WorldWideScience

Sample records for phosphatidylinositol-4-phosphate 5-kinase control

  1. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    International Nuclear Information System (INIS)

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-01-01

    Highlights: → We analyzed Phosphatidylinositol 5-phosphate kinase IIβ (PIPKIIβ) function in cancer. → PIPKIIβ is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. → PIPKIIβ suppresses cellular motility through E-cadherin induction in SW480 cells. → Nuclear PIP 2 but not plasma membrane-localized PIP 2 mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D 3 (1α,25(OH) 2 D 3 ) has anti-cancer activity in several colon cancers. 1α,25(OH) 2 D 3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH) 2 D 3 -induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P 2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH) 2 D 3 . These results indicate that PIPKIIβ-mediated PI(4,5)P 2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  2. Activation of oocyte phosphatidylinositol kinase by polyamines

    International Nuclear Information System (INIS)

    Allende, J.E.; Carrasco, D.; Allende, C.C.

    1987-01-01

    Membrane bound phosphatidylinositol is phosphorylated by a specific membrane enzyme to form phosphatidylinositol 4 phosphate (PIP) which in turn is again phosphorylated to generate phosphatidylinositol 4,5 biphosphate (PIPP). The regulation of phosphatidylinositol phosphorylation and hydrolysis is relevant to the possible role of inositol phosphates as second messengers of hormone action. The membranes of Xenopus laevis oocytes contain a phosphatidylinositol kinase that can generate radioactive PIP after incubation with [ 32 ATP]. The radioactive product is extracted with methanol-chloroform and isolated by thin layer chromatography. The oocyte enzyme has an app Km for ATP of 80 μM and cannot use GTP as a phosphate donor. The formation of PIP is greatly stimulated by the addition of synthetic peptides containing clusters of polylysine at concentrations 0.5 mM. A similar effect is observed with a lysine rich peptide that corresponds to the 14 amino acids of the carboxyl terminus of the Kirstein ras 2 protein and also by polyornithine. Polyarginine and histone H 1 have much lower effects. Peptides containing polylysine clusters have also been found to affect the activity of other key membrane enzymes such as protein kinases and adenylate cyclase

  3. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban, E-mail: asiddhanto@yahoo.com

    2013-09-20

    Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.

  4. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    Science.gov (United States)

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  5. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    International Nuclear Information System (INIS)

    Boura, Evzen; Nencka, Radim

    2015-01-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine

  6. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Evzen, E-mail: boura@uochb.cas.cz; Nencka, Radim, E-mail: nencka@uochb.cas.cz

    2015-10-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.

  7. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Liu, Yang; Lai, Yu-Chiang; Hill, Elaine V; Tyteca, Donatienne; Carpentier, Sarah; Ingvaldsen, Ada; Vertommen, Didier; Lantier, Louise; Foretz, Marc; Dequiedt, Franck; Courtoy, Pierre J; Erneux, Christophe; Viollet, Benoît; Shepherd, Peter R; Tavaré, Jeremy M; Jensen, Jørgen; Rider, Mark H

    2013-10-15

    PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.

  8. Ste12/Fab1 phosphatidylinositol-3-phosphate 5-kinase is required for nitrogen-regulated mitotic commitment and cell size control.

    Directory of Open Access Journals (Sweden)

    David Cobley

    Full Text Available Tight coupling of cell growth and cell cycle progression enable cells to adjust their rate of division, and therefore size, to the demands of proliferation in varying nutritional environments. Nutrient stress promotes inhibition of Target Of Rapamycin Complex 1 (TORC1 activity. In fission yeast, reduced TORC1 activity advances mitotic onset and switches growth to a sustained proliferation at reduced cell size. A screen for mutants, that failed to advance mitosis upon nitrogen stress, identified a mutant in the PIKFYVE 1-phosphatidylinositol-3-phosphate 5-kinase fission yeast homolog Ste12. Ste12PIKFYVE deficient mutants were unable to advance the cell cycle to reduce cell size after a nitrogen downshift to poor nitrogen (proline growth conditions. While it is well established that PI(3,5P2 signalling is required for autophagy and that Ste12PIKFYVE mutants have enlarged vacuoles (yeast lysosomes, neither a block to autophagy or mutants that independently have enlarged vacuoles had any impact upon nitrogen control of mitotic commitment. The addition of rapamycin to Ste12PIKFYVE deficient mutants reduced cell size at division to suggest that Ste12PIKFYVE possibly functions upstream of TORC1. ste12 mutants display increased Torin1 (TOR inhibitor sensitivity. However, no major impact on TORC1 or TORC2 activity was observed in the ste12 deficient mutants. In summary, Ste12PIKFYVE is required for nitrogen-stress mediated advancement of mitosis to reduce cell size at division.

  9. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells

    NARCIS (Netherlands)

    Vermeer, J.E.M.; Thole, J.M.; Goedhart, J.; Nielsen, E.; Munnik, T.; Gadella, T.W.J.

    2009-01-01

    Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant

  10. The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Nelson

    2017-04-01

    Full Text Available Phosphatidylinositol-3-phosphate 5-kinase (PIKfyve is a lipid kinase involved in endosome maturation that emerged from a haploid genetic screen as being required for Ebola virus (EBOV infection. Here we analyzed the effects of apilimod, a PIKfyve inhibitor that was reported to be well tolerated in humans in phase 2 clinical trials, for its effects on entry and infection of EBOV and Marburg virus (MARV. We first found that apilimod blocks infections by EBOV and MARV in Huh 7, Vero E6 and primary human macrophage cells, with notable potency in the macrophages (IC50, 10 nM. We next observed that similar doses of apilimod block EBOV-glycoprotein-virus like particle (VLP entry and transcription-replication competent VLP infection, suggesting that the primary mode of action of apilimod is as an entry inhibitor, preventing release of the viral genome into the cytoplasm to initiate replication. After providing evidence that the anti-EBOV action of apilimod is via PIKfyve, we showed that it blocks trafficking of EBOV VLPs to endolysosomes containing Niemann-Pick C1 (NPC1, the intracellular receptor for EBOV. Concurrently apilimod caused VLPs to accumulate in early endosome antigen 1-positive endosomes. We did not detect any effects of apilimod on bulk endosome acidification, on the activity of cathepsins B and L, or on cholesterol export from endolysosomes. Hence by antagonizing PIKfyve, apilimod appears to block EBOV trafficking to its site of fusion and entry into the cytoplasm. Given the drug's observed anti-filoviral activity, relatively unexplored mechanism of entry inhibition, and reported tolerability in humans, we propose that apilimod be further explored as part of a therapeutic regimen to treat filoviral infections.

  11. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Czech Academy of Sciences Publication Activity Database

    Bouřa, Evžen; Nencka, Radim

    2015-01-01

    Roč. 337, č. 2 (2015), s. 136-145 ISSN 0014-4827 R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302; GA ČR GA15-09310S EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : phosphatidylinositol 4-kinase * inhibitor * crystal structure * virus Subject RIV: CC - Organic Chemistry Impact factor: 3.378, year: 2015

  12. Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate

    Directory of Open Access Journals (Sweden)

    Mayinger Peter

    2008-01-01

    Full Text Available Abstract Background Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown. Results Here we show that the expression of lipid phosphatase Sac1p in the yeast Saccharomyces cerevisiae is regulated in response to changes in phosphatidylinositol-4-phosphate (PI(4P concentrations. Unlike genes encoding enzymes involved in phospholipid biosynthesis, expression of the SAC1 gene is independent of inositol levels. We identified a novel 9-bp motif within the 5' untranslated region (5'-UTR of SAC1 that is responsible for PI(4P-mediated regulation. Upregulation of SAC1 promoter activity correlates with elevated levels of Sac1 protein levels. Conclusion Regulation of Sac1p expression via the concentration of its major substrate PI(4P ensures proper maintenance of compartment-specific pools of PI(4P.

  13. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  14. Purine analogs as phosphatidylinositol 4-kinase III beta inhibitors

    Czech Academy of Sciences Publication Activity Database

    Šála, Michal; Kögler, Martin; Plačková, Pavla; Mejdrová, Ivana; Hřebabecký, Hubert; Procházková, Eliška; Strunin, Dmytro; Lee, G.; Birkuš, G.; Weber, Jan; Mertlíková-Kaiserová, Helena; Nencka, Radim

    2016-01-01

    Roč. 26, č. 11 (2016), s. 2706-2712 ISSN 0960-894X R&D Projects: GA ČR GA15-09310S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : phosphatidylinositol 4-kinase * purine * PI4K III beta * antiviral agent * hepatitis C virus Subject RIV: CC - Organic Chemistry Impact factor: 2.454, year: 2016

  15. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers

    OpenAIRE

    de Saint-Jean, Maud; Delfosse, Vanessa; Douguet, Dominique; Chicanne, Gaetan; Payrastre, Bernard; Bourguet, William; Antonny, Bruno; Drin, Guillaume

    2011-01-01

    Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Os...

  16. A homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a novel, rapid substrate preparation.

    Directory of Open Access Journals (Sweden)

    Mindy I Davis

    Full Text Available Phosphoinositide kinases regulate diverse cellular functions and are important targets for therapeutic development for diseases, such as diabetes and cancer. Preparation of the lipid substrate is crucial for the development of a robust and miniaturizable lipid kinase assay. Enzymatic assays for phosphoinositide kinases often use lipid substrates prepared from lyophilized lipid preparations by sonication, which result in variability in the liposome size from preparation to preparation. Herein, we report a homogeneous 1536-well luciferase-coupled bioluminescence assay for PI5P4Kα. The substrate preparation is novel and allows the rapid production of a DMSO-containing substrate solution without the need for lengthy liposome preparation protocols, thus enabling the scale-up of this traditionally difficult type of assay. The Z'-factor value was greater than 0.7 for the PI5P4Kα assay, indicating its suitability for high-throughput screening applications. Tyrphostin AG-82 had been identified as an inhibitor of PI5P4Kα by assessing the degree of phospho transfer of γ-(32P-ATP to PI5P; its inhibitory activity against PI5P4Kα was confirmed in the present miniaturized assay. From a pilot screen of a library of bioactive compounds, another tyrphostin, I-OMe tyrphostin AG-538 (I-OMe-AG-538, was identified as an ATP-competitive inhibitor of PI5P4Kα with an IC(50 of 1 µM, affirming the suitability of the assay for inhibitor discovery campaigns. This homogeneous assay may apply to other lipid kinases and should help in the identification of leads for this class of enzymes by enabling high-throughput screening efforts.

  17. Metabolism of phospholipids in peripheral nerve from rats with chronic streptozotocin-induced diabetes: increased turnover of phosphatidylinositol-4,5-bisphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Bell, M E; Peterson, R G; Eichberg, J

    1982-07-01

    The effect of chronic streptozotocin-induced diabetes on phospholipid metabolism in rat sciatic nerve in vitro was investigated. In normal nerve incubated for 2 h in Krebs-Ringer-bicarbonate buffer containing (/sup 32/P)orthophosphate, radioactivity was primarily incorporated into phosphatidylinositol-4,5-bisphosphate and phosphatidylcholine. Smaller amounts were present in phosphatidylinositol-4-phosphate, phosphatidylinositol, and phosphatidic acid. As compared to controls, phosphatidylinositol-4,5-bisphosphate in nerves from animals made diabetic 2, 10, and 20 weeks earlier accounted for 30-46% more of the isotope, expressed as a percentage, incorporated into all phospholipids. In contrast, the proportion of radioactivity in phosphatidylcholine decreased by 10-25%. When the results were expressed as the quantity of phosphorus incorporated into phospholipid, only phosphatidylinositol-4,5-bisphosphate displayed a change. The amount of isotope which entered this lipid increased 60% and 67% for 2- and 10-week diabetic animals, respectively. Increased phosphatidylinositol-4,5-bisphosphate labeling was observed when epineurial-free preparations were used or when the composition of the incubation medium was varied. Sciatic and caudal nerve conduction velocities were decreased after 10 and 20 weeks but were unchanged after 2 weeks. Researchers conclude that an increase in the turnover of phosphatidylinositol-4,5-bisphosphate in sciatic nerve from streptozotocin-diabetic rats appears relatively early and persists throughout the course of the disease. This metabolic alteration may be related to a primary defect responsible for the accompanying deficient peripheral nerve function.

  18. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids.

    Directory of Open Access Journals (Sweden)

    Miguel A Martín-Acebes

    Full Text Available West Nile virus (WNV is a neurovirulent mosquito-borne flavivirus, which main natural hosts are birds but it also infects equines and humans, among other mammals. As in the case of other plus-stranded RNA viruses, WNV replication is associated to intracellular membrane rearrangements. Based on results obtained with a variety of viruses, different cellular processes have been shown to play important roles on these membrane rearrangements for efficient viral replication. As these processes are related to lipid metabolism, fatty acid synthesis, as well as generation of a specific lipid microenvironment enriched in phosphatidylinositol-4-phosphate (PI4P, has been associated to it in other viral models. In this study, intracellular membrane rearrangements following infection with a highly neurovirulent strain of WNV were addressed by means of electron and confocal microscopy. Infection of WNV, and specifically viral RNA replication, were dependent on fatty acid synthesis, as revealed by the inhibitory effect of cerulenin and C75, two pharmacological inhibitors of fatty acid synthase, a key enzyme of this process. However, WNV infection did not induce redistribution of PI4P lipids, and PI4P did not localize at viral replication complex. Even more, WNV multiplication was not inhibited by the use of the phosphatidylinositol-4-kinase inhibitor PIK93, while infection by the enterovirus Coxsackievirus B5 was reduced. Similar features were found when infection by other flavivirus, the Usutu virus (USUV, was analyzed. These features of WNV replication could help to design specific antiviral approaches against WNV and other related flaviviruses.

