor can be efficiently excited by UV–Vis light from 280 to 310 nm to realize emission in the near visible range due to the 5d–4f transition of Ce3+ ions which is applicable for scintillation purpose. The impacts of doping of divalent europium and trivalent cerium on photoluminescence properties on SrCaP2O7 pyrophosphate phosphors were investigated and I propose a feasible interpretation. Keywords: Phosphor, Luminescence, XRD, LED, FTIR

  19. Long afterglow property of Er{sup 3+} doped Ca{sub 2}SnO{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongyun, E-mail: dyz@sit.edu.cn; Shi, Mingming; Sun, Yiwen; Guo, Yunyun; Chang, Chengkang

    2016-05-15

    A novel green emitting long afterglow phosphor, Er{sup 3+} -doped Ca{sub 2}SnO{sub 4} (Ca{sub 2}SnO{sub 4}:Er{sup 3+}), was prepared successfully via a traditional high temperature solid–state reaction method. Its properties have been characterized and analyzed by utilizing x-ray diffraction (XRD), photoluminescence spectroscope (PLS), afterglow decay curve (ADC) and thermal luminescence spectroscope (TLS). Three main emission peaks of PLS locate at 524, 550 and 668 nm, corresponding to CIE chromaticity coordinates of x = 0.326, y = 0.6592. An optimal doping concentration of Er{sup 3+} of 2% was determined. The Ca{sub 2}SnO{sub 4}:Er{sup 3+} phosphors showed a typical triple-exponential afterglow decay behavior when the UV source was switched off. Thermal simulated luminescence study indicated that the persistent afterglow of Ca{sub 2}SnO{sub 4}:2 mol% Er{sup 3+} phosphors was generated by the suitable electron or hole traps which were resulted from the doping the Ca{sub 2}SnO{sub 4} host with rare-earth ions (Er{sup 3+}). - Highlights: • A novel green emitting long afterglow phosphor, Ca{sub 2}SnO{sub 4}:Er{sup 3+}, was prepared. • An optimal doping concentration of Er{sup 3+} of 2% was determined. • After the UV source was turned off, the Ca{sub 2}SnO{sub 4}:Er{sup 3+} showed a typical triple-exponential afterglow decay behavior. • CIE chromaticity coordinates results confirmed a green light emitting of the Ca{sub 2}SnO{sub 4}:Er{sup 3+}. • The persistent afterglow of the Ca{sub 2}SnO{sub 4}:Er{sup 3+} was attributed to suitable electron or hole traps.

  20. Photoluminescence in Sm3+ doped Ba2P2O7 phosphor prepared by solution combustion method

    Science.gov (United States)

    Ghawade, Sonal P.; Deshmukh, Kavita A.; Dhoble, S. J.; Deshmukh, Abhay D.

    2018-05-01

    In this paper, Sm3+ doped Ba2P2O7 phosphors were synthesized via a Solution combustion method. The crystal structure of the phosphor was characterized by XRD. Orange-red emission was observed from these phosphors under near-ultraviolet (UV) excitation at 404 nm. The luminescence properties of the obtained phosphors were characterized by different techniques. The Ba2P2O7:Sm3+ phosphor can be efficiently excited by near-UV and blue light, and their emission spectrum consists of three emission peaks, at 564, 602, and 646 nm, respectively. Based on the results, the as prepared Ba2P2O7:Sm3+ phosphors are promising orange-red-emitting phosphors exhibit great potential may be applicable as a spectral convertor in c-Si solar cell to enhance the efficiency of solar cell in future.

  1. Phosphoric acid doped AB-PBI membranes and its applications in high temperature PEMFC

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Bjerrum, Niels

    2005-01-01

    Poly(2,5-benzimidazole) (ab-PBI) was prepared from 3,4-diaminobenzoic acid via a polymerisation reaction. The obtained polymer exhibits excellent thermal stability in a temperature range ….. The membrane of ab-PBI when doped with phosphoric acid at room temperaturepresents high proton conductivity...

  2. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.e. me...

  3. Photoluminescence characteristics of reddish-orange Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jun Ho; Bandi, Vengala Rao; Grandhe, Bhaskar Kumar; Jang, Ki Wan; Lee, Ho Sueb [Changwon National University, Changwon (Korea, Republic of); Yi, Soung Soo [Silla University, Busan (Korea, Republic of); Jeong, Jung Hyun [Pukyong National University, Busan (Korea, Republic of)

    2011-02-15

    Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors were synthesized by using a conventional solid state reaction method at 750 .deg. C. The emission spectra of KZnGd{sub 1-x}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} with {lambda}{sub ex} = 395 nm and KZnGd{sub 1-y}(PO{sub 4}){sub 2}:Sm{sup 3+}{sub y} with {lambda}{sub ex} = 403 nm phosphors showed intense {sup 5}D{sub 0} {yields} {sup 7}F{sub 1}, {sup 4}G{sub 5/2} {yields} {sup 6}H{sub 7/2} emission transitions at 595 nm and 599 nm, respectively. The optimum relative intensity of the KZnGd{sub 1-x-y}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} , Sm{sup 3+}{sub y} phosphor was obtained for the doping concentrations of (x = 0.09, y = 0.01). In addition, the temperature dependent luminescence intensity of the synthesized phosphors was investigated and the thermal stability of the KZnGd(PO{sub 4}){sub 2}:Eu{sup 3+} phosphor was found to be higher than that of standard YAG:Ce{sup 3+} and KZnGd{sub 1-x-y}(PO{sub 4}){sub 2}:Eu{sup 3+}{sub x} Sm{sup 3+}{sub y} under near ultra-violet (NUV) light emitting diode excitation (LED). Therefore, we suggest that Eu{sup 3+} or Sm{sup 3+} singly-doped and Eu{sup 3+} and Sm{sup 3+} co-doped KZnGd(PO{sub 4}){sub 2} phosphors should be efficient for different red-color-emitting display device applications and NUV-LED-based white-light-emitting diodes.

  4. Method of preparing a thermoluminescent phosphor

    Science.gov (United States)

    Lasky, Jerome B.; Moran, Paul R.

    1979-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta ays in the presence of a background of more penetrating radiation.

  5. Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF4 phosphors

    Science.gov (United States)

    Kumar, Deepak; Verma, Kartikey; Verma, Shefali; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    NaYF4 is regarded as the best upconversion (UC) matrix owing to its low phonon energy, more chemical stability, and a superior refractive index. This review reports on the various synthesis techniques of lanthanide-doped NaYF4 phosphors for UC application. The UC intensity depends on different properties of the matrix and those are discussed in detail. Plasmon-enhanced luminescence UC of the lanthanide-doped NaYF4 core-shells structure is discussed based on a literature survey. The present review provides the information about how the UC intensity can be enhanced. The idea about the UC is then deliberately used for versatile applications such as luminescent materials, display devices, biomedical imaging and different security appliances. In addition, the present review demonstrates the recent trends of NaYF4 UC materials in solar cell devices. The role of NaYF4 phosphor to eradicate the spectral variance among the incident solar spectrum, semiconductor as well as the sub-band gap nature of the semiconductor materials is also discussed in detail. Considering the fact that the research status on NaYF4 phosphor for photovoltaic application is now growing, the present review is therefore very important to the researchers. More importantly, this may promote more interesting research platforms to investigate the realistic use of UC nanophosphors as spectral converters for solar cells.

  6. White- and blue-light-emitting dysprosium(III) and terbium(III)-doped gadolinium titanate phosphors.

    Science.gov (United States)

    Antić, Ž; Kuzman, S; Đorđević, V; Dramićanin, M D; Thundat, T

    2017-06-01

    Here we report the synthesis and structural, morphological, and photoluminescence analysis of white- and blue-light-emitting Dy 3 + - and Tm 3 + -doped Gd 2 Ti 2 O 7 nanophosphors. Single-phase cubic Gd 2 Ti 2 O 7 nanopowders consist of compact, dense aggregates of nanoparticles with an average size of ~25 nm for Dy 3 + -doped and ~50 nm for Tm 3 + -doped samples. The photoluminescence results indicated that ultraviolet (UV) light excitation of the Dy 3 + -doped sample resulted in direct generation of white light, while a dominant yellow emission was obtained under blue-light excitation. Intense blue light was obtained for Tm 3 + -doped Gd 2 Ti 2 O 7 under UV excitation suggesting that this material could be used as a blue phosphor. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Synthesis and luminescence properties of Ce{sup 3+} doped MWO{sub 4} (M=Ca, Sr and Ba) microcrystalline phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Dabre, K.V. [Department of Physics, Arts, Commerce and Science College, Koradi, Nagpur (India); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur 440033 (India); Lochab, Jyoti [Radiotherapy Department, Safdarjung Hospital, New Delhi (India)

    2014-05-01

    The Ce{sup 3+} doped and undoped samples of alkali earth metal tungstate MWO{sub 4} (M=Ca, Sr, and Ba) phosphors are synthesized by a co-precipitation method in controlled pH environment. The resulting phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), photoluminescence (PL) and thermoluminescence (TL). XRD pattern and SEM micrographs reveal the formation of agglomerated microcrystalline phosphor. FTIR spectra show the strong absorption around 821 cm{sup −1} due to characteristic vibrations of (WO{sub 4}){sup 2−} complex. PL excitation spectra show broadband in the UV region having peak at 280 nm, and the emission spectrum shows broadband in the visible region with peak in the blue region. The PL emission intensity increases with Ce{sup 3+} concentration with the most effective concentration at 5 mol%. The complex TL glow curve of Ce{sup 3+} doped phosphors is deconvoluted by using a TLAnal computer program. The trap parameters obtained by TLAnal were compared with those calculated by Chen's method and a possible model for TL is discussed. - Highlights: • M{sub 1−x}WO{sub 4}:Ce{sub x} (M=Ca, Sr, and Ba) phosphors are synthesized by the co-precipitation method in controlled pH environment. • Phosphor exhibits broad emission band with maximum in the blue region. • Enhancement of PL emission intensity due to doping of Ce in a host lattice. • The complex TL glow curves were deconvoluted by TLAnal. • FTIR spectra show the main transmittance peaks related to v{sub 3} and v{sub 4} vibration modes of W–O bonds.

  8. Co-operative energy transfer in Yb3+-Er3+ co-doped SrGdxOy upconverting phosphor

    Science.gov (United States)

    Kumar, Ashwini; Pathak, Trilok K.; Dhoble, S. J.; . Terblans, J. J.; Swart, H. C.

    2018-04-01

    Upconversion nanoparticles (UCNPs) have shown considerable interest in many fields; however, low upconversion efficiency of UCNPs is still the most severe limitation of their applications. Yb3+ and Er3+ co-doped SrGd4O7/Gd2O3(SGO) upconversion (UC) phosphors were synthesized by a modified co-precipitation process. The UC properties were investigated by direct excitation with a 980 nm laser. It was observed that the as prepared materials showed relatively strong green emission, while upon the incorporation of the Er3+ ion, there was an increase in the upconversion luminescence intensity for the red component. The effect of different doping concentration of Er3+on the emission spectra and X-ray diffraction patterns of the UC materials have also been studied. The luminescence lifetimes and Commission Internationale de L'Eclairage coordinates for these as prepared samples were determined to understand the energy transfer (ET) mechanisms occurring between Yb3+ and Er3+ in the SGO host matrix. The UC luminescence intensity as a function of laser pump power was monitored and it was confirmed that the UC process in SGO:Yb3+/Er3+is a two-photon absorption process. The findings reported here are expected to provide a better approach for understanding of the ET mechanisms in the oxide based Yb3+/Er3+ co-doped UC phosphors. This study might be helpful in precisely defined applications where optical transitions are essential criterion and this can be easily achieved by smart tuning of the emission properties of Yb3+/Er3+ co-doped UC phosphors.

  9. Using rare earth doped thiosilicate phosphors in white light emitting LEDs: Towards low colour temperature and high colour rendering

    International Nuclear Information System (INIS)

    Smet, P.F.; Korthout, K.; Haecke, J.E. van; Poelman, D.

    2008-01-01

    Rare earth doped thiosilicates are promising materials for use in phosphor converted light emitting diodes (pcLEDs). These phosphors (including the hosts Ca 2 SiS 4 , BaSi 2 S 5 and Ba 2 SiS 4 in combination with Ce 3+ and/or Eu 2+ doping) cover the entire visible part of the spectrum, as the emission colour can be changed from deep blue to red. The photoluminescence emission spectrum and the overlap of the excitation spectrum with the emission of pumping LEDs is evaluated. The trade-off between high colour rendering and high electrical-to-optical power efficiency is discussed by simulation with both blue and UV emitting LEDs. Finally, a phosphor combination with low colour temperature (3000 K) and high colour rendering (CRI = 93) is proposed

  10. Color tunability of Sm{sup 3+} doped antimony–phosphate glass phosphors showing broadband fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, P. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Zhang, J.J., E-mail: zhangjj@dlpu.edu.cn [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Shen, L.F. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Wang, Z.Q. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Pun, E.Y.B. [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2016-10-15

    Sm{sup 3+} doped multicomponent antimony phosphate (MSP) luminescent glasses were prepared and tunable white fluorescence has been investigated. Broad visible emission depending on excitation wavelength is validated to be dominated by discrepant Sb{sup 3+} emitting centers. Group of narrow emissions from Sm{sup 3+} is beneficial to adding yellow and red components in Sm{sup 3+} doped MSP glasses, which is strengthened by effective energy transfer from Sb{sup 3+} to Sm{sup 3+}. Excitation wavelength selection and Sm{sup 3+} concentration adjustment are two feasible routes to optimize luminescence color in Sm{sup 3+} doped MSP glasses and the color tunability of fluorescence indicates that amorphous Sm{sup 3+} doped MSP glass phosphors possess potential for ideal white light devices.

  11. Thermoluminescence glow curve analysis and CGCD method for erbium doped CaZrO{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Ratnesh, E-mail: 31rati@gmail.com [Department of Physics, Bhilai Institute of Technology, Raipur, 493661 (India); Chopra, Seema [Department Physics, G.D Goenka Public School (India)

    2016-05-06

    The manuscript report the synthesis, thermoluminescence study at fixed concentration of Er{sup 3+} (1 mol%) doped CaZrO{sub 3} phosphor. The phosphors were prepared by modified solid state reaction method. The powder sample was characterized by thermoluminescence (TL) glow curve analysis. In TL glow curve the optimized concentration in 1mol% for UV irradiated sample. The kinetic parameters were calculated by computerized glow curve deconvolution (CGCD) techniaue. Trapping parameters gives the information of dosimetry loss in prepared phosphor and its usability in environmental monitoring and for personal monitoring. CGCD is the advance tool for analysis of complicated TL glow curves.

  12. Thermoluminescence studies of natural and doped calcium fluoride phosphors

    International Nuclear Information System (INIS)

    El Kolaly, M.A.

    1977-01-01

    The various aspects of thermoluminescence (TL) of calcium fluoride phosphors obtained both from natural and laboratory-grown CaF 2 crystals have been investigated in the temperature range from room temperature to 750 deg C. Dopants used in these studies were Mn, Y and lanthanide series rare earths. The aspects which have been investigated are : (1) effect of single and double doping on TL glow curves and TL emission spectra after gamma irradiation, (2) TL traps : their kinetics including evaluation of the activation energy using different techniques, their decay kinetics and their behaviour under partially filled conditions, and (3) effect of temperature on emission of intensity of X-ray induced luminescence and TL. During the course of these investigations, a new glow peak was observed at 650 deg C in natural CaF 2 . It was found that this peak could also be produced in synthetic CaF 2 doped with (Y + Sm). A new model for the TL trap has also been proposed. (M.G.B.)

  13. Spectrophotometric Analysis of Phosphoric Acid Leakage in High-Temperature Phosphoric Acid-Doped Polybenzimidazole Membrane Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Seungyoon Han

    2016-01-01

    Full Text Available High-temperature proton exchange membrane fuel cells (HT-PEMFCs utilize a phosphoric acid- (PA- doped polybenzimidazole (PBI membrane as a polymer electrolyte. The PA concentration in the membrane can affect fuel cell performance, as a significant amount of PA can leak from the membrane electrode assembly (MEA by dissolution in discharged water, which is a byproduct of cell operation. Spectrophotometric analysis of PA leakage in PA-doped polybenzimidazole membrane fuel cells is described here. This spectrophotometric analysis is based on measurement of absorption of an ion pair formed by phosphomolybdic anions and the cationoid color reagent. Different color reagents were tested based on PA detection sensitivity, stability of the formed color, and accuracy with respect to the amount of PA measured. This method allows for nondestructive analysis and monitoring of PA leakage during HT-PEMFCs operation.

  14. An investigation on photoluminescence and energy transfer of Eu{sup 3+}/Sm{sup 3+} single-doped and co-doped Ca{sub 4}YO(BO{sub 3}){sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Grandhe, Bhaskar Kumar [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Shin, Dong-Soo [Department of Chemistry, Changwon National University, Changwon (Korea, Republic of); Yi, Soung-Soo [Department of Photonics, Silla University, Busan (Korea, Republic of); Jeong, Jung-Hyun [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2013-07-15

    The present investigation aims to demonstrate the potentiality of Eu{sup 3+}/Sm{sup 3+} single-doped and co-doped Ca{sub 4}YO(BO{sub 3}){sub 3} phosphors, which were prepared by a sol–gel method. The X-ray diffraction (XRD) profiles showed that all the observed peaks could be attributed to the monoclinic phase of Ca{sub 4}YO(BO{sub 3}){sub 3}. From the measured emission profiles, we have noticed that both the single-doped Eu{sup 3+}/Sm{sup 3+} phosphors shows four emission transitions of {sup 5}D{sub 0} → {sup 7}F{sub 0,1,2,3} and {sup 4}G{sub 5/2} → {sup 6}H{sub 5/2,7/2,9/2,11/2} respectively. Among them, the {sup 5}D{sub 0} → {sup 7}F{sub 2} of Eu{sup 3+} and {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} of Sm{sup 3+} are intense emission transitions, leading to an intense red color emission from the prepared phosphors. The excitation spectra showed that Eu{sup 3+}/Sm{sup 3+} doped samples can be excited efficiently by 394 nm and 402 nm respectively, incidentally which matches well with the characteristic emission from UVLED. The co-doping of Sm{sup 3+} ions can broaden and strengthen the absorption of near UV region and to be efficient to sensitize the emission of the Ca{sub 4}YO(BO{sub 3}){sub 3}:Eu{sup 3+} phosphor. The mechanism involved in the energy transfer between Eu{sup 3+} and Sm{sup 3+} has been explained and elucidated by an energy level diagram. - Highlights: • Eu{sup 3+} or/and Sm{sup 3+}:Ca{sub 4}YO(BO{sub 3}){sub 3} phosphors were prepared by sol–gel method. • The co-doping of Sm{sup 3+} to Ca{sub 4}YO(BO{sub 3}){sub 3}:Eu{sup 3+} extends its absorption of NUV region. • It has intense absorption in NUV region, which is suitable for NUV LED. • The energy transfer process between Eu{sup 3+} and Sm{sup 3+} ions were discussed.

  15. Enhanced persistent red luminescence in Mn2+-doped (Mg,Zn)GeO3 by electron trap and conduction band engineering

    Science.gov (United States)

    Katayama, Yumiko; Kayumi, Tomohiro; Ueda, Jumpei; Tanabe, Setsuhisa

    2018-05-01

    The effect of Zn substitution on the persistent luminescence properties of MgGeO3:Mn2+-Ln3+ (Ln = Eu and Yb) red phosphors was investigated. The intensity of the persistent luminescence of the Eu3+ co-doped phosphors increased with increasing Zn content, whereas that of the Yb3+ co-doped samples decreased. For both series of lanthanide co-doped samples, the thermoluminescence (TL) glow peak shifted to the lower temperature side with increasing Zn content. These persistent luminescence properties were well explained in terms of lowering of the bottom of the conduction band relative to the ground state of the divalent lanthanide ions. Especially, in Eu3+ co-doped system, TL peak shifted from 520 K to 318 K by 50% Zn substitution. The persistent radiance of the (Mg0.5 Zn0.5)GeO3: Mn2+-Eu3+ sample at 1 h after ceasing UV light was 46 times stronger than that of MgGeO3:Mn2+-Eu3+, and 11 times stronger than that of ZnGa2O4: Cr3+ standard deep red persistent phosphor.

  16. Photoluminescence study of Dy3+ doped SrCeVO5 phosphor

    International Nuclear Information System (INIS)

    Suresh, K.; Dai, Ch. Vijay Anil; Murthy, K.V.R.

    2016-01-01

    Dy 3+ doped SrCeVO 5 phosphor was synthesized by the solid-state reaction method. Photoluminescence (PL) technique was performed to characterize the sample. The excitation spectra monitored under 520 nm and 610 nm wavelength was characterized by a broad band ranging from 220-400 nm. From the excitation spectra two main bands at 265 nm and 325 nm were observed. The PLE intensity of 520 nm monitored shows high intensity than 610 nm spectrum. The emission spectra of SrCeVO 5 phosphor under excitations at 265 nm and 325 nm exhibited main peak at 515 nm (cyan) which is a strong, intense well resolved peak with FWHM (full width at half maximum) of 130 nm is observed. This emission is mainly may be due to Ce ion but not Dy ion. The same emission under 640 and 670 nm excitations (up conversion) with good intensity was also observed. Commission international de l'eclairage (CIE) co-ordinates under these excitations revealed that this phosphor emit cyan colour and could be used for the generation of white light in display and lamp devices. (author)

  17. Thermoluminescence glow curve of CaZrO3 phosphor doped with Eu3+

    International Nuclear Information System (INIS)

    Tiwari, Neha; Kuraria, R.K.; Kuraria, S.R.

    2014-01-01

    Behaviour displayed by thermoluminescence analysis of Eu 3+ doped CaZrO 3 phosphor prepared by combustion synthesis technique. The sample was synthesized by combustion method because it is less time taking method as well as low temperature synthesis. For the thermoluminescence study the prepared sample irradiated by UV lamp the wavelength is 254 nm. Every time 2 mg of sample used for TL record at fixed heating rate 5℃ s -1 , sample shows well resolved higher temperature peak at 273℃. The high temperature peak shows more stability and less fading in prepared phosphor which is suitable for TL dosimetry. Also the variation with UV dose (5 to 30 min) shows sublinear response with dose

  18. Synthesis and luminescence characterization of Pr3+ doped Sr1.5Ca0.5SiO4 phosphor

    Science.gov (United States)

    Vidyadharan, Viji; Mani, Kamal P.; Sajna, M. S.; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2014-12-01

    Luminescence properties of Pr3+ activated Sr1.5Ca0.5SiO4 phosphors synthesized by solid state reaction method are reported in this work. Blue, orange red and red emissions were observed in the Pr3+ doped sample under 444 nm excitation and these emissions are assigned as 3P0 → 3H4, 3P0 → 3H6 and 3P0 → 3F4 transitions. The emission intensity shows a maximum corresponding to the 0.5 wt% Pr3+ ion. The decay analysis was done for 0.05 and 0.5 wt% Pr3+ doped samples for the transition 3P0 → 3H6. The life times of 0.05 and 0.5 wt% Pr3+ doped samples were calculated by fitting to exponential and non-exponential curve respectively, and are found to be 156 and 105 μs respectively. The non-exponential behaviour arises due to the statistical distribution of the distances between the ground state Pr3+ ions and excited state Pr3+ ions, which cause the inhomogeneous energy transfer rate. The XRD spectrum confirmed the triclinic phase of the prepared phosphors. The compositions of the samples were determined by the energy dispersive X-ray spectra. From the SEM images it is observed that the particles are agglomerated and are irregularly shaped. IR absorption bands were assigned to different vibrational modes. The well resolved peaks shown in the absorption spectra are identical to the excitation spectra of the phosphor samples. Pr3+ activated Sr1.5Ca0.5SiO4 phosphors can be efficiently excited with 444 nm irradiation and emit multicolour visible emissions. From the CIE diagram it can be seen that the prepared phosphor samples give yellowish-green emission.

  19. Synthesis and luminescent properties of Sm3+ doped zinc aluminate phosphor

    Science.gov (United States)

    Mahajan, Rubby; Kumar, Sandeep; Prakash, Ram; Kumar, Vinay

    2018-05-01

    Zinc Aluminate (ZnAl2O4) is a well-known wide band gap oxide that belongs to a class of mixed-metal oxides knows as spinels (AB2O4) where A and B are divalent and trivalent cations. Herein, the structural and photoluminescence properties of Sm3+ ion doped with ZnAl2O4 phosphors are reported. The nanophosphors were synthesized via solution combustion synthesis route at temperature 570 °C. The synthesized samples were characterized by X-ray powder diffraction (XRD), Photoluminescence (PL) spectroscopy, and Ultraviolet-visible spectroscopy. The XRD pattern confirms the cubic phase of phosphor. The calculated lattice parameter were found as a = b = c = 8.0517Å and V = 521.85Å3. The crystallite size of the phosphor was calculated using the Debye-Scherrer formula and found to be ˜19 nm. The emission spectrum at excitation wavelength of 401 nm gave the emission peaks at 563 nm, 601 nm, 648 nm, 697 nm corresponding to the transitions 4G5/2→ 6H5/2, 4G5/2→6H7/2, 4G5/2→6H9/2, 4G5/2 → 6H11/2 of Sm3+ ions, respectively. The diffuse reflectance spectrum was used to calculate the band gap of material and found to be 5.12 eV. The CIE coordinates were found to be (x = 0.56, y = 0.40) that falls in the orange red region of the color gamut. The present phosphor may have potential applications as phosphor for near UV WLED for solid state lighting.

  20. Effect of Al/Ga substitution on the structural and luminescence properties of Y3(Al1-xGax)5O12: Ce3+ phosphors

    Science.gov (United States)

    Fu, Sheng; Tan, Jin; Bai, Xin; Yang, Shanjie; You, Lei; Du, Zhengkang

    2018-01-01

    As candidates for display and lighting materials, a series of gallium-substituted cerium-doped yttrium aluminum garnet (Y3(GaxAl1-x)5O12: Ce3+) phosphors were synthesized by high temperature solid-state reaction. The phases, morphology, luminescence spectra and thermal stability of the phosphors were investigated. The volatilization of Ga2O3 induces the constituents out of stoichiometric ratio and different impurities in the system. The excitation and emission spectra occur red shift (339 nm - 351 nm) and blue shift (465 nm - 437 nm), and blue shift (541 nm - 517 nm), respectively. The spectra have no further blue shift and the luminescence intensity decrease with x over 0.4. Combining crystal structure with PL spectrum, the distortion of dodecahedron and crystal field splitting of 5d level of Ce3+ are influenced by Ga3+ in octahedral coordination polyhedron rather than tetrahedron. The crystalline perfection and Ga3+ occupying the tetrahedron induce less garnet phase formation, more impurities and the 5d level located in the conductive bands, thus accounting for the x = 0.4 turning points of the PL and PLE intensity. Based on the thermal quenching and CIE, the Y3(GaxAl1-x)5O12: Ce3+0.06 phosphors have great potential for use on the w-LED.

  1. Solvothermally synthesized europium-doped CdS nanorods: applications as phosphors

    International Nuclear Information System (INIS)

    Kumar, Sunil; Jindal, Zinki; Kumari, Nitu; Verma, Narendra Kumar

    2011-01-01

    To exploit the photoluminescent behavior of CdS at nanoscale with different doping concentration of europium—a rare earth element, we report the synthesis of Eu-doped CdS nanorods by using low temperature solvothermal process by using ethylenediamine. The outcomes can have future applications as phosphors, photovoltaic cells, lasers, light emitting diodes, bio-imaging, and sensors. The doping was confirmed by electron dispersive spectroscopy supported by X-ray diffraction. From scanning electron microscopy and transmission electron microscopy analysis it was observed that the average diameter of the Cd 1−x Eu x S nanorods is about 10–12 nm having lengths in the range of 50–100 nm. UV–Visible spectroscopy study was carried out to determine the band gap of the nanorods and the absorbance peaks showed blue shift with respect to the bulk CdS. The blue shift was also observed as the doping concentration of Eu increases. From photoluminescence (PL) studies at λ ex = 450 nm, peaks at 528 and 540 nm were observed due to CdS, peak at 570 nm is due to defects related transitions, while the peak at 613 nm is due to Eu. As the doping concentration of Eu is increased the intensity of the luminescent peak at 613 nm is increased. Thermogravimetric analysis showed the nanorods are thermally stable up to 300 °C. The traces of impurities adsorbed on the nanorods were confirmed by Fourier transform infrared spectroscopy.

  2. Substitutionally doped phosphorene: electronic properties and gas sensing.

    Science.gov (United States)

    Suvansinpan, Nawat; Hussain, Fayyaz; Zhang, Gang; Chiu, Cheng Hsin; Cai, Yongqing; Zhang, Yong-Wei

    2016-02-12

    Phosphorene, a new elemental two-dimensional material, has attracted increasing attention owing to its intriguing electronic properties. In particular, pristine phospohorene, due to its ultrahigh surface-volume ratio and high chemical activity, has been shown to be promising for gas sensing (Abbas et al 2015 ACS Nano 9 5618). To further enhance its sensing ability, we perform first-principles calculations based on density functional theory to study substitutionally doped phosphorene with 17 different atoms, focusing on structures, energetics, electronic properties and gas sensing. Our calculations reveal that anionic X (X = O, C and S) dopants have a large binding energy and highly dispersive electronic states, signifying the formation of covalent X-P bonds and thus strong structural stability. Alkali atom (Li and Na) doping is found to donate most of the electrons in the outer s-orbital by forming ionic bonds with P, and the band gap decreases by pushing down the conduction band, suggesting that the optical and electronic properties of the doped phosphorene can be tailored. For doping with VIIIB-group (Fe, Co and Ni) elements, a strong affinity is predicted and the binding energy and charge transfer are correlated strongly with their electronegativity. By examining NO molecule adsorption, we find that these metal doped phosphorenes (MDPs) in general exhibit a significantly enhanced chemical activity compared with pristine phosphorene. Our study suggests that substitutionally doped phosphorene shows many intriguing electronic and optic properties different from pristine phosphorene and MDPs are promising in chemical applications involving molecular adsorption and desorption processes, such as materials growth, catalysis, gas sensing and storage.

  3. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Gang, Xiao

    2003-01-01

    Phosphoric acid doped polybenzimidazole (PBI) and PBI composite membranes have been prepared in the present work. The PBI composites contain inorganic proton conductors including zirconium phosphate (ZrP), (Zr(HPO4)2·nH2O), phosphotungstic acid (PWA), (H3PW12O40·nH2O) and silicotungstic acid (Si...

  4. Host sensitized near-infrared emission in Nd3+ doped different alkaline-sodium-phosphate phosphors

    Science.gov (United States)

    Balakrishna, A.; Swart, H. C.; Kroon, R. E.; Ntwaeaborwa, O. M.

    2018-04-01

    Near-infrared (NIR) emitting phosphors of different alkaline based sodium-phosphate (MNa[PO4], where M = Mg, Ca, Sr and Ba were prepared by a conventional solution combustion method with fixed doping concentration of Nd3+ (1.0 mol%). The phosphors were characterized by powder X-ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis spectroscopy and fluorescent spectrophotometry. The optical properties including reflectance, excitation and emission were investigated. The excitation spectra of the phosphors were characterized by a broadband extending from 450 to 900 nm. Upon excitation with a wavelength of 580 nm, the phosphor emits intensely infrared region at 872 nm, 1060 nm and 1325 nm which correspond to the 4F3/2 → 4I9/2, 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions and were found to vary for the different hosts. The strongest emission wavelength reaches 1060 nm. The most intense emission of Nd3+ was observed from Ca2+ incorporated host. The down conversion emissions of the material fall in the NIR region suggesting that the prepared phosphors have potential application in the development of photonic devices emitting in the NIR.

  5. The High-Temperature Synthesis of the Nanoscaled White-Light Phosphors Applied in the White-Light LEDs

    Directory of Open Access Journals (Sweden)

    Hao-Ying Lu

    2015-01-01

    Full Text Available The white-light phosphors consisting of Dy3+ doped YPO4 and Dy3+ doped YP1-XVXO4 were prepared by the chemical coprecipitation method. After the 1200°C thermal treatment in the air atmosphere, the white-light phosphors with particle sizes around 90 nm can be obtained. In order to reduce the average particle size of phosphors, the alkaline washing method was applied to the original synthesis process, which reduces the particle sizes to 65 nm. From the PLE spectra, four absorption peaks locating at 325, 352, 366, and 390 nm can be observed in the YPO4-based phosphors. These peaks appear due to the following electron transitions: 6H15/2→4K15/2, 6H15/2→4M15/2+6P7/2, 6H15/2→4I11/2, and 6H15/2→4M19/2. Besides, the emission peaks of wavelengths 484 nm and 576 nm can be observed in the PL spectra. In order to obtain the white-light phosphors, the vanadium ions were applied to substitute the phosphorus ions to compose the YP1-XVXO4 phosphors. From the PL spectra, the strongest PL intensity can be obtained with 30% vanadium ions. As the concentration of vanadium ions increases to 40%, the phosphors with the CIE coordinates locating at the white-light area can be obtained.

  6. Synthesis and thermoluminescence behavior of ZrO2:Eu3+ with variable concentration of Eu3+ doped phosphor

    Directory of Open Access Journals (Sweden)

    Raunak Kumar Tamrakar

    2014-10-01

    Full Text Available Cubical ZrO2 phosphor doped with the europium synthesized by conventional solid state synthesis method. The prepared phosphor was characterized by X-ray diffraction (XRD technique, field emission gun scanning electron microscopy (FEGSEM and transmission electron microscopy (TEM. In this paper, we focused on the thermoluminescence glow curves and kinetic parameters, activation energy, order of kinetics, and the frequency factor of ZrO2:Eu3+ phosphor under different doses of UV irradiations at a heating rate of 6.7 °C/s. The kinetic parameters activation energy E, the order of kinetics b, and the frequency factor s of synthesized phosphor of ZrO2:Eu3+ have been calculated by using a peak shape method.

  7. Luminescence properties of dysprosium doped calcium magnesium silicate phosphor by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Ishwar Prasad, E-mail: ishwarprasad1986@gmail.com [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Chandrakar, Priya; Baghel, R.N.; Bisen, D.P.; Brahme, Nameeta [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Tamrakar, Raunak Kumar [Department of Applied Physics, Bhilai Institute of Technology, Durg, C.G. 491001 (India)

    2015-11-15

    Dysprosium doped calcium magnesium silicate (CaMgSi{sub 2}O{sub 6}:Dy{sup 3+}) white light emitting phosphor was synthesized by solid state reaction process. The crystal structure of sintered phosphor was monoclinic structure with space group C2/c. Chemical composition of the sintered CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was confirmed by EDX. The prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was excited from 352 nm and their corresponding emission spectra were recorded at blue (470 nm), yellow (570 nm) and red (675 nm) line due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 11/2} transitions of Dy{sup 3+} ions. The combination of these three emissions constituted as white light confirmed by the Commission Internationale de L'Eclairage (CIE) chromatic coordinate diagram. The possible mechanism of the white light emitting long lasting CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was also investigated. Investigation on afterglow property show that phosphor held fast and slow decay process. The peak of mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston. Thus the present investigation indicates that the local piezoelectricity-induced electron bombardment model is responsible to produce ML in prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor. - Highlights: • The crystal structure of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is consistent with standard monoclinic structure. • CIE coordinates of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is suitable as white light emitting phosphor. • The local piezoelectricity-induced electron bombardment model is responsible to produce ML in CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor.

  8. Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors

    International Nuclear Information System (INIS)

    Zhang Weiwei; Zhang Junying; Chen Ziyu; Wang Tianmin; Zheng Shukai

    2010-01-01

    Low-temperature photoluminescent spectra of ZnGa 2 O 4 :Cr 3+ nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr 3+ ions in different sites including ideal octahedral, Zn-interstitial, Ga ZN 4 -Zn Ga 6 sites and Ga 2 O 3 impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al 3+ is substituted in Ga 3+ sites to form Zn(Ga 1-y Al y ) 2 O 4 :Cr 0.01 3+ (0≤y≤0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al 3+ and Ga 3+ .

  9. Radioluminescence of red-emitting Eu-doped phosphors for fiberoptic dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Molina, P.; Santiago, M.; Marcazzo, J.; Caselli, E. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Spano, F. [Autoridad Regulatoria Nuclear, Av. del Libertador 8250, 1429 Buenos Aires (Argentina); Henniger, J. [Institut fur Kern-und Teilchenphysik, Zellescher Weg 19, 01069 Dresden (Germany); Cravero, W., E-mail: pmolina@exa.unicen.edu.ar [Universidad Nacional del Sur, Departamento de Fisica, Av. Colon 80, 8000FTN Bahia Blanca, Buenos Aires (Argentina)

    2011-10-15

    The fiberoptic dosimetry technique (FOD) has become an attractive method for in-vivo real-time dosimetry in radiotherapy. It is based on the use of a tiny piece of scintillator coupled to the end of an optical fiber, which collects the light emitted by the scintillator during irradiation (radioluminescence). Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most radioluminescence materials for FOD due to its high efficiency but it presents the drawback of emitting in the spectral region, where spurious luminescence is also important. Spurious luminescence from optical fiber, termed stem effect, is the main problem afflicting FOD. Several techniques have been applied to remove the stem effect. Optical filtering, which consists in using long-pass filters, is the simplest one. This technique is useful when red-emitting scintillators are employed. In this work, the feasibility of using red-emitting Eu-doped phosphors as FOD scintillators has been investigated. (Author)

  10. Structural and optical analysis on europium doped AZrO{sub 3} (A=Ba, Ca, Sr) phosphor for display devices application

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Vikas, E-mail: jsvikasdubey@gmail.com [Department of Physics, Bhilai Institute of Technology Raipur, 493661 (India); Tiwari, Neha [Department of Physics, Govt. Model Science College, Jabalpur (India)

    2016-05-06

    Behavior displayed by europium doped AZrO{sub 3} phosphor which was synthesized by solid state reaction method. For synthesis of BaZrO{sub 3}, SrZrO{sub 3} and CaZrO{sub 3} phosphor with fixed concentration of europium ion was calcination at 1000°C and sintered at 1300°C following intermediate grinding. Synthesized sample was characterized by X-ray diffraction analysis and crystallite sized was calculated by Scherer’s formula. From PL spectra of prepared phosphors shows intense emission centred at 612nm (red emission) with high intensity for SrZrO{sub 3}:Eu{sup 3+}. For europium doped BaZrO{sub 3} and CaZrO{sub 3} (613nm) phosphor shows less intense PL spectra as compared to SrZrO{sub 3}:Eu{sup 3+}. The strong emission peak of AZrO{sub 3}:Eu{sup 3+} phosphor is due to forced electric dipole transition of {sup 5}D{sub 0} to {sup 7}F{sub 2} centered at 612 and 613nm. It is characteristic red emission for europium ion. The excitation spectra of AZrO{sub 3}:Eu{sup 3+} phosphor mainly consists of the charge transfer and (CTB) of Eu{sup 3+} located in 200–350 nm centred at 254nm. The present phosphors can act as single host for red light emission in display devices. The CIE coordinates were calculated by Spectrophotometric method using the spectral energy distribution of the AZrO{sub 3}:Eu{sup 3+} sample.

  11. Luminescence variations in europium-doped silicon-substituted hydroxyapatite nanobiophosphor via three different methods

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Cao Xuan; Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn

    2015-07-15

    Highlights: • Europium doped silicon-substituted hydroxyapatite was synthesized by wet chemical synthesis method. • Morphology of nanoparticles depended on the synthesized method. • Photoluminescence intensity of the sample increases with the increasing of Si substitutions, Eu dopants and thermal annealing. - Abstract: This paper reports the first attempt for the synthesis of europium-doped Si-substituted hydroxyapatite (HA) nanostructure to achieve strong and stable luminescence of nanobiophosphor, particularly, by addition of different Eu dopants, Si substitutions, and application of optimum annealing temperatures of up to 1000 °C. The nanobiophosphor was synthesized by the coprecipitation, microwave, and hydrothermal methods. The nanoparticles demonstrated a nanowire to a spindle-like morphology, which was dependent on the method of synthesis. The photoluminescence (PL) intensity of the sample increases with the increase in Si substitutions and Eu dopants. The luminescent nanoparticles also showed the typical luminescence of Eu{sup 3+} centered at 610 nm, which was more efficient for the annealed Eu-doped Si-HA nanoparticles than for the as-synthesized nanoparticles. Among the different synthesis methods, the hydrothermal method reveals the best light emission represented by high PL intensity and narrow PL spectra. These results suggest the potential application of Eu-doped Si-HA in stable and biocompatible nanophosphors for light emission and nanomedicine.

  12. Strong blue and white photoluminescence emission of BaZrO{sub 3} undoped and lanthanide doped phosphor for light emitting diodes application

    Energy Technology Data Exchange (ETDEWEB)

    Romero, V.H. [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); De la Rosa, E., E-mail: elder@cio.mx [Centro de Investigaciones en Optica, A. P. 1-948, Leon Gto., 37160 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Velazquez-Salazar, J.J. [Department of Physics and Astronomy, The University of Texas at San Antonio One UTSA Circle, San Antonio TX 78249 (United States)

    2012-12-15

    In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant white light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.

  13. Luminescence properties of Y2O3:Bi3+, Yb3+ co-doped phosphor for application in solar cells

    Science.gov (United States)

    Lee, E.; Kroon, R. E.; Terblans, J. J.; Swart, H. C.

    2018-04-01

    Bismuth (Bi3+) and ytterbium (Yb3+) co-doped yttrium oxide (Y2O3) phosphor powder was successfully synthesised using the co-precipitation technique. The X-ray diffraction (XRD) patterns confirmed that a single phase cubic structure with a Ia-3 space group was formed. The visible emission confirmed the two symmetry sites, C2 and S6, found in the Y2O3 host material and revealed that Bi3+ ions preferred the S6 site as seen the stronger emission intensity. The near-infrared (NIR) emission of Yb3+ increased significantly by the presence of the Bi3+ ions when compared to the singly doped Y2O3:Yb3+ phosphor with the same Yb3+ concentration. An increase in the NIR emission intensity was also observed by simply increasing the Yb3+ concentration in the Y2O3:Bi3+, Yb3+ phosphor material where the intensity increased up to x = 5.0 mol% of Yb3+ before decreasing due to concentration quenching.

  14. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic protontic conductors

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    contain inorganic protonic conductors including zirconium phosphate (ZrP), (Zr(HPO4)2. nH2O); phosphotungstic acid (PWA), (H3PW12O40. nH2O); and silicotungstic acid (SiWA), (H4SiW12O40 . nH2O). The conductivity of phosphoric acid doped PBI and PBI composite membranes was found to be dependent on the acid...

  15. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  16. Synthesis and photoluminescence properties of Pb{sup 2+} doped inorganic borate phosphor NaSr{sub 4}(BO{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, A. O., E-mail: abhi2718@gmail.com; Koparkar, K. A.; Omanwar, S. K. [Department of Physics, SantGadge Baba Amravati University, Amravati MH, 444602 (India); Bajaj, N. S. [Department of Physics, Toshniwal Art, Commerce and Science College, Sengoan, Hingoli MH (India)

    2016-05-06

    A series of Inorganic borate phosphors NaSr{sub 4}(BO{sub 3}){sub 3} doped with Pb{sup 2+} was successfully synthesized by modified solid state diffusion method. The crystal structure and the phase purity of sample were characterized by powder X-ray diffraction (XRD). The photoluminescence properties of synthesized materials were investigated using spectrofluorometer at room temperature. The phosphor show strong broad band emission spectra in UVA region maximum at 370 nm under the excitation of 289 nm. The dependence of the emission intensity on the Pb{sup 2+} concentration for the NaSr{sub 4}(BO{sub 3}){sub 3} were studied in details. The concentration quenching of Pb{sup 2+} doped NaSr{sub 4}(BO{sub 3}){sub 3} was observed at 0.02 mol. The Stokes shifts of NaSr{sub 4}(BO{sub 3}){sub 3}: Pb{sup 2+} phosphor was calculated to be 7574 cm{sup −1}.

  17. Lanthanide doped BaTiO{sub 3}−SrTiO{sub 3} solid-solution phosphors: Structure, optical spectroscopy and upconverted temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn; Xu, Wei; Zhou, Yang; Chen, Yan, E-mail: chenyan@hdu.edu.cn

    2016-08-15

    Lanthanide doped Ba{sub 1-x}Sr{sub x}TiO{sub 3} (x = 0–1) solid-solution phosphors were successfully prepared by a conventional solid-state reaction. Using Eu{sup 3+} dopants as the structural probe, the variation of {sup 5}D{sub 0} → {sup 7}F{sub 2}/{sup 5}D{sub 0} → {sup 7}F{sub 1} emission intensity ratio with increase of Eu{sup 3+} content and the excitation-wavelength-dependent luminescence in the Ba{sub 1-x}Sr{sub x}TiO{sub 3} sample were demonstrated to be originated from the different emission behaviors of Eu{sup 3+} in Ba{sup 2+}/Sr{sup 2+} site and Ti{sup 4+} site. Furthermore, upconversion luminescence for the Yb{sup 3+}/Er{sup 3+} co-doped Ba{sub 1-x}Sr{sub x}TiO{sub 3} samples were investigated, and it was found that the emission intensity of Yb{sup 3+}/Er{sup 3+}: Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} phosphor was about 5 and 2 times as high as those of Yb{sup 3+}/Er{sup 3+}: BaTiO{sub 3} and Yb{sup 3+}/Er{sup 3+}: SrTiO{sub 3} ones. Using the investigated Yb{sup 3+}/Er{sup 3+}: Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} solid-solution as the optical thermometric medium, the temperature sensitivity was determined to be 0.76% K{sup −1} at the temperature of 610 K based on the temperature-dependent fluorescence intensity ratio of the thermally coupled {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} emitting-states of Er{sup 3+}. - Highlights: • Lanthanide doped Ba{sub 1-x}Sr{sub x}TiO{sub 3} (x = 0–1) solid-solutions were fabricated. • Excitation-wavelength-dependent Eu{sup 3+} emissions were recorded. • Enhanced Er{sup 3+} luminescence was realized by partial substitution of Ba{sup 2+} by Sr{sup 2+}. • T-sensitive emissions of two Er{sup 3+} thermally coupled states were observed. • The upconversion phosphor exhibited a high sensitivity of 0.76% K{sup −1}.

  18. A novel red phosphor Mg2GeO4 doped with Eu3+ for PDP applications

    International Nuclear Information System (INIS)

    Yang Hongmei; Shi Jianxin; Liang Hongbin; Gong Menglian

    2006-01-01

    A novel red emitting phosphor, Eu 3+ -doped Mg 2 GeO 4 , was prepared by the solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of Mg 2 GeO 4 :Eu 3+ . Field-emission-scanning electron microscopy (FE-SEM) observation indicated a narrow size-distribution of about 0.5-2 μm nm for the particles with spindle-like shape. Photoluminescence (PL) and vacuum ultraviolet (VUV) excitation characteristics of the phosphor Mg 2 GeO 4 :Eu 3+ were studied. We have also studied the effect of preparation conditions such as temperature, heating time on the PL data. Photoluminescence measurements indicated that the phosphor exhibits bright red emission at about 609 nm under UV excitation. And the vacuum ultraviolet spectra present that the novel red phosphor Mg 2 GeO 4 :Eu 3+ shows strong absorption in the VUV region, which ensures the efficient absorption of the Xe plasma emission lines. The phosphor Mg 2 GeO 4 :Eu 3+ shows the strongest emission at 613 nm corresponding to the electric dipole 5 D - 7 F 2 transition of Eu 3+ excited at 147 nm. The optical properties study suggests that it is a potential candidate for plasma display panels (PDPs) application

  19. Long-wave UVA radiation excited warm white-light emitting NaGdTiO4: Tm3+/Dy3+/Eu3+ ions tri-doped phosphors: Synthesis, energy transfer and color tunable properties

    International Nuclear Information System (INIS)

    Bharat, L. Krishna; Du, Peng; Yu, Jae Su

    2016-01-01

    NaGdTiO 4 (NGT) phosphors doped with different activator ions (Tm 3+ , Dy 3+ , and Eu 3+ ) were synthesized by a conventional solid-state reaction method in an ambient atmosphere. These phosphors were characterized by scanning electron microscope images, transmission electron microscope images, X-ray diffraction patterns, Fourier transform infrared spectra, and photoluminescence spectra. All the samples were crystallized in an orthorhombic phase with a space group of Pbcm (57). In Tm 3+ /Dy 3+ ions co-doped samples, white-light emission was observed under near-ultraviolet (NUV) excitation. In addition, the energy transfer between Tm 3+ and Dy 3+ ions was proved to be a resonant type via an electric dipole–dipole mechanism and the critical distance of energy transfer was calculated to be 19.91 Å. Furthermore, Tm 3+ /Dy 3+ /Eu 3+ ions tri-doped NGT phosphors demonstrated warm white-light emission by appropriately tuning the activator content, based on the principle of energy transfer. These NUV wavelength excitable phosphors exhibit great potential as a single-phase full-color emitting phosphor for white light-emitting diode applications. - Highlights: • The pebble shaped NaGdTiO 4 particles were prepared by solid-state reaction method. • Tm 3+ and Dy 3+ single doping gives respective blue and cool white light emission. • The Tm 3+ /Dy 3+ ions co-doped samples give CIE values near to standard white light. • Addition of Eu 3+ ions shifts the CIE values towards warm white light region. • This single phase white light emitting phosphors have lower CCT values (<5000 K).

  20. The synthesis and luminescence properties of a novel red-emitting phosphor: Eu3+-doped Ca9La(PO4)7

    Science.gov (United States)

    Liang, Zehui; Mu, Zhongfei; Wang, Qiang; Zhu, Daoyun; Wu, Fugen

    2017-10-01

    A series of novel red-emitting phosphors Ca9La1- x (PO4)7: xEu3+ were synthesized by high-temperature solid state reactions. The photoluminescence excitation and photoluminescence spectra of these phosphors were investigated in detail. O2--Eu3+ charge transfer band peaking at about 261 nm is dominant in the PLE spectra of Eu3+-doped Ca9La(PO4)7, indicating that the phosphors are suitable for tricolor fluorescent lamps. The phosphors also show a good absorption in near ultraviolet (around 395 nm) and blue (around 465 nm) spectral region, which indicates that it can be pumped with NUV and blue chips for white light-emitting diodes. The transition of 5D0 → 7F2 of Eu3+ in this lattice can emit bright red light. Ca9La(PO4)7 could accommodate a large amount of Eu3+ with an optimal concentration of 60 mol%. The dipole-dipole interaction between Eu3+ is the dominant mechanism for concentration quenching of Eu3+. The calculated color coordinates lie in red region ( x = 0.64, y = 0.36), which is close to Y2O3: 0.05Eu3+ ( x = 0.65, y = 0.34). The integral emission intensity of Ca9La0.4(PO4)7: 0.6Eu3+ is 1.9 times stronger than that of widely used commercial red phosphor Y2O3: 0.05Eu3+. All these results indicate that Eu3+-doped Ca9La(PO4)7 is a promising red-emitting phosphor which can be used in tricolor fluorescent lamps and white light-emitting diodes.

  1. Synthesis and effect of Ce and Mn co-doping on photoluminescence characteristics of Ca6AlP5O20:Eu novel phosphors.

    Science.gov (United States)

    Shinde, K N; Dhoble, S J

    2013-01-01

    A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6AlP5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Effect of killer impurities on laser-excited barium-doped ZnS phosphors at liquid nitrogen temperature

    Science.gov (United States)

    Kumar, Sunil; Verma, N. K.; Bhatti, H. S.

    Zinc sulphide phosphors doped with Ba, as well as killer impurities of Fe, Co and Ni, having variable concentrations, were synthesized; and using an ultraviolet laser as the excitation source, decay-curve analyses were done. Various strong emissions in these phosphors were detected and the corresponding excited-state life times were measured at liquid nitrogen temperature. Studies were carried out to see the effect of killer impurities on the phosphorescence excited-state life times. Excited-state life times were found to decrease appreciably (microsecond to nanosecond) with the addition of quenchers. These studies are quite useful and find applications in areas such as optical memories, sensors, luminescent screens, laser-beam detection and alignment, color displays, printing, etc.

  3. Trivalent europium-doped strontium molybdate red phosphors in white light-emitting diodes: Synthesis, photophysical properties and theoretical calculations

    International Nuclear Information System (INIS)

    Yang, W.-Q.; Liu, H.-G.; Liu, G.-K.; Lin, Y.; Gao, M.; Zhao, X.-Y.; Zheng, W.-C.; Chen, Y.; Xu, J.; Li, L.-Z.

    2012-01-01

    Eu 3+ -doped strontium molybdate red phosphors (Sr 1−x MoO 4 :Eu x (x = 0.01–0.2)) for white light-emitting diodes (LED) were synthesized by the solid-state reaction method. The fluorescent intensities of the as-prepared phosphors were remarkably improved. The excitation and emission spectra demonstrate that these phosphors can be effectively excited by the near-UV light (395 nm) and blue light (466 nm). Their emitted red light peaks are located at 613 nm, and the highest quantum yield value (η) of the as-grown red phosphor, which is 95.85%, is much higher than that of commercial red phosphor (77.53%). These red phosphors plus commercial yellow powers (1:10) were successfully packaged with the GaN-based blue chips on a piranha frame by epoxy resins. The encapsulated white LED lamps show high performance of the CIE chromaticity coordinates and color temperatures. Moreover, to explain the fluorescent spectra of these phosphors, a complete 3003 × 3003 energy matrix was successfully built by an effective operator Hamiltonian including free ion and crystal field interactions. For the first time, the fluorescent spectra for Eu 3+ ion at the tetragonal (S 4 ) Sr 2+ site of SrMoO 4 crystal were calculated from a complete diagonalization (of energy matrix) method. The fitting values are close to the experimental results.

  4. Luminescent properties of green- or red-emitting Eu2+-doped Sr3Al2O6 for LED

    International Nuclear Information System (INIS)

    Zhang Jilin; Zhang Xinguo; Shi Jianxin; Gong Menglian

    2011-01-01

    Eu 2+ -doped Sr 3 Al 2 O 6 (Sr 3-x Eu x Al 2 O 6 ) was synthesized by a solid-state reaction under either H 2 and N 2 atmosphere or CO atmosphere. When H 2 was used as the reducing agent, the phosphor exhibited green emission under near UV excitation, while CO was used as the reducing agent, the phosphor mainly showed red emission under blue light excitation. Both emissions belong to the d-f transition of Eu 2+ ion. The relationship between the emission wavelengths and the occupation of Eu 2+ at different crystallographic sites was studied. The preferential substitution of Eu 2+ into different Sr 2+ cites at different reaction periods and the substitution rates under different atmospheres were discussed. Finally, green-emitting and red-emitting LEDs were fabricated by coating the phosphor onto near UV- or blue-emitting InGaN chips. - Highlights: →Sr 3 Al 2 O 6 :Eu 2+ is synthesized by a solid-state reaction under different atmospheres. →Phosphor obtained under H 2 +N 2 atmosphere emits green light under NUV excitation. →Phosphor obtained under CO atmosphere emits red light under blue light excitation. →Different emission wavelengths are due to Eu 2+ in different Sr 2+ sites. →The preferential substitution and the substitution rates of Eu 2+ are discussed.

  5. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth...

  6. Eu2+-doped OH− free calcium aluminosilicate glass: A phosphor for smart lighting

    International Nuclear Information System (INIS)

    Lima, S.M.; Andrade, L.H.C.; Rocha, A.C.P.; Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L.; Nunes, L.A.O.; Guyot, Y.; Boulon, G.

    2013-01-01

    In this paper, a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu 2+ -doped OH − free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K

  7. The doping sites in Eu2+-doped AIBIIPO4 phosphors and their consequence on the photoluminescence excitation spectra

    Science.gov (United States)

    Amer, M.; Boutinaud, P.

    2018-02-01

    The energy corresponding to the excitation edge in Eu2+-doped phosphate phosphors of the type AIBIIPO4 (AI = monovalent cation, BII = divalent cation) is calculated from the knowledge of two crystal-structure-related factors he(X(i)) and Fc(X(i)) which are connected respectively to the crystal field splitting (CFS) and the centroid energy (Ec) of the excited 4f65d1 electron configuration of Eu2+. The calculation is carried out for each cation site X(i) available for Eu2+ in 25 different compositions of AIBIIPO4 including NaZnPO4-Eu2+ for which the luminescence is firstly reported. Our results indicate (1) that is it possible to identify the nature of the cation site that contributes to the excitation edge of Eu2+ in AIBIIPO4 within an accuracy of±1000 cm-1 and (2) that the method can be used as a tool for the predictive design of AIBIIPO4 - Eu2+ phosphors applicable in solid state LED-based lighting.

  8. Rare-earth doped phosphors: oldies or goldies?

    International Nuclear Information System (INIS)

    Moine, B.; Bizarri, G.

    2003-01-01

    The scientific research on phosphors has a long history starting more than 100 years ago. But recently the appearance of new kinds of displays and lighting devices (plasma display, fluorescent lamp without mercury, etc.) induced an increase of the research of new phosphors with better luminous efficiency than those available up to now. It has been shown that the behavior of 'classical' phosphors in a plasma display panel is quite different than in a cathode ray tube and that the vacuum ultraviolet (VUV) excitation process has to be studied with care in order to improve the phosphors efficiency. That is particularly true in PDPs. It is well established now that a good phosphor for electronic or ultraviolet excitation is not necessarily a good choice for excitation in VUV. This is probably due to the fact that the excitation process is very different in that case and also because the penetration depth of the VUV photons is extremely small inducing a large contribution of the surface of the phosphor. We will illustrate this with some examples. Methods to accelerate luminous intensity decrease under VUV excitation will be described. Low efficiency, fast aging process are both drawbacks that can be solved only in the framework of fundamental studies. Quantum cutting emission may be a solution for the first one but no satisfactory process was proposed for the moment to solve the second

  9. New Silicate Phosphors for a White LED(Electronic Displays)

    OpenAIRE

    Toda, Kenji; Kawakami, Yoshitaka; Kousaka, Shin-ichiro; Ito, Yutaka; Komeno, Akira; Uematsu, Kazuyoshi; Sato, Mineo

    2006-01-01

    We focus on the development of new silicate phosphors for a white LED. In the europium doped silicate system, four LED phosphor candidates-Li_2SrSiO_4:Eu^, Ba_9Sc_2Si_6O_:Eu^, Ca_3Si_2O_7:Eu^ and Ba_2MgSi_2O_7:Eu^ were found. Luminescent properties under near UV and visible excitation were investigated for the new Eu^ doped LED silicate phosphors. These new phosphors have a relatively strong absorption band in a long wavelength region.

  10. Luminescence characteristics and glow curves analysis of Cu"+ doped Li_3PO_4 phosphor

    International Nuclear Information System (INIS)

    Aghalte, G.A.; Dhoble, S.J.; Pawar, N.R.

    2016-01-01

    Li_3PO_4:Cu exhibits useful TL properties in personnel dosimetry of ionizing radiations. Cu is known to be one of the most efficient activator. The PL intensity is found to increase consistently with the increasing quenching temperature. Cu"+ doped Li_3PO_4 phosphor was synthesized by the wet chemical co-precipitation method. The crystal structure and particle morphology of the phosphor was investigated by using X-ray diffraction and scanning electron microscopy. Li_3PO_4:Cu is excellent phosphor for TL dosimetry. For the synthesis of Li_3PO_4:Cu phosphor the stoichiometric amounts of LiOH·H_2O and CuSO_4·"5H_2O were dissolved separately and then the solutions were mixed together. It was precipitated by using concentrated H_3PO_4. The precipitate was filtered out immediately and kept 12 hours below IR lamp. Prepared dry Li_3PO_4:Cu powder was then put on 2.5 wt% NH_4Cl in graphite crucible in preheated furnace at 800°C and was kept for 1 hour. It was then rapidly quenched to room temperature. Thermoluminescence (TL) glow curves were recorded on Nucleonix TL Reader with a heating rate of 2°C per second in the temperature range of 50-250°C. The PMT voltage was 750 volts. Photoluminescence (PL) studies were carried out by Hitachi F-4000 spectrophotometer with a spectral slit width of 1.5 nm

  11. Phosphors doped with Dy3+ and Gd3+ for lighting

    International Nuclear Information System (INIS)

    Su, Q; Pei, Z.; Zeng, Q.; Chi, L.

    1998-01-01

    Full text: Some heavy lanthanide ions with even atomic number such as Dy 3+ and Gd 3+ are abundant in the ion adsorption type deposit of China. Their price is cheap and they have specific spectroscopic properties which can be used as phosphors. Dy 3i on has two dominant bands in the emission spectrum. The yellow band (575 nm) corresponds to the hypersensitive transition 4 F 9/2 → 6 H 13/2 (ΔL=2, ΔJ=2), and the blue band (485 nm) corresponds to the 4 F 9/2 → 6 H 15/2 transition. Factors which influence on the yellow- to-blue intensity ratio (Y/B) were investigated. Adjusting to a suitable Y/B, Dy 3+ will emit white light with high colour temperature and can be used for lighting. But Dy 3+ ion has only narrow excitation bands of f-f transitions ranging from 300-500 nm, no broad excitation band such as charge transfer band or f-d transition band exists in the UV region 200-300 nm. Hence its luminescent efficiency is low when it is excited by UV radiation emitted from the mercury plasma. This is one of the drawbacks to its use as lamp phosphor. However, this can be overcome by sensitisation with Gd 3+ , Pb 2+ or other sensitisers such as vanadate shown in this report. Gd 3+ is not only a good matrix, but also a good sensitiser. Using its 8 S 7/2 → 6 D, 6 I and 6 P transitions, the UV excitation energy can be absorbed and transferred to the activator such as Dy 3+ . Therefore, in some cases Gd 3+ is better than Y 3+ which is optical inert as a matrix. For the phosphor Ca 1.96 Pb 0.04 RE 7.9 Dy 0.1 (SiO 4 ) 6 O 2 prepared by sol-gel method, the intensity of Dy 3+ in the Gd 3+ compound (RE=Gd 3+ ) is six times that in the Y 3+ compound. Some new phosphors doped with Dy 3+ and Gd 3+ prepared in our laboratory are reported

  12. Upconversion emission study of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method

    International Nuclear Information System (INIS)

    Mahata, M.K.; Dey, R.; Kumar, K.; Rai, V.K.; Rai, S.B.

    2012-01-01

    In the present work we have successfully synthesized the Er 3+ , Yb 3+ doped barium titanate phosphor via co-precipitation synthesis method. Under 980 nm excitation, tri-color upconversion fluorescence has been observed. The Fourier Transform Infrared measurement was done to check the presence of organic impurities. In order to find out how many photons are involved in each emission band, the variation of UC emission intensity of the codoped phosphor is studied with increase in excitation power. Upconversion emission spectra show that as the annealing temperature of the powder is increased, intensity of red emission decreases and intensity of green emission increases due to the decrease in maximum phonon frequency of the host material. (author)

  13. A novel double perovskite tellurate Eu3+-doped Sr2MgTeO6 red-emitting phosphor with high thermal stability

    Science.gov (United States)

    Liang, Jingyun; Zhao, Shancang; Yuan, Xuexia; Li, Zengmei

    2018-05-01

    A series of novel double perovskite tellurate red-emitting phosphors Sr2MgTeO6:xEu3+ (x = 0.05-0.40) were successfully synthesized by a high-temperature solid-state reaction method. The phase structure, photoluminescence properties and thermal stability of the phosphor were investigated in detail. The phosphor shows dominant emission peak at 614 nm belonging to the 5D0 → 7F2 electric dipole transition under 465 nm excitation. The luminescence intensity keeps increasing with increasing the content of Eu3+ to 25 mol%, and the critical transfer distance of Eu3+ was calculated to be 12 Å. The quenching temperature for Sr2MgTeO6:0.25Eu3+ was estimated to be above 500 K. This spectral feature reveals high color purity and excellent chromaticity coordinate characteristics. Therefore, Eu3+-doped Sr2MgTeO6 phosphors are potential red phosphors for blue chip-based white light-emitting diode and display devices.

  14. Tunable photoluminescence and magnetic properties of Dy(3+) and Eu(3+) doped GdVO4 multifunctional phosphors.

    Science.gov (United States)

    Liu, Yanxia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2015-10-28

    A series of Dy(3+) or/and Eu(3+) doped GdVO4 phosphors were successfully prepared by a simple hydrothermal method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometry (EDS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). The results indicate that the as-prepared samples are pure tetragonal phase GdVO4, taking on nanoparticles with an average size of 45 nm. Under ultraviolet (UV) light excitation, the individual Dy(3+) or Eu(3+) ion activated GdVO4 phosphors exhibit excellent emission properties in their respective regions. The mechanism of energy transfer from the VO4(3-) group and the charge transfer band (CTB) to Dy(3+) and Eu(3+) ions is proposed. Color-tunable emissions in GdVO4:Dy(3+),Eu(3+) phosphors are realized through adopting different excitation wavelengths or adjusting the appropriate concentration of Dy(3+) and Eu(3+) when excited by a single excitation wavelength. In addition, the as-prepared samples show paramagnetic properties at room temperature. This kind of multifunctional color-tunable phosphor has great potential applications in the fields of photoelectronic devices and biomedical sciences.