  19. Phosphatidylinositol 3,4,5-trisphosphate modulation in SHIP2-deficient mouse embryonic fibroblasts.

    Science.gov (United States)

    Blero, Daniel; Zhang, Jing; Pesesse, Xavier; Payrastre, Bernard; Dumont, Jacques E; Schurmans, Stéphane; Erneux, Christophe

    2005-05-01

    SHIP2, the ubiquitous SH2 domain containing inositol 5-phosphatase, includes a series of protein interacting domains and has the ability to dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]in vitro. The present study, which was undertaken to evaluate the impact of SHIP2 on PtdIns(3,4,5)P(3) levels, was performed in a mouse embryonic fibroblast (MEF) model using SHIP2 deficient (-/-) MEF cells derived from knockout mice. PtdIns(3,4,5)P(3) was upregulated in serum stimulated -/- MEF cells as compared to +/+ MEF cells. Although the absence of SHIP2 had no effect on basal PtdIns(3,4,5)P(3) levels, we show here that this lipid was significantly upregulated in SHIP2 -/- cells but only after short-term (i.e. 5-10 min) incubation with serum. The difference in PtdIns(3,4,5)P(3) levels in heterozygous fibroblast cells was intermediate between the +/+ and the -/- cells. In our model, insulin-like growth factor-1 stimulation did not show this upregulation. Serum stimulated phosphoinositide 3-kinase (PI 3-kinase) activity appeared to be comparable between +/+ and -/- cells. Moreover, protein kinase B, but not mitogen activated protein kinase activity, was also potentiated in SHIP2 deficient cells stimulated by serum. The upregulation of protein kinase B activity in serum stimulated cells was totally reversed in the presence of the PI 3-kinase inhibitor LY-294002, in both +/+ and -/- cells. Altogether, these data establish a link between SHIP2 and the acute control of PtdIns(3,4,5)P(3) levels in intact cells.

  20. Plasma membrane phosphatidylinositol 4,5 bisphosphate is required for internalization of foot-and-mouth disease virus and vesicular stomatitis virus.

    Directory of Open Access Journals (Sweden)

    Angela Vázquez-Calvo

    Full Text Available Phosphatidylinositol-4,5-bisphosphate, PI(4,5P(2, is a phospholipid which plays important roles in clathrin-mediated endocytosis. To investigate the possible role of this lipid on viral entry, two viruses important for animal health were selected: the enveloped vesicular stomatitis virus (VSV - which uses a well characterized clathrin mediated endocytic route - and two different variants of the non-enveloped foot-and-mouth disease virus (FMDV with distinct receptor specificities. The expression of a dominant negative dynamin, a PI(4,5P(2 effector protein, inhibited the internalization and infection of VSV and both FMDV isolates. Depletion of PI(4,5P(2 from plasma membrane using ionomycin or an inducible system, and inhibition of its de novo synthesis with 1-butanol revealed that VSV as well as FMDV C-S8c1, which uses integrins as receptor, displayed a high dependence on PI(4,5P(2 for internalization. Expression of a kinase dead mutant (KD of phosphatidylinositol-4-phosphate-5-kinase Iα (PIP5K-Iα, an enzyme responsible for PI(4,5P(2 synthesis that regulates clathrin-dependent endocytosis, also impaired entry and infection of VSV and FMDV C-S8c1. Interestingly FMDV MARLS variant that uses receptors other than integrins for cell entry was less sensitive to PI(4,5P(2 depletion, and was not inhibited by the expression of the KD PIP5K-Iα mutant suggesting the involvement of endocytic routes other than the clathrin-mediated on its entry. These results highlight the role of PI(4,5P(2 and PIP5K-Iα on clathrin-mediated viral entry.

  1. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB).

    Science.gov (United States)

    Humpolickova, Jana; Mejdrová, Ivana; Matousova, Marika; Nencka, Radim; Boura, Evzen

    2017-01-12

    The lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) is an essential host factor for many positive-sense single-stranded RNA (+RNA) viruses including human pathogens hepatitis C virus (HCV), Severe acute respiratory syndrome (SARS), coxsackie viruses, and rhinoviruses. Inhibitors of PI4KB are considered to be potential broad-spectrum virostatics, and it is therefore critical to develop a biochemical understanding of the kinase. Here, we present highly potent and selective fluorescent inhibitors that we show to be useful chemical biology tools especially in determination of dissociation constants. Moreover, we show that the coumarin-labeled inhibitor can be used to image PI4KB in cells using fluorescence-lifetime imaging microscopy (FLIM) microscopy.

  2. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion.

    Science.gov (United States)

    A P, Sudheesh; Laishram, Rakesh S

    2018-03-01

    Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.

  3. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    International Nuclear Information System (INIS)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan; Yu Zengping; Yang Yongjian; Giet, Markus van der; Tepel, Martin

    2005-01-01

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, β-myosin heavy chain, and α-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway

  4. Identification of human Phosphatidyl Inositol 5-Phosphate 4-Kinase as an RNA binding protein that is imported into Plasmodium falciparum.

    Science.gov (United States)

    Vindu, Arya; Dandewad, Vishal; Seshadri, Vasudevan

    2018-04-06

    Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. Translation repression of specific set of mRNA has been reported in gametocyte stages of this parasite. A conserved element present in the 3'UTR of some of these transcripts was identified. Biochemical studies have identified components of the RNA storage and/or translation inhibitor complex but it is not yet clear how the complex is specifically recruited on the RNA targeted for translation regulation. We used the 3'UTR region of translationally regulated transcripts to identify Phosphatidyl-inositol 5-phosphate 4-kinase (PIP4K2A) as the protein that associates with these RNAs. We further show that recombinant PIP4K2A has the RNA binding activity and can associate specifically with Plasmodium 3'UTR RNAs. Immunostainings show that hPIP4K2A is imported into the Plasmodium parasite from RBC. These results identify a novel RNA binding role for PIP4K2A that may play a role in Plasmodium propagation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Highly Selective Phosphatidylinositol 4-Kinase III beta Inhibitors and Structural Insight into Their Mode of Action

    Czech Academy of Sciences Publication Activity Database

    Mejdrová, Ivana; Chalupská, Dominika; Kögler, Martin; Šála, Michal; Plačková, Pavla; Bäumlová, Adriana; Hřebabecký, Hubert; Procházková, Eliška; Dejmek, Milan; Guillon, Rémi; Strunin, Dmytro; Weber, Jan; Lee, G.; Birkuš, G.; Mertlíková-Kaiserová, Helena; Bouřa, Evžen; Nencka, Radim

    2015-01-01

    Roč. 58, č. 9 (2015), s. 3767-3793 ISSN 0022-2623 R&D Projects: GA MŠk LO1302; GA ČR GA15-09310S; GA ČR GJ15-21030Y EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : phosphatidylinositol 4-kinase III beta * broad-spectrum antiviral agents * positive-sense RNA viruses Subject RIV: CC - Organic Chemistry Impact factor: 5.589, year: 2015

  6. A Novel, Broad-Spectrum Inhibitor of Enterovirus Replication That Targets Host Cell Factor Phosphatidylinositol 4-Kinase IIIβ

    Science.gov (United States)

    van der Schaar, Hilde M.; Leyssen, Pieter; Thibaut, Hendrik J.; de Palma, Armando; van der Linden, Lonneke; Lanke, Kjerstin H. W.; Lacroix, Céline; Verbeken, Erik; Conrath, Katja; MacLeod, Angus M.; Mitchell, Dale R.; Palmer, Nicholas J.; van de Poël, Hervé; Andrews, Martin

    2013-01-01

    Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIβ in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIβ carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model. PMID:23896472

  7. Tyrphostin AG1478 Inhibits Encephalomyocarditis Virus and Hepatitis C Virus by Targeting Phosphatidylinositol 4-Kinase IIIα

    NARCIS (Netherlands)

    Dorobantu, Cristina M.; Harak, Christian; Klein, Rahel; van der Linden, Lonneke; Strating, Jeroen R. P. M.; van der Schaar, Hilde M.; Lohmann, Volker; van Kuppeveld, Frank J. M.

    2016-01-01

    Encephalomyocarditis virus (EMCV), like hepatitis C virus (HCV), requires phosphatidylinositol 4-kinase IIIα (PI4KA) for genome replication. Here, we demonstrate that tyrphostin AG1478, a known epidermal growth factor receptor (EGFR) inhibitor, also inhibits PI4KA activity, both in vitro and in

  8. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)

    The adiponectin/phosphatidylinositol 3-kinase/protein kinase B (ADP/PI3k/Akt) signal transduction pathway has an important role in promoting cell survival. This study was designed to determine if the ADP/PI3K/Akt signaling pathway has a role in the mechanism of ischemia–reperfusion injury in vivo. Sprague–Dawley rats ...

  9. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    OpenAIRE

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2015-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to de...

  10. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate

    DEFF Research Database (Denmark)

    Lee, D; Oh, E S; Woods, A

    1998-01-01

    Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a coreceptor with integrins in cell adhesion. It has been suggested to form a ternary signaling complex with protein kinase Calpha and phosphatidylinositol 4,5-bisphosphate (PIP2). Syndecans each have a unique, central, and variable (V......) region in their cytoplasmic domains, and that of syndecan-4 is critical to its interaction with protein kinase C and PIP2. Two oligopeptides corresponding to the variable region (4V) and whole domain (4L) of syndecan-4 cytoplasmic domain were synthesized for nuclear magnetic resonance (NMR) studies. Data...... and dynamical simulated annealing calculations. The 4V peptide in the presence of PIP2 formed a compact dimer with two twisted strands packed parallel to each other and the exposed surface of the dimer consisted of highly charged and polar residues. The overall three-dimensional structure in solution exhibits...

  11. Osh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature

    OpenAIRE

    Ling, Yading; Hayano, Scott; Novick, Peter

    2014-01-01

    Phosphatidylinositol-4-phosphate (PI4P) is produced on both the Golgi and the plasma membrane. Despite extensive vesicular traffic between these compartments, genetic analysis suggests that the two pools of PI4P do not efficiently mix with one another. Several lines of evidence indicate that the PI4P produced on the Golgi is normally incorporated into secretory vesicles, but the fate of that pool has been unclear. We show here that in yeast the oxysterol-binding proteins Osh1?Osh7 are collect...

  12. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  13. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Paquet, Tanya; Le Manach, Claire; Cabrera, Diego González; Younis, Yassir; Henrich, Philipp P; Abraham, Tara S; Lee, Marcus C S; Basak, Rajshekhar; Ghidelli-Disse, Sonja; Lafuente-Monasterio, María José; Bantscheff, Marcus; Ruecker, Andrea; Blagborough, Andrew M; Zakutansky, Sara E; Zeeman, Anne-Marie; White, Karen L; Shackleford, David M; Mannila, Janne; Morizzi, Julia; Scheurer, Christian; Angulo-Barturen, Iñigo; Martínez, María Santos; Ferrer, Santiago; Sanz, Laura María; Gamo, Francisco Javier; Reader, Janette; Botha, Mariette; Dechering, Koen J; Sauerwein, Robert W; Tungtaeng, Anchalee; Vanachayangkul, Pattaraporn; Lim, Chek Shik; Burrows, Jeremy; Witty, Michael J; Marsh, Kennan C; Bodenreider, Christophe; Rochford, Rosemary; Solapure, Suresh M; Jiménez-Díaz, María Belén; Wittlin, Sergio; Charman, Susan A; Donini, Cristina; Campo, Brice; Birkholtz, Lyn-Marie; Hanson, Kirsten K; Drewes, Gerard; Kocken, Clemens H M; Delves, Michael J; Leroy, Didier; Fidock, David A; Waterson, David; Street, Leslie J; Chibale, Kelly

    2017-04-26

    As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment. Copyright © 2017, American Association for the Advancement of Science.

  14. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    Science.gov (United States)

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2016-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50–70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. PMID:26601944

  15. Fitness and virulence of a coxsackievirus mutant that can circumnavigate the need for phosphatidylinositol 4-kinase class III beta

    NARCIS (Netherlands)

    Thibaut, Hendrik Jan; van der Schaar, Hilde M; Lanke, Kjerstin H W; Verbeken, Erik; Andrews, Martin; Leyssen, Pieter; Neyts, Johan; van Kuppeveld, Frank J M

    2014-01-01

    Coxsackieviruses require phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) for replication but can bypass this need by an H57Y mutation in protein 3A (3A-H57Y). We show that mutant coxsackievirus is not outcompeted by wild-type virus during 10 passages in vitro. In mice, the mutant virus proved as

  16. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools.

    Science.gov (United States)

    Goto, Asako; Charman, Mark; Ridgway, Neale D

    2016-01-15

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    Energy Technology Data Exchange (ETDEWEB)

    Reidick, Christina [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany); El Magraoui, Fouzi; Meyer, Helmut E. [Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139 (Germany); Stenmark, Harald [Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310 (Norway); Platta, Harald W., E-mail: harald.platta@rub.de [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany)

    2014-12-23

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

  18. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    International Nuclear Information System (INIS)

    Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E.; Stenmark, Harald; Platta, Harald W.

    2014-01-01

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept

  19. Differential Effects of Phosphatidylinositol 4-Kinase (PI4K and 3-Kinase (PI3K Inhibitors on Stomatal Responses to Environmental Signals

    Directory of Open Access Journals (Sweden)

    Koh Iba

    2017-05-01

    Full Text Available Specific cellular components including products of phosphatidylinositol (PI metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K and PI3K, were used to investigate stomatal closure in response to CO2, darkness, and abscisic acid (ABA. Treatment with PAO, a specific inhibitor of PI4K, specifically inhibited the stomatal response to CO2 compared with that to darkness and ABA. In contrast, treatment with LY294002, a PI3K-specific inhibitor, specifically inhibited the stomatal response to darkness compared with that to CO2 and ABA. The specific inhibitory effects of PAO and LY294002 were also observed as changes in the spatial density of dot-like structures labeled by green fluorescent protein-tagged PATROL1, a protein that controls stomatal aperture possibly via regulation of H+-ATPase amount in guard cell plasma membranes. Our results suggest an important role for PI4K and PI3K in the CO2 and darkness signal transduction pathways, respectively, that mediate PATROL1 dynamics.