  15. Investigation of thermal quenching and abnormal thermal quenching in mixed valence Eu co-doped LaAlO{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingjing [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Zhao, Yang [China academy of civil aviation science and technology, Beijing 100028 (China); Mao, Zhiyong, E-mail: mzhy1984@163.com [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Wang, Dajian [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Bie, Lijian, E-mail: ljbie@tjut.edu.cn [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2017-06-15

    Temperature dependent luminescence of mixed valence Eu co-doped LaAlO{sub 3} phosphors are deeply investigated in this work. Different temperature properties of Eu{sup 2+} and Eu{sup 3+} luminescence are observed as the phosphor excited by different incident light. Eu{sup 3+} luminescence shows normal thermal quenching when excited at 320 nm and abnormal thermal quenching as the excitation light changed into 365 nm, while Eu{sup 2+} luminescence exhibits a normal thermal quenching independent on the incident excitation lights. The origin of these novel normal/abnormal thermal quenching phenomena are analyzed and discussed by the excitation-emission processes in terms of the configuration coordinate model. The presented important experimental and analysis results give insights into the temperature properties of phosphors.

  16. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors

    NARCIS (Netherlands)

    Yin, L.J.; Dierre, B.F.P.R.; Sekiguchi, Takashi; van Ommen, J.R.; Hintzen, H.T.J.M.; Cho, Yujin

    2017-01-01

    To modify the luminescence properties of Ce3+-doped Y3Al5O12 (YAG) phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N2 atmosphere. Luminescence of the

  17. Synthesis, structural and luminescent aspect of Tb3+ doped Sr2SnO4 phosphor

    International Nuclear Information System (INIS)

    Taikar, Deepak R.

    2016-01-01

    A novel green emitting, Tb 3+ doped Sr 2 SnO 4 phosphor was synthesized by the co-precipitation method and its photoluminescence characterization was performed. Sr 2 SnO 4 has an ordered tetragonal K 2 NiF 4 -type structure with space group I4/mmm. The structure of Sr 2 SnO 4 consists of SnO 6 octahedra. From the structure of Sr 2 SnO 4 , it was observed that the sites of Sn 4+ ions have inverse symmetry while the Sr 2+ ions have the low symmetry. X-ray powder diffraction (XRD) analysis confirmed the formation of Sr 2 SnO 4 :Tb 3+ . Photoluminescence measurements showed that the phosphor exhibited bright green emission at about 543 nm attributed to 5 D 4 à 7 F 5 transition of Tb 3+ ion under UV excitation. The emission spectra did not exhibit conventional blue emission peaks of Tb 3+ ions due to 5 D 3 → 7 F J transitions in the spectral region 350-470 nm. The excitation spectra indicate that this compound may be useful as a lamp phosphor. (author)

  18. High efficiency nitride based phosphores for white LEDs

    NARCIS (Netherlands)

    Li, Yuan Qiang; Hintzen, H.T.J.M.

    2008-01-01

    In this overview paper, novel rare-earth doped silicon nitride based phosphors for white LEDs applications have been demonstrated. The luminescence properties of orange-red-emitting phosphors (M2Si5N8:Eu2+) and green-to-yellow emitting phosphors (MSi2N2O2:Eu2+, M = Ca, Sr, Ba) are discussed in

  19. Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation

    International Nuclear Information System (INIS)

    Li, Y.; Wang, Y.; Gong, Y.; Xu, X.; Zhang, F.

    2011-01-01

    Highlights: → Photoionization behavior of BaMgSiO 4 :Eu 2+ long persistent phosphor upon UV irradiation. → Green phosphorescence was obtained from BaMgSiO 4 :Eu 2+ . → The ionization of Eu 2+ to Eu 3+ was observed in BaMgSiO 4 :Eu 2+ . → The photogenerated Eu 3+ cannot change back to its divalent state at room temperature. → The phosphorescence is associated with the formation forming Eu 3+ -e - pairs. - Abstract: The fluorescence, phosphorescence and thermoluminescence properties of Eu-doped BaMgSiO 4 phosphors sintered in air and in a reducing atmosphere were investigated. Phosphorescence of phosphor sintered in a reducing atmosphere can last for 1.5 h at a recognizable intensity level, whereas phosphorescence of air-sintered phosphor can only persist for 6 min. In addition, a distinction between the shape of the fluorescence spectrum and its corresponding phosphorescence spectrum is observed in the former case. Ionization of Eu 2+ to Eu 3+ upon UV irradiation is observed in the phosphor prepared in a reducing atmosphere, but there is no indication that the photogenerated Eu 3+ cannot change back to its divalent state at room temperature after the excitation source is switched off. In addition, phosphor sintered in a reducing atmosphere shows photochromism upon UV irradiation. No such photoionization and photochromism behavior is observed for the air-sintered phosphor. A possible Eu 2+ photoionization mechanism is constructed on the basis of these experimental observations. The photoionization mechanism presented can also successfully explain the fluorescence and phosphorescence behavior of Eu in BaMgSiO 4 .

  20. Tunable Luminescence of CeAl11O18 Based Phosphors by Replacement of (AlO)+ by (SiN)+ and Co-Doping with Eu

    NARCIS (Netherlands)

    Yin, L.J.; Chen, G.Z; Wang, C.; Xu, X.; Hao, L.Y.; Hintzen, H.T.J.M.

    2014-01-01

    A series of Si-N or Eu-Li doped CeAl11O18 and CeAl12O18N phosphors are prepared by solid–state reaction. Their structure and luminescence are researched carefully. Si-N doping with the concentration less than 8% can be successfully dissolved into CeAl11O18 crystal lattice and doesn't change the

  1. Structural and optical properties of Tb and Na-Tb co-doped Ca3V2O8 phosphors prepared by sol-gel process

    Science.gov (United States)

    Parab, Shambhu S.; Salker, A. V.

    2018-01-01

    A malic acid assisted sol-gel route was successfully employed to prepare two distinct series of green emitting Ca3V2O8 phosphors. In the first series, Tb was solely doped whereas in the second series Na and Tb were doped simultaneously in the Ca3V2O8 crystal lattice. X-ray diffraction studies proved the utility of adopted preparative method by confirming the monophasic formation of all compounds from both the series. Spectral analysis like Raman spectroscopy, UV-DRS were undertaken to analyse the local structure, crystallinity and absorptive characteristics. XPS validated the presence of desired oxidation states of all the elements present. Finally, photoluminescence studies were done to elucidate the scope of prepared compounds as green emitting phosphors and also to understand the effect of both doping schemes on the luminescence. Intense green emission was observed in both the cases. Tb concentration of 0.08 was found to be optimum in case of Tb singly doped compounds whereas Tb = 0.12 showed highest intensity among the Na-Tb co-doped samples. Moreover, a red shift in the excitation wavelength was observed after Na doping signifying a change in the local electronic environment which in turn has affected the luminescence pattern. Local crystallinity and vacancy concentrations were found to have a major say on the emission intensities.

  2. Tunable emission in Ln3+ (Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor synthesized by combustion method

    Science.gov (United States)

    Kolte, M. M.; Pawade, V. B.; Bhattacharya, A. B.; Dhoble, S. J.

    2018-05-01

    Ln3+ (Ln = Ce3+/Dy3+, Ce3+/Tb3+) doped KNa3Al4Si4O16 phosphor has been synthesized by Combustion method (CS) at 550° C successfully. Ln3+ (Ln = Ce3+, Dy3+, Tb3+) ions when doped in KNa3Al4Si4O16 host lattice, it shows blue and green emission band under the near Ultraviolet (NUV) excitation wavelength. The Photoluminescence excitation (PLE) and emission spectra are observed due to f-f and d-f transition of rare earth ions. Also, an effective energy transfer (ET) study from Ce3+ → Dy3+ and Ce3+ → Tb3+ ions has been studied and confirmed on the basis of Dexter-Foster theory. Further synthesized phosphor is well characterized by XRD, SEM, TEM and decay time measurement. However, the analysis of crystallite size, lattice strain has been studied by using theoretical as well as experimental techniques. Hence, the observed tunable emission in Ln3+ doped KNa3Al4Si4O16 phosphor may be applicable for solid state lighting technology.

  3. Spectrum designation and effect of Al substitution on the luminescence of Cr{sup 3+} doped ZnGa{sub 2}O{sub 4} nano-sized phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weiwei [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zhang Junying, E-mail: zjy@buaa.edu.c [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Chen Ziyu; Wang Tianmin [Key Laboratory of Micro-nano Measurement, Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Zheng Shukai [College of Electronic and Information Engineering, Hebei University, Baoding 071200 (China)

    2010-10-15

    Low-temperature photoluminescent spectra of ZnGa{sub 2}O{sub 4}:Cr{sup 3+} nano-sized phosphors calcined at different temperatures were reported. The fine structure of the emission spectra has been designated to Cr{sup 3+} ions in different sites including ideal octahedral, Zn-interstitial, Ga{sub ZN}{sup 4}-Zn{sub Ga}{sup 6} sites and Ga{sub 2}O{sub 3} impurity. The vibronic sidebands for both Stokes' and anti-Stokes' sides are related to the host lattice vibrations, which were confirmed by IR and Raman spectra. Al{sup 3+} is substituted in Ga{sup 3+} sites to form Zn(Ga{sub 1-y}Al{sub y}){sub 2}O{sub 4}:Cr{sub 0.01}{sup 3+} (0{<=}y{<=}0.5). The blue shift and luminescent intensity variations of the charge transfer band and 3d-3d transitions in the spectra caused by Al substitution were related to larger band gap and stronger crystal field, respectively. The calculated crystal-field parameters indicated that Al incorporation enhanced the crystal field strength and induced more trigonal distortion due to different radii of Al{sup 3+} and Ga{sup 3+}.

  4. Phosphorus and Cu2+ removal by periphytic biofilm stimulated by upconversion phosphors doped with Pr3+-Li.

    Science.gov (United States)

    Zhu, Yan; Zhang, Jianhong; Zhu, Ningyuan; Tang, Jun; Liu, Junzhuo; Sun, Pengfei; Wu, Yonghong; Wong, Po Keung

    2018-01-01

    Upconversion phosphors (UCPs) can convert visible light into luminescence, such as UV, which can regulate the growth of microbes. Based on these fundamentals, the community composition of periphytic biofilms stimulated by UCPs doped with Pr 3+ -Li + was proposed to augment the removal of phosphorus (P) and copper (Cu). Results showed that the biofilms with community composition optimized by UCPs doped with Pr 3+ -Li + had high P and Cu 2+ removal rates. This was partly due to overall bacterial and algal abundance and biomass increases. The synergistic actions of algal, bacterial biomass and carbon metabolic capacity in the Pr-Li stimulated biofilms facilitated the removal of P and Cu 2+ . The results show that the stimulation of periphytic biofilms by lanthanide-doped UCPs is a promising approach for augmenting P and Cu 2+ removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Aluminum and carbon substitution in MgB2. Electron doping and scattering effects

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Pribulova, Z.; Angst, M.; Bud'ko, S.L.; Canfield, P.C.; Klein, T.; Lyard, L.; Marcus, J.; Marcenat, C.; Kang, B.W.; Kim, H.-J.; Lee, H.-S.; Lee, H.-K.; Lee, S.I.

    2007-01-01

    The point-contact spectroscopy is used to address the evolution of two superconducting energy gaps in the Al- and C-doped magnesium diboride polycrystals and single crystals with T c 's from 39 to 22 K prepared by different techniques. The obtained evolution of two gaps does not show any anomalous behavior but can be consistently described by the combination of the (prevailing) band filling effect and a (minor) increased interband scattering as proposed by Kortus et al. [Kortus et al., Phys. Rev. Lett. 94 (2005) 027002]. The approaching of two gaps is stronger in the Al-doped systems but interband scattering is still not large enough to merge two gaps. The full merging can expected only for higher dopings with T c 's below 10-15 K. In-magnetic-field measurements are used to analyze the intraband scatterings introduced by these two substitutions. It is shown that the carbon doping introduces significant disorder mainly by decreasing the diffusion coefficient in the π band while the Al substitution leaves the samples in the clean limit

  6. Electron-beam-pumped phosphors

    International Nuclear Information System (INIS)

    Goldhar, J.; Krupke, W.F.

    1985-01-01

    Electron-beam excitation of solid-state scintillators, or phosphors, can result in efficient generation of visible light confined to relatively narrow regions of the spectrum. The conversion efficiency can exceed 20%, and, with proper choice of phosphors, radiation can be obtained anywhere from the near infrared (IR) to the near ultraviolet (UV). These properties qualify the phosphors as a potentially useful pump source for new solid-state lasers. New phosphors are being developed for high-brightness television tubes that are capable of higher power dissipation. Here, an epitaxial film of fluorescing material is grown on a crystalline substrate with good thermal properties. For example, researchers at North American Philips Laboratories have developed a cerium-doped yttrium aluminum garnet (YAG) grown on a YAG substrate, which has operated at 1 A/cm 2 at 20 kV without observed thermal quenching. The input power is higher by almost two orders of magnitude than that which can be tolerated by a conventional television phosphor. The authors describe tests of these new phosphors

  7. The effect of grain size and phosphorous-doping of polycrystalline 3C–SiC on infrared reflectance spectra

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Engelbrecht, J.A.A.; Henry, A.; Janzén, E.; Neethling, J.H.; Rooyen, P.M. van

    2012-01-01

    Highlights: ► IR is investigated as a technique to measure grain size and P-doping of polycrystalline SiC. ► Infrared plasma minima can be used to determine doping levels in 3C–SiC for doping levels greater than 5 × 10 17 cm −3 . ► A linear relationship is found between FWHM and the inverse of grain size of 3C–SiC irrespective of P-doping level. ► It is further found that ω p is not influenced by the grain size. ► P-doping level has no significant effect on the linear relationship between grain size and surface roughness. - Abstract: The effect of P-doping and grain size of polycrystalline 3C–SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behavior of the 3C–SiC with the highest phosphorous doping level (of 1.2 × 10 19 at. cm −3 ) is different from those with lower doping levels ( 18 at. cm −3 ). It is also further demonstrated that the plasma resonance frequency (ω p ) is not influenced by the grain size.

  8. Effects of site substitution and metal ion addition on doped manganites

    CERN Document Server

    Pradhan, A K; Roul, B K; Sahu, D R; Muralidhar, M

    2002-01-01

    We report transport, magnetization and transmission electron microscopy studies of the effects of A-and B-site substitution, and the addition of metal ions such as Pt, Ag and Sr, on doped ABO sub 3 perovskites, where A = La, Pr etc and B = Mn. Disorder induced by such substitution changes the behaviour of the charge-ordered (CO) state significantly. A-and B-site substitution suppresses the CO phase due to size mismatch and disorder produced by inhomogeneity. On the other hand, addition of metal ions such as Pt and Ag improves several colossal-magnetoresistance properties significantly due to microstructural effects and enhanced current percolation through grain boundaries.

  9. UV induced thermoluminescence in rare earth oxide doped phosphors: possible use for UV dosimetry

    International Nuclear Information System (INIS)

    Yeh, S.-M.; Su, C.-S.

    1996-01-01

    UV induced thermoluminescent (TL) phenomena in some phosphors doped with rare earth oxides (Gd 2 O 3 :Eu, Gd 2 O 3 :Tb, Gd 2 O 3 :Dy and Y 2 O 3 :EU) have been investigated. Gd 2 O 3 :Eu and Y 2 O 3 :Eu have been found to possess prominent TL phenomena. A stable high temperature glow peak has been found at 345 o C in the cubic (C type) crystalline structure of Gd 2 O 3 :Eu. A more stable high temperature glow peak has also been found at about 380 o C in Y 2 O 3 :Eu. The sensitivity is high enough to be used as UV sensors. TL phenomena in Gd 2 O 3 :Tb and Gd 2 O 3 :Dy have also been investigated, but their TL intensities are much weaker than that of Gd 2 O 3 :Eu or Y 2 O 3 :Eu. On the other hand, all glow peaks of Gd 2 O 3 :Tb and Gd 2 O 3 :Dy are unstable at room temperature, therefore, Gd 2 O 3 :Tb and Gd 2 O 3 :Dy are not suitable for use as UV detectors. According to the above properties, the C type (cubic) crystalline structure of the Gd 2 O 3 :Eu phosphor seems to possess the potential of being the TL material for UV measurement. The position of the high temperature glow peak depends on the total UV exposure. It locates at about 380 o C when this phosphor was irradiated by 302 nm UV at 2.4 mJ.cm -2 exposure, but it shifts to 345 o C at 19.2 mJ.cm -2 or higher exposure. The response curves of this phosphor for various wavelengths, e.g. 253.7 nm, 302 nm, and 365 nm, were also measured. This phosphor is sensitive enough to measure background UV radiations, such as sunlight, bulb light etc. (author)

  10. Long-wave UVA radiation excited warm white-light emitting NaGdTiO{sub 4}: Tm{sup 3+}/Dy{sup 3+}/Eu{sup 3+} ions tri-doped phosphors: Synthesis, energy transfer and color tunable properties

    Energy Technology Data Exchange (ETDEWEB)

    Bharat, L. Krishna; Du, Peng; Yu, Jae Su, E-mail: jsyu@khu.ac.kr

    2016-05-05

    NaGdTiO{sub 4} (NGT) phosphors doped with different activator ions (Tm{sup 3+}, Dy{sup 3+}, and Eu{sup 3+}) were synthesized by a conventional solid-state reaction method in an ambient atmosphere. These phosphors were characterized by scanning electron microscope images, transmission electron microscope images, X-ray diffraction patterns, Fourier transform infrared spectra, and photoluminescence spectra. All the samples were crystallized in an orthorhombic phase with a space group of Pbcm (57). In Tm{sup 3+}/Dy{sup 3+} ions co-doped samples, white-light emission was observed under near-ultraviolet (NUV) excitation. In addition, the energy transfer between Tm{sup 3+} and Dy{sup 3+} ions was proved to be a resonant type via an electric dipole–dipole mechanism and the critical distance of energy transfer was calculated to be 19.91 Å. Furthermore, Tm{sup 3+}/Dy{sup 3+}/Eu{sup 3+} ions tri-doped NGT phosphors demonstrated warm white-light emission by appropriately tuning the activator content, based on the principle of energy transfer. These NUV wavelength excitable phosphors exhibit great potential as a single-phase full-color emitting phosphor for white light-emitting diode applications. - Highlights: • The pebble shaped NaGdTiO{sub 4} particles were prepared by solid-state reaction method. • Tm{sup 3+} and Dy{sup 3+} single doping gives respective blue and cool white light emission. • The Tm{sup 3+}/Dy{sup 3+} ions co-doped samples give CIE values near to standard white light. • Addition of Eu{sup 3+} ions shifts the CIE values towards warm white light region. • This single phase white light emitting phosphors have lower CCT values (<5000 K).

  11. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    International Nuclear Information System (INIS)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K

    2003-01-01

    Pyroelectric properties of phosphoric acid (H 3 PO 4 )-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H 3 PO 4 have been studied. Incorporation of H 3 PO 4 into the crystal lattice is found to induce an internal bias field (E b ) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient (λ), dielectric constant (ε') and polarization (P). A high E b value in the range 9 x 10 3 -15.5 x 10 4 V m -1 is obtained for crystals grown with 0.1-0.5 mol of H 3 PO 4 in the solution, and a specific concentration of 0.2-0.25 mol of H 3 PO 4 in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F d = 428 μC m -2 K -1

  12. Preparation and luminescence properties of Eu2+-doped CaSi2O2-dN2+2/3d phosphors

    International Nuclear Information System (INIS)

    Gu Yunxin; Zhang Qinghong; Wang Hongzhi; Li Yaogang

    2009-01-01

    Eu 2+ -doped CaSi 2 O 2-d N 2+2/3d phosphors for white LED lamps were prepared by solid-state reaction, and the effects of heat-treatment conditions and the overall composition of host lattice on the optical properties have been discussed. Eu 2+ -doped CaSi 2 O 2-d N 2+2/3d displayed a single broad emission band peak at 540 nm, which could be assigned to the allowed transition of Eu 2+ from the lowest crystal field component of 4f 6 5d to 4f 7 ground-state level. The excitation band of samples, extending from UV to blue, is extremely wide, so the phosphors are suitable for white LED lamps in combination with a UV or blue LED dies. The highest PL intensity is found for the sample sintered at 1400 0 C. Moreover, the emission intensity decreases when N partially replaces O. A red shift of emission wavelength did not occur with increasing of the N content.

  13. Effect of grinding on photostimuable phosphors for x-ray screens

    International Nuclear Information System (INIS)

    Rao, R.B.

    1988-01-01

    Luminescence efficiency of a phosphor can be improved by minimizing the energy losses during excitation. The loss of excitation energy in the case of powdered samples is mainly due to scattering of incident radiation by the particles of phosphor. Thus, while considering the industrial applications of polycrystalline phosphors in lamps, screens, paints, etc., the effect of particle size on the light output has to be specially studied. It is very well established that the radiographic imaging with photostimuable (PS) phosphors has many advantages over conventional photographic film screens. In the new type of computer radiography, PS phosphors are to be used as memory materials for temporary storage of the x-ray image. Eu(2+) doped barium fluorohalide phosphors are most suitable for this purpose. The spatial resolution from the image plate can be improved to a certain extent with phosphors comprising fine particles. The fineness of the particles can be achieved by various means such as grinding, fast cooling after firing or incorporation of some flux materials during the firing processes. But the efficiency of the phosphor deteriorates with grinding. Fast cooling is a complicated process in the case of Eu(2+) doped phosphors. Incorporation of flux materials may change the characteristics of phosphor materials. In the present investigation, effect of grinding (ball milling) on particle size distribution, shape of the particles and luminescent properties of BaFCl phosphors have been studied

  14. Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.

    Science.gov (United States)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-05

    A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors

    Science.gov (United States)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-01

    A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.

  16. The effect of grain size and phosphorous-doping of polycrystalline 3C-SiC on infrared reflectance spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: Isabella.vanRooyen@inl.gov [Fuel Performance and Design Department, Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Engelbrecht, J.A.A. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A.; Janzen, E. [Department of Physics, Chemistry and Biology, Semiconductor Materials, Linkoeping University, Linkoeping 58183 (Sweden); Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Rooyen, P.M. van [Philip M van Rooyen Network Consultants, Midlands Estates (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer IR is investigated as a technique to measure grain size and P-doping of polycrystalline SiC. Black-Right-Pointing-Pointer Infrared plasma minima can be used to determine doping levels in 3C-SiC for doping levels greater than 5 Multiplication-Sign 10{sup 17} cm{sup -3}. Black-Right-Pointing-Pointer A linear relationship is found between FWHM and the inverse of grain size of 3C-SiC irrespective of P-doping level. Black-Right-Pointing-Pointer It is further found that {omega}{sub p} is not influenced by the grain size. Black-Right-Pointing-Pointer P-doping level has no significant effect on the linear relationship between grain size and surface roughness. - Abstract: The effect of P-doping and grain size of polycrystalline 3C-SiC on the infrared reflectance spectra is reported. The relationship between grain size and full width at half maximum (FWHM) suggest that the behavior of the 3C-SiC with the highest phosphorous doping level (of 1.2 Multiplication-Sign 10{sup 19} at. cm{sup -3}) is different from those with lower doping levels (<6.6 Multiplication-Sign 10{sup 18} at. cm{sup -3}). It is also further demonstrated that the plasma resonance frequency ({omega}{sub p}) is not influenced by the grain size.

  17. Structural and optical investigation in Er3+ doped Y2MoO6 phosphors

    Science.gov (United States)

    Mondal, Manisha; Rai, Vineet Kumar

    2018-05-01

    The Er3+ doped Y2MoO6 phosphors have been structurally and optically characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis absorption spectroscopy and frequency upconversion (UC) emission studies. The crystal and the particles size are found to be ˜ 85 nm and ˜ 200 nm from XRD and FESEM analysis. The intense peak at ˜ 206 nm in the UV-Vis absorption spectroscopy is attributed due to the charge transfer transition between the Mo6+ and the O2- ions in the MoO4 group in the host molybdate. The frequency UC emission studies of the prepared phosphors under 980 nm diode laser excitation shows the intense UC emission in the 0.3 mol% concentrations for the Er3+ ions. In the UC emission spectra, the emission peaks at green (˜ 525 nm and ˜ 546 nm) and red (˜ 656 nm) bands are corresponding to the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions. The mechanisms involved in the UC process have been explored with the help of energy level diagram. Moreover, the CIE point (0.31, 0.60) lie in the green colour region which indicates that the developed phosphor have suitable applications in NIR to visible upconverter and in making green light display devices.

  18. Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1)3-x A(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga

    International Nuclear Information System (INIS)

    Park, Sangmoon; Vogt, Thomas

    2009-01-01

    A new family of UV-activated phosphors made by substituting rare-earth activators such as trivalent Eu, Tb, Tm and Er into A(1) 3-x A(2) x MO 4 F host lattices (A(1)/A(2)=Sr, Ca, Ba; M=Al, Ga) are introduced and their activation and emission spectra as well as their CIE values reported. The Tm-substituted system can be activated using light with a wavelength of 360 nm. Relative intensities of a family of Tb-substituted green phosphors activated at 254 nm and with emissions centered near 548 nm are discussed.

  19. Phase transition and multicolor luminescence of Eu2+/Mn2+-activated Ca3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Li, Kai; Chen, Daqin; Xu, Ju; Zhang, Rui; Yu, Yunlong; Wang, Yuansheng

    2014-01-01

    Graphical abstract: We have synthesized Eu 2+ doped and Eu 2+ /Mn 2+ co-doped Ca 3 (PO 4 ) 2 phosphors. The emitting color varies from blue to green with increasing of Eu 2+ content for the Eu 2+ -doped phosphor, and the quantum yield of the 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 sample reaches 56.7%. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer. - Highlights: • A series of novel Eu 2+ : Ca 3 (PO 4 ) 2 phosphors were successfully synthesized. • Phase transition of Ca 3 (PO 4 ) 2 from orthorhombic to rhombohedral occurred when Mn 2+ ions were doped. • The phosphors exhibited tunable multi-color luminescence. • The quantum yield of 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 phosphor can reach 56.7%. • The analyses of phosphors were carried out by many measurements. - Abstract: Intense blue-green-emitting Eu 2+ : Ca 3 (PO 4 ) 2 and tunable multicolor-emitting Eu 2+ /Mn 2+ : Ca 3 (PO 4 ) 2 phosphors are prepared via a solid-state reaction route. Eu 2+ -doped orthorhombic Ca 3 (PO 4 ) 2 phosphor exhibits a broad emission band in the wavelength range of 400–700 nm with a maximum quantum yield of 56.7%, and the emission peak red-shifts gradually from 479 to 520 nm with increase of Eu 2+ doping content. Broad excitation spectrum (250–420 nm) of Eu 2+ : Ca 3 (PO 4 ) 2 matches well with the near-ultraviolet LED chip, indicating its potential applications as tri-color phosphors in white LEDs. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer, under 365 nm UV lamp excitation

  20. Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs.

    Science.gov (United States)

    Bedekar, Vinila; Dutta, Dimple P; Mohapatra, M; Godbole, S V; Ghildiyal, R; Tyagi, A K

    2009-03-25

    Gadolinium oxide host and europium/dysprosium/terbium doped gadolinium oxide nanoparticles were synthesized using the sonochemical technique. Gadolinium oxide nanocrystals were also co-doped with total 2 mol% of Eu(3+)/Dy(3+),Eu(3+)/Tb(3+),Dy(3+)/Tb(3+), and also Eu(3+)/Dy(3+)/Tb(3+) ions, by the same method. The nanoparticles obtained were characterized using powder x-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) techniques. The size of the particles ranged from 15 to 30 nm. The triple doped samples showed multicolor emission on single wavelength excitation. The photoluminescence results were correlated with the lifetime data to get an insight into the luminescence and energy transfer processes taking place in the system. On excitation at 247 nm, the novel nanocrystalline Gd(2)O(3):RE (RE = Dy, Tb) phosphor resulted in having very impressive CIE chromaticity coordinates of x = 0.315 and y = 0.316, and a correlated color temperature of 6508 K, which is very close to standard daylight.

  1. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Li, Jin; Li, Xiaojin; Yu, Shuchun; Hao, Jinkai; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2014-01-01

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H 3 PO 4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H 3 PO 4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm −2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  2. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  3. Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass: A phosphor for smart lighting

    Energy Technology Data Exchange (ETDEWEB)

    Lima, S.M., E-mail: smlima@uems.br [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Andrade, L.H.C.; Rocha, A.C.P. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, C. P. 351, CEP 79804-970 Dourados, MS (Brazil); Silva, J.R.; Farias, A.M.; Medina, A.N.; Baesso, M.L. [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil); Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Guyot, Y.; Boulon, G. [Laboratoire de Physico-Chimie des Matériaux Luminescents, Université de Lyon 1, UMR 5620 CNRS, 69622 Villeurbanne (France)

    2013-11-15

    In this paper, a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass is reported. By changing the excitation wavelengths, the results showed it is possible to tune the emission from green to orange, what combined with the scattered light from the same blue LED used for excitation, provided a color rendering index of 71 and a correlated color temperature of 6550 K. Our preliminary tests indicate this material as a promising phosphor towards the development of smart lighting devices. -- Highlights: • We report a broad emission band from Eu{sup 2+}-doped OH{sup −} free calcium aluminosilicate glass. • The maximum emission peak can be tune from green to orange region. • The test with a LED provided a color rendering index of 71 and a correlated color temperature of 6550 K.

  4. Fracto- mechanoluminescence and thermoluminescence properties of orange-red emitting Eu3+ doped Ca2Al2SiO7 phosphors

    International Nuclear Information System (INIS)

    Tiwari, Geetanjali; Brahme, Nameeta; Sharma, Ravi; Bisen, D.P.; Sao, Sanjay K.; Khare, Ayush

    2017-01-01

    The suitability of nano-structured Ca 2 Al 2 SiO 7 :Eu 3+ phosphors for thermoluminescence and mechanoluminescence dosimeter were investigated. Europium doped di-calcium di-aluminum silicate phosphor was synthesised by the combustion assisted method and annealed at 1100 °C for 4 h in reducing and oxidizing environments. The prepared Ca 2 Al 2 SiO 7 :Eu 3+ phosphor was characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDX), photoluminescence (PL) and decay characteristics. The phase structure of sintered phosphor has akermanite type which belongs to the tetragonal crystallography; this structure is a member of the melilite group and forms a layered compound. The chemical composition of the sintered Ca 2 Al 2 SiO 7 :Eu 3+ phosphor was confirmed by EDX spectra. Mechanoluminescence (ML) and thermoluminescence (TL) studies revealed that the ML and TL intensity increases with activator concentration. Optimum ML was observed for the sample having 2 mol% of Eu ions. The TL intensity of Ca 2 Al 2 SiO 7 :Eu 3+ was recorded for different exposure times of γ -irradiation and it was observed that TL intensity is maximum for γ dose of 1770 Gy. The PL spectra indicated that Ca 2 Al 2 SiO 7 :Eu 3+ could be excited effectively by near ultraviolet (NUV) light and exhibited bright orange-red emission with excellent colour stability. CIE colour coordinates of the prepared Ca 2 Al 2 SiO 7 :Eu 3+ phosphor was found suitable as orange-red light emitting phosphor with a CIE value of (x=0.6142, y=0.3849) and correlated colour temperature (CCT) is 1250 K. Therefore, it is considered to be a new promising orange-red emitting phosphor for white light emitting diode (LED) application.

  5. Heterovalent Cation Substitutional and Interstitial Doping in Semiconductor Sensitizers for Quantum Dot Cosensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Ningning Zhang

    2015-01-01

    Full Text Available Doped films of TiO2/PbS/CdS have been prepared by successive ionic layer adsorption and reaction (SILAR method. Bi- and Ag-doped-PbS quantum dot (QD were produced by admixing Bi3+ or Ag+ during deposition and the existing forms of the doping element in PbS QD were analyzed. The results show that Bi3+ entered the cube space of PbS as donor yielding interstitial doping Bi-doped-PbS QD, while Ag+ replaced Pb2+ of PbS as acceptor yielding substitutional doping Ag-doped-PbS QD. The novel Bi-doped-PbS/CdS and Ag-doped-PbS/CdS quantum dot cosensitized solar cell (QDCSC were fabricated and power conversion efficiency (PCE of 2.4% and 2.2% was achieved, respectively, under full sun illumination.

  6. Luminescence properties of Nd{sup 3+}-doped (Y,Gd)BO{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Soung Soo; Kim, Ji-Chul; Kim, Dong Woo [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Balakrishnaiah, R. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Sung Hoon [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.k [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Moon, Byung Kee; Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2010-09-01

    A system of 0.03 mol Nd{sup 3+}-doped (Y,Gd)BO{sub 3} phosphors were prepared by the conventional solid state reaction method for different concentrations of Gd{sup 3+} ions and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and NIR emission measurements. The emitted radiation was dominated by 1057 nm peak in the NIR region as a result of {sup 4}F{sub 3/2} {yields} {sup 4}I{sub 11/2} transitions of Nd{sup 3+} ions. As the concentration of Gd{sup 3+} ions increases from 0.00 to 0.57 mol, the grain sizes and the intensity of NIR emission peaks were improved. The results are discussed in comparison with similar reported works.

  7. Pyroelectric properties of phosphoric acid-doped TGS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Aparna; Fahim, M; Gupta, Vinay; Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2003-12-21

    Pyroelectric properties of phosphoric acid (H{sub 3}PO{sub 4})-doped triglycine sulfate (TGSP) single crystals grown from solutions containing 0.1-0.5 mol of H{sub 3}PO{sub 4} have been studied. Incorporation of H{sub 3}PO{sub 4} into the crystal lattice is found to induce an internal bias field (E{sub b}) and is observed through the presence of a sustained polarization and pyroelectricity beyond the transition temperature. The internal bias field has been estimated theoretically by fitting the experimentally measured data on temperature dependence of the pyroelectric coefficient ({lambda}), dielectric constant ({epsilon}') and polarization (P). A high E{sub b} value in the range 9 x 10{sup 3}-15.5 x 10{sup 4} V m{sup -1} is obtained for crystals grown with 0.1-0.5 mol of H{sub 3}PO{sub 4} in the solution, and a specific concentration of 0.2-0.25 mol of H{sub 3}PO{sub 4} in the solution during crystal growth is found to be optimum for a high figure of merit for detectivity, F{sub d} = 428 {mu}C m{sup -2} K{sup -1}.

  8. Structural characterization and optical properties of Eu"2"+ and Dy"2"+ doped Sr_2SiO_4 phosphor by solid state reaction method

    International Nuclear Information System (INIS)

    Verma, Durga; Verma, Mohan L.; Upma; Patel, R.P.

    2016-01-01

    Thermoluminescence, SEM, FTIR Divalent dysprosium and europium doped strontium silicate (Sr_2SiO_4) phosphors were synthesized with the high-temperature solid-state reaction technique. The obtained phosphor was well characterized by powder X-ray diffraction, scanning electron microscopy, FTIR, UV-visible spectroscopy and thermoluminescence. The crystal structure of the prepared phosphor has an orthorhombic structure with space group Pnma. From scanning electron microscopy (SEM), agglomerations of particles were observed due to the high temperature synthesis process. The chemical composition of the sintered Sr_2SiO_4:Dy"2"+ and Sr_2SiO_4: Eu"2"+ phosphor was confirmed by energy dispersive X-ray spectroscopy (EDX). The UV-VIS analysis can be thought as a good quality check for the optical behavior of materials. The Fourier transmission infrared spectroscopy (FTIR) confirms the present elements in phosphor. Thermoluminescence study was carried out for the phosphor with UV irradiation show one glow peak. The trapping parameters associated with the prominent glow peak of Sr_2SiO_4:Dy"2"+ and Sr_2SiO_4:Eu"2"+ are calculated using Chen's glow curve method. The release of holes/electrons from defect centers at the characteristic trap site initiates the luminescence process in this material. (author)

  9. ZnMoO4:Er3+,Yb3+ phosphor with controlled morphology and enhanced upconversion through alkali ions doping

    Science.gov (United States)

    Luitel, Hom Nath; Chand, Rumi; Watari, Takanori

    2018-04-01

    A facile hydrothermal method was used to synthesize ZnMoO4:Er3+,Yb3+ nanoparticles. The shapes and sizes of the nanoparticles were well tuned by simply monitoring the pH of the starting solution. Microballs consisting of agglomerated nanograins were observed at strong acidic condition. At mild pH, plates and rectangular particles were realized, while strong basic pH stabilized rods. Further increasing pH to extremely basic conditions (pH > 13), rods changed to fragile hairy structures. The nucleation and growth mechanism of nanograins to form different morphology nanoparticles were studied and illustrated. XRD patterns confirmed well crystalline, triclinic structure despite small amount of aliovalent metal ions doping. Under 980 nm excitation, the ZnMoO4:Er3+,Yb3+ nanophosphor exhibited strong green (centered at 530 and 560 nm) and weak red (centered at 660 nm) upconversion (UC) emissions. Substitution of part of the Zn2+ ions by monovalent alkali ions intensified the UC emission intensities drastically. The order of intensification was K+>Na+>Li+>Rb+>no alkali ion. When Zn2+ ions were substituted with 10 at% K+ ions, the green and red UC emissions intensities increased by more than 50 and 15 folds, respectively. Time dependent measurements confirmed efficient Yb to Er energy transfer in the ZnMoO4:Er3+,Yb3+,K+ nanophosphor. The optimized ZnMoO4:Er3+,Yb3+,K+ phosphor exhibited intense UC emissions with 0.31% quantum yield. The upconverted light is visible to naked eye while pumping by laser of less than 1 mW power and opens door for variety of novel applications.

  10. Sol-gel syntheses, luminescence, and energy transfer properties of α-GdB5O9:Ce(3+)/Tb(3+) phosphors.

    Science.gov (United States)

    Sun, Xiaorui; Gao, Wenliang; Yang, Tao; Cong, Rihong

    2015-02-07

    Sol-gel method was applied to prepare homogenous and highly crystalline phosphors with the formulas α-GdB5O9:xTb(3+) (0 ≤ x ≤ 1), α-Gd1-xCexB5O9 (0 ≤ x ≤ 0.40), α-GdB5O9:xCe(3+), 0.30Tb(3+) (0 ≤ x ≤ 0.15) and α-GdB5O9:0.20Ce(3+), xTb(3+) (0 ≤ x ≤ 0.10). The success of the syntheses was proved by the linear shrinkage or expansion of the cell volumes against the substitution contents. In α-GdB5O9:xTb(3+), an efficient energy transfer from Gd(3+) to Tb(3+) was observed and there was no luminescence quenching. The exceptionally high efficiency of the f-f excitations of Tb(3+) implies that these phosphors may be good green-emitting UV-LED phosphors. For α-Gd1-xCexB5O9, Ce(3+) absorbs the majority of the energy and transfers it to Gd(3+). Therefore, the co-doping of Ce(3+) and Tb(3+) leads to a significant enhancement in the green emission of Tb(3+). Our current results together with the study on α-GdB5O9:xEu(3+) in the literature indicate that α-GdB5O9 is a good phosphor host with advantages including controllable preparation, diverse cationic doping, the absence of concentration quenching, and effective energy transfer.

  11. Luminescent phosphors, based on rare earth substituted oxyfluorides in the A(1){sub 3-x} A(2){sub x}MO{sub 4}F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.k [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Vogt, Thomas [NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, SC (United States)

    2009-09-15

    A new family of UV-activated phosphors made by substituting rare-earth activators such as trivalent Eu, Tb, Tm and Er into A(1){sub 3-x}A(2){sub x}MO{sub 4}F host lattices (A(1)/A(2)=Sr, Ca, Ba; M=Al, Ga) are introduced and their activation and emission spectra as well as their CIE values reported. The Tm-substituted system can be activated using light with a wavelength of 360 nm. Relative intensities of a family of Tb-substituted green phosphors activated at 254 nm and with emissions centered near 548 nm are discussed.

  12. Luminescence properties of Eu{sup 2+} doped SrB{sub 4}O{sub 7} phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C.B., E-mail: chetanpalan27@yahoo.in; Bajaj, N.S.; Omanwar, S.K.

    2016-04-15

    Highlights: • Report TL/OSL properties of SrB{sub 4}O{sub 7}:Eu{sup 2+} under beta irradiations. • OSL Sensitivity was about 33% than that of commercially available α-Al{sub 2}O{sub 3.} • TL glow peaks was appear at 305° C and TL sensitivity about 200 times higher than TLD-500. • OSL decay pattern was faster than α- Al{sub 2}O{sub 3}:C and dose response was linear nature. - Abstract: In this report, we presented the TL/OSL properties of Eu doped SrB{sub 4}O{sub 7} phosphor under β-irradiation. This phosphor was synthesized by using solid state method. The phosphor shows OSL sensitivity about 33% than that of commercially available α-Al{sub 2}O{sub 3}: C phosphor. CW-OSL curve possess two components having photoionization cross-sections 0.707 × 10{sup −17} and 18.58 × 10{sup −17} cm{sup 2} respectively and TL sensitivity about 200 times higher than TLD-500. The kinetic parameters such as activation energy, frequency factor and order of kinetics of TL curve were calculated by using peak shape method. In TL/OSL mode dose-response was almost linear in the range of measurements. The MDD was found to be 1.26 mGy with 3σ of background. Also reusability studies showed the phosphor can be reused for 10 cycles with 1% change in the OSL output. The PL spectra of SrB{sub 4}O{sub 7} showed emission in NUV region when excited with 318 nm under UV source.

  13. doped LiMgPO4 phosphor

    Indian Academy of Sciences (India)

    attention because of their remarkable luminescence proper- ties and .... Figure 1. (a) X-ray diffraction patterns of LiMgPO4:Tb3+ phosphor and (b) standard data. ICDD file. .... ground signal which affects the signal to noise ratio [17]. MDD was ...

  14. The synthesis and luminescence properties of a novel red-emitting phosphor. Eu{sup 3+}-doped Ca{sub 9}La(PO{sub 4}){sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zehui [Guangdong University of Technology, Experimental Teaching Department, Guangzhou (China); Guangdong University of Technology, School of Chemical Engineering and Light Industry, Guangzhou (China); Mu, Zhongfei; Zhu, Daoyun [Guangdong University of Technology, Experimental Teaching Department, Guangzhou (China); Wang, Qiang; Wu, Fugen [Guangdong University of Technology, School of Materials and Energy, Guangzhou (China)

    2017-10-15

    A series of novel red-emitting phosphors Ca{sub 9}La{sub 1-x}(PO{sub 4}){sub 7}: xEu{sup 3+} were synthesized by high-temperature solid state reactions. The photoluminescence excitation and photoluminescence spectra of these phosphors were investigated in detail. O{sup 2-}-Eu{sup 3+} charge transfer band peaking at about 261 nm is dominant in the PLE spectra of Eu{sup 3+}-doped Ca{sub 9}La(PO{sub 4}){sub 7}, indicating that the phosphors are suitable for tricolor fluorescent lamps. The phosphors also show a good absorption in near ultraviolet (around 395 nm) and blue (around 465 nm) spectral region, which indicates that it can be pumped with NUV and blue chips for white light-emitting diodes. The transition of {sup 5}D{sub 0} → {sup 7}F{sub 2} of Eu{sup 3+} in this lattice can emit bright red light. Ca{sub 9}La(PO{sub 4}){sub 7} could accommodate a large amount of Eu{sup 3+} with an optimal concentration of 60 mol%. The dipole-dipole interaction between Eu{sup 3+} is the dominant mechanism for concentration quenching of Eu{sup 3+}. The calculated color coordinates lie in red region (x = 0.64, y = 0.36), which is close to Y{sub 2}O{sub 3}: 0.05Eu{sup 3+} (x = 0.65, y = 0.34). The integral emission intensity of Ca{sub 9}La{sub 0.4}(PO{sub 4}){sub 7}: 0.6Eu{sup 3+} is 1.9 times stronger than that of widely used commercial red phosphor Y{sub 2}O{sub 3}: 0.05Eu{sup 3+}. All these results indicate that Eu{sup 3+}-doped Ca{sub 9}La(PO{sub 4}){sub 7} is a promising red-emitting phosphor which can be used in tricolor fluorescent lamps and white light-emitting diodes. (orig.)

  15. Luminescence properties of CdSiO3:Mn2+ phosphor

    International Nuclear Information System (INIS)

    Lei Bingfu; Liu Yingliang; Ye Zeren; Shi Chunshan

    2004-01-01

    A novel long-lasting phosphor CdSiO 3 :Mn 2+ is reported in this paper. The Mn 2+ -doped CdSiO 3 phosphor emits orange light with CIE chromaticity coordinates x=0.5814 and y=0.4139 under 254 nm UV light excitation. In the emission spectrum of 1% Mn 2+ -doped CdSiO 3 phosphor, there is a broad emission band centered at 575 nm which can be attributed to the spin-forbidden transition of the d-orbital electron associated with the Mn 2+ ion. The phosphorescence can be seen by the naked eyes in the dark clearly even after the 254 nm UV irradiation have been removed for about 1 h. The mechanism of the origin of the long-lasting phosphorescence was discussed using the thermoluminescence curves

  16. Synthesis and Luminescence Properties of Novel Ce(3+)- and Eu(2+)-Doped Lanthanum Bromothiosilicate La3Br(SiS4)2 Phosphors for White LEDs.

    Science.gov (United States)

    Lee, Szu-Ping; Liu, Shuang-De; Chan, Ting-Shan; Chen, Teng-Ming

    2016-04-13

    Novel Ce(3+)- and Eu(2+)-doped lanthanum bromothiosilicate La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors were prepared by solid-state reaction in an evacuated and sealed quartz glass ampule. The La3Br(SiS4)2:Ce(3+) phosphor generates a cyan emission upon excitation at 375 nm, whereas the La3Br(SiS4)2:Eu(2+) phosphor could be excited with extremely broad range from UV to blue region (300 to 600 nm) and generates a reddish-orange broadband emission centered at 640 nm. In addition, thermal luminescence properties of La3Br(SiS4)2:Ce(3+)and La3Br(SiS4)2:Eu(2+) phosphors from 20 to 200 °C were investigated. The combination of a 450 nm blue InGaN-based LED chip with the red-emitting La3Br(SiS4)2:Eu(2+) phosphor, and green-emitting BOSE:Eu(2+) commercial phosphor produced a warm-white light with the CRI value of ∼95 and the CCT of 5,120 K. Overall, these results show that the prepared phosphors may have potential applications in pc-WLED.

  17. Tuning the luminescence color and enhancement of afterglow properties of Sr(4−x−y)CaxBayAl14O25:Eu2+,Dy3+ phosphor by adjusting the composition

    International Nuclear Information System (INIS)

    Luitel, Hom Nath; Watari, Takanori; Chand, Rumi; Torikai, Toshio; Yada, Mitsunori; Mizukami, Hiroshi

    2013-01-01

    Graphical abstract: Excitation and fluorescence emission spectra of three extreme compositions of Ca, Sr and Ba in Sr 4 Al 14 O 25 phosphor (viz. 4CaO·7Al 2 O 3 , 4SrO·7Al 2 O 3 and 4BaO·7Al 2 O 3 ) doped with 4 at% Eu 2+ and 8 at% Dy 3+ (inset shows the digital micrograph of corresponding phosphors). -- Highlights: • Bright phosphor, Sr (4−x−y) Ca x Ba y Al 14 O 25 :Eu 2+ ,Dy 3+ , was synthesized by adjusting the composition. • The solid solubility of Ca and Ba in the Sr 4 Al 14 O 25 host was determined to be 20 and 10 mol%, respectively. • Substituting part of Sr by Ca, the emission color can be well tuned from blue to green. • A white afterglow was observed when 3.2 mol of Sr was substituted by Ca. • The afterglow luminescence was enhanced by 1.5 times by 0.2 mol Ca substitution. -- Abstract: Color point tuning is an important challenge for improving the practical applications of various displays, especially there are very limited white color single hosts that emits in the white spectrum. In this paper, the possibility of color tuning by substituting part of host lattice cation (Sr 2+ ions) by Ca 2+ or Ba 2+ ions in an efficient strontium aluminate phosphor, Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ , is reported and found to be very promising for displays. A detail study by replacing part of Sr 2+ with Ca 2+ or Ba 2+ has been investigated. X-ray diffraction study showed that crystal structure of Sr 4 Al 14 O 25 is preserved up to 20 mol of Ca 2+ ion exchange while it is limited to 10 mol of Ba 2+ ions exchange. Substantial shift in the emission band and color were observed by substitution of Sr 2+ by Ca 2+ or Ba 2+ ions. A bluish-white emission and afterglow was observed at higher Ca 2+ ions substitution. Further, partial Ca 2+ substitutions (up to 0.8 mol) resulted in enhanced afterglow of Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ phosphor. However, Ba 2+ substitution decreased the fluorescence as well afterglow of the Sr 4 Al 14 O 25 :Eu 2+ ,Dy 3+ phosphor

  18. Spectral-converting behaviors of Er{sup 3+} and Er{sup 3+}–Yb{sup 3+} doped YOCl phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.kr [Center for Green Fusion Technology and Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Cho, So-Hye [Center for Materials Architecturing, Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of)

    2014-01-25

    Highlights: • Luminescent materials of YOCl:Er,Yb were prepared using NH{sub 4}Cl flux. • Interesting spectral-converting behaviors were observed in the phosphors. • 980 or 1550 nm diode laser was irradiated for up-converting study. • A multi-photon process in the phosphors was calculated. -- Abstract: Luminescent materials composed of Y{sub 1−m−n}Er{sub m}Yb{sub n}OCl (m = 0.001–0.1, n = 0.005–0.1) were prepared via a solid-state reaction using NH{sub 4}Cl flux. Photoluminescence spectra, the dependence of the luminescent intensity as a function of Er{sup 3+} content, and their CIE coordinates of the Er{sup 3+}-doped layered YOCl compounds were also investigated under near-ultraviolet (NUV) and visible lights. The spectral up-converting properties of Er{sup 3+} and Er{sup 3+}–Yb{sup 3+} in YOCl phosphors were elucidated under 980 and 1550 nm diode laser irradiations. This up-conversion emission spectra and the pump power dependence versus emission intensity observed in the Y{sub 0.9}Er{sub 0.1}OCl up-conversion phosphors gave rise to one- and two-photon processes. The up-conversion mechanism of Er{sup 3+} and Yb{sup 3+} ions in YOCl was described by a schematic energy-level diagram. Through the use of these up-conversion luminescent materials, the desired emitting lights throughout the orange and red regions of the spectra were achieved.

  19. NIR to VIS frequency upconversion luminescence properties of Er{sup 3+}-doped YPO{sub 4} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnaiah, R. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Kim, Dong Woo [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Yi, Soung Soo, E-mail: ssyi@silla.ac.k [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Kim, Sung Hoon [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Moon, Byung Kee; Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2010-09-01

    Different concentrations of Er{sup 3+}-doped YPO{sub 4}:Er powder phosphors have been synthesized by the conventional solid state reaction method and are characterized by X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), and upconversion emission measurements. An intense red emission band and a weak green emission band are observed under NIR excitation at 975 nm in case of samples with high dopant concentration while no upconversion emission was observed at lower Er{sup 3+} ion concentrations. The possible mechanisms involved in the upconversion process have been discussed in comparison to results with similar reported works.

  20. PEM steam electrolysis at 130 °C using a phosphoric acid doped short side chain PFSA membrane

    DEFF Research Database (Denmark)

    Hansen, Martin Kalmar; Aili, David; Christensen, Erik

    2012-01-01

    Steam electrolysis test with a phosphoric acid doped Aquivion™ membrane was successfully conducted and current densities up to 775 mA cm-2 at 1.8 V was reached at 130 ºC and ambient pressure. A new composite membrane system using a perfluorosulfonic acid membrane (Aquivion™) as matrix and phospho...... implied that a new and highly corrosion resistant construction material was needed. Tantalum coated stainless steel felt was tested and found suitable as the anode gas diffusion layer. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  1. Luminescent properties and energy transfer in the green phosphors LaBSiO5:Tb3+, Ce3+.

    Science.gov (United States)

    Wang, Zhengliang; Cheng, Ping; He, Pei; Liu, Yong; Zhou, Yayun; Zhou, Qiang

    2015-09-01

    LaBSiO5 phosphors doped with Ce(3+) and Tb(3+) were synthesized using the conventional solid-state method at 1100 °C. The phase purity and luminescent properties of these phosphors are investigated. LaBSiO5:Tb(3+) phosphors show intense green emission, and LaBSiO5 phosphors doped with Ce(3+) show blue-violet emission under UV light excitation. LaBSiO5 phosphors co-doped with Ce(3+) and Tb(3+) exhibit blue-violet and green emission under excitation by UV light. The blue-violet emission is due to the 5d-4f transition of Ce(3+) and the green emission is ascribed to the (5) D4 → (7) F5 transition of Tb(3+). The spectral overlap between the excitation band of Tb(3+) and the emission band of Ce(3+) supports the occurrence of energy transfer from Ce(3+) to Tb(3+), and the energy transfer process was investigated. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Luminescence characterization of sol-gel derived Pr"3"+ doped NaGd(WO_4)_2 phosphors for solid state lighting applications

    International Nuclear Information System (INIS)

    Durairajan, A.; Thangaraju, D.; Moorthy Babu, S.; Valente, M.A.

    2016-01-01

    In the present work, xPr"3"+:NaGd(WO_4)_2 (0.5 ≤ x ≤ 5.0 mol%) sub-micron phosphors were synthesised by sol-gel method. Low cost precursors of metal nitrates and low temperature thermal treatment was used compared to conventional solid state reaction. The formation of highly crystalline phosphors with tetragonal structure was confirmed by XRD and increase of Pr"3"+ ions content in host matrix leads to expansion of the unit cell volume. The surface morphology, size and particle distribution of the phosphors were observed by field emission scanning electron microscopy (FE-SEM). A rectangular shape particle with a size distribution ranging from 400 to 600 nm and tightly packed surface was seen in FE-SEM micrographs. The various internal and external phonon modes vibration corresponding to double tungstate structure was observed in Raman spectra. The optical properties of the synthesised phosphors were explored by ultraviolet visible (UV–Vis) absorption in diffuse reflectance and photoluminescence (PL) measurements. UV–Vis measurements distinguished the host and Pr"3"+ absorption and also reveal an increase in optical band gap values with an increase of Pr"3"+. The PL measurements show various emissions from green and red regions under 450 nm. The maximum intensity emission at 489 nm is due to "3P_0 → "3H_4 transition of Pr"3"+. From the maximum emission the critical doping concentration was calculated to be at 3.5 mol% and critical distance between two adjacent Pr"3"+ ions as 20.43 Å. - Highlights: • A sol-gel method was used to prepare Pr"3"+ doped NaGd(WO_4)_2 at low temperature. • Structural, spectroscopic, morphological, and optical and luminescence properties were studied. • The praseodymium ions are in trivalent state, the site symmetry is distorted and S_4 local symmetry with Na"+ ions. • Strong green emission was observed under UV and visible excitation.

  3. Preparation and tunable luminescence of CaCO{sub 3}: Eu{sup 3+}, Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Qijun; Dong, Yanwei; Kang, Ming, E-mail: dyw510@126.com; Zhang, Ping

    2014-12-15

    Luminescent tunable phosphors CaCO{sub 3}: Eu{sup 3+}, Tb{sup 3+} were synthesized by a microwave co-precipitation method. The structure and micro-morphology of samples were characterized and analyzed by an X-ray powder diffraction (XRD) and a scanning electronic microscope (SEM), results showed that Tb{sup 3+} and Eu{sup 3+} ions were uniformly introduced into the host lattice of CaCO{sub 3} entering substitutionally in Ca{sup 2+} sites. The photoluminescence (PL) properties were characterized by PL, PL excitation spectroscopy and chromaticity coordinates. Under the excitation at 235 nm and 267 nm, the transitions of {sup 5}D{sub 4}→{sup 7}F{sub J} (J=3–6) for Tb{sup 3+} and {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–3) for Eu{sup 3+} were observed, and the luminescent intensities and emitting colors of Eu{sup 3+}–Tb{sup 3+} co-doped CaCO{sub 3} phosphors could be gradually changed between red and green by changing the Eu/Tb atomic ratio and the excitation wavelength. - highlights: • A new phosphor CaCO{sub 3}: Eu{sup 3+}, Tb{sup 3+} was prepared by the microwave co-precipitation method. • The phosphors exhibited green and red color under UV excitation. • The emission color could be gradually tuned between green and red. • The phosphors had the potential as materials for anti-counterfeiting technologies.

  4. A novel orange emissive phosphor SrWO4:Sm3+ for white light-emitting diodes

    International Nuclear Information System (INIS)

    Ju Zhenghua; Wei Ruiping; Ma Jingxin; Pang Chaoran; Liu Weisheng

    2010-01-01

    Research highlights: → A novel orange emissive phosphor SrWO 4 :Sm 3+ was firstly reported. → The optics properties of Sm 3+ -doped SrWO 4 phosphor were successfully discussed. → The temperature-dependent luminescence indicates the phosphor exhibits a small thermal-quenching property. → The phosphor is a potential candidate as orange-emitting component for white LED. - Abstract: A novel orange emissive phosphor, Sm 3+ -doped SrWO 4 , was synthesized by high temperature solid-state reaction in air atmosphere. The excitation spectra show that the phosphors can be efficiently excited by ultraviolet and near-ultraviolet light, the optimized concentration is 4 mol%. Three emission peaks locate at 562, 596 and 642 nm, corresponding to CIE chromaticity coordinates of (x = 0.54, y = 0.46), which indicates the orange light emitting. The decay curves are well fitted with triple-exponential decay models. The quantum yield of the Sr 0.96 Sm 0.04 WO 4 phosphor is about 70.65% under excitation of 377 nm. Furthermore, the temperature-dependent luminescence indicates the phosphor exhibits a small thermal-quenching property. So the phosphor is able to be applied to UV-LED chip-based white light-emitting diodes.

  5. Effect of synthesis methods on luminescence properties of LiCaPO{sub 4}:Ce phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C.B., E-mail: chetupalan@rediffmail.com; Omanwar, S.K.

    2016-10-15

    The polycrystalline doped and un-doped LiCaPO{sub 4} phosphors were successfully prepared via solid state diffusion [SSD] and sol–gel [SG] methods. The sol–gel method was implied to decrease the processing time and heating temperature. The prepared un-doped and doped LiCaPO{sub 4} phosphors were characterized through X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Additionally photoluminescence (PL), thermoluminescence (TL) and optically stimulated luminescence (OSL) properties were studied. The XRD patterns of prepared LiCaPO{sub 4} and LiCaPO{sub 4}:Ce phosphors were well matched with the ICDD file. The average particles size of LiCaPO{sub 4} and LiCaPO{sub 4}:Ce phosphors were found to be in the range 2–10 μm by SSD method and 2-5 μm by SG method. The excitation spectra of LiCaPO{sub 4} and LiCaPO{sub 4}:Ce phosphors consist of broad band in the range 200–330 nm and maximum intensity was observed at 314 nm. Also emission spectra consist of broad band in range from 330–500 nm and maximum intensity was observed at 369 nm. With the increase of Ce{sup 3+} ions concentration, the emission spectra of LiCaPO{sub 4}:Ce{sup 3+} phosphors shifted to a longer wavelength. The prepared phosphors were showed excellent TL properties under β irradiation. The OSL sensitivity of the LiCaPO{sub 4}:Ce phosphor synthesized by the SSD method was the nearly same as compared with the OSL sensitivity of LiCaPO{sub 4}:Ce phosphor synthesized by the SG method.

  6. Spectral downshifting in MBO{sub 3}:Nd{sup 3+} (M=Y, La) phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Omanwar, S.K.; Sawala, N.S. [Sant Gadge Baba Amravati University, Department of Physics, Amravati, MH (India)

    2017-11-15

    The spectral downshifting (DS) from ultra-violet (UV)/visible (VIS) light to near infra-red (NIR) radiation in Nd{sup 3+} doped YBO{sub 3} and LaBO{sub 3} phosphors is reported. The prepared materials were characterized by X-ray powder diffraction (XRD) and photoluminescence (PL) properties along with time-decay curves were studied which confirmed the spectral DS from VIS to NIR radiation. This can be employed to overcome the spectral mismatch of crystalline silicon (c-Si) solar cell with solar spectrum. The prepared Nd{sup 3+} doped as prepared phosphors provide NIR emission (1052 nm) at excitation of 586 nm where response of c-Si solar cell was optimum. Thus spectral modification by mentioned phosphor can be utilized to improve solar cells performance. Hence these phosphors have potential application for photovoltaic (PV) technology. (orig.)

  7. Photoluminescence characteristics of Sm{sup 3+} doped Ba{sub 3}La(PO{sub 4}){sub 3} as new orange-red emitting phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ruijin [College of Science, Northwest A and F University, Yangling, Shaanxi 712100 (China); Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Mi Noh, Hyeon; Kee Moon, Byung; Chun Choi, Byung [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Hyun Jeong, Jung, E-mail: jhjeong@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Sueb Lee, Ho [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Soo Yi, Soung [Department of Electronic Material Engineering, Silla University, Busan 617-736 (Korea, Republic of)

    2014-01-15

    A series of orange-red emitting Ba{sub 3}La(PO{sub 4}){sub 3}:xSm{sup 3+} (0.01≤x≤0.30) phosphors was synthesized by the convenient solid-state reaction. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of the as-synthesized phosphors. The emission spectra of the Ba{sub 3}La(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors consisted of some sharp emission peaks of Sm{sup 3+} ions centered at 563 nm, 600 nm, 647 nm, 710 nm. The strongest one is located at 600 nm due to {sup 4}G{sub 5/2}–{sup 6}H{sub 7/2} transition of Sm{sup 3+}, generating bright orange-red light. The optimum dopant concentration of Sm{sup 3+} ions in Ba{sub 3}La(PO{sub 4}):xSm{sup 3+} is around 5 mol% and the critical transfer distance of Sm{sup 3+} is calculated as 22 Å. The CIE chromaticity coordinates of the Ba{sub 3}La(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphors was is located in the orange reddish region. The Ba{sub 3}La(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors may be potentially used as red phosphors for white light-emitting diodes. -- Highlights: • A new Sm{sup 3+}-doped Ba{sub 3}La(PO{sub 4}){sub 3} phosphor was firstly synthesized. • Its structure, luminescent properties are well studied and characterized. • The Ba{sub 3}La(PO{sub 4}){sub 3}:Sm{sup 3+} shows bright orange reddish emissions under UV excitation.

  8. Tunable emission and the systematic study on energy-transfer properties of Ce3+- and Tb3+-co-doped Sr3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Liu, Zhijun

    2015-01-01

    An emitting color tunable phosphor Sr 3 (PO 4 ) 2 :Ce 3+ , Tb 3+ was synthesized by the traditional high-temperature solid-state reaction method. The photoluminescence and energy-transfer (ET) properties of Ce 3+ - and Tb 3+ -doped Sr 3 (PO 4 ) 2 host were studied in detail. The obtained phosphors show both a blue emission from Ce 3+ and a yellowish green emission from Tb 3+ with considerable intensity under ultraviolet (UV) excitation (∝311 nm). When the content of Ce 3+ was fixed at 0.03, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb 3+ ions with the aid of ET process. The critical distance between Ce 3+ and Tb 3+ is 14.69 A. The ET mechanism from Ce 3+ to Tb 3+ ions was identified with dipole-dipole interaction. The obtained phosphor exhibits a strong excitation in UV spectral region and high-efficient ET from Ce 3+ to Tb 3+ ions. It may find applications as a green light-emitting UV-convertible phosphor in white LED devices. (orig.)

  9. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Science.gov (United States)

    Frigerio, J.; Ballabio, A.; Gallacher, K.; Giliberti, V.; Baldassarre, L.; Millar, R.; Milazzo, R.; Maiolo, L.; Minotti, A.; Bottegoni, F.; Biagioni, P.; Paul, D.; Ortolani, M.; Pecora, A.; Napolitani, E.; Isella, G.

    2017-11-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm-3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm-3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved.

  10. Photoluminescence characteristics of Sm{sup 3+}-doped Ba{sub 2}CaWO{sub 6} as new orange–red emitting phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ruiijn [College of Science, Northwest A and F University, Yangling, Shaanxi 712100 (China); Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Mi Noh, Hyeon; Kee Moon, Byung; Chun Choi, Byung [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Hyun Jeong, Jung, E-mail: jhjeong@pknu.ac.kr [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of); Sueb Lee, Ho [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Soo Yi, Soung [Department of Electronic Material Engineering, Silla University, Busan 617-736 (Korea, Republic of)

    2014-08-01

    The orange–red emitting Ba{sub 2}CaWO{sub 6}:xSm{sup 3+} (0.01≤x≤0.25) phosphors were synthesized via solid state reaction process. The crystal structure of the phosphor was characterized by XRD. The photoluminescence excitation and emission spectra, concentration effect were investigated. The results show an efficient energy transfer from WO{sub 6}{sup 6−} group to Sm{sup 3+} occurs. The emission spectra of the Ba{sub 2}CaWO{sub 6}:Sm{sup 3+} phosphors consisted of some sharp emission peaks of Sm{sup 3+} ions centre at 579 nm, 618 nm, 625 nm, and 675 nm. The strongest one is located at 610 nm due to {sup 4}G{sub 5/2}→{sup 6}H{sub 7/2} transition of Sm{sup 3+}, generating bright orange–red light. The optimum dopant concentration of Sm{sup 3+} ions in Ba{sub 2}CaWO{sub 6}:xSm{sup 3+} is around 5 mol% and the critical transfer distance of Sm{sup 3+} is calculated as 18 Å. The fluorescence lifetime of Sm{sup 3+} in Ba{sub 2}CaWO{sub 6}:0.05Sm{sup 3+} is 2.36 ms. The Ba{sub 2}CaWO{sub 6}:Sm{sup 3+} phosphors may be potentially used as orange–red phosphors for white light-emitting diodes. - Highlights: • A new host-sensitized Sm{sup 3+}-doped Ba{sub 2}CaWO{sub 6} phosphor was firstly synthesized. • Its structure, luminescent properties are well studied and characterized. • There exists an efficient energy transfer from WO{sub 6}{sup 6−} group to Sm{sup 3+}. • The thermal quenching properties of Ba{sub 2}CaWO{sub 6}:Sm{sup 3+} was firstly evaluated.