  20. Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection.

    Science.gov (United States)

    Lu, Shan; Chen, Linlin; Tao, Kai; Sun, Nannan; Wu, Yuren; Lu, Xiaoxue; Wang, Yuanchao; Dou, Daolong

    2013-09-01

    RxLR effectors produced by Phytophthora pathogens have been proposed to bind to phosphatidylinositol 3-phosphate (PtdIns(3)P) to mediate their translocation into host cells and/or to increase their stability in planta. Since the levels of PtdIns(3)P in plants are low, we examined whether Phytophthora species may produce PtdIns(3)P to promote infection. We observed that PtdIns(3)P-specific GFP biosensors could bind to P. parasitica and P. sojae hyphae during infection of Nicotiana benthamiana leaves transiently secreting the biosensors, suggesting that the hyphae exposed PtdIns(3)P on their plasma membrane and/or secreted PtdIns(3)P. Silencing of the phosphatidylinositol 3-kinases (PI3K) genes, treatment with LY294002, or expression of PtdIns(3)P-binding proteins by P. sojae reduced the virulence of the pathogen on soybean, indicating that pathogen-synthesized PtdIns(3)P was required for full virulence. Secretion of PtdIns(3)P-binding proteins or of a PI3P-5-kinase by N. benthamiana leaves significantly increased the level of resistance to infection by P. parasitica and P. capsici. Together, our results support the hypothesis that Phytophthora species produce external PtdIns(3)P to aid in infection, such as to promote entry of RxLR effectors into host cells. Our results derived from P. sojae RxLR effector Avr1b confirm that both the N-terminus and the C-terminus of this effector can bind PtdIns(3)P.

  1. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking

    NARCIS (Netherlands)

    Sinclair, Linda V.; Finlay, David; Feijoo, Carmen; Cornish, Georgina H.; Gray, Alex; Ager, Ann; Okkenhaug, Klaus; Hagenbeek, Thijs J.; Spits, Hergen; Cantrell, Doreen A.

    2008-01-01

    Phosphatidylinositol-3-OH kinase (PI(3)K) and the nutrient sensor mTOR are evolutionarily conserved regulators of cell metabolism. Here we show that PI(3)K and mTOR determined the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. The key lymph node-homing receptors CD62L

  2. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis

    DEFF Research Database (Denmark)

    Walter, Alexander M; Müller, Rainer; Tawfik, Bassam

    2017-01-01

    Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4......,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify...... synaptotagmin-1 (the Ca(2+) sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging bypasses CAPS-function. Finally, PI(4,5)P2 uncaging...

  3. Non-opsonic phagocytosis of Legionella pneumophila by macrophages is mediated by phosphatidylinositol 3-kinase.

    Directory of Open Access Journals (Sweden)

    Souvenir D Tachado

    Full Text Available BACKGROUND: Legionella pneumophila, is an intracellular pathogen that causes Legionnaires' disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3, a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85alpha subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells. CONCLUSION/SIGNIFICANCE: Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies for undermining L. pneumophila host uptake and reducing pathogenesis of Legionnaires' disease.

  4. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  5. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  6. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H. (Amgen)

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  7. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    Science.gov (United States)

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Nuclear and nucleolar localization signals and their targeting function in phosphatidylinositol 4-kinase PI4K230

    International Nuclear Information System (INIS)

    Kakuk, Annamaria; Friedlaender, Elza; Vereb, Gyoergy; Lisboa, Duarte; Bagossi, Peter; Toth, Gabor; Gergely, Pal; Vereb, Gyoergy

    2008-01-01

    PI4K230, an isoform of phosphatidylinositol 4-kinase, known primarily as a cytoplasmic membrane-bound enzyme, was detected recently also in the nucleolus of several cells. Here we provide mechanistic insight on the targeting function of its putative nuclear localization signal (NLS) sequences using molecular modeling, digitonin-permeabilized HeLa cells and binding to various importins. The synthetic sequence 916 NFNHIHKRIRRVADKYLSG 934 comprising a putative monopartite NLS (NLS1), targeted covalently bound fluorescent BSA to the nucleoplasm via classical importin α/β mechanism employing importins α1 and α3 but not α5. This transport was inhibited by wheat germ agglutinin and GTPγS. The sequence 1414 SKKTNRGSQLHKYYMKRRTL 1433 , a putative bipartite NLS (NLS2) proved ineffective in nuclear targeting if conjugated to fluorescently labeled BSA. Nonetheless, NLS2 or either of its basic clusters directed to the nucleolus soybean trypsin inhibitor that can pass the nuclear pore complex passively; moreover, an expressed 58 kDa fragment of PI4K230 (AA1166-1667) comprising NLS2 was also imported into the nucleus by import factors of reticulocyte lysate or by importin α1/β or α3/β complexes and localized to the nucleolus. We conclude that the putative bipartite NLS itself is a nucleolar targeting signal, and for nuclear import PI4K230 requires a larger sequence around it or, alternatively, the monopartite NLS

  9. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    Science.gov (United States)

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  10. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  11. Plasma membrane associated phospholipase C from human platelets: Synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5'-O-(3-thiotriphosphate)

    International Nuclear Information System (INIS)

    Baldassare, J.J.; Henderson, P.A.; Fisher, G.J.

    1989-01-01

    The effects of thrombin and GTPγS on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous [ 3 H]inositol-labeled membranes or with lipid vesicles containing either [ 3 H]phosphatidylinositol or [ 3 H]phosphatidylinositol 4,5-bisphosphate. GTPγS (1 μM) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP 3 ), inositol bisphosphate (IP 2 ), or inositol phosphate (IP) from [ 3 H]inositol-labeled membranes. IP 2 and IP 3 , but not IP, from [ 3 H]inositol-labeled membranes were, however, stimulated 3-fold by GTPγS (1 μM) plus thrombin (1 unit/mL). A higher concentration of GTPγS (100 μM) alone also stimulated IP 2 and IP 3 , but not IP, release. In the presence of 1 mM calcium, release of IP 2 and IP 3 was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP 2 ) by platelet membrane associated PLC was also markedly enhanced by GTPγS (100 μM) or GTPγS (1 μM) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP 2 was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTPγS (100 μM) or calcium (1 mM) dependent PIP 2 breakdown, while TPA inhibited GTPγS-dependent but not calcium-dependent phospholipase C activity

  12. Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition

    DEFF Research Database (Denmark)

    Bilkova, Eva; Pleskot, Roman; Rissanen, Sami

    2017-01-01

    ), is completely inhibited in the presence of Ca2+, while Mg2+ has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles. Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal how Ca2+ binding to the PI(4,5)P2...... phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI...

  13. Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity.

    Science.gov (United States)

    Hausser, Angelika; Link, Gisela; Hoene, Miriam; Russo, Chiara; Selchow, Olaf; Pfizenmaier, Klaus

    2006-09-01

    Phosphatidylinositol-4-kinase-IIIbeta (PI4KIIIbeta) is activated at the Golgi compartment by PKD-mediated phosphorylation. Subsequent mechanisms responsible for continuous PtdIns(4)P production at Golgi membranes and potential interaction partners of activated PI4KIIIbeta are unknown. Here we identify phosphoserine/-threonine binding 14-3-3 proteins as novel regulators of PI4KIIIbeta activity downstream of this phosphorylation. The PI4KIIIbeta-14-3-3 interaction, evident from GST pulldowns, co-immunoprecipitations and bimolecular fluorescence complementation, was augmented by phosphatase inhibition with okadaic acid. Binding of 14-3-3 proteins to PI4KIIIbeta involved the PKD phosphorylation site Ser294, evident from reduced 14-3-3 binding to a S294A PI4KIIIbeta mutant. Expression of dominant negative 14-3-3 proteins resulted in decreased PI4KIIIbeta Ser294 phosphorylation, whereas wildtype 14-3-3 proteins increased phospho-PI4KIIIbeta levels. This was because of protection of PI4KIIIbeta Ser294 phosphorylation from phosphatase-mediated dephosphorylation. The functional significance of the PI4KIIIbeta-14-3-3 interaction was evident from a reduction of PI4KIIIbeta activity upon dominant negative 14-3-3 protein expression. We propose that 14-3-3 proteins function as positive regulators of PI4KIIIbeta activity by protecting the lipid kinase from active site dephosphorylation, thereby ensuring a continuous supply of PtdIns(4)P at the Golgi compartment.

  14. Structural analysis of phosphatidylinositol 4-kinase III beta (PI4KB) - 14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro

    Czech Academy of Sciences Publication Activity Database

    Chalupská, Dominika; Eisenreichová, Andrea; Rozycki, B.; Řežábková, L.; Humpolíčková, Jana; Klíma, Martin; Bouřa, Evžen

    2017-01-01

    Roč. 200, č. 1 (2017), s. 36-44 ISSN 1047-8477 R&D Projects: GA ČR(CZ) GA17-05200S Institutional support: RVO:61388963 Keywords : lipid * kinase * PI4KB * 14-3-3 protein * phosphatidylinositol Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.767, year: 2016

  15. Effect of phosphatidylinositol-3 kinase inhibition on ovotoxicity caused by 4-vinylcyclohexene diepoxide and 7, 12-dimethylbenz[a]anthracene in neonatal rat ovaries

    International Nuclear Information System (INIS)

    Keating, Aileen F.; Mark, Connie J.; Sen, Nivedita; Sipes, I. Glenn; Hoyer, Patricia B.

    2009-01-01

    4-vinylcyclohexene diepoxide (VCD) is an ovotoxicant that specifically destroys primordial and small primary follicles in the ovaries of mice and rats. In contrast, 7,12-dimethylbenz[a]anthracene (DMBA) is ovotoxic to all ovarian follicle classes. This study investigated phosphatidylinositol-3 kinase signaling involvement in VCD- and DMBA-induced ovotoxicity. Postnatal day (PND) 4 Fischer 344 (F344) rat whole ovaries were cultured for 2-12 days in vehicle control, VCD (30 μM), or DMBA (1 μM), ± PI3 kinase inhibitor LY294002 (20 μM) or its inactive analog LY303511 (20 μM). Following culture, ovaries were histologically evaluated, and healthy follicles were classified and counted. PI3 kinase inhibition had no effect on primordial follicle number, but reduced (P 0.05) at any time, but did cause loss (P < 0.05) of small primary follicles. DMBA exposure caused primordial and small primary follicle loss (P < 0.05) on day 6. Further, DMBA-induced primordial and small primary follicle loss was greater with PI3 kinase inhibition (P < 0.05) than with DMBA alone. These results support that (1) PI3 kinase mediates primordial to small primary follicle recruitment, (2) VCD, but not DMBA, enhances ovotoxicity by increasing primordial to small primary follicle recruitment, and (3) in addition to xenobiotic-induced ovotoxicity, VCD is also a useful model chemical with which to elucidate signaling mechanisms involved in primordial follicle recruitment.

  16. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake.

    Science.gov (United States)

    Isakoff, S J; Taha, C; Rose, E; Marcusohn, J; Klip, A; Skolnik, E Y

    1995-10-24

    Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.

  17. Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 from Glycine max (L) Merr.: comprehending its evolutionary conservancy at functional level.

    Science.gov (United States)

    Marathe, Ashish; Krishnan, Veda; Mahajan, Mahesh M; Thimmegowda, Vinutha; Dahuja, Anil; Jolly, Monica; Praveen, Shelly; Sachdev, Archana

    2018-01-01

    Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 ( GmItpk2 ), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or Inositol 1,3,4,6 tetra phosphate, is a key enzyme diverting the flux of inositol phosphate pool towards phytate biosynthesis. Although considerable research on characterizing genes involved in phytate biosynthesis is accomplished at genomic and transcript level, characterization of the proteins is yet to be explored. In the present study, we report the isolation and expression of single copy Itpk 2 (948 bp) from Glycine max cv Pusa-16 predicted to encode 315 amino acid protein with an isoelectric point of 5.9. Sequence analysis revealed that Gm ITPK2 shared highest similarity (80%) with Phaseolus vulgaris. The predicted 3D model confirmed 12 α helices and 14 β barrel sheets with ATP-binding site close to β sheet present towards the C-terminus of the protein molecule. Spatio-temporal transcript profiling signified GmItpk2 to be seed specific, with higher transcript levels in the early stage of seed development. The present study using various molecular and bio-computational tools could, therefore, help in improving our understanding of this key enzyme and prove to be a potential target towards generating low phytate trait in nutritionally rich crop like soybean.

  18. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking.

    Directory of Open Access Journals (Sweden)

    Alice A Royal

    Full Text Available The slow delayed-rectifier potassium current (IKs is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1 channel requires phosphatidylinositol-4,5-bisphosphate (PIP2 binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel-phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4P at the plasma membrane (PM or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1. Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.

  19. Isotype-specific inhibition of the phosphatidylinositol-3-kinase pathway in hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Castillo JJ

    2014-02-01

    Full Text Available Jorge J Castillo,1 Meera Iyengar,2 Benjamin Kuritzky,2 Kenneth D Bishop2 1Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, 2Division of Hematology and Oncology, Rhode Island Hospital, Providence, RI, USA Abstract: In the last decade, the advent of biological targeted therapies has revolutionized the management of several types of cancer, especially in the realm of hematologic malignancies. One of these pathways, and the center of this review, is the phosphatidylinositol-3-kinase (PI3K pathway. The PI3K pathway seems to play an important role in the pathogenesis and survival advantage in hematologic malignancies, such as leukemia, lymphoma, and myeloma. The objectives of the present review, hence, are to describe the current knowledge on the PI3K pathway and its isoforms, and to summarize preclinical and clinical studies using PI3K inhibitors, focusing on the advances made in hematologic malignancies. Keywords: phosphatidylinositol-3-kinase pathway, inhibitors, leukemia, lymphoma, myeloma

  20. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    OpenAIRE

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulat...