  11. A single-phase white light emitting Pr3+ doped Ba2CaWO6 phosphor: synthesis, photoluminescence and optical properties

    Science.gov (United States)

    Sreeja, E.; Vidyadharan, Viji; Jose, Saritha K.; George, Anns; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.

    2018-04-01

    Pr3+ doped Ba2CaWO6 phosphor were prepared by traditional high-temperature solid-state reaction technique. The structure evolution was systematically investigated by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The X-ray powder diffraction patterns indicate that the prepared phosphors crystallized in the cubic double-perovskite structure. The functional groups were identified using FTIR spectra and the elements present in the composition were confirmed by the EDS profile. The morphology of the phosphor was identified using SEM and TEM analysis. The PL spectra illustrated that these phosphors could be efficiently excited by charge transfer band of host and the maximum luminescence intensity was observed at 0.06 wt% of Pr3+ ion. Upon the charge transfer band excitation, emission spectra showed peaks at 489, 532, 647, 685 and 737 nm corresponding to 3P0→3H4, 3P1→3H5, 3P0→3F2, 3P0→3F3 and 3P0→3F4 transitions respectively. The concentration quenching of Ba2CaWO6:Pr3+ phosphor can be mainly attributed to dipole-dipole interaction. The CIE coordinates were estimated to be close to the white region. The decay curves are well fitted with double exponential decay models. The standard and modified Judd-Ofelt (JO) theories were used to determine the Judd-Ofelt intensity parameters, radiative transition probabilities and branching ratios. The optical properties indicate that Ba2CaWO6:Pr3+ phosphors can produce white light emission from a single phase host and its potential application for solid-state lighting and display devices.

  12. Study on luminescence and thermal stability of blue-emitting Sr_5(PO_4)_3F: Eu"2"+phosphor for application in InGaN-based LEDs

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Zhi-Ming; Wu, Zhan-Chao; Wang, Fang-Fang; Li, Zhen-Jiang

    2017-01-01

    Highlights: • A blue phosphor Sr_5(PO_4)_3F: Eu"2"+ was prepared at low temperature of 800 °C. • The broad excitation band of the phosphor matches well with NUV LED chips. • The phosphor shows high color purity and good color stability. • A bright blue-emitting LED was fabricated with this phosphor on an InGaN chip. - Abstract: A series of blue-emitting phosphors Sr_5(PO_4)_3F: Eu"2"+ were synthesized by traditional high temperature solid-state reaction method. The micro-morphology and photoluminescence properties of the phosphors were investigated. The Sr_5(PO_4)_3F: Eu"2"+ phosphors exhibit broad excitation spectra ranging from 250 to 420 nm, and an intense asymmetric blue emission band peaking at 435 nm. Two different Eu"2"+ emission centers in Sr_5(PO_4)_3F: Eu"2"+ phosphors were confirmed via their fluorescence properties. The concentration quenching mechanism, fluorescence lifetime and thermal stability of Sr_5(PO_4)_3F: Eu"2"+ phosphors were studied in detail. The thermal stability can be improved obviously by anion substitution. The CIE chromaticity coordinates of Sr_5(PO_4)_3F: Eu"2"+ phosphors with different Eu"2"+-doped concentrations were calculated. A blue light-emitting diode was fabricated by combination of a 370 nm InGaN chip and the prepared phosphor Sr_5(PO_4)_3F: Eu"2"+. The present work suggests that Sr_5(PO_4)_3F: Eu"2"+ is a potential phosphor applied in InGaN-based LEDs.

  13. Structure, luminescence and thermal quenching properties of Eu doped Sr{sub 2−x}Ba{sub x}Si{sub 5}N{sub 8} red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H.; Chen, L.; Zhou, X.F.; Liu, R.H., E-mail: griremlrh@126.com; Zhuang, W.D.

    2017-02-15

    Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasing x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs). - Graphical abstract: Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} solid solutions were prepared by the solid-state reaction method. The structure, luminescence and thermal quenching properties with varying Ba/Sr ratio were investigated in detail. - Highlights: • The stucture and luminescence properties of Eu doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were investigated. • The samples with the intermediate compositions(x=1.0,1.5) show better stability than the end members of both Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Ba{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}. • The possible mechanism for the improvement of thermal quenching properties was proposed.

  14. Mechanoluminescence, photoluminescence and thermoluminescence studies of SrZrO3:Ce phosphor

    Directory of Open Access Journals (Sweden)

    Neha Tiwari

    2015-01-01

    Full Text Available The present paper reports the synthesis and characterization, photoluminescence thermoluminescence and mechanoluminescence studies of Ce3+ doped SrZrO3 phosphors. The effects of variable concentration of Cerium on meachanoluminescence (ML and photoluminescence behavior were studied. The samples were prepared by combustion a synthesis technique which is suitable for less time taking techniques also for large scale production for phosphors. The starting material used for sample preparation are Sr(NO33, Zr(NO33 XH2O and Ce(NO33 6H2O and urea used as a fuel. The prepared sample was characterized by X-ray diffraction technique (XRD with variable concentration of Ce (0.05–0.5 mol%. There is no any phase change found with increase the concentration of Ce. Sample shows orthorhombic structure and the particle size calculated by Scherer's formula. The surface morphology of prepared phosphor was determined by field emission gun scanning electron microscopy (FEGSEM technique. Mechanoluminescence studies on SrZrO3phosphors doped with Ce and underwent an impulsive deformation with an impact of a piston for Mechanoluminescence (ML investigations. Temporal characteristics in order to investigate about the luminescence centre responsible for ML peak, increasing impact velocity causes more number of electrons will be ionized to reach to the conduction band so there will be more number of electrons available to be recombined at recombination or luminescence centre. In photoluminescence study PL emission spectra show the isolated peak position observed at 388 nm near UV region of spectrum due to 5d–4f transition of Ce3+ion.Thermoluminescence study shows doping of Ce3+ ions reduced the TL intensity TL glow curve shows the high fading and less stability when it doped with cerium. The activation energy high for the doped SrZrO3 phosphor means that the trapped electron is highly trapped in trap level. The present study gives the advance application for fracture

  15. Optical properties of Eu(III) doped strontium gadolinium niobate oxide

    Energy Technology Data Exchange (ETDEWEB)

    Vishwnath, Verma, E-mail: mnsmsu@gmail.com, E-mail: vermavicky.1988@gmail.com; Srinivas, M.; Patel, Nimesh; Modi, Dhaval [Luminescent Materials Laboratory, Physics Department, Faculty of Science, The M. S. University of Baroda, Vadodara-390002 (India); Murthy, K. V. R. [Display Materials Laboratory, Applied Physics Department, Faculty of Technology and Engineering, The M. S. University of Baroda, Vadodara-390001, Gujarat (India)

    2016-05-23

    Sr{sub 2}GdNbO{sub 6} doped with trivalent ion of Eu phosphors having monoclinic phase of space group P2{sub 1}/n have been synthesized via solid state reaction method, and their photoluminescence properties have been examined under UV excitation. The emission peaks exhibited around 580, 596, and 610 nm wavelength. By using xenon lamp as a source of excitation having wavelengths at 254 and 262 nm, it is observed that the maximum light emission yielded in red region. It is inferred that the dopant Eu{sup +3} ions may take the substitutional positions at non-centrosymmetric site.

  16. Adjusting White OLEDs with Yellow Light Emission Phosphor Dye and Ultrathin NPB Layer Structure

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available High efficiency white organic light emission devices were demonstrated with phosphor material dye bis[2-(4-tertbutylphenylbenzothiazolato-N,C2′]iridium (acetylacetonate and ultrathin layer structure. The ultra thin layer be composed of 4,4′-bis[N-1-naphthyl-N-phenyl-amino]biphenyl (NPB or 4,4′-N,N′-dicarbazole-biphenyl : NPB mixed layer with blue light emission. The emission spectra of devices could be adjusted by different phosphor doping concentrations and ultra thin layer structure. Warm white light emitting device could be obtained with 5 wt% doping concentration and power efficiency of 9.93 lm/W at 5 V. Pure white light with Commission Internationale de l'Eclairage (CIE coordinates of (0.33, 0.30 and external quantum efficiency of 4.49% could be achieved with ultra thin layer device structure and 3 wt% phosphor doped device.

  17. New NaSrPO4:Sm phosphor as orange-red emitting material

    Indian Academy of Sciences (India)

    Because NaSr1−xPO4:xSm3+ phosphor features a high colour-rendering index and chemical stability, it is potentially ... use blue LED chips (GaN or InGaN) with a yellow phosphor ... excitation by doping Sm3+ rare earth ions into a suitable.

  18. Luminescent properties of (Y,Gd)BO3:Bi3+,RE3+ (RE=Eu, Tb) phosphor under VUV/UV excitation

    International Nuclear Information System (INIS)

    Zeng Xiaoqing; Im, Seoung-Jae; Jang, Sang-Hun; Kim, Young-Mo; Park, Hyoung-Bin; Son, Seung-Hyun; Hatanaka, Hidekazu; Kim, Gi-Young; Kim, Seul-Gi

    2006-01-01

    Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO 3 :Bi 3+ ,Eu 3+ and strong green emission for (Y,Gd)BO 3 :Bi 3+ ,Tb 3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 . The luminescence enhancement of Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors is due to energy transfer from Bi 3+ ion to Eu 3+ or Tb 3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi 3+ and Eu 3+ or Tb 3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp

  19. Photoluminescence properties and energy transfer in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8) phosphors for potential application in ultraviolet white light-emitting diodes.

    Science.gov (United States)

    Yu, Hong; Zi, Wenwen; Lan, Shi; Gan, Shucai; Zou, Haifeng; Xu, Xuechun; Hong, Guangyan

    2013-01-01

    Sr(3) MgSi(2) O(8) :Ce(3+) , Dy(3+) phosphors were prepared by a solid-state reaction technique and the photoluminescence properties were investigated. The emission spectra show not only a band due to Ce(3+) ions (403 nm) but also as a band due to Dy(3+) ions (480, 575 nm) (UV light excitation). The photoluminescence properties reveal that effective energy transfer occurs in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8)phosphors, and the co-doping of Ce(3+) could enhance the emission intensity of Dy(3+) to a certain extent by transferring its energy to Dy(3+) . The Ce(3+) /Dy(3+) energy transfer was investigated by emission/excitation spectra, and photoluminescence decay behaviors. In Sr2.94 MgSi2 O8 :0.01Ce(3+) , 0.05Dy(3+) phosphors, the fluorescence lifetime of Dy(3+) (from 3.35 to 27.59 ns) is increased whereas that of Ce(3+) is greatly decreased (from 43.59 to 13.55 ns), and this provides indirect evidence of the Ce(3+) to Dy(3+) energy transfer. The varied emitted color of Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) phosphors from blue to white were achieved by altering the concentration ratio of Ce(3+) and Dy(3+) . These results indicate Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) may be as a candidate phosphor for white light-emitting diodes. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Red emitting phosphors of Eu3+ doped Na2Ln2Ti3O10 (Ln = Gd, Y) for white light emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Niumiao; Guo, Chongfeng; Yin, Luqiao; Zhang, Jianhua; Wu, Mingmei

    2015-01-01

    Highlights: • Layered red phosphors Na 2 Ln 2 Ti 3 O 10 (Ln = Gd, Y):Eu 3+ were prepared. • The synthesis parameters of phosphors were optimized. • PL and thermal stability of the samples were investigated. • LED devices were also fabricated including the present red phosphor. - Abstract: A series of Eu 3+ doped Na 2 Ln 2 Ti 3 O 10 (Ln = Gd, Y) red-emitting phosphors for application in ultraviolet based light emitting diodes (LEDs) were successfully synthesized by a modified sol–gel method. Their structure and luminescent properties were characterized by powder X-ray diffraction (XRD), photoluminescence excitation (PLE) and emission (PL) spectra and absorption spectra, according to these results the optimal compositions and synthesis parameters were determined. In addition, the thermal stabilities of the phosphors were investigated according to the temperature-dependent PL spectra. The red and white-LEDs (W-LEDs) comprising the Na 2 Ln 2 Ti 3 O 10 :Eu 3+ (Ln = Gd, Y) red emitting phosphors were fabricated with a near-ultraviolet (n-UV) chip. In comparison with Na 2 Y 1.4 Eu 0.6 Ti 3 O 10 , the Na 2 Gd 0.6 Eu 1.4 Ti 3 O 10 phosphor offers higher brightness, quantum efficiency, and excellent thermal stability. W-LEDs comprising Na 2 Gd 0.6 Eu 1.4 Ti 3 O 10 showed bright white emission with a color rendering index (Ra) of 82, a color temperature of 2151 K, and Commission Internationale de I’Eclairage (CIE) color coordinates of (0.34, 0.37). The phosphor Na 2 Gd 0.6 Eu 1.4 Ti 3 O 10 is more suitable candidate for application in LEDs

  1. Eu and Sr2CeO4 : Eu phosphors suitable for near ultraviolet excitation

    Indian Academy of Sciences (India)

    Administrator

    The study on white light phosphors suitable for near- ultraviolet (nUV) ... Rare earth ion-doped phosphors have been used in varied fields ... practical applications. .... by naked eyes. ... induced by Sr2CeO4 host matrix (Arunachalam Laxmanan.

  2. Combustion synthesis of Eu and Dy activated Sr3(VO4)2 phosphor ...

    Indian Academy of Sciences (India)

    phosphor as well as Sr3(VO4)2:Dy is blue and yellow emitting phosphor for solid state lighting i.e. white LEDs. The ... 2004; Pang et al 2004) doped with rare earth has expanded ... controlled since the LED light output (intensity and colour).

  3. Investigation of saturation effects in ceramic phosphors for laser lighting

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    We report observation of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion....... It is shown, that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on incident power and spot size diameter...... of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser based lighting systems....

  4. Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    International Nuclear Information System (INIS)

    Frigerio, J; Ballabio, A; Isella, G; Gallacher, K; Millar, R; Paul, D; Gilberti, V; Baldassarre, L; Ortolani, M; Milazzo, R; Napolitani, E; Maiolo, L; Minotti, A; Pecora, A; Bottegoni, F; Biagioni, P

    2017-01-01

    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  10 19 cm −3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  10 20 cm −3 . Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved. (paper)

  5. Luminescence characteristic of YVO{sub 4}:Eu{sup 3+} thin film phosphors by Li doping

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyoung; Shim, Kyoo Sung; Moon, Byung Kee; Choi, Byung Chun [Department of Physics, Pukyong National University, Busan 608-737, Republic Korea (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737, Republic Korea (Korea, Republic of)], E-mail: jhjeong@pknu.ac.kr; Yi, Soung Soo [Department of Electronic Materials Engineering, Silla University, Busan 608-736, Republic Korea (Korea, Republic of); Kim, Jung Hwan [Department of Physics, Dong Eui University, Busan 614-714, Republic Korea (Korea, Republic of)

    2008-06-30

    YVO{sub 4}:Eu{sup 3+} and Li-doped YVO{sub 4}:Eu{sup 3+} thin film phosphors have been deposited on Al{sub 2}O{sub 3} (0001) substrate using a pulsed laser deposition technique. The Li{sup +} ions concentration was varied from 0 to 3 wt.% and Li{sup +} doping influenced crystallinity and surface morphology of YVO{sub 4}:Eu{sup 3+} films.. As Li{sup +} content increases from 0 wt.% to 2 wt.%, not only crystallinity was improved, but also the shape of grains was rounded. However, Li{sup +} content, increases further to 3 wt.% the shape of grains was changed to elliptical. The emitted radiation was dominated by a red emission peak at 619 nm radiated from the {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of Eu{sup 3+} ions. In particular, the incorporation of Li{sup +} ions into YVO{sub 4} lattice could induce an increase of photoluminescence. The enhanced luminescence results not only from the improved crystallinity but also from the enhanced surface roughness. The luminescent intensity and surface roughness exhibited similar behavior as a function of Li{sup +} ions concentration.

  6. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yin

    2017-10-01

    Full Text Available To modify the luminescence properties of Ce3+-doped Y3Al5O12 (YAG phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N2 atmosphere. Luminescence of the carbon coated YAG:Ce3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce3+ is the highest when heated at 1650 °C, while a blue emission at 400–420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce3+-1500 °C, which disappear in C@YAG:Ce3+-1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce3+ emission and the presence of the blue emission observed for C@YAG:Ce3+-1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce3+ phosphors, which is related to a reaction between C and YAG:Ce3+ in N2 atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N2 atmosphere.

  7. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors.

    Science.gov (United States)

    Yin, Liang-Jun; Dierre, Benjamin; Sekiguchi, Takashi; van Ommen, J Ruud; Hintzen, Hubertus T Bert; Cho, Yujin

    2017-10-16

    To modify the luminescence properties of Ce 3+ -doped Y₃Al₅O 12 (YAG) phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N₂ atmosphere. Luminescence of the carbon coated YAG:Ce 3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce 3+ is the highest when heated at 1650 °C, while a blue emission at 400-420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD) that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce 3+ -1500 °C, which disappear in C@YAG:Ce 3+ -1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce 3+ emission and the presence of the blue emission observed for C@YAG:Ce 3+ -1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce 3+ phosphors, which is related to a reaction between C and YAG:Ce 3+ in N₂ atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N₂ atmosphere.

  8. Infrared emissions in MgSrAl10O17:Er3+ phosphor co-doped with Yb3+/Ba2+/Ca2+ obtained by solution combustion route

    International Nuclear Information System (INIS)

    Singh, Vijay; Kumar Rai, Vineet; Venkatramu, V.; Chakradhar, R.P.S.; Hwan Kim, Sang

    2013-01-01

    An intense infrared emitting MgSrAl 10 O 17 :Er 3+ phosphor co-doped with Yb 3+ , Ba 2+ and Ca 2+ ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl 10 O 17 phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed upon excitation at 980 nm. Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: ► The hexagonal phase of MgSrAl 10 O 17 could be obtained by the low temperature combustion method. ► The broad and strong infrared emission of Er 3+ ions at around 1.53 μm was observed. ► Effect of co-doping with the Yb 3+ , Ba 2+ and Ca 2+ ions on the infrared luminescence intensity of Er 3+ were reported.

  9. High-Throughput Synthesis and Characterization of Eu Doped Ba xSr2- xSiO4 Thin Film Phosphors.

    Science.gov (United States)

    Frost, Sara; Guérin, Samuel; Hayden, Brian E; Soulié, Jean-Philippe; Vian, Chris

    2018-06-20

    High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba x Sr 2- x SiO 4 . Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 °C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped Ba x Sr 2- x SiO 4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIE y between 0.48 and 0.69 with relative efficiencies in the range 2.0 × 10 -4 -7.6 × 10 -4 . Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 °C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.

  10. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    Science.gov (United States)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  11. Eu2+-doped Ba2GaB4O9Cl blue-emitting phosphor with high color purity for near-UV-pumped white light-emitting diodes

    Science.gov (United States)

    Gao, Zhiwen; Deng, Huajuan; Xue, Na; Jeong, Jung Hyun; Yu, Ruijin

    2018-01-01

    Eu2+-doped borate fluoride Ba2GaB4O9Cl was synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal luminescence quenching capabilities and CIE chromaticity coordinates were systematically investigated. Under the excitation at 340 nm, the phosphor exhibited an asymmetric broad-band blue emission with a peak at 445 nm, which is ascribed to the 4f-5d transition of Eu2+. It was further proved that energy transfer among the nearest neighbor ions is the major mechanism for concentration quenching of Eu2+ in Ba2-xGaB4O9Cl:xEu2+ phosphors. The luminescence quenching temperature is 432 K. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicated that the blue-emitting Ba2GaB4O9Cl:Eu2+ phosphor has potential application in white LEDs.

  12. Luminescence and electron degradation properties of Bi doped CaO phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Kroon, R.E.; Coetsee, E.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Seed Ahmed, H.A.A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2015-11-30

    Graphical abstract: - Highlights: • Blue emitting Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully prepared. • Strong blue near-UV emission was obtained. • Electron beam induced cathodoluminescence intensity degradation occurred. • XPS was successfully used to explain the degradation process. - Abstract: Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully synthesized by the sol-gel combustion method. The structure, morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence and cathodoluminescence (CL) spectroscopy. The results showed that the Ca{sub 1−x}O:Bi{sub x=0.5%} consisted of single face-centred cubic crystals and that the phosphor particles were uniformly distributed. When the phosphor was excited by a xenon lamp at 355 nm, or a 325 nm He–Cd laser, or electron beam, it emitted strongly in the blue near-UV range with a wavelength of 395 nm ({sup 3}P{sub 1} → {sup 1}S{sub 0} transition of Bi{sup 3+}). The CL intensity was monitored as a function of the accelerating voltage and also as a function of the beam current. The powder was also subjected to a prolonged electron beam irradiation to study the electron beam induced CL intensity degradation. X-ray photoelectron spectroscopy was used to analyze the Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor sample surface before and after degradation.

  13. Study on preparation of orange-emitting phosphor Y3Mg2AlSi2O12: Ce3+ for wLED

    Directory of Open Access Journals (Sweden)

    Yan Shirun

    2017-12-01

    Full Text Available Ce3+-doped garnet-structured orange-emitting phosphor Y3Mg2AlSi2O12:Ce3+ was prepared by sol-gel combustion using urea as a fuel.Effects of the reduction temperature,Ce3+ doping concentration on the structure,morphology,and photoluminescence property of the as-prepared phosphor were investigated by X-ray diffraction(XRD,scaning electron microscope(SEM,photoluminescence spectroscopy and UV-Vis reflection spectroscopy.The crystallinities,morphologies,and photoluminescence properties of the phosphors prepared by sol-gel combustion and solid-state reaction were compared.The reasons causing different performance of the phosphors were discussed.

  14. Phosphoric acid doped membranes based on Nafion®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing

    DEFF Research Database (Denmark)

    Aili, David; Hansen, Martin Kalmar; Pan, Chao

    2011-01-01

    Proton exchange membrane steam electrolysis at temperatures above 100 °C has several advantages from thermodynamic, kinetic and engineering points of view. A key material for this technology is the high temperature proton exchange membrane. In this work a novel procedure for preparation of Nafion......® and polybenzimidazole blend membranes was developed. Homogeneous binary membranes covering the whole composition range were prepared and characterized with respect to chemical and physiochemical properties such as water uptake, phosphoric acid doping, oxidative stability, mechanical strength and proton conductivity...

  15. Surface and spectral studies of green emitting Sr{sub 3}B{sub 2}O{sub 6}:Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Neharika [School of Physics, Shri Mata Vaishno Devi University, Katra 182320, J& K (India); Kumar, Vinay, E-mail: vinaykumar@smvdu.ac.in [School of Physics, Shri Mata Vaishno Devi University, Katra 182320, J& K (India); Sharma, J.; Singh, Vivek K. [School of Physics, Shri Mata Vaishno Devi University, Katra 182320, J& K (India); Ntwaeaborwa, O.M.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa)

    2016-01-15

    Highlights: • XPS technique has been used to study the surface composition of the phosphor. • The phosphor is synthesized by combustion method using urea as fuel. • Multipole–multipole interaction was found to play a key role for concentration quenching of Tb{sup 3+} doped Sr{sub 3}B{sub 2}O{sub 6} phosphor. - Abstract: In this paper, we report the synthesis of trivalent Tb{sup 3+} doped Sr{sub 3}B{sub 2}O{sub 6} phosphor by combustion method using urea as an organic fuel. The structure of the product has been verified by X-ray diffraction study which shows a rhombohedral phase with a space group of R-3c having lattice constants a = 9.064 Å, b = 9.064 Å, c = 12.611 Å. X-ray photoelectron spectroscopy has been used to study the elemental composition and electronic states of the Tb{sup 3+} doped Sr{sub 3}B{sub 2}O{sub 6} phosphor. Photoluminescence spectra showed that the phosphor emits in the greenish region (with the main peak at 544 nm) of color gamut under UV excitation. The diffuse reflectance spectra of the Sr{sub 3}B{sub 2}O{sub 6} phosphor were studied. Lifetime and band gap of the phosphors were calculated to be 2.55 ms and 5.25 ± 0.02 eV, respectively.

  16. Study on luminescence characteristics of blue OLED with phosphor-doped host-guest structure

    Science.gov (United States)

    Wang, Zhen; Liu, Fei; Zheng, Xin; Chen, Ai; Xie, Jia-feng; Zhang, Wen-xia

    2018-05-01

    In this study, we design and fabricate phosphor-doped host-guest structure organic light-emitting diodes (OLEDs), where the blue-ray iridium complex electrophosphorescent material FIrpic acts as object material. Properties of the device can be accommodated by changing the host materials, dopant concentration and thickness of the light-emitting layer. The study shows that the host material N,N'-dicarbazolyl-3,5-benzene (mCP) has a higher triplet excited state energy level, which can effectively prevent FIrpic triplet excited state energy backtracking to host material, thus the luminous efficiency is improved. When mCP is selected as the host material, the thickness of the light-emitting layer is 30 nm and the dopant concentration is 8 wt%, the excitons can be effectively confined in the light-emitting region. As a result, the maximum current efficiency and the maximum brightness of the blue device can reach 15.5 cd/A and 7 196.3 cd/m2, respectively.

  17. Luminescence property and emission enhancement of YbAlO3:Mn4+ red phosphor by Mg2+ or Li+ ions

    Science.gov (United States)

    Cao, Renping; Luo, Wenjie; Xu, Haidong; Luo, Zhiyang; Hu, Qianglin; Fu, Ting; Peng, Dedong

    2016-03-01

    YbAlO3:Mn4+, YbAlO3:Mn4+, Li+, and YbAlO3:Mn4+, Mg2+ phosphors are synthesized by high temperature solid-state reaction method in air. Their crystal structures and luminescence properties are investigated. Photoluminescence excitation (PLE) spectrum monitored at 677 nm contains broad PLE band with three PLE peaks located at ∼318, 395, and 470 nm within the range 220-600 nm. Emission spectra with excitation 318 and 470 nm exhibit three emission band peaks located at ∼645, 677, and 700 nm in the range of 610-800 nm and their corresponding chromaticity coordinates are about (x = 0.6942, y = 0.3057). The possible luminous mechanism of Mn4+ ion is analyzed by the simple energy level diagram of Mn4+ ion. The optimum Mn4+-doped concentration in YbAlO3:Mn4+ phosphor is about 0.4 mol% and the luminescence lifetime of YbAlO3:0.4%Mn4+ phosphor is ∼0.59 ms. Emission intensity of YbAlO3:0.4%Mn4+ phosphor can be enhanced ∼6 times after Mg2+ ion is co-doped and it is ∼2 times when Li+ ion is co-doped. The content in the paper is useful to research new Mn4+-doped luminescence materials and improve luminescence property of other Mn4+-doped phosphors.

  18. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  19. A novel high color purity blue-emitting phosphor: CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiangong, E-mail: lijiangong01@gmail.com [Department of Electronic Science and Engineering, Huanghuai University, Zhumadian 463000 (China); Yan, Huifang [Department of Foreign Languages and Literature, Huanghuai University, Zhumadian 463000 (China); Yan, Fengmei [Department of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000 (China)

    2016-07-15

    Graphical abstract: - Highlights: • A series of Tm{sup 3+}-doped CaBi{sub 2}B{sub 2}O{sub 7} blue-emitting phosphors were prepared. • The optimum doping content of Tm{sup 3+} ions was found. • The critical distance and concentration quenching mechanism was discussed. • The color purity of as prepared sample was analyzed and compared. - Abstract: A series of Tm{sup 3+}-doped CaBi{sub 2−x}B{sub 2}O{sub 7}:xTm{sup 3+} (0.02 ≤ x ≤ 0.12) blue-emitting phosphors with high color purity were prepared by solid-state reaction method. The crystal structure and luminescence properties of the as-prepared phosphors were studied. This phosphor shows a satisfactory blue performance (peak at 453 nm) due to the {sup 1}D{sub 2} → {sup 3}F{sub 4} transition of Tm{sup 3+} excited by 357 nm light. Investigation of Tm{sup 3+} content dependent emission spectra indicates that x = 0.04 is the optimum doping content of Tm{sup 3+} ions in the CaBi{sub 2}B{sub 2}O{sub 7} host. The critical distance and the concentration quenching mechanism were also investigated. In particular, the color purity of as prepared sample was analyzed and the result shows that the color purity of CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+} is higher than the commercial blue phosphor BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} (BAM:Eu{sup 2+}) and the latest reported Tm{sup 3+} doped blue phosphors. The present work suggests that the CaBi{sub 2}B{sub 2}O{sub 7}:Tm{sup 3+} phosphor is a potential blue-emitting candidate for the application in the near-UV WLEDs.

  20. Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Ayvacikli, M. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Canimoglu, A. [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Muresan, L.E., E-mail: laura_muresan2003@yahoo.com [Babes Bolyai University, Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania); Barbu Tudoran, L. [Babes Bolyai University, Electronic Microscopy Centre, Clinicilor 37, 400006 Cluj Napoca (Romania); Garcia Guinea, J. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karabulut, Y. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jorge, A. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karali, T. [Ege University, Institute of Nuclear Sciences, 35100 Bornova, İzmir (Turkey); Can, N., E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jazan University, Physics Department, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-05-05

    Herein, we primarily focus on luminescence spectrum measurements of various types of green emitting yttrium aluminate phosphors modified with gallium (Y{sub 3}Al{sub 5-x}Ga{sub x}O{sub 12}) synthesised by solid state reaction. The luminescent emission of samples depends on sample temperature and excitation radiation such as incident X-ray, electron and laser beam. Here, we measured radioluminescence (RL), cathodoluminescence (CL), photoluminescence (PL) along with XRD in order to clarify relationship between lattice defects and the spectral luminescence emissions. The RL and CL spectra of YAG:Ce exhibit an emission band ranging from 300 to 450 nm related to Y{sub Al} antisite defects. The broad emission band of garnet phosphors is shifted from 526 nm to 498 nm with increasing of Ga{sup 3+} content, while full width at half maximum (FWHM) of the band tends to be greater than the width of unmodified YAG:Ce garnet. Deconvolution of the spectrum reveals that three emission bands centred at 139, 234 and 294 °C occur in aluminate host garnets. - Highlights: • We present preparation of YAG:Ce{sup 3+}, Ga{sup 3+} phosphors by a solid state reaction method. • The shape and size of phosphor particles were investigated. • The luminescence properties were studied by different excitation sources.

  1. Synthesis of Eu{sub x}Si{sub 6-z}Al{sub z}O{sub z}N{sub 8-z} green phosphor and its luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Ho; Won, Hyong Sik; Park, Youn-Gon; Kim, Sang Hyun; Song, Won Young; Suzuki, Hideo; Yoon, Chulsoo [Samsung Electro-Mechanics Co., LTD, Corporate R and D Institute, Suwon, Gyunggi-Do (Korea)

    2009-06-15

    Rare-earth-doped oxynitride or nitride compounds have been reported to be photoluminescent and may then serve as new phosphors because of their good thermal and chemical stabilities. In this work, Eu{sup 2+}-doped {beta}-SiAlON phosphor with a composition of Eu{sub x}Si{sub 6-z}Al{sub z}O{sub z}N{sub 8-z} (x=0.018,z=0.23) was prepared by gas-pressured solid state reaction. The crystallinity and particle morphology of the prepared phosphor were characterized. The Stokes shift and zero-phonon line were calculated mathematically and estimated from the spectral data. The temperature dependence of photoluminescence was measured from 25 to 250 C. The prepared Eu{sup 2+}-doped {beta}-SiAlON green phosphor showed superior thermal quenching property compared to silicate (SrBaSiO{sub 4}:Eu{sup 2+}) green phosphor. The white light-emitting diode (LED) back-lighting unit (BLU) using the prepared {beta}-SiAlON:Eu{sup 2+} green phosphor exhibited higher color gamut than a commercial silicate phosphor. (orig.)

  2. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    Science.gov (United States)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  3. Laser discrimination by stimulated emission of a phosphor

    Science.gov (United States)

    Mathur, V. K.; Chakrabarti, K.

    1991-01-01

    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.

  4. Photoluminescence analysis of Ce3+:Zn2SiO4 & Li++ Ce3+:Zn2SiO4: phosphors by a sol-gel method

    Science.gov (United States)

    Babu, B. Chandra; Vandana, C. Sai; Guravamma, J.; Rudramadevi, B. Hemalatha; Buddhudu, S.

    2015-06-01

    Here, we report on the development and photoluminescence analysis of Zn2SiO4, Ce3+:Zn2SiO4 & Li+ + Ce3+: Zn2SiO4 novel powder phosphors prepared by a sol-gel technique. The total amount of Ce3+ ions was kept constant in this experiment at 0.05 mol% total doping. The excitation and emission spectra of undoped (Zn2SiO4) and Ce3+ doped Zn2SiO4 and 0.05 mol% Li+ co-doped samples have been investigated. Cerium doped Zn2SiO4 powder phosphors had broad blue emission corresponding to the 2D3/2→2FJ transition at 443nm. Stable green-yellow-red emission has been observed from Zn2SiO4 host matrix and also we have been observed the enhanced luminescence of Li+ co-doped Zn2SiO4:Ce3+. Excitation and emission spectra of these blue luminescent phosphors have been analyzed in evaluating their potential as luminescent screen coating phosphors.

  5. Luminescence and energy transfer of Tm3+ or/and Dy3+ co-doped in Sr3Y(PO4)3 phosphors with UV excitation for WLEDs

    International Nuclear Information System (INIS)

    Wang, Jiyou; Wang, Jianbo; Duan, Ping

    2014-01-01

    Powder samples Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ -yDy 3+ were synthesized by the conventional solid-state reaction method. By appropriate tuning of activator content, the emission color can be adjusted around blue to white and yellow. It was discovered that the energy transfer from Tm 3+ to Dy 3+ was demonstrated to be via the intensity of Dy 3+ emission increase with the increase of Tm 3+ concentration. By changing the doping concentration of Tm 3+ and Dy 3+ in Sr 3 Y(PO 4 ) 3 , white-emitting phosphors are produced by 350 nm excitation wavelength, their corresponding color coordinates are very close to the white color chromaticity coordinates (x=0.33, y=0.33). Finally, Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ −yDy 3+ phosphors could be a good promising single-component white light-emitting UV-convertible phosphor in the field of white LEDs. -- Highlights: • The Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ −yDy 3+ phosphors were synthesized by the conventional solid-state reaction method. • The energy transfer in between Tm 3+ and Dy 3+ was observed and explained. • The phosphors can be efficiently excited by a UV light. • The Sr 3 Y 1−x−y (PO 4 ) 3 :xTm 3+ -yDy 3+ phosphor could be a better candidate white phosphor for UV W-LEDs

  6. Fabrication and characterization of thin-film phosphor combinatorial libraries

    Science.gov (United States)

    Mordkovich, V. Z.; Jin, Zhengwu; Yamada, Y.; Fukumura, T.; Kawasaki, M.; Koinuma, H.

    2002-05-01

    The laser molecular beam epitaxy method was employed to fabricate thin-film combinatorial libraries of ZnO-based phosphors on different substrates. Fabrication of both pixel libraries, on the example of Fe-doped ZnO, and spread libraries, on the example of Eu-doped ZnO, has been demonstrated. Screening of the Fe-doped ZnO libraries led to the discovery of weak green cathodoluminescence with the maximum efficiency at the Fe content of 0.58 mol %. Screening of the Eu-doped ZnO libraries led to the discovery of unusual reddish-violet cathodoluminescence which is observed in a broad range of Eu concentration. No photoluminescence was registered in either system.

  7. TL-OSL study of Li{sub 3}PO{sub 4}: Mg, Cu phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Rahangdale, S. R., E-mail: sachin.rahangdale1@gmail.com; Wankhede, S. P. [Department of Physics, K.D.K.College of Engineering, Nagpur (India); Dhabekar, B. S. [RPAD, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Palikundwar, U. A.; Moharil, S. V. [Department of Physics, RTM Nagpur University, Nagpur, 440010 (India)

    2015-08-28

    In the present work, we report the thermoluminescence and optically stimulated luminescence properties of Mg and Cu doped Li{sub 3}PO{sub 4} phosphor. The phosphor was synthesized by precipitation method. The thermoluminescence dosimetric peak temperature for the phosphor varies with concentrations of Mg and Cu. Li{sub 3}PO{sub 4} shows good response to 470nm optical stimulation. The OSL sensitivity of the phosphor is approximately 12 times than that of standard Lithium magnesium phosphate. This study may help to develop this material for the application in real time dosimetry using optically stimulated luminescence.

  8. Investigation of Luminescence Characteristics of Some Synthetic Nano phosphors and Possibility of Application in Mixed Field Radiation Detection

    International Nuclear Information System (INIS)

    Ahmed, N.Y.A.

    2013-01-01

    The work given in this thesis aimed at Fabrication of high quality nano phosphor particles for getting high sensitive thermoluminescence material to use as ionizing radiation dosimeter. Ca Sr S nano phosphor has been prepared by solid state diffusion reaction method. The prepared nano phosphor was then activated with proper addition of some rare earth elements (dysprosium and gadolinium) for the sake of improving its TL sensitivity. The doped Ca Sr S nano phosphor was then treated by different courses of heat annealing for dual sake and regeneration. High temperature and high gamma dose sensitization are also used to increase sensitivity of Ca Sr S doped. By this means the TL-intensity of treated samples proved about 24 times observed enhancement. The prepared Ca Sr S: Dy nano phosphor is very reliable as pure gamma dosimeter for various applications such as personal, environmental and clinical dosimetry.

  9. Frequency upconversion fluorescence studies of Er{sup 3+}/Yb{sup 3+}-codoped KNbO{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnaiah, R. [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Kim, Dong Woo [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Yi, Soung Soo, E-mail: ssyi@silla.ac.k [Department of Electronic Materials Engineering, Silla University, Busan 617-736 (Korea, Republic of); Kim, Kwang Duk; Kim, Sung Hoon [Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2009-05-29

    Different concentrations of Er{sup 3+} and Yb{sup 3+} ions-doped potassium niobate (K{sub 0.9}NbO{sub 3}:Yb{sub (x)}Er{sub (0.1-x)} for x = 0, 0.01, 0.05, 0.09 and 0.1) polycrystalline powder phosphors were prepared by the conventional solid state reaction method and were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Energy transfer and upconversion fluorescence properties of the Yb{sup 3+} and Er{sup 3+}-codoped phosphors have been discussed. The XRD data has shown mono-phase for pure KNbO{sub 3} while the doped samples represented additional phase formation. The SEM micrographs represented the rectangular crystal growth habit for the KNbO{sub 3} phosphors when doped with 0.1 mol of Er{sup 3+} ions. An intense green emission at 557 nm along with a red emission at 674 nm was observed when the doped samples were excited with 975 nm IR radiation. The upconversion mechanism has been discussed based on the excited state absorption and energy transfer mechanisms.

  10. Photoluminescence, reddish orange long persistent luminescence and photostimulated luminescence properties of praseodymium doped CdGeO3 phosphor

    International Nuclear Information System (INIS)

    Jin, Yahong; Hu, Yihua; Chen, Li; Fu, Yinrong; Mu, Zhongfei; Wang, Tao; Lin, Jun

    2014-01-01

    Highlights: • A novel phosphor CdGeO 3 :Pr 3+ was synthesized successfully. • The persistent luminescence properties of CdGeO 3 :Pr 3+ were studied. • The photostimulated luminescence properties of CdGeO 3 :Pr 3+ were investigated. • The persistent and photostimulated luminescence mechanisms were discussed in detail. - Abstract: Praseodymium doped CdGeO 3 phosphors were prepared successfully by a conventional high temperature solid-state reaction method. It showed reddish orange long persistent luminescence (LPL) after the short UV-irradiation. The reddish orange photostimulated luminescence (PSL) was also observed upon near infrared stimulation at 980 nm after per-exposure into UV light. The origin of LPL and PSL was identified with the emission from Pr 3+ ions with the aid of traps in host lattice. The optimal concentration of Pr 3+ ions for the brightest photoluminescence (PL) emission and the best LPL characteristic were experimentally to be about 3% and 0.5 mol%, respectively. The trapping and de-trapping processes of charge carriers between shallower and deep traps were illustrated. A model was proposed on the basis of experimental results to study the mechanisms of LPL and PSL

  11. EPR and optical absorption studies of Cu{sup 2+} doped L-histidinium dihydrogen phosphate–phosphoric acid single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Prabakaran, R.; Sheela, K. Juliet; Rosy, S. Margret [Department of Physics, Gandhigram Rural Institute—Deemed University, Gandhigram, Dindigul-624302, Tamilnadu (India); Radha Krishnan, S.; Shanmugam, V.M. [CSIR-Central Electrochemical Research Institute, Karaikudi-630006, Tamilnadu (India); Subramanian, P., E-mail: psmanian_gri@yahoo.com [Department of Physics, Gandhigram Rural Institute—Deemed University, Gandhigram, Dindigul-624302, Tamilnadu (India)

    2014-02-01

    The EPR spectra of Cu{sup 2+} in L-histidinium dihydrogen phosphate phosphoric acid at room temperature reveal the presence of two magnetically inequivalent Cu{sup 2+} sites in the lattice. The principal values of the g- and A-tensors indicate existence of rhombic symmetry around the Cu{sup 2+} ion. From the direction cosines of the principal values of the g- and A-tensors, the locations of Cu{sup 2+} in the lattice have been identified as substitutional sites. Optical absorption study shows four bands confirm the rhombic symmetry. Photoluminescence study also confirms the rhombic symmetry around the ions.

  12. Luminescence properties and energy transfer investigations of Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Yang, Zaifa; Xu, Denghui; Sun, Jiayue; Du, Jiangnan; Gao, Xuedong

    2016-01-01

    Highlights: • A phosphor Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ for UV-based white LEDs was firstly synthesized successfully. • The phase structure and photoluminescence properties of samples were studied in detail. • The energy transfer process from Ce"3"+ to Tb"3"+ ions was illustrated in detail. • Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor has potential applications as an UV-convertible phosphor for white light emitting diodes. - Abstract: A series of Ce"3"+ or Tb"3"+ doped and Ce"3"+/Tb"3"+ co-doped Sr_3Lu(PO_4)_3 phosphors were prepared via the conventional high temperature solid-state reaction. The phase structure, photoluminescence and energy transfer properties of samples were studied in detail. The optimal proportion of Ce"3"+ single doping is 4 mol% with maximal fluorescence intensity. The Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor shows both a blue emission (428 nm) from Ce"3"+ and a yellowish-green emission (545 nm) from Tb"3"+ with considerable intensity under ultraviolet (UV) excitation (268 nm). The energy transfer from Ce"3"+ to Tb"3"+ ions takes place in the Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor on the basis of the analysis of the luminescence spectra. The energy transfer mechanism from Ce"3"+ to Tb"3"+ ions was proved to be dipole–dipole interaction. The energy transfer behaviors in Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor is also investigated by the lifetime measurement. The results show that this phosphor has potential applications for UV white-light LEDs.

  13. Remarkable changes in the photoluminescent properties of Y2Ce2O7:Eu(3+) red phosphors through modification of the cerium oxidation states and oxygen vacancy ordering.

    Science.gov (United States)

    Raj, Athira K V; Prabhakar Rao, P; Sreena, T S; Sameera, S; James, Vineetha; Renju, U A

    2014-11-21

    A new series of red phosphors based on Eu(3+)-doped yttrium cerate [Y1.9Ce2O7:0.1Eu(3+), Y2Ce1.9O7:0.1Eu(3+) and Y2Ce2-xO7:xEu(3+) (x = 0.05, 0.10, 0.15, 0.20, 0.25 and 0.50)] was prepared via a conventional solid-state method. The influence of the substitution of Eu(3+) at the aliovalent site on the photoluminescent properties was determined by powder X-ray diffraction, FT Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy with energy-dispersive spectroscopy, UV-visible absorption spectroscopy, photoluminescence spectroscopy and lifetime measurements. The substitution of Eu(3+) at the Ce(4+) site induces a structural transition from a defect fluorite to a C-type structure, which increases the oxygen vacancy ordering and the distortion of the Eu(3+) environment, and decreases the formation of Ce(3+) states. In contrast, phosphors with isovalent substitution at the Y(3+) site exhibit the biphasic nature of defect fluorite and a C-type structure, thereby increasing the number of Ce(3+) oxidation states. These modifications resulted in remarkable changes in the photoluminescent properties of Y2Ce1.9O7:0.1Eu(3+) red phosphors, with emission intensities 3.8 times greater than those of the Ce0.9O2:0.1Eu(3+) and Y1.9Ce2O7:0.1Eu(3+). The photoluminescent properties of Y2Ce2-xO7:xEu(3+) were studied at different Eu(3+) concentrations under excitation with blue light. These phosphors emit intense red light due to the (5)D0-(7)F2 transition under excitation at 466 nm and no concentration quenching is observed with up to 50 mol% Eu(3+). They show increased lifetimes in the range 0.62-0.72 ms at Eu(3+) concentrations. The cation ordering linked to the oxygen vacancy ordering led to the uniform distribution of Eu(3+) ions in the lattice, thus allowing higher doping concentrations without quenching and consequently increasing the lifetime of the (5)D0 states. Our results demonstrate that significant improvements in

  14. Blue to bluish-green tunable phosphor Sr2LiSiO4F:Ce3+,Tb3+ and efficient energy transfer for near-ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Xie, Mubiao; Zeng, Lihua; Ye, TingLi; Yang, Xi; Zhu, Xianmei; Peng, Siyun; Lei, Lei

    2014-01-01

    Ce 3+ and Tb 3+ activated Sr 2 LiSiO 4 F phosphors were prepared by a solid state reaction technique at high temperature, and their ultraviolet (UV)-visible spectroscopic properties were investigated. Under ultraviolet light excitation, Ce 3+ -doped Sr 2 LiSiO 4 F phosphors emit blue light (420 nm), while Tb 3+ -doped phosphors show yellowish green emission. Efficient energy transfer from Ce 3+ to Tb 3+ ions in co-doped samples was confirmed in terms of corresponding excitation and emission spectra. The energy transfer mechanism between Ce 3+ and Tb 3+ was discussed and demonstrated to be dipole–dipole interaction in Sr 2 LiSiO 4 F:Ce 3+ ,Tb 3+ phosphors. Due to energy transfer from Ce 3+ to Tb 3+ , Ce 3+ and Tb 3+ co-doped Sr 2 LiSiO 4 F phosphors show intense absorption in near-UV region, and present tunable emission from blue to bluish green under 360 nm light excitation. The results indicate that these phosphors can be considered as candidates for white LEDs pumped by n-UV chips. (paper)

  15. Fracto- mechanoluminescence and thermoluminescence properties of orange-red emitting Eu{sup 3+} doped Ca{sub 2}Al{sub 2}SiO{sub 7} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Geetanjali, E-mail: geetanjali.tiwari10@gmail.com [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G., 492010 (India); Brahme, Nameeta, E-mail: namitabrahme@gmail.com [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G., 492010 (India); Sharma, Ravi [Department of Physics, Govt. Arts and Commerce Girls College, Devendra Nagar, Raipur, C.G. (India); Bisen, D.P.; Sao, Sanjay K. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G., 492010 (India); Khare, Ayush [Department of Physics, National Institute of Technology, Raipur - 492 010 (India)

    2017-03-15

    The suitability of nano-structured Ca{sub 2}Al{sub 2}SiO{sub 7}:Eu{sup 3+} phosphors for thermoluminescence and mechanoluminescence dosimeter were investigated. Europium doped di-calcium di-aluminum silicate phosphor was synthesised by the combustion assisted method and annealed at 1100 °C for 4 h in reducing and oxidizing environments. The prepared Ca{sub 2}Al{sub 2}SiO{sub 7}:Eu{sup 3+} phosphor was characterized by X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDX), photoluminescence (PL) and decay characteristics. The phase structure of sintered phosphor has akermanite type which belongs to the tetragonal crystallography; this structure is a member of the melilite group and forms a layered compound. The chemical composition of the sintered Ca{sub 2}Al{sub 2}SiO{sub 7}:Eu{sup 3+} phosphor was confirmed by EDX spectra. Mechanoluminescence (ML) and thermoluminescence (TL) studies revealed that the ML and TL intensity increases with activator concentration. Optimum ML was observed for the sample having 2 mol% of Eu ions. The TL intensity of Ca{sub 2}Al{sub 2}SiO{sub 7}:Eu{sup 3+} was recorded for different exposure times of γ -irradiation and it was observed that TL intensity is maximum for γ dose of 1770 Gy. The PL spectra indicated that Ca{sub 2}Al{sub 2}SiO{sub 7}:Eu{sup 3+} could be excited effectively by near ultraviolet (NUV) light and exhibited bright orange-red emission with excellent colour stability. CIE colour coordinates of the prepared Ca{sub 2}Al{sub 2}SiO{sub 7}:Eu{sup 3+} phosphor was found suitable as orange-red light emitting phosphor with a CIE value of (x=0.6142, y=0.3849) and correlated colour temperature (CCT) is 1250 K. Therefore, it is considered to be a new promising orange-red emitting phosphor for white light emitting diode (LED) application.

  16. Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor

    International Nuclear Information System (INIS)

    Liang Wei; Wang Yuhua

    2011-01-01

    Research highlights: → Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor is a novel type of practical visible quantum cutting phosphor in promising application. → The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%. → The Mn 2+6 A 1g → 4 E g - 4 A 1g transition was found to coincide well with the 1 S 0 → 1 I 6 transition of Pr 3+ . → The energy transfer from Pr 3+ to Mn 2+ was also observed, converting the first photon from the PCE of Pr 3+ into the red emission of Mn 2+ , and the QC process occurred in this Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor. - Abstract: Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that in Pr 3+ singly doped K 2 YZr(PO 4 ) 3 sample, the first-step transition ( 1 S 0 → 1 I 6 , 3 P J around 405 nm) of Pr 3+ is near the ultraviolet (UV) range, not useful for practical application. When Mn 2+ was doped as a co-activator ion, the energy of 1 S 0 → 1 I 6 , 3 P J transition can be transferred synchronously from Pr 3+ to Mn 2+ and then emit a visible photon. The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%, suggesting a novel type of practical visible quantum cutting phosphor in promising application.

  17. Novel UV-emitting single crystalline film phosphors grown by LPE method

    International Nuclear Information System (INIS)

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Nikl, M.; Mares, J.A.; Winnacker, A.

    2010-01-01

    This work reports the development of new types of UV-emitting phosphors based on single crystalline films (SCF) of aluminum garnet and perovskite compounds grown by the liquid phase epitaxy method. We consider peculiarities of the growth and the luminescent and scintillation properties of the following four types of UV SCF phosphors: i) Ce-doped SCF of Y-Lu-Al-perovskites with the Ce 3+ emission in the 300-450 nm range of the decay time of 16-17 ns; ii) Pr-doped SCF of Y-Lu-Al garnets and perovskites with the Pr 3+ emission in the 300-400 nm and 235-330 nm ranges with the decay time of 13-19 and 7-8 ns, respectively; iii) La 3+ or Sc 3+ doped SCF of Y-Lu-Al-garnets, emitting in the 280-400 nm range due to formation of the La Y,Lu , Sc Y,Lu and Sc Al centers with decay time of the order of several hundreds of nanoseconds; iv) Bi 3+ doped SCF of garnets with Bi 3+ emission in 275-350 nm with decay time of about 1.9 μs.

  18. Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol-water mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nores-Pondal, Federico J.; Corti, Horacio R. [Grupo de Pilas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Av. General Paz 1499, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Buera, M. Pilar [Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n, Ciudad Universitaria (1428) Buenos Aires (Argentina)

    2010-10-01

    The thermal properties of phosphoric acid-doped poly[2-2'-(m-phenylene)-5-5' bi-benzimidazole] (PBI) and poly[2,5-benzimidazole] (ABPBI) membranes, ionomeric materials with promising properties to be used as electrolytes in direct methanol and in high temperature polymer electrolyte membrane (PEM) fuel cells, were studied by means of differential scanning calorimetry (DSC) technique in the temperature range from -145 C to 200 C. The DSC scans of samples equilibrated in water at different relative humidities (RH) and in liquid water-methanol mixtures were analyzed in relation to glass transition, water crystallization/melting and solvent desorption in different temperature regions. The thermal relaxation observed in the very low temperature region could be ascribed to the glass transition of the H{sub 3}PO{sub 4}-H{sub 2}O mixture confined in the polymeric matrix. After cooling the samples up to -145 C, frozen water was detected in PBI and ABPBI at different RH, although at 100% RH less amount of water had crystallized than that observed in Nafion membranes under the same conditions. Even more important is the fact that the freezing degree of water is much lower in ABPBI membranes equilibrated in liquid water-methanol mixtures than that observed for PBI and, in a previous study, for Nafion. Thus, apart from other well known properties, acid-doped ABPBI emerges as an excellent ionomer for applications in direct methanol fuel cells working in cold environments. (author)

  19. Enhancement of photoluminescence properties and modification of crystal structures of Si3N4 doping Li2Sr0.995SiO4:0.005Eu2+ phosphors

    International Nuclear Information System (INIS)

    Song, Kaixin; Zhang, Fangfang; Chen, Daqin; Wu, Song; Zheng, Peng; Huang, Qingming; Jiang, Jun; Xu, Junming; Qin, Huibin

    2015-01-01

    Highlights: • Si 3 N 4 modified Li 2 Sr 0.995 SiO 4 :0.005Eu 2+ phosphors were prepared. • The luminescence intensity of Li 2 Sr 0.995 SiO 4 :Eu 2+ was enhanced by doping Si 3 N 4 . • The fluorescence decay times and thermal stability were enhanced by doping Si 3 N 4 . - Abstract: Si 3 N 4 modified Li 2 Sr 0.995 SiO 4 :0.005Eu 2+ (Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ ) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f 6 5d 1 → 4f 7 transition of Eu 2+ . The partial nitridation of Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ phosphors were enhanced by addition of Si 3 N 4 . The temperature quenching characteristics confirmed that the oxynitride based Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ showed slightly higher stability. It is implied that Li 2 Sr 0.995 SiO 4−3x/2 N x :0.005Eu 2+ phosphors had a possible potential application on white LEDs to match blue light chips

  20. Luminescence properties of NaY(WO{sub 4}){sub 2}:Sm{sup 3+}, Eu{sup 3+} phosphors prepared by molten salt method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ting; Meng, Qingyu, E-mail: qingyumeng163@163.com; Sun, Wenjun

    2016-02-15

    Sm{sup 3+} singly doped NaY(WO{sub 4}){sub 2} and Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors have been synthesized by molten salt method. The crystal structure and morphology were characterized by means of X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). In Sm{sup 3+} singly doped NaY(WO{sub 4}){sub 2} phosphors, the suitable doping concentration was proved. In Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors, the energy transfer from Sm{sup 3+} to Eu{sup 3+} is confirmed by the luminescent spectra. A strong absorption line at 405 nm can be generated from {sup 6}H{sub 5/2}-{sup 4}K{sub 11/2} ({sup 4}F{sub 7/2}) transition of Sm{sup 3+} in Sm{sup 3+}, Eu{sup 3+} co-doped NaY(WO{sub 4}){sub 2} phosphors, which is suitable for the emission of the near-ultraviolet light-emitting diodes. The energy transfer efficiency, energy transfer rate and average distance between Sm{sup 3+} and Eu{sup 3+} in the NaY(WO{sub 4}){sub 2}:Sm{sup 3+}, Eu{sup 3+} phosphors have been calculated based on the fluorescent dynamic analysis. Finally, the energy transfer mechanism between Sm{sup 3+} and Eu{sup 3+} is confirmed, the energy transfer occurs between {sup 4}G{sub 5/2} state of Sm{sup 3+} ions and {sup 5}D{sub 0} state rather than {sup 5}D{sub 1} state of Eu{sup 3+} ions.

  1. Thermally stimulated properties in ZnSe:Tb and ZnSe:(Mn, Tb) phosphors

    Science.gov (United States)

    Mishra, A. K.; Mishra, S. K.; Pandey, S. P.; Lakshmi Mishra, Kshama

    2018-02-01

    Thermoluminescence studies were performed of ZnSe:Tb and ZnSe:(Mn, Tb) phosphors. A method of preparation for ZnSe phosphors doped with Tb and (Mn, Tb) has been discussed. The thermoluminescence (TL) properties of these phosphors have been studied from 100 to 370 K temperature after exciting by UV radiation (365 nm) at three uniform heating rates 0.4, 0.6 and 0.9 K/s. The trapping parameters like trap depth, lifetime of electrons and capture cross-section have also been determined using various methods.

  2. Enhanced luminescence in Mg{sup 2+} codoped CaTiO{sub 3}:Eu{sup 3+} phosphor prepared by solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vandana, C. Sai; Rudramadevi, B. Hemalatha [Department of Physics, Sri Venkateswara University, Tirupati-517 502 (India)

    2016-05-23

    CaTiO{sub 3} phosphors doped with Eu{sup 3+} and codoped with Mg{sup 2+} were prepared by Solid State Reaction method. The powders were characterized by X-ray diffraction, SEM with EDS, Raman scattering, and photoluminescence spectroscopy. The Crystalline phase and vibrational modes of the phosphors were studied using XRD pattern and Raman Spectrum respectively. The morphological studies of the phosphor samples were carried out using SEM analysis. From PL spectra we have observed two prominent red emission peaks around at 595 nm ({sup 5}D{sub 0}→{sup 7}F{sub 1}), 619 nm ({sup 5}D{sub 0}→{sup 7}F{sub 2}) with the excitation of 399 nm for Eu{sup 3+} doped CaTiO{sub 3} powders. The PL intensity of CaTiO{sub 3}:Eu{sup 3+} phosphor is enhanced significantly on codoping with Mg{sup 2+}. The observed enhanced emissions are due to energy transfer from Mg{sup 2+} to Eu{sup 3+}, which is due to radiative recombination. Eu{sup 3+} doped phosphors are well known to be promising materials for electroluminescent devices, optical amplifiers, and lasers.

  3. Luminescence characterization of sol-gel derived Pr{sup 3+} doped NaGd(WO{sub 4}){sub 2} phosphors for solid state lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Durairajan, A., E-mail: durairajan.a@gmail.com [Crystal Growth Centre, Anna University, Chennai, 600025 (India); I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810 193 (Portugal); Thangaraju, D. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8011 (Japan); Moorthy Babu, S. [Crystal Growth Centre, Anna University, Chennai, 600025 (India); Valente, M.A. [I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810 193 (Portugal)

    2016-08-15

    In the present work, xPr{sup 3+}:NaGd(WO{sub 4}){sub 2} (0.5 ≤ x ≤ 5.0 mol%) sub-micron phosphors were synthesised by sol-gel method. Low cost precursors of metal nitrates and low temperature thermal treatment was used compared to conventional solid state reaction. The formation of highly crystalline phosphors with tetragonal structure was confirmed by XRD and increase of Pr{sup 3+} ions content in host matrix leads to expansion of the unit cell volume. The surface morphology, size and particle distribution of the phosphors were observed by field emission scanning electron microscopy (FE-SEM). A rectangular shape particle with a size distribution ranging from 400 to 600 nm and tightly packed surface was seen in FE-SEM micrographs. The various internal and external phonon modes vibration corresponding to double tungstate structure was observed in Raman spectra. The optical properties of the synthesised phosphors were explored by ultraviolet visible (UV–Vis) absorption in diffuse reflectance and photoluminescence (PL) measurements. UV–Vis measurements distinguished the host and Pr{sup 3+} absorption and also reveal an increase in optical band gap values with an increase of Pr{sup 3+}. The PL measurements show various emissions from green and red regions under 450 nm. The maximum intensity emission at 489 nm is due to {sup 3}P{sub 0} → {sup 3}H{sub 4} transition of Pr{sup 3+}. From the maximum emission the critical doping concentration was calculated to be at 3.5 mol% and critical distance between two adjacent Pr{sup 3+} ions as 20.43 Å. - Highlights: • A sol-gel method was used to prepare Pr{sup 3+} doped NaGd(WO{sub 4}){sub 2} at low temperature. • Structural, spectroscopic, morphological, and optical and luminescence properties were studied. • The praseodymium ions are in trivalent state, the site symmetry is distorted and S{sub 4} local symmetry with Na{sup +} ions. • Strong green emission was observed under UV and visible excitation.

  4. Role of Gd{sup 3+} ion on downshifting and upconversion emission properties of Pr{sup 3+}, Yb{sup 3+} co-doped YNbO{sub 4} phosphor and sensitization effect of Bi{sup 3+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, A.; Rai, S. B., E-mail: sbrai49@yahoo.co.in [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Mishra, Kavita [Department of Physics, University of Lucknow, Lucknow 226007 (India)

    2016-07-28

    Dual-mode luminescence (downshifting-DS and upconversion-UC) properties of Pr{sup 3+}/Yb{sup 3+} co-doped Y{sub 1−x}Gd{sub x}NbO{sub 4} (x = 0.0, 0.5, and 1.0) phosphors synthesized by solid state reaction technique have been explored with and without Gd{sup 3+} ion. The structural characterizations (XRD, SEM, and FTIR) confirm the pure phase of YNbO{sub 4} phosphor. Further, with the Gd{sup 3+} ion co-doping, the YNbO{sub 4} phosphors having a random shape and the large particle size are found to be transformed into nearly spherical shape particles with the reduced particle size. The optical band gaps (E{sub g}) of Y{sub 1−x}Gd{sub x}NbO{sub 4} (x = 0.00, 0.25, 0.50, and 1.00) calculated from UV-Vis-NIR measurements are ∼3.69, 4.00, 4.38, and 4.44 eV, respectively. Moreover, YNbO{sub 4} phosphor is a promising blue emitting material, whereas Y{sub 1−x−y−z}Pr{sub y}Yb{sub z}Gd{sub x}NbO{sub 4} phosphor gives intense green, blue, and red emissions via dual-mode optical processes. The broad blue emission arises due to (NbO{sub 4}){sup 3−} group of the host with λ{sub ex} = 264 nm, whereas Pr{sup 3+} doped YNbO{sub 4} phosphor gives dominant red and blue emissions along with comparatively weak green emission on excitation with λ{sub ex} = 300 nm and 491 nm. The concentration dependent variation in emission intensity at 491 nm ({sup 3}P{sub 0}→{sup 3}H{sub 4} transition) and 612 nm ({sup 1}D{sub 2}→{sup 3}H{sub 4} transition); at 612 nm ({sup 1}D{sub 2}→{sup 3}H{sub 4} transition) and 658 nm ({sup 3}P{sub 0}→{sup 3}F{sub 2} transition) of Pr{sup 3+} ion in YNbO{sub 4} phosphor with λ{sub ex} = 300 nm and 491 nm excitations, respectively, has been thoroughly explored and explained by the cross-relaxation process through different channels. The sensitization effect of Bi{sup 3+} ion co-doping on DS properties of the phosphor has also been studied. The observed DS results have been optimized by varying the

  5. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility

    International Nuclear Information System (INIS)

    Chen, Yirong; Zhou, Yilin; Yang, Shenyu; Li, Jiao Jiao; Li, Xue; Ma, Yunfei; Hou, Yilong; Jiang, Nan; Xu, Changpeng; Zhang, Sheng; Zeng, Rong; Tu, Mei; Yu, Bin

    2016-01-01

    Calcium sulfate is in routine clinical use as a bone substitute, offering the benefits of biodegradability, biocompatibility and a long history of use in bone repair. The osteoconductive properties of calcium sulfate may be further improved by doping with strontium ions. Nevertheless, the high degradation rate of calcium sulfate may impede bone healing as substantial material degradation may occur before the healing process is complete. The purpose of this study is to develop a novel composite bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate in the form of microcapsules, which can promote osteogenesis while matching the natural rate of bone healing. The developed microcapsules exhibited controlled degradation that facilitated the sustained release of strontium ions. In vitro testing showed that the microcapsules had minimal cytotoxicity and ability to inhibit bacterial growth. In vivo testing in a mouse model showed the absence of genetic toxicity and low inflammatory potential of the microcapsules. The novel microcapsules developed in this study demonstrated suitable degradation characteristics for bone repair as well as favourable in vitro and in vivo behaviour, and hold promise for use as an alternative bone substitute in orthopaedic surgery. - Highlights: • Chitosan + Sr-doped α-calcium sulfate hemihydrate microcapsules were synthesised. • The novel composite microcapsules had potential application as a bone substitute. • The microcapsules showed controlled degradation and release of strontium ions. • The microcapsules showed in vitro biocompatibility by cytotoxicity test. • The microcapsules showed in vivo biocompatibility in a mouse model.