  1. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    Science.gov (United States)

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. © 2016 The Authors.

  2. Enzymatic synthesis of pyrene-labeled polyphosphoinositides and their behavior in organic solvents and phosphatidylcholine bilayers

    NARCIS (Netherlands)

    Gadella, Th.W.J.; Moritz, A.; Westerman, J.; Wirtz, K.W.A.

    1990-01-01

    A method is reported for the synthesis of pyrene-labeled analogues of phosphatidylinositol 4-phosphate (Pyr-PIP) and phosphatidylinositol 4,5-bisphosphate (Pyr-PIP,) from sn-2-(pyrenyl-decanoy1)phosphatidylinositol (Pyr-PI) using partially purified PI and PIP kinase preparations. Phos-phorylation of

  3. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    OpenAIRE

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are ca...

  4. Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells

    NARCIS (Netherlands)

    van Dijk, T. B.; van den Akker, E.; Amelsvoort, M. P.; Mano, H.; Löwenberg, B.; von Lindern, M.

    2000-01-01

    Stem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of phosphatidylinositol 3'-kinase (PI3-K) by cKit was

  5. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.

    Science.gov (United States)

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-06-20

    Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.

  6. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    Science.gov (United States)

    Rodriguez-Villalon, Antia; Gujas, Bojan; van Wijk, Ringo; Munnik, Teun; Hardtke, Christian S

    2015-04-15

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, clavata3/embryo surrounding region 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture. © 2015. Published by The Company of Biologists Ltd.

  7. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate.

    Science.gov (United States)

    Franke, T F; Kaplan, D R; Cantley, L C; Toker, A

    1997-01-31

    The regulation of the serine-threonine kinase Akt by lipid products of phosphoinositide 3-kinase (PI 3-kinase) was investigated. Akt activity was found to correlate with the amount of phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) in vivo, and synthetic PtdIns-3,4-P2 activated Akt both in vitro and in vivo. Binding of PtdIns-3,4-P2 occurred within the Akt pleckstrin homology (PH) domain and facilitated dimerization of Akt. Akt mutated in the PH domain was not activated by PI 3-kinase in vivo or by PtdIns-3, 4-P2 in vitro, and it was impaired in binding to PtdIns-3,4-P2. Examination of the binding to other phosphoinositides revealed that they bound to the Akt PH domain with much lower affinity than did PtdIns-3,4-P2 and failed to increase Akt activity. Thus, Akt is apparently regulated by the direct interaction of PtdIns-3,4-P2 with the Akt PH domain.

  8. Regulation of Kv1.4 potassium channels by PKC and AMPK kinases

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Skibsbye, Lasse; Saljic, Arnela

    2018-01-01

    around the ubiquitin ligase Nedd4-2. In the present study we examined whether Kv1.4, constituting the cardiac Ito,s current, is subject to similar regulation. In the epithelial Madin-Darby Canine Kidney (MDCK) cell line, which constitutes a highly reproducible model system for addressing membrane...... targeting, we find, by confocal microscopy, that Kv1.4 cell surface expression is downregulated by activation of protein kinase C (PKC) and AMP-activated protein kinase (AMPK). In contrast, manipulating the activities of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and serum and glucocorticoid......-regulated kinase 1 (SGK1) were without effect on channel localization. The PKC and AMPK-mediated downregulation of Kv1.4 membrane surface localization was confirmed by two-electrode voltage clamp in Xenopus laevis oocytes, where pharmacological activation of PKC and AMPK reduced Kv1.4 current levels. We further...

  9. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  10. Evaluation of Creatine Kinase Activity and Inorganic Phosphate ...

    African Journals Online (AJOL)

    Background: Biochemical parameters vary in subjects with different hemoglobin phenotypes, compared with normal controls. Aim: The aim was to evaluate serum creatine kinase (CK) activity and inorganic phosphate concentrations in Nigerian adults with homozygous and heterozygous hemoglobin phenotypes. Subjects ...

  11. HPV8-E6 Interferes with Syntenin-2 Expression through Deregulation of Differentiation, Methylation and Phosphatidylinositide-Kinase Dependent Mechanisms

    Directory of Open Access Journals (Sweden)

    Benjamin Marx

    2017-09-01

    Full Text Available The E6 oncoproteins of high-risk human papillomaviruses (HPV of genus alpha contain a short peptide sequence at the carboxy-terminus, the PDZ binding domain, with which they interact with the corresponding PDZ domain of cellular proteins. Interestingly, E6 proteins from papillomaviruses of genus beta (betaPV do not encode a comparable PDZ binding domain. Irrespective of this fact, we previously showed that the E6 protein of HPV8 (betaPV type could circumvent this deficit by targeting the PDZ protein Syntenin-2 through transcriptional repression (Lazic et al., 2012. Despite its high binding affinity to phosphatidylinositol-4,5-bisphosphate (PI(4,5P2, very little is known about Syntenin-2. This study aimed to extend the knowledge on Syntenin-2 and how its expression is controlled. We now identified that Syntenin-2 is expressed at high levels in differentiating and in lower amounts in keratinocytes cultured in serum-free media containing low calcium concentration. HPV8-E6 led to a further reduction of Syntenin-2 expression only in cells cultured in low calcium. In the skin of patients suffering from Epidermodysplasia verruciformis, who are predisposed to betaPV infection, Syntenin-2 was expressed in differentiating keratinocytes of non-lesional skin, but was absent in virus positive squamous tumors. Using 5-Aza-2′-deoxycytidine, which causes DNA demethylation, Syntenin-2 transcription was profoundly activated and fully restored in the absence and presence of HPV8-E6, implicating that E6 mediated repression of Syntenin-2 transcription is due to promoter hypermethylation. Since Syntenin-2 binds to PI(4,5P2, we further tested whether the PI(4,5P2 metabolic pathway might govern Syntenin-2 expression. PI(4,5P2 is generated by the activity of phosphatidylinositol-4-phosphate-5-kinase type I (PIP5KI or phosphatidylinositol-5-phosphate-4-kinase type II (PIP4KII isoforms α, β and γ. Phosphatidylinositide kinases have recently been identified as

  12. Method of preparing highly active and thermostable preparations of liver uridin-kinase usable for enzymic synthesis of radioactive nucleoside-5'-phosphates

    International Nuclear Information System (INIS)

    Cihak, A.; Vesely, J.

    1975-01-01

    A method is described of preparing a high-activity uridine kinase for the enzymic synthesis of radioactive nucleoside-5m-phosphates of the pyrimidine series. The preparation is separated from male rat liver after intraperitoneal application of 5'-azacytidine. Examples are given showing detailed procedures for the conversion of uridine and 6-azauridine to the corresponding 5'-phosphates. (L.K.)

  13. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    Science.gov (United States)

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    Science.gov (United States)

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard

    2012-10-26

    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. Copyright © 2012. Published by Elsevier Ltd.

  15. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    OpenAIRE

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present ...

  16. Class IA phosphatidylinositol 3-kinase p110α regulates phagosome maturation.

    Directory of Open Access Journals (Sweden)

    Emily P Thi

    Full Text Available Of the various phosphatidylinositol 3- kinases (PI3Ks, only the class III enzyme Vps34 has been shown to regulate phagosome maturation. During studies of phagosome maturation in THP-1 cells deficient in class IA PI3K p110α, we discovered that this PI3K isoform is required for vacuole maturation to progress beyond acquisition of Rab7 leading to delivery of lysosomal markers. Bead phagosomes from THP-1 cells acquired p110α and contained PI3P and PI(3,4,5P3; however, p110α and PI(3,4,5P3 levels in phagosomes from p110α knockdown cells were decreased. Phagosomes from p110α knock down cells showed normal acquisition of both Rab5 and EEA-1, but were markedly deficient in the lysosomal markers LAMP-1 and LAMP-2, and the lysosomal hydrolase, β-galactosidase. Phagosomes from p110α deficient cells also displayed impaired fusion with Texas Red dextran-loaded lysosomes. Despite lacking lysosomal components, phagosomes from p110α deficient cells recruited normal levels of Rab7, Rab-interacting lysosomal protein (RILP and homotypic vacuole fusion and protein sorting (HOPs components Vps41 and Vps16. The latter observations demonstrated that phagosomal Rab7 was active and capable of recruiting effectors involved in membrane fusion. Nevertheless, active Rab7 was not sufficient to bring about the delivery of lysosomal proteins to the maturing vacuole, which is shown for the first time to be dependent on a class I PI3K.

  17. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y

    OpenAIRE

    Nishida, Yuichiro; Adati, Naoki; Ozawa, Ritsuko; Maeda, Aasami; Sakaki, Yoshiyuki; Takeda, Tadayuki

    2008-01-01

    Abstract Background SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which show a different phenotype during RA-mediated differentiation. Findings SH-SY5Y-A cells diffe...

  18. The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival

    DEFF Research Database (Denmark)

    Ditlevsen, Dorte K; Køhler, Lene B; Pedersen, Martin Volmer

    2003-01-01

    The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein...... kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating...... that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data...

  19. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr

    2016-02-19

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulation of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2

  20. Pyridoxal 5'-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase.

    Directory of Open Access Journals (Sweden)

    Mohini S Ghatge

    Full Text Available Pyridoxal 5'-phosphate (PLP is a cofactor for dozens of B(6 requiring enzymes. PLP reacts with apo-B(6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B(6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4'-aldehyde moiety forms covalent adducts with other compounds and non-B(6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B(6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.

  1. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast

    OpenAIRE

    Helliwell, S. B.; Wagner, P.; Kunz, J.; Deuter-Reinhard, M.; Henriquez, R.; Hall, M. N.

    1994-01-01

    The Saccharomyces cerevisiae genes TOR1 and TOR2 were originally identified by mutations that confer resistance to the immunosuppressant rapamycin. TOR2 was previously shown to encode an essential 282-kDa phosphatidylinositol kinase (PI kinase) homologue. The TOR1 gene product is also a large (281 kDa) PI kinase homologue, with 67% identity to TOR2. TOR1 is not essential, but a TOR1 TOR2 double disruption uniquely confers a cell cycle (G1) arrest as does exposure to rapamycin; disruption of T...

  2. Inhibition of the pentose phosphate shunt by 2,3-diphosphoglycerate in erythrocyte pyruvate kinase deficiency.

    Science.gov (United States)

    Tomoda, A; Lachant, N A; Noble, N A; Tanaka, K R

    1983-07-01

    Pentose phosphate shunt activity was studied by the release of 14CO2 from 14C-1-glucose and 14C-2-glucose in the red cells of five patients with pyruvate kinase deficiency and found to be significantly decreased after new methylene blue stimulation when compared to high reticulocyte controls. Incubated Heinz body formation was increased and the ascorbate cyanide test was positive in blood from these patients. The activity of glucose-6-phosphate dehydrogenase (G6PD) as well as that of 6-phosphogluconate dehydrogenase (6PGD) was inhibited to 20% of baseline in normal red cell haemolysate by 4 mM 2,3-diphosphoglycerate at pH 7.1. 2,3-Diphosphoglycerate was a competitive inhibitor with 6-phosphogluconate (Ki=1.05 mM) and a noncompetitive inhibitor with NADP (Ki=3.3 mM) for 6PGD. Since the intracellular concentrations of glucose-6-phosphate, 6-phosphogluconate and NADP are below their Kms for G6PD and 6PGD, the kinetic data suggest that increased concentrations of 2,3-diphosphoglycerate in pyruvate kinase deficient red cells are sufficiently high to suppress pentose phosphate shunt activity. This suppression may be an additional factor contributing to the haemolytic anaemia of pyruvate kinase deficiency, particularly during periods of infection or metabolic stress.

  3. Identification of a common amino acid polymorphism in the p85alpha regulatory subunit of phosphatidylinositol 3-kinase

    DEFF Research Database (Denmark)

    Hansen, Torben; Andersen, C B; Echwald, Søren Morgenthaler

    1997-01-01

    Phosphatidylinositol 3-kinase (PI3-K) may regulate the basal plasma membrane glucose transporter recycling and the organization of the transporter intracellular pool in addition to being an insulin signal for translocation of glucose transporters to the plasma membrane. The objectives of the pres...

  4. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    ., Siegbahn, A. , Rorsman, C., Engström, U., Wernstedt, C., Heldin, C.-H., and Rönnstrand, L. (1996) EMBO J. 15, 5299-5313). Here we show that the increased chemotaxis correlates with increased activation of phospholipase C-gamma1 (PLC-gamma1), measured as inositol-1,4, 5-trisphosphate release. By two......-dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  5. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings

    NARCIS (Netherlands)

    Leeuwen, van W.; Vermeer, J.E.M.; Gadella, T.W.J.; Munnik, T.

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P-2] is an important signalling lipid in mammalian cells, where it functions as a second-messenger precursor in response to agonist-dependent activation of phospholipase C (PLC) but also operates as a signalling molecule on its own. Much of the

  6. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    Science.gov (United States)

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  7. Phosphatidylinositol-3-kinase-dependent phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK fusion-protein

    International Nuclear Information System (INIS)

    Hussain, Alamdar; Faryal, Rani; Nore, Beston F.; Mohamed, Abdalla J.; Smith, C.I. Edvard

    2009-01-01

    Recurrent chromosomal translocations have long been implicated in various types of lymphomas and other malignancies. Novel recurrent t(5;9)(q33;q22) has been recently discovered in un-specified peripheral T-cell lymphoma. To elucidate the role of this translocation, the corresponding fusion construct encoding the N-terminal portion of the ITK kinase and the C-terminal catalytic region of the SYK kinase was generated. We herein show that the ITK-SYK fusion-protein is constitutively active. Moreover, we demonstrate that ITK-SYK is phosphorylated on key tyrosine residues and is capable of potently phosphorylating the related adapter proteins BLNK and SLP-76. In transiently transfected cells, SYK was phosphorylated at Y352 but not detectably at the activation-loop tyrosines Y525/Y526. In contrast, ITK-SYK was phosphorylated both at Y212 and the activation-loop tyrosines Y385/Y386, corresponding to Y352 and Y525/Y526 in SYK, respectively. In resting primary lymphocytes, ITK-SYK predominantly localizes to the cell surface. In addition, we demonstrate that following stimulation, the ITK-SYK fusion-protein in cell lines translocates to the cell membrane and, moreover, that this phenomenon as well as SLP-76 phosphorylation are blocked upon phosphatidylinositol-3-kinase (PI3-kinase) inhibition.

  8. The role of Phosphatidylinositol 3 kinase (PI3K and Cycloxygenase-2 (COX2 in carcinogenesis of colorectal polyps

    Directory of Open Access Journals (Sweden)

    Raul Alberto Anselmi Júnior

    2018-01-01

    Full Text Available Objectives: Determine immunohistochemical expression of Phosphatase and tensin homolog (PTEN, Phosphatidylinositol 3 kinase (PI3K, Cycloxygenase-2 (COX2 and one proliferation marker (Ki67 in colorectal polyps and correlate with clinical and pathological data in search of carcinogenic pathways. Methods: The reports of 297 polyps diagnosed through endoscopy were reviewed for parameters including age, gender, prior colorectal cancer, the presence of multiple polyps, and polyps’ location, appearance and size. Was conducted a microscopic morphometric computerized analysis of immunohistochemical expression using, the selected antibodies and correlated with clinical and pathological variables. Results: The tissue immunohistochemical expression was higher in right colon polyps for the proliferation marker and Phosphatidylinositol 3 kinase (p ≤ 0.0001 and 0.057 respectively. Cycloxygenase-2 and Phosphatase and tensin homolog demonstrated higher tissue immunoexpression in pedunculated polyps (p = 0.009 and 0.002 respectively. Cycloxygenase-2 exhibited higher immunoexpression in larger polyps (p = 0.005. Phosphatidylinositol 3 kinase, Cycloxygenase-2, Phosphatase and tensin homolog and the proliferation marker exhibited higher immunoexpression in high-grade dysplastic polyps (p = 0.031, 0.013, 0.044 and <0.001 respectively. Phosphatase and tensin homolog labeling was higher in polyps with high-grade dysplasia and lower in some of serrated lesions (p = 0.044. Conclusions: The greater expression of the proliferation marker and Phosphatidylinositol 3 kinase in the right colon may be related to right-sided colorectal carcinogenesis. The proliferation marker, Cycloxygenase-2 and Phosphatidylinositol 3 kinase results can be associated with progression of polyps to colorectal cancer. The higher Phosphatase and tensin homolog expression suggests its attempt to control the cell cycle. Resumo: Objetivos: Determinar a expressão imuno-histoquímica de

  9. A conserved function in phosphatidylinositol metabolism for mammalian Vps13 family proteins.

    Directory of Open Access Journals (Sweden)

    Jae-Sook Park

    Full Text Available The Vps13 protein family is highly conserved in eukaryotic cells. In humans, mutations in the gene encoding the family member VPS13A lead to the neurodegenerative disorder chorea-acanthocytosis. In the yeast Saccharomyces cerevisiae, there is just a single version of VPS13, thereby simplifying the task of unraveling its molecular function(s. While VPS13 was originally identified in yeast by its role in vacuolar sorting, recent studies have revealed a completely different function for VPS13 in sporulation, where VPS13 regulates phosphatidylinositol-4-phosphate (PtdIns(4P levels in the prospore membrane. This discovery raises the possibility that the disease phenotype associated with vps13A mutants in humans is due to misregulation of PtdIns(4P in membranes. To determine whether VPS13A affects PtdIns(4P in membranes from mammalian neuronal cells, phosphatidylinositol phosphate pools were compared in PC12 tissue culture cells in the absence or presence of VPS13A. Consistent with the yeast results, the localization of PtdIns(4P is specifically altered in VPS13A knockdown cells while other phosphatidylinositol phosphates appear unaffected. In addition, VPS13A is necessary to prevent the premature degeneration of neurites that develop in response to Nerve Growth Factor. The regulation of PtdIns(4P is therefore a conserved function of the Vps13 family and may play a role in the maintenance of neuronal processes in mammals.

  10. Targeting Plasmodium PI(4)K to eliminate malaria

    Science.gov (United States)

    McNamara, Case W.; Lee, Marcus C. S.; Lim, Chek Shik; Lim, Siau Hoi; Roland, Jason; Nagle, Advait; Simon, Oliver; Yeung, Bryan K. S.; Chatterjee, Arnab K.; McCormack, Susan L.; Manary, Micah J.; Zeeman, Anne-Marie; Dechering, Koen J.; Kumar, T. R. Santha; Henrich, Philipp P.; Gagaring, Kerstin; Ibanez, Maureen; Kato, Nobutaka; Kuhen, Kelli L.; Fischli, Christoph; Rottmann, Matthias; Plouffe, David M.; Bursulaya, Badry; Meister, Stephan; Rameh, Lucia; Trappe, Joerg; Haasen, Dorothea; Timmerman, Martijn; Sauerwein, Robert W.; Suwanarusk, Rossarin; Russell, Bruce; Renia, Laurent; Nosten, Francois; Tully, David C.; Kocken, Clemens H. M.; Glynne, Richard J.; Bodenreider, Christophe; Fidock, David A.; Diagana, Thierry T.; Winzeler, Elizabeth A.

    2013-12-01

    Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.

  11. Phosphatidylinositol (4,5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells.

    Science.gov (United States)

    Ma, Xiaohong; Shor, Oded; Diminshtein, Sofia; Yu, Ling; Im, Yang Ju; Perera, Imara; Lomax, Aaron; Boss, Wendy F; Moran, Nava

    2009-02-01

    In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed "cytosolic" Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: "Low PIs" had depressed levels of these PIs, and "High PIs" had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 microM) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5-4 microM), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells.

  12. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    Science.gov (United States)

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  13. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    Science.gov (United States)

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  14. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate.

    Science.gov (United States)

    Zoncu, Roberto; Perera, Rushika M; Sebastian, Rafael; Nakatsu, Fubito; Chen, Hong; Balla, Tamas; Ayala, Guillermo; Toomre, Derek; De Camilli, Pietro V

    2007-03-06

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], a phosphoinositide concentrated predominantly in the plasma membrane, binds endocytic clathrin adaptors, many of their accessory factors, and a variety of actin-regulatory proteins. Here we have used fluorescent fusion proteins and total internal reflection fluorescence microscopy to investigate the effect of acute PI(4,5)P(2) breakdown on the dynamics of endocytic clathrin-coated pit components and of the actin regulatory complex, Arp2/3. PI(4,5)P(2) breakdown was achieved by the inducible recruitment to the plasma membrane of an inositol 5-phosphatase module through the rapamycin/FRB/FKBP system or by treatment with ionomycin. PI(4,5)P(2) depletion resulted in a dramatic loss of clathrin puncta, which correlated with a massive dissociation of endocytic adaptors from the plasma membrane. Remaining clathrin spots at the cell surface had only weak fluorescence and were static over time. Dynamin and the p20 subunit of the Arp2/3 actin regulatory complex, which were concentrated at late-stage clathrin-coated pits and in lamellipodia, also dissociated from the plasma membrane, and these changes correlated with an arrest of motility at the cell edge. These findings demonstrate the critical importance of PI(4,5)P(2) in clathrin coat dynamics and Arp2/3-dependent actin regulation.

  15. Targeting Phosphatidylinositol 4-Kinase IIIα for Radiosensitization: A Potential Model of Drug Repositioning Using an Anti-Hepatitis C Viral Agent

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jeanny [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, Dan Hyo; Park, Ji Min [Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Park, Young Hee [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Hwang, Yeo Hyun [Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Wu, Hong-Gyun [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of); Shin, Kyung Hwan [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Kim, In Ah, E-mail: inah228@snu.ac.kr [Department of Radiation Oncology, Graduate School of Medicine, Seoul National University, Seoul (Korea, Republic of); Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Institute of Radiation Medicine, Seoul National University, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-11-15

    Purpose: To investigate which isotype of phosphatidylinositol 4-kinase (PI4K) may affect radiosensitivity and examine whether anti–hepatitis C viral (HCV) agents, some of which have been shown to inhibit PI4K IIIα activity, could be repositioned as a radiosensitizer in human cancer cells. Methods and Materials: U251, BT474, and HepG2 cell lines and normal human astrocyte were used. Ribonucleic acid interference, clonogenic assays, Western blotting, immunofluorescence, annexin V assay, lysotracker staining, and β-galactosidase assay were performed. Results: Of the 4 PI4K isotypes, specific inhibition of IIIα increased radiosensitivity. For pharmacologic inhibition of PI4K IIIα, we screened 9 anti-HCV agents by half-maximal inhibitory concentration assay. Simeprevir was selected, and its inhibition of PI4K IIIα activity was confirmed. Combination of simeprevir treatment and radiation significantly attenuated expression of phospho-phospho-PKC and phospho-Akt and increased radiation-induced cell death in tested cell lines. Pretreatment with simeprevir prolonged γH2AX foci formation and down-regulation of phospho-DNA-PKcs, indicating impairment of nonhomologous end-joining repair. Cells pretreated with simeprevir exhibited mixed modes of cell death, including apoptosis and autophagy. Conclusion: These data demonstrate that targeting PI4K IIIα using an anti-HCV agent is a viable approach to enhance the therapeutic efficacy of radiation therapy in various human cancers, such as glioma, breast, and hepatocellular carcinoma.

  16. Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes

    DEFF Research Database (Denmark)

    Goñi, Guillermina M; Epifano, Carolina; Boskovic, Jasminka

    2014-01-01

    Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase (NRTK) with key roles in integrating growth and cell matrix adhesion signals, and FAK is a major driver of invasion and metastasis in cancer. Cell adhesion via integrin receptors is well known to trigger FAK signaling, and many of the p...

  17. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  18. Phosphatidylinositol 3-Kinase (PI3K) and phosphatidylinositol 3-kinase-related kinase (PIKK) inhibitors: importance of the morpholine ring

    Czech Academy of Sciences Publication Activity Database

    Andrs, M.; Kobarecny, J.; Jun, D.; Hodný, Zdeněk; Bartek, Jiří; Kuca, K.

    2015-01-01

    Roč. 58, č. 1 (2015), s. 41-71 ISSN 0022-2623 R&D Projects: GA MŠk(CZ) CZ.1.07/2.3.00/30.0044 Grant - others:University Hospital Hradec Kralove(CZ) 00179906; Faculty of Military Health Sciences, University of Defence(CZ) SV/FVZ201402 Institutional support: RVO:68378050 Keywords : DEPENDENT PROTEIN-KINASE * STRAND BREAK REPAIR * SELECTIVE PI3K-BETA INHIBITORS * TELANGIECTASIA MUTATED KINASE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.589, year: 2015

  19. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9.

    Directory of Open Access Journals (Sweden)

    Xinwei Liu

    Full Text Available Oxysterol binding protein (OSBP and OSBP-related proteins (ORPS have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE were poor ligands for OSBP. In contrast, both long (ORP9L and short (ORP9S variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  20. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9).

    Science.gov (United States)

    Liu, Xinwei; Ridgway, Neale D

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  1. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase

    Science.gov (United States)

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na+/H+ exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  2. Signal-dependent Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate without Activation of Phospholipase C

    Science.gov (United States)

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-01

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating. PMID:22065576

  3. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    International Nuclear Information System (INIS)

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A.

    1989-01-01

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation

  4. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  5. Phosphatidylinositol 4,5-Bisphosphate (PtdIns(4,5)P2) Specifically Induces Membrane Penetration and Deformation by Bin/Amphiphysin/Rvs (BAR) Domains*

    Science.gov (United States)

    Yoon, Youngdae; Zhang, Xiuqi; Cho, Wonhwa

    2012-01-01

    Cellular proteins containing Bin/amphiphysin/Rvs (BAR) domains play a key role in clathrin-mediated endocytosis. Despite extensive structural and functional studies of BAR domains, it is still unknown how exactly these domains interact with the plasma membrane containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and whether they function by a universal mechanism or by different mechanisms. Here we report that PtdIns(4,5)P2 specifically induces partial membrane penetration of the N-terminal amphiphilic α-helix (H0) of two representative N-BAR domains from Drosophila amphiphysin (dAmp-BAR) and rat endophilin A1 (EndoA1-BAR). Our quantitative fluorescence imaging analysis shows that PtdIns(4,5)P2-dependent membrane penetration of H0 is important for self-association of membrane-bound dAmp-BAR and EndoA1-BAR and their membrane deformation activity. EndoA1-BAR behaves differently from dAmp-BAR because the former has an additional amphiphilic α-helix that penetrates the membrane in a PtdIns(4,5)P2-independent manner. Depletion of PtdIns(4,5)P2 from the plasma membrane of HEK293 cells abrogated the membrane deforming activity of EndoA1-BAR and dAmp-BAR. Collectively, these studies suggest that the local PtdIns(4,5)P2 concentration in the plasma membrane may regulate the membrane interaction and deformation by N-BAR domain-containing proteins during clathrin-mediated endocytosis. PMID:22888025

  6. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses.

    Science.gov (United States)

    Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus

    2016-12-15

    Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.

  7. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    Science.gov (United States)

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  8. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain.