  6. Novel bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate: Fabrication, characterisation and evaluation of biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yirong; Zhou, Yilin [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Yang, Shenyu [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Li, Jiao Jiao [Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006 (Australia); Li, Xue; Ma, Yunfei; Hou, Yilong; Jiang, Nan; Xu, Changpeng; Zhang, Sheng [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Zeng, Rong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei, E-mail: tumei@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Yu, Bin, E-mail: yubinol@163.com [Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China)

    2016-09-01

    Calcium sulfate is in routine clinical use as a bone substitute, offering the benefits of biodegradability, biocompatibility and a long history of use in bone repair. The osteoconductive properties of calcium sulfate may be further improved by doping with strontium ions. Nevertheless, the high degradation rate of calcium sulfate may impede bone healing as substantial material degradation may occur before the healing process is complete. The purpose of this study is to develop a novel composite bone substitute composed of chitosan and strontium-doped α-calcium sulfate hemihydrate in the form of microcapsules, which can promote osteogenesis while matching the natural rate of bone healing. The developed microcapsules exhibited controlled degradation that facilitated the sustained release of strontium ions. In vitro testing showed that the microcapsules had minimal cytotoxicity and ability to inhibit bacterial growth. In vivo testing in a mouse model showed the absence of genetic toxicity and low inflammatory potential of the microcapsules. The novel microcapsules developed in this study demonstrated suitable degradation characteristics for bone repair as well as favourable in vitro and in vivo behaviour, and hold promise for use as an alternative bone substitute in orthopaedic surgery. - Highlights: • Chitosan + Sr-doped α-calcium sulfate hemihydrate microcapsules were synthesised. • The novel composite microcapsules had potential application as a bone substitute. • The microcapsules showed controlled degradation and release of strontium ions. • The microcapsules showed in vitro biocompatibility by cytotoxicity test. • The microcapsules showed in vivo biocompatibility in a mouse model.

  7. Luminescence and color center distributions in K3YB6O12:Ce3+ phosphor

    International Nuclear Information System (INIS)

    Yang, Li; Wan, Yingpeng; Weng, Honggen; Huang, Yanlin; Chen, Cuili; Seo, Hyo Jin

    2016-01-01

    Polycrystalline Ce 3+ -doped K 3 YB 6 O 12 (1–14 mol%) phosphors were prepared by facile chemical sol–gel synthesis. The phase formation of the phosphors was confirmed by x-ray powder diffraction (XRD) analysis. The photoluminescence excitation spectra (PLE), emission spectra (PL) and the luminescence decay curves were tested. Under the near-UV light, the phosphors present the emission from blue color to yellowish green due to the allowed 4 f  –5 d transitions of Ce 3+ ions. The absolute quantum efficiency (QE) of K 3 YB 6 O 12 :Ce 3+ can reach 53% under the excitation of near-UV light. The luminescence thermal quenching of the phosphor was investigated by the temperature-dependent spectra. The crystallographic site of Ce 3+ ions in the lattice was identified and discussed on the basis of luminescence characteristics and structural data. There is only one isolated Ce 3+ center occupying the Y(II) sites in the lightly doped samples presenting a typical doublet emission profile. While the Ce 3+ multi-centers could be created with the enhancement of the doping levels, which could induce the distinct red-shift of the spectra due to the dipole–dipole interactions. The result in this work could be useful for the further investigation of other rare earth ions in this host. (paper)

  8. A new promising phosphor, Na3La2(BO3)3:Ln (Ln=Eu, Tb)

    International Nuclear Information System (INIS)

    Li Zhihua; Zeng Jinghui; Zhang Guochun; Li Yadong

    2005-01-01

    We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na 3 La 2 (BO 3 ) 3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb 3+ and Eu 3+ )-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb 3+ , Eu 3+ ) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu 3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5 D - 7 F 2 transition of Eu 3+ . The luminescence indicates that the local symmetry of Eu 3+ in NLBO crystal lattice has no inversion center. Optimum Eu 3+ concentration of NLBO:Eu 3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb 3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb 3+ and Eu 3+ ) was analyzed. The relative high quenching concentration was also discussed

  9. Drastic reduction in the surface recombination velocity of crystalline silicon passivated with catalytic chemical vapor deposited SiNx films by introducing phosphorous catalytic-doped layer

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2014-01-01

    We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN x ) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH 3 molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN x /P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN x passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRV is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN x films. The outstanding results obtained imply that SiN x /P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.

  10. Synthesis and photoluminescence characteristics of (Y,Gd)BO3:RE (RE = Eu(3+), Ce(3+), Dy(3+) and Tb(3+)) phosphors for blue chip and near-UV white LEDs.

    Science.gov (United States)

    Rangari, V V; Singh, V; Dhoble, S J

    2016-03-01

    A series of Eu(3+)-, Ce(3+)-, Dy(3+)- and Tb(3+)-doped (Y,Gd)BO3 phosphors was synthesized by a solid-state diffusion method. X-Ray diffraction confirmed their hexagonal structure and the scanning electron microscopy results showed crystalline particles. The excitation spectra revealed that (Y,Gd)BO3 phosphors doped with Eu(3+), Ce(3+), Dy(3+) and Tb(3+) are effectively excited with near UV-light of 395 nm/blue light, 364, 351 and 314 nm, respectively. Photoluminescence spectra of Eu(3+)-, Ce(3+)- and Tb(3+)/Dy(3+)-doped phosphor showed intense emission of reddish orange, blue and white light, respectively. The phosphor Y0.60Gd0.38BO3:Ce0.02 showed CIE 1931 color coordinates of (0.158, 0.031) and better color purity compared with commercially available blue BAM:Eu(2+) phosphor. The phosphor (Y,Gd)BO3 doped with Eu(3+), Dy(3+) and Tb(3+) showed CIE 1931 color coordinates of (0.667, 0.332), (0.251, 0.299) and (0.333, 0.391) respectively. Significant photoluminescence characteristics of the prepared phosphors indicate that they might serve as potential candidates for blue chip and near-UV white light-emitting diode applications. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Structural and spectral properties of MgZnO2:Sm3+ phosphor

    Science.gov (United States)

    Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni

    2018-05-01

    The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.

  12. Substitution of Nb doping on the structural, microstructural and electrical properties in PZT films

    International Nuclear Information System (INIS)

    Haccart, T.; Remiens, D.; Cattan, E.

    2003-01-01

    Undoped and niobium (Nb) doped Pb 1-y (Zr 0.54 Ti 0.46 ) 1-y Nb y O 3 have been deposited by sputtering on Pt metallized silicon substrates. The niobium concentration, y, was varied from 1 to 7 at.% by 1 at.%. The Zr/Ti ratio was fixed to 54/46 corresponding to the Morphotropic Phase Boundary. Structural, microstructural, and electrical properties were evaluated depending on Nb content. The films (doped and undoped) present a (1 1 1)-preferred orientation. The Nb doping induces an increase of the grain size and as it was observed in bulk materials the dielectric constant (ε r ) and the piezoelectric coefficients (e 31 and d 33 ) reach their maximum for low Nb concentration (2 at.%). The remnant and the maximum polarizations increase as the coercive field decreased slightly with the Nb concentration. The internal electric field increases with Nb content; as a result, the 'self-polarization' of the films (polarization measured without poling treatment) is enhanced with niobium substitution. In term of fatigue behavior, it was found that switching endurance characteristics are maximum for low Nb doping level

  13. Substitution of Nb doping on the structural, microstructural and electrical properties in PZT films

    Energy Technology Data Exchange (ETDEWEB)

    Haccart, T.; Remiens, D.; Cattan, E

    2003-01-15

    Undoped and niobium (Nb) doped Pb{sub 1-y}(Zr{sub 0.54}Ti{sub 0.46}){sub 1-y}Nb{sub y}O{sub 3} have been deposited by sputtering on Pt metallized silicon substrates. The niobium concentration, y, was varied from 1 to 7 at.% by 1 at.%. The Zr/Ti ratio was fixed to 54/46 corresponding to the Morphotropic Phase Boundary. Structural, microstructural, and electrical properties were evaluated depending on Nb content. The films (doped and undoped) present a (1 1 1)-preferred orientation. The Nb doping induces an increase of the grain size and as it was observed in bulk materials the dielectric constant ({epsilon}{sub r}) and the piezoelectric coefficients (e{sub 31} and d{sub 33}) reach their maximum for low Nb concentration (2 at.%). The remnant and the maximum polarizations increase as the coercive field decreased slightly with the Nb concentration. The internal electric field increases with Nb content; as a result, the 'self-polarization' of the films (polarization measured without poling treatment) is enhanced with niobium substitution. In term of fatigue behavior, it was found that switching endurance characteristics are maximum for low Nb doping level.

  14. Development of some phosphors of high quantic efficiency and their application in radiological image reinforcing screens

    International Nuclear Information System (INIS)

    Caticha-Ellis, S.; Alvarez, A.G.; Torrianni, I.L.; Lluesma, E.G.

    1981-01-01

    The establishment of a methodology for the preparation of phosphors and the study of different physical factors which interfere in the process is presented. Emphasis is given on the use of a method of preparation of modern phosphors based on crystalline substracts doped with rare earths. (A.R.H.) [pt

  15. The Role of Activator-Activator Interactions In Reducing in Low-Voltage-Cathodoluminescence Efficiency in Eu and Tb Doped Phosphors

    International Nuclear Information System (INIS)

    SEAGER, CARLETON H.; TALLANT, DAVID R.

    1999-01-01

    High resolution measurements of spectrally resolved cathodoluminescence (CL) decay have been made in several commercial and experimental phosphors doped with Eu and Tb at beam energies ranging from 0.8 to 4 keV. CL emission from the lowest two excited states of both rare earth activators was compared to the decay of photoluminescence (PL) after pulsed laser excitation. We find that, at long times after the cessation of electron excitation, the CL decay rates are comparable to those measured in PL, at short times, the decay process is considerably faster and has a noticeable dependence on the energy of the electron beam. These beam energy effects are largest for the higher excited states and for phosphors with larger activator concentrations. Measurements of the experimental phosphors over a range of activator fractions from 0.1 to 0.002 show that the beam energy dependence of the steady-state CL efficiency is larger for higher excited states and weakens as the activator concentration is reduced. The latter effect is strongest for Y 2 SiO 5 :Tb, but also quite evident in Y 2 O 3 :Eu. We suggest that the electron beam dependence of both the decay lifetimes and the steady state CL efficiency may be due to interaction of nearby excited states which occurs as a result of the large energy deposition rate for low energy electrons. This picture-for non-radiative quenching of rare earth emission is an excited state analog of the well-known (ground state-excited state) concentration quenching mechanism

  16. Study on luminescence and thermal stability of blue-emitting Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+}phosphor for application in InGaN-based LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Zhang, Zhi-Ming [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wu, Zhan-Chao, E-mail: wuzhan_chao@163.com [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Wang, Fang-Fang [State Key Laboratory Base of Eco-chemical Engineering, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Li, Zhen-Jiang, E-mail: zjli126@126.com [State Key Laboratory Base of Eco-chemical Engineering, College of Sino-German Science and Technology, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, Shandong (China)

    2017-07-15

    Highlights: • A blue phosphor Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} was prepared at low temperature of 800 °C. • The broad excitation band of the phosphor matches well with NUV LED chips. • The phosphor shows high color purity and good color stability. • A bright blue-emitting LED was fabricated with this phosphor on an InGaN chip. - Abstract: A series of blue-emitting phosphors Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} were synthesized by traditional high temperature solid-state reaction method. The micro-morphology and photoluminescence properties of the phosphors were investigated. The Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors exhibit broad excitation spectra ranging from 250 to 420 nm, and an intense asymmetric blue emission band peaking at 435 nm. Two different Eu{sup 2+} emission centers in Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors were confirmed via their fluorescence properties. The concentration quenching mechanism, fluorescence lifetime and thermal stability of Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors were studied in detail. The thermal stability can be improved obviously by anion substitution. The CIE chromaticity coordinates of Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} phosphors with different Eu{sup 2+}-doped concentrations were calculated. A blue light-emitting diode was fabricated by combination of a 370 nm InGaN chip and the prepared phosphor Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+}. The present work suggests that Sr{sub 5}(PO{sub 4}){sub 3}F: Eu{sup 2+} is a potential phosphor applied in InGaN-based LEDs.

  17. Spectral modulation through controlling anions in nanocaged phosphors

    NARCIS (Netherlands)

    Bian, H.; Liu, Y.; Yan, D.; Zhu, H.; Liu, C.; Xu, C.S.; Liu, Y.; Zhang, H.; Wang, X.

    2013-01-01

    A new approach has been proposed and validated to modulate the emission spectra of europium-doped 12CaO center dot 7Al(2)O(3) phosphors by tuning the nonradiative and radiative transition rates, realized by controlling the sort and amount of the encaged anions. A single wavelength at 255 nm can

  18. Crystal chemical substitutions and doping of YBa2Cu3Ox and related superconductors

    International Nuclear Information System (INIS)

    Skakle, J.M.S.

    1998-01-01

    This review covers the literature on cationic and anionic substitutions and their effect on the properties of YBCO. Reported solubility limits are given, together with crystal symmetry and trends in unit cell parameters with dopant concentration. The dopant site is considered; this is additionally complex in the case of copper substitution because of the two distinct copper sites in the crystal structure. The effect of the dopant on the critical temperature, T c , is reviewed; the literature is often contradictory due to the dual effects of variable oxygen content and the nature of the dopant. Preparation methods appear to have an effect on solubility limits, crystal symmetry and T c . Also, the methods used to determine solubility limits are often imprecise which can lead to contradictions. The magnetic properties of doped materials are reviewed; for some dopants, particularly the magnetic lanthanides, antiferromagnetism and superconductivity co-exist. The related RBa 2 Cu 3 O δ phases (R=lanthanide), their structure, properties and behaviour on doping are reviewed in a similar way. For the larger rare earths, the related systems R 1+x Ba 2-x Cu 3 O δ are reviewed; as x increases, the transition temperature decreases and compositions R 1.5 Ba 1.5 Cu 3 O δ are semiconducting. The upper and lower solubility limit changes with R, and for R=Dy, the upper limit is 2 Cu 3 O δ , cannot be prepared in air since substitution of La onto the Ba site occurs, forming the Ba-deficient solid solutions. (orig.)

  19. Influence of Pr doping on the thermal, structural and optical properties of novel SLS-ZnO glasses for red phosphor

    Science.gov (United States)

    Mohamed, Nurzilla; Hassan, Jumiah; Matori, Khamirul Amin; Azis, Raba'ah Syahidah; Wahab, Zaidan Abdul; Ismail, Zamratul Maisarah Mohd; Baharuddin, Nur Fadilah; Rashid, Siti Syuhaida Abdul

    A novel environmental friendly strategy towards red phosphors in optoelectronic applications employing Pr6O11 doped SLS-ZnO with chemical composition x(Pr6O11)·100-x(SLS·ZnO) where x = 0, 1, 2, 3, 4 and 5 wt% via melt-quenching technique was successfully synthesized. The X-ray Diffraction (XRD) patterns of all these glasses show broad and diffused humps, which confirm the amorphous structure of samples. The Differential Thermal Calorimetry (DSC) indicated that the value of glass transition is higher from 625 °C to 637 °C with increasingly of Pr6O11 content. Fourier Transform Infrared Spectra (FTIR) spectra display a decreasing trend towards a smaller wavenumber with the increase of Pr content is due to the formation of non-bridging oxygen (NBO) in SLS-ZnO host matrix. The absorption spectra had revealed the most intense absorption band at ∼444 nm, which was assigned as excitation wavelength to determine the photoluminescence (PL) emission intensity of the glass. The indirect band gap values varies from ∼2.44 eV to ∼3.02 eV as a function of Pr6O11 concentration. The PL emission bands at ∼530 (blue), ∼556 (green), ∼613 (red) and ∼650 (red) nm increases from 0 wt% to 4 wt% and slightly decreases as Pr6O11 increases with a maximum at 5 wt%. Therefore, the SLS-ZnO doped with Pr6O11 as a good potential as red phosphors in an optoelectronic application in accordance with the highest red emission intensity at ∼613 nm and ∼650 nm.

  20. High-efficient, bicolor-emitting GdVO_4:Dy"3"+ phosphor under near ultraviolet excitation

    International Nuclear Information System (INIS)

    Lu, Jinjin; Zhou, Jia; Jia, Huayu; Tian, Yue

    2015-01-01

    Bicolor emitting GdVO_4:Dy"3"+ phosphor with short columniation-shape was prepared via a simple co-precipitation process. The optimal doping concentration for obtaining maximal luminescent intensity was confirmed to be 0.3 mol% and the electric dipole–dipole interaction is responsible for concentration quenching of Dy"3"+ emission in GdVO_4 phosphor. In order to evaluate the luminescent performance of as-prepared phosphor, the luminescent efficiency and color coordinates were studied. The results show that luminescent efficiency of this phosphor is very high under near UV excitation and twice times higher than commercial Y_2O_2S:Eu"3"+ phosphor. In addition, the color coordinates for optimal Dy"3"+ concentration are (0.339, 0.379), which are close to equal energy point. Therefore, the GdVO_4:Dy"3"+ phosphor may have potential application for solid state lighting.

  1. The development of new phosphors of Tb3+/Eu3+ co-doped Gd3Al5O12 with tunable emission

    Science.gov (United States)

    Teng, Xin; Wang, Wenzhi; Cao, Zhentao; Li, Jinkai; Duan, Guangbin; Liu, Zongming

    2017-07-01

    The gadolinium aluminum garnets Gd3Al5O12 (GdAG) activated with Tb3+/Eu3+ were successfully prepared via co-precipitation method at 1500 °C in this work. The crystal structure stabilization, elements analysis, microphotograph, PL/PLE spectra, decay behavior and quantum efficiency were discussed in detail. The metastable GdAG compounds been effectively stabilized by doping with smaller 10 at.% Tb3+, which then allows the development of new phosphors of (Gd0.9-xTb0.1Eux)3Al5O12 (GdAG:Tb3+/Eu3+, x = 0-0.03) for opto-functionality explorations. The PLE/PL spectra displays that the strongest PLE peak was located at ∼276 nm, which overlaps the 8S7/2 → 6IJ transition of Gd3+. Under 276 nm excitation, the phosphors exhibited both Tb3+ and Eu3+ emissions at 548 nm (green, 5D4 → 7F5 transition of Tb3+) and 592 nm (orange-red, 5D0 → 7F1 transition of Eu3+), respectively. The emission intensities of Tb3+ and Eu3+ remarkably varied with the Eu3+ incorporation. As a consequence, the emission color can be readily tuned from approximately green to orange-red. Fluorescence decay analysis found that the lifetime for the Tb3+ emission rapidly decreased conforming to the Tb3+ → Eu3+ energy transfer, and the energy transfer efficiency was calculated. Owing to the Gd3+ → Eu3+ and Gd3+ → Tb3+ energy transfer, the emission intensities of Tb3+ and Eu3+ in (Gd0.9-xTb0.1Eux)AG phosphor were higher than (Y0.87Tb0.1Eu0.03)AG and (Lu0.87Tb0.1Eu0.03)AG system. The (Gd0.9-xTb0.1Eux)AG garnet phosphors developed in this work may serve as a new type of phosphor which hopefully meets the requirements of various lighting and optical display applications.

  2. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2014-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation. Continuous tests with H2 and simulated reformate which was composed...... of H2, water steam and methanol as the fuel were performed on both single cells. 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with pure dry H2 as the fuel and on the second single cell with simulated reformate as the fuel. Along with the tests electrochemical...... techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. Both single cells showed an increase in the performance in the H2 continuous tests, because of a decrease in the ORR kinetic resistance probably due...

  3. Photoluminescence and absorption spectra of various common TL phosphors - interpretation of TL mechanisms

    International Nuclear Information System (INIS)

    Nagpal, J.S.

    1980-01-01

    Photoluminescence and absorption spectra of TL phosphors TLD-100, CaF 2 :Dy, CaSO 4 :Dy(0.05%wt), CaSO 4 :Tm(0.05%wt) and Mg 2 SiO 4 :Tb have been measured. The absorption spectra are typical of RE 2+ in rare earth doped irradiated phosphors. On heating RE 2+ yields RE 3+ and emission from the excited states of RE 3+ is observed. (author)

  4. Synthesis and luminescence properties of Ce{sup 3+}-doped Y{sub 3}Al{sub 3.5}Ga{sub 1.5}O{sub 12} green phosphor for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Yaochun [Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yu, Yuxi, E-mail: yu_heart@xmu.edu.cn [Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Chen, Guolong [Fujian Engineering Research Center for Solid-state Lighting, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Fang, Jiyu [Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2016-04-15

    A series of Ce{sup 3+}-doped Y{sub 3}Al{sub 3.5}Ga{sub 1.5}O{sub 12} green phosphors were successfully synthesized by a solid-state reaction method. The microstructure, morphology, luminescence spectra, luminescence quantum yield (QY) and thermal stability of the phosphor were investigated. The critical concentration of Ce{sup 3+} ions in Y{sub 3−m}Al{sub 3.5}Ga{sub 1.5}O{sub 12}:mCe{sup 3+} is m=0.06. The QY of Y{sub 2.94}Al{sub 3.5}Ga{sub 1.5}O{sub 12}:0.06Ce{sup 3+} phosphor is as high as 94% under excitation at 450 nm and its luminescence intensity at 150 °C still maintains 90% of that measured at 25 °C, which are just a little worse than those of commercial Lu{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+} green phosphor but much better than those of commercial (Sr,Ba){sub 2}SiO{sub 4}:Eu{sup 2+} green phosphor. A white LED lamp was fabricated by employing Y{sub 2.94}Al{sub 3.5}Ga{sub 1.5}O{sub 12}:0.06Ce{sup 3+} as a green phosphor and commercial (Ca,Sr)AlSiN{sub 3}:Eu{sup 2+} as a red phosphor (628 nm), its Ra value, correlated color temperature (CCT), CIE1931 chromaticity coordinates and luminous efficiency is 84, 3081 K, (x=0.4369, y=0.4142) and 102 lm/W, respectively. The experimental results demonstrate that Y{sub 2.94}Al{sub 3.5}Ga{sub 1.5}O{sub 12}:0.06Ce{sup 3+} is a promising green phosphor not only can be used for high color rendering index white LEDs but also for high-power white LEDs.

  5. Color-tunable and luminescence properties of phosphors of Ce{sup 3+} and Tb{sup 3+} co-doped La{sub 5}Si{sub 3}O{sub 12}N for UV w-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Junru; Chen, Jian; Liu, Yangai, E-mail: liuyang@cugb.edu.cn

    2016-02-15

    A series of Ce{sup 3+}, Tb{sup 3+} and Ce{sup 3+}/Tb{sup 3+} co-doped in La{sub 5}Si{sub 3}O{sub 12}N phosphors were synthesized by conventional high temperature solid state reaction method. With the increase of Tb{sup 3+}, the green emission was realized in (La{sub 0.94−y}Ce{sub 0.06}Tb{sub y}){sub 5}Si{sub 3}O{sub 12}N phosphors on the basis of the efficient energy transfer from Ce{sup 3+} to Tb{sup 3+} with an efficiency (η{sub T}) over 58.72%. The room temperature PL decay curves of the Ce{sup 3+} ions in (La{sub 0.94−y}Ce{sub 0.06}Tb{sub y}){sub 5}Si{sub 3}O{sub 12}N phosphors monitored at 460 nm with an excitation at 365 nm indicated that the energy transfer process between Ce{sup 3+} and Tb{sup 3+} indeed took place. The CIE chromaticity diagrams for (La{sub 0.94−y}Ce{sub 0.06}Tb{sub y}){sub 5}Si{sub 3}O{sub 12}N phosphors were also observed, which shows the color tuned from blue to blue-greenish to green with the increase of Tb{sup 3+} concentration from 0.01 to 0.08. These results demonstrated that Tb{sup 3+} ion with low 4f–4f absorption efficiency in near UV region can play the role of an activator in narrow green-emitting phosphor through efficient energy feeding by allowing 4f–5d absorption of Ce{sup 3+} with high oscillator strength. All the results indicated that the Ce{sup 3+} and Tb{sup 3+} activated La{sub 5}Si{sub 3}O{sub 12}N phosphor may be good candidates for blue-green components in n-UV white LEDs. - Highlights: • A series of Ce{sup 3+}, Tb{sup 3+} and Ce{sup 3+}/Tb{sup 3+} co-doped in La{sub 5}Si{sub 3}O{sub 12}N phosphors were synthesized by high temperature solid state reaction method. • The green emission was realized in (La{sub 0.94−y}Ce{sub 0.06}Tb{sub y})Si{sub 3}O{sub 12}N phosphors on the basis of the highly efficient energy transfer. • The Ce{sup 3+} and Tb{sup 3+} activated La{sub 5}Si{sub 3}O{sub 12}N phosphor may be good candidates for blue-green components in n-UV white LEDs.

  6. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu(3+) phosphors and ceramics.

    Science.gov (United States)

    Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas

    2016-05-16

    A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.

  7. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics

    Science.gov (United States)

    Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas

    2016-01-01

    A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu3+ phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu3+ showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu3+ doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu3+ phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour. PMID:27180941

  8. Phosphors for solid-state lighting: New systems, deeper understanding

    Science.gov (United States)

    Denault, Kristin Ashley

    We explore the structure-composition-property relationships in phosphor materials using a multitude of structural and optical characterization methods including high resolution synchrotron X-ray and neutron powder diffraction and total scattering, low-temperature heat capacity, temperature- and time-resolved photoluminescence, and density functional theory calculations. We describe the development of several new phosphor compositions and provide an in-depth description of the structural and optical properties. We show structural origins of improved thermal performance of photoluminescence and methods for determining structural rigidity in phosphor hosts that may lead to improved luminescent properties. New white light generation strategies are also explored. We begin by presenting the development of a green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1- x(SiO5)x:Ce3+. An examination of the host lattice, and the local structure around the Ce3+ activator ions points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The emission wavelength can be tuned from green to yellow by tuning the composition, x. Photoluminescent quantum yield is determined to be 70+/-5% for some of the examples in the series with excellent thermal properties. Phosphor-converted LED devices are fabricated using an InGaN LED and are shown to exhibit high color rendering white light. Next, we identify two new phosphor solid-solution systems, (Ba1- xSrx)9 Sc2Si6O24:Ce3+,Li+ and Ba9(Y1-ySc y)2Si6O24:Ce3+. The substitution of Sr for Ba in (Ba1-xSrx ) 9Sc2Si6O24:Ce 3+,Li + results in a decrease of the alkaline earth-oxygen bond distances at all three crystallographic sites, leading to changes in optical properties. The room temperature photoluminescent measurements show the structure has three excitation peaks corresponding to Ce3+ occupying the three independent alkaline earth sites. The emission of (Ba 1- xSrx) 9Sc2Si 6O24:Ce3

  9. Spin-state blockade in Te6+-substituted electron-doped LaCoO3

    Science.gov (United States)

    Tomiyasu, Keisuke; Koyama, Shun-Ichi; Watahiki, Masanori; Sato, Mika; Nishihara, Kazuki; Onodera, Mitsugi; Iwasa, Kazuaki; Nojima, Tsutomu; Yamasaki, Yuuichi; Nakao, Hironori; Murakami, Youichi

    2015-03-01

    Perovskite-type LaCoO3 (Co3+: d6) is a rare inorganic material with sensitive and characteristic responses among low, intermediate, and high spin states. For example, in insulating nonmagnetic low-spin states below about 20 K, light hole doping (Ni substitution) induces much larger magnetization than expected; over net 10μB/hole (5μB/Ni) for 1μB/hole (1μB/Ni), in which the nearly isolated dopants locally change the surrounding Co low-spin states to magnetic ones and form spin molecules with larger total spin. Further, the former is isotropic, whereas the latter exhibits characteristic anisotropy probably because of Jahn-Teller distortion. In contrast, for electron doping, relatively insensitive spin-state responses were reported, as in LaCo(Ti4+) O3, but are not clarified, and are somewhat controversial. Here, we present macroscopic measurement data of another electron-doped system LaCo(Te6+) O3 and discuss the spin-state responses. This study was financially supported by Grants-in-Aid for Young Scientists (B) (No. 22740209 and 26800174) from the MEXT of Japan.

  10. Advances in the synthesis of new Europium doped CaSO4 phosphors and their thermoluminescence characterization

    International Nuclear Information System (INIS)

    Bernal, R.; Garcia-Haro, A.R.; Machi, L.; Brown, F.; Perez-Salas, R.; Castano, V.M.; Cruz-Vazquez, C.

    2008-01-01

    Novel self-agglomerating Eu doped CaSO 4 phosphors were synthesized by a cheap, easy, and environmental friendly chemical route. Pellet-shaped sintered samples were obtained without any binding material, and exposed to beta particle irradiation. The thermoluminescence (TL) response in the 0.08-2.6 Gy dose range increased linearly as the radiation dose increased. Glow curves exhibit the most intense maximum close to 200 deg. C, and two much less intense maxima at 250 and 330 deg. C when a 5 deg. C/s heating rate is used. No TL peaks shift is observed when dose changes, which is characteristic of first order kinetics TL processes. The whole glow curve displays a remarkable stability under storage at room temperature. The main peak intensity is 2.5 times greater than that of the TLD-100. The method here reported can be used to synthesize CaSO 4 with other dopants

  11. Enhanced Ce{sup 3+} photoluminescence by Li{sup +} co-doping in CaO phosphor and its use in blue-pumped white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Zhendong, E-mail: haozd@ciomp.ac.cn; Zhang, Xia; Luo, Yongshi; Zhang, Ligong; Zhao, Haifeng; Zhang, Jiahua, E-mail: zhangjh@ciomp.ac.cn

    2013-08-15

    In this paper, we demonstrate a method to improve the photoluminescence of CaO: Ce{sup 3+} phosphor and delineate its first use in blue-pumped white LEDs. The results show that the yellow emission of Ce{sup 3+} is enhanced by a factor of 1.88 by adding Li{sup +} into CaO host at 474 nm blue light excitation. On analyzing the diffuse reflection spectra and fluorescence decay curves, we reveal that the photoluminescence enhancement is originated from the rise of absorbance to the excitation photons but not from the improvement of the luminescent efficiency. Li{sup +}-improved CaO: Ce{sup 3+} exhibits more red component when it is compared with the commercial Y{sub 3}Al{sub 5}O{sub 12}: Ce{sup 3+} (YAG: Ce{sup 3+}) phosphor, indicating its potential application for high color rendering white LEDs. Thus, a white LED is fabricated by combining blue InGaN LED chip with CaO: Ce{sup 3+}, Li{sup +} phosphor and a warm white light with high color rendering index (R{sub a}) of 80, low correlated color temperature (T{sub c}) of 4524 K, and sufficient luminous efficiency of 50 lm W{sup −1} is obtained. -- Highlights: • The photoluminescence of Ce{sup 3+} in CaO host was enhanced by Li{sup +} co-doping. • A CaO: Ce{sup 3+}, Li{sup +} based white LED was fabricated for the first time. • An efficient warm white light was obtained. • CaO: Ce{sup 3+}, Li{sup +} is expected to be used as a yellow phosphor for blue-pumped white LEDs.

  12. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  13. Luminescence properties of Ca2 Ga2 SiO7 :RE phosphors for UV white-light-emitting diodes.

    Science.gov (United States)

    Jiao, Mengmeng; Lv, Wenzhen; Lü, Wei; Zhao, Qi; Shao, Baiqi; You, Hongpeng

    2015-03-16

    A series of Eu(2+) -, Ce(3+) -, and Tb(3+) -doped Ca2 Ga2 SiO7 phosphors is synthesized by using a high-temperature solid-state reaction. The powder X-ray diffraction and structure refinement data indicate that our prepared phosphors are single phased and the phosphor crystalizes in a tetrahedral system with the ${P\\bar 42m}$ (113) space group. The Eu(2+) - and Ce(3+) -doped phosphors both have broad excitation bands, which match well with the UV light-emitting diodes chips. Under irradiation of λ=350 nm, Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) have green and blue emissions, respectively. Luminescence of Ca2 Ga2 SiO7 :Tb(3+) , Li(+) phosphor varies with the different Tb(3+) contents. The thermal stability and energy-migration mechanism of Ca2 Ga2 SiO7 :Eu(2+) are also studied. The investigation results indicate that the prepared Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) samples show potential as green and blue phosphors, respectively, for UV-excited white-light-emitting diodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Preparation and Optical Properties of Novel LiLa(MoO42:Sm3+,Eu3+ Red Phosphor

    Directory of Open Access Journals (Sweden)

    Jiaxi Wang

    2018-02-01

    Full Text Available Novel LiLa1−x−y(MoO42:xSm3+,yEu3+ (in short: LL1−x−yM:xSm3+,yEu3+ double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1−x(MoO42:xSm3+ (LL1−xM:xSm3+ phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole—electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95−yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330 continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1−x−yM:xSm3+,yEu3+ is a promising WLED red phosphor.

  15. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    International Nuclear Information System (INIS)

    Zhou, Shunliang; Wang, Qi; Li, Ming; Lu, Zhiyun; Yu, Junsheng

    2014-01-01

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C 2' ]iridium(III) (acetylacetonate) [(tbpbt) 2 Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt) 2 Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt) 2 Ir(acac) as a self-host orange emitter, indicating that (tbpbt) 2 Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized

  16. Highly efficient and heavily-doped organic light-emitting devices based on an orange phosphorescent iridium complex

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shunliang; Wang, Qi [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Li, Ming [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Lu, Zhiyun, E-mail: luzhiyun@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-10-15

    Heavily doped and highly efficient phosphorescent organic light-emitting devices (PhOLEDs) had been fabricated by utilizing an orange iridium complex, bis[2-(3′,5′-di-tert-butylbiphenyl-4-yl)benzothiazolato-N,C{sup 2'}]iridium(III) (acetylacetonate) [(tbpbt){sub 2}Ir(acac)], as a phosphor. When the doping concentration of [(tbpbt){sub 2}Ir(acac)] reached as high as 15 wt%, the PhOLEDs exhibited a power efficiency, current efficiency, and external quantum efficiency of 24.5 lm/W, 32.1 cd/A, 15.7%, respectively, implying a promising quenching-resistant characteristics of this novel phosphor. Furthermore, the efficient white PhOLEDs had been obtained by employing (tbpbt){sub 2}Ir(acac) as a self-host orange emitter, indicating that (tbpbt){sub 2}Ir(acac) could serve as a promising phosphor to fabricate white organic light-emitting devices with simplified manufacturing process. - Highlights: • Efficient phosphorescent devices were fabricated. • Optimized phosphor doping ratio reached as high as 15 wt%. • The results proved a promising quench-resistant property of the phosphor. • Efficient white devices based on this phosphor as self-host layer had been realized.

  17. Possibility of RGB emission by Eu2+ ion doped MIIMIIIMVI phosphors for color inorganic electro- luminescent displays

    International Nuclear Information System (INIS)

    Jabbarov, R.B.; Tagiev, B.G.; Tagiev, O.B.; Musaeva, N.N.; Benalloul, P.; Barthou, C.

    2004-01-01

    Full text: Eu 2+ ion give broad-band emission due to f-d transitions. The 5d orbital are not shelled from the host lattice by any occupied orbital. Therefore the wavelength positions of the emission bands depend on host and change from hear UV to red. With increasing crystal field strength, the emission bands shift to longer wavelength. The broad band absorption and luminescence of Eu 2+ is parity-and spin-allowed and lifetime is sub-microseconds. In resent years, many efforts have been devoted to luminescence studies of thio gallates and thio-aluminates doped with rare-earth ions because of their chemical stability in ambient environments. In ternary compounds both the ligand field at the divalent cation site and the nephelauxetic effect are reduced by the presence of trivalent or tetravalent ions. This effect is more pronounced with Al than with Ga. In a same family of compounds, the emission band generally shifts to shorter wavelengths with increasing M II /M IV or M VI /M III ratio. In this paper we revisited the luminescence of the phosphors CaGa 2 S 4 , BaGa 2 S 4 , BaAl 2 S 4 activated by Eu 2+ ion. Influence of temperature and Eu 2+ concentration on the luminescence characteristics of these phosphors are studied. These dates will be useful to evaluate the quality oi the powder or thin films prepared for devices

  18. Novel tunable green-red-emitting oxynitride phosphors co-activated with Ce3+, Tb3+, and Eu3+: photoluminescence and energy transfer.

    Science.gov (United States)

    Huo, Jiansheng; Dong, Langping; Lü, Wei; Shao, Baiqi; You, Hongpeng

    2017-07-14

    A series of novel Ce 3+ , Tb 3+ and Eu 3+ ion doped Y 4 SiAlO 8 N-based oxynitride phosphors were synthesized by the solid-state method and characterized by X-ray powder diffraction, scanning electron microscopy, photoluminescence, lifetimes and thermo-luminescence. The excitation of the Ce 3+ /Tb 3+ co-doped and Ce 3+ /Tb 3+ /Eu 3+ tri-doped phosphor with near-UV radiation results in strong linear Tb 3+ green and Eu 3+ red emission. The occurrence of Ce 3+ -Tb 3+ and Ce 3+ -Tb 3+ -Eu 3+ energy transfer processes is responsible for the bright green or red luminescence. The Tb 3+ ion acting as an energy transfer bridge can alleviate MMCT quenching between the Ce 3+ -Eu 3+ ion pairs. The lifetime measurements demonstrated that the energy-transfer mechanisms of Ce 3+ → Tb 3+ and Tb 3+ → Eu 3+ are dipole-quadrupole and quadrupole-quadrupole interactions, respectively. The temperature dependent luminescence measurements showed that as-prepared green/red phosphors have good thermal stability against temperature quenching. The obtained results indicate that these phosphors might serve as promising candidates for n-UV LEDs.

  19. Novel Br-DPQ blue light-emitting phosphors for OLED.

    Science.gov (United States)

    Dahule, H K; Thejokalyani, N; Dhoble, S J

    2015-06-01

    A new series of blue light-emitting 2,4-diphenylquinoline (DPQ) substituted blue light-emitting organic phosphors namely, 2-(4-methoxy-phenyl)-4-phenyl-quinoline (OMe-DPQ), 2-(4-methyl-phenyl)-4-phenylquinoline (M-DPQ), and 2-(4-bromo-phenyl)-4-phenylquinoline (Br-DPQ) were synthesized by substituting methoxy, methyl and bromine at the 2-para position of DPQ, respectively by Friedländer condensation of 2-aminobenzophenone and corresponding acetophenone. The synthesized phosphors were characterized by different techniques, e.g., Fourier transform infra-red (FTIR), differential scanning calorimeter (DSC), UV-visible absorption and photoluminescence spectra. FTIR spectra confirms the presence of chemical groups such as C=O, NH, or OH in all the three synthesized chromophores. DSC studies show that these complexes have good thermal stability. Although they are low-molecular-weight organic compounds, they have the potential to improve the stability and operating lifetime of a device made out of these complexes. The synthesized polymeric compounds demonstrate a bright emission in the blue region in the wavelength range of 405-450 nm in solid state. Thus the attachment of methyl, methoxy and bromine substituents to the diphenyl quinoline ring in these phosphors results in colour tuning of the phosphorescence. An electroluminescence (EL) cell of Br-DPQ phosphor was made and its EL behaviour was studied. A brightness-voltage characteristics curve of Br-DPQ cell revealed that EL begins at 400 V and then the brightness increases exponentially with applied AC voltage, while current-voltage (I-V) characteristics revealed that the turn on voltage of the fabricated EL cell was 11 V. Hence this phosphor can be used as a promising blue light material for electroluminescent devices. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes

    Science.gov (United States)

    No, Young Jung; Li, Jiao Jiao; Zreiqat, Hala

    2017-01-01

    Doped calcium silicate ceramics (DCSCs) have recently gained immense interest as a new class of candidates for the treatment of bone defects. Although calcium phosphates and bioactive glasses have remained the mainstream of ceramic bone substitutes, their clinical use is limited by suboptimal mechanical properties. DCSCs are a class of calcium silicate ceramics which are developed through the ionic substitution of calcium ions, the incorporation of metal oxides into the base binary xCaO–ySiO2 system, or a combination of both. Due to their unique compositions and ability to release bioactive ions, DCSCs exhibit enhanced mechanical and biological properties. Such characteristics offer significant advantages over existing ceramic bone substitutes, and underline the future potential of adopting DCSCs for clinical use in bone reconstruction to produce improved outcomes. This review will discuss the effects of different dopant elements and oxides on the characteristics of DCSCs for applications in bone repair, including mechanical properties, degradation and ion release characteristics, radiopacity, and biological activity (in vitro and in vivo). Recent advances in the development of DCSCs for broader clinical applications will also be discussed, including DCSC composites, coated DCSC scaffolds and DCSC-coated metal implants. PMID:28772513

  1. An experimental and theoretical study of new phosphors for full color field emission displays

    Science.gov (United States)

    Zhang, Fu-Li

    An in depth study is reported of the cathodoluminescent (CL) properties of three new highly efficiency blue phosphors for field emission display (FED) applications doped with fast activators. The superior performance of a new Eu-doped green SrGa2S4 will also be reported. This work addresses four main topics: (1) a detailed study of the dependence of the luminescent intensity on activator concentration, as a function of electron beam voltage and current density; (2) the optical properties of thew phosphors and the development of a CL efficiency characterization technique using a critical screen weight method, which can obtain maximum light output and improve measurement accuracy; (3) understanding the low voltage CL mechanism associated with nanocrystal size by developing a thin film and disk model based on transportation theory and experimental results; (4) Development of a comprehensive evaluation method of red, green, and blue (RGB) phosphors for full color displays by calculation of luminance ratios, required luminance, and measurements of spectra, efficiency and saturation behavior. For FEDs which combine the best properties of CRT and flat panel displays, the development of efficient phosphors at low voltages and high current densities is shown to be critical to meet the luminance and power requirement demands for portable displays. Of particular importance is the need for a good blue phosphor, and to understand the dependence of the CL efficiency on nanocrystal size, penetration depth, diffusion length and surface recombination rate. This has been obtained from the thin film and disk models and fits to experiment. Comparisons between full color phosphor sets show that the performance of a display can vary by over a factor of three depending on the choice of the RGB set. Other factors that are important for optimizing the performance of FED phosphors are reviewed.

  2. Color tunable emission in Ce3+ and Tb3+ co-doped Ba2Ln(BO3)2Cl (Ln=Gd and Y) phosphors for white light-emitting diodes.

    Science.gov (United States)

    Zhang, Niumiao; Guo, Chongfeng; Jing, Heng; Jeong, Jung Hyun

    2013-12-01

    Ce(3+) and Tb(3+) co-doped Ba2Ln(BO3)2Cl (Ln=Y and Gd) green emitting phosphors were prepared by solid state reaction in reductive atmosphere. The emission and excitation spectra as well as luminescence decays were investigated, showing the occurrence of efficient energy transfer from Ce(3+) to Tb(3+) in this system. The phosphors exhibit both a blue emission from Ce(3+) and a green emission from Tb(3+) under near ultraviolet light excitation with 325-375 nm wavelength. Emission colors of phosphors could be tuned from deep blue through cyan to green by adjusting the Tb(3+) concentrations. The energy transfer efficiency and emission intensity of Ba2Y(BO3)2Cl:Ce(3+), Tb(3+) precede those of Ba2Gd(BO3)2Cl:Ce(3+), Tb(3+), and the sample Ba2Y(BO3)2Cl:0.03Ce(3+), 0.10Tb(3+) is the best candidate for n-UV LEDs. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor

    Science.gov (United States)

    Luo, Li; Huang, Baoyu; He, Jingqi; Zhang, Wei; Zhao, Weiren; Wang, Jianqing

    2018-01-01

    Novel LiLa1−x−y(MoO4)2:xSm3+,yEu3+ (in short: LL1−x−yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1−x(MoO4)2:xSm3+ (LL1−xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole—electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95−yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330) continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1−x−yM:xSm3+,yEu3+ is a promising WLED red phosphor. PMID:29443910

  4. Preparation and luminescence properties of Ca3(VO4)2: Eu3+, Sm3+ phosphor for light-emitting diodes

    International Nuclear Information System (INIS)

    Huang Jiaping; Li Qiuxia; Chen Donghua

    2010-01-01

    Rare-earth ions co-activated red phosphors Ca 3 (VO 4 ) 2 : Eu 3+ , Sm 3+ were synthesized by modified solid-state reactions. The samples were characterized by X-ray powder diffractometer (XRD), energy-dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and luminescence spectrometer (LS). The results showed that the Eu-Sm system exhibits higher emission intensity than those of the Eu single-doped system and Sm separate-doped system under blue light. Samarium (III) ions are effective in broadening and strengthening absorptions around 467 nm. Furthermore, they exhibit enhanced luminescence emission. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a phosphor for light-emitting diodes (LEDs).

  5. Rare earths (Ce, Eu, Tb) doped Y2Si2O7 phosphors for white LED

    International Nuclear Information System (INIS)

    Sokolnicki, Jerzy

    2013-01-01

    Nanocrystalline yttrium pyrosilicate Y 2 Si 2 O 7 (YPS) singly, doubly or triply doped with Ce 3+ , Eu 3+ , Tb 3+ was obtained by the reaction of nanostructured Y 2 O 3 :Ln 3+ and colloidal SiO 2 at high temperatures. X-ray diffraction analysis confirmed the formation of a single phase of α-YPS at 1200 °C. Two series of YPS samples doped with Eu 3+ or Eu 3+ /Tb 3+ were obtained by applying the reducing atmosphere (75%N 2 +25%H 2 ) at different temperatures. The luminescence and excitation spectra are reported. The singly Eu 3+ doped YPS emit from both Eu 3+ and Eu 2+ ions, with the spectral position and width of the Eu 2+ emission different in both series. The presence of Eu 2+ in the samples was confirmed by electron paramagnetic resonance (EPR) spectra. A broadband emission of Eu 2+ (380–650 nm), combined with the red emission of Eu 3+ is perceived by the naked eye as white light. Co-doping of YPS:Eu 3+ with Tb 3+ results in enhancement of the green component of the emission, and well-balanced white luminescence. The colour of this emission is tunable, and it is possible to get Commission International de I'Eclairage (CIE) chromaticity coordinates of (0.327, 0.327), colour-rendering index (CRI) of 85, and quantum efficiency (QE) of 71%. These phosphors are efficiently excited in the wavelength range of 300–420 nm, which perfectly matches a near UV-emitting InGaN chip. It was shown that for triply (Ce 3+ , Eu 3+ and Tb 3+ ) doped samples the three emissions from the particular activators can be generated using one excitation wavelength. The white light resulting from the superposition of the blue (Ce 3+ ), green (Tb 3+ ) and red (Eu 3+ ) emissions can be obtained by varying the concentration of the active ions and the treating atmosphere, i.e. reducing or oxidising. Eu 2+ was not detected in the triply doped samples, and hence line emissions mostly exhibit CRI values equal to or below 30. - Highlights: ► Nanocrystalline Y 2 Si 2 O 7 was obtained by the

  6. Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps

    Science.gov (United States)

    Tamboli, Sumedha; Nair, Govind B.; Dhoble, S. J.; Burghate, D. K.

    2018-04-01

    A series of BaB8O13 phosphors doped with different concentrations of Gd3+ ions and co-doped with Pr3+ ions were synthesized by solid state synthesis method. X-ray powder diffraction (XRD) analysis confirmed the formation of the compound in a crystalline and homogeneous form. Scanning Electron Microscopy (SEM) was performed to study the surface morphology of the compound and Fourier Transform Infrared (FT-IR) spectroscopy measurements determined the nature of bonding between elements of the compounds. The photoluminescence (PL) excitation spectra of BaB8O13:Gd3+ phosphor showed excitation peaks at 246 nm, 252 nm and 274 nm. The prominent emission peak was observed at 313 nm which is in narrow band ultraviolet B (NB-UVB) range. Energy transfer was achieved by co-doping Pr3+ ions with Gd3+ ions. PL decay time was also measured for BaB8O13: Gd3+, Pr3+ phosphor. Emission at 313 nm can be used for the treatment of skin diseases.

  7. Red emitting phosphors of Eu{sup 3+} doped Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10} (Ln = Gd, Y) for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Niumiao [National Key Laboratory of Photoelectric Technology and Functional Materials Culture Base in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069 (China); Guo, Chongfeng, E-mail: guocf@nwu.edu.cn [National Key Laboratory of Photoelectric Technology and Functional Materials Culture Base in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069 (China); Yin, Luqiao; Zhang, Jianhua [Key Laboratory of Advanced Display and System Applications (Shanghai University), Ministry of Education, Shanghai 200072 (China); Wu, Mingmei, E-mail: ceswmm@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou 510275 (China)

    2015-06-25

    Highlights: • Layered red phosphors Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10} (Ln = Gd, Y):Eu{sup 3+} were prepared. • The synthesis parameters of phosphors were optimized. • PL and thermal stability of the samples were investigated. • LED devices were also fabricated including the present red phosphor. - Abstract: A series of Eu{sup 3+} doped Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10} (Ln = Gd, Y) red-emitting phosphors for application in ultraviolet based light emitting diodes (LEDs) were successfully synthesized by a modified sol–gel method. Their structure and luminescent properties were characterized by powder X-ray diffraction (XRD), photoluminescence excitation (PLE) and emission (PL) spectra and absorption spectra, according to these results the optimal compositions and synthesis parameters were determined. In addition, the thermal stabilities of the phosphors were investigated according to the temperature-dependent PL spectra. The red and white-LEDs (W-LEDs) comprising the Na{sub 2}Ln{sub 2}Ti{sub 3}O{sub 10}:Eu{sup 3+} (Ln = Gd, Y) red emitting phosphors were fabricated with a near-ultraviolet (n-UV) chip. In comparison with Na{sub 2}Y{sub 1.4}Eu{sub 0.6}Ti{sub 3}O{sub 10}, the Na{sub 2}Gd{sub 0.6}Eu{sub 1.4}Ti{sub 3}O{sub 10} phosphor offers higher brightness, quantum efficiency, and excellent thermal stability. W-LEDs comprising Na{sub 2}Gd{sub 0.6}Eu{sub 1.4}Ti{sub 3}O{sub 10} showed bright white emission with a color rendering index (Ra) of 82, a color temperature of 2151 K, and Commission Internationale de I’Eclairage (CIE) color coordinates of (0.34, 0.37). The phosphor Na{sub 2}Gd{sub 0.6}Eu{sub 1.4}Ti{sub 3}O{sub 10} is more suitable candidate for application in LEDs.

  8. Gamma ray induced thermoluminescence studies of yttrium (III oxide nanopowders doped with gadolinium

    Directory of Open Access Journals (Sweden)

    Raunak Kumar Tamrakar

    2014-10-01

    Full Text Available Y2O3:Gd3+ nanophosphor was prepared by the solid state reaction method. Systematic studies have been done to investigate the structural and optical properties of the gadolinium doped Y2O3 phosphor. The prepared phosphor was characterized by using X-ray diffractometer (XRD, scanning electron microscopy (SEM, transmission electron microscopy and UV–VIS–NIR spectrophotometer. The XRD patterns reveal that these prepared phosphors have cubic phase crystal structure. SEM and TEM images showed uniform doping of the material over the entire materials. The energy band gap for gadolinium doped Y2O3 phosphor was revealed from the optical studies and was found to 5.1 eV. The prepared phosphors were also examined by thermoluminescence technique. The kinetic parameters like trap depth, frequency factor were calculated by using the Peak shape method, which are discussed in details. The TL Glow curves were fitted in CGCD (computerized glow curve convolution deconvolution technique & trapping parameters calculated. The TL parameters such as activation energy for deconvoluted peak were found in the range of 0.82–2.24 eV. The frequency factor is of the order of between of 1.78 × 1012 and 9.84 × 1020 s−1.

  9. Photoluminescent properties of Sr2CeO4: Eu3+ and Sr2CeO4: Eu2+ phosphors suitable for near ultraviolet excitation

    International Nuclear Information System (INIS)

    Suresh, K.; Poornachandra Rao, N.V.; Murthy, K.V.R.

    2014-01-01

    Powder phosphors of 1 mol% Eu 3+ - and Eu 2+ -doped strontium cerium oxide (Sr 2 CeO 4 ) were synthesized by standard solid-state reaction method. Eu 3+ - and Eu 2+ -doped Sr 2 CeO 4 phosphors fired at 1100 ℃ for 2 h were analysed by X-ray diffraction (XRD) and photoluminescence (PL) techniques. The XRD patterns confirm that the obtained phosphors are a single phase of Sr 2 CeO 4 composed of orthorhombic structure. Room temperature PL excitation spectrum of air-heated Sr 2 CeO 4 : Eu phosphor has exhibited bands at 260, 280 and 350 nm. Whereas the excitation spectrum of Sr 2 CeO 4 : Eu phosphor heated under reducing (carbon) atmosphere exhibited single broadband range from 260 to 390 nm. The (PL) emission peaks of both the phosphors at 467 (blue), 537 (green) and 616 nm (red) generate white light under 260, 280 and 350 nm excitation wavelengths. The Commission International de l'Eclairage (CIE) colour coordinates conforms that these phosphors emitting white light. The results reveal that these phosphors are multifunctional phosphors which emit white light under these excitations that they could be used as white components for display and lamp devices and as well as possible good light-conversion phosphor LEDs under near-ultraviolet (nUV) chip. (author)

  10. Synthesis and luminescence properties of SrMoO{sub 4}:RE{sup 3+} (RE = Eu or Tb) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Shinho [Silla University, Busan (Korea, Republic of)

    2014-05-15

    SrMoO{sub 4}:RE{sup 3+} (RE = Eu or Tb) phosphors were synthesized with different concentrations of activator ions by using the conventional solid-state reaction method. The effects of the concentration of activator ions on the structural, morphological, and optical properties of strontium molybdate phosphors were investigated by using X-ray diffraction, scanning electron microscopy, and fluorescence spectrophotometry, respectively. XRD patterns revealed that all synthesized phosphors showed the tetragonal SrMoO{sub 4} structure, irrespective of the type and the concentration of activator ions. The crystallite size showed an overall increasing tendency with increasing concentration of activator ions. The emission spectra of Eu{sup 3+}-doped SrMoO{sub 4} phosphors under excitation at 295 nm exhibited one intense red band at 619 nm and five weak bands centered at 541, 561, 596, 657, and 704 nm, respectively. For the Tb{sup 3+}-doped SrMoO{sub 4} phosphors, a strong emission peak at 550 nm and two weak lines, 494 and 591 nm, were observed. The intensities of all the emission bands reached maxima when 0.05 mol of Tb{sup 3+} ions was used. The results suggest that the optimum concentrations for synthesizing highly-luminescent red and green phosphors are 0.01 mol and 0.05 mol, respectively.

  11. Tunable emission and the systematic study on energy-transfer properties of Ce{sup 3+}- and Tb{sup 3+}-co-doped Sr{sub 3}(PO{sub 4}){sub 2} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhijun [Guangzhou Maritime Institute, Department of Shipping Engineering, Guangzhou (China)

    2015-09-15

    An emitting color tunable phosphor Sr{sub 3}(PO{sub 4}){sub 2}:Ce{sup 3+}, Tb{sup 3+} was synthesized by the traditional high-temperature solid-state reaction method. The photoluminescence and energy-transfer (ET) properties of Ce{sup 3+}- and Tb{sup 3+}-doped Sr{sub 3}(PO{sub 4}){sub 2} host were studied in detail. The obtained phosphors show both a blue emission from Ce{sup 3+} and a yellowish green emission from Tb{sup 3+} with considerable intensity under ultraviolet (UV) excitation (∝311 nm). When the content of Ce{sup 3+} was fixed at 0.03, the emission chromaticity coordinates could be adjusted from blue to green region by tuning the contents of Tb{sup 3+} ions with the aid of ET process. The critical distance between Ce{sup 3+} and Tb{sup 3+} is 14.69 A. The ET mechanism from Ce{sup 3+} to Tb{sup 3+} ions was identified with dipole-dipole interaction. The obtained phosphor exhibits a strong excitation in UV spectral region and high-efficient ET from Ce{sup 3+} to Tb{sup 3+} ions. It may find applications as a green light-emitting UV-convertible phosphor in white LED devices. (orig.)

  12. Phosphorous Doping of Nanostructured Crystalline Silicon

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Steckel, André

    Nano-textured silicon, known as black silicon (bSi), is attractive with excellent photon trapping properties. bSi can be produced using simple one-step fabrication reactive ion etching (RIE) technique. However, in order to use bSi in photovoltaics doping process should be developed. Due to high s...

  13. Structure and scintillation yield of Ce-doped Al–Ga substituted yttrium garnet

    International Nuclear Information System (INIS)

    Sidletskiy, Oleg; Kononets, Valerii; Lebbou, Kheirreddine; Neicheva, Svetlana; Voloshina, Olesya; Bondar, Valerii; Baumer, Vyacheslav; Belikov, Konstantin; Gektin, Alexander; Grinyov, Boris; Joubert, Marie-France

    2012-01-01

    Highlights: ► Range of Y 3 (Al 1−x Ga x ) 5 O 12 :Ce solid solution crystals are grown from melt by the Czochralski method. ► Light yield of mixed crystals reaches 130% of the YAG:Ce value at x ∼ 0.4. ► ∼1% of antisite defects is formed in YGG:Ce, but no evidence of this is obtained for the rest of crystals. -- Abstract: Structure and scintillation yield of Y 3 (Al 1−x Ga x ) 5 O 12 :Ce solid solution crystals are studied. Crystals are grown from melt by the Czochralski method. Distribution of host cations in crystal lattice is determined. Quantity of antisite defects in crystals is evaluated using XRD and atomic emission spectroscopy data. Trend of light output at Al/Ga substitution in Y 3 (Al 1−x Ga x ) 5 O 12 :Ce is determined for the first time. Light output in mixed crystals reaches 130% comparative to Ce-doped yttrium–aluminum garnet. Luminescence properties at Al/Ga substitution are evaluated.

  14. Luminescent properties of Eu2+-doped BaGdF5 glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    International Nuclear Information System (INIS)

    Zhang, Weihuan; Zhang, Yuepin; Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-01

    Eu 2+ doped transparent oxyfluoride glass ceramics containing BaGdF 5 nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd 3+ ions at 312 nm excited with 275 nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu 2+ doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd 3+ to Eu 2+ ions, the energy transfer efficiency from Gd 3+ to Eu 2+ ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu 2+ doped BaGdF 5 glass ceramics may be used as a potential blue-emitting phosphor for UV-LED

  15. Ductility of Ni3Al doped with substitutional elements

    International Nuclear Information System (INIS)

    Hanada, S.; Chiba, A.; Guo, H.Z.; Watanabe, S.

    1993-01-01

    This paper reports on ductility of B-free Ni 3 Al alloys. Recrystallized Ni 3 Al binary alloys with Ni-rich compositions show appreciable ductility when an environmental effect is eliminated, while the alloys with stoichiometric and Al-rich compositions remain brittle. The ductility in the Ni-rich Ni 3 Al alloys is associated with low ordering energy. The additions of ternary elements, which are classified as γ formers, ductilize ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Pd, Pt, Cu and Co), whereas the additions of γ' formers embrittle ternary Ni 3 Al alloys(Ni-23 at% Al-2 at% X, X = Ta, Mo, Nb, Zr, Hf, V, Ti and Si). The additions of small amounts (less than 1 at%) of γ' formers such as Zr and Hf also ductilize as-cast ternary Ni 3 Al alloys. Ductility of Ni 3 Al alloys doped with substitutional elements is discussed in terms of ordering energy and microstructure

  16. Synthesis and PL study of UV emitting phosphor KCa{sub 4}(BO{sub 3}){sub 3}:Pb{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Gawande, A.B., E-mail: gawandeab@gmail.com [Department of Physics, SGB Amravati University, Amravati, Maharashtra (India); Sonekar, R.P., E-mail: sonekar_rp@yahoo.com [Department of Physics, G.S. College, Khamgaon, Buldhana District, Maharashtra (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati, Maharashtra (India)

    2014-05-01

    Pb{sup 2+} doped KCa{sub 4}(BO{sub 3}){sub 3} materials were prepared by a novel solution combustion synthesis technique which is slight variation of combustion synthesis method. The synthesized materials were characterized by powder XRD and FT-IR. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of irregular grains which get finer and shaped in doped sample as compared to pure. The photoluminescence properties of synthesized materials were investigated using Spectrofluorometer at room temperature. The emission and excitation bands of the synthesized phosphors were observed at 335 nm and 260 nm respectively. The concentration of Pb{sup 2+} for which optimum emission is obtained was found to be 0.005 mol. The critical transfer distance (R{sub 0}) for optimum concentration was determined to be 16.88 Å. The Stokes shift of KCa{sub 4}(BO{sub 3}){sub 3}:Pb{sup 2+} was measured to be 8756 cm{sup −1}. The phosphor could find application in medical and lamp industry. - Highlights: • Inorganic borate phosphor KCa{sub 4}(BO{sub 3}){sub 3}:Pb{sup 2+} has been synthesized by solution combustion synthesis technique. • Structure confirmation of synthesized phosphor done by using powder XRD and FT-IR. • Doping effect on the surface morphology of synthesized material is shown by SEM images. • Stokes shift, optimum concentration and critical transfer distance for optimum concentration in KCa{sub 4}(BO{sub 3}){sub 3}:Pb{sup 2+} have been determined.

  17. Luminescent properties of UV excitable blue emitting phosphors MSr4(BO3)3:Ce3+ (M = Li and Na)

    International Nuclear Information System (INIS)

    Guo Chongfeng; Ding Xu; Seo, Hyo Jin; Ren Zhaoyu; Bai Jintao

    2011-01-01

    Research highlights: → Novel blue emitting phosphors borate MSr 4 (BO 3 ) 3 (M = Li or Na) were prepared first. → Luminescent properties of phosphors borate MSr 4 (BO 3 ) 3 (M = Li or Na) were investigated extensively as candidates of blue emitting phosphor used for UV excited LED. → The optimal concentrations of dopant Ce 3+ ions in compound MSr 4 (BO 3 ) 3 (M = Li or Na) were determined as 0.05 for Li and x = 0.09 for Na excited by UV light respectively. - Abstract: A series of Ce 3+ doped novel borate phosphors MSr 4 (BO 3 ) 3 (M = Li or Na) were successfully synthesized by traditional solid-state reaction. The crystal structures and the phase purities of samples were characterized by powder X-ray diffraction. The optimal concentrations of dopant Ce 3+ ions in compound MSr 4 (BO 3 ) 3 (M = Li or Na) were determined through the measurements of photoluminescence spectra of phosphors. Ce 3+ doped phosphors MSr 4 (BO 3 ) 3 (M = Li or Na) show strong broad band absorption in UV spectral region and bright blue emission under the excitation of 345 nm light. In addition, the temperature dependences of emission spectra of M 1+x Sr 4-2x Ce x (BO 3 ) 3 (M = Li or Na) phosphors with optimal composition x = 0.05 for Li and x = 0.09 for Na excited under 355 nm pulse laser were also investigated. The experimental results indicate that the M 1+x Sr 4-2x Ce x (BO 3 ) 3 (M = Li or Na) phosphors are promising blue emitting phosphors pumped by UV light.

  18. Energy transfer in M₅(PO₄)₃  F:Eu²⁺,Ce³⁺ (M = Ca and Ba) phosphors.

    Science.gov (United States)

    Shinde, K N; Dhoble, S J

    2014-08-01

    M5(PO4)3F:Eu(2+) (M = Ca and Ba) co-doped with Ce(3+) phosphors were successfully prepared by the combustion synthesis method. The introduction of co-dopant (Ce(3+)) into the host enhanced the luminescent intensity of the M5(PO4)3F:Eu(2+) (M = Ca and Ba) efficiently. Previously, we have reported the synthesis and photoluminescence properties of same phosphors. The aim of this article is to report energy transfer mechanism between Ce(3+) ➔Eu(2+) ions in M5(PO4)3F:Eu(2+) (M = Ca and Ba) phosphors, where Ce(3+) ions act as sensitizers and Eu(2+) ions act as activators. The M5(PO4)3F:Eu(2+) (M = Ca and Ba) co-doped with Ce(3+) phosphor exhibits great potential for use in white ultraviolet (UV) light-emitting diode applications to serve as a single-phased phosphor that can be pumped with near-UV or UV light-emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Orange and reddish-orange light emitting phosphors: Sm{sup 3+} and Sm{sup 3+}/Eu{sup 3+} doped zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meza-Rocha, A.N., E-mail: ameza@fis.cinvestav.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F., México (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); IFAC CNR, Nello Carrara Institute of Applied Physics, MDF Lab, I-50019 Sesto Fiorentino, FI (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Caldiño, U. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F., México (Mexico)

    2015-11-15

    A spectroscopy study of Sm{sup 3+} and Sm{sup 3+}/Eu{sup 3+} doped zinc phosphate glasses is performed through photoluminescence spectra and decay time profile measurements. Under Sm{sup 3+} excitation at 344 nm, the Sm{sup 3+} singly doped glass shows an orange global emission with x=0.579 and y=0.414 CIE1931 chromaticity coordinates, whereas the Sm{sup 3+}/Eu{sup 3+} co-doped sample exhibits orange overall emissions (x=0.581 and y=0.398, and x=0.595 and y=0.387) and reddish-orange overall emission (x=0.634 and y=0.355) upon excitations at 344, 360 and 393 nm, respectively. Such luminescence from the co-doped sample is originated by the simultaneous emission of Sm{sup 3+} and Eu{sup 3+}. Under Sm{sup 3+} excitation at 344 and 360 nm, the Eu{sup 3+} emission is sensitized and enhanced by Sm{sup 3+} through a non-radiative energy transfer process. The non-radiative nature was inferred from the shortening of the Sm{sup 3+} lifetime observed in the Sm{sup 3+}/Eu{sup 3+} co-doped sample. An analysis of the Sm{sup 3+} emission decay time profiles using the Inokuti–Hirayama model suggests that an electric quadrupole–quadrupole interaction into Sm–Eu clusters might dominate the energy transfer process, with an efficiency of 0.17. - Highlights: • Zinc phosphate glasses are optically activated with Sm{sup 3+}/Eu{sup 3+} (ZPOSmEu). • Non-radiative energy transfer Sm{sup 3+}→Eu{sup 3+} takes place in ZPOSmEu. • ZPOSmEu overall emission can be modulated with the excitation wavelength. • ZPOSmEu might be useful as orange/reddish-orange phosphor for UV-white LEDs.

  20. The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice

    Science.gov (United States)

    Fujioka, Masaya; Shibuya, Taizo; Nakai, Junya; Yoshiyasu, Keigo; Sakai, Yuki; Takano, Yoshihiko; Kamihara, Yoichi; Matoba, Masanori

    2014-12-01

    The thermoelectric properties and electronic band structures for Se-doped Co3SnInS2 were examined. The parent compound of this material (Co3Sn2S2) has two kinds of Sn sites (Sn1 and Sn2 sites). The density functional theory (DFT) calculations show that the indium substitution at the Sn2 site induces a metallic band structure, on the other hand, a semiconducting band structure is obtained from substitution at the Sn1 site. However, according to the previous reports, since the indium atom prefers to replace the tin atom at the Sn1 site rather than the Sn2 site, the resistivity of Co3SnInS2 shows semiconducting-like behavior. In this study we have demonstrated that metallic behavior and a decrease in resistivity for Se-doped Co3SnInS2 occurs without suppression of the Seebeck coefficient. From the DFT calculations, when the selenium content is above 0.5, the total crystallographic energy shows that a higher indium occupancy at Sn2 site is more stable. Therefore, it is suggested that the selenium doping suppress the site preference for indium substitution. This is one of the possible explanations for the metallic conductivity observed in Se-doped Co3SnInS2

  1. Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions

    CSIR Research Space (South Africa)

    Kabongo, GL

    2014-01-01

    Full Text Available In this work, the sol–gel method was used to prepare Ytterbium (Yb(sup3+)) doped ZnO nano-phosphors with different concentrations of Yb(sup3+) ions. Their structural, morphological, photoluminescence, electronic states and the chemical composition...

  2. Blue–green afterglow of BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Bao-gai [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); School of Electronics and Information, Nantong University, Jiangsu 226019 (China); Xiong, Rui [School of Physics and Technology, Wuhan University, Hubei 430072 (China); Li, Xiazhang [Analysis and Testing Center, Changzhou University, Jiangsu 213164 (China); Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China)

    2016-03-15

    Highlights: • Afterglow can be achieved when Eu{sup 2+} is absent in the DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • The afterglow of DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors is discernible to naked eyes for minutes. • Dy{sup 3+} introduced trap centers are believed to be responsible for the afterglow. - Abstract: Dy{sup 3+} doped barium aluminate (BaAl{sub 2}O{sub 4}:Dy{sup 3+}) phosphors were prepared via the sol–gel combustion route at the ignition temperature of 600 °C. The phosphors were characterized with X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Regardless of the absence of Eu{sup 2+} luminescent centers, broadband blue–green afterglow with its peak at about 490 nm was recorded in the BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. The decay profile of the blue–green afterglow can be best fitted into a two-component exponential function with the two lifetime decay constants to be 8.81 and 45.25 s, respectively. The observation of blue–green afterglow from BaAl{sub 2}O{sub 4}:Dy{sup 3+} in the absence of Eu{sup 2+} provides unique opportunity in unveiling the afterglow mechanisms of rare-earth doped alkaline-metal aluminates. Possible mechanisms on the blue–green afterglow in BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors are discussed in terms of the Dy{sup 3+} ions introduced trap centers as well as luminescent centers in the crystal lattice.

  3. Photoluminescence and Energy Transfer Properties with Y+SiO4 Substituting Ba+PO4 in Ba3Y(PO4)3:Ce(3+)/Tb(3+), Tb(3+)/Eu(3+) Phosphors for w-LEDs.

    Science.gov (United States)

    Li, Kai; Liang, Sisi; Shang, Mengmeng; Lian, Hongzhou; Lin, Jun

    2016-08-01

    A series of Ce(3+), Tb(3+), Eu(3+) doped Ba2Y2(PO4)2(SiO4) (BYSPO) phosphors were synthesized via the high-temperature solid-state reaction route. X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared, solid-state NMR, photoluminescence (PL) including temperature-dependent PL, and fluorescent decay measurements were conducted to characterize and analyze as-prepared samples. BYSPO was obtained by the substitution of Y+SiO4 for Ba+PO4 in Ba3Y(PO4)3 (BYPO). The red shift of PL emission from 375 to 401 nm occurs by comparing BYSPO:0.14Ce(3+) with BYPO:0.14Ce(3+) under 323 nm UV excitation. More importantly, the excitation edge can be extended from 350 to 400 nm, which makes it be excited by UV/n-UV chips (330-410 nm). Tunable emission color from blue to green can be observed under 365 nm UV excitation based on the energy transfer from Ce(3+) to Tb(3+) ions after codoping Tb(3+) into BYSPO:0.14Ce(3+). Moreover, energy transfer from Tb(3+) to Eu(3+) ions also can be found in BYSPO:Tb(3+),Eu(3+) phosphors, resulting in the tunable color from green to orange red upon 377 nm UV excitation. Energy transfer properties were demonstrated by overlap of excitation spectra, variations of emission spectra, and decay times. In addition, energy transfer mechanisms from Ce(3+) to Tb(3+) and Tb(3+) to Eu(3+) in BYSPO were also discussed in detail. Quantum yields and CIE chromatic coordinates were also presented. Generally, the results suggest their potential applications in UV/n-UV pumped LEDs.

  4. UVB emitting LiSrBO3 phosphor for phototherapy lamp

    Science.gov (United States)

    Kunghatkar, R. G.; Hemne, P. S.; Dhoble, S. J.

    2018-05-01

    LiSrBO3 doped Gadolinium have been synthesized by sol gel technique. The formation of host was confirmed by XRD techniques. The incorporation of Gd3+ was confirmed by photoluminescence (PL) characterization. The UVB emission is observed at 316 nm when UV excited by 274 nm. The second order emission are also observed in PL emission spectra at 612 nm and 627 nm. Energy band gap is found to be 5.81 eV by using Kubelka - Munk function. The UVB emission at 316 nm of Gd3+ doped materials are used as phototherapy lamp phosphor.

  5. Electrocatalytic and supercapacitor performance of Phosphorous and Nitrogen co-doped Porous Carbons synthesized from Aminated Tannins

    International Nuclear Information System (INIS)

    Bairi, Venu Gopal; Nasini, Udaya B.; Kumar Ramasahayam, Sunil; Bourdo, Shawn E.; Viswanathan, Tito

    2015-01-01

    Highlights: • Microwave Synthetic technique using aminated tannins is reported for the first time. • P,N doped carbon was characterized extensively for physico-chemical properties. • Cyclic Voltammetry, RDE and RRDE studies were investigated for O 2 reduction capability. • O 2 reduction occurred by a kinetically favored one step four electron reduction pathway. • The charge storage capacity was found to be 161 F/g at 5 mV/S in alkaline conditions. - Abstract: A phosphorus and nitrogen co-doped carbon material (PNDC) was synthesized from aminated tannin and polyphosphoric acid by a rapid and highly efficient microwave synthetic technique. X-ray photoelectron spectroscopy study was useful in the identification of nitrogen and phosphorous environments in a sp 2 hybridized carbon lattice. The PNDC was found to be a porous material with a surface area of 433 m 2 g −1 . PNDC sample exhibited excellent thermal stability and the Raman spectroscopic studies were used for analyzing defects in the sp 2 hybridized carbon lattice. This material has promising electrochemical applications, especially for catalyzing oxygen reduction reaction in fuel cells and for charge storage in supercapacitors. The oxygen reduction capability of PNDC was investigated in 0.1 M KOH solution, and rotating disk and ring disk electrode studies were performed to identify the mechanism of oxygen reduction. The capacitative behavior of the PNDC was investigated in 6 M KOH and specific capacitance was determined to be 161 F g −1 due to the electric double layer charge storage phenomenon.

  6. In silico insight into ammonia adsorption on pristine and X-doped phosphorene (X = B, C, N, O, Si, and Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Arabieh, Masoud, E-mail: marabieh@aeoi.org.ir [NSTRI, P. O. Box 11365-8488, Tehran (Iran, Islamic Republic of); Azar, Yavar Taghipour [Theoretical and Computational Physics Group, Physics and accelerators school, NSTRI, AEOI, P. O. Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2017-02-28

    Highlights: • Ammonia adsorption on pristine and doped single layer black phosphorous (SBP) has been investigated theoretically. • Doping heteroatoms increase/decrease internal distortion and E{sub g} values in all systems. • The highest and lowest adsorption energy of ammonia on modified BPS system were found to be −43.3 and −6.79 kcal/mol for B-BPS and O-BPS, respectively. • Ammonia adsorption on B-doped BPS, leaded to the remarkable change in DOS, accompanied by fading of a small peak in the gap region. - Abstract: In this study the details of ammonia adsorption on pristine and doped single layered black phosphorous (SBP) have been investigated based on density functional theory. Geometry optimization were carried using different density functional such as B3LYP, PBE and B97D in conjugate with 6–31 + G* basis set. From geometrical point of view, doping heteroatoms causes internal distortion in SBP which was found large for B-, C-, N- and O-doped BP sheet(s). Doping heteroatom also decreases the Eg values in all of the studied SBP systems. Calculation showed that the largest adsorption energies for ammonia on SBP belong to B-, Si, and Ni-doped system(s) with the energy values of −43.3, −35.3 and −17.05 kcal/mol, respectively. It was found that the adsorption energies for pristine and C-, N- and O-doped SBP are not significant (E{sub ad} < 8.6 kcal/mol). We suggested that metal dopants (B, Ni and Si) improve the reactivity of SBP to ammonia molecule in contrast to pristine and non-metal doped-SBP (C, N and O). Our results showed that whereas the substitution of most dopants has a significant effect on the gap width of the doped system, nitrogen doping has no important influence on gap width and overall shape of DOS curve. Adsorption of ammonia on the N-, C-, and O-doped systems had no significant effect on the electronic structure of these systems, whereas it changed the DOS curves of Si-, and Ni-doped systems slightly. In the case of B-doped

  7. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te₃.

    Science.gov (United States)

    Kim, Hyun-Sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-Il; Kim, Sung Wng

    2017-07-06

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi 0.48 Sb 1.52 Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi 0.48-x Pb x Sb 1.52 Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

  8. Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs

    International Nuclear Information System (INIS)

    Ratnam, B.V.; Jayasimhadri, M.; Bhaskar Kumar, G.; Jang, Kiwan; Kim, S.S.; Lee, Y.I.; Lim, J.M.; Shin, D.S.; Song, T.K.

    2013-01-01

    Highlights: ► Successfully synthesized orthorhombic phase of NaCaPO 4 (NCP) phosphors ► Structural and Luminescent properties have been investigated. ► In the excitation spectrum, 7 F 6 → 5 G 6 transition at 370 nm exhibit highest intensity. ► CIE coordinates of Tb 3+ : NCP phosphor indicate green light emission in CIE diagram. ► Hence, Tb 3+ doped NaCaPO 4 is suitable for UV based pc-LEDs. -- Abstract: An efficient green emitting Tb 3+ doped NaCaPO 4 (NCP) phosphor was synthesized by using conventional solid-state reaction for solid-state lighting applications. X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), FT-IR, emission and excitation properties were extensively investigated for NCP phosphors. X-ray diffraction analysis confirmed the formation of NaCaPO 4 with orthorhombic structure. The excitation spectrum consists of strong 4f–4f transition at around 370 nm, which has higher intensity than the f–d transition. Emission spectra indicated that this phosphor can be efficiently excited by UV light in the range from 250 to 400 nm, and shows strong emission band centered at 547 nm. Analysis of the emission spectra with different Tb 3+ concentrations revealed that the optimum dopant concentration for these NCP phosphors is about 5 mol% of Tb 3+ . Diminishing of 5 D 3 level and increasing of 5 D 4 level emission intensity with the Tb 3+ concentration explained successfully. The emission color was analyzed and confirmed with the help of chromaticity coordinates and color temperature. The excellent luminescent properties of NaCaPO 4 :Tb 3+ phosphor makes it as a potential green phosphor upon near-UV LED excitation

  9. Preparation and photoluminescence properties of Mn2+-activated M2Si5N8 (M = Ca, Sr, Ba) phosphors

    NARCIS (Netherlands)

    Duan, C.J.; Otten, W.M.; Delsing, A.C.A.; Hintzen, H.T.J.M.

    2008-01-01

    Mn2+-doped M2Si5N8 (M=Ca, Sr, Ba) phosphors have been prepared by a solid-state reaction method at high temperature and their photoluminescence properties were investigated. The Mn2+-activated M2Si5N8 phosphors exhibit narrow emission bands in the wavelength range of 500–700 nm with peak center at

  10. Investigation of Upconversion, downshifting and quantum –cutting behavior of Eu3+, Yb3+, Bi3+ co-doped LaNbO4 phosphor as a spectral conversion material

    Science.gov (United States)

    Dwivedi, A.; Mishra, K.; Rai, S. B.

    2018-06-01

    This work presents the spectral conversion characteristics [upconversion (UC), downshifting (DS) and quantum–cutting (QC) optical processes] of Eu3+, Yb3+ and Bi3+ co-doped LaNbO4 (LBO) phosphor samples synthesized by solid state reaction technique. The crystal structure and the pure phase formation have been confirmed by x-ray diffraction (XRD) measurements. The surface morphology and particle size are studied by scanning electron microscopy (SEM). The rarely observed intense red UC emission from Eu3+ ion has been successfully obtained in Eu3+/Yb3+ co-doped LaNbO4 phosphor (on excitation with 980 nm) by optimizing the concentrations of Eu3+ and Yb3+ ions. The downshifting (DS) behavior has been studied by photoluminescence (PL) measurements on excitation with 265 nm wavelength from a Xe lamp source. A broad blue emission in the region 300–550 nm with its maximum ∼415 nm due to charge transfer band (CTB) of the host and large number of sharp peaks due to f-f transitions of Eu3+ ion have been observed. The energy transfer has been observed from (NbO4)3‑ to Eu3+ ion and the fluorescence emission has been optimized by varying the concentration of Eu3+ ion. An intense red emission has also been observed corresponding to 5D0 → 7F2 transition of Eu3+ ion at 611 nm in LBO: 0.09Eu3+ phosphor on excitation with 394 nm. The luminescence properties of Eu3+ ion are enhanced further through the sensitization effect of Bi3+ ion. The near infra-red (NIR) quantum cutting (QC) behavior due to Yb3+ ion has been monitored on excitation with 265 as well as 394 nm. The NIR QC is observed due to 2F5/2 → 2F7/2 transition of Yb3+ ion via co-operative energy transfer (CET) process from (NbO4)3‑ as well as Eu3+ ions to Yb3+ ion. This multimodal behavior (UC, DS and QC) makes this a promising phosphor material for multi-purpose spectral converter.

  11. Infrared emissions in MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}/Ba{sup 2+}/Ca{sup 2+} obtained by solution combustion route

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Physical Chemistry, Institute for Pure and Applied Chemistry and Center of Interface Science, University of Oldenburg, 26129 Oldenburg (Germany); Kumar Rai, Vineet [Department of Applied Physics, Indian School of Mines, Dhanbad 826 004 (India); Venkatramu, V. [Department of Physics, Yogi Vemana University, Kadapa 516 003 (India); Chakradhar, R.P.S. [CSIR-National Aerospace, Bangalore 560 017 (India); Hwan Kim, Sang [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2013-02-15

    An intense infrared emitting MgSrAl{sub 10}O{sub 17}:Er{sup 3+} phosphor co-doped with Yb{sup 3+}, Ba{sup 2+} and Ca{sup 2+} ions have been prepared by a solution combustion method. Phase purity of the derived compounds was confirmed by X-ray diffraction technique. The vibrational properties of MgSrAl{sub 10}O{sub 17} phosphor was studied by Fourier transform infrared spectroscopy. The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed upon excitation at 980 nm. Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} ions and the mechanism responsible for the variation in the infrared intensity have been discussed. The results indicate that these materials may be suitable for the optical telecommunication window and wavelength division multiplexing applications. - Highlights: Black-Right-Pointing-Pointer The hexagonal phase of MgSrAl{sub 10}O{sub 17} could be obtained by the low temperature combustion method. Black-Right-Pointing-Pointer The broad and strong infrared emission of Er{sup 3+} ions at around 1.53 {mu}m was observed. Black-Right-Pointing-Pointer Effect of co-doping with the Yb{sup 3+}{sub ,} Ba{sup 2+} and Ca{sup 2+} ions on the infrared luminescence intensity of Er{sup 3+} were reported.

  12. Synthesis and luminescence properties of ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu, Sm) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Cho, Shin Ho [Silla University, Busan (Korea, Republic of)

    2014-01-15

    ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu or Sm) phosphor powders were synthesized with different concentrations of activator ions by using the conventional solid-state reaction method. The effects of the concentration of activator ions on the structural, morphological, and luminescent properties of zinc aluminate phosphors were investigated. The X-ray diffraction patterns revealed that the phosphors synthesized with different concentrations of activator ions showed mixed phases of ZnAl{sub 2}O{sub 4}, ZnO, and Al{sub 2}O{sub 3}. The crystallite size was estimated using the Scherrer formula, and the maximum size was obtained for 0.20 mol of Eu{sup 3+} ions. The emission spectra of of Eu{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors under excitation at 303 nm exhibited one intense green band at approximately 520 nm and three weak bands centered at 590, 621, and 701 nm, respectively. The intensity of all the emission bands reached a maximum for 0.05 mol of Eu{sup 3+} ions. For the Sm{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors, a broad emission band peak at 526 nm and several weak lines in the range 470 - 700 nm were observed. The results suggest that the luminescent intensity of the phosphors can be enhanced by controlling the amount of activator ions incorporated into the host lattice.

  13. Luminescence properties and energy transfer investigations of Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zaifa; Xu, Denghui, E-mail: xudh@btbu.edu.cn; Sun, Jiayue; Du, Jiangnan; Gao, Xuedong

    2016-09-15

    Highlights: • A phosphor Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} for UV-based white LEDs was firstly synthesized successfully. • The phase structure and photoluminescence properties of samples were studied in detail. • The energy transfer process from Ce{sup 3+} to Tb{sup 3+} ions was illustrated in detail. • Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor has potential applications as an UV-convertible phosphor for white light emitting diodes. - Abstract: A series of Ce{sup 3+} or Tb{sup 3+} doped and Ce{sup 3+}/Tb{sup 3+} co-doped Sr{sub 3}Lu(PO{sub 4}){sub 3} phosphors were prepared via the conventional high temperature solid-state reaction. The phase structure, photoluminescence and energy transfer properties of samples were studied in detail. The optimal proportion of Ce{sup 3+} single doping is 4 mol% with maximal fluorescence intensity. The Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor shows both a blue emission (428 nm) from Ce{sup 3+} and a yellowish-green emission (545 nm) from Tb{sup 3+} with considerable intensity under ultraviolet (UV) excitation (268 nm). The energy transfer from Ce{sup 3+} to Tb{sup 3+} ions takes place in the Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor on the basis of the analysis of the luminescence spectra. The energy transfer mechanism from Ce{sup 3+} to Tb{sup 3+} ions was proved to be dipole–dipole interaction. The energy transfer behaviors in Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor is also investigated by the lifetime measurement. The results show that this phosphor has potential applications for UV white-light LEDs.

  14. White phosphor using Yb3+-sensitized Er3+-and Tm3+-doped sol-gel derived lead-fluorosilicate transparent glass ceramic excited at 980 nm

    Science.gov (United States)

    Tavares, M. C. P.; da Costa, E. B.; Bueno, L. A.; Gouveia-Neto, A. S.

    2018-01-01

    Generation of primary colors and white light through frequency upconversion using sol-gel derived 80SiO2:20PbF2 vitroceramic phosphors doped with Er3+, Er3+/Yb3+, Tm3+/Yb3+, and Er3+/Tm3+/Yb3+ excited at 980 nm is demonstrated. For Er3+ and Er3+/Yb3+ doped samples emissions were obtained in the blue (410 nm), green (530, and 550 nm) and red (670 nm) regions, corresponding to the 2H9/2 → 4I15/2,2H11/2 → 4I15/2, 4S3/2 → 4I152 and 4F9/2 → 4I15/2 transitions of Er3+, respectively. The codoping with Yb3+ ions altered the spectral profile of most of the emissions compared to the single doped samples, resulting in changes in the emitted color, in addition to a significant increase in the emission intensity. In Tm3+/Yb3+ co-doped samples visible emissions in the blue (480 nm), and red (650 nm), corresponding to transitions 1G4 → 3H6 and 1G4 → 3F4 of Tm3+, respectively, were obtained. The emission intensity around 480 nm overcome the red emission, and luminescence showed a predominantly blue tone. White light with CIE-1931 coordinates (0.36; 0.34) was produced by homogeneously mixing up powders of heat treated at 400 °C co-doped samples 5.0Er3+/5.0Yb3+ and 0.5Tm3+/2.5Yb3+ in the mass ratio of 13%, and 87%, respectively. The measured emission spectrum for a sample resulting from the mixture showed a profile with very good agreement with the spectrum found from the superimposition of the spectra of the co-doped samples.

  15. Tunable blue-green emission and energy transfer properties in β-Ca3(PO4)2:Eu(2+), Tb(3+) phosphors with high quantum efficiencies for UV-LEDs.

    Science.gov (United States)

    Li, Kai; Zhang, Yang; Li, Xuejiao; Shang, Mengmeng; Lian, Hongzhou; Lin, Jun

    2015-03-14

    A series of Eu(2+) and Tb(3+) singly-doped and co-doped β-Ca3(PO4)2 phosphors have been synthesized via the high-temperature solid-state reaction method. Thermogravimetric (TG) analysis, fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) patterns and Rietveld refinements, photoluminescence (PL) spectra including temperature-dependent PL and quantum efficiency, and fluorescence decay lifetimes have been used to characterise the as-prepared samples. Under UV excitation, β-Ca3(PO4)2:Eu(2+) presents a broad emission band centered at 415 nm, which can be decomposed into five symmetrical bands peaking at 390, 408, 421, 435 and 511 nm based on the substitution of five kinds of Ca(2+) sites by Eu(2+) ions. β-Ca3(PO4)2:Tb(3+) shows characteristic emission lines under Tb(3+) 4f-5d transition excitation around 223 nm. In β-Ca3(PO4)2:Eu(2+), Tb(3+) phosphors, similar excitation spectra monitored at 415 and 547 nm have been observed, which illustrates the possibility of energy transfer from Eu(2+) to Tb(3+) ions. The variations in the emission spectra and decay lifetimes further demonstrate the existence of energy transfer from Eu(2+) to Tb(3+) ions under UV excitation. The energy transfer mechanism has been confirmed to be dipole-quadrupole, which can be validated via the agreement of critical distances obtained from the concentration quenching (12.11 Å) and spectrum overlap methods (9.9-13.2 Å). The best quantum efficiency can reach 90% for the β-Ca3(PO4)2:0.01Eu(2+), 0.15Tb(3+) sample under 280 nm excitation. These results show that the developed phosphors may possess potential applications in UV-pumped white light-emitting diodes.

  16. Photoluminescence characterization and energy transfer of color-tunable Li{sub 6}Y(BO{sub 3}){sub 3}:Ce{sup 3+},Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Anxiang; Zhou, Liya, E-mail: zhouliyatf@163.com; Wang, Guofang; Gao, Fangfang; Wang, Qiuping; Chen, Xueting; Li, Yinghao

    2016-08-01

    Ce{sup 3+} and Tb{sup 3+} singly doped and co-doped Li{sub 6}Y(BO{sub 3}){sub 3} (LYB) phosphors were synthesized through a solid-state reaction. The phosphors were effectively excited by 350 nm, which matched the near-UV emitting InGaN chip. Luminescence spectra and decay lifetime curves of LYB:Ce{sup 3+},Tb{sup 3+} were measured to prove energy transfer from Ce{sup 3+} to Tb{sup 3+}. Through energy transfer, the intensity of the typical emission peak of Tb{sup 3+} at 546 nm in LYB:0.05Ce{sup 3+},0.03Tb{sup 3+} was approximately 1.8 times stronger than that in LYB:0.03Tb{sup 3+}. The mechanism of Ce{sup 3+}→Tb{sup 3+} energy transfer was a dipole–dipole interaction, and the energy transfer efficiency gradually increased to 29.27% with increasing Tb{sup 3+} doping concentration. Furthermore, the emission colors of LYB:Ce{sup 3+},Tb{sup 3+} varied from blue to green by adjusting the Ce{sup 3+}/Tb{sup 3+} ratio, indicating that the phosphors could be used as blue-to-green emitting phosphors for application in ultraviolet light-emitting diodes.

  17. Luminescence properties of terbium-doped Li3PO4 phosphor for ...

    Indian Academy of Sciences (India)

    ... of faster and multiple readout, very high sensitivity, absence of thermal quenching and possible use of phosphor in plastic binders [3–15]. ... synthesis technique was developed to reduce the time required for the synthesis, which was about.

  18. Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution

    International Nuclear Information System (INIS)

    Sun, Y.; Qi, L.; Lee, M.; Lee, B.I.; Samuels, W.D.; Exarhos, G.J.

    2004-01-01

    Europium-doped yttrium oxide phosphors were obtained by firing precursors prepared by urea precipitation in ethanol and ethylenediamine. The precipitation in non-aqueous solution was carried out in an autoclave at 150 deg. C to allow the decomposition of urea. The photoluminescent intensities of the phosphors prepared in ethanol and ethylenediamine increased by about 30% compared to that of the phosphor prepared by the conventional urea homogeneous precipitation in aqueous solution. Amorphous carbonates and amorphous hydroxides/carbonates mixtures were identified as precursors from ethanol and ethylenediamine, respectively. The morphology and particle size were studied by SEM and dynamic laser scattering method

  19. Metaheuristics-Assisted Combinatorial Screening of Eu2+-Doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N Compositional Space in Search of a Narrow-Band Green Emitting Phosphor and Density Functional Theory Calculations.

    Science.gov (United States)

    Lee, Jin-Woong; Singh, Satendra Pal; Kim, Minseuk; Hong, Sung Un; Park, Woon Bae; Sohn, Kee-Sun

    2017-08-21

    A metaheuristics-based design would be of great help in relieving the enormous experimental burdens faced during the combinatorial screening of a huge, multidimensional search space, while providing the same effect as total enumeration. In order to tackle the high-throughput powder processing complications and to secure practical phosphors, metaheuristics, an elitism-reinforced nondominated sorting genetic algorithm (NSGA-II), was employed in this study. The NSGA-II iteration targeted two objective functions. The first was to search for a higher emission efficacy. The second was to search for narrow-band green color emissions. The NSGA-II iteration finally converged on BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors in the Eu 2+ -doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N compositional search space. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor, which was synthesized with no human intervention via the assistance of NSGA-II, was a clear single phase and gave an acceptable luminescence. The BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphor as well as all other phosphors that appeared during the NSGA-II iterations were examined in detail by employing powder X-ray diffraction-based Rietveld refinement, X-ray absorption near edge structure, density functional theory calculation, and time-resolved photoluminescence. The thermodynamic stability and the band structure plausibility were confirmed, and more importantly a novel approach to the energy transfer analysis was also introduced for BaLi 2 Al 2 Si 2 N 6 :Eu 2+ phosphors.

  20. A Strategy for Synthesizing CaZnOS:Eu{sup 2+} Phosphor and Comparison of Optical Properties with CaS:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Zhongxian; Rong, Chunying; Zhou, Wenli; Zhang, Jilin; Li, Chengzhi; Yu, Liping; Liu, Shubin; Lian, Shixun, E-mail: shixunlian@gmail.com

    2014-01-15

    Graphical abstract: Pure-phase CaZnOS:Eu{sup 2+},Ce{sup 3+}phosphor with good chemical and thermal stability can be synthesized by co-doping with Ce{sup 3+} as deoxidizer rather than reduction atmosphere. The broad bluish-green excitation and broad red emission show it is a better phosphor than CaS:Eu{sup 2+} for white LED and for sunlight harvesting of plants. -- Highlights: • Pure-phase phosphor CaZnOS:Eu{sup 2+} was synthesized by co-doping with Ce{sup 3+} as deoxidizer. • Energy transfer mechanism from Ce{sup 3+} to Eu{sup 2+} in CaZnOS host is proposed. • CaZnOS:Eu{sup 2+}, Ce{sup 3+} phosphor has good chemical and thermal stability performance. • The similarities and differences between CaZnOS:Eu{sup 2+} and CaS:Eu{sup 2+} were analyzed. • The green excitation and red emission show superior solar harvesting for plants. -- Abstract: The red-emitting phosphor CaZnOS:Eu{sup 2+} was synthesized from CaCO{sub 3}, ZnS, Eu{sub 2}O{sub 3} and CeCl{sub 3} by controlling the sintering condition. It was found that Ce{sup 3+} ions can play a role of reductant to contribute to the formation of Eu{sup 2+} in CaZnOS matrix under inert protective atmosphere. While the gas flow changed to H{sub 2}/N{sub 2}, the product turned to CaS easily. XRD, photoluminescence spectra, UV–vis and IR absorption spectra were evaluated to investigate the origin of the distinctions of the optical properties and stabilities between the two divalent europium ions doped phosphors CaZnOS:Eu{sup 2+} and CaS:Eu{sup 2+}. The similarities and differences between them were analyzed.

  1. Optical spectroscopy of the Ce-doped multicomponent garnets

    International Nuclear Information System (INIS)

    Canimoglu, A.; Karabulut, Y.; Ayvacikli, M.; Muresan, L.E.; Perhaita, I.; Barbu-Tudoran, L.; Garcia Guinea, J.; Karali, T.; Can, N.

    2016-01-01

    Here, we report our results referring to the preparation of Ce doped Y 2.22 MgGa 2 Al 2 SiO 12 , Y 1.93 MgAl 4 SiO 12 and Y 2.22 Gd 0.75 Ga 2 Al 3 O 12 using solid state reaction at high temperature. Several complementary methods (i.e. powder x-ray diffraction (XRPD), energy dispersive analysis of X-rays (EDX), scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR)) were studied to examine the effects of the synthesis procedure on the morphology and structure. XRD analyses revealed that all compounds include yttrium aluminate phase with garnet structure. Cathodoluminescence (CL), radioluminescence (RL) and photoluminescence (PL) measurements were carried out for clarification of relationship between host lattice defects and the spectral luminescence emissions. Luminescence emission of phosphors is peaked at 530 nm assigned to 5d-4f transitions of the dopant Ce 3+ ions with a broad emission band in 400–700 nm range. Under electron irradiation, the emission spectrum of Ce doped (YGd) 3 Ga 2 Al 3 O 12 is well defined and has a characteristic fairly narrow and sharp emission band peaking at 312 nm and 624 nm corresponding to transition of 6 P 7/2 → 8 S 7/2 and 6 G J → 6 P J (Gd 3+ ), respectively. We suggest some of phosphors might be excellent phototherapy phosphor materials under electron excitation. - Highlights: • Ce-doped Multicomponent Garnets were prepared solid state reaction method. • The shape and size of phosphor particles were examined. • The narrow band UV B emission due to Gd 3+ ions were observed.

  2. Doping monolayer graphene with single atom substitutions

    KAUST Repository

    Wang, Hongtao

    2012-01-11

    Functionalized graphene has been extensively studied with the aim of tailoring properties for gas sensors, superconductors, supercapacitors, nanoelectronics, and spintronics. A bottleneck is the capability to control the carrier type and density by doping. We demonstrate that a two-step process is an efficient way to dope graphene: create vacancies by high-energy atom/ion bombardment and fill these vacancies with desired dopants. Different elements (Pt, Co, and In) have been successfully doped in the single-atom form. The high binding energy of the metal-vacancy complex ensures its stability and is consistent with in situ observation by an aberration-corrected and monochromated transmission electron microscope. © 2011 American Chemical Society.

  3. Rainbow Emission from an Atomic Transition in Doped Quantum Dots.

    Science.gov (United States)

    Hazarika, Abhijit; Pandey, Anshu; Sarma, D D

    2014-07-03

    Although semiconductor quantum dots are promising materials for displays and lighting due to their tunable emissions, these materials also suffer from the serious disadvantage of self-absorption of emitted light. The reabsorption of emitted light is a serious loss mechanism in practical situations because most phosphors exhibit subunity quantum yields. Manganese-based phosphors that also exhibit high stability and quantum efficiency do not suffer from this problem but in turn lack emission tunability, seriously affecting their practical utility. Here, we present a class of manganese-doped quantum dot materials, where strain is used to tune the wavelength of the dopant emission, extending the otherwise limited emission tunability over the yellow-orange range for manganese ions to almost the entire visible spectrum covering all colors from blue to red. These new materials thus combine the advantages of both quantum dots and conventional doped phosphors, thereby opening new possibilities for a wide range of applications in the future.

  4. Electronic structure of B-doped diamond: A first-principles study

    Directory of Open Access Journals (Sweden)

    T. Oguchi

    2006-01-01

    Full Text Available Electronic structure of B-doped diamond is studied based on first-principles calculations with supercell models for substitutional and interstitial doping at 1.5–3.1 at.% B concentrations. Substitutional doping induces holes around the valence-band maximum in a rigid-band fashion. The nearest neighbor C site to B shows a large energy shift of 1s core state, which may explain reasonably experimental features in recent photoemission and X-ray absorption spectra. Doping at interstitial Td site is found to be unstable compared with that at the substitutional site

  5. Host-Sensitized and Tunable Luminescence of GdNbO4:Ln3+ (Ln3+ = Eu3+/Tb3+/Tm3+) Nanocrystalline Phosphors with Abundant Color.

    Science.gov (United States)

    Liu, Xiaoming; Chen, Chen; Li, Shuailong; Dai, Yuhua; Guo, Huiqin; Tang, Xinghua; Xie, Yu; Yan, Liushui

    2016-10-17

    Up to now, GdNbO 4 has always been regarded as an essentially inert material in the visible region with excitation of UV light and electron beams. Nevertheless, here we demonstrate a new recreating blue emission of GdNbO 4 nanocrystalline phosphors with a quantum efficiency of 41.6% and host sensitized luminescence in GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) nanocrystalline phosphors with abundant color in response to UV light and electron beams. The GdNbO 4 and GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) nanocrystalline phosphors were synthesized by a Pechini-type sol-gel process. With excitation of UV light and low-voltage electron beams, the obtained GdNbO 4 nanocrystalline phosphor presents a strong blue luminescence from 280 to 650 nm centered around 440 nm, and the GdNbO 4 :Ln 3+ nanocrystalline phosphors show both host emission and respective emission lines derived from the characterize f-f transitions of the doping Eu 3+ , Tb 3+ , and Tm 3+ ions. The luminescence color of GdNbO 4 :Ln 3+ nanocrystalline phosphors can be tuned from blue to green, red, blue-green, orange, pinkish, white, etc. by varying the doping species, concentration, and relative ratio of the codoping rare earth ions in GdNbO 4 host lattice. A single-phase white-light-emission has been realized in Eu 3+ /Tb 3+ /Tm 3+ triply doped GdNbO 4 nanocrystalline phosphors. The luminescence properties and mechanisms of GdNbO 4 and GdNbO 4 :Ln 3+ (Ln 3+ = Eu 3+ /Tb 3+ /Tm 3+ ) are updated.

  6. Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    Clayton Cozzan

    2016-10-01

    Full Text Available With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAl10O17, has been prepared using microwave-assisted heating (25 min and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min. The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

  7. Synthesis and characterization of europium doped LiF phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, M. L.; Vallejo, M. A.; Sosa A, M. [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Diaz T, L. A., E-mail: villaloboscm2010@licifug.ugto.mx [Centro de Investigaciones en Optica, A. C., Loma del Bosque No. 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2015-10-15

    LiF with different dopants has been one of the most investigated materials to use as thermoluminescent dosimeter. In this paper, we present the preparation method, the characterization and the thermoluminescent response of Eu doped LiF irradiated with X-rays. Pure and Eu doped LiF samples with different dopant concentration (0, 0.25, 0.5, 0.75 and 1 % mol) were synthesized using the precipitation method. The samples were structurally characterized by X-ray diffraction (XRD), the diffraction patterns showed a main cubic crystalline structure and a secondary hexagonal structure. The photoluminescence spectrum exhibited four well defined peaks characteristic of the Eu{sup 3+} ion. Thermoluminescent (Tl) glow curves of x-ray irradiated samples showed a well-defined single peak around 200 degrees C, except for the pure and 0.25% Eu doped samples. (Author)

  8. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    Science.gov (United States)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  9. Generation of White Light from Dysprosium-Doped Strontium Aluminate Phosphor by a Solid-State Reaction Method

    Science.gov (United States)

    Sahu, Ishwar Prasad; Bisen, D. P.; Brahme, N.; Tamrakar, Raunak Kumar

    2016-04-01

    A single-host lattice, white light-emitting SrAl2O4:Dy3+ phosphor was synthesized by a solid-state reaction method. The crystal structure of prepared SrAl2O4:Dy3+ phosphor was in a monoclinic phase with space group P21. The chemical composition of the sintered SrAl2O4:Dy3+ phosphor was confirmed by the energy dispersive x-ray spectroscopy technique. Under ultra-violet excitation, the characteristic emissions of Dy3+ are peaking at 475 nm, 573 nm and 660 nm, originating from the transitions of 4F9/2 → 6H15/2, 4F9/2 →&!nbsp; 6H13/2 and 4F9/2 → 6H11/2 in the 4f9 configuration of Dy3+ ions. Commission International de I'Eclairage color coordinates of SrAl2O4:Dy3+ are suitable for white light-emitting phosphor. In order to investigate the suitability of the samples as white color light sources for industrial uses, correlated color temperature (CCT) and color rendering index (CRI) values were calculated. Values of CCT and CRI were found well within the defined acceptable range. Mechanoluminescence (ML) intensity of SrAl2O4:Dy3+ phosphor increased linearly with increasing impact velocity of the moving piston. Thus, the present investigation indicates piezo-electricity was responsible for producing ML in sintered SrAl2O4:Dy3+ phosphor. Decay rates of the exponential decaying period of the ML curves do not change significantly with impact velocity. The photoluminescence and ML results suggest that the synthesized SrAl2O4:Dy3+ phosphor was useful for the white light-emitting diodes and stress sensor respectively.

  10. Luminescence properties of phosphate phosphor Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fu [College of Science, Hebei North University, Zhangjiakou 075000 (China); Liu, Yufeng, E-mail: liuyufeng4@126.com [State Key Lab of Power Systems, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Tian, Xiaodong; Dong, Guoyi [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Yu, Quanmao [Institute of Functional Materials, Jiangxi University of Finance & Economics, Nanchang 330013 (China)

    2015-05-15

    A series of reddish orange-emitting phosphate phosphors Ba{sub 3}Y{sub 1−x}(PO{sub 4}){sub 3}:xSm{sup 3+}(0.01≤x≤0.20) were synthesized by solid-state reaction. X-ray diffraction and photoluminescence spectra were utilized to characterize the structure and luminescence properties of as-synthesized phosphors. The optimized phosphors Ba{sub 3}Y{sub 0.95}(PO{sub 4}){sub 3}:0.05Sm{sup 3+} present several excitation bands from 300 to 500 nm, and exhibit intense reddish orange-emitting properties. The energy transfer type between Sm{sup 3+} ions was confirmed as d–d interaction by using Van Uitert model. The chromatic properties of the typical sample Ba{sub 3}Y(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphor have been found to have chromaticity coordinates of (0.583, 0.405), which are located in reddish orange region under the excitation of 401 nm. These results indicated that Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors have potential applications in the field of lighting and display due to their effective excitation in the near-ultraviolet range. - Graphical abstract: The color coordinates for 5 mol% Sm{sup 3+} doped Ba{sub 3}Y(PO{sub 4}){sub 3} phosphor were calculated to be (0.583, 0.405), which are located in reddish orange region under the excitation of 401 nm. The peaks of Ba{sub 3}Y{sub 0.95}(PO{sub 4}){sub 3}:0.05Sm{sup 3+} phosphor with the highest emission intensity at 600 nm are broader than those of Y{sub 2}O{sub 3}:Eu{sup 3+} and Y{sub 2}O{sub 2}S:Eu{sup 3+} phosphors. All these characteristics suggest that Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} phosphors are suitable for near-UV (370–410 nm) excitation and can be applicable to near UV-based WLEDs. ▪ - Highlights: • Different concentration Sm{sup 3+}-doped Ba{sub 3}Y(PO{sub 4}){sub 3} phosphors were fabricated by solid state method. • The optimized phosphors present the several excitation bands from 300 to 500 nm. • The Ba{sub 3}Y(PO{sub 4}){sub 3}:Sm{sup 3+} shows bright reddish orange

  11. Upconversion luminescence of Er3+/Yb3+ doped Sr5(PO4)3OH phosphor powders

    Science.gov (United States)

    Mokoena, P. P.; Swart, H. C.; Ntwaeaborwa, O. M.

    2018-04-01

    Sr5(PO4)3OH co-doped with Er3+and Yb3+ powder phosphors were synthesized by urea combustion method. The crystal structure was analyzed using X-ray diffraction (XRD). Particle morphology was analyzed using a Jeol JSM 7800F thermal field emission scanning electron microscope (FE-SEM) and the chemical composition analysis was carried out using an Oxford Instruments AzTEC energy dispersive spectrometer (EDS) attached to the FE-SEM. Upconversion emission was measured by using a FLS980 Spectrometer equipped with a 980 nm NIR laser as the excitation source, and a photomultiplier (PMT) detector. The XRD data of the Sr5(PO4)3OH powder exhibited characteristic diffraction patterns of the hexagonal structure referenced in the standard JCPDS card number 00-033-1348. The sharp peaks revealed the formation of crystalline Sr5(PO4)3OH. The powders were made up of hexagonal nanospheres. The enhanced red emission due to the 4F9/2 → 4I15/2 transitions of Er3+ was observed and was attributed to up conversion (UC) energy transfer from Yb3+. The upconversion energy transfer mechanism from Yb3+ to Er3+ is discussed.

  12. Phosphorus doped graphene by inductively coupled plasma and triphenylphosphine treatments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Wook, E-mail: shindong37@skku.edu; Kim, Tae Sung; Yoo, Ji-Beom, E-mail: jbyoo@skku.edu

    2016-10-15

    Highlights: • Substitution doping is a promising method for opening the energy band gap of graphene. • Substitution doping with phosphorus in the graphene lattice has numerous advantage such as high band gap, low formation energy, and high net charge density compared to nitrogen. • V{sub dirac} of Inductively coupled plasma (ICP) and triphenylphosphine (TPP) treated graphene was −57 V, which provided clear evidence of n-type doping. • Substitutional doping of graphene with phosphorus is verified by the XPS spectra of P 2p core level and EELS mapping of phosphorus. • The chemical bonding between P and graphene is very stable for a long time in air (2 months). - Abstract: Graphene is considered a host material for various applications in next-generation electronic devices. However, despite its excellent properties, one of the most important issues to be solved as an electronic material is the creation of an energy band gap. Substitution doping is a promising method for opening the energy band gap of graphene. Herein, we demonstrate the substitutional doping of graphene with phosphorus using inductively coupled plasma (ICP) and triphenylphosphine (TPP) treatments. The electrical transfer characteristics of the phosphorus doped graphene field effect transistor (GFET) have a V{sub dirac} of ∼ − 54 V. The chemical bonding between P and C was clearly observed in XPS spectra, and uniform distribution of phosphorus within graphene domains was confirmed by EELS mapping. The capability for substitutional doping of graphene with phosphorus can significantly promote the development of graphene based electronic devices.

  13. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Di Peng

    2016-09-01

    Full Text Available Yttria-stabilized zirconia (YSZ-based thermal barrier coating (TBC has been integrated with thermographic phosphors through air plasma spray (APS for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm; a photo-multiplier tube (PMT and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.

  14. Doping process of p-type GaN nanowires: A first principle study

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Feng, Shu

    2017-10-01

    The process of p-type doping for GaN nanowires is investigated using calculations starting from first principles. The influence of different doping elements, sites, types, and concentrations is discussed. Results suggest that Mg is an optimal dopant when compared to Be and Zn due to its stronger stability, whereas Be atoms are more inclined to exist in the interspace of a nanowire. Interstitially-doped GaN nanowires show notable n-type conductivity, and thus, Be is not a suitable dopant, which is to be expected since systems with inner substitutional dopants are more favorable than those with surface substitutions. Both interstitial and substitutional doping affect the atomic structure near dopants and induce charge transfer between the dopants and adjacent atoms. By altering doping sites and concentrations, nanowire atomic structures remain nearly constant. Substitutional doping models show p-type conductivity, and Mg-doped nanowires with doping concentrations of 4% showing the strongest p-type conductivity. All doping configurations are direct bandgap semiconductors. This study is expected to direct the preparation of high-quality GaN nanowires.

  15. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  16. Low temperature synthesis and photoluminescent properties of CaMoO4:Eu3+ red phosphor with uniform micro-assemblies

    International Nuclear Information System (INIS)

    Yu, Fangyi; Zuo, Jian; Zhao, Zhi; Jiang, Chengying; Yang, Qing

    2011-01-01

    Highlights: → Synthesis of Eu 3+ -doped CaMoO 4 red phosphor via a facile hydrothermal method. → The morphology of the materials was manipulated using different alkaline sources. → Micro-structures were assembled by small nanostructures. → Luminescent investigations confirmed that the Eu 3+ ions have been effectively doped into the nanostructures. → Schematic diagram for the energy transfer clearly reveals the photoluminescent mechanism. -- Abstract: Scheelite-type Eu 3+ -doped CaMoO 4 red phosphor with uniform micro-assemblies has been successfully synthesized via a facile hydrothermal method at 120 o C for 10 h. The Eu 3+ -doped CaMoO 4 microstructures were assembled by small nanostructures and the morphology of materials was found to be manipulated by dropping different alkalis into the stock solution for the first time. The structure, morphology, and luminescent property were characterized and investigated by techniques of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL). The luminescent investigations confirmed that the Eu 3+ ions have been effectively doped into CaMoO 4 nanostructures. The successfully achieved Eu 3+ -doped CaMoO 4 nanostructures will be potential in technological applications on near UV chip-based white light emitting diode (WLED).

  17. Photoluminescence and thermoluminescence properties of Tb3+ doped K3Gd(PO4)2 nanophosphor

    International Nuclear Information System (INIS)

    Gupta, Palvi; Bedyal, A.K.; Kumar, Vinay; Khajuria, Y.; Lochab, S.P.; Pitale, S.S.; Ntwaeaborwa, O.M.; Swart, H.C.

    2014-01-01

    Energy level diagram of Tb 3+ ion in the K 3 Gd(PO 4 ) 2 host lattice. - Highlights: • First time, a detailed TL and PL study on undoped and Tb 3+ doped K 3 Gd(PO 4 ) 2 nanophosphor. • Combustion method was employed to synthesize the Tb 3+ doped K 3 Gd(PO 4 ) 2 nanophosphor. • Mechanism of excitation and emission in undoped and Tb 3+ doped K 3 Gd(PO 4 ) 2 nanophosphor was given. - Abstract: Tb 3+ doped nanoparticulate K 3 Gd(PO 4 ) 2 phosphor was prepared by combustion method using urea as a fuel. The structure, optical and luminescent properties of the phosphor were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and thermoluminescence (TL) spectroscopy. In undoped K 3 Gd(PO 4 ) 2 , the excitation and emission peaks at 273 nm and 323 nm belongs to the 8 S 7/2 → 6 I J(J=7/2) and 6 P J(J=7/2) → 8 S 7/2 transitions of Gd 3+ while green emission was observed in the Tb 3+ doped K 3 Gd(PO 4 ) 2 . TL study was carried out after exposing the samples to γ-radiations (0.1–5 kGy) in the K 3 Gd(PO 4 ) 2 :Tb 3+ (1.5 mol%). The calculated kinetic parameters were compared with different methods. The band gap of the phosphor was estimated as 5.80 eV. The green shade of the Tb 3+ ion with the CIE coordinates (x, y) as (0.29, 0.54) was in good agreement with the well known green phosphors

  18. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics

    OpenAIRE

    Janulevičius, Matas; Marmokas, Paulius; Misevičius, Martynas; Grigorjevaitė, Julija; Mikoliūnaitė, Lina; Šakirzanovas, Simas; Katelnikovas, Artūras

    2016-01-01

    A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu3+ phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu3+ showed quantum yields up to 85%, what is suitable for commercial application. Temperature depend...

  19. Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Lu Weili; Cheng Lihong; Zhong Haiyang; Sun Jiashi; Wan Jing; Tian Yue; Chen Baojiu

    2010-01-01

    Yttrium molybdate phosphors with fixed Er 3+ and various Yb 3+ concentrations were synthesized via a co-precipitation method. The crystal structure and the morphology of the phosphor were characterized by means of x-ray diffraction and field-emission scanning electron microscopy. Under 980 nm excitation, red and green upconversion emissions centred at 660, 553 and 530 nm were observed. Quantitative analyses on the dependence of upconversion emission intensity on the working current of a laser diode (LD) indicated that two-photon processes are responsible for both red and green upconversion emissions in both cases of low and high Yb 3+ concentrations. The relationship between the emission intensity ratio of 2 H 11/2 → 4 I 15/2 to 4 S 3/2 → 4 I 15/2 and the working current of the LD was studied for the samples doped with low and high Yb 3+ concentrations. Finally, a set of rate equations was established based on the possible upconversion mechanism, and an empirical formula was proposed to describe the Yb 3+ concentration dependence of upconversion emission intensity; the empirical formula fits well with the experimental data.

  20. Effect of Si/Fe ratio on the boron and phosphorus doping efficiency of β-FeSi2 by magnetron sputtering

    International Nuclear Information System (INIS)

    Xu Jiaxiong; Yao Ruohe

    2011-01-01

    Boron-doped or phosphorus-doped β-FeSi 2 thin films have been prepared on silicon substrate by magnetron sputtering. Effects of Si/Fe ratio on the boron and phosphorus doping efficiencies have been studied from the resistivities of doped β-FeSi 2 thin films and current-voltage characteristics of doped β-FeSi 2 /Si heterojunctions. The experimental results reveal that the carrier concentration and doping efficiency of boron or phosphorus dopants at the Fe-rich side are higher than that at the Si-rich side. The effect of Si/Fe ratio can be deduced from the comparison of the formation energies under two extreme conditions. At the Fe-rich limit condition, the formation energy of boron or phosphorous doping is lower than that at the Si-rich condition. Therefore, the activation of impurities is more effective at the Fe-rich side. These results demonstrate that the boron-doped and phosphorous-doped β-FeSi 2 thin films should be kept at the Fe-rich side to avoid the unexpected doping sites and low doping efficiency.

  1. Tunable luminescence properties and efficient energy transfer in Eu2+, Tb3+ co-doped NaBaPO4

    Directory of Open Access Journals (Sweden)

    Qiuhong Zhang

    2014-01-01

    Full Text Available Eu2 + and Tb3+ singly doped and co-doped NaBaPO4 phosphors were synthesized by solid state reaction. The structure character, photoluminescence properties and the lifetime were investigated. The emission spectra of NaBaPO4:Eu2+, Tb3+, Na+ phosphor show both broad blue emission band and sharp green emission peaks. The energy transfer mechanism from Eu2+ to Tb3+ in NaBaPO4 host was discussed. The excitation spectra of NaBaPO4: Eu2+, Tb3+, Na+ phosphor show broad excitation band in the 250–400 nm range, which was in agreement with the near-ultraviolet (n-UV chip. The hue of the NaBaPO4: Eu2+, Tb3+, Na+ phosphors could be appropriately tuned by adjusting the contents of activators.

  2. Simple preparation of LiF:Mg,Ti phosphor

    International Nuclear Information System (INIS)

    Moharil, S.V.; Shahare, D.I.; Upaded, S.V.; Deshmukh, B.T.

    1993-01-01

    LiF-TLD 100 is a low-impedance (Z eff = 8.2) tissue equivalent material which is widely used in thermoluminescence (TL) dosimetry of ionizing radiations and personnel monitoring. Mg and Ti have been found to be the major impurities which impart the Tl characteristics. Recipes for the preparation of this phosphor, have not been found to be satisfactory for routine manufacture; there have always been problems associated with reproducibility and even with batch homogeneity. One of the reasons for this is that most procedures start either from readily available LiF or by melting the synthesized LiF, or both. The background impurities in the starting LiF powder can mask the intentional impurities, particularly Ti which has to be doped in rather small concentrations (10 p.p.m.). Melting LiF can again be tricky, as the LiF melt is volatile and highly corrosive. In this letter we report the preparation of LiF: Mg, Ti. The impurities were incorporated during the synthesis of LiF. The phosphor was prepared by heat treatments in ambient air without melting the compound. The characteristics of the prepared phosphors were studied and compared with those of LiF-TLD 100. (author)

  3. Synthesis and cathodoluminescent properties of Y2SiO5:Tb3+ phosphors prepared from uniform precursor

    International Nuclear Information System (INIS)

    Fan Deyong; Yang Sen; Wang Jieqiong; Zheng Aqun; Song Xiaoping; Yu Demei

    2012-01-01

    The luminescent properties of phosphors are sensitive to the size of phosphor particles. The commercial Y 2 SiO 5 :Tb 3+ phosphors usually show relatively larger particle size (5–10 μm) due to the irregular morphology of rare earth oxide precursor and thus degrade the luminescent properties. In this paper, we report the Y 2 SiO 5 :Tb 3+ phosphors synthesized from the uniform Tb-doped Y 2 O 3 precursor by a homogeneous precipitation method. Compared with the commercial phosphors, the obtained Y 2 SiO 5 :Tb 3+ phosphors manifest the uniform morphology with much smaller particles distributing from 0.8 μm to 1.9 μm. Consequently, the cathodoluminescent intensity under low excitation voltage (1–5 kV) was increased, demonstrating a strong green emission with a dominant wavelength of 545 nm. Our results indicate an effective way to develop the high-quality phosphors for field emission display. - Highlights: ► The Y 2 SiO 5 :Tb 3+ phosphors are synthesized by a homogeneous precipitation method. ► They manifest the uniform morphology with much smaller particles than commercial one. ► The corresponding cathodoluminescent intensity of green emission is greatly enhanced. ► Our results indicate an effective way to develop the high-quality phosphors for FED.

  4. Luminescence properties of terbium-doped Li 3 PO 4 phosphor for ...

    Indian Academy of Sciences (India)

    A polycrystalline sample of Li 3 PO 4 :Tb 3 + phosphor was successfully synthesized using solid-state diffusion method. This synthesis method is of low cost, low temperature and does not require any other atmospheres for the synthesis. The powder X-ray diffraction (PXRD), photoluminescence (PL) emission and excitation ...

  5. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  6. Facile synthesis, structural characterization, and photoluminescence mechanism of Dy3+ doped YVO4 and Ca2+ co-doped YVO4:Dy3+ nano-lattices

    Science.gov (United States)

    Dhiren Meetei, Sanoujam; Deben Singh, Mutum; Dorendrajit Singh, Shougaijam

    2014-05-01

    Light plays a vital role in the evolution of life. From sunlight to candle-light and then to other form of lighting devices, human beings are utilizing light since time immemorial. Lighting devices such as conventional incandescent lamp and fluorescent lamp have been replaced by Light Emitting Diodes (LEDs) for the later is cheap, durable, etc. Now-a-days, phosphor converted LEDs have been burning issues in the fabrication of lighting devices. Especially, lanthanide ion(s) doped phosphors are of great interest for the same. However, doped phosphors have a limitation of luminescence quenching, i.e., instead of increasing luminescence on increasing dopant concentration, the luminescence decreases. Therefore, it must be rectified by one or other means so as to get maximum desirable intensity for uses in display or lighting devices. In the present work, YVO4:Dy3+ and YVO4:Dy3+/Ca2+ nano-lattices are synthesized by a facile technique. Structural characterizations such as x-ray diffraction, SEM, TEM, HRTEM, and Selected Area Electron Diffraction (SAED) of the samples are reported. Photoluminescence (PL) excitation and emission, enhanced mechanism, and lifetime are thoroughly discussed. PL intensity of the quenched YVO4:Dy3+ is made increased up to 432.63% by Ca2+ co-doping. Role of the Ca2+ on the luminescence enhanced mechanism of YVO4:Dy3+/Ca2+ is elucidated.

  7. Ge{sup 4+}, Eu{sup 3+}-codoped Y{sub 2}SiO{sub 5} as a novel red phosphor for white LED applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Dong, Yuanyuan [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Wei, Bo [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500 (China); Xu, Jiayue

    2017-05-15

    The phosphors Y{sub 2}SiO{sub 5}: Ge{sup 4+}, Eu{sup 3+} were synthesized by solid state reaction method assisted by flux, and have been characterized by X-ray powder diffraction and fluorescence spectrometer. The results showed that the phosphors can be effectively excited by near-UV (394 nm), and the major peak is located at 611 nm ascribed to the electric-dipole {sup 5}D{sub 0} → {sup 7}F{sub 2} transition of Eu{sup 3+}, the critical quenching concentration of Eu{sup 3+} in the phosphor is determined to be 15 mol% and the critical transfer distance is calculated as 8.90 Aa. Co-doping Y{sub 2}SiO{sub 5}: Eu{sup 3+} with Ge{sup 4+} helps to improve the luminescence intensity and color purity. The red emission of the phosphor under 394 nm excitation shows a good chromaticity index (0.652, 0.347) compared to commercial red phosphors Y{sub 2}O{sub 2}S: Eu{sup 3+} (0.631, 0.350). The quantum efficiency of the Y{sub 2}Si{sub 0.97}O{sub 5}: 0.03Ge{sup 4+}, 0.15Eu{sup 3+}phosphor under 394 nm excitation is estimated to be 45.24%. It can be concluded that efficient red light emitting diodes were fabricated using Ge{sup 4+}, Eu{sup 3+} co-doped phosphor based on near ultraviolet(NUV) excited LED lights. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A novel orange-red emitting NaCaVO{sub 4}:Sm{sup 3+} phosphor for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pankaj, E-mail: pankaj79biswas@gmail.com; Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com [School of Physics, Shri Mata Vaishno Devi University, Katra-182320 J& K (India); Ntwaeaborwa, O. M.; Swart, H. C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA9300 (South Africa)

    2016-05-06

    The samarium doped NaCaVO{sub 4} phosphor was synthesized by the combustion method. The X-ray powder diffraction (XRD) analysis confirmed that the phosphor powder crystallized as orthorhombic structure belonging to space group Cmcm. From Williamson-Hall analysis the grain size and microstrain in the powder was estimated. The Fourier- transform infrared (FT-IR) studies further validated the formation of vanadate phase of the phosphor. Photoluminescence (PL) study revealed that the phosphor could be efficiently excited by UV-VIS from 200 nm to 500 nm. The 565 nm, 602 nm, 648 nm and 713 nm emissions were ascribed to {sup 4}G{sub 5/2} to {sup 6}H{sub J} (J = 5/2, 7/2, 9/2 and 11/2) transitions of the Sm{sup 3+} ion. The present material may be explored as a novel phosphor to be excited by UV light emitting diodes (LEDs) chips for solid-state lighting and display applications.

  9. Fluorescence properties of novel near-infrared phosphor CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.X., E-mail: tmjx@jnu.edu.c [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zhang, F.J.; Peng, W.F.; Wan, W.J.; Xiao, Q.L.; Chen, Q.Q.; Cao, L.W. [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Wang, Z.L. [School of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031 (China)

    2010-10-15

    Research highlights: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized. The phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement benefited from the efficient energy transfer from a co-doped Ce{sup 3+}. The energy transfer mechanism was also briefly based on detailed investigation on spectrum and fluorescence lifetime. - Abstract: Novel near-infrared (NIR) phosphor, CaSc{sub 2}O{sub 4}:Ce{sup 3+}, Nd{sup 3+}, was synthesized by co-precipitation method followed by firing at 1300 {sup o}C in reduced atmosphere. When irradiated with blue light, the phosphor gives strong Nd{sup 3+} characteristic NIR emissions in the range of 880-930 nm. The NIR emission intensity gets a 200 times enhancement by co-doping of Ce{sup 3+}. Detailed investigation on spectrum and fluorescence lifetimes indicated the NIR luminescence enhancement is obtained from an energy transfer process. The process initiates with efficient absorption of blue light by Ce{sup 3+} ions via an allowed 4f-5d transition, follow by efficient energy transfer from Ce{sup 3+} to Nd{sup 3+}, and emitting strong Nd{sup 3+} characteristic fluorescence.

  10. Stability and diffusion of interstitital and substitutional Mn in GaAs of different doping types

    CERN Document Server

    Pereira, LMC; Decoster, S; Correia, JG; Amorim, LM; da Silva, MR; Araújo, JP; Vantomme, A

    2012-01-01

    We report on the lattice location of Mn impurities (< 0.05%) in undoped (semi-insulating) and heavily $n$-type doped GaAs, by means of $\\beta^{-}$-emission channeling from the decay of $^{56}$Mn produced at ISOLDE/CERN. In addition to the majority substituting for Ga, we locate up to 30% of the Mn impurites on tetrahedral interstitial sites with As nearest neighbors. In line with the recently reported high thermal stability of interstitial Mn in heavily $p$-type doped GaAs [L. M. C. Pereira et al., Appl. Phys. Lett. 98, 201905 (2011)], the interstitial fraction is found to be stable up to 400$^{\\circ}$C, with an activation energy for diffusion of 1.7–2.3 eV. By varying the concentration of potentially trapping defects, without a measurable effect on the migration energy of the interstitial impurities, we conclude that the observed high thermal stability is characteristic of isolated interstitial Mn. Being difficult to reconcile with the general belief that interstitial Mn is the donor defect that out-dif...

  11. Studies on phosphorescence and trapping effects of Mn-doped and undoped zinc germinates

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhiyi [Optoelectronic Institute, Guilin University of Electronic Technology, Guilin 541004, Guangxi (China); Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Ma, Li [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); Wang, Xiaojun, E-mail: xwang@georgiasouthern.edu [Department of Physics, Georgia Southern University, Statesboro, GA 30460 (United States); School of Physics, Northeast Normal University, Changchun 130024 (China)

    2016-01-15

    Photoluminescence and phosphorescence from different recombining centers in the Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4} phosphors have been observed. By UV excitation the undoped sample presents a broad band of blue–white emission from the host defects while the Mn-doped samples show both the host and Mn{sup 2+} emissions with different phosphorescent durations. At the beginning of UV excitation after the phosphorescence has been exhausted, the fluorescent time dependence of Mn{sup 2+} exhibits a fast decay process to a constant intensity, different from the rising or charging process as the typical behavior for the common persistent phosphors. This unusual behavior was studied using electron paramagnetic resonance (EPR) spectroscopy. A decrease of the EPR signal from Mn{sup 2+} was found for the sample under UV irradiation, suggesting the occurrence of ionization of Mn{sup 2+} to Mn{sup 3+}. A slow recovering process of the ionization has also been detected, which is consistent with the observation of phosphorescence from Mn{sup 2+} doped samples. - Highlights: • Photoluminescence and phosphorescence observed from Mn{sup 2+}-doped and undoped Zn{sub 2}GeO{sub 4}. • Unusual charging process from the common phosphors observed and analyzed. • Photo-stimulated EPR with a slow recovering process of Mn{sup 2+} ionization observed.

  12. Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4: Eu2+, Dy3+ and its novel application in latent fingerprint and lip mark detection

    Science.gov (United States)

    Sharma, Vishal; Das, Amrita; Kumar, Vijay; Kumar, Vinay; Verma, Kartikey; Swart, H. C.

    2018-04-01

    This work investigates the structural, optical and photometric characterization of a Eu2+/Dy3+ doped calcium aluminates phosphor (CaAl2O4: Eu2+/Dy3+) for finger and lip print detections. Synthesis of CaAl2O4: Eu2+/Dy3+ (CAED) phosphors were carried out via a combustion synthesis method with urea as a fuel. Eu2+/Dy3+ doped CaAl2O4 phosphors have been studied with X-ray diffraction (XRD, Energy Dispersive X-Ray Spectroscopy Selected Area Diffraction (SAED) and High resolution Transmission Electron Microscope (HR-TEM). The XRD pattern shows that the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphor have a single monoclinic structure and show that the addition of the dopant/co-dopants didn't change the crystal structure. The formation of monoclinic phase was confirmed by the selected area diffraction pattern. The TEM micrograph displays the morphology of the synthesized Eu2+/Dy3+ doped CaAl2O4 phosphors as spherical particles with an average particle size of 33 nm. The optical band gap was calculated using the diffuse reflectance for the synthesized nanophosphor powders. The photoluminescence emission spectra was recorded for the synthesized powder, with an excitation wavelength of 326 nm and the major bands was recorded at 447 nm corresponding to the blue color and two minor bands were recorded at 577 nm and 616 nm. To the best of our knowledge, this work is the first to show the use of CaAl2O4: Eu2+/Dy3+ nanophosphor in developing latent fingerprint and lip print effectively.