    Science.gov (United States)

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-08-25

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH-START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH-START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine-rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A new three-dimensional cobalt phosphate: Co5(OH2)4(HPO4)2(PO4)2

    International Nuclear Information System (INIS)

    Han Zhangang; Tian Aixiang; Peng Jun; Zhai Xueliang

    2006-01-01

    A three-dimensional (3D) cobalt phosphate: Co 5 (OH 2 ) 4 (HPO 4 ) 2 (PO 4 ) 2 (1), has been synthesized by hydrothermal reaction and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic techniques. The title compound is a template free cobalt phosphate. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO 6 and PO 4 polyhedra. The magnetic susceptibility measurements indicated that the title compound obeys Curie-Weiss behavior down to a temperature of 17 K at which an antiferromagnetic phase transition occurs. - Graphical abstract: A 3D cobalt phosphate with a neutral framework: Co 5 (OH 2 ) 4 (HPO 4 ) 2 (PO 4 ) 2 (1), has been synthesized and characterized. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO 6 and PO 4 polyhedra. Its magnetic property was researched

  10. Phosphoinositide metabolism and metabolism-contraction coupling in rabbit aorta

    International Nuclear Information System (INIS)

    Coburn, R.F.; Baron, C.; Papadopoulos, M.T.

    1988-01-01

    The authors tested a hypothesis that metabolism-contraction coupling in vascular smooth muscle is controlled by the rate of delivery of energy to ATP-dependent reactions in the inositol phospholipid transduction system that generate second messengers exerting control on smooth muscle force. Rabbit aorta was contracted by norepinephrine (NOR) under conditions of normoxia and hypoxia, and changes in inositol phospholipid pool sizes and metabolic flux rates (J F ) were determined. J F was determined by labeling free cytosolic myo-inositol by incubation of unstimulated muscle with myo-[ 3 H]inositol and then measuring rates of incorporation of this isotope into inositol phospholipids and inositol phosphates when the muscle was activated by NOR. J F measured during maintenance of NOR-induced force was markedly inhibited during hypoxia to 40-50% of that determined during normoxia; rates of increases in inositol phosphate radioactivities were similarly depressed during NOR activation under hypoxia. The hypoxia-induced decrease in J F was associated with four- to fivefold increase in phosphatidylinositol 4-phosphate (PIP) total pool size, suggesting PIP kinase was inhibited and rate limiting. These data suggest that activation of inositol phospholipid metabolism, which generates inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol, is blunted under conditions where aerobic energy production is inhibited. Data are consistent with rate-limiting effects of decreased ATP delivery, or decreased phosphate potential, on PIP kinase and reactions that control resynthesis of phosphatidylinositol

  11. Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate.

    Science.gov (United States)

    Soldovieri, Maria Virginia; Ambrosino, Paolo; Mosca, Ilaria; De Maria, Michela; Moretto, Edoardo; Miceli, Francesco; Alaimo, Alessandro; Iraci, Nunzio; Manocchio, Laura; Medoro, Alessandro; Passafaro, Maria; Taglialatela, Maurizio

    2016-12-01

    Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K + current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP 2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP 2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies.

  12. Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions

    Science.gov (United States)

    Pezet, Sophie; Marchand, Fabien; D'Mello, Richard; Grist, John; Clark, Anna K.; Malcangio, Marzia; Dickenson, Anthony H.; Williams, Robert J.; McMahon, Stephen B.

    2010-01-01

    Here we show that phosphatidylinositol 3-kinase (PI3K) is a key player in the establishment of central sensitization, the spinal cord phenomenon associated with persistent afferent inputs and contributing to chronic pain states. We demonstrated electrophysiologically that PI3K is required for the full expression of spinal neuronal wind-up. In an inflammatory pain model, intrathecal administration of LY294002, a potent PI3K inhibitor, dose-dependently inhibited pain related behavior. This effect was correlated with a reduction of the phosphorylation of extracellular signal-regulated kinase (ERK) and CaMKinase II. In addition, we observed a significant decrease in the phosphorylation of the NMDA receptor subunit NR2B, decreased translocation to the plasma membrane of the GluR1 AMPA receptor subunit in the spinal cord and a reduction of evoked neuronal activity as measured using c-Fos immunohistochemistry. Our study suggests that PI3K is a major factor in the expression of central sensitization after noxious inflammatory stimuli. PMID:18417706

  13. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update.

    Science.gov (United States)

    Simioni, Carolina; Martelli, Alberto M; Zauli, Giorgio; Vitale, Marco; McCubrey, James A; Capitani, Silvano; Neri, Luca M

    2018-04-18

    Despite considerable progress in treatment protocols, B-lineage acute lymphoblastic leukemia (B-ALL) displays a poor prognosis in about 15-20% of pediatric cases and about 60% of adult patients. In addition, life-long irreversible late effects from chemo- and radiation therapy, including secondary malignancies, are a growing problem for leukemia survivors. Targeted therapy holds promising perspectives for cancer treatment as it may be more effective and have fewer side effects than conventional therapies. The phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) signaling pathway is a key regulatory cascade which controls proliferation, survival and drug-resistance of cancer cells, and it is frequently upregulated in the different subtypes of B-ALL, where it plays important roles in the pathophysiology, maintenance and progression of the disease. Moreover, activation of this signaling cascade portends a poorer prognosis in both pediatric and adult B-ALL patients. Promising preclinical data on PI3K/Akt/mTOR inhibitors have documented their anticancer activity in B-ALL and some of these novel drugs have entered clinical trials as they could lead to a longer event-free survival and reduce therapy-associated toxicity for patients with B-ALL. This review highlights the current status of PI3K/Akt/mTOR inhibitors in B-ALL, with an emphasis on emerging evidence of the superior efficacy of synergistic combinations involving the use of traditional chemotherapeutics or other novel, targeted agents. © 2018 Wiley Periodicals, Inc.

  14. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    Science.gov (United States)

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095

  15. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Herpesviruses in the Activated Phosphatidylinositol-3-Kinase-δ Syndrome

    Directory of Open Access Journals (Sweden)

    Jeffrey I. Cohen

    2018-02-01

    Full Text Available The phosphatidylinositol-3-kinase (PI3K/Akt pathway is important for multiple stages of herpesvirus replication including virus entry, replication, latency, and reactivation. Recently, patients with gain-of-function mutations in the p110δ-catalytic subunit of PI3K or in the p85-regulatory subunit of PI3K have been reported. These patients have constitutively active PI3K with hyperactivation of Akt. They present with lymphoproliferation and often have infections, particularly recurrent respiratory infections and/or severe virus infections. The most frequent virus infections are due to Epstein–Barr virus (EBV and cytomegalovirus (CMV; patients often present with persistent EBV and/or CMV viremia, EBV lymphoproliferative disease, or CMV lymphadenitis. No patients have been reported with CMV pneumonia, colitis, or retinitis. Other herpesvirus infections have included herpes simplex pneumonia, recurrent zoster, and varicella after vaccination with the varicella vaccine. Additional viral infections have included adenovirus viremia, severe warts, and extensive Molluscum contagiosum virus infection. The increased susceptibility to virus infections in these patients is likely due to a reduced number of long-lived memory CD8 T cells and an increased number of terminally differentiated effector CD8 T cells.

  17. Phosphate removal from aqueous solutions using polyaniline/ Ni 0.5 Zn 0.5 Fe 2 O 4 magnetic nanocomposite

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Tarmahi

    2017-05-01

    Full Text Available Background: Phosphorus is an indispensable element for the growth of animals and plants. There are several environmental problems related to phosphate; therefore, the technical and economic methods of removing phosphate are of great importance. This study evaluated the efficiency of polyaniline/ Ni0.5Zn0.5Fe2O4 magnetic nanocomposite in removing phosphate from aqueous environments. Methods: The adsorbent was characterized by several methods, including X-ray diffraction (XRD, scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, and Fourier transform infrared (FT-IR spectroscopy. Then, the potential of the adsorbentto adsorb phosphate was investigated. The effects of the parameters of contact time (5-60 minutes, pH (3-9, adsorbent dosage (0.05-0.6 g, and initial phosphate concentration (2-100 mg/L on the phosphate removal yield were studied. All phosphate ion concentrations were measured using the ammonium molybdate spectrophotometric method. Results: The results showed that a time of 30 minutes, pH of 5, and adsorbent dose of 0.4 g were the optimum conditions for phosphate removal through adsorption. Increasing the initial concentration of phosphate from 2 to 100 mg/L decreased the removal efficiency from 90.3% to 32%. The experimental data was fitted well with the Freundlich isotherm model (R2 = 0.997. Conclusion: Polyaniline/Ni0.5Zn0.5Fe2O4 magnetic nanocomposite removes phosphate from aqueous solutions with a simple and environmentally benign procedure. The maximum adsorption capacity based on Langmuir isotherm (R2 = 0.931 is 85.4 mg/g. This magnetic nanocomposite is applicable in managing water resource pollution caused by phosphate ions.

  18. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    Science.gov (United States)

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  19. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    Science.gov (United States)

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  20. Association of Factor V Secretion with Protein Kinase B Signaling in Platelets from Horses with Atypical Equine Thrombasthenia.

    Science.gov (United States)

    Norris, J W; Pombo, M; Shirley, E; Blevins, G; Tablin, F

    2015-01-01

    Two congenital bleeding diatheses have been identified in Thoroughbred horses: Glanzmann thrombasthenia (GT) and a second, novel diathesis associated with abnormal platelet function in response to collagen and thrombin stimulation. Platelet dysfunction in horses with this second thrombasthenia results from a secretory defect. Two affected and 6 clinically normal horses. Ex vivo study. Washed platelets were examined for (1) expression of the αIIb-β3 integrin; (2) fibrinogen binding capacity in response to ADP and thrombin; (3) secretion of dense and α-granules; (4) activation of the mammalian target of rapamycin (mTOR)-protein kinase B (AKT) signaling pathway; and (5) cellular distribution of phosphatidylinositol-4-phosphate-3-kinase, class 2B (PIK3C2B) and SH2 containing inositol-5'-phosphatase 1 (SHIP1). Platelets from affected horses expressed normal amounts of αIIb-β3 integrin and bound fibrinogen normally in response to ADP, but bound 80% less fibrinogen in response to thrombin. α-granules only released 50% as much Factor V as control platelets, but dense granules released their contents normally. Protein kinase B (AKT) phosphorylation was reduced after thrombin activation, but mTOR Complex 2 (mTORC2) and phosphoinositide-dependent kinase 1 (PDK1) signaling were normal. SH2-containing inositol-5'-phosphatase 1 (SHIP1) did not localize to the cytoskeleton of affected platelets and was decreased overall consistent with reduced AKT phosphorylation. Defects in fibrinogen binding, granule secretion, and signal transduction are unique to this thrombasthenia, which we designate as atypical equine thrombasthenia. Copyright © The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  1. Evaluation of Creatine Kinase Activity and Inorganic Phosphate ...

    African Journals Online (AJOL)

    subjects presenting with major VOC. Keywords: Serum creatine kinase activity, Serum inorganic phosphate concentration, Sickle cell disease,. Steady state, Vaso‑occlusive crisis. Original Article. Address for correspondence: Dr. John C Aneke,. Department of Hematology,. Nnamdi Azikiwe University Teaching. Hospital ...

  2. Role of phosphatidylinositol 4,5-bisphosphate in regulating EHD2 plasma membrane localization.

    Directory of Open Access Journals (Sweden)

    Laura C Simone

    Full Text Available The four mammalian C-terminal Eps15 homology domain-containing proteins (EHD1-EHD4 play pivotal roles in endocytic membrane trafficking. While EHD1, EHD3 and EHD4 associate with intracellular tubular/vesicular membranes, EHD2 localizes to the inner leaflet of the plasma membrane. Currently, little is known about the regulation of EHD2. Thus, we sought to define the factors responsible for EHD2's association with the plasma membrane. The subcellular localization of endogenous EHD2 was examined in HeLa cells using confocal microscopy. Although EHD partner proteins typically mediate EHD membrane recruitment, EHD2 was targeted to the plasma membrane independent of two well-characterized binding proteins, syndapin2 and EHBP1. Additionally, the EH domain of EHD2, which facilitates canonical EHD protein interactions, was not required to direct overexpressed EHD2 to the cell surface. On the other hand, several lines of evidence indicate that the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 plays a crucial role in regulating EHD2 subcellular localization. Pharmacologic perturbation of PIP2 metabolism altered PIP2 plasma membrane distribution (as assessed by confocal microscopy, and caused EHD2 to redistribute away from the plasma membrane. Furthermore, overexpressed EHD2 localized to PIP2-enriched vacuoles generated by active Arf6. Finally, we show that although cytochalasin D caused actin microfilaments to collapse, EHD2 was nevertheless maintained at the plasma membrane. Intriguingly, cytochalasin D induced relocalization of both PIP2 and EHD2 to actin aggregates, supporting a role of PIP2 in controlling EHD2 subcellular localization. Altogether, these studies emphasize the significance of membrane lipid composition for EHD2 subcellular distribution and offer new insights into the regulation of this important endocytic protein.

  3. A new three-dimensional cobalt phosphate: Co 5(OH 2) 4(HPO 4) 2(PO 4) 2

    Science.gov (United States)

    Han, Zhangang; Tian, Aixiang; Peng, Jun; Zhai, Xueliang

    2006-10-01

    A three-dimensional (3D) cobalt phosphate: Co 5(OH 2) 4(HPO 4) 2(PO 4) 2 ( 1), has been synthesized by hydrothermal reaction and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic techniques. The title compound is a template free cobalt phosphate. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO 6 and PO 4 polyhedra. The magnetic susceptibility measurements indicated that the title compound obeys Curie-Weiss behavior down to a temperature of 17 K at which an antiferromagnetic phase transition occurs.

  4. Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels.