  13. Luminescence of (Ca,Sr)3(VO4)2: Pr3+, Eu3+ phosphor for use in CuPc-based solar cells and white light-emitting diodes

    International Nuclear Information System (INIS)

    Lin, Han-Yu; Chang, Wei-Fu; Chu, Sheng-Yuan

    2013-01-01

    The purpose of this study is to enhance the red emission intensity and expand the blue excitation band of a (Ca,Sr) 2.82 (VO 4 ) 2 :0.12Eu 3+ phosphor for use in copper phthalocyanine (CuPc)-based solar cells and white light-emitting diodes. It was found that substitution of 3% Sr 2+ replacing Ca 2+ enhanced red emission intensity of Ca 2.82 (VO 4 ) 2 :0.12Eu 3+ by 14% under 465-nm by excitation. The Pr 3+ co-doping effect was realized when blue excitation intensity of (Ca 0.97 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.12Eu 3+ , located in the weakest absorption of CuPc, was improved by 126% with the addition of 0.6 mol% Pr 3+ . The absorption spectrum of CuPc/optimized (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ mixtures provided evidence that the (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ phosphor could increase the efficiency of incident photons on CuPc-based solar cells. Moreover, the good temperature stability of emission intensity and chromaticity of (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ indicated a potential for this phosphor to be applied on the white light-emitting diodes. - Highlights: ► Substitution of 3% Sr 2+ replacing Ca 2+ enhanced red emission intensity of Ca 2.82 (VO 4 ) 2 :0.12Eu 3+ by 14% under 465 nm by excitation. ► Addition of 0.6 mol% Pr 3+ enhanced blue excitation intensity of (Ca 0.97 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.12Eu 3+ , located in the weakest absorption of CuPc, by 126%. ► According to absorption measurements of CuPc/optimized (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ mixtures for the first time, the feasibility of our phosphor to assist CuPc in converting blue-wavelength photons was proved. ► High temperature stability of emission intensity and chromaticity of (Ca 0.9668 Sr 0.03 ) 2.82 (VO 4 ) 2 :0.006Pr 3+ , 0.12Eu 3+ indicated our phosphor is acceptable for WLED applications.

  14. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  15. Synthesis and photoluminescence control of Ca{sub 10.5–1.5x}La{sub x}(PO{sub 4}){sub 7}:Eu{sup 2+} phosphors by aliovalent cation substitution

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yanting; Tang, Miao; Qiu, Zhongxian; Zhang, Jilin; Yu, Liping; Li, Chengzhi; Lian, Shixun; Zhou, Wenli, E-mail: chemwlzhou@hunnu.edu.cn

    2017-02-15

    A range of Ca{sub 10.5-1.5x}La{sub x}(PO{sub 4}){sub 7}:Eu{sup 2+}phosphors were synthesized by high temperature solid state method. Subsequently we studied the crystal structures and luminescent properties through X-ray diffraction, photoluminescence and photoluminescence excitation, diffuse reflection spectra, Raman spectra and decay curves systematically. Based on the special crystal structure ofβ-Ca{sub 3}(PO{sub 4}){sub 2}:Eu{sup 2+}, its emission undergoes a variation from violet–blue to cyan through introducing La{sup 3+}. The substitution of La{sup 3+} for Ca{sup 2+} could form some cation vacancies in Ca(4) sites according to the scheme 3Ca{sup 2+}= 2La{sup 3+}+ □ due to the different ion valence, which compels Eu{sup 2+} to migrate from Ca(4) site to other sites. Additionally, the formation of the cation vacancies can further reduce the thermal stability of phosphors. - Highlights: • Realizing photoluminescence control of Eu{sup 2+} by introducing relatively larger La{sup 3+} ion to replace the Ca{sup 2+} in β-Ca{sub 3}(PO{sub 4}){sub 2}:Eu{sup 2+} phosphor. • The mechanism of spectral control is proposed to be due to emptying of Ca{sup 2+} and migration of Eu{sup 2+}. • The thermal stability reduction is related to the formation of vacancies.

  16. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    Science.gov (United States)

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Tunable luminescence and energy transfer properties in Na{sub 3}Bi(PO4){sub 2}:Eu{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Sm{sup 3+} phosphors with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zizhong; Fu, Guangsheng; Yang, Yong; Yang, Zhiping, E-mail: yangzp2005@sohu.com; Li, Panlai, E-mail: li_panlai@126.com

    2017-04-15

    Na{sub 3}Bi(PO{sub 4}){sub 2}:Eu{sup 3+}/Tb{sup 3+}/Dy{sup 3+}/Sm{sup 3+} phosphors were synthesized via a high-temperature solid-state reaction method. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflection, photoluminescence (PL) and fluorescent decay curves were utilized to characterize the obtained phosphors. Under n-UV excitation, Na{sub 3}Bi(PO{sub 4}){sub 2}:Eu{sup 3+}/Tb{sup 3+}/Dy{sup 3+}/Sm{sup 3+} samples show the characteristic f-f emissions and present red, green, yellow and orange emission, respectively. When Tb{sup 3+}, Dy{sup 3+} and Sm{sup 3+} were co-doped into the Na{sub 3}Bi(PO{sub 4}){sub 2}:Eu{sup 3+} phosphors, tunable emission colors can be obtained and can be efficiently adjusted by varying the doping ions and the doping concentration. The energy transfer mechanisms were investigated in detail and demonstrated that there is an efficient energy transfer from Tb{sup 3+}, Dy{sup 3+} and Sm{sup 3+} to Eu{sup 3+} via a dipole-dipole interaction mechanism. Additional, as the temperature increases from RT to 150 °C, the PL intensity of Tb{sup 3+}-Eu{sup 3+}, Dy{sup 3+}-Eu{sup 3+} and Sm{sup 3+}-Eu{sup 3+} co-doped phosphors decreased to 86%, 85% and 88%, respectively, which prove good thermal stability. All the CIE coordinates of as-prepared phosphors are displayed and show abundant colors, making these materials have potential applications for n-UV-excited white-LEDs.

  18. Synthesis and photoluminescence properties of LaAlO3:Mn4+, Na+ deep red-emitting phosphor

    Science.gov (United States)

    Cao, Renping; Ceng, Dong; Liu, Pan; Yu, Xiaoguang; Guo, Siling; Zheng, Guotai

    2016-04-01

    LaAlO3:Mn4+ and LaAlO3:Mn4+, Na+ deep red-emitting phosphors are synthesized by a solid-state reaction method in air. Their crystal structures, lifetimes, and luminescence properties are investigated, respectively. PLE spectrum monitored at 730 nm contains three PLE bands peaking at ~276, 325, and 500 nm within the range 200-550 nm, and PL spectrum with excitation 325 nm exhibits two PL band peaks located at ~703 and 730 nm owing to anti-stokes vibronic sidebands associated with the excited state 2E of Mn4+ ion and the 2E → 4A2 transition of Mn4+ ion, respectively. The optimal Mn4+ doping concentration is ~0.8 mol%. Lifetime of LaAl0.992O3:0.8 %Mn4+ phosphor is ~0.92 ms. Na+ ion as charge compensator can improve obviously the luminescence properties of LaAlO3:Mn4+ phosphor due to the charge compensation. The luminous mechanism of Mn4+ ion is explained by using Tanabe-Sugano diagram of Mn4+ ion in octahedral crystal field. The contents of this paper will be helpful to develop novel Mn4+-doped materials and improve their luminescence properties.

  19. Luminescence properties of cerium-doped di-strontium magnesium di-silicate phosphor by the solid-state reaction method

    Science.gov (United States)

    Prasad Sahu, Ishwar

    2016-05-01

    A series of Sr2MgSi2O7:xCe3+ (x = 1.0%, 2.0%, 3.0%, 4.0% and 5.0%) phosphors were synthesized by the solid-state reaction method. The phosphor with optimum thermoluminescence, photoluminescence and mechanoluminescence (ML) intensity was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared techniques. The trapping parameters (i.e. activation energy, frequency factor and order of the kinetics) of each synthesized phosphor have been calculated using the peak shape method and the results have been discussed. Under ultraviolet excitation (325 nm), Sr2MgSi2O7:xCe3+ phosphors were composed of a broad band peaking at 385 nm, belonging to the broad emission band which emits violet-blue color. Commission International de I'Eclairage coordinates have been calculated for each sample and their overall emission is near violet-blue light. In order to investigate the suitability of the samples for industrial uses, color purity and color rendering index were calculated. An ML intensity of optimum [Sr2MgSi2O7:Ce3+ (3.0%)] phosphor increases linearly with increasing impact velocity of the moving piston which suggests that these phosphors can be used as fracto-ML-based devices. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston.

  20. Luminescence properties of Na2Sr2Al2PO4Cl9:Sm3+ phosphor

    Science.gov (United States)

    Tamboli, Sumedha; Shahare, D. I.; Dhoble, S. J.

    2018-04-01

    A series of Sm3+ ions doped Na2Sr2Al2PO4Cl9 phosphors were synthesized via solid state synthesis method. Photoluminescence (PL) emission spectra were obtained by keeping excitation wavelength at 406 nm. Emission spectra show three emission peaks at 563 nm, 595 nm and 644 nm. The CIE chromaticity diagram shows emission colour of the phosphor in the orange-red region of the visible spectrum, indicating that the phosphor may be useful in preparing orange light-emitting diodes. Na2Sr2Al2PO4Cl9:Sm3+ phosphors were irradiated by γ-rays from a 60Co source and β-rays from a 90Sr source. Their thermoluminescence (TL) glow curves were obtained by Nucleonix 1009I TL reader. TL Trapping parameters such as activation energy of trapped electrons and order of kinetics were obtained by using Chen's peak shape method, Glow curve fitting method and initial rise method.

  1. Phosphors

    International Nuclear Information System (INIS)

    1975-01-01

    This invention relates to phosphors that can be used in fluorescent lamps and display devices. The phosphor is comprised of a halophosphate of calcium and/or strontium of apatite crystal structure activated with trivalent cerium and trivalent terbium. The phosphor can further include manganese. Preferably, the phosphor includes up to 10% by weight of one or more of the alkali metals lithium, sodium and potassium in the form of a compound or compounds thereof. The emissions appear as a number of fairly narrow discrete bands. The temperature of preparation is 1000degC (as opposed to the usual 1450degC), therefore reducing costs (less energy is needed, more crucibles are readily obtainable and there is no need for special conditions to enable crucibles to overcome thermal shock)

  2. Effects of low-level Ag doping on Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Deis, T.A.; Eror, N.G.; Krishnaraj, P.; Prorok, B.C.; Lelovic, M.; Balachandran, U.

    1995-07-01

    Bi 2 Sr 2 CaCu 2 O 8 has been doped with silver, up to 10,000 ppm, in three ways: excess additions, substitution of Ag for Bi, and substitution of Ag for Sr. Effects of doping on the c-axis lattice parameter and critical temperature (T c ) were measured. Effects from doing were only observed in slow-cooled [10 degree/hr] oxygen equilibrated samples. Doping by excess additions caused a small decrease in T c and an increase in the c-axis length of the lattice. Doping by substitution, compared to excess Ag additions, caused a larger decrease in T c and higher c-axis values for doping levels up to 1,000 ppm. Doping by substitution at higher levels (1,000--10,000 ppm) caused T c to increase and the c-axis to decrease. Samples with similar substitutional doping levels exhibited comparable T c values and samples with Ag substituted for Sr consistently exhibited higher c-axis values than samples that had equivalent amounts of Ag substituted for Bi

  3. Thermoluminescence of cerium and terbium -doped calcium pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Roman L, J.; Cruz Z, E. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Lozano R, I. B.; Diaz G, J. A. I., E-mail: jesus.roman@nucleares.unam.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The aim of this work is to report the thermoluminescence (Tl) response of Calcium Pyrophosphate phosphor doped with Cerium and Terbium impurities (Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+}). The phosphors were synthesized using the co-precipitation method and annealed at 900 degrees C by two hours for obtain the β phase. The intentional doping with Ce and Tb ions was 1 at.% and 0.1 at.%, whereas in the EDS results the concentration of impurities was 0.39 at.% and 0.05 at.%, respectively. The superficial morphology of phosphor is mainly composed by thin wafers of different size. All samples were exposed to gamma rays from {sup 60}Co in the Gammacell-200 irradiator. The Tl response of the phosphor was measured from Rt up to 350 degrees C and under nitrogen atmosphere in a Harshaw TLD 3500 reader. The glow curves of the Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+} powders showed a broad intense Tl peak centered at 165 degrees C and a shoulder at approximate 260 degrees C was observed. A linear Tl response in the range of absorbed dose of 0.2 to 10 Gy was obtained. Tl glow curves were analyzed using the initial rise (IR)and computerized glow curve deconvolution methods to evaluate the kinetics parameters such as activation energy (E), frequency factor (s) and kinetic order (b). (Author)

  4. Thermoluminescence kinetic parameters of different amount La-doped ZnB2O4

    International Nuclear Information System (INIS)

    Kucuk, Nil; Gozel, Aziz Halit; Yüksel, Mehmet; Dogan, Tamer; Topaksu, Mustafa

    2015-01-01

    The kinetic parameters of 1%, 2%, 3% and 4% La-doped ZnB 2 O 4 phosphors (i.e. ZnB 2 O 4 :0.01La, ZnB 2 O 4 :0.02La, ZnB 2 O 4 :0.03La and ZnB 2 O 4 :0.04La) synthesized by nitric acid method have been calculated. Thermoluminescence (TL) glow curves of ZnB 2 O 4 :La phosphors after beta-irradiation showed a very well defined main peak having the maximum temperature at around 200 °C and a shoulder peak at around 315 °C with a constant heating rate of 5 °C/s. The kinetic parameters of ZnB 2 O 4 :La phosphors TL glow peaks (i.e. order of kinetics (b), activation energies (E a ) and frequency factors (s)) have been determined and evaluated by Computerized Glow Curve Deconvolution (CGCD), and Peak Shape (PS) methods using the glow curve data. From the results, it can conclude that the values of E a obtained with these methods for ZnB 2 O 4 :La phosphors are consistent with each other, but the s values differ considerably. - Highlights: • Calculation of TL kinetic parameters for La-doped ZnB 2 O 4 . • La-doped ZnB 2 O 4 was synthesized by nitric acid method. • Well defined main peak at about 200 °C

  5. Relations between structure and material properties in earth alkaline silicate basing phosphors; Struktureigenschaftsbeziehungen in Erdalkalisilikat basierenden Leuchtstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Wolfgang

    2008-03-19

    This work is basing on the relation between structure and luminescence of Eu{sup 2+} doped Earth-Alkaline-Silicates. After an overview of Earth-Alkaline-Silicates silicates with an additional cation (Li{sup +}, Al{sup 3+}) and an additional anion (Cl{sup -}, N{sup 3-}) are examined in chapter 4 and 5. Basing on this data an relation between structural influence - like ion-radii, anion and coordination polyeder - and phosphor luminescence is set up. The ability of using as an industrial phosphor is made in the final chapter. (orig.)

  6. Sol–gel synthesis of long-lasting phosphors CdSiO3: Mn2+, RE3+ (RE = Tb, Eu, Nd) and luminescence mechanism research

    International Nuclear Information System (INIS)

    Qu, Xiaofei; Cao, Lixin; Liu, Wei; Su, Ge; Wang, Pingping; Schultz, Isabel

    2012-01-01

    Highlights: ► New long-lasting CdSiO 3 : Mn 2+ , RE 3+ (RE = Tb, Eu, Nd) phosphors were synthesized by a sol–gel method. ► The afterglow performance of the CdSiO 3 : Mn 2+ , Eu 3+ phosphor was the best. ► The role of RE 3+ co-doped into the CdSiO 3 : Mn 2+ matrix was discussed in this paper. -- Abstract: Mn 2+ and RE 3+ (RE = Tb, Eu, Nd) co-doped CdSiO 3 orange phosphors were prepared at 1050 °C by a sol–gel method. The phase and crystallinity of the synthesized materials were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The luminescence characteristics were analyzed using photoluminescence (PL) spectra, afterglow decay curves, long-lasting phosphorescence spectra, and thermoluminescence (TL) spectra. Due to the difference in co-doped rare earth ionic radii, it varied greatly in trap density and trap depth caused by the different defects deriving from RE 3+ ions co-doping into the CdSiO 3 : Mn 2+ host. The afterglow intensity and time for these samples increased as follows: CdSiO 3 : Mn 2+ 0.2%, Nd 3+ 0.8% 3 : Mn 2+ 0.4%, Tb 3+ 0.8% 3 : Mn 2+ 0.4%, Eu 3+ 0.3%. CdSiO 3 : Mn 2+ 0.4%, Eu 3+ 0.3% had the best afterglow properties, which could be due to the proper traps formed by Eu 3+ ions co-doping into the host. The role of RE 3+ co-doped into the CdSiO 3 : Mn 2+ matrix and the possible long-lasting phosphorescence process was also discussed in this paper.

  7. Synthesis and luminescence enhancement of CaTiO{sub 3}:Bi{sup 3+} yellow phosphor by codoping Al{sup 3+}/B{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Renping, E-mail: jxcrp@163.com; Fu, Ting; Xu, Haidong; Luo, Wenjie; Peng, Dedong; Chen, Zhiquan; Fu, Jingwei

    2016-07-25

    CaTiO{sub 3}:Bi{sup 3+} and CaTiO{sub 3}:Bi{sup 3+}, Al{sup 3+}/B{sup 3+} phosphors are synthesized by solid-state reaction method in air. With excitation 272 and 320 nm, broad PL band peaking at 555 nm with full width at half maximum ∼200 nm is observed in the range of 400–800 nm due to the {sup 3}P{sub 1,0} → {sup 1}S{sub 0} transitions of Bi{sup 3+} ion. PLE spectrum monitored at 555 nm contains two PLE band peaking at ∼272 and 320 nm within the range 230–420 nm owing to metal-to-metal charge-transfer and {sup 1}S{sub 0} → {sup 3}P{sub 1} transition of Bi{sup 3+} ion, respectively. The optimal Bi{sup 3+} doping concentration in CaTiO{sub 3}:Bi{sup 3+} phosphor is about 0.5 mol%. Luminescence properties of CaTiO{sub 3}:Bi{sup 3+} phosphor may be improved obviously by co-doping Al{sup 3+}/B{sup 3+} ions, and its emission intensity can be enhanced 13–15 times after Al{sup 3+} ion is co-doped. Luminous mechanism of CaTiO{sub 3}:Bi{sup 3+} phosphor is analyzed by energy level diagram of Bi{sup 3+} ion. Decay curve and time-resolved spectra confirm that only a single type of Bi{sup 3+} luminescence center exists in CaTiO{sub 3}:Bi{sup 3+} phosphor. - Graphical abstract: PL spectra of CaTiO{sub 3}:Bi{sup 3+} and CaTiO{sub 3}:Bi{sup 3+}, Al{sup 3+}/B{sup 3+} phosphors and the corresponding pictures under 365 nm UV lamp. - Highlights: • CaTiO{sub 3}:Bi{sup 3+} and CaTiO{sub 3}:Bi{sup 3+}, Al{sup 3+}/B{sup 3+} phosphors are synthesized by solid-state reaction in air. • Broadband emission with FWHM ∼200 nm is observed within the range 400–800 nm. • Luminescence properties of CaTiO{sub 3}:Bi{sup 3+} phosphor can be improved by codoping Al{sup 3+}/B{sup 3+} ions. • PL intensity of CaTiO{sub 3}:Bi{sup 3+} phosphor can be enhanced 13–15 times after Al{sup 3+} ion is codoped.

  8. New Ce{sup 3+} doped Ca{sub 2}YMgScSi{sub 3}O{sub 12} garnet ceramic phosphor for white LED converters

    Energy Technology Data Exchange (ETDEWEB)

    Khaidukov, N. [Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Zorenko, Yu.; Zorenko, T.; Iskaliyeva, A.; Paprocki, K. [Institute of Physics, Kazimierz Wielki University Bydgoszcz (Poland); Zhydachevskii, Y.; Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Deun, R. van [L3 - Luminescent Lanthanide Lab, Department of Inorganic and Physical Chemistry, Ghent University (Belgium); Batentschuk, M. [Department of Materials Science and Engineering VI, Institute of Materials for Energy and Electronic Technology (i-IMEET), University of Erlangen-Nuremberg, Erlangen (Germany)

    2017-05-15

    The results on crystallization and investigation of the luminescent properties of a new prospective ceramic phosphor based on the Ce{sup 3+} doped Ca{sub 2}YMgScSi{sub 3}O{sub 12} silicate garnet are presented for the first time in this work. The luminescent properties of Ca{sub 2}YMgScSi{sub 3}O{sub 12}:Ce were compared with the properties of the reference Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Ce ceramic sample. Without any doubt, the results of this research can be suitable for the development of a new generation of white converters based on the Ca{sup 2+}-Si{sup 4+} garnet compounds. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Sol–gel assisted synthesis and photoluminescence property of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} red phosphor for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao, E-mail: zhangwentao2005@163.com [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu 610059 (China); Wang, Yulong; Gao, Yang [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Long, Jianping [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu 610059 (China); Li, Junfeng [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China)

    2016-05-15

    Eu{sup 2+}, Dy{sup 3+} co-doped Sr{sub 2}Si{sub 5}N{sub 8} red phosphors were prepared using a sol–gel-nitridation method at a lower temperature comparing with traditional solid state reaction. Effects of synthesis process, Eu{sup 2+} and Dy{sup 3+} doping concentration on the crystal structure and luminescence property of as-prepared phosphors were investigated. X-ray diffraction patterns indicated that all Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} phosphors have the standard phase of Sr{sub 2}Si{sub 5}N{sub 8} structure. With a broad excitation from UV to blue light, a strong emission of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} with 4f{sup 6}5d{sup 1}→4f{sup 7} transition of Eu{sup 2+} ions was obtained at red region in photoluminescence spectra. Emission peaks in spectra were red-shifted from 611 to 632 nm for all Sr{sub 2}Si{sub 5}N{sub 8}:xEu{sup 2+} as Eu{sup 2+} ion concentrations increased, which due to Eu{sup 2+} ions occupying from the tenfold coordinated site (Sr1) to the eightfold coordinated site (Sr2). These Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} phosphors with Dy{sup 3+} co-doping showed excellent luminescence properties, included emission intensity and luminescence quenching. It is potential that Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} phosphors can be applied in white LEDs combining with blue InGaN LEDs. - Highlights: • Eu{sup 2+}/Dy{sup 3+} co-doped Sr{sub 2}Si{sub 5}N{sub 8} red phosphor were prepared by sol–gel-nitridation. • Sol–gel-nitridation method decreased the crystallization temperature of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} effectively. • Luminescence properties of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} were improved obviously by Dy{sup 3+} co-doping. • Luminescence properties of Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}, Dy{sup 3+} phosphors are superior to commercial Y{sub 2}O{sub 2}S:Eu{sup 3+}.

  10. White light emission and effect of annealing on the Ho3+–Yb3+ codoped BaCa2Al8O15 phosphor

    International Nuclear Information System (INIS)

    Kumari, Astha; Rai, Vineet Kumar

    2015-01-01

    Graphical abstract: The upconversion emission spectra of the Ho 3+ /Yb 3+ doped/codoped BaCa 2 Al 8 O 15 phosphors with different doping concentrations of Ho 3+ /Yb 3+ ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa 2 Al 8 O 15 phosphors codoped with Ho 3+ –Yb 3+ have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pump power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa 2 Al 8 O 15 (BCAO) phosphors codoped with suitable Ho 3+ –Yb 3+ dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.

  11. Low-energy excitations in impurity substituted CuGeO3

    International Nuclear Information System (INIS)

    Jones, B. R.; Sushkov, A. B.; Musfeldt, J. L.; Wang, Y. J.; Revcolevschi, A.; Dhalenne, G.

    2001-01-01

    We report far-infrared reflectance measurements of Zn- and Si-doped CuGeO 3 single crystals as a function of applied magnetic field at low temperature. Overall, the low-energy far-infrared spectra are extraordinarily sensitive to the various phase boundaries in the H-T diagram, with the features being especially rich in the low-temperature dimerized state. Zn impurity substitution rapidly collapses the 44 cm -1 zone-boundary spin Peierls gap, although broadened magnetic excitations are observed at the lightest doping level (0.2%) and a remnant is still observable at 0.7% substitution. In a 0.7% Si-doped sample, there is no evidence of the spin gap. Impurity substitution effects on the intensity of the 98 cm -1 zone-folding mode are striking as well. The lightly doped Zn crystals display an enhanced response, and even at intermediate doping levels, the mode intensity is larger than that in the pristine material. The Si-doped sample also displays an increased intensity of the 98 cm -1 mode in the spin Peierls phase relative to the pure material. The observed trends are discussed in terms of the effect of disorder on the spin gap and 98 cm -1 mode, local oscillator strength sum rules, and broken selection rules

  12. Thermoluminescence properties of Eu and Li co-doped Gd2O3, induced by UV light

    International Nuclear Information System (INIS)

    Hristov, H; Arhangelova, N; Velev, V; Uzunov, N M; Baneva, Y; Nedeva, D; Penev, I; Moschini, G; Rossi, P

    2012-01-01

    For some specific biomedical applications, connected with in-situ measurements of the absorbed dose of ultraviolet (UV) light, we have developed materials, sensitive to the light emission with a wavelength up to 320nm. Thermoluminescence (TL) yield of Gd 2 O 3 , doped with Eu and Li has been analysed with respect to the quantity of Li co-dopant. Lithium has been added as Li 2 CO 3 to a mixture of Gd 2 O 3 with 10 wt% Eu 2 O 3 . Pellets with the mixture have been sintered at a temperature of 1000°C. The kinetic parameters of the phosphors thus obtained have been studied from the TL glow curves after irradiation with UV light. It has been demonstrated that the addition of 16 wt% of Li 2 CO 3 to the Eu-doped Gd 2 O 3 yields a maximum intensity of the peaks at 87°C and at 145°C. Studies on the kinetic parameters as well as the TL properties of Eu-doped Gd 2 O 3 with the addition of 16% of Li 2 CO 3 have been conducted. It has been measured that two of the TL peaks of this phosphor have relatively long fading. Analysis of the TL properties of the phosphors obtained from Gd 2 O 3 , doped with Eu and Li, shows that they possess good sensitivity to the UV emission and could be used as appropriate phosphors for detection and quantitative measurements of UV light.

  13. Enhancement of photoluminescence properties and modification of crystal structures of Si{sub 3}N{sub 4} doping Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kaixin, E-mail: kxsong@hdu.edu.cn [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Fangfang [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, Daqin [College of Materials Sciences and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Song; Zheng, Peng [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Qingming [Instrument Analysis and Testing Center, Fuzhou University, Fuzhou 350002 (China); Jiang, Jun [Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Junming; Qin, Huibin [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-15

    Highlights: • Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors were prepared. • The luminescence intensity of Li{sub 2}Sr{sub 0.995}SiO{sub 4}:Eu{sup 2+} was enhanced by doping Si{sub 3}N{sub 4}. • The fluorescence decay times and thermal stability were enhanced by doping Si{sub 3}N{sub 4}. - Abstract: Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} (Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+}) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+}. The partial nitridation of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors were enhanced by addition of Si{sub 3}N{sub 4}. The temperature quenching characteristics confirmed that the oxynitride based Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} showed slightly higher stability. It is implied that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors had a possible potential application on white LEDs to match blue light chips.

  14. KCa4(BO33:Ln3+ (Ln = Dy, Eu, Tb phosphors for near UV excited white–light–emitting diodes

    Directory of Open Access Journals (Sweden)

    Allu Amarnath Reddy

    2013-02-01

    Full Text Available A series of doped KCa4(BO33:Ln3+ (Ln: Dy, Eu and Tb compositions were synthesized by solid–state reaction method and their photoluminescent properties were systematically investigated to ascertain their suitability for application in white light emitting diodes. The X–ray diffraction (XRD and nuclear magnetic resonance (MAS–NMR data indicates that Ln3+–ions are successfully occupied the non–centrosymmetric Ca2+ sites, in the orthorhombic crystalline phase of KCa4(BO33 having space group Ama2, without affecting the boron chemical environment. The present phosphor systems could be efficiently excitable at the broad UV wavelength region, from 250 to 350 nm, compatible to the most commonly available UV light–emitting diode (LED chips. Photoluminescence studies revealed optimal near white–light emission for KCa4(BO33 with 5 wt.% Dy3+ doping, while warm white–light (CIE; X = 0.353, Y = 0.369 is obtained at 1wt.% Dy3+ ion concentration. The principle of energy transfer between Eu3+ and Tb3+ also demonstrates the potential white–light from KCa4(BO33:Eu3+,Tb3+ phosphor. Whereas, single Tb3+ and Eu3+–doped systems showed bright green (Tb3+ and red (Eu3+ emissions, respectively. Having structural flexibility along with remarkable chemical/thermal stability and suitable quantum efficiency these phosphors can be promising candidates as white–light–emitter for near UV LEDs.

  15. Fundamentals of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawing from the second edition of the best-selling Handbook of Phosphors, Fundamentals of Phosphors covers the principles and mechanisms of luminescence in detail and surveys the primary phosphor materials as well as their optical properties. The book addresses cutting-edge developments in phosphor science and technology including oxynitride phosphors and the impact of lanthanide level location on phosphor performance.Beginning with an explanation of the physics underlying luminescence mechanisms in solids, the book goes on to interpret various luminescence phenomena in inorganic and organic materials. This includes the interpretation of the luminescence of recently developed low-dimensional systems, such as quantum wells and dots. The book also discusses the excitation mechanisms by cathode-ray and ionizing radiation and by electric fields to produce electroluminescence. The book classifies phosphor materials according to the type of luminescence centers employed or the class of host materials used and inte...

  16. Synthesis and photoluminescence of novel red-emitting ZnWO₄: Pr³⁺, Li⁺ phosphors.

    Science.gov (United States)

    Wang, Ke; Feng, Wenlin; Feng, Xu; Li, Yao; Mi, Peng; Shi, Shasha

    2016-02-05

    Zn0.997WO4: Pr(3+)(0.003) and different concentrations (0.1 mol% to 0.9 mol%) of Pr, Li co-doped ZnWO4 red phosphors were prepared by means of solid-state reaction process. The crystalline, surface morphology and luminescent properties of Zn0.997WO4: Pr(3+)(0.003) and Zn(1-x-y)WO4: xPr(3+), yLi(+) phosphors were investigated by the X-ray diffraction patterns (XRD), scanning electron microscope (SEM) and fluorescent measurements. From powder XRD analysis, the formation of monoclinic structure with C(2/h) point-group symmetry and P(2/c) space group of the as-synthesized samples is confirmed. The SEM image showed that surface morphology of the phosphor powder is irregular cylindricality. The luminescent spectra are dominated by the red emission peaks at 607, 621 and 643 nm, respectively, radiated from the (1)D2→(3)H4, (3)P0→(3)H6 and (3)P0→(3)F2 transitions of Pr(3+) ions. The concentrations of the highest luminescent intensity is determined at 0.3 mol% Pr(3+) and 0.3 mol% Li co-doped ZnWO4 powder crystal, and the peak intensity is improved more than 3 times in comparison with that of 0.3 mol% Pr(3+) single-doped ZnWO4. The enhanced luminescence comes from the improved crystalline and from the charge compensation of Li(+) ions. The decay curve and CIE chromaticity coordinates of as-prepared samples are also studied in detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    International Nuclear Information System (INIS)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-01-01

    Ce 3+ -doped and Ce 3+ /Li + -codoped SrAlSi 4 N 7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr 3 N 2 , AlN, α-Si 3 N 4 , CeN and Li 3 N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi 4 N 7 :Ce 3+ (Ce 3+ /Li + ) were investigated in this work. The band structure calculated by the DMol 3 code shows that SrAlSi 4 N 7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce 3+ -doped SrAlSi 4 N 7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi 4 N 7 was identified as a major phase of the fired powders, and Sr 5 Al 5 Si 21 N 35 O 2 and AlN as minor phases. Both Ce 3+ and Ce 3+ /Li + doped SrAlSi 4 N 7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce 3+ /Li + -doped SrAlSi 4 N 7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr 0.97 Al 1.03 Si 3.997 N/94/maccounttest14=t0005 1 8193 7 :Ce 3+ 0.03 with a commercial blue InGaN chip. It indicates that SrAlSi 4 N 7 :Ce 3+ is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce 3+ phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: • We reported a new yellow nitride phosphor suitable for solid state lighting. • We solved the crystal structure and evidenced a disordered Si/Al distribution. • We fabricated a high color rendering white LEDs by using a single SrAlSi4N7:Ce

  18. Testing of gadolinium oxy-sulphide phosphors for use in CCD-based X-ray detectors for macromolecular crystallography

    CERN Document Server

    Pokric, M

    2002-01-01

    The resolution and detective quantum efficiency of CCD-based detectors used for X-ray diffraction is primarily affected by the layer of phosphor that converts incident X-ray photons into visible photons. The optimum thickness of this phosphor layer is strongly dependent on the fraction of absorbed incident X-ray photons and required spatial resolution. A range of terbium doped gadolinium oxy-sulphide (Gd sub 2 O sub 2 S : Tb) phosphor samples, provided by Applied Scintillation Technologies, have been evaluated for spatial resolution, light output and uniformity. The phosphor samples varied in coating weight (10-25 mg/cm sup 2), grain size (2.5, 4, 10 mu m), and applied coating (no coating, reflectors and absorbers). In addition, a non-uniform layer was introduced to some samples in order to provide an inherent diffusion layer. The experimental results showed that the introduction of a reflector increases the point spread function (PSF) and increases light yield up to 30%, while an absorber reduces the PSF tai...

  19. Electronic structure and luminescence properties of self-activated and Eu{sup 2+}/Ce{sup 3+} doped Ca{sub 3}Li{sub 4-y}Si{sub 2}N{sub 6-y}O{sub y} red-emitting phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quansheng; Ding, Jianyan; Li, Yanyan; Wang, Xicheng [Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education (China); Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Yuhua, E-mail: wyh@lzu.edu.cn [Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education (China); Department of Material Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2017-06-15

    The undoped and Eu{sup 2+}/Ce{sup 3+} doped Ca{sub 3}Li{sub 4-y}Si{sub 2}N{sub 6-y}O{sub y} (0≤y≤1.5) (CLSN) were successfully prepared by solid-state reaction and their luminescence properties were studied. The undoped CLSN shows red defect-related luminescence with maximum emission intensity at 710 nm, Eu{sup 2+} and Ce{sup 3+} doped CLSN also show red emission centered at 702 nm and 673 nm, respectively. The electronic structure and the thermal stability of CLSN were investigated in this work. The results indicate that CLSN:Eu{sup 2+}/Ce{sup 3+} could be conducive to the development of phosphor-converted light-emitting diodes.

  20. Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Vassiliev, Anton; Jensen, Jens Oluf

    2015-01-01

    Phosphoric acid and phosphoric acid doped polymer membranes are widely used as electrolytes in hydrogen based fuel cells operating at elevated temperatures. Such electrolytes have been explored for direct oxidation of methanol to further increase the versatility of the systems, however......, with demonstrated lifetimes of only a few days to weeks. In this work the methyl phosphate formation from the acid and methanol is identified and proposed to be a major mechanism for the cell degradation. Proton conductivity and fuel cell durability tests validate the mechanism at high methanol contents....

  1. Concentration-dependent luminescence and energy transfer of flower-like Y2(MoO4)3:Dy3+ phosphor

    International Nuclear Information System (INIS)

    Tian Yue; Chen Baojiu; Tian Bining; Hua Ruinian; Sun Jiashi; Cheng Lihong; Zhong Haiyang; Li Xiangping; Zhang Jinsu; Zheng Yanfeng; Yu Tingting; Huang Libo; Meng Qingyu

    2011-01-01

    Highlights: → Flower-shaped Y 2 (MoO 4 ) 3 phosphors were prepared by a co-precipitation method. → The structure and morphology of the prepared phosphors were characterized. → Energy transfer between Dy 3+ was studied by Huang's theory, IH and Uitert's models. - Abstract: Flower-like Y 2 (MoO 4 ) 3 :Dy 3+ phosphors have been synthesized via a co-precipitation approach with the aid of β-cyclodextrin. The crystal structure and morphology of the phosphors were characterized by XRD (X-ray diffraction) and FE-SEM (field emission scanning electron microscopy), respectively. The excitation and emission properties of the phosphors were examined by fluorescence spectroscopy. The dependence of color coordinates on the Dy 3+ doping concentration was analyzed. The energy transfer mechanism between Dy 3+ ions was studied based on the Huang's theory, I-H and Van Uitert's models. It was concluded simultaneously from these three routes that the electric dipole-dipole interaction between Dy 3+ ions is the main physical mechanism for the energy transfers between Dy 3+ .

  2. Practical applications of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawn from the second edition of the best-selling Phosphor Handbook, Practical Applications of Phosphors outlines methods for the production of various phosphors and discusses a broad spectrum of applications. Beginning with methods for synthesis and related technologies, the book sets the stage by classifying and then explaining practical phosphors according to usage. It describes the operating principle and structure of phosphor devices and the phosphor characteristics required for a given device, then covers the manufacturing processes and characteristics of phosphors. The book discusses research and development currently under way on phosphors with potential for practical usage and touches briefly on phosphors that have played a historical role, but are no longer of practical use. It provides a comprehensive treatment of applications including lamps and cathode-ray tubes, x-ray and ionizing radiation, and for vacuum fluorescent and field emission displays and covers inorganic and organic electroluminescen...

  3. Synthesis, characterization and luminescent properties of mixed phase bismuth molybdate-doped with Eu3+ ions

    Science.gov (United States)

    Wang, Liyong; Guo, Xiaoqing; Cai, Xiaomeng; Song, Qingwei; Han, Yuanyuan; Jia, Guang

    2018-02-01

    Red phosphors of Eu3+-doped bismuth molybdate (BMO) are prepared by a low temperature hydrothermal method assisting with Phenol Formaldehyde resin (PFr), and characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared-spectroscopy (FT-IR), thermogravimetric analyzer (TGA), differential thermal analyzer (DTA), and photoluminescence (PL) spectroscopy. PL properties influence factors including molar ratio of Bi3+ and Mo3+ ions, PFr dosage and dopants concentration are discussed in detail. The results show that BMO can act as a useful host for Eu3+ ions doping, and energy transferring from Bi3+ to Eu3+ achieved efficiently, the BMO phosphors displayed intense red color emission under ultraviolet light excitation.

  4. Potential spin-polarized transport in gold-doped armchair graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pankaj, E-mail: pankajs@iiitm.ac.in [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015, MP (India); Dhar, Subhra [Nanomaterials Research Group, ABV-Indian Institute of Information Technology and Management (IIITM), Gwalior 474015, MP (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM), Jabalpur 482005 (India)

    2015-04-17

    Based on NEGF-DFT computations, systematic investigation of electronic, magnetic and transport properties of AGNRs are done by employing Au through different doping mechanisms. Remarkable Au–AGNR bonding is observed in case of substitution due to the presence of impurity at the edges. Both substitution and adsorption of Au on AGNR surface induce significant changes in the electronic spin transport of the sp{sup 2} hybridized carbon sheets. AGNRs are semiconducting with lower total energy for the FM configuration, and the I–V characteristics reveal semiconductor to metal transition of Au-doped AGNR. The spin injection is voltage controlled in all the investigated Au-doped AGNRs. - Highlights: • Edge Au-substitution promotes semiconductor–metal transition in AGNR. • NDR due to bias-dependent transmission in Au-substituted AGNRs. • Voltage controlled spin injection in all investigated Au-doped AGNRs. • Strong spin polarization occurs at 0.5 V in Au-hole adsorbed AGNRs.

  5. Sol-Gel Synthesis and Luminescence of Green Light Emitting Phosphors Zn2SiO4/Mn2+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃and crystallize completely around 1 000℃. The luminescent properties of Zn2SiO4/Mn2+ phosphors were characterized by excitation and emission spectra.

  6. Synthesis and characterization of novel Na15 (SO4 )5 F4 Cl:Ce3+ halosulfate phosphors.

    Science.gov (United States)

    Bhake, A M; Nair, Govind B; Zade, G D; Dhoble, S J

    2016-12-01

    A series of Na 15 (SO 4 ) 5 F 4 Cl phosphors doped with Ce 3+ ions was prepared using the wet chemical method. X-Ray diffraction studies were used to determine their phase formation and purity. Fourier transform infrared spectroscopy effectively identified the chemical bonds present in the molecule. The photoluminescence properties of the as-prepared phosphors were investigated and the Ce 3+ ions in these hosts were found to give broadband emission in the UV range. For the thermoluminescence study, phosphors were irradiated with a 5 Gy dose of γ-rays from a 60 Co source. Chen's half-width method was employed to calculate the trapping parameters from the thermoluminescence glow curve. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Effect of Annealing Time of YAG:Ce3+ Phosphor on White Light Chromaticity Values

    Science.gov (United States)

    Abd, Husnen R.; Hassan, Z.; Ahmed, Naser M.; Almessiere, Munirah Abdullah; Omar, A. F.; Alsultany, Forat H.; Sabah, Fayroz A.; Osman, Ummu Shuhada

    2018-02-01

    Yttrium and aluminium nitrate phosphors doped with cerium nitrate and mixed with urea (fuel) are prepared by using microwave-induced combustion synthesis according to the formula Y(3-0.06)Al5O12:0.06Ce3+ (YAG:Ce3+) to produce white light emitting diodes by conversion from blue indium gallium nitride-light emitting diode chips. The sintering time with fixed temperature (1050°C) for phosphor powder was optimized and found to be 5 h. The crystallinity, structure, chemical composition, luminescent properties with varying currents densities and chromaticity were characterized by x-ray diffraction, field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, photoluminescence emission, electroluminescence and standard CIE 1931 chromaticity diagram, respectively. The energy levels of Ce3+ in YAG were discussed based on its absorption and excitation spectra. The results show that the obtained YAG:Ce3+ phosphor sintered for 5 h has good crystallinity with pure phase, low agglomerate with spherical shaped particles and strong yellow emission, offering cool-white LED with tuneable correlated color temperature and a good color rendering index compared to those prepared by sintering for 2 h and as-prepared phosphor powders.

  8. Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3.

    Science.gov (United States)

    Chen, Zhen; Pan, Yuexiao; Xi, Luqing; Pang, Ran; Huang, Shaoming; Liu, Guokui

    2016-11-07

    In most Eu 3+ activated phosphors, only red luminescence from the 5 D 0 is obtainable, and efficiency is limited by concentration quenching. Herein we report a new phosphor of Ca 4 LaO(BO 3 ) 3 :Eu 3+ (CLBO:Eu) with advanced photoluminescence properties. The yellow luminescence emitted from the 5 D 1,2 states is not thermally quenched at room temperature. The relative intensities of the yellow and red emission bands depend strongly on the Eu 3+ doping concentration. More importantly, concentration quenching of Eu 3+ photoluminescence is absent in this phosphor, and the stoichiometric compound of Ca 4 EuO(BO 3 ) 3 emits stronger luminescence than the Eu 3+ doped compounds of CLBO:Eu; it is three times stronger than that of a commercial red phosphor of Y 2 O 3 :Eu 3+ . Another beneficial phenomenon is that ligand-to-metal charge transfer (CT) transitions occur in the long UV region with the lowest charge transfer band (CTB) stretched down to about 3.67 eV (∼330 nm). The CT transitions significantly enhance Eu 3+ excitation, and thus result in stronger photoluminescence and promote trapping of excitons for persistent afterglow emission. Along with structure characterization, optical spectra and luminescence dynamics measured under various conditions as a function of Eu 3+ doping, temperature, and excitation wavelength are analyzed for a fundamental understanding of electronic interactions and for potential applications.

  9. Red Emission of SrAl2O4:Mn4+ Phosphor for Warm White Light-Emitting Diodes

    Science.gov (United States)

    Chi, N. T. K.; Tuan, N. T.; Lien, N. T. K.; Nguyen, D. H.

    2018-05-01

    In this work, SrAl2O4:Mn4+ phosphor is prepared by co-precipitation. The phase structure, morphology, composition and luminescent performance of the phosphor are investigated in detail with x-ray diffraction, field emission scanning electron microscopy, steady-state photoluminescence (PL) spectra, and temperature-dependent PL measurements. The phosphor shows a strong red emission peak at ˜ 690 nm, which is due to the transition between electronic levels and the electric dipole transition 2Eg to 4A2g of Mn4+ ions located at the sites with D3d local symmetry. The sample doped with 0.04 mol.% Mn4+ exhibits intense red emission with high thermal stability and appropriate International Commission on Illumination (CIE) coordinates (x = 0.6959, y = 0.2737). It is also found that the phosphor absorption in an extended band from 250 nm to 500 nm has three peaks at 320 nm, 405 nm, and 470 nm, which match well with the emission band of ultraviolet (UV) lighting emission diode (LED) or blue LED chips. These results demonstrate that SrAl2O4:Mn4+ phosphor can play the role of activator in narrow red-emitting phosphor, which is potentially useful in UV (˜ 320 nm) or blue (˜ 460 nm) LED.

  10. Thermal stability of substitutional ag in CdTe

    NARCIS (Netherlands)

    Jahn, SG; Hofsass, H; Restle, M; Ronning, C; Quintel, H; BharuthRam, K; Wahl, U

    The thermal stability of substitutional Ag in CdTe was deduced from lattice location measurements at different temperatures. Substitutional Ag probe atoms were generated via transmutation doping from radioactive Cd isotopes. The lattice sites of Ag isotopes were determined by measuring the

  11. On the symmetry of phosphorous doped ZnSe

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The site symmetry of P doped ZnSe is analysed in detail here, as the recent experiments suggest two possible symmetries Td and C3V. The reduction to C3V is attributed to the presence of natural impurity,. Ga. Our calculations based on molecular model and Green's functions suggest that the symmetry C3V is.

  12. The effect of doping Mg2+ on structure and properties of Sr(1.992-x)MgxSiO4: 0.008Eu2+ blue phosphor synthesized by co-precipitation method

    Science.gov (United States)

    Yang, Lingxiang; Wang, Jin-shan; Zhu, Da-chuan; Pu, Yong; Zhao, Cong; Han, Tao

    2018-01-01

    In order to improve the luminescence property of silicate phosphors, a series of Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors have been synthesized using one-step calcination of a precursor prepared by chemical co-precipitation. And then the crystal structure and luminescence properties of the phosphors are investigated by means of X-Ray Diffraction and spectrophotometer. The results show that β-phase existed in the mixed phases of Sr2SiO4 (β+α‧) would transform to α‧-phase with Mg2+ ions doping into the silicate host until it disappeared. On the other hand, the introduction of Mg2+ ions can enhance the intensity of the excitation spectrum and promote the excitation sensitivity of Sr(1.992-x)MgxSiO4: 0.008Eu2+ phosphors in NUV region. Under NUV excitation at 350 nm, all samples exhibit a broadband emission in range of 400-550 nm due to the 4f65d1→4f7(8S7/2) transition of Eu2+ ions. According to Multi-peak fitting to emission spectra by Gauss method, the broad emission band consists of two single bands with peaks Em1 and Em2 locating at 460 and 490 nm, which corresponds to Eu2+ ions occupying the ten-fold oxygen-coordinated Sr1 site and the nine-fold oxygen-coordinated Sr2 site, respectively. The luminescence intensity of Sr(1.992-x)MgxSiO4:0.008Eu2+(x = 0, 0.25, 0.50, 0.75) blue phosphors has been enhanced remarkably after Mg2+ ions are added. Meanwhile, the chromaticity coordinates change from the blue-green region to the blue region as x moves from 0 to 0.75. Moreover, the decay curves are measured and can be well fitted with double exponential decay equation. It shows that the average lifetime is extended with the concentration of Mg2+ ions increasing. These results indicate that Sr(1.992-x)MgxSiO4: 0.008Eu2+(x = 0, 0.25, 0.50, 0.75) can be used as a potential blue phosphor in near UV-excited white LEDs.

  13. Rare earth phosphors and phosphor screens

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Maple, T.G.; Sklensky, A.F.

    1981-01-01

    Advances in the use of stabilized rare earth phosphors and of conversion screens using these materials are examined. In particular the new phosphors discussed in this invention consist of oxybromides of yttrium, lanthanum and gadolinium with a luminescent activator ion stabilized by an oxychloride or oxyfluoride surface layer and the conversion screens include trivalent cerium as the activator ion. (U.K.)

  14. Photoluminescence properties of Eu2+-activated Ca2Y2Si2O9 phosphor

    NARCIS (Netherlands)

    Zhang, Zhijun; Delsing, A.C.A.; Notten, P.H.L.; Zhao, Jingtai; Hintzen, H.T.J.M.

    2012-01-01

    Eu2+-activated Ca2Y2Si2O9 phosphors with different Eu2+ concentrations have been prepared by a solid-state reaction method at high temperature and their photoluminescence (PL) properties were investigated. Photoluminescence results show that Eu2+-doped Ca2Y2Si2O9 can be efficiently excited by

  15. Electrical property studies of neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Cleland, J.W.; Fleming, P.H.; Westbrook, R.D.; Wood, R.F.; Young, R.T.

    1978-01-01

    Results of studies of electrical properties of neutron-transmutation-doped (NTD) silicon are presented. Annealing requirements to remove lattice damage were obtained. The electrical role of clustered oxygen and defect-oxygen complex was investigated. An NTD epitaxial layer on a heavily doped n- or p- type substrate can be produced. There is no evident interaction between lithium introduced by diffusion and phosphorous 31 introduced by irradiation. There may be some type of pairing reaction between lithium 7 introduced by boron 10 fission and any remaining boron

  16. Spectroscopy and Device Performance of Rare Earth Doped III-Nitrides

    National Research Council Canada - National Science Library

    Hommerich, Uwe

    2002-01-01

    .... Prime candidates for redgreen- blue (RGB) emission are the rare earth ions Eu3+ (red), Er3+ (green), and Tm3+ (blue). A full-color TFEL phosphor system based on RE doped GaN has been demonstrated with high brightness...

  17. On the symmetry of phosphorous doped ZnSe

    Indian Academy of Sciences (India)

    The site symmetry of P doped ZnSe is analysed in detail here, as the recent experiments suggest two possible symmetries T d and C 3 V . The reduction to C 3 V is attributed to the presence of natural impurity, Ga. Our calculations based on molecular model and Green's functions suggest that the symmetry C 3 V is possible ...

  18. Combustion synthesis and photoluminescence in novel red emitting yttrium gadolinium pyrosilicate nanocrystalline phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Hedaoo, V.P., E-mail: vraikwar@rediffmail.com [Department of Physics, R. J. College, Ghatkopar, Mumbai, MS 400086 (India); Bhatkar, V.B. [Department of Physics, Shri Shivaji Science College, Amravati, MS 444602 (India); Omanwar, S.K. [Department of Physics, SGB Amravati University, Amravati, MS 444602 (India)

    2016-07-05

    Yttrium Gadolinium Pyrosilicate Y{sub 2-x}Gd{sub x}Si{sub 2}O{sub 7}:Eu{sup 3+} (x = 0.05, 0.10, 0.15) phosphor powder was prepared by facile and time efficient modified combustion method for the first time. The phosphor was characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence excitation (PLE) and emission (PL) spectroscopy and color chromaticity coordinates. XRD revealed the monoclinic crystal structure with space group P1¯. The crystallite size was calculated by Williamson-Hall (W–H) analysis. Nanoplates-like morphology was observed in FESEM analysis with size in the range 50–80 nm. TEM images confirmed the particle size and shape. Upon excitation by 254 nm UV light, the phosphor showed the characteristic red emission peaks at 589 nm and 613 nm corresponding to {sup 5}D{sub 0} → {sup 7}F{sub 1} and {sup 5}D{sub 0} → {sup 7}F{sub 2} transitions respectively. It was observed that the nanocrystalline phosphor Y{sub 2-x}Gd{sub x}Si{sub 2}O{sub 7}:Eu{sup 3+}can be tuned to emit orange to red color by adjusting the ratio Y/Gd. This phosphor thus can be a potential candidate as orange to red color emitting tunable nanocrystalline phosphor for optical devices. - Highlights: • A novel Yttrium Gadolinium Pyrosilicate doped with Eu{sup 3+} is reported. • Facile and time efficient modified combustion method is used. • The nanocrystalline structure was shown by X-ray diffraction, W–H analysis. • FESEM and TEM images confirmed the nanocrystalline structure. • The reported phosphor can be tuned from orange to red by varying Y/Gd ratio.

  19. Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors

    Science.gov (United States)

    Yadav, Manglesh; Mondal, Manisha; Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-04-01

    Tm3+/Yb3+/Zn2+:yttrium metavanadate (YVO4) phosphors prepared through chemical coprecipitation and the solid state reaction method have been structurally characterized by an x-ray diffraction (XRD) study. Photoluminescence study of the developed phosphors under ultraviolet (UV) and near infrared (NIR) excitation has been performed. The excitation spectrum of the tetragonal zircon type YVO4 phosphors corresponding to the emission at ˜476 nm exhibits a broad excitation peak in the 250-350 nm region, which is due to charge distribution in the {{{{VO}}}4}3- group. Under 980 nm CW diode laser excitation, enhancements of about ˜3000 times and ˜40 times have been observed for the blue band in the tridoped Tm3+Yb3+Zn2+:YVO4 phosphors compared to those of the Tm3+:YVO4 singly and Tm3+/Yb3+:YVO4 codoped phosphors, respectively. A downconversion (DC) emission study shows an enhancement of about ˜50 times for the blue band in the tridoped phosphors compared to that of the singly doped phosphors. Optical bistability (OB) behavior of the developed phosphors has been also investigated upon 980 nm excitation. The calculated Commission Internationale de l’Éclairage (CIE) color coordinates lie in the blue region with 96.5% color purity under 980 nm excitation, having a color temperature of ˜3400 K. Our observations show that the developed phosphors may be suitably used in dual mode luminescence spectroscopy, display devices, and UV LED chips.

  20. Monte Carlo Investigation of Phosphor Screens for X-ray Imaging

    International Nuclear Information System (INIS)

    Lim, Chang Hwy; Cheong, Min Ho; Cho, Min Kook; Shon, Choel Soon; Kim, Ho Kyung

    2006-01-01

    In order to detect X rays with pixel detectors, there are two technical methods; a direct detection using photoconductive material that permits the conversion of the incident X rays into the signal charges, and an indirect detection using scintillation material that converts the incident X rays into the optical photons. Therefore, two-dimensional (2D) photosensitive pixel array is necessary for the indirect-detection scheme. Terbium-doped gadolinium oxysulfide (Gd 2 O 2 S:Tb) phosphor screen is the most popular X-ray converter, and often employed to the digital radiographic system owing to its well-known technology and easy handling in size, thickness, and flexibility. Furthermore, the cost is effective. In cascaded imaging chains of the indirect-detection system, the phosphor screen is served as the first stage. Since the image signal-to-noise ratio (SNR) is irreversible through the cascaded system, the phosphor screen is largely responsible for the eventual image quality. For the various radiation qualities suggested by IEC (International Electrotechnical Commission, Report 1267), we have investigated important physical quantities of Gd 2 O 2 S:Tb screen with a wide range of coverages (34 . 135 mg/cm 2 ) by using Monte Carlo calculations. The results will be useful for the optimal design of digital X-ray imaging systems

  1. Structural and optical characterization of nanoparticulate manganese doped zinc silicate phosphors prepared by sol–gel and combustion methods

    Energy Technology Data Exchange (ETDEWEB)

    Mbule, P.S., E-mail: mbuleps@gmail.com [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mothudi, B.M.; Dhlamini, M.S. [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa)

    2016-11-15

    The present study reports the synthesis, crystallographic structure and optical properties of manganese (Mn{sup 2+}) doped zinc silicate (Zn{sub 2}SiO{sub 4}) nanoparticle phosphors prepared by sol–gel and combustion methods. For samples prepared by sol–gel method, the X-ray diffraction results showed phase transformation from amorphous to α-phase Zn{sub 2}SiO{sub 4} due to annealing temperatures at 600 °C to 1100 °C, whereas for combustion samples an admixture of highly crystalline β-phase and hexagonal wurtzite structure of ZnO was observed at annealing temperature of 600 °C. Photoluminescence spectra with Mn{sup 2+} concentrations ranging from 0.015–0.09 mol% were compared for two methods. Emission band assigned to the {sup 4}T{sub 1}({sup 4}G)→{sup 6}A{sub 1}({sup 6}S) electronic transition of Mn{sup 2+} was observed with maximum intensity at ~573 nm for combustion samples and ~532 nm for sol–gel samples upon UV-excitation by a Xenon lamp. Furthermore, the photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential. The fast and slow decay components are due to the pair or cluster formation and isolated ions at higher doping concentration, respectively. - Highlights: • Synthesis, crystallographic and optical properties of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} are presented. • XRD shows amorphous diffraction peak and crystallinity improved by increase of annealing temperature. • Crystallite and particle size from XRD and SAXS techniques, respectively, are compared. • Photoluminescence (PL) spectra are compared for sol-gel and combustion method. • The photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential.

  2. Continuous tunable broadband emission of fluorphosphate glasses for single-component multi-chromatic phosphors.

    Science.gov (United States)

    Zheng, Ruilin; Zhang, Qi; Yu, Kehan; Liu, Chunxiao; Ding, Jianyong; Lv, Peng; Wei, Wei

    2017-10-15

    A kind of Sn 2+ /Mn 2+ co-doped fluorphosphate (FP) glasses that served as single-component continuous tunable broadband emitting multi-chromatic phosphors are developed for the first time. Importantly, these FP glasses have high thermal conductivity (3.25-3.70  W/m·K) and good chemical stability in water (80°C). By combining with commercially available UV-LEDs directly, the emission colors can be tuned from blue/cold-white to warm-white/red through the energy transfer from Sn 2+ to Mn 2+ , and the broadband spectra covering the whole visible region from 380 nm to 760 nm. Notably, the FP glass can also serve as a white light phosphor by controlling the content of SnO/MnO, which has excellent optical properties. The CIE chromaticity coordinate, color rendering index, and quantum efficiency are (0.33, 0.29), 84, and 0.952, respectively. These new phosphors, possessing good optical and chemical properties, are promising for applications in solid-state lighting devices.

  3. Enhancement of encaged electron concentration by Sr(2+) doping and improvement of Gd(3+) emission through controlling encaged anions in conductive C12A7 phosphors.

    Science.gov (United States)

    Zhang, Meng; Liu, Yuxue; Zhu, Hancheng; Yan, Duanting; Yang, Jian; Zhang, Xinyang; Liu, Chunguang; Xu, Changshan

    2016-07-28

    Conductive C12A7:0.1%Gd(3+),y%Sr(2+) powders with different Sr(2+) doping concentrations have been prepared in a H2 atmosphere by a solid state method in combination with subsequent UV-irradiation. The encaged electron concentration could be modulated through tuning Sr(2+) doping and its maximum value reaches 2.3 × 10(19) cm(-3). This is attributed to the competition between enhanced uptake and the release of the encaged anions during their formation and diffusion processes and the suppression of encaged electrons generation due to the increased encaged OH(-) anions and the decreased encaged O(2-) anions. Although there exists encaged electrons and different encaged anions (O(2-), H(-) and OH(-)) in C12A7 conductive powders prepared through the hydrogen route, a dominant local environment around Gd(3+) could be observed using electron spin resonance (ESR) detection. It can be ascribed to the stronger coupling of the encaged OH(-) to the framework of C12A7 than those of the encaged electrons, O(2-) and H(-) anions. In addition, emission of Gd(3+) ions is enhanced under UV or low voltage electron beam excitation and a new local environment around Gd(3+) ions appears through the thermal annealing in air because of the decrease of the encaged OH(-) anions and the increase of the encaged O(2-) anions. Our results suggested that Sr(2+) doping in combination with thermal annealing in air is an effective strategy for increasing the conductive performance and enhancing the emission of rare earth ions doped into C12A7 conductive phosphors for low-voltage field emission displays (FEDs).

  4. Light emission efficiency and imaging properties of YAP:Ce granular phosphor screens

    International Nuclear Information System (INIS)

    Kalivas, N.; Valais, I.; Nikolopoulos, D.; Konstantinidis, A.; Cavouras, D.; Kandarakis, I.; Gaitanis, A.; Nomicos, C.D.; Panayiotakis, G.

    2007-01-01

    Phosphor materials are used in medical imaging combined with radiographic film or other photodetectors. Cerium (Ce 3+ ) -doped scintillators are of particular interest for medical imaging, because of their very fast response. YAP:Ce scintillator-based image detectors have already been evaluated in single-crystal form and under conditions of positron emission tomography and synchrotron or γ-ray irradiation. Furthermore, YAP:Ce phosphor has been evaluated in conjunction with radiographic films. The present work reports experimental and theoretical data concerning the light output absolute luminescence efficiency (AE) of the YAP:Ce screens under irradiation conditions employed in medical X-ray projection imaging (i.e., in diagnostic radiology). projection imaging (i.e., in diagnostic radiology). YAP:Ce phosphor screens with surface densities ranging between 53 and 110 mg/cm 2 were prepared by sedimentation on fused silica substrates in our laboratory. The resulted surface density of the screens was determined by dividing the phosphor mass deposited on the screen surface with the area of the surface. Additionally this work addresses the imaging performance of YAP:Ce by estimation of the detective quantum efficiency (DQE), i.e., the square of the signal to noise ratio transfer. Absolute efficiency was found to decrease with X-ray tube voltage for for YAP:Ce phosphor. The highest experimental efficiency was obtained for the 53.7 mg/cm 2 and 88.0 mg/cm 2 YAP:Ce screens. The highest DQE value was found for the 88.0 mg/cm 2 screen irradiated at 60 kVp. (orig.)

  5. Luminescence and thermal stability tuning in (Ba,Mn)3(Gd,Y)Na(PO4)5F:Eu2+ phosphors via cation-substitution

    Science.gov (United States)

    Mei, Juan; Lv, Lemin; Gao, Junsong; Wei, Yi; Feng, Yuxin; Yan, Chunjie; Li, Guogang

    2018-04-01

    In this work, [Y3+-Gd3+] and [Mn2+-Ba2+] substitutions were designed in Ba3GdNa(PO4)5F:Eu2+ system, which were marked as BG1-xYxNPF:Eu2+ and B1-yMyGNPF:Eu2+, respectively. It is found that their luminescence properties and thermal stability could be obviously tuned. For BG1-xYxNPF:Eu2+ series, under 365 nm UV light, the emission spectra exhibited a continuous red-shift from 458 nm (x = 0) to 485 nm (x = 1) with the corresponding luminescence varying from blue light to cyan light. For B1-yMyGNPF:Eu2+ series, it was observed the coexistence of blue-green and enhanced red emission of Eu2+ and the appearance of Eu3+ emission when Mn2+ partly substituted Ba2+, resulting in a final white emission. In addition, the thermal stabilities of B1-yMyGNPF:Eu2+ were obviously improved with Mn2+ doping. The corresponding luminescence and thermal stability tuning mechanisms were investigated.

  6. Luminescent properties and energy transfer of Gd{sup 3+}/Eu{sup 3+} co-doped cubic CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yidi; Zou, Haifeng; Zhang, Bowen; Zhou, Xiuqing; Song, Yanhua; Zheng, Keyan [College of Chemistry, Jilin University, Changchun 130012 (China); Shi, Zhan [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Sheng, Ye, E-mail: shengye@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2016-10-15

    Gd{sup 3+} and Eu{sup 3+} ions co-doped CaCO{sub 3} nanoparticles have been successfully synthesized via carbonization method. The emission spectra of co-doped CaCO{sub 3} phosphors in the range of VUV–vis spectral were studied. The results reveal that the co-doped CaCO{sub 3} phosphors show intense red emission in the VUV range because of the Gd{sup 3+} ions as sensitizers. The energy transfer process from Gd{sup 3+} to Eu{sup 3+} in CaCO{sub 3}:Gd{sup 3+}/Eu{sup 3+} phosphors was investigated and discussed in terms of the luminescence spectra and the decay curves, which demonstrated that the energy transfer of Gd{sup 3+}→Eu{sup 3+} is efficient. The mechanism of energy transfer from Gd{sup 3+} to Eu{sup 3+} is a resonant transfer, in which electric dipole–dipole interaction plays a leading role. Furthermore, the effect of doping concentration of Eu{sup 3+} ions on the energy transfer efficiency was also investigated. From the photoluminescence (PL) spectra, it was also found that the incorporation of Na{sup +} ions into CaCO{sub 3}:Gd{sup 3+}/Eu{sup 3+} could lead to a remarkable increase of luminescent intensity due to the charge compensation.

  7. Luminescent properties and energy transfer studies of color-tunable LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinguo, E-mail: sysuzxg@gmail.com [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Fu, Xionghui [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Song, Jiahui [Shenzhou High School, Hengshui 053800 (China); Gong, Menglian [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2016-08-15

    Highlights: • A series of color-tunable LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors were synthesized. • Phosphors exhibit strong blue/green/red emission under UV excitation. • The reason of high Tb{sup 3+} content required for Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer is unveiled. • Green and red LED prototypes were fabricated and characterized. - Abstract: A series of LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors were synthesized via solid state reaction. The Ce{sup 3+}/Tb{sup 3+} co-doped and Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} tri-doped phosphors absorb near UV light through 4f-5d transitions of Ce{sup 3+}, followed by sensitized Tb{sup 3+} green and Eu{sup 3+} red emission. Decay curves investigations for samples with various Tb{sup 3+} and Eu{sup 3+} contents reveal the occurrence of Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer. It is found that due to relative low Tb{sup 3+} → Eu{sup 3+} energy transfer rate, a high Tb{sup 3+} content (>40%) is required for efficient Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer. Emission color of LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+}, Eu{sup 3+} varies from blue through green to red with Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} ratio. The quantum efficiency of LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+} green phosphor and LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+}, Eu{sup 3+} red phosphor is 50% and 30%, respectively. Green and red LED prototypes were fabricated. The results show that the obtained phosphors are potential candidates as down-converted phosphors for NUV LEDs.

  8. Synthesis and characterization of novel red emitting nanocrystal Gd6WO12:Eu3+ phosphors

    International Nuclear Information System (INIS)

    Tian Yue; Chen Baojiu; Hua Ruinian; Zhong Haiyang; Cheng Lihong; Sun Jiashi; Lu Weili; Wan Jing

    2009-01-01

    Novel nanosized Gd 6 WO 12 :Eu 3+ phosphors were synthesized via a co-precipitation reaction. The crystal structure and morphology of the phosphors were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). It was found that the resultant powders show a regular and sphere-like shape with average particle size of 60 nm. Intrinsic red emission originating from Eu 3+ was observed while excited at the W 6+ →O 2- and Eu 3+ →O 2- charge transfer bands or f-f absorption bands. The color coordinates of the phosphors were calculated to be x=0.625, y=0.375. The concentration dependence of the luminescence was studied, and optimum doping concentration for obtaining maximum emitting intensity was confirmed to be around 12 mol%. It was also found that the electric dipole-dipole interaction plays an important role for quenching luminescence of Eu 3+ .

  9. Y{sub 2}O{sub 3}: Dy{sup 3+}/Li{sup +} phosphors synthesized by spray

    Energy Technology Data Exchange (ETDEWEB)

    Balderas X, R.; Carmona T, S.; Falcony, C., E-mail: scarmonat81@gmail.com [IPN, Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, 07000 Ciudad de Mexico (Mexico)

    2017-11-01

    Dysprosium and lithium-activated yttrium oxide phosphor was synthesized at 1100 degrees Celsius by ultrasonic spray pyrolysis (Usp) using Di water as solvent and metal chlorides as precursors. The characteristic emission peak of Dy{sup 3+} due to the transitions {sup 4}F{sub 9/2} to {sup 6}H{sub 15/2} at 483 nm, {sup 4}F{sub 9/2} to {sup 6}H{sub 13/2} at 573 nm, {sup 4}F{sub 9/2} to {sup 6}H{sub 11/2} at 667 nm and {sup 4}F{sub 9/2} to {sup 6}H{sub 9/2} at 766 nm were observed. Scanning electron microscopy and transmission electron microscopy measurements were carried out to understand surface morphological features and the particle size of the phosphor. The uniformity of phase of Dy{sup 3+} - Li{sup +} doped Y{sub 2}O{sub 3} phosphors was checked by X-ray diffraction technique. The phosphors form clusters that were found to be ∼ 1 μm in size, however, particles that form these clusters have sizes between 40 and 120 nm. (Author)

  10. Photoluminescent properties of LiSrxBa1-xPO4:RE3+ (RE = Sm3+, Eu3+) f-f transition phosphors

    International Nuclear Information System (INIS)

    Tu Dong; Liang Yujun; Liu Rong; Cheng Zheng; Yang Fan; Yang Wenlong

    2011-01-01

    Highlights: → Novel phosphors LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ have been synthesized by solid-state reaction method. → The LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ phosphors may be potential f-f transition phosphors used in LED. → The emission intensity of the LiSr x Ba 1-x PO 4 : Sm 3+ and LiSr x Ba 1-x PO 4 : Eu 3+ phosphors can be enhanced by increasing the value of x. - Abstract: Rare-earth ions (Sm 3+ or Eu 3+ ) doped LiSr x Ba 1-x PO 4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) f-f transition phosphor powders were prepared by a high temperature solid-state reaction. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the phase structure of the sample changes from LiBaPO 4 to LiSrPO 4 when x changes from 0 to 1.0. The excitation spectra indicate that only direct excitation of rare earth ions (Sm 3+ or Eu 3+ ) can be observed. The doped rare earth ions show their characteristic emission in LiSr x Ba 1-x PO 4 , i.e., Eu 3+5 D 0 - 7 F J (J = 0, 1, 2, 3, 4), Sm 3+4 G 5/2 → 6 H J (J = 5/2, 7/2, 9/2, 11/2), respectively. The dependence of the emission intensities of the LiSr x Ba 1-x PO 4 :Sm 3+ and LiSr x Ba 1-x PO 4 :Eu 3+ phosphors on the x value and Ln 3+ (Ln 3+ = Sm 3+ , Eu 3+ ) concentration is also investigated.

  11. Concentration Dependence of Luminescent Properties for Sr2TiO4:Eu3+ Red Phosphor and Its Charge Compensation

    Directory of Open Access Journals (Sweden)

    Zhou Lu

    2012-01-01

    Full Text Available Sr2TiO4:Eu3+ phosphors using M+ (M = Li+, Na+, and K+ as charge compensators were prepared by the solid-state reaction. The powders were investigated by powder X-ray diffraction (XRD and photoluminescence spectra (PL to study the phase composition, structure, and luminescent properties. The results showed that Li+ ion was the best charge compensator. The phase was Sr2TiO4 when the doping concentration was small (x≤10.0%. When x reached 15.0%, the phase turned into Sr3Ti3O7 because of the structure damage. The phosphor could be effectively excited by ultraviolet (365, 395 nm and blue light (465 nm, and thenitemitted intense red light that peaked at around 620 nm (5D0→7F2. In addition, the emission of 700 nm (5D0→7F4 enhanced the red light color purity. The CIE chromaticity coordinates of samples with the higher red emission were between (0.650, 0.344 and (0.635, 0.352. Doped layered titanate Sr2TiO4:Eu3+ is a promising candidate red phosphor for white LEDs which can be suited for both near-UV LED chip and blue LED chip.

  12. Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links

    DEFF Research Database (Denmark)

    Hink, Steffen; Elsøe, Katrine; Cleemann, Lars Nilausen

    2015-01-01

    Udel polysulfone based membranes with 4-aminopyridine pendant groups and cross-linking imidazole units are synthesized in a simple two step reaction. The ratio of 4-aminopyridine and imidazole is varied and the materials are extensively characterized. The average phosphoric acid uptake (in 85 wt%...

  13. Double perovskite Ca2GdNbO6:Mn4+ deep red phosphor: Potential application for warm W-LEDs

    Science.gov (United States)

    Lu, Zuizhi; Huang, Tianjiao; Deng, Ruopeng; Wang, Huan; Wen, Lingling; Huang, Meixin; Zhou, Liya; Yao, Chunying

    2018-05-01

    A novel Mn4+-doped Ca2GdNbO6 (CGN) phosphor was prepared by high-temperature solid-state reaction. The crystal structure was investigated by X-ray diffraction patterns and unit cell structure. Mn4+ replaced the location of Nb5+ in the CGN lattice, and the value of energy gap (Egap) decreased from 2.16 eV to 1.13 eV, indicating that Mn4+ ions play a great influence on the absorption of CGN hosts. The broad excitation band from 250 nm to 550 nm matches well with commercial near-UV light emitting diodes, and the emission peak centered at 680 nm is due to 2E→4A2g transition in Mn4+ ions. The CIE chromaticity coordinates (0.698, 0.303) of CGN:Mn4+ phosphor was close to standard red color coordinates (0.666, 0.333). These investigations demonstrate CGN:Mn4+ phosphor as an efficient red phosphor for potential applications.

  14. Enhancement of CdSiO3: Tb3+ green long-lasting phosphors by co-doping with Re3+ (Re3+=Gd3+, Y3+, La3+) ions

    International Nuclear Information System (INIS)

    Zeng, Wei; Wang, Yuhua; Han, Shaochun; Chen, Wenbo; Li, Gen

    2014-01-01

    CdSiO 3 : Tb 3+ , Re 3+ long-lasting phosphors were synthesized by the conventional high temperature solid-state method. A green-light phosphorescence phenomenon, which was associated with the 5 D 4 → 7 F J (J=6, 5, 4, 3) transitions of the Tb 3+ ion, was observed. Introduction of Re 3+ (Re 3+ =Gd 3+ , Y 3+ , La 3+ ) ions, which deepens the depth (E t ) or/and increases the density (n 0 ) of traps, greatly improved the afterglow properties of CdSiO 3 : Tb 3+ . Possible mechanism of CdSiO 3 : Tb 3+ , Re 3+ was discussed in this work. - Highlights: • CdSiO 3 : Tb 3+ , Re 3+ samples enrich the color of long-lasting afterglow phosphors in CdSiO 3 host. • Both the afterglow intensity and the lasting time are greatly enhanced for the co-doped samples, especially for Cd 0.96 SiO 3 : Tb 0.03 3+ , La 0.01 3+ . • Introduction of Re 3+ (Re 3+ =Gd 3+ , Y 3+ , La 3+ ) ions, which deepens the depth (E t ) or increase density(n 0 ) of traps, greatly improved the afterglow properties of CdSiO 3 : Tb 3+

  15. Synthesis, structure, and photoluminescence properties of novel KBaSc2 (PO4 )3 :Ce(3+) /Eu(2+) /Tb(3+) phosphors for white-light-emitting diodes.

    Science.gov (United States)

    Jiao, Mengmeng; Lü, Wei; Shao, Baiqi; Zhao, Lingfei; You, Hongpeng

    2015-08-24

    A series of novel KBaSc2 (PO4 )3 :Ce(3+) /Eu(2+) /Tb(3+) phosphors are prepared using a solid-state reaction. X-ray diffraction analysis and Rietveld structure refinement are used to check the phase purity and crystal structure of the prepared samples. Ce(3+) - and Eu(2+) -doped phosphors both have broad excitation and emission bands, owing to the spin- and orbital-allowed electron transition between the 4f and 5d energy levels. By co-doping the KBaSc2 (PO4 )3 :Eu(2+) and KBaSc2 (PO4 )3 :Ce(3+) phosphors with Tb(3+) ions, tunable colors from blue to green can be obtained. The critical distance between the Eu(2+) and Tb(3+) ions is calculated by a concentration quenching method and the energy-transfer mechanism for Eu(2+) →Tb(3+) is studied by utilizing the Inokuti-Hirayama model. In addition, the quantum efficiencies of the prepared samples are measured. The results indicate that KBaSc2 (PO4 )3 :Eu(2+) ,Tb(3+) and KBaSc2 (PO4 )3 :Ce(3+) ,Tb(3+) phosphors might have potential applications in UV-excited white-light-emitting diodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diagnostic phosphors for photon beams at the ALS and APS

    International Nuclear Information System (INIS)

    Shu, Deming; Warwick, T.; Johnson, E.D.

    1991-01-01

    Some tests have been made of phosphors for photon beam diagnosis. Plasma sprayed coatings were checked for damage and decay during a period of several ampere-hours of irradiation from the NSLS Xray ring. Surface temperatures were measured and extrapolated to give an indication of the temperatures expected in more powerful photon beams. Based on our findings we have chosen plasma-sprayed coatings of Europium-doped Yttrium Oxide as the best candidate for use on masks and flags in ''white'' photon beams of the new facilities. 4 refs., 2 figs

  17. Luminescence of Eu(3+) doped SiO2 Thin Films and Glass Prepared by Sol-gel Technology

    Science.gov (United States)

    Castro, Lymari; Jia, Weiyi; Wang, Yanyun; Santiago, Miguel; Liu, Huimin

    1998-01-01

    Trivalent europium ions are an important luminophore for lighting and display. The emission of (5)D0 to (7)F2 transition exhibits a red color at about 610 nm, which is very attractive and fulfills the requirement for most red-emitting phosphors including lamp and cathode ray phosphorescence materials. Various EU(3+) doped phosphors have been developed, and luminescence properties have been extensively studied. On the other hand, sol-gel technology has been well developed by chemists. In recent years, applications of this technology to optical materials have drawn a great attention. Sol-gel technology provides a unique way to obtain homogeneous composition distribution and uniform doping, and the processing temperature can be very low. In this work, EU(3+) doped SiO2 thin films and glasses were prepared by sol-gel technology and their spectroscopic properties were investigated.

  18. Novel bluish white-emitting CdBaP{sub 2}O{sub 7}:Eu{sup 2+} phosphor for near-UV white-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Derbel, Mouna [Laboratory of Industrial Chemistry, National School of Engineers of Sfax, University of Sfax, BPW 3038 Sfax (Tunisia); Mbarek, Aïcha, E-mail: mbarekaicha@yahoo.fr [Laboratory of Industrial Chemistry, National School of Engineers of Sfax, University of Sfax, BPW 3038 Sfax (Tunisia); Chadeyron, Geneviève [Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Fourati, Mohieddine [Laboratory of Industrial Chemistry, National School of Engineers of Sfax, University of Sfax, BPW 3038 Sfax (Tunisia); Zambon, Daniel [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Mahiou, Rachid [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, BP 80026, F-63171 Aubiere (France)

    2016-08-15

    A new bluish white-emitting phosphor based on a phosphate host matrix, CdBaP{sub 2}O{sub 7}:Eu{sup 2+}, was prepared by a conventional solid-state reaction method. The photoluminescence properties were investigated in both ultraviolet (UV) and vacuum ultraviolet (VUV) regions. The band-gaps of Eu-doped CdBaP{sub 2}O{sub 7} powders can be tuned in the ranges of 2.26–2 eV. The Eu{sup 2+}-doped CdBaP{sub 2}O{sub 7} phosphor was efficiently excited at wavelengths of 250–400 nm, which is suitable for the blue emission band for near-UV light-emitting-diode (LED) chips (360–400 nm) and red emission peaks up to 700 nm. CdBaP{sub 2}O{sub 7}:Eu{sup 2+} displays two different luminescence centers, which were suggested to Ba{sup 2+} and Cd{sup 2+} sites in the host. The dependence of luminescence intensity on temperatures was measured. The chromaticity coordinates and activation energy for thermal quenching were reported. The phosphor shows a good thermal stability on temperature quenching.

  19. Hydrothermal synthesis of 4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb) phosphors: Morphology-tunable and luminescence properties

    Science.gov (United States)

    Cao, Shiwei; Jiao, Yang; Han, Weifang; Ge, Chunhua; Song, Bo; Wang, Jie; Zhang, Xiangdong

    2018-02-01

    4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb) phosphors with different morphologies have been successfully synthesized via one-step hydrothermal method through regulating the molar amount of Eu3 + and Tb3 +. Comprehensive scanning electron microscopy (SEM), X-ray diffraction (XRD) Fourier transform infrared spectrum (FT-IR) and inductively coupled plasma atomic emission spectrometer (ICP-AES) characterizations all confirm that obtained products are 4ZnO·B2O3·H2O:Ln3 + (Ln = Eu, Tb). The experimental results displayed that the morphology and photoluminescence of compounds is regularly changed with increased the molar amount of rare earth ions. For the Eu3 +-doped, Tb3 +-doped and Eu3 +/Tb3 + co-doped 4ZnO·B2O3·H2O phosphors of morphologies, the rod-like structures gradually changed to flower-like structures, fine wire-like structure and hybrid structure, respectively. To their photoluminescence, the Eu3 + shows a red emission (615 nm); the Tb3 + shows a green emission (545 nm); for the Eu3 +/Tb3 + co-doped 4ZnO·B2O3·H2O phosphors, a combination of blue (5d-4f of Eu2 +), green (5D4-7F5 of Tb3 +) and red (5D0-7F2 of Eu3 +) emissions emerges to achieve white emission. In addition, the energy transfer among Eu3 +, Eu2 + and Tb3 + ions was also discussed.

  20. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Thermal diffusion boron doping of single-crystal natural diamond

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Wu, Henry; Morgan, Dane [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Blanchard, James P. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-28

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  2. Thermal diffusion boron doping of single-crystal natural diamond

    International Nuclear Information System (INIS)

    Seo, Jung-Hun; Mikael, Solomon; Mi, Hongyi; Venkataramanan, Giri; Ma, Zhenqiang; Wu, Henry; Morgan, Dane; Blanchard, James P.; Zhou, Weidong; Gong, Shaoqin

    2016-01-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  3. Synthesis and Antimicrobial Activity of Novel Substituted Ethyl 2-(Quinolin-4-yl-propanoates

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2013-03-01

    Full Text Available Substituted 4-hydroxyquinolines were synthesized from anilines and diethyl 2-(ethoxymethylenemalonate by the Gould-Jacobs reaction via cyclization of the intermediate anilinomethylenemalonate followed by hydrolysis and decarboxylation. The 4-hydroxyquinolines reacted with phosphorous oxychloride to form 4-chloroquinolines, which reacted on heating with diethyl sodiomethylmalonate in DMF to yield moderate yields of substituted ethyl 2-(quinolin-4-ylpropanoates, many of which showed potent antimicrobial activity against Helicobacter pylori.

  4. Micro/nano phosphors for gamma, electron, fast and thermal neutron dosimetry: an overview

    International Nuclear Information System (INIS)

    Dhole, Sanjay D.

    2016-01-01

    In this talk an overview of the micro/nano phosphors, nuclear track in glass and Fricke dosimeter will be covered. Eu and Cu doped K_2Ca_2(SO_4)_3 by chemical co-precipitation, CaSO_4:Dy (micro by acid re-crystallization method and Al_2O_3:C by Thermal Plasma reactor method were synthesized and their photoluminescence (PL), Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) properties were characterized

  5. Luminescence Properties of Ca19Ce(PO4)14:A (A = Eu3+/Tb3+/Mn2+) Phosphors with Abundant Colors: Abnormal Coexistence of Ce4+/3+-Eu3+ and Energy Transfer of Ce3+ → Tb3+/Mn2+ and Tb3+-Mn2.

    Science.gov (United States)

    Shang, Mengmeng; Liang, Sisi; Lian, Hongzhou; Lin, Jun

    2017-06-05

    A series of Eu 3+ /Tb 3+ /Mn 2+ -ion-doped Ca 19 Ce(PO 4 ) 14 (CCPO) phosphors have been prepared via the conventional high-temperature solid-state reaction process. Under UV radiation, the CCPO host presents a broad blue emission band from Ce 3+ ions, which are generated during the preparation process because of the formation of deficiency. The Eu 3+ -doped CCPO phosphors can exhibit magenta to red-orange emission as a result of the abnormal coexistence of Ce 3+ /Ce 4+ /Eu 3+ and the metal-metal charge-transfer (MMCT) effect between Ce 3+ and Eu 3+ . When Tb 3+ /Mn 2+ are doped into the hosts, the samples excited with 300 nm UV light present multicolor emissions due to energy transfer (ET) from the host (Ce 3+ ) to the activators with increasing activator concentrations. The emitting colors of CCPO:Tb 3+ phosphors can be tuned from blue to green, and the CCPO:Mn 2+ phosphors can emit red light. The ET mechanism from the host (Ce 3+ ) to Tb 3+ /Mn 2+ is demonstrated to be a dipole-quadrapole interaction for Ce 3+ → Tb 3+ and an exchange interaction for Ce 3+ → Mn 2+ in CCPO:Tb 3+ /Mn 2+ . Abundant emission colors containing white emission were obtained in the Tb 3+ - and Mn 2+ -codoped CCPO phosphors through control of the levels of doped Tb 3+ and Mn 2+ ions. The white-emitted CCPO:Tb 3+ /Mn 2+ phosphor exhibited excellent thermal stability. The photoluminescence properties have shown that these materials might have potential for UV-pumped white-light-emitting diodes.

  6. Facile synthesis, structural characterization, and photoluminescence mechanism of Dy{sup 3+} doped YVO{sub 4} and Ca{sup 2+} co-doped YVO{sub 4}:Dy{sup 3+} nano-lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dhiren Meetei, Sanoujam, E-mail: sdmdhiren@gmail.com; Dorendrajit Singh, Shougaijam, E-mail: dorendrajit@yahoo.co.in, E-mail: mdebensingh@gmail.com [Department of Physics, Manipur University, Canchipur, Imphal-795003, Manipur (India); Deben Singh, Mutum, E-mail: dorendrajit@yahoo.co.in, E-mail: mdebensingh@gmail.com [Department of Physics, Thambal Marik College, Oinam-795134, Bishnupur, Manipur (India)

    2014-05-28

    Light plays a vital role in the evolution of life. From sunlight to candle-light and then to other form of lighting devices, human beings are utilizing light since time immemorial. Lighting devices such as conventional incandescent lamp and fluorescent lamp have been replaced by Light Emitting Diodes (LEDs) for the later is cheap, durable, etc. Now-a-days, phosphor converted LEDs have been burning issues in the fabrication of lighting devices. Especially, lanthanide ion(s) doped phosphors are of great interest for the same. However, doped phosphors have a limitation of luminescence quenching, i.e., instead of increasing luminescence on increasing dopant concentration, the luminescence decreases. Therefore, it must be rectified by one or other means so as to get maximum desirable intensity for uses in display or lighting devices. In the present work, YVO{sub 4}:Dy{sup 3+} and YVO{sub 4}:Dy{sup 3+}/Ca{sup 2+} nano-lattices are synthesized by a facile technique. Structural characterizations such as x-ray diffraction, SEM, TEM, HRTEM, and Selected Area Electron Diffraction (SAED) of the samples are reported. Photoluminescence (PL) excitation and emission, enhanced mechanism, and lifetime are thoroughly discussed. PL intensity of the quenched YVO{sub 4}:Dy{sup 3+} is made increased up to 432.63% by Ca{sup 2+} co-doping. Role of the Ca{sup 2+} on the luminescence enhanced mechanism of YVO{sub 4}:Dy{sup 3+}/Ca{sup 2+} is elucidated.

  7. Narrow spectral emission CaMoO{sub 4}: Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+} phosphor crystals for white light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, A. [Smart Lighting Engineering Research Center, 110, 8th Street, Troy, New York, 12180 (United States); Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, New York, 12180 (United States); Dutta, P.S., E-mail: duttap@rpi.edu [Smart Lighting Engineering Research Center, 110, 8th Street, Troy, New York, 12180 (United States); Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, New York, 12180 (United States)

    2013-02-15

    Alkaline earth metal molybdates are promising candidates as a host material for high efficiency narrow spectral emission phosphors. These phosphors could potentially be used for the fabrication of phosphor-converted light emitting diodes (pc-LEDs). Phosphor crystals of calcium molybdate doped with rare earth dopant Ln{sup 3+}(Ln=Eu, Dy, Tb) grown using flux growth method have been shown to exhibit higher excitation efficiency than the powders synthesized by solid-state reaction process. Molybdenum (VI) oxide has been found to be a suitable flux for growing large size optically transparent high quality crystals at a temperature around 1100 Degree-Sign C. Using the excitation wavelengths of 465 nm, 454 nm and 489 nm for CaMoO{sub 4}: Eu{sup 3+}, CaMoO{sub 4}: Dy{sup 3+} and CaMoO{sub 4}: Tb{sup 3+}, respectively, intense emission lines at wavelengths of 615 nm, 575 nm and 550 nm were observed. The optimized doping concentrations of 12%, 2% and 5% for Eu{sup 3+}, Dy{sup 3+} and Tb{sup 3+}, respectively, provided the highest luminescence intensity. - Graphical Abstract: CaMoO{sub 4}: Eu{sup 3+} phosphor crystals grown using a molybdenum (VI) oxide flux exhibited around 1.5 times the emission intensity of powders obtained from solid-state reaction at the same synthesis temperature. These crystals were found to efficiently emit 615 nm red light when excited by near UV light up to a wavelength of 395 nm. Highlights: Black-Right-Pointing-Pointer CaMoO{sub 4}: Ln{sup 3+} (Ln=Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}) phosphor crystals were successfully grown using high temperature flux (solutions) containing molybdenum (VI) oxide or lithium chloride. Black-Right-Pointing-Pointer Narrow spectral emission at 615 nm, 575 nm and 550 nm, respectively, was observed from CaMoO{sub 4}: Ln{sup 3+} (Ln=Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+}) phosphor crystals. Black-Right-Pointing-Pointer The optimized doping concentrations of Eu{sup 3+}, Dy{sup 3+}, Tb{sup 3+} in CaMoO{sub 4} for highest

  8. White light emission and effect of annealing on the Ho{sup 3+}–Yb{sup 3+} codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Astha; Rai, Vineet Kumar, E-mail: vineetkrrai@yahoo.co.in

    2015-12-15

    Graphical abstract: The upconversion emission spectra of the Ho{sup 3+}/Yb{sup 3+} doped/codoped BaCa{sub 2}Al{sub 8}O{sub 15} phosphors with different doping concentrations of Ho{sup 3+}/Yb{sup 3+} ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa{sub 2}Al{sub 8}O{sub 15} phosphors codoped with Ho{sup 3+}–Yb{sup 3+} have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pump power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa{sub 2}Al{sub 8}O{sub 15} (BCAO) phosphors codoped with suitable Ho{sup 3+}–Yb{sup 3+} dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.

  9. The effect of simultaneous substitution on the electronic band structure and thermoelectric properties of Se-doped Co3SnInS2 with the Kagome lattice

    OpenAIRE

    Fujioka, Masaya; Shibuya, Taizo; Nakai, Junya; Yoshiyasu, Keigo; Sakai, Yuki; Takano, Yoshihiko; Kamihara, Yoichi; Matoba, Masanori

    2012-01-01

    The thermoelectric properties and electronic band structures for Se-doped Co3SnInS2 were examined. The parent compound of this material (Co3Sn2S2) has two kinds of Sn sites (Sn1 and Sn2 sites). The density functional theory (DFT) calculations show that the indium substitution at the Sn2 site induces a metallic band structure, on the other hand, a semiconducting band structure is obtained from substitution at the Sn1 site. However, according to the previous reports, since the indium atom prefe...

  10. Synthesis and luminescent properties of Y(As, Nb, P, V)O4:Eu3+ red phosphors by combinatorial chemistry method

    International Nuclear Information System (INIS)

    Zeon, Il Woon; Park, Hee Dong; Sohn, Kee Sun; Ryu, Seung Kon

    2001-01-01

    Eu doped YRO 4 (R=As, Nb, P, V)red phosphors were prepared by the combinatorial chemistry method. The quaternary material library of tetrahedron-type composition array was designed to investigate the luminescence of the host material under UV and VUV excitations (254, 147 nm). The photoluminescent characteristics of the samples were comparable to the commercially available red phosphors such as (Y, Gd)BO 3 :Eu 3+ and Y 2 O 3 :Eu 3+ . In view of the luminescence yield, V rich region was found to be optimum under UV excitation. But the results under VUV excitation were different from those of UV excitation, the samples of the composition containing a large amount of P shows the highest luminescence. Especially, higher luminescence was obtained in Y 0.9 (As 0.06 Nb 0.06 P 0.83 V 0.06 )O 4 :Eu 0.1 phosphors than commercial (Y, Gd)BO 3 red phosphors under 147 nm excitation

  11. Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors.

    Science.gov (United States)

    Guan, Hongxia; Sheng, Ye; Xu, Chengyi; Dai, Yunzhi; Xie, Xiaoming; Zou, Haifeng

    2016-07-20

    A series of Dy(3+), Tb(3+), Eu(3+) singly or doubly or triply doped GdF3 phosphors were synthesized by a glutamic acid assisted one-step hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) spectroscopy. The results show that the synthesized samples are all pure GdF3. The obtained samples have a peanut-like morphology with a diameter of about 270 nm and a length of about 600 nm. Under UV excitation, GdF3:Dy(3+), GdF3:Tb(3+) and GdF3:Eu(3+) samples exhibit strong blue, green and red emissions, respectively. By adjusting their relative doping concentrations in the GdF3 host, the different color hues of green and red light are obtained by co-doped Dy(3+), Tb(3+) and Tb(3+), Eu(3+) ions in the GdF3 host, respectively. Besides, there exist two energy transfer pairs in the GdF3 host: (1) Dy(3+) → Tb(3+) and (2) Tb(3+) → Eu(3+). More significantly, in the Dy(3+), Tb(3+), and Eu(3+) tri-doped GdF3 phosphors, white light can also be achieved upon excitation of UV light by adjusting the doping concentration of Eu(3+). In addition, the obtained samples also exhibit paramagnetic properties at room temperature (300 K) and low temperature (2 K). It is obvious that multifunctional Dy(3+), Tb(3+), Eu(3+) tri-doped GdF3 materials including tunable multicolors and intrinsic paramagnetic properties may have potential applications in the field of full-color displays.

  12. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 300...... doping level. At 160 degrees C a conductivity as high as 0.13 S cm/sup -1/ is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 degrees C, fuel cells...... based on this polymer membrane have been tested with both hydrogen and hydrogen containing carbon monoxide....

  13. Temperature dependent luminescence and energy transfer properties of Na2SrMg(PO4)2:Eu2+, Mn2+ phosphors.

    Science.gov (United States)

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-11-21

    Eu(2+) singly and Eu(2+)/Mn(2+) co-doped Na2SrMg(PO4)2 (NSMP) phosphors have been prepared via a high-temperature solid-state reaction process. Upon UV excitation of 260-360 nm, the NSMP:xEu(2+) phosphors exhibit a violet band located at 399 nm and a blue band centered at 445 nm, which originate from Eu(2+) ions occupying two different crystallographic sites: Eu(2+)(I) and Eu(2+)(II), respectively. Excitation wavelengths longer than 380 nm can selectively excite Eu(2+)(II) to emit blue light. Energy transfer processes in the Eu(2+)(I)-Eu(2+)(II) and Eu(2+)-Mn(2+) pairs have been observed and investigated by luminescence spectra and decay curves. The emission color of as-prepared samples can be tuned by changing the relative concentrations of Eu(2+) and Mn(2+) ions and adjusting the excitation wavelength. Under UV excitation of 323 nm, the absolute quantum yield of NSMP:0.005Eu(2+) is 91%, which is higher than most of the other Eu(2+)-doped phosphors reported previously. The temperature dependent luminescence properties and decay curves (4.3-450 K) of NSMP:Eu(2+) and NSMP:Eu(2+), Mn(2+) phosphors have been studied in detail. Thermal quenching of Eu(2+) has been observed while the emission band of Mn(2+) shows a blue-shift and an abnormal increase of intensity with increasing temperature. The unusual thermal quenching behavior indicates that the NSMP compound can serve as a good lattice host for Mn(2+) ions which can be used as a red-emitting phosphor. Additionally, the lifetimes for Eu(2+)(I) and Eu(2+)(II) increase with increasing temperatures.

  14. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd6MoO12:Eu3+

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Donglei; Huang, Yanlin; Kim, Sun Il; Yu, Young Moon; Seo, Hyo Jin

    2013-01-01

    A novel red-emitting nano-phosphor of Eu 3+ -doped Gd 6 MoO 12 was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition 5 D 0 → 7 F 2 of Eu 3+ ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd 6 MoO 12 :Eu 3+ nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips

  15. White-emission in single-phase Ba2Gd2Si4O13:Ce3 +,Eu2 +,Sm3 + phosphor for white-LEDs

    Science.gov (United States)

    Jiang, Xiumin; Zhang, Yuqian; Zhang, Jia

    2018-03-01

    To develop new white-light-emitting phosphor, a series of Ce3 +-Eu2 +-Sm3 + doped Ba2Gd2Si4O13 (BGS) phosphors were prepared by the solid-state reaction method, and their photoluminescence properties were studied. The Ce3 + and Eu2 + single-doped BGS show broad emission bands around in the region of 350-550 and 420-650 nm, respectively. By co-doping Ce3 +-Eu2 + into BGS, the energy transfer (ET) from Ce3 + to Eu2 + is inefficient, which could be due to the competitive absorption between the two activator ions. The Sm3 +-activated BGS exhibits an orangey-red emission in the region of 550-750 nm. To achieve white emission, the BGS:0.06Ce3 +,0.04Eu2 +,ySm3 + (0 ≤ y ≤ 0.18) phosphors were designed, in which the ET from Ce3 +/Eu2 + to Sm3 + was observed. The emission color can be tuned by controlling the Sm3 + concentration, and white emission was obtained in the BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample. The investigation of thermal luminescence stability for the typical BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample reveals that the emission intensities of both Eu2 + and Sm3 + demonstrate continuous decrease but the Ce3 + emission is enhanced gradually with increasing temperature. The corresponding reason has been discussed.

  16. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianlong; Xie, Dan, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084 (China); Zeng, Min; Gao, Xingsen [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Zhao, Yonggang [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  17. Enhanced electronic and magnetic properties by functionalization of monolayer GaS via substitutional doping and adsorption

    Science.gov (United States)

    Rahman, Altaf Ur; Rahman, Gul; Kratzer, Peter

    2018-05-01

    The structural, electronic, and magnetic properties of two-dimensional (2D) GaS are investigated using density functional theory (DFT). After confirming that the pristine 2D GaS is a non-magnetic, indirect band gap semiconductor, we consider N and F as substitutional dopants or adsorbed atoms. Except for N substituting for Ga (NGa), all considered cases are found to possess a magnetic moment. Fluorine, both in its atomic and molecular form, undergoes a highly exothermic reaction with GaS. Its site preference (FS or FGa) as substitutional dopant depends on Ga-rich or S-rich conditions. Both for FGa and F adsorption at the Ga site, a strong F–Ga bond is formed, resulting in broken bonds within the GaS monolayer. As a result, FGa induces p-type conductivity in GaS, whereas FS induces a dispersive, partly occupied impurity band about 0.5 e below the conduction band edge of GaS. Substitutional doping with N at both the S and the Ga site is exothermic when using N atoms, whereas only the more favourable site under the prevailing conditions can be accessed by the less reactive N2 molecules. While NGa induces a deep level occupied by one electron at 0.5 eV above the valence band, non-magnetic NS impurities in sufficiently high concentrations modify the band structure such that a direct transition between N-induced states becomes possible. This effect can be exploited to render monolayer GaS a direct-band gap semiconductor for optoelectronic applications. Moreover, functionalization by N or F adsorption on GaS leads to in-gap states with characteristic transition energies that can be used to tune light absorption and emission. These results suggest that GaS is a good candidate for design and construction of 2D optoelectronic and spintronics devices.

  18. Sublattice imbalance of substitutionally doped nitrogen in graphene

    DEFF Research Database (Denmark)

    Lawlor, James A.; Gorman, Paul D.; Power, Stephen

    2014-01-01

    Motivated by the recently observed sublattice asymmetry of substitutional nitrogen impurities in CVD grown graphene, we show, in a mathematically transparent manner, that oscillations in the local density of states driven by the presence of substitutional impurities are responsible for breaking......, but should be present in other impurities. (C) 2014 Elsevier Ltd. All rights reserved....

  19. Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction

    International Nuclear Information System (INIS)

    Zhou, Beiying; Luo, Wei; Liu, Sheng; Gu, Shijia; Lu, Mengchen; Zhang, Yan; Fan, Yuchi; Jiang, Wan; Wang, Lianjun

    2017-01-01

    Dispersing the Ce"3"+ doped yttrium aluminum garnet (Ce:YAG) phosphor in the glass matrix has been widely investigated to replace conventional organic resin or silicone packaging. However, the reaction layer formed between commercial phosphors and glass matrix severely degrades the optical performance of Ce:YAG phosphor in silica glass (PiSG) materials. This paper demonstrates an ultra-fast method for preparing high performance PiSG materials. Instead of traditional melting process, the highly transparent PiSG samples can be rapidly fabricated from mixtures of commercial Ce:YAG phosphor and mesoporous SiO_2 (SBA-15) powders using spark plasma sintering (SPS) at relatively low temperature (1000 °C) within short time (10 min). Owing to the inhibition of the deleterious interface reactions between Ce:YAG phosphor and silica glass matrix, the phosphor has been perfectly preserved, and the internal relative quantum yield of the PiSG sample reaches as high as 93.5% when excited at 455 nm, which is the highest efficiency in current research. Furthermore, combining the PiSG sample, we successfully fabricate a light-emitting diode (LED) module exhibiting a superior performance with luminous efficacy of 127.9 lm/W, correlated color temperature of 5877 K and color rendering index of 69 at the operating current of 120 mA. This work on the high performance LED modules provides not only a new approach to fabricate the functional glass-based materials that is sensitive to the high temperature, but also a possibility to extend the lifetime and improve the optical performances of the glass based LEDs.

  20. Oxidizer in phosphoric reactors

    International Nuclear Information System (INIS)

    Santos Benedetto, J. dos

    1985-01-01

    Oxidation during the manufacture of wet-process phosphoric acid affected the distribution of uranium and impurities between phosphoric acid and gypsum, by decreasing the uranium loss to gypsum and the impurities solubilization in phosphoric acid. (Author) [pt

  1. Combustion synthesis of CaSc2O4:Ce3+ nano-phosphors in a closed system

    International Nuclear Information System (INIS)

    Peng Wenfang; Zou Shaoyu; Liu Guanxi; Xiao Quanlan; Zhang Rui; Xie Lijuan; Cao Liwei; Meng Jianxin; Liu Yingliang

    2011-01-01

    Highlights: → CaSc 2 O 4 :Ce 3+ nano-phosphors can be prepared by a single-step combustion method. → The ignition temperature is the lowest in the combustion synthesis of Ce 3+ /Eu 2+ doped phosphors. → The as-prepared nano-phosphors give a uniform particle size in the range of 15-20 nm and have highly dispersity and fluorescence intensity. → It is a convenient method for preparation of monodispersed oxide nano-phosphors, especially those being sensitive to air at high temperature. - Abstract: The CaSc 2 O 4 :Ce 3+ nano-phosphors were successfully prepared by a single-step combustion method at an ignition temperature as low as 200 deg. C in a closed autoclave using glycine as a fuel and PEG4000 as a dispersant. The samples were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results revealed that CaSc 2 O 4 :Ce 3+ nano-phosphors can be conveniently prepared at an ignition temperature as low as 200 deg. C, which was much lower than that in the ordinary combustion methods. The optimized ignition temperature was 220 deg. C. The CaSc 2 O 4 :Ce 3+ nano-phosphors give a uniform particle size in the range of 15-20 nm. The low ignition temperature and the addition of PEG4000 dispersant play important roles in the formation of small sized nanoparticles. The as-prepared nano-phosphors were incompact aggregates, but highly dispersed nano-phosphors can be obtained after further ultrasonic treatment. The CaSc 2 O 4 :Ce 3+ nano-phosphors give satisfactory luminescence characteristic benefiting from the closed circumstance, in which cerium atoms can be isolated from the oxidizing atmosphere and non-fluorescent Ce 4+ ions can be ruled out. The present highly dispersed CaSc 2 O 4 :Ce 3+ nano-phosphors with efficient fluorescence are promising in the field of biological labeling, and the present low temperature combustion method is facile and convenient and can

  2. Functionalization of silicon-doped single walled carbon nanotubes at the doping site: An ab initio study

    International Nuclear Information System (INIS)

    Song Chen; Xia Yueyuan; Zhao Mingwen; Liu Xiangdong; Li Feng; Huang Boda; Zhang Hongyu; Zhang Bingyun

    2006-01-01

    We performed ab initio calculations on the cytosine-functionalized silicon-doped single walled carbon nanotubes (SWNT). The results show that silicon substitutional doping to SWNT can dramatically change the atomic and electronic structures of the SWNT. And more importantly, it may provide an efficient pathway for further sidewall functionalization to synthesize more complicated SWNT based complex materials, for example, our previously proposed base-functionalized SWNTs, because the doping silicon atom can improve the reaction activity of the tube at the doping site due to its preference to form sp3 hybridization bonding

  3. Thermoluminescence properties of Eu-doped and Eu/Dy-codoped Sr2 Al2 SiO7 phosphors.

    Science.gov (United States)

    Jadhaw, Akhilesh; Sonwane, Vivek D; Gour, Anubha S; Jha, Piyush

    2017-11-01

    We report the thermoluminescence properties of Sr 1.96 Al 2 SiO 7 :Eu 0.04 and Sr 1.92 Al 2 SiO 7 :Eu 0.04 Dy 0.04 phosphors. These phosphors were prepared by a high-temperature solid-state reaction method. The prepared phosphors were characterized by X-ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60 Co source was used for γ-irradiation. The effect of heating rate and UV-exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ- and UV-irradiation on thermoluminescence studies was also examined. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Quantitative analysis of UV excitation bands for red emissions in Pr3+-doped CaTiO3, SrTiO3 and BaTiO3 phosphors by peak fitting

    International Nuclear Information System (INIS)

    Fujiwara, Rei; Sano, Hiroyuki; Shimizu, Mikio; Kuwabara, Makoto

    2009-01-01

    A quantitative spectral analysis of the ultraviolet (UV) broad excitation bands, which are located in the range 300-400 nm, for red emissions at around 610 nm in Pr-doped CaTiO 3 , SrTiO 3 :Al and BaTiO 3 :Mg phosphors has been carried out using a peak fitting technique. The obtained results demonstrate that the UV broad band of CaTiO 3 :Pr consists of four primary excitation bands centered around 330, 335, 365 and 380 nm and those of both SrTiO 3 :Al and BaTiO 3 :Mg consist of three primary bands centered around 310, 345 and 370 nm. Based on the behavior patterns and the values of the respective primary excitation bands' parameters, i.e. center gravity (λ top ), maximum height (I max ) and full-width at half-maximum (FWHM), the UV-to-red relaxation processes in these titanate phosphors can be explained to be essentially the same, except for the existence of an additional relaxation pathway via electron-trap states in CaTiO 3 :Pr, which gives a characteristic shape of its UV excitation spectrum in the wavelength range of >360 nm

  5. Phosphors for LED lamps

    Science.gov (United States)

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  6. Synthesis and TL/OSL properties of a novel high-sensitive blue-emitting LiSrPO{sub 4}:Eu{sup 2+} phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C.B.; Koparkar, K.A.; Omanwar, S.K. [Sant Gadge Baba Amravati University, Department of Physics, Amravati (India); Bajaj, N.S. [Toshniwal Arts, Commerce and Science College, Sengoan, Hingoli District, MH (India); Soni, A. [Bhabha Atomic Research Centre, Radiological Physics and Advisory Division, Mumbai (India)

    2016-07-15

    In this study, a series of Eu{sup 2+}-doped LiSrPO{sub 4} phosphors were synthesized via solid-state method. The structural and morphological characterizations were done through X-ray diffraction and scanning electronic microscope. Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically stimulated luminescence (OSL) behaviours of LiSrPO{sub 4}:Eu{sup 2+} phosphors were studied. The LiSrPO{sub 4}:Eu{sup 2+} phosphor shows OSL sensitivity about 8 times than that of α-Al{sub 2}O{sub 3}:C phosphor and 6 times than that of LiMgPO{sub 4}:Tb{sup 3+}, B phosphor. Moreover, TL sensitivity was about 15 times more as compared to α-Al{sub 2}O{sub 3}:C phosphor. The kinetic parameters of TL curve were calculated using peak shape method. In TL/OSL mode, dose-response was almost linear nature, in the range of measurement. The minimum detectable dose was found to be 25.18 μGy with 3σ of background. Also, reusability was also studies, which shows the phosphor can be reusable for 10 cycles with 0.1 % change in OSL output. (orig.)

  7. Synthesis and characterization of Mn2+-doped ZnS nanoparticles

    Indian Academy of Sciences (India)

    Keywords. Nanoparticles; nanocomposite; Mn2+-doped ZnS; annealing; X-ray diffrac- tion; FTIR; ultra violet. ... is an important wide band gap semiconductor, has attracted much attention owing to its wide applications ... semiconductor nanoparticles ZnS : Mn2+ is used as phosphors and also in thin film electroluminescent ...

  8. One-pot electrochemical growth of sponge-like polyaniline-intercalated phosphorous-doped graphene oxide on nickel foam as binder-free electrode material of supercapacitor

    Science.gov (United States)

    Bigdeli, Hadise; Moradi, Morteza; Borhani, Saeid; Jafari, Elnaz Abbasi; Hajati, Shaaker; Kiani, Mohammad Ali

    2018-06-01

    In this work, phosphor-doped graphene oxide (PGO) was synthesized by chemical technique. Also, the sponge-like PGO@polyaniline nanocomposite (PGO@PANI) film was coated on the nickel foam by one-step electropolymerization. The active materials were then characterized by Fourier transforms infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller technique. When PANI/PGO was used as supercapacitor electrode, under current density of 1 A/g, the specific capacitance of the prepared PGO@PANI was measured as 603 F/g, which is 6.0 times higher than that of pure PANI (102 F/g). Moreover, capacity stability of the PANI/PGO increased significantly as compared to PANI (65% vs. 44%) after increasing the current density from 1 to 15 A/g. The clear electrochemical performance of PANI/PGO was enhanced owing to the synergistic effect of PGO and PANI. Our results demonstrate that PANI/PGO nanosheet arrays are promising candidate for electrode supercapacitor applications.

  9. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al₂O₄:Eu2+, Dy3+ Phosphors.

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-10-18

    (Sr, Ca, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al₂O₄:Eu 2+ ,Dy 3+ phosphors, the different phase formation from monoclinic SrAl₂O₄ phase to hexagonal SrAl₂O₄ phase to monoclinic CaAl₂O₄ phase was observed when the Ca content increased. The emission color of SrAl₂O₄:Eu 2+ , Dy 3+ phosphors varied from green to blue. For the (Sr, Ba)Al₂O₄:Eu 2+ , Dy 3+ phosphors, different phase formation from the monoclinic SrAl₂O₄ phase to the hexagonal BaAl₂O₄ phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl₂O₄:Eu 2+ , Dy 3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr 2+ with Ba 2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips.

  10. Ca8NaY(PO4)6F2:Eu2+,Mn2+: a potential color-tunable phosphor for white LEDs applications

    International Nuclear Information System (INIS)

    Fen, Zhang; Wanjun, Tang

    2015-01-01

    Eu 2+ - and/or Mn 2+ -activated Ca 8 NaY(PO 4 ) 6 F 2 phosphors have been prepared via a combustion-assisted synthesis route. The powder X-ray diffraction measurement revealed that Ca 8 NaY(PO 4 ) 6 F 2 crystallized in a hexagonal crystal system with the space group P6 3 /m (176). The photoluminescence spectrum of the Eu 2+ single-doped phosphor shows a broad blue emission band peaking at 451 nm under the excitation of UV irradiation. The Eu 2+ -/Mn 2+ -codoped phosphors show a blue emission band and an orange emission band, and the corresponding CIE coordinates intuitively indicate the tunable colors from blue to yellow area. The energy transfer from the Eu 2+ to Mn 2+ ions is demonstrated to be a quadrupole-quadrupole mechanism in terms of the experimental results and analysis of PL spectra and decay curves of the phosphors. The developed phosphors can be efficiently excited in the UV region and exhibit a tunable white-light emission, making them attractive as single-component white-light-emitting conversion phosphors for UV-based white LEDs. (orig.)

  11. A novel UV-emitting phosphor: LiSr4(BO3)3: Pb2+

    International Nuclear Information System (INIS)

    Pekgözlü, İlhan

    2013-01-01

    Pure and Pb 2+ doped LiSr 4 (BO 3 ) 3 materials were prepared by a solution combustion synthesis method. The phase analysis of all synthesized materials were determined using the powder XRD. The synthesized materials were investigated using spectrofluorometer at room temperature. The excitation and emission bands of LiSr 4 (BO 3 ) 3 : Pb 2+ were observed at 284 and 328 nm, respectively. The dependence of the emission intensity on the Pb 2+ concentration for the LiSr 4 (BO 3 ) 3 were studied in detail. It was observed that the concentration quenching of Pb 2+ in LiSr 4 (BO 3 ) 3 is 0.005 mol. The Stokes shifts of LiSr 4 (BO 3 ) 3 : Pb 2+ phosphor was calculated to be 4723 cm –1 . -- Highlights: • A novel UV-emitting phosphor: LiSr 4 (BO 3 ) 3 : Pb 2+ ” synthesized for the first time. • The emission band of LiSr 4 (BO 3 ) 3 : Pb 2+ was observed at 328 nm upon excitation with 284 nm. • LiSr 4 (BO 3 ) 3 : Pb 2+ is a good phosphor for broadband UV application

  12. A-Site Cation Substitutions in Strained Y-Doped BaZrO3 Multilayer Films Leading to Fast Proton Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Aruta, Carmela [Univ. of Roma Tor Vergata, Rome (Italy); Han, Chu [Georgia Inst. of Technology, Atlanta, GA (United States); Zhou, Si [Dalian Univ. of Technology, Dalian (China); Cantoni, Claudia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Nan [Univ. of Roma Tor Vergata, Rome (Italy); Tebano, Antonello [Univ. of Roma Tor Vergata, Rome (Italy); Lee, Tien -Lin [Diamond Light Source Ltd., Didcot (United Kingdom); Schlueter, Christoph [Diamond Light Source Ltd., Didcot (United Kingdom); Bongiorno, Angelo [College of Staten Island, Staten Island, NY (United States); The Graduate Center of the City Univ. of New York, New York, NY (United States)

    2016-03-31

    Proton-conducting perovskite oxides form a class of solid electrolytes for novel electrochemical devices operating at moderate temperatures. Here, we use hard X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and density functional theory calculations to investigate the structure and elucidate the origin of the fast proton transport properties of strained ultrathin films of Y-doped BaZrO3 grown by pulsed lased deposition on NdGaO3. Our study shows that our BaZr0.8Y0.2O3 films incorporate a significant amount of Y dopants, and to a lesser extent also Zr ions, substituting for Ba2+, and that these substitutional defects agglomerate forming columnar regions crossing vertically from the surface to the interface the entire film. In conclusion, our calculations also show that, in regions rich in Y substitutions for both Zr and Ba, the proton transfer process involves nearly zero-energy barriers, indicating that A-site cation substitutions by Y lead to fast transport pathways and hence are responsible for the previously observed enhanced values of the proton conductivity of these perovskite oxide films.

  13. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen

    DEFF Research Database (Denmark)

    Kaun, C.C.; Larade, B.; Mehrez, H.

    2002-01-01

    unit cell generates a metallic transport behavior. Nonlinear I-V characteristics set in at high bias and a negative differential resistance region is observed for the doped tubes. These behaviors can be well understood from the alignment/mis-alignment of the current carrying bands in the nanotube leads......We report ab initio analysis of current-voltage (I-V) characteristics of carbon nanotubes with nitrogen substitution doping. For zigzag semiconducting tubes, doping with a single N impurity increases current flow and, for small radii tubes, narrows the current gap. Doping a N impurity per nanotube...

  14. UV-induced photoluminescence and thermally stimulated luminescence of CaSO{sub 4}:Eu and CaF{sub 2}:Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Godbole, S.V.; Nagpal, J.S.; Page, A.G. E-mail: agpage@magnum.barc.ernet.in

    2000-08-15

    Ultraviolet radiation induced changes in photoluminescence (PL) and thermally stimulated luminescence (TSL) of europium activated calcium sulphate (CaSO{sub 4}:Eu{sup 3+}, Eu{sup 2+}) and terbium doped calcium fluoride (CaF{sub 2}:Tb{sup 3+}) phosphors have been studied. PL measurements suggest conversion of Eu{sup 3+} to Eu{sup 2+} on 254 nm irradiation corresponding to charge transfer band of Eu{sup 3+} ions and reduction of Eu{sup 2+} ions with 365 nm illumination representing a f-d transition of Eu{sup 2+} ions. Similar studies carried out on CaF{sub 2}:Tb{sup 3+} phosphor, however, do not show any significant wavelength specific changes. The integrated TSL output appears to be rate-dependent for both phosphors. The wavelength dependent changes in TSL output observed for CaSO{sub 4}:Eu phosphor have been correlated with those obtained in PL studies. The changes in TSL and PL characteristics of CaF{sub 2}:Tb{sup 3+} phosphor have been explained on the basis of stabilisation of traps based on matrix specific charge similarities.

  15. Green-emissive transparent BaSi 2O 5:Eu 2 + film phosphor on quartz glass created by a sputtering thermal diffusion process

    Science.gov (United States)

    Seo, K. I.; Park, J. H.; Kim, J. S.; Na, Y. H.; Choi, J. C.; Bae, J. S.

    2009-10-01

    Eu 2+-doped BaSi 2O 5 film phosphors on quartz substrates are fabricated by radio-frequency magnetron sputtering thermal diffusion. The BaSi 2O 5: Eu 2+ phosphor crystals have some preferred orientations that are lattice-spacing matched with the crystallized β- SiO 2 crystals, and they show pore and grain boundary-free morphology with a rod-like shape fused into the crystallized β- SiO 2 crystals. The BaSi 2O 5: Eu 2+ film phosphor has a high transparency, with a transmittance of about 30% in visible light. The BaSi 2O 5: Eu 2+ film phosphor shows 510 nm green emission from the f-d transition of the Eu 2+ ions, and in particular the best sample shows a green photoluminescence brightness of about 5% of a BaSi 2O 5: Eu 2+ powder phosphor screen. These excellences in optical properties can be explained by less optical scattering at pores or grain boundaries, and less reflection at the continuously index-changed interface.

  16. Synthesis and luminescence properties of glass ceramics containing MSiO3:Eu2+ (M=Ca, Sr, Ba) phosphors for white LED

    International Nuclear Information System (INIS)

    Cui Zhiguang; Jia Guohua; Deng Degang; Hua Youjie; Zhao Shilong; Huang Lihui; Wang Huanping; Ma Hongping; Xu Shiqing

    2012-01-01

    Eu 2+ doped silicate glasses were prepared of the system 52SiO 2 -48MO: xEu 2+ (in molar ratio, M=Ca, Sr, Ba; x=1, 3, 5, 7, 9) by a high temperature melt-quenching method in a reducing atmosphere. Glass ceramics containing MSiO 3 :Eu 2+ (M=Ca, Sr, Ba) nano-phosphors were obtained after the heat treatment of the glass samples. The excitation, emission spectra and lifetime decay curves of 4f 6 5d 1 →4f 7 of Eu 2+ were measured and interpreted with respect to their crystal structures and multi-site occupations of divalent europium in the hosts. Their excitation bands mainly extend from 450 to 250 nm, which is adaptable to the main emission region of the UV LED chip. With UV light excitation, the Eu 2+ emission in CaSiO 3 , SrSiO 3 and BaSiO 3 shows blue, green and yellow colors centered at 440, 505 and 555 nm, respectively. The critical Eu 2+ concentration was studied and determined to be x=5 for both CaSiO 3 and SrSiO 3 and x=7 for BaSiO 3 phosphors. The results show that the Eu 2+ doped glass ceramic phosphors containing MSiO 3 (M=Ca, Sr, Ba) nano-crystals can be used as potential matrix materials for a high power white LED pumped by the UV LED chip. - Highlights: → Glass ceramic containing MSiO 3 :Eu 2+ (M=Ca, Sr, Ba) phosphors prepared. → Derived phosphors emit intensively blue, green and yellow colors. → Their luminescence properties and crystal structures have been investigated. → Concentration quenching effects observed and analyzed. → Potential application for UV chip exciting white LED evaluated.

  17. Phosphor scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1980-01-01

    A method of fabricating scintillators is described in which the phosphor is distributed within the structure in such a way as to enhance the escape of the visible wavelength radiation that would otherwise be dissipated within the scintillator body. Two embodiments of the present invention are disclosed: one in which the phosphor is distributed in a layered structure and another in which the phosphor is dispersed throughout a transparent matrix. (U.K.)

  18. A novel yellow-emitting SrAlSi4N7:Ce3+ phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    Science.gov (United States)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-01

    Ce3+-doped and Ce3+/Li+-codoped SrAlSi4N7 phosphors were synthesized by gas pressure sintering of powder mixtures of Sr3N2, AlN, α-Si3N4, CeN and Li3N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi4N7:Ce3+(Ce3+/Li+) were investigated in this work. The band structure calculated by the DMol3 code shows that SrAlSi4N7 has a direct band gap of 3.87 eV. The single crystal analysis of Ce3+-doped SrAlSi4N7 indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi4N7 was identified as a major phase of the fired powders, and Sr5Al5Si21N35O2 and AlN as minor phases. Both Ce3+ and Ce3+/Li+ doped SrAlSi4N7 phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce3+/Li+-doped SrAlSi4N7 (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr0.97Al1.03Si3.997N\\94\\maccounttest14=t0005_18193 7:Ce3+0.03 with a commercial blue InGaN chip. It indicates that SrAlSi4N7:Ce3+ is a promising yellow emitting down-conversion phosphor for white LEDs.

  19. Energy transfer mechanism from Gd3+ to Sm3+ in K3Gd(PO4)2:Sm3+ phosphor

    International Nuclear Information System (INIS)

    Gupta, Palvi; Bedyal, A K; Kumar, Vinay; Khajuria, Y; Sharma, Vishal; Ntwaeaborwa, O M; Swart, H C

    2015-01-01

    Undoped K 3 Gd(PO 4 ) 2 and trivalent samarium (0.5–2.5 mol%) doped K 3 Gd(PO 4 ) 2 phosphors were synthesized by the solid-state method. The phase formation, optical and luminescence properties were investigated by x-ray diffraction (XRD), diffuse reflectance (DR) spectroscopy, and photoluminescence (PL) spectroscopy. The fluorescence decay spectra of the obtained phosphors were also recorded to study the energy transfer from sensitizer (Gd 3+ ) to activator (Sm 3+ ). Energy transfer effects from sensitizer to activator caused by rare-earth ions were mainly observed in the obtained PL and lifetime spectra. The decay curves of K 3 Gd(PO 4 ) 2 phosphor with different Sm 3+ ions concentrations were found to be non-exponential and the data is well fitted with the Inokuti–Hirayama (I–H) model. The energy transfer parameters such as critical distance for the transfer processes were determined. The Commission Internationale de l’Eclairage (CIE) chromatic coordinates and color-correlated temperature were also determined for the prepared phosphor. (paper)

  20. [Effect of charge compensation on emission spectrum of Sr2SiO4 : Dy3+ phosphor].

    Science.gov (United States)

    Li, Pan-Lai; Wang, Zhi-Jun; Yang, Zhi-Ping; Guo, Qing-Lin

    2009-01-01

    The Sr2SiO4 : Dy3+ phosphor was synthesized by the high temperature solid-state reaction method in air. Dy2O3 (99.9%), SiO2 (99.9%), SrCO3 (99.9%), Li2CO3 (99.9%), Na2CO3 (99.9%) and K2CO3 (99.9%) were used as starting materials, and the Dy3+ doping concentration was 2 mol%. The emission spectrum was measured by a SPEX1404 spectrophotometer, and all the characterization of the phosphors was conducted at room temperature. The emission spectrum of Sr2 SiO4 : Dy3+ phosphor showed several bands centered at 486, 575 and 665 nm under the 365 nm excitation. The effect of Li+, Na+ and K+ on the emission spectra of Sr2SiO4 : Dy3+ phosphor was studied. The results show that the location of the emission spectrum of Sr2SiO4 : Dy3+ phosphor was not influenced by Li+, Na+ and K+. However, the emission spectrum intensity was greatly influenced by Li+, Na+ and K+, and the evolvement trend was monotone with different charge compensation, i. e. the emission spectrum intensity of Sr2SiO4 : Dy3+ phosphor firstly increased with increasing Li+ concentration, then decreased. However the charge compensation concentration corresponding to the maximum emission intensity was different with different charge compensation, and the concentration is 4, 3 and 3 mol% corresponding to Li+, Na+ and K+, respectively. And the theoretical reason for the above results was analyzed.

  1. Chemical composition of cadmium selenochromite crystals doped with indium, silver and gallium

    International Nuclear Information System (INIS)

    Bel'skij, N.K.; Ochertyanova, L.I.; Shabunina, G.G.; Aminov, T.G.

    1985-01-01

    The high accuracy chemical analysis Which allows one to observe doping effect on the cadmium selenochromite crystal composition is performed. The problem on the possibility of impurity atom substitution for basic element is considered on the basis of data of atomic-absorption analysis of doped crystals. The crystals of cadmium selenochromite doped with indium by chromium to cadmium ratio are distributed into two groups and probably two types of substitution take place. At 0.08-1.5 at.% indium concentrations the Cr/Cd ratio >2. One can assume that indium preferably takes cadmium tetrahedral positions whereas at 1.5-2.5 at. % concentrations the Cr/Cd ratio =2 and cadmium is substituted for silver which does not contradict crystallochemical and physical properties of this compound. In crystals with gallium the Cr/Cd ratio <2. Gallium preferably substitutes chromium

  2. Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant

    International Nuclear Information System (INIS)

    Zhang Kai; Liu Hezhou; Wu Yating; Hu Wenbin

    2008-01-01

    YAG:Ce precursors were co-precipitated using ammonia water and ammonium hydrogen carbonate as precipitants, respectively. Phase transition of the precursors during sintering was compared between the two precipitants. The precursors synthesized with ammonia water transformed to YAG at about 1000 deg. C via YAlO 3 phase. The precursors synthesized with ammonium hydrogen carbonate directly converted to pure YAG at about 900 deg. C. Comparing the powders produced with the two precipitants, the powders produced with ammonia hydrogen carbonate showed good dispersity. When sintered at 1600 deg. C, aggregation of the powders synthesized with the two precipitants both became severe. With increase the sintering temperature, the maximum wavelength of excitation and emission spectra of the phosphors synthesized with ammonium water hardly varied. While the maximum wavelength of excitation spectra of the phosphors synthesized with ammonium hydrogen carbonate unchanged, and the emission spectra showed red shift. Because of size effect and higher loss of cerium content, the emission intensity of phosphors prepared with ammonium hydrogen carbonate was lower than the phosphors prepared with ammonium water, when sintered at the same temperature

  3. Photoluminescence and thermoluminescence properties of Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2} nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Palvi; Bedyal, A.K. [School of Physics, Shri Mata Vaishno Devi University, Katra, 182320 Jammu and Kashmir (India); Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com [School of Physics, Shri Mata Vaishno Devi University, Katra, 182320 Jammu and Kashmir (India); Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Khajuria, Y. [School of Physics, Shri Mata Vaishno Devi University, Katra, 182320 Jammu and Kashmir (India); Lochab, S.P. [Inter University Accelerator Centre, Anura Asaf Ali Marg, P. O. Box 10502, New Delhi 110067 (India); Pitale, S.S. [Crystal Technology Laboratory,TPD, Bhabha Atomic Research Centre Trombay, Mumbai 400085 (India); Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa); Ntwaeaborwa, O.M.; Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300 (South Africa)

    2014-12-15

    Energy level diagram of Tb{sup 3+} ion in the K{sub 3}Gd(PO{sub 4}){sub 2} host lattice. - Highlights: • First time, a detailed TL and PL study on undoped and Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2} nanophosphor. • Combustion method was employed to synthesize the Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2} nanophosphor. • Mechanism of excitation and emission in undoped and Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2} nanophosphor was given. - Abstract: Tb{sup 3+} doped nanoparticulate K{sub 3}Gd(PO{sub 4}){sub 2} phosphor was prepared by combustion method using urea as a fuel. The structure, optical and luminescent properties of the phosphor were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and thermoluminescence (TL) spectroscopy. In undoped K{sub 3}Gd(PO{sub 4}){sub 2}, the excitation and emission peaks at 273 nm and 323 nm belongs to the {sup 8}S{sub 7/2} → {sup 6}I{sub J(J=7/2)} and {sup 6}P{sub J(J=7/2)} → {sup 8} S{sub 7/2} transitions of Gd{sup 3+} while green emission was observed in the Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2}. TL study was carried out after exposing the samples to γ-radiations (0.1–5 kGy) in the K{sub 3}Gd(PO{sub 4}){sub 2}:Tb{sup 3+} (1.5 mol%). The calculated kinetic parameters were compared with different methods. The band gap of the phosphor was estimated as 5.80 eV. The green shade of the Tb{sup 3+} ion with the CIE coordinates (x, y) as (0.29, 0.54) was in good agreement with the well known green phosphors.

  4. Photoluminescence and thermoluminescence characterization of Eu3+- and Dy3+ -activated Ca3(PO4)2 phosphor

    International Nuclear Information System (INIS)

    Nagpure, I.M.; Saha, Subhajit; Dhoble, S.J.

    2009-01-01

    Rare-earth-doped polycrystalline Ca 3 (PO 4 ) 2 :Eu, Ca 3 (PO 4 ) 2 :Dy and Ca 3 (PO 4 ) 2 :Eu,Dy phosphors prepared by a modified solid-state synthesis has been studied for its X-ray diffraction, thermoluminescence (TL) and photoluminescence (PL) characteristics. The PL emission spectra of the phosphor suggest the presence of Eu 3+ ion in Ca 3 (PO 4 ) 2 :Eu and Dy 3+ ion in Ca 3 (PO 4 ) 2 :Dy lattice sites. The TL glow curve of the Ca 3 (PO 4 ) 2 :Eu compounds has a simple structure with a prominent peak at 228 deg. C, while Ca 3 (PO 4 ) 2 :Dy peaking at 146 and 230 deg. C. TL sensitivity of phosphors are compared with CaSO 4 : Dy and found 1.52 and 1.20 times less in Ca 3 (PO 4 ) 2 :Eu and Ca 3 (PO 4 ) 2 :Dy phosphors, respectively. The Ca 3 (PO 4 ) 2 :Eu,Dy phosphors shows switching behavior under two different excitation wavelengths and enhancement in PL intensity of Dy 3+ ions were reported. The paper discusses the photoluminescence and thermoluminescence behavior of Eu 3+ and Dy 3+ ion in Ca 3 (PO 4 ) 2 hosts, it may be applicable to solid-state lighting as well as thermoluminescence dosimetry applications.

  5. Synthesis and thermoluminescence characterization of Na6Mg(SO4)4:RE (RE = Ce, Tb) phosphors

    International Nuclear Information System (INIS)

    Kore, Bhushan P.; Dhoble, N.S.; Dhoble, S.J.