    Science.gov (United States)

    Duex, Jason E; Nau, Johnathan J; Kauffman, Emily J; Weisman, Lois S

    2006-04-01

    Phosphoinositide lipids regulate complex events via the recruitment of proteins to a specialized region of the membrane at a specific time. Precise control of both the synthesis and turnover of phosphoinositide lipids is integral to membrane trafficking, signal transduction, and cytoskeletal rearrangements. Little is known about the acute regulation of the levels of these signaling lipids. When Saccharomyces cerevisiae cells are treated with hyperosmotic medium the levels of phosphatidylinositol 3,5-bisphosphate (PI3,5P(2)) increase 20-fold. Here we show that this 20-fold increase is rapid and occurs within 5 min. Surprisingly, these elevated levels are transient. Fifteen minutes following hyperosmotic shock they decrease at a rapid rate, even though the cells remain in hyperosmotic medium. In parallel with the rapid increase in the levels of PI3,5P(2), vacuole volume decreases rapidly. Furthermore, concomitant with a return to basal levels of PI3,5P(2) vacuole volume is restored. We show that Fig 4p, consistent with its proposed role as a PI3,5P(2) 5-phosphatase, is required in vivo for this rapid return to basal levels of PI3,5P(2). Surprisingly, we find that Fig 4p is also required for the hyperosmotic shock-induced increase in PI3,5P(2) levels. These findings demonstrate that following hyperosmotic shock, large, transient changes occur in the levels of PI3,5P(2) and further suggest that Fig 4p is important in regulating both the acute rise and subsequent fall in PI3,5P(2) levels.

  5. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells.

    Science.gov (United States)

    Hertel, Fabian; Switalski, Agathe; Mintert-Jancke, Elisa; Karavassilidou, Katharina; Bender, Kirsten; Pott, Lutz; Kienitz, Marie-Cécile

    2011-01-01

    Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5)P(2) in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET), to monitor changes in plasma membrane(.) For controlled and reversible depletion of PtdIns(4,5)P(2), voltage-sensing phosphoinositide phosphatases (VSD) have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1) fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP), from a single open reading frame (ORF) in adult rat cardiac myocytes. Expression and correct targeting of ECFP-PH-PLCδ1(,) EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5)P(2) in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K(+) (GIRK) current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5)P(2) was identified. Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection-resistant postmitotic cells. Generally, adenoviral

  6. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells.

    Directory of Open Access Journals (Sweden)

    Fabian Hertel

    Full Text Available BACKGROUND: Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5P(2 in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5P(2 in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET, to monitor changes in plasma membrane(. For controlled and reversible depletion of PtdIns(4,5P(2, voltage-sensing phosphoinositide phosphatases (VSD have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1 fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP, from a single open reading frame (ORF in adult rat cardiac myocytes. METHODS AND RESULTS: Expression and correct targeting of ECFP-PH-PLCδ1(, EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5P(2 in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K(+ (GIRK current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5P(2 was identified. CONCLUSIONS: Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection

  7. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate

    NARCIS (Netherlands)

    van Zeijl, Leonie; Ponsioen, Bas; Giepmans, Ben N G; Ariaens, Aafke; Postma, Friso R; Várnai, Péter; Balla, Tamas; Divecha, Nullin; Jalink, Kees; Moolenaar, Wouter H

    2007-01-01

    Cell-cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell-cell communication is inhibited by depletion of phosphatidylinositol

  8. Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate.

    Directory of Open Access Journals (Sweden)

    Christopher F Dibble

    2010-07-01

    Full Text Available Cerebral cavernous malformations (CCM are vascular abnormalities of the central nervous system predisposing blood vessels to leakage, leading to hemorrhagic stroke. Three genes, Krit1 (CCM1, OSM (CCM2, and PDCD10 (CCM3 are involved in CCM development. PDCD10 binds specifically to PtdIns(3,4,5P3 and OSM. Using threading analysis and multi-template modeling, we constructed a three-dimensional model of PDCD10. PDCD10 appears to be a six-helical-bundle protein formed by two heptad-repeat-hairpin structures (alpha1-3 and alpha4-6 sharing the closest 3D homology with the bacterial phosphate transporter, PhoU. We identified a stretch of five lysines forming an amphipathic helix, a potential PtdIns(3,4,5P3 binding site, in the alpha5 helix. We generated a recombinant wild-type (WT and three PDCD10 mutants that have two (Delta2KA, three (Delta3KA, and five (Delta5KA K to A mutations. Delta2KA and Delta3KA mutants hypothetically lack binding residues to PtdIns(3,4,5P3 at the beginning and the end of predicted helix, while Delta5KA completely lacks all predicted binding residues. The WT, Delta2KA, and Delta3KA mutants maintain their binding to PtdIns(3,4,5P3. Only the Delta5KA abolishes binding to PtdIns(3,4,5P3. Both Delta5KA and WT show similar secondary and tertiary structures; however, Delta5KA does not bind to OSM. When WT and Delta5KA are co-expressed with membrane-bound constitutively-active PI3 kinase (p110-CAAX, the majority of the WT is co-localized with p110-CAAX at the plasma membrane where PtdIns(3,4,5P3 is presumably abundant. In contrast, the Delta5KA remains in the cytoplasm and is not present in the plasma membrane. Combining computational modeling and biological data, we propose that the CCM protein complex functions in the PI3K signaling pathway through the interaction between PDCD10 and PtdIns(3,4,5P3.

  9. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Lin, Mingqun; Liu, Hongyan; Xiong, Qingming; Niu, Hua; Cheng, Zhihui; Yamamoto, Akitsugu; Rikihisa, Yasuko

    2016-11-01

    Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.

  10. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    International Nuclear Information System (INIS)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-01-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca 2+ concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes

  11. Requirement of Sequences outside the Conserved Kinase Domain of Fission Yeast Rad3p for Checkpoint Control

    Science.gov (United States)

    Chapman, Carolyn Riley; Evans, Sarah Tyler; Carr, Antony M.; Enoch, Tamar

    1999-01-01

    The fission yeast Rad3p checkpoint protein is a member of the phosphatidylinositol 3-kinase-related family of protein kinases, which includes human ATMp. Mutation of the ATM gene is responsible for the disease ataxia-telangiectasia. The kinase domain of Rad3p has previously been shown to be essential for function. Here, we show that although this domain is necessary, it is not sufficient, because the isolated kinase domain does not have kinase activity in vitro and cannot complement a rad3 deletion strain. Using dominant negative alleles of rad3, we have identified two sites N-terminal to the conserved kinase domain that are essential for Rad3p function. One of these sites is the putative leucine zipper, which is conserved in other phosphatidylinositol 3-kinase-related family members. The other is a novel motif, which may also mediate Rad3p protein–protein interactions. PMID:10512862

  12. Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Jücker, M; Feldman, R A

    1995-11-17

    Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.

  13. Phosphatidylinositol (4,5)Bisphosphate Inhibits K+-Efflux Channel Activity in NT1 Tobacco Cultured Cells1[W][OA

    Science.gov (United States)

    Ma, Xiaohong; Shor, Oded; Diminshtein, Sofia; Yu, Ling; Im, Yang Ju; Perera, Imara; Lomax, Aaron; Boss, Wendy F.; Moran, Nava

    2009-01-01

    In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed “cytosolic” Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: “Low PIs” had depressed levels of these PIs, and “High PIs” had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 μm) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.54 μm), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells. PMID:19052153

  14. Discovery of a small molecule agonist of phosphatidylinositol 3-kinase p110α that reactivates latent HIV-1.

    Directory of Open Access Journals (Sweden)

    Geneviève Doyon

    Full Text Available Combination antiretroviral therapy (cART can effectively suppress HIV-1 replication, but the latent viral reservoir in resting memory CD4(+ T cells is impervious to cART and represents a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 represents a possible strategy for elimination of this reservoir. In this study we describe the discovery of 1,2,9,10-tetramethoxy-7H-dibenzo[de,g]quinolin-7-one (57704 which reactivates latent HIV-1 in several cell-line models of latency (J89GFP, U1 and ACH-2. 57704 also increased HIV-1 expression in 3 of 4 CD8(+-depleted blood mononuclear cell preparations isolated from HIV-1-infected individuals on suppressive cART. In contrast, vorinostat increased HIV-1 expression in only 1 of the 4 donors tested. Importantly, 57704 does not induce global T cell activation. Mechanistic studies revealed that 57704 reactivates latent HIV-1 via the phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt signaling pathway. 57704 was found to be an agonist of PI3K with specificity to the p110α isoform, but not the p110β, δ or γ isoforms. Taken together, our work suggests that 57704 could serve as a scaffold for the development of more potent activators of latent HIV-1. Furthermore, it highlights the involvement of the PI3K/Akt pathway in the maintenance of HIV-1 latency.

  15. Phosphorylation of inositol 1,4,5-trisphosphate analogues by 3-kinase and dephosphorylation of inositol 1,3,4,5-tetrakisphosphate analogues by 5-phosphatase

    NARCIS (Netherlands)

    Dijken, Peter van; Lammers, Aleida A.; Ozaki, Shoichiro; Potter, Barry V.L.; Erneux, Christophe; Haastert, Peter J.M. van

    1994-01-01

    A series of P-32-labeled D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P-4] analogues was enzymically prepared from the corresponding D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P-3] analogues using recombinant rat brain Ins(1,4,5)P-3 3-kinase and [gamma-P-32]ATP. Ins(1,4,5)P-3 analogues

  16. Fisetin targets phosphatidylinositol-3-kinase and induces apoptosis of human B lymphoma Raji cells

    Directory of Open Access Journals (Sweden)

    Ji Yeon Lim

    2015-01-01

    Full Text Available Aberrant regulation of phosphatidylinositol-3-kinases (PI3Ks is known to be involved in the progression of cancers. PI3K-binding flavonoids such as quercetin and myricetin have been shown to inhibit PI3K activity, but the direct targeting of fisetin to PI3K has not been established. Here, we carried out an in silico investigation of fisetin binding to PI3K and determined fisetin’s inhibitory activity in enzymatic and cell-based assays. In addition, fisetin induced apoptosis in human Burkitt’s lymphoma Raji cells by inhibiting both PI3Ks and mammalian target of rapamycin (mTOR. Our results indicate that fisetin may serve as a natural backbone for the development of novel dual inhibitors of PI3Ks and mTOR for the treatment of cancer.

  17. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels

    NARCIS (Netherlands)

    van Tiel, Claudia M.; Westerman, Jan; Paasman, Marten A.; Hoebens, Martha M.; Wirtz, Karel W. A.; Snoek, Gerry T.

    2002-01-01

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165)

  18. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    Science.gov (United States)

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    Science.gov (United States)

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  20. Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Eunsoo Lim

    2018-03-01

    Full Text Available Background : For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods : We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48 or a control group (n = 22. We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results : The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0% patients achieved the primary goal, as compared with 16 (72.7% in the control group (P = 0.430. The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087, but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851. However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193. The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363 nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569. Conclusion : Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy.

  1. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    Science.gov (United States)

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  2. Analysis of IRS-1-mediated phosphatidylinositol 3-kinase activation in the adipose tissue of polycystic ovary syndrome patients complicated with insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yongli, Chu [Yantai Yuhuangding Hospital, Yantai (China). Dept. of Obstetrics and Gynecology; Hongyu, Qiu; Yongyu, Sun; Min, Li; Hongfa, Li

    2004-04-01

    Objective: To investigate the insulin receptor substance-1 (IRS-1)-mediated phosphatidylinositol-3 (PI-3) kinase activity in adipose tissue of polycystic ovary syndrome (PCOS) patients, and to explore molecular mechanisms of insulin resistance of PCOS. Methods: Blood and adipose tissue samples from patients with PCOS with insulin resistance (n=19), PCOS without insulin resistance (n=10) and controls (n=15) were collected. Serum luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) were measured by chemiluminescence assay. Fasting insulin (FIN) was measured by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Insulin resistance index (IR) was calculated using homeostasis model assessment (HOMA) to analyze the relationship between these markers and insulin resistance. The tyrosine phosphorylation of IRS-1 was measured by immunoprecipitation and enhanced chemiluminescent immunoblotting technique. PI-3 kinase activity was detected by immunoprecipitation, thin-layer chromatography and gamma scintillation counting. The results were analyzed by statistical methods. Results: 1) The levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS without insulin resistance were significantly higher than those of control group (all P<0.05); the levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS with insulin resistance were significantly higher than those of PCOS without insulin resistance (all P<0.05). 2) The tyrosine phosphorylation analysis of IRS-1 showed that IRS-1 tyrosine phosphorylation was significantly decreased in PCOS with insulin resistance compared to that of PCOS without insulin resistance and control groups (P<0.01). 3) PI-3 kinase activity was significantly decreased (P<0.01) and negatively correlated with HOMA-IR. Conclusion: In consequence of the weaker signal caused by the change of upper stream signal molecule IRS-1 tyrosine phosphorylation, PI-3 kinase activity decreased, it affects the insulin signal

  3. Analysis of IRS-1-mediated phosphatidylinositol 3-kinase activation in the adipose tissue of polycystic ovary syndrome patients complicated with insulin resistance

    International Nuclear Information System (INIS)

    Chu Yongli; Qiu Hongyu; Sun Yongyu; Li Min; Li Hongfa

    2004-01-01

    Objective: To investigate the insulin receptor substance-1 (IRS-1)-mediated phosphatidylinositol-3 (PI-3) kinase activity in adipose tissue of polycystic ovary syndrome (PCOS) patients, and to explore molecular mechanisms of insulin resistance of PCOS. Methods: Blood and adipose tissue samples from patients with PCOS with insulin resistance (n=19), PCOS without insulin resistance (n=10) and controls (n=15) were collected. Serum luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T) were measured by chemiluminescence assay. Fasting insulin (FIN) was measured by radioimmunoassay. Fasting plasma glucose (FPG) was measured by oxidase assay. Insulin resistance index (IR) was calculated using homeostasis model assessment (HOMA) to analyze the relationship between these markers and insulin resistance. The tyrosine phosphorylation of IRS-1 was measured by immunoprecipitation and enhanced chemiluminescent immunoblotting technique. PI-3 kinase activity was detected by immunoprecipitation, thin-layer chromatography and gamma scintillation counting. The results were analyzed by statistical methods. Results: 1) The levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS without insulin resistance were significantly higher than those of control group (all P<0.05); the levels of serum LH, LH/FSH, T, FIN and HOMA-IR in PCOS with insulin resistance were significantly higher than those of PCOS without insulin resistance (all P<0.05). 2) The tyrosine phosphorylation analysis of IRS-1 showed that IRS-1 tyrosine phosphorylation was significantly decreased in PCOS with insulin resistance compared to that of PCOS without insulin resistance and control groups (P<0.01). 3) PI-3 kinase activity was significantly decreased (P<0.01) and negatively correlated with HOMA-IR. Conclusion: In consequence of the weaker signal caused by the change of upper stream signal molecule IRS-1 tyrosine phosphorylation, PI-3 kinase activity decreased, it affects the insulin signal

  4. Complete inhibition of creatine kinase in isolated perfused rat hearts

    International Nuclear Information System (INIS)

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts are able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. 31 P-NMR of the heart was carried out

  5. Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate

    Czech Academy of Sciences Publication Activity Database

    Benedikt, Jan; Teisinger, Jan; Vyklický st., Ladislav; Vlachová, Viktorie

    2007-01-01

    Roč. 100, č. 1 (2007), s. 211-224 ISSN 0022-3042 R&D Projects: GA ČR GA305/06/0319; GA ČR GA309/04/0496; GA MŠk 1M0517; GA MŠk LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : Cold /menthol receptor * ethanol * phosphatidylinositol Subject RIV: ED - Physiology Impact factor: 4.451, year: 2007

  6. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway.