    2014-01-01

    Thermoluminescence (TL) properties of sulfate-based phosphors activated by different rare earths have received tremendous attention to the field of radiation dosimetry. Those TL materials based on CaSO 4 have been widely applied for medical and environmental dosimetry. Taking this fact into account we have synthesized Na 6 Mg(SO 4 ) 4 doped with Ce and Tb by wet chemical method. The prepared phosphor was characterized by XRD, FTIR, photoluminescence (PL) and thermoluminescence. For TL study, the phosphor is irradiated with γ-rays from 60 Co source. For studying luminescence properties, the prepared phosphor was annealed at different temperatures and effects of these annealing temperatures on Na 6 Mg(SO 4 ) 4 samples are investigated and quantified. The changes in the glow curve and PL emission spectrum are also investigated as a function of annealing temperature and the annealing temperature was optimized. For calculation of trapping parameters various methods such as peak shape (PS) method, initial rise (IR) method, various heating rate (VHR) method, and computerized glow curve deconvolution (CGCD) are employed. - Highlights: • Na 6 Mg(SO 4 ) 4 phosphor was successfully prepared by wet chemical method. • Effect of annealing temperatures on PL and TL properties has been studied. • Different trap analysis methods were used for calculating the trapping parameters. • Effect of these methods on activation energies were investigated in detail

  6. Facile preparation and formation mechanism of Sr2Si5N8:Eu2+ red-emitting phosphors

    Science.gov (United States)

    Wang, Yang; Wang, Yunli; Wang, Ming; Shao, Yiran; Zhu, Yingchun

    2018-05-01

    The red-emitting Sr2Si5N8:Eu2+ phosphors have been synthesized in a new facile process using (oxy)nitride precursors by inductive calcination under N2 atmosphere at ordinary pressure. Different from the prevailing methods, lower cost raw materials, simpler pretreatment, without harsh conditions and a shorter reaction time are achieved. It was found that red-emitting Sr2Si5N8:Eu2+ phosphors were synthesized with high crystallinity and purity after 1 h inductive calcination. The formation mechanism was characterized by XRD, SEM, TEM and Fluorescence microscopy. It was demonstrated that a hexagonal mesophase of Sr-doped α-Si3N4 was primarily formed in the reaction process, which transformed into the final product of the orthorhombic Sr2Si5N8:Eu2+ phosphors. During the reaction process, the color of the samples transforms from greenish-yellow to orange and eventually to red. The as-prepared phosphors have a wide excitation in the range of 250 ∼ 570 nm which matches blue light chips and give a red-light emission peaking at 610 nm. The results indicate a promising prospect for a simple, efficient and inexpensive way to prepare Sr2Si5N8:Eu2+ phosphors for blue/UV-based warm-white LEDs and other fluorescent applications.

  7. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    Science.gov (United States)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  8. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  9. Influence of Li+ charge compensator ion on the energy transfer from Pr3 + to Gd3 + ions in Ca9Mg(PO4)6F2:Gd3 +, Pr3 +, Li+ phosphor

    Science.gov (United States)

    Tamboli, Sumedha; Dhoble, S. J.

    2017-09-01

    Phototherapy is a renowned treatment for curing skin diseases since ancient times. Phototherapeutic treatment for psoriasis and many other diseases require narrow band ultra violet-B (NB-UVB) light with peak intensity at 313 nm to be exposed to the affected part of body. In this paper, we report combustion synthesis of NB-UVB - 313 nm emitting Ca9Mg(PO4)6F2 phosphors doped with Gd3 +, Pr3 + and Li+ ions. The phase formation was confirmed by obtaining X-ray diffraction (XRD) pattern and morphology was studied with the Scanning electron microscopy (SEM) images. Photoluminescence (PL) emission spectra show intense narrow band emission at 313 nm under 274 nm excitation wavelengths. Emission intensity was enhanced when Ca9Mg(PO4)6F2 compound is co-doped with Pr3 + ions. Excitation spectra of Ca9Mg(PO4)6F2:Gd3 +, Pr3 + doped samples shows broad excitation in ultra violet C (UVC) region. Diffuse reflectance spectra (DRS), obtained by UV-visible spectrophotometer, measures the absorption properties of the material. By applying Kubelka Munk function on the diffuse reflectance spectra, band gap of the material is determined. PL decay curves were examined which indicates efficient energy transfer between Pr3 + and Gd3 + ions. Charge compensation effect was also studied by co-doping Li+ ion in host. Emission intensity was found to increase with the addition of charge compensator. The prepared phosphor has potential to convert UVC light into NB-UVB. The luminescence intensity of Gd3 + shows remarkable increase when it is sensitized with Pr3 +, and an addition of charge compensator in the form of Li+, show even better results. This phosphor surely has the potential to be used as phototherapy lamp phosphor.

  10. Silver lead borate glasses doped with europium ions for phosphors ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... C. The investigation of Fourier transformer infrared spectra shows the presence of ... around the ions, these kinds of Eu3+ doped glasses find wide range of ... is attributed to hydroxyl (OH) or water group [12]. The broad water ...

  11. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  12. UV light-induced thermoluminescence of Er + Li doped ZrO2

    International Nuclear Information System (INIS)

    Hristov, H; Arhangelova, N; Velev, V; Penev, I; Bello, M; Moschini, G; Uzunov, N

    2010-01-01

    Analysis of the thermoluminescence (TL) properties of ZrO 2 doped with Eu and Li has been conducted. Different quantities of lithium co-dopant have been added as Li 2 CO 3 to a mixture of ZrO 2 with 1wt% Er. Pellets sintered at a temperature of 1200 0 C have been prepared and the kinetic parameters of the phosphors have been studied after irradiation with UV light. It has been shown that the addition of 8 to 10 wt% of Li to the mixture of ZrO 2 with 1wt% Er yields a maximum intensity of the peaks at 65 0 C and at 105 0 C. Spectral emission and spectral sensitivity of the phosphors have been studied. The analysis applied to TL glow curves, obtained from the UV irradiated phosphors and kept after the irradiation at different times in a dark storage, revealed that the peaks at 65 0 C and 105 0 C have relatively long fading. It is concluded that the phosphors thus obtained possess a good sensitivity to the UV emission and could be appropriate phosphors for detection and quantitative measurements of UV light.

  13. Enhanced hydrogen storage on Li-doped defective graphene with B substitution: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yanan [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Chu, Wei, E-mail: chuwei1965@scu.edu.cn [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Jing, Fangli [School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan (China); Zheng, Jian [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010 (China); Sun, Wenjing [China-America Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan, Guangdong 523808 (China); Xue, Ying [Key Laboratory Green Chemistry & Technology of Ministry of Education (MOE), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan (China)

    2017-07-15

    Highlights: • Li atoms were found to be well dispersed on defective structures without clustering. • First H{sub 2} with five different initial configurations on Li/MV, Li/DV, Li/BMV, Li/BDV were explored in order. • Each system could bind up to three H{sub 2} molecules with hydrogen average adsorption energies close to the range of 0.2–0.4 eV. • H{sub 2} molecules bind with systems through weak electrostatic interaction between Li cation and induced H{sub 2} dipole. • H{sub 2} adsorption and desorption on the studied systems can process under ambient conditions. - Abstract: The characteristics of hydrogen adsorption on Li-doped defective graphene systems were investigated using density functional theory (DFT) calculations. Four types of defective structures were selected. Li atoms were well dispersed on the defective graphene without clustering, evidenced by the binding energy value between Li and defective graphene than that of Li-Li{sub x}. Additionally, as the amount of adsorbed H{sub 2} molecules increase, the H{sub 2} molecules show tilting configuration toward the Li adatom. This is beneficial for more hydrogen adsorption under the electrostatic interaction. On these four stable structures, there were up to three polarized H{sub 2} molecules adsorbed on per Li adatom, with the average hydrogen adsorption energy in the range of approximately 0.2–0.4 eV. These results provide new focus on the nature of Li-doped defective graphene with sometimes B substitution medium, which could be considered as a promising candidate for hydrogen storage.

  14. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Hasiotis, C.; Li, Qingfeng; Deimede, V.

    2001-01-01

    Polymeric membranes from blends of sulfonated polysulfones (SPSF) and polybenzimidazole (PBI) doped with phosphoric acid were developed as potential high-temperature polymer electrolytes for fuel cells and other electrochemical applications. The water uptake and acid doping of these polymeric...... membranes were investigated. Ionic conductivity of the membranes was measured in relation to temperature, acid doping level, sulfonation degree of SPSF, relative humidity, and blend composition. The conductivity of SPSF was of the order of 10/sup -3/ S cm/sup -1/. In the case of blends of PBI and SPSF...

  15. Magnetic disaccommodation in Sn substituted magnetite

    International Nuclear Information System (INIS)

    Hernandez-Gomez, P.; Bendimya, K.; Francisco, C. de; Munoz, J.M.; Alejos, O.; Torres, C.

    2001-01-01

    The relaxation of the initial magnetic permeability has been measured in polycrystalline Sn-doped magnetite with nominal composition Sn x Fe 3-x O 4 with x ranging from x=0 to 0.6. In the temperature range between 80 and 500 K, the time decay of the initial permeability after sample demagnetization has been represented by means of isochronal disaccommodation curves, which show the presence of different relaxation processes at 250 K (IV' peak), 275 K (IV), 300 K (III), 400 K (II) and 440 K (I). This behavior is explained on the basis of the disaccommodation of vacancy-doped magnetite and another similar tetravalent substitution, as the previously analyzed Ti-doped magnetite

  16. Formation of rod type structures of CaSO4: Ce,P,Dy TLD phosphor using different synthesis routes

    International Nuclear Information System (INIS)

    Atone, M.S.; Wani, J.A.; Dhoble, S.J.

    2011-01-01

    Effect of Ce and P co-activation in CaSO 4 : Dy, standard TLD phosphor prepared by different synthesis root techniques and it's structural morphology is reported first time in this paper. We have already reported the sensitization of luminescence in CaSO 4 : Dy with phosphorous (P) and cerium (Ce) ions separately via acid distillation route. In the current investigation, we have doped these impurities (Ce, P, Dy) simultaneously in CaSO 4 host lattice. We have employed a well known chemical precipitation method and modified acid distillation method and have attempted to analyse the surface morphology resulted from these two synthesis routes. Chemical precipitation usually takes place at room temperature and in this way allows the reaction to take place silently. In case of acid distillation method we have reduced the synthesis temperature to 493K which is considerably less than 653K employed in previously reported literature. In case of precipitation method particle shape seems to be spherical and particle size is around one micro range or in the neighbourhood of nanorange. However, in the case of modified acid distillation method particles have shaped in to rod like structures and particle size again falls in the micro range. The photoluminescence intensity of the phosphor prepared by chemical precipitation method is weak as compared to the phosphor prepared by modified acid distillation method. Both the phosphors prepared by different methods have shown characteristic transitions of dopants. The emission spectra of prepared phosphors at 309 nm and 329 nm of Ce 3+ ions overlap well with excitation of Dy 3+ ions. Thermoluminescence (TL) property of both phosphors is again good though certain variation is observed in case of phosphor prepared by modified acid distillation method which shows rod like structure of phosphor. This variation in TL may be attributed to change in surface morphology (formation of rod type structure of particles) of the phosphor. (author)

  17. Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Hao, H.; Liu, H.X.; Cao, M.H.; Min, X.M.; Ouyang, S.X.

    2006-01-01

    The temperature-dependent Raman spectra of Mg- and La-doped SrBi 4 Ti 4 O 15 (SBT) were studied in the range 40-590 C. A quantum chemistry calculation was employed to estimate these two substitution states. It was found that A-site doping in this study not only caused multiplicative substitution states, but also the Raman spectra changed with the substitution amount. In a La-doped perovskite-like layer, La would occupy the Bi site when x>0.10 and the 314 and 550 cm -1 modes related to the rotating and tilting of the TiO 6 octahedron firstly became wide and then became sharp. With the increase of the substitution amount, both substitution states of Mg-doped SBT lead to the widening of 270 and 520 cm -1 peaks. (orig.)

  18. Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy

    Science.gov (United States)

    Hao, H.; Liu, H. X.; Cao, M. H.; Min, X. M.; Ouyang, S. X.

    2006-10-01

    The temperature-dependent Raman spectra of Mg- and La-doped SrBi4Ti4O15 (SBT) were studied in the range 40 590 °C. A quantum chemistry calculation was employed to estimate these two substitution states. It was found that A-site doping in this study not only caused multiplicative substitution states, but also the Raman spectra changed with the substitution amount. In a La-doped perovskite-like layer, La would occupy the Bi site when x>0.10 and the 314 and 550 cm-1 modes related to the rotating and tilting of the TiO6 octahedron firstly became wide and then became sharp. With the increase of the substitution amount, both substitution states of Mg-doped SBT lead to the widening of 270 and 520 cm-1 peaks.

  19. Structural properties and hyperfine characterization of Sn-substituted goethites

    Energy Technology Data Exchange (ETDEWEB)

    Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin

  20. Luminescent characteristics of UV excited Sr_0_._5Ca_0_._5TiO_3: Pr"3"+ reddish-orange phosphor

    International Nuclear Information System (INIS)

    Vidyadharan, Viji; Mohan P, Remya; Joseph, Cyriac; Unnikrishnan, N.V.; Biju, P.R.

    2016-01-01

    Pr"3"+ doped Sr_0_._5Ca_0_._5TiO_3 phosphors were synthesised by solid state reaction process. The structure, surface morphology and photoluminescence of the prepared phosphors were analysed using XRD, SEM and photoluminescence spectroscopy respectively. The XRD pattern confirmed orthorhombic perovskite structure of the Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ phosphor. Agglomeration of particles with irregular shapes is observed from the SEM images. The emission spectra of Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ phosphor shows the samples can be effectively excited with UV light at 336 nm and exhibit a strong reddish-orange emission at 611 nm. Concentration dependence of emission intensity shows concentration quenching effect on increasing Pr"3"+ concentration after x = 0.1 because of dipole–dipole interaction. Using Blasse's formula, critical distance for energy transfer was calculated. The CIE co-ordinates, CCT, colour purity and luminescence decay of the prepared phosphors were also calculated. These results offer the prepared phosphor as a suitable candidate for various photonic applications. - Highlights: • Sr_0_._5Ca_0_._5TiO_3: x Pr"3"+ perovskite structured phosphors were synthesized. • Under UV excitation, the PL spectra show strong reddish-orange emission. • The emission from "3P_J levels of Pr"3"+ were absent due to the presence of IVCT band. • Concentration quenching due to dipole–dipole interaction was observed. • For x = 0.1, sample shows a maximum emission intensity with 91.7% colour purity.

  1. Oxygen- and nitrogen-co-doped activated carbon from waste particleboard for potential application in high-performance capacitance

    International Nuclear Information System (INIS)

    Shang, Tong-Xin; Ren, Ru-Quan; Zhu, Yue-Mei; Jin, Xiao-Juan

    2015-01-01

    Graphical abstract: All electrodes showed excellent capacitance and retention versus discharge current density from 0.05 to 5 A/g. - Abstract: Oxygen- and nitrogen-co-doped activated carbons were obtained from phosphoric acid treated nitrogen-doped activated carbons which were prepared from waste particleboard bonded with urea-formaldehyde resin adhesives. The activated carbon samples obtained were tested as supercapacitors in two-electrode cell and extensive wetting 7 M KOH electrolytes. Their structural properties and surface chemistry, before the electrical testing, were investigated using elemental analysis, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray diffraction, Raman spectra, and adsorption of nitrogen. Activated carbon treated by 4 M phosphoric acid of the highest capacitance (235 F/g) was measured in spite of a relatively lower surface (1360 m 2 /g) than that of the activated carbon treated by 2 M phosphoric acid (1433 m 2 /g). The surface chemistry, and especially oxygen- and nitrogen-containing functional groups, was found of paramount importance for the capacitive behavior and for the effective pore space utilization by the electrolyte ions

  2. Intraband scattering studies in carbon- and aluminium-doped MgB2

    International Nuclear Information System (INIS)

    Samuely, P.; Szabo, P.; Hol'anova, Z.; Bud'ko, S.; Canfield, P.

    2006-01-01

    Magnetic field effect on the point-contact spectra of the Al- and C-substituted MgB 2 is presented. It is shown that suppression of the π-band contribution to the spectrum is different in the aluminium- and carbon-doped samples. The carbon substitution leads to a stronger enhancement of the π-band scattering while the Al-doping does not change the ratio between the π and σ scatterings

  3. Preparation and luminescence of green-emitting ZnAl{sub 2}O{sub 4}:Mn{sup 2+} phosphor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ing-Bang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chang, Yee-Shin [Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chen, Hao-Long [Department of Electronic Engineering, Kao Yuan University, Lujhu, Kaohsiung 821, Taiwan (China); Hwang, Ching Chiang [Department of Biotechnology, Mingdao University, Chang-Hua 52345, Taiwan (China); Jian, Chen-Jhu; Chen, Yu-Shiang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Tsai, Mu-Tsun, E-mail: mttsai@ms23.hinet.net [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China)

    2014-11-03

    Nanocrystalline Mn{sup 2+}-doped zinc spinel (ZnAl{sub 2}O{sub 4}:Mn{sup 2+}) green-emitting phosphor films were deposited on silicon substrate by sol–gel spin coating and subsequent heat treatment up to 1000 °C. The effects of dopant concentration and heat treatment on the optical and structural properties were investigated. The variations in sol viscosity with time, film thickness with number of layers were also examined. Thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray microscopy, atomic force microscopy, and photoluminescence spectrum. Single-phase ZnAl{sub 2}O{sub 4} started to crystallize at around 600 °C, with a normal spinel structure. On annealing at 1000 °C, the films had smooth surfaces with a nanocrystalline structure. Under UV or visible light excitation, the phosphor films exhibited an intense green emission band peaking at around 512 nm, corresponding to the typical {sup 4}T{sub 1} → {sup 6}A{sub 1} transition of tetrahedral Mn{sup 2+} ions. The most intense green emission was obtained by exciting at 456 nm. The emission intensity of films was highly dependent upon the excitation wavelength, crystallinity, dopant content, and deposition conditions. The results show that the ZnAl{sub 2}O{sub 4}:Mn{sup 2+} films have good potential for use as a green phosphor for displays and/or white light-emitting diodes. - Highlights: • ZnAl2O4:Mn2 + thin film phosphors have been synthesized by a sol–gel process. • The most intense green emission was obtained by exciting at 456 nm. • Photoluminescence is highly dependent on the crystallinity and doping content. • Emission intensity can also be modulated by controlling the film thickness.

  4. Tricolor emission Ca3Si2O7:Ln (Ln=Ce, Tb, Eu) phosphors for near-UV white light-emitting-diode

    International Nuclear Information System (INIS)

    Mao, Zhi-yong; Zhu, Ying-chun; Gan, Lin; Zeng, Yi; Xu, Fang-fang; Wang, Yang; Tian, Hua; Li, Jian; Wang, Da-jian

    2013-01-01

    Tricolor emission in a same Ca 3 Si 2 O 7 host with independent Ln (Ln=Ce 3+ , Eu 2+ , Tb 3+ ) dopants is demonstrated to construct a near-UV white light emitting diode (LED). The luminescence properties and thermal quenching properties, as well as the applications in near-UV white LED are investigated. These phosphors show typical blue, red, and green, three-basal-color, luminescence in the CIE chromaticity diagram for Ce 3+ , Eu 2+ and Tb 3+ dopants, respectively. Thermal quenching properties show that the luminescence thermal stability strongly depends on the different dopant types; better thermal quenching property of Ce 3+ and Tb 3+ is recorded in comparison with that of Eu 2+ . The white LED prototype fabricated with near-UV chip and as-prepared tricolor phosphors exhibits acceptable CIE chromaticity coordinates (0.32, 0.30) with a CCT of 6000 K and a CRI of 87, indicating the potential application of Ca 3 Si 2 O 7 :Ln phosphors in near-UV white LED. - Highlights: ► Tricolor Ca 3 Si 2 O 7 : Ln phosphors were demonstrated to construct near-UV white LED. ► Eu 2+ doped Ca 3 Si 2 O 7 red-emitting phosphor was confirmed by this work once again. ► Thermal quenching properties for Ca 3 Si 2 O 7 :Ln phosphors were reported for the first time. ► Performances of fabricated white LED indicated the potential application of phosphors.

  5. Photoluminescence varied by selective excitation in BiGdWO6:Eu3+ phosphor

    Science.gov (United States)

    Pavani, K.; Graça, M. P. F.; Kumar, J. Suresh; Neves, A. J.

    2017-12-01

    Eu3+ doped bismuth gadolinium tungstate (BGW), a simplest member of Aurivillius family of layered perovskites, was synthesized by solid-state reaction method. Structural characterisation has been performed by X-Ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Band gap of the host matrix has been calculated using reflectance and absorption spectra. Three different mechanisms were found to explain the excitation of Eu3+ ions and are described in detail. Photoluminescence (PL) spectra of the BGW phosphor doped with Eu3+ ions consist of major emission lines associated with 5D0 → 7FJ (J = 0, 1, 2, 3 and 4) of Eu3+ ion. Site selective PL excitation and emission indicates that Eu3+ ions doped in BiGdWO6 are sensitive to the excitation wavelength without change in the structure. Change in emission spectra were observed when the excitation wavelength was changed. Judd-Ofelt (J-O) parameters were determined from the indirect method to interpret the interactions between the host and dopant ions along with detailed analysis of lifetime measurements.

  6. Photoluminescence properties and energy transfer of color tunable MgZn₂(PO₄)₂:Ce³⁺,Tb³⁺ phosphors.

    Science.gov (United States)

    Xu, Mengjiao; Wang, Luxiang; Jia, Dianzeng; Zhao, Hongyang

    2015-11-21

    A series of Ce(3+)/Tb(3+) co-doped MgZn2(PO4)2 phosphors have been synthesized by the co-precipitation method. Their structure, morphology, photoluminescence properties, decay lifetime, thermal stability and luminous efficiency were investigated. The possible energy transfer mechanism was proposed based on the experimental results and detailed luminescence spectra and decay curves of the phosphors. The critical distance between Ce(3+) and Tb(3+) ions was calculated by both the concentration quenching method and the spectral overlap method. The energy transfer mechanism from the Ce(3+) to Tb(3+) ion was determined to be dipole-quadrupole interaction, and the energy transfer efficiency was 85%. By utilizing the principle of energy transfer and appropriate tuning of Ce(3+)/Tb(3+) contents, the emission color of the obtained phosphors can be tuned from blue to green light. The MgZn2(PO4)2:Ce(3+),Tb(3+) phosphor is proved to be a promising UV-convertible material capable of green light emitting in UV-LEDs due to its excellent thermal stability and luminescence properties.

  7. Data-driven discovery of energy materials: efficient BaM2Si3O10 : Eu2+ (M = Sc, Lu) phosphors for application in solid state white lighting.

    Science.gov (United States)

    Brgoch, Jakoah; Hasz, Kathryn; Denault, Kristin A; Borg, Christopher K H; Mikhailovsky, Alexander A; Seshadri, Ram

    2014-01-01

    In developing phosphors for application in solid state lighting, it is advantageous to target structures from databases with highly condensed polyhedral networks that produce rigid host compounds. Rigidity limits channels for non-radiative decay that will decrease the luminescence quantum yield. BaM(2)Si(3)O(10) (M = Sc, Lu) follows this design criterion and is studied here as an efficient Eu(2+)-based phosphor. M = Sc(3+) and Lu(3+) compounds with Eu(2+) substitution were prepared and characterized using synchrotron X-ray powder diffraction and photoluminescence spectroscopy. Substitution with Eu(2+) according to Ba(1-x)Eu(x)Sc(2)Si(3)O(10) and Ba(1-x)Eu(x)Lu(2)Si(3)O(10) results in UV-to-blue and UV-to-blue-green phosphors, respectively. Interestingly, substitution with Eu(2+) in the Lu(3+) containing material produces two emission peaks at low temperature and with 365 nm excitation, as allowed by the two substitution sites. The photoluminescence of the Sc(3+) compound is robust at high temperature, decreasing by only 25% of its room temperature intensity at 503 K, while the Lu-analogue suffers a large drop (75%) from its room temperature intensity. The decrease in emission intensity is explained as stemming from charge transfer quenching due to the short distances separating the luminescent centers on the Lu(3+) substitution site. The correlation between structure and optical response in these two compounds indicates that even though the structures are three-dimensionally connected, high symmetry is required to prevent structural distortions that could impact photoluminescence.

  8. First-principles study on silicon atom doped monolayer graphene

    Science.gov (United States)

    Rafique, Muhammad; Shuai, Yong; Hussain, Nayyar

    2018-01-01

    This paper illustrates the structural, electronic and optical properties of individual silicon (Si) atom-doped single layer graphene using density functional theory method. Si atom forms tight bonding with graphene layer. The effect of doping has been investigated by varying the concentration of Si atoms from 3.125% to 9.37% (i.e. From one to three Si atoms in 4 × 4 pure graphene supercell containing 32 carbon atoms), respectively. Electronic structure, partial density of states (PDOS) and optical properties of pure and Si atom-doped graphene sheet were calculated using VASP (Vienna ab-initio Simulation Package). The calculated results for pure graphene sheet were then compared with Si atom doped graphene. It is revealed that upon Si doping in graphene, a finite band gap appears at the high symmetric K-point, thereby making graphene a direct band gap semiconductor. Moreover, the band gap value is directly proportional to the concentration of impurity Si atoms present in graphene lattice. Upon analyzing the optical properties of Si atom-doped graphene structures, it is found that, there is significant change in the refractive index of the graphene after Si atom substitution in graphene. In addition, the overall absorption spectrum of graphene is decreased after Si atom doping. Although a significant red shift in absorption is found to occur towards visible range of radiation when Si atom is substituted in its lattice. The reflectivity of graphene improves in low energy region after Si atom substitution in graphene. These results can be useful for tuning the electronic structure and to manipulate the optical properties of graphene layer in the visible region.

  9. Spectral-converting study of La{sub 1−m−n}Er{sub m}Yb{sub n}OCl (m=0.001–0.2, n=0–0.1) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sangmoon, E-mail: spark@silla.ac.kr [Center for Green Fusion Technology and Department of Engineering in Energy and Applied Chemistry, Silla University, Busan 617-736 (Korea, Republic of); Cho, So-Hye [Center for Materials Architecturing, Institute of Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of)

    2014-09-15

    Optical materials composed of La{sub 1−m−n}Er{sub m}Yb{sub n}OCl (m=0.001–0.2, n=0–0.1) solid solution were prepared via a solid-state reaction using excess NH{sub 4}Cl flux at 950 °C for 30 min. X-ray diffraction patterns of La{sub 1−m}Er{sub m}OCl were compared upon altering the molar ratios of the flux to the La{sup 3+} (Er{sup 3+}, Yb{sup 3+}) ions. By means of photoluminescence spectra, the dependence of the luminescence intensity as a function of the Er{sup 3+} content and the color CIE coordinates of the Er{sup 3+}-doped layered LaOCl compounds were also investigated under excitation by near-ultraviolet (NUV) and visible light. The spectral conversion properties of Er{sup 3+} and Er{sup 3+}–Yb{sup 3+} ions doped into LaOCl phosphors were elucidated under diode-laser irradiation of 980 nm in wavelength. The desired up-conversion of the emitting light, passing throughout the green, orange, and red regions of the spectrum, was achieved by appropriate Er{sup 3+} and/or Yb{sup 3+} concentrations in the LaOCl host structure under 980-nm-excitation light, while its mechanism in the phosphors was described by an energy-level schematic. Up-conversion emission spectra and the dependence of the emission intensity on pump power in the La{sub 0.89}Er{sub 0.1}Yb{sub 0.01}OCl phosphor were investigated under diode-laser irradiation of both wavelengths, 980 and 1550 nm. - Highlights: • Flux-assisted La{sub 1−m−n}Er{sub m}Yb{sub n}OCl (m=0.001–0.2, n=0–0.1) phosphors were prepared. • Distinctive photoluminescence properties of Er{sup 3+}-doped LaOCl were investigated. • Spectral converting properties of Er{sup 3+} and Yb{sup 3+} in LaOCl phosphors were elucidated. • Up-conversion mechanisms are proposed on the basis of an energy-level diagram. • Dependence of the emission intensity on pump power in the phosphor was investigated.

  10. Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays

    Science.gov (United States)

    Omri, K.; Alyamani, A.; Mir, L. El

    2018-02-01

    Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).

  11. Optimization of synthesis technique and luminescent properties in Eu{sup 3+}-activated NaCaPO{sub 4} phosphor for solid state lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Ratnam, B.V. [Department of Physics, Changwon National University, Changwon 51140 (Korea, Republic of); Sahu, Mukesh K.; Vishwakarma, Amit K.; Jha, Kaushal [Luminescent Materials Research Lab (LMRL), Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Woo, Hyun-Joo [Department of Physics, Changwon National University, Changwon 51140 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 51140 (Korea, Republic of); Jayasimhadri, M., E-mail: jayaphysics@yahoo.com [Luminescent Materials Research Lab (LMRL), Department of Applied Physics, Delhi Technological University, Delhi 110042 (India)

    2017-05-15

    Europium activated NaCaPO{sub 4} phosphor has been synthesized by various synthesis techniques such as solid-state reaction (SSR), molten salt synthesis (MSS) and sol-gel combustion (SGC) method to optimize the synthesis procedure. The comparative investigations of structural and luminescent properties have been studied to know the best synthesis method. The XRD patterns and Rietveld refinement analysis of the synthesized phosphors confirmed the single phase orthorhombic structure of NaCaPO{sub 4}. Excitation spectra indicate the strong absorption in near ultraviolet (n-UV) region and the emission spectra exhibit strong emission band at 595 nm corresponds to {sup 5}D{sub 0}→{sup 7}F{sub 1} transition under n-UV (λ{sub ex}=392 nm) excitation. The SGC route synthesized phosphor exhibit intense emission than that of the SSR and MSS method. Therefore, the effect of dopant (Eu{sup 3+}) concentration on the emission intensity and concentration quenching mechanism has been discussed in detail for the Eu{sup 3+} doped NaCaPO{sub 4} phosphor synthesized by SGC method. The CIE chromaticity coordinates have been calculated for the phosphors synthesized by SSR, MSS and SGC methods to reveal the emitting color and also to know the utility of this phosphor for white LEDs.

  12. Coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compound

    International Nuclear Information System (INIS)

    Lu, T.P.; Wu, C.C.; Chou, W.H.; Lan, M.D.

    2010-01-01

    The magnetic and superconducting properties of the Sm-doped FeAs-based superconducting compound were investigated under wide ranges of temperature and magnetic field. After the systematical magnetic ion substitution, the superconducting transition temperature decreases with increasing magnetic moment. The hysteresis loop of the La 0.87-x Sm x Sr 0.13 FeAsO sample shows a superconducting hysteresis and a paramagnetic background signal. The paramagnetic signal is mainly attributed to the Sm moments. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. Unlike the electron doped FeAs-based superconducting compounds SmFeAsOF, the hole doped superconductivity is degraded by the substitution of La by Sm. The hole-doped and electron-doped sides are not symmetric.

  13. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    Science.gov (United States)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  14. Crystal structure and luminescence properties of a novel red-emitting phosphor BaAlBO{sub 3}F{sub 2}:Eu{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanping, E-mail: cwp0918@aliyun.com; Zhou, Ahong; Liu, Yan; Dai, Xiaoyan; Yang, Xin

    2014-12-15

    A series of novel red-emitting phosphors BaAlBO{sub 3}F{sub 2}:xEu{sup 3+} (0.001≤x≤0.08) were first synthesized via a high temperature solid-state reaction. X-ray diffraction and photoluminescence spectroscopy were used to characterize the crystal structure and photoluminescence properties of the phosphor, respectively. The phosphor can be effectively excited with a 395 nm light, and shows a dominant {sup 5}D{sub 0}−{sup 7}F{sub 2} emission with chromatic coordination of 0.628 and 0.372. The optimal doping concentration is about 0.04. Rietveld refinement results and the luminescence behavior of Eu{sup 3+} indicate that the Eu{sup 3+} ion occupies a C{sub 3} symmetry site, and the host BaAlBO{sub 3}F{sub 2} has a hexagonal structure with P-6 space group. In addition, the phosphor could be a potential candidate as red-emitting phosphor for application in white light-emitting diode. - Graphical abstract: The luminescence behavior and Rietveld refinement of BaAlBO{sub 3}F{sub 2}:Eu{sup 3+} indicate that the red-emitting phosphor has potential application in white LED and the host has a hexagonal structure with P-6 space group. - Highlights: • A novel red-emitting phosphor BaAlBO{sub 3}F{sub 2}:Eu{sup 3+} is first synthesized. • The crystal structure of BaAlBO{sub 3}F{sub 2} is confirmed. • The phosphor shows potential application in white LED.

  15. Antimony substitution in SmFeAsO

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Daniel; Braun, Hans F. [Universitaet Bayreuth (Germany)

    2015-07-01

    In the iron based compounds structural and magnetic phase transitions can be suppressed by applying external hydrostatic pressure and superconductivity emerges. Beside hydrostatic pressure, it is possible to apply chemical pressure by the substitution of atoms in the compounds with smaller ones. Such a substitution was successful for example in LaFeAs{sub 1-x}P{sub x}O, where the parent compound shows a structural and a spin-density-wave transition and the P doped samples become superconducting. We are interested in the opposite way and substitute the As by the bigger Sb. In literature, the substitution in the La-1111 compounds was possible up to a substitution level of 40 %. With Sm, instead of La, we used a smaller rare-earth metal. We present the results obtained on polycrystalline samples characterized by Xray powder diffraction and resistivity measurements.

  16. Fabrication of silica glass containing yellow oxynitride phosphor by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Hiroyo; Yoshimizu, Hisato; Hirosaki, Naoto; Inoue, Satoru, E-mail: SEGAWA.Hiroyo@nims.go.jp [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2011-06-15

    We have prepared silica glass by the sol-gel method and studied its ability to disperse the Ca-{alpha}-SiAlON:Eu{sup 2+} phosphor for application in white light emitting diodes (LEDs). The emission color generated by irradiating doped glass with a blue LED at 450 nm depended on the concentration of SiAlON and the glass thickness, resulting in nearly white light. The luminescence efficiency of 1-mm-thick glass depended on the SiAlON concentration, and was highest at 4 wt% SiAlON.

  17. Spectral characteristics and white emission of Dy{sup 3+}/Tm{sup 3+}-BaLaGa{sub 3}O{sub 7} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shufang, E-mail: shfgao@yangtzeu.edu.cn [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023 (China); Xu, Shan [School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023 (China); Wang, Yeqing [Department of Applied Physics, East China Jiaotong University, Nanchang, Jiangxi 330013 (China); Tu, Chaoyang, E-mail: tcy@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics of CAS, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou, Fujian 350002 (China)

    2016-10-15

    Tm{sup 3+}-, Dy{sup 3+}-BaLaGa{sub 3}O{sub 7} phosphors have been synthesized by solid-phase sintering. X-ray diffraction (XRD) and photoluminescence properties of the phosphors were investigated in detail. The sample Tm{sup 3+} and Dy{sup 3+} ions co-doped BaLaGa{sub 3}O{sub 7} obtain white light emission by integrating a blue emission band located at 455 nm ({sup 1}D{sub 2}→{sup 3}F{sub 4}) and an orange one located at 573 nm ({sup 4}F{sub 9/2}→{sup 6}H{sub 13/2}) attributed to Tm{sup 3+} and Dy{sup 3+} ions, respectively. The study on the luminescence mechanism showed that there is the energy transfer between Tm{sup 3+} and Dy{sup 3+} in Tm{sup 3+}/Dy{sup 3+}-BaLaGa{sub 3}O{sub 7} phosphors.

  18. Nanoscale measurements of phosphorous-induced lattice expansion in nanosecond laser annealed germanium

    Science.gov (United States)

    Boninelli, S.; Milazzo, R.; Carles, R.; Houdellier, F.; Duffy, R.; Huet, K.; La Magna, A.; Napolitani, E.; Cristiano, F.

    2018-05-01

    Laser Thermal Annealing (LTA) at various energy densities was used to recrystallize and activate amorphized germanium doped with phosphorous by ion implantation. The structural modifications induced during the recrystallization and the related dopant diffusion were first investigated. After LTA at low energy densities, the P electrical activation was poor while the dopant distribution was mainly localized in the polycrystalline Ge resulting from the anneal. Conversely, full dopant activation (up to 1 × 1020 cm-3) in a perfectly recrystallized material was observed after annealing at higher energy densities. Measurements of lattice parameters performed on the fully activated structures show that P doping results in a lattice expansion, with a perpendicular lattice strain per atom βPs = +0.7 ± 0.1 Å3. This clearly indicates that, despite the small atomic radius of P compared to Ge, the "electronic contribution" to the lattice parameter modification (due to the increased hydrostatic deformation potential in the conduction band of P doped Ge) is larger than the "size mismatch contribution" associated with the atomic radii. Such behavior, predicted by theory, is observed experimentally for the first time, thanks to the high sensitivity of the measurement techniques used in this work.

  19. Unactivated yttrium tantalate phosphor

    International Nuclear Information System (INIS)

    Reddy, V.B.; Cheung, H.K.

    1992-01-01

    This patent describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing one or more additives of Rb and Al in an amount of between about 0.001 to 0.1 moles per mole of yttrium tantalate to improve brightness under X-radiation. This patent also describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing additives of Sr in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate and one or more of Rb and Al in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate the phosphor exhibiting a greater brightness under X-radiation than the phosphor absent Rb and Al

  20. Possibility of RGB emission by Eu{sup 2+} ion doped M{sup II}M{sup III}M{sup VI} phosphors for color inorganic electro- luminescent displays

    Energy Technology Data Exchange (ETDEWEB)

    Jabbarov, R B; Tagiev, B G; Tagiev, O B; Musaeva, N N [Inst. of Physics Azerbaijan National Academy of Sciences, Baku (Azerbaijan); Benalloul, P; Barthou, C [Univ. P. et. M. Curie, Paris (France)

    2004-07-01

    Full text: Eu{sup 2+} ion give broad-band emission due to f-d transitions. The 5d orbital are not shelled from the host lattice by any occupied orbital. Therefore the wavelength positions of the emission bands depend on host and change from hear UV to red. With increasing crystal field strength, the emission bands shift to longer wavelength. The broad band absorption and luminescence of Eu{sup 2+} is parity-and spin-allowed and lifetime is sub-microseconds. In resent years, many efforts have been devoted to luminescence studies of thio gallates and thio-aluminates doped with rare-earth ions because of their chemical stability in ambient environments. In ternary compounds both the ligand field at the divalent cation site and the nephelauxetic effect are reduced by the presence of trivalent or tetravalent ions. This effect is more pronounced with Al than with Ga. In a same family of compounds, the emission band generally shifts to shorter wavelengths with increasing M{sup II}/M{sup IV} or M{sup VI}/M{sup III} ratio. In this paper we revisited the luminescence of the phosphors CaGa{sub 2}S{sub 4}, BaGa{sub 2}S{sub 4}, BaAl{sub 2}S{sub 4} activated by Eu{sup 2+} ion. Influence of temperature and Eu{sup 2+} concentration on the luminescence characteristics of these phosphors are studied. These dates will be useful to evaluate the quality oi the powder or thin films prepared for devices.

  1. Tunable luminescence properties and energy transfer of Ba{sub 3}NaLa(PO{sub 4}){sub 3}F:Tb{sup 3+},Sm{sup 3+} phosphors with apatite structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haikun; Liao, Libing, E-mail: clayl@cugb.edu.cn; Chen, Jian; Guo, Qingfeng; Zhang, Yuanyuan; Mei, Lefu, E-mail: mlf@cugb.edu.cn

    2016-01-15

    Tb{sup 3+}–Sm{sup 3+} co-doped Ba{sub 3}NaLa(PO{sub 4}){sub 3}F phosphors with apatite structure have been prepared by a high temperature solid-state reaction, and their luminescence properties have been investigated in detail. The energy transfer (ET) mechanism was verified as the dipole–quadrupole mechanism, and the ET efficiency as well as the critical distance is also estimated. As a result of fine-tuning of the emission composition of the Tb{sup 3+} and Sm{sup 3+} ions, tunable luminescence properties can be realized by combining the emission of Tb{sup 3+} and Sm{sup 3+} in a single host lattice under UV light excitation. The emission color of the obtained phosphors can be modulated from green to yellow by controlling the doping content of the Sm{sup 3+} ions with the fixed Tb{sup 3+} content. Additional, as the temperature increases from RT to 150 °C, the PL intensities of Ba{sub 3}NaLa{sub 0.7}(PO{sub 4}){sub 3}F:0.10Tb{sup 3+},0.20Sm{sup 3+} decreased to 80.4% and 78.6% of the initial PL intensity, corresponding to the intensity of transition of Sm{sup 3+} and transition of Tb{sup 3+} in the Ba{sub 3}NaLa{sub 0.7}(PO{sub 4}){sub 3}F:0.10Tb{sup 3+},0.20Sm{sup 3+} phosphor, respectively. These results indicate the series of Ba{sub 3}NaLa{sub 1−x−y}(PO{sub 4}){sub 3}F:xTb{sup 3+},ySm{sup 3+} phosphors can be acted as a good candidate for the application in white light-emitting diodes. - Highlights: • Tb{sup 3+},Sm{sup 3+}-codoped Ba{sub 3}NaLa(PO{sub 4}){sub 3}F phosphors have been synthesized. • The emission color of the obtained phosphors can be modulated from green to red. • This phosphor has a good thermal stability.

  2. Synthesis and characterization of Sr2CeO4: Eu3+ phosphor by different forms

    International Nuclear Information System (INIS)

    Murthy, K.V.R.; Rao, Ch. Atchyutha; Suresh, K.; Ratna Kumar, B.W.; Nageswara Rao, B.; Poornachandra Rao, N.V.; Subba Rao, B.

    2011-01-01

    High temperature solid state reaction method was explored to synthesize undoped Sr 2 CeO 4 and Eu 3+ RE doped Sr 2 CeO 4 phosphor using inorganic materials taking in three different forms like, form (i) Strontium Carbonate (SrCO 3 ), Cerium Oxide (CeO 2 ), (ii) Strontium Nitrate (Sr(NO 3 ) 2 ), Cerium Oxide (CeO 2 ) and (iii) Strontium Nitrate (Sr(NO 3 ) 2 ), Cerium Nitrate (Ce(NO 3 ) 3 .6(NH 2 .CO.NH 2 ) in stoichiometric proportions of Sr:Ce as 2:1 and ground into a fine powder using agate mortar and pestle about an hour. The grounded samples were placed in an alumina crucible and fired at 1200 deg C for 3 hours in a muffle furnace with a heating rate of 5 deg C/min. To investigate the crystal structure, phase, morphology and luminescent properties of the synthesized phosphors XRD, SEM, Photoluminescence (PL) spectra, TL and CIE techniques were used. The Photoluminescence (PL) emission and excitation spectra were measured by Spectrofluorophotometer (SHIMADZU, RF-5301 PC) using Xenon lamp as excitation source. To identify the crystal phase, XRD analysis was carried out with a powder diffractometer (Rigaku-D/max 2500) using CuKα radiation. The microstructures of the samples were studied using a scanning electron microscopy (SEM) (XL 30 CP Philips). All the analysis was recorded at room temperature. We have compared the results of the prepared samples by different forms. From the XRD analysis it was found that the prepared phosphors are mostly in single phase of Sr 2 CeO 4 with an orthorhombic structure. From the XRD data, using Scherrer's formula the calculated average crystallite size is (i) ∼ 28 nm (ii) ∼ 9 nm (iii) ∼ 7 nm using FWHM. This indicates that, the prepared phosphors via high temperature solid state reaction method is in nano size. Sr 2 CeO 4 exhibits photoluminescence due to the charge transfer (CT) mechanism. The sample displays a broad excitation spectrum range from ∼ 220 to 400 nm. Under 350 nm excitation, the undoped Sr 2 CeO 4 shows

  3. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors

    Science.gov (United States)

    Xie, Qidi; Li, Bowen; He, Xin; Zhang, Mei; Chen, Yan; Zeng, Qingguang

    2017-01-01

    (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, Ca)Al2O4:Eu2+, Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, Ba)Al2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+ changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED). Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(In)N near UV chips. PMID:29057839

  4. Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, BaAl2O4:Eu2+, Dy3+ Phosphors

    Directory of Open Access Journals (Sweden)

    Qidi Xie

    2017-10-01

    Full Text Available (Sr, Ca, BaAl2O4:Eu2+, Dy3+ phosphors were prepared via a high temperature solid-state reaction method. The correlation of phase structure, optical properties and lifetimes of the phosphors are investigated in this work. For the (Sr, CaAl2O4:Eu2+,Dy3+ phosphors, the different phase formation from monoclinic SrAl2O4 phase to hexagonal SrAl2O4 phase to monoclinic CaAl2O4 phase was observed when the Ca content increased. The emission color of SrAl2O4:Eu2+, Dy3+ phosphors varied from green to blue. For the (Sr, BaAl2O4:Eu2+, Dy3+ phosphors, different phase formation from the monoclinic SrAl2O4 phase to the hexagonal BaAl2O4 phase was observed, along with a shift of emission wavelength from 520 nm to 500 nm. More interestingly, the decay time of SrAl2O4:Eu2+, Dy3+changed due to the different phase formations. Lifetime can be dramatically shortened by the substitution of Sr2+ with Ba2+ cations, resulting in improving the performance of the alternating current light emitting diode (AC-LED. Finally, intense LEDs are successfully obtained by combining these phosphors with Ga(InN near UV chips.

  5. How lithium atoms affect the first hyperpolarizability of BN edge-doped graphene.

    Science.gov (United States)

    Song, Yao-Dong; Wu, Li-Ming; Chen, Qiao-Ling; Liu, Fa-Kun; Tang, Xiao-Wen

    2016-01-01

    How do lithium atoms affect the first hyperpolarizability (β0) of boron-nitrogen (BN) edge-doped graphene. In this work, using pentacene as graphene model, Lin@BN-1 edge-doped pentacene and Lin@BN-2 edge-doped pentacene (n = 1, 5) were designed to study this problem. First, two models (BN-1 edge-doped pentacene, and BN-2 edge-doped pentacene ) were formed by doping the BN into the pentacene with different order, and then Li@BN-1 edge-doped pentacene and Li@ BN-2 edge-doped pentacene were obtained by substituting the H atom in BN edge-doped pentacene with a Li atom. The results show that the first hyperpolarizabilities of BN-1 edge-doped pentacene and Li@BN-1 edge-doped pentacene were 4059 a.u. and 6249 a.u., respectively; the first hyperpolarizabilities of BN-2 edge-doped pentacene and Li@BN-2 edge-doped pentacene were 2491 a.u. and 4265 a.u., respectively. The results indicate that the effect of Li substitution is to greatly increase the β0 value. To further enhance the first hyperpolarizability, Li5@ BN-1 edge-doped pentacene and Li5@BN-2 edge-doped pentacene were designed, and were found to exhibit considerably larger first hyperpolarizabilities (β0) (12,112 a.u. and 7921a.u., respectively). This work may inspire further study of the nonlinear properties of BN edge-doped graphene.

  6. Thermoluminescence properties of Mn-doped CaYAl3O7 phosphor irradiated with ultra-violet, mega-voltage and gamma radiation

    International Nuclear Information System (INIS)

    Pathak, Pushpraj; Selot, Anupam; Kurchania, Rajnish

    2014-01-01

    Low temperature combustion synthesis was employed for the preparation of CaYAl 3 O 7 (Mn 2+ ) phosphor. X-Ray diffraction (XRD) patterns were recorded to confirm the phase formation. Estimated particle size was found to be ∼19.9 nm by using the Debye Scherrer's formula. FTIR study confirms the formation of CaYAl 3 O 7 compound, escape of nitrates and other organic products. Thermoluminescence (TL) glow curves of the prepared phosphor were recorded after exposing the sample with Ultra-violet (UV), 6-Mega-voltage (MV), 16-MV and Co-60(Cobalt-60, 1.25-MeV average gamma energy) radiation. Trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor(s) of main peak, centered around 186 °C in the sample irradiated with UV source for 20 min, were determined using glow curve shape (Chen's) method. It has been observed that the TL peak intensity increases with increasing the exposure from UV source. Also with increases the energy of incident radiation a decrease in TL peak intensity were observed. This could be due to higher penetration power and less absorbance of incident beam in the phosphor material. Analysis suggests that possibility of utilizing this phosphor in futuristic low and high energy dosimetric applications as well as in solid state lighting devices. - Highlights: • The average particle size was found to be 19.9 nm of CaYAl 3 O 7 :Mn 2+ phosphor synthesized by the combustion method. • Two glow peaks were recorded in UV exposed sample. However with Gamma and MV irradiated sample a single glow peak was observed. • TL intensity in the sample irradiated with UV is higher as compared to Gamma and MV. • Glow peaks of the phosphor obeys second order kinetic has 0.637 eV activation energy and 9.9×10 7 S −1 frequency factor. • Useful in radiation dosimetry as well as solid state lighting

  7. Optically active centers in Eu implanted, Eu in situ doped GaN, and Eu doped GaN quantum dots

    International Nuclear Information System (INIS)

    Bodiou, L.; Braud, A.; Doualan, J.-L.; Moncorge, R.; Park, J. H.; Munasinghe, C.; Steckl, A. J.; Lorenz, K.; Alves, E.; Daudin, B.

    2009-01-01

    A comparison is presented between Eu implanted and Eu in situ doped GaN thin films showing that two predominant Eu sites are optically active around 620 nm in both types of samples with below and above bandgap excitation. One of these sites, identified as a Ga substitutional site, is common to both types of Eu doped GaN samples despite the difference in the GaN film growth method and in the doping technique. High-resolution photoluminescence (PL) spectra under resonant excitation reveal that in all samples these two host-sensitized sites are in small amount compared to the majority of Eu ions which occupy isolated Ga substitutional sites and thus cannot be excited through the GaN host. The relative concentrations of the two predominant host-sensitized Eu sites are strongly affected by the annealing temperature for Eu implanted samples and by the group III element time opening in the molecular beam epitaxy growth. Red luminescence decay characteristics for the two Eu sites reveal different excitation paths. PL dynamics under above bandgap excitation indicate that Eu ions occupying a Ga substitutional site are either excited directly into the 5 D 0 level or into higher excited levels such as 5 D 1 , while Eu ions sitting in the other site are only directly excited into the 5 D 0 level. These differences are discussed in terms of the spectral overlap between the emission band of a nearby bound exciton and the absorption bands of Eu ions. The study of Eu doped GaN quantum dots reveals the existence of only one type of Eu site under above bandgap excitation, with Eu PL dynamics features similar to Eu ions in Ga substitutional sites

  8. Critical current density in MgB2 bulk samples after co-doping with nano-SiC and poly zinc acrylate complexes

    International Nuclear Information System (INIS)

    Zhang, Z.; Suo, H.; Ma, L.; Zhang, T.; Liu, M.; Zhou, M.

    2011-01-01

    SiC and poly zinc acrylate complexes co-doped MgB 2 bulk has been synthesized. Co-doping can cause higher carbon substitutions and the second phase particles. Co-doping can further increase the Jc value of MgB 2 bulk on the base of the SiC doping. The co-doped MgB 2 bulk samples have been synthesized using an in situ reaction processing. The additives is 8 wt.% SiC nano powders and 10 wt.% [(CH 2 CHCOO) 2 Zn] n poly zinc acrylate complexes (PZA). A systematic study was performed on samples doped with SiC or PZA and samples co-doped with both of them. The effects of doping and co-doping on phase formation, microstructure, and the variation of lattice parameters were studied. The amount of substituted carbon, the critical temperature (T c ) and the critical current density (J c ) were determined. The calculated lattice parameters show the decrease of the a-axis, while no obvious change was detected for c-axis parameter in co-doped samples. This indicates that the carbon was substituted by boron in MgB 2 . The amount of substituted carbon for the co-doped sample shows an enhancement compared to that of the both single doped samples. The co-doped samples perform the highest J c values, which reaches 3.3 x 10 4 A/cm 2 at 5 K and 7 T. It is shown that co-doping with SiC and organic compound is an effective way to further improve the superconducting properties of MgB 2 .

  9. Luminescent properties of Mg3Ca3(PO4)4: Eu2+ blue-emitting phosphor for white light emitting diodes

    International Nuclear Information System (INIS)

    Li Yinqun; Deng Degang; Wang Qian; Li Gaofeng; Hua Youjie; Jia Guohua; Huang Lihui; Zhao Shilong; Wang Huanping; Li Chenxia; Xu Shiqing

    2012-01-01

    A blue-emitting phosphor, Eu 2+ -activated Mg 3 Ca 3 (PO 4 ) 4 phosphor was synthesized by conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation. Photoluminescence (PL) results showed that Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ could be efficiently excited by UV–visible light from 250 to 430 nm, which matched well with the emission wavelengths of near-UV and UV LED chips. The effects of the doped-Eu 2+ concentration in Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ on the PL were also investigated. The result reveals that Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ is a potential blue-emitting phosphor for white LEDs. - Graphical Abstract: The excitation spectra show a broad peak from 250 to 430 nm, which means Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor can be suitable for application in white LEDs excited by the near-UV and UV LEDs. The emission spectrum peaked at 456 nm with the full-width half-maximum (FWHM) of 102 nm is attributed to the 4f 6 5d 1 –4f 7 transition of the Eu 2+ ion. The asymmetric emission spectra show that Eu 2+ has more one emission center in Mg 3 Ca 3 (PO 4 ) 4 , which can be deconvoluted into at least four Gaussian components peaked at 423, 446, 483 and 510 nm. Highlights: ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor could be effectively excited by UV chips (360–430 nm). ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor is a potential blue-emitting phosphor for white LEDs. ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor shows a broadband emission.

  10. Optimized photoluminescence of SrB 2O 4:Eu 3+ red-emitting phosphor by charge compensation

    Science.gov (United States)

    Zhao, Lai-Shi; Liu, Jie; Wu, Zhan-Chao; Kuang, Shao-Ping

    2012-02-01

    A novel red-emitting phosphor, SrB 2O 4:Eu 3+, was synthesized by high temperature solid-state reaction and its photoluminescence properties were studied. The emission spectrum consists of four major emission bands. The emission peaks are located at 593, 612, 650 and 703 nm, corresponding to the 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 typical transitions of Eu 3+, respectively. The effects of Eu 3+ doping content and charge compensators (Li +, Na +, K +) on photoluminescence of SrB 2O 4:Eu 3+ phosphor were studied. The results show that the emission intensity can be affected by above factors and Na + is the optimal charge compensator for SrB 2O 4:Eu 3+. The photoluminescence of NaSrB 2O 4:Eu 3+ was compared with that of Y 2O 2S:Eu 3+. It implies that SrB 2O 4:Eu 3+ is a good candidate as a red-emitting phosphor pumped by near-ultraviolet (NUV) InGaN chip for fabricating white light-emitting diodes (WLEDs).

  11. Synthesis and thermoluminescence of new Li2SO4:Eu and Li2SO4:Dy phosphors exposed to beta radiation

    International Nuclear Information System (INIS)

    Garcia H, A. R.; Bustamante L, G. A.; Castro C, A. I.; Bernal H, R.; Cruz V, C.; Burruel I, S. E.; Castano M, V. M.

    2015-10-01

    Full text: Li 2 SO 4 is systematically studied for the very first concerning their dosimetric capabilities. Pellet- shaped Eu and Dy doped Li 2 SO 4 phosphors were synthesized by sintering. Some samples were exposed to beta particle irradiation in order to investigate their thermoluminescence (Tl) features. Glow curves were obtained for 80 mg mass samples, showing that both, Tl sensitivity as well as the temperature at which the Tl maximum is recorded, depends upon the sample dopant. The glow curves of Li 2 SO 4 :Eu exhibit two maxima, located at 433 and 573 K, when a 5 K/s heating rate was used, being the most intense emission that observed at 573 K. The integrated Tl increases as the radiation dose was increased in the 0.25 - 5 Gy range, with no shift of the Tl maxima being observed, meaning that first order kinetics processes are involved in the Tl emission. The normalized sensitivity recorded in ten consecutive irradiation-Tl readout cycles shows a good reusability with only 5 % variability. The integrated Tl fades as a function of the elapsed time between irradiation and the corresponding Tl readout of Eu and Dy doped Li 2 SO 4 phosphors is obtained. From the obtained results, we conclude that Li 2 SO 4 is a promising phosphor material to develop high performance Tl dosimeters, and a long term research work focused to understand and to improve their Tl features is absolutely justified. (Author)

  12. White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view

    International Nuclear Information System (INIS)

    Sommer, Christian; Hartmann, Paul; Pachler, Peter; Hoschopf, Hans; Wenzl, Franz P.

    2012-01-01

    Highlights: ► We discuss the impact of the optical properties of a phosphor for colour temperature constancy in solid state lighting. ► Quantitative evaluation of permissible variations of the optical properties for batch-to-batch reproducibility. ► Quantitative evaluation of permissible variations of the optical properties upon temperature increase. ► Quantitative evaluation of permissible variations of the optical properties upon materials degradation. - Abstract: For a systematic approach to improve the white light quality of phosphor converted LEDs and to fulfil the demands for colour temperature reproducibility and constancy, it is imperative to understand how variations of the extinction coefficient and the quantum efficiency of the phosphor particles as well as variations of the excitation wavelength of the blue LED die affect the correlated colour temperature of the white LED source. Based on optical ray tracing of a phosphor converted white LED package we deduce permissible values for the variation of a given extinction coefficient and a given quantum efficiency of a phosphor material in order to maintain acceptable colour variations. These quantitative valuations of the required constancy of the optical properties of the phosphors will in particular provide some benchmarks for the synthesis of improved phosphor materials aiming at solid state lighting applications.

  13. Luminescent properties of MAl(SO4)2 Br:Eu(3+) (M = Sr or Mg) red phosphors for near-UV light-emitting diodes.

    Science.gov (United States)

    Deshmukh, Priti B; Puppalwar, S P; Dhoble, N S; Dhoble, S J

    2015-02-01

    Eu(3+) -activated MAl(SO4 )2 Br phosphors (where M = Mg or Sr) are successfully prepared using a wet chemical reaction technique. The samples are characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopies. The XRD pattern revealed that both the samples are microcrystalline in nature. PL of Eu(3+) -doped SrAl(SO4 )2 Br and MgAl(SO4 )2 Br phosphors exhibited characteristic red emission coming from the (5) D0  → (7) F2 (616 nm) electron transition, when excited by 396 nm wavelength of light. The maximum intensity of luminescence was observed at a concentration of 1 mol% Eu(3+) . The intensity of the electric dipole transition at 616 nm is greater than that of the magnetic dipole transition at 594 nm. The results showed that MAl(SO4 )2 Br:Eu(3+) , (M = Mg, Sr) phosphors have potential application in near-UV light-emitting diodes as efficient red-emitting phosphor. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  15. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.

    Science.gov (United States)

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu

    2017-12-27

    Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.

  16. Phosphor investigation in the production of Syrian phosphoric acid using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.; Al-Hameish, M.

    2009-06-01

    Nuclear magnetic resonance spectroscopy (NMR) was applied in this work to the industrial process of extraction of uranium from phosphoric acid and to the process of the purification of the phosphoric acid for food proposes. The structural changes of used extraction materials and the organic content of the final product was studied. 13 C , 1 H and 32 P-spectra of all material during the process were recorded. The spectra of the three used extraction materials Bis(2-ethylhexyl Phosphoric Acid)) DEHPA, TriOctyl Phosphine Oxide (TOPO) (C 8 H 1 7) 3 P=O and TriButyl Phosphate (TBP) (C 4 H 9 O) 3 P=O show a partial degradation during the process. The final product ( Phosphoric acid for Food proposes) doesn't contain any organic solvents or extraction material. (author)

  17. Lu{sub 2}O{sub 3}:Tb,Hf storage phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Dagmara; Trojan-Piegza, Joanna [Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie Street, 50-383 Wroclaw (Poland); Zych, Eugeniusz, E-mail: zych@wchuwr.p [Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie Street, 50-383 Wroclaw (Poland)

    2010-03-15

    Lu{sub 2}O{sub 3}:Tb,Hf ceramics containing 0.1% of Tb and 0-1.5% of Hf were prepared in reducing atmosphere at 1700 {sup o}C and their thermoluminescence properties were systematically studied. For comparison Tb,Ca co-doped specimen was also fabricated and investigated. The Tb,Hf ceramics shows basically a single TL band located around 180 {sup o}C as found with heating rate of 15 {sup o}C/min. Ceramics singly doped with Tb show complex TL glow curves indicating the presence of traps of very different depths. On the other hand Tb,Ca co-doping is beneficial for the development of shallow traps with the main TL band around 70 {sup o}C. Hence, the aliovalent impurities, Ca{sup 2+} and Hf{sup 4+}, strongly influenced the traps structure in Lu{sub 2}O{sub 3}:Tb ceramics, each of them in its own specific way. Isothermal decay of Lu{sub 2}O{sub 3}:Tb,Hf at 185 {sup o}C was recorded and its shape suggest that multiple hole trapping occurs in the Lu{sub 2}O{sub 3}:Tb,Hf ceramics. Due to the different traps depths the Lu{sub 2}O{sub 3}:Tb,Hf ceramics possess properties typical for storage phosphors, while Lu{sub 2}O{sub 3}:Tb,Ca is a persistent luminescent material rather.

  18. Radioluminescent nuclear batteries with different phosphor layers

    International Nuclear Information System (INIS)

    Hong, Liang; Tang, Xiao-Bin; Xu, Zhi-Heng; Liu, Yun-Peng; Chen, Da

    2014-01-01

    Highlights: • We present and test the electrical properties of the nuclear battery. • The best thickness range for ZnS:Cu phosphor layer is 12–14 mg cm −2 for 147 Pm radioisotope. • The best thickness range for Y 2 O 2 S:Eu phosphor layer is 17–21 mg cm −2147 Pm radioisotope. • The battery with ZnS:Cu phosphor layer can provide higher energy conversion efficiency. • The mechanism affecting the nuclear battery output performance is revealed. - Abstract: A radioluminescent nuclear battery based on the beta radioluminescence of phosphors is presented, and which consists of 147 Pm radioisotope, phosphor layers, and GaAs photovoltaic cell. ZnS:Cu and Y 2 O 2 S:Eu phosphor layers for various thickness were fabricated. To investigate the effect of phosphor layer parameters on the battery, the electrical properties were measured. Results indicate that the optimal thickness ranges for the ZnS:Cu and Y 2 O 2 S:Eu phosphor layers are 12 mg cm −2 to 14 mg cm −2 and 17 mg cm −2 to 21 mg cm −2 , respectively. ZnS:Cu phosphor layer exhibits higher fluorescence efficiency compared with the Y 2 O 2 S:Eu phosphor layer. Its spectrum properly matches the spectral response of GaAs photovoltaic cell. As a result, the battery with ZnS:Cu phosphor layer indicates higher energy conversion efficiency than that with Y 2 O 2 S:Eu phosphor layer. Additionally, the mechanism of the phosphor layer parameters that influence the output performance of the battery is discussed through the Monte Carlo method and transmissivity test

  19. Enhance luminescence by introducing alkali metal ions (R+ = Li+, Na+ and K+) in SrAl2O4:Eu3+ phosphor by solid-state reaction method

    Science.gov (United States)

    Prasad Sahu, Ishwar

    2016-05-01

    In the present article, the role of charge compensator ions (R+ = Li+, Na+ and K+) in europium-doped strontium aluminate (SrAl2O4:Eu3+) phosphors was synthesized by the high-temperature, solid-state reaction method. The crystal structures of sintered phosphors were in a monoclinic phase with space group P21. The trap parameters which are mainly activation energy (E), frequency factor (s) and order of the kinetics (b) were evaluated by using the peak shape method. The calculated trap depths are in the range from 0.76 to 0.84 eV. Photoluminescence measurements showed that the phosphor exhibited emission peak with good intensity at 595 nm, corresponding to 5D0-7F1 (514 nm) orange emission and weak 5D0-7F2 (614 nm) red emission. The excitation spectra monitored at 595 nm show a broad band from 220 to 320 nm ascribed to O-Eu charge-transfer state transition and the other peaks in the range of 350-500 nm originated from f-f transitions of Eu3+ ions. The strongest band at 394 nm can be assigned to 7F0-5L6 transition of Eu3+ ions due to the typical f-f transitions within Eu3+ of 4f6 configuration. The latter lies in near ultraviolet (350-500 nm) emission of UV LED. CIE color chromaticity diagram and thermoluminescence spectra confirm that the synthesized phosphors would emit an orange-red color. Incorporating R+ = Li+, Na+ and K+ as the compensator charge, the emission intensity of SrAl2O4:Eu3+ phosphor can be obviously enhanced and the emission intensity of SrAl2O4:Eu3+ doping Li+ is higher than that of Na+ or K+ ions.

  20. High-pressure liquid chromatography of trace elements: Determination of terbium in terbium doped gadolinium oxide sulphide phosphors

    International Nuclear Information System (INIS)

    Mazzucotelli, A.; Dadone, A.; Frache, R.; Baffi, F.; Genoa Univ.

    1982-01-01

    A detailed study of isocratic and gradient elution separations of lanthanides has been carried out. Analyses of industrially and scientifically interesting products such as luminescent phosphors have been carried out by gradient elution with DL-2-hydroxyisobutyric acid. The determination of small amounts of terbium in gadolinium oxide sulphide phosphors is described in which an HCl solution was eluted through a stainless steel column packed with microparticulate silica, with bonded cation-exchange groups. Complete separation of gadolinium and terbium is achieved. Detection is with a variable wavelength detector following post-column complex formation with 4-(2-pyridylazo)-resorcinol monosodium salt. Results obtained on test solutions show good reproducilbity and sensitivtiy and the method may be considered sufficiently reliable to be used in routine quality control procedures. (orig.)