    Science.gov (United States)

    Bezerra, Maria É S; Barberino, Ricássio S; Menezes, Vanúzia G; Gouveia, Bruna B; Macedo, Taís J S; Santos, Jamile M S; Monte, Alane P O; Barros, Vanessa R P; Matos, Maria H T

    2018-05-30

    We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (PIGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.

  7. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling.

    Science.gov (United States)

    Liang, Genqing; Bansal, Geetanjali; Xie, Zhihui; Druey, Kirk M

    2009-08-07

    Aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway supports growth of many tumors including those of breast, lung, and prostate. Resistance of breast cancer cells to targeted chemotherapies including tyrosine kinase inhibitors (TKI) has been linked to persistent PI3K activity, which may in part be due to increased membrane expression of epidermal growth factor (EGF) receptors (HER2 and HER3). Recently we found that proteins of the RGS (regulator of G protein signaling) family suppress PI3K activity downstream of the receptor by sequestering its p85alpha subunit from signaling complexes. Because a substantial percentage of breast tumors have RGS16 mutations and reduced RGS16 protein expression, we investigated the link between regulation of PI3K activity by RGS16 and breast cancer cell growth. RGS16 overexpression in MCF7 breast cancer cells inhibited EGF-induced proliferation and Akt phosphorylation, whereas shRNA-mediated extinction of RGS16 augmented cell growth and resistance to TKI treatment. Exposure to TKI also reduced RGS16 expression in MCF7 and BT474 cell lines. RGS16 bound the amino-terminal SH2 and inter-SH2 domains of p85alpha and inhibited its interaction with the EGF receptor-associated adapter protein Gab1. These results suggest that the loss of RGS16 in some breast tumors enhances PI3K signaling elicited by growth factors and thereby promotes proliferation and TKI evasion downstream of HER activation.

  8. Legionella phosphatase hydrolyzes phosphatidylinositol 4,5-bisphosphate and inosital triphosphate in human neutrophils

    International Nuclear Information System (INIS)

    Dowling, J.N.; Saha, A.K.; Glew, R.H.

    1987-01-01

    Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP 3 ) was explored. When neutrophil phosphoinositides were labeled with 32 P, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP 2 ) over 2 h. Treatment of [ 3 H]inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP 2 . Following fMLP stimulation, the fractional reduction in PIP 2 and the fractional increase in IP 3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP 3 was reduced by ACP pre-treatment. The reduction in IP 3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP 2 available for hydrolysis. However, some loss of IP 3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP 2 , the prognitor of IP 3 , and by hydrolyzing IP 3 itself

  9. Molecular Basis of Meiotic Maturation and Apoptosis of Oocytes, Sperm-Oocyte Interactions and Early Cleavage of Embryos in Mice, Role of Phosphatidylinositol 3-Kinase, Mos, Fas-Fas Ligand, Integrinα6 and MAP Kinase

    OpenAIRE

    Yumi Hoshino; Ken-ichi Yamanaka; Ikuo Tomioka; Noritaka Fukunaga; Mehdi Abbasi; Eimei Sato

    2005-01-01

    The interaction between molecular biology and embryology made an extensive progress in the research on gametogenesis, fertilization and early embryogenesis in mice. In this article, molecules involving in meiotic maturation and apoptosis of oocytes, sperm-oocyte interactions and early cleavage of fertilized embryos in mice are described including our recent following experiments. 1) Phosphatidylinositol 3-kinase and Akt participate in the follicle stimulating hormone-induced meiotic maturatio...

  10. Lindersin B from Lindernia crustacea induces neuritogenesis by activation of tyrosine kinase A/phosphatidylinositol 3 kinase/extracellular signal-regulated kinase signaling pathway.

    Science.gov (United States)

    Cheng, Lihong; Ye, Ying; Xiang, Lan; Osada, Hiroyuki; Qi, Jianhua

    2017-01-15

    -regulated kinase (ERK). Moreover, tyrosine kinase A (TrKA) and phosphatidylinositol 3 kinase (PI3K) were also involved in the signaling pathway. Two new cucurbitane triterpenoids, linderside A and lindersin B, were isolated from Lindernia crustacean. Neurite outgrowth induced by lindersin B in PC12 cells depends on activation of TrkA/PI3K/ERK signaling pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    International Nuclear Information System (INIS)

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-01-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85α and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1

  12. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    International Nuclear Information System (INIS)

    Hwang, P.M.; Verma, A.; Bredt, D.S.; Snyder, S.H.

    1990-01-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of 45 Ca 2+ , inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of [ 3 H]cytidine diphosphate diacylglycerol formed from [ 3 H]cytidine. Accumulated 45 Ca 2+ , inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited by low concentrations of denatonium, a potently bitter tastant

  13. Synthesis and Properties of Biodegradable Copolymers of 9-Phenyl-2,4,8,10-tetraoxaspiro-[5,5]undcane-3-one and Ethylene Ethyl Phosphate

    Institute of Scientific and Technical Information of China (English)

    Jian XU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel biodegradable copolymer poly(CC-co-EEP) was synthesized by ring-opening copolymerization of cyclic carbonate 9-phenyl-2, 4, 8, 10-tetraoxaspiro-[5, 5]undcane-3-one (CC)and ethylene ethyl phosphate (EEP). The obtained poly (CC-co-EEP)s were characterized by FTIR, 1H NMR, 13C NMR and gel permeation chromatography (GPC). In vitro hydrolytic degradation of the copolymers were investigated in phosphate buffer solution (pH=7.4).Hydrophilic phosphate units apparently improved the degradability of poly(carbonate-phosphate).

  14. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes

    Directory of Open Access Journals (Sweden)

    Tim Soderberg

    2005-01-01

    Full Text Available A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP, the ribulose monophosphate (RuMP pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium produce ribose-5-phosphate via the nonoxidative PPP (NOPPP, whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1 lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP, the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii probably does not synthesize aromatic amino acids at all.

  15. Phosphate homeostasis in Bartter syndrome: a case-control study.

    Science.gov (United States)

    Bettinelli, Alberto; Viganò, Cristina; Provero, Maria Cristina; Barretta, Francesco; Albisetti, Alessandra; Tedeschi, Silvana; Scicchitano, Barbara; Bianchetti, Mario G

    2014-11-01

    Bartter patients may be hypercalciuric. Additional abnormalities in the metabolism of calcium, phosphate, and calciotropic hormones have occasionally been reported. The metabolism of calcium, phosphate, and calciotropic hormones was investigated in 15 patients with Bartter syndrome and 15 healthy subjects. Compared to the controls, Bartter patients had significantly reduced plasma phosphate {mean [interquartile range]:1.29 [1.16-1.46] vs. 1.61 [1.54-1.67] mmol/L} and maximal tubular phosphate reabsorption (1.16 [1.00-1.35] vs. 1.41 [1.37-1.47] mmol/L) and significantly increased parathyroid hormone (PTH) level (6.1 [4.5-7.7] vs. 2.8 [2.2-4.4] pmol/L). However, patients and controls did not differ in blood calcium, 25-hydroxyvitamin D, alkaline phosphatase, and osteocalcin levels. In patients, an inverse correlation (P Bartter patients.

  16. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals.

    Directory of Open Access Journals (Sweden)

    Sayaka Akieda-Asai

    Full Text Available BACKGROUND: SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5Kgamma was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268 in PIP5Kgamma and enhanced PIP5Kgamma enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kgamma knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kgamma, PI(4,5P(2, and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. CONCLUSIONS/SIGNIFICANCE: Our findings indicated that the control of TSH release by the SIRT1-PIP5Kgamma pathway is important for regulating the metabolism of the whole body.

  17. Conformational dependence of a protein kinase phosphate transfer reaction

    Science.gov (United States)

    Labute, Montiago; Henkelman, Graeme; Tung, Chang-Shung; Fenimore, Paul; McMahon, Ben

    2007-03-01

    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase have been calculated using plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. Our results demonstrate that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site [1]. [1] G.H. Henkelman, M.X. LaBute, C.-S. Tung, P.W. Fenimore, B.H. McMahon, Proc. Natl. Acad. Sci. USA vol. 102, no. 43:15347-15351 (2005).

  18. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  19. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  20. The crystal structure of the phosphatidylinositol 4-kinase IIalpha

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Chalupská, Dominika; Rozycki, B.; Jovic, M.; Wisniewski, E.; Klíma, Martin; Dubánková, Anna; Kloer, D. P.; Nencka, Radim; Balla, T.; Bouřa, Evžen

    2015-01-01

    Roč. 22, č. 1 (2015), s. 5 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : PI4K IIalpha * crystal structure Subject RIV: CE - Biochemistry

  1. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    International Nuclear Information System (INIS)

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-01-01

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and]2number 2 PO 4 /mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the 34 PO 4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro

  2. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y.

    Science.gov (United States)

    Nishida, Yuichiro; Adati, Naoki; Ozawa, Ritsuko; Maeda, Aasami; Sakaki, Yoshiyuki; Takeda, Tadayuki

    2008-10-28

    SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which show a different phenotype during RA-mediated differentiation. SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. After exposing cells to a PI3K inhibitor, LY294002, we identified 386 genes and categorised these genes into two clusters dependent on the PI3K signalling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster, including 158 neural genes, was greatly reduced in SK-N-SH cells and partially impaired in SH-SY5Y-E cells, which is consistent with a defect in the neuronal phenotype of these cells. Additional stimulation with BDNF induced a set of neural genes that were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in differentiated SH-SY5Y-A cells. We identified gene clusters controlled by PI3K- and TRKB-mediated signalling pathways during the differentiation of two subtypes of SH-SY5Y cells. The TRKB-mediated bypass pathway compensates for impaired neural function generated by defects in several signalling pathways, including PI3K in SH-SY5Y-E cells. Our expression profiling data will be useful for further elucidation of the signal transduction-transcriptional network involving PI3K or TRKB.

  3. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    Science.gov (United States)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  4. Insulin protects apoptotic cardiomyocytes from hypoxia/reoxygenation injury through the sphingosine kinase/sphingosine 1-phosphate axis.

    Directory of Open Access Journals (Sweden)

    Huan Yu

    Full Text Available OBJECTIVE: Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the mechanisms underlying this effect are still unknown. In this study, the ability of insulin to protect apoptotic cardiomyocytes from hypoxia/reoxygenation injury using the sphingosine kinase/sphingosine 1-phosphate axis was investigated. METHODS AND RESULTS: Rat cardiomyocytes were isolated and subjected to hypoxia and reoxygenation. [γ-32P] ATP was used to assess sphingosine kinase activity. Insulin was found to increase sphingosine kinase activity. Immunocytochemistry and Western blot analysis showed changes in the subcellular location of sphingosine kinase 1 from cytosol to the membrane in cardiomyocytes. Insulin caused cardiomyocytes to accumulate of S1P in a dose-dependent manner. FRET efficiency showed that insulin also transactivates the S1P1 receptor. TUNEL staining showed that administration of insulin during reoxygenation could to reduce the rate of reoxygenation-induced apoptosis, which is a requirement for SphK 1 activity. It also reduced the rate of activation of the S1P receptor and inhibited hypoxia/reoxygenation-induced cell death in cardiomyocytes. CONCLUSION: The sphingosine kinase 1/sphingosine 1-phosphate/S1P receptor axis is one pathway through which insulin protects rat cardiomyocytes from apoptosis induced by hypoxia/reoxygenation injury.

  5. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action.

    Science.gov (United States)

    Deng, Youping; Bhattacharya, Sujoy; Swamy, O Rama; Tandon, Ruchi; Wang, Yong; Janda, Robert; Riedel, Heimo

    2003-10-10

    The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling

  6. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    International Nuclear Information System (INIS)

    Gottschalk, Alexander R.; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-01-01

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients

  7. Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of the trk proto-oncogene with src homology 2 domains.

    Science.gov (United States)

    Ohmichi, M; Decker, S J; Saltiel, A R

    1992-10-01

    Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.

  8. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes.

    Science.gov (United States)

    Spencer, Juliet V

    2007-02-01

    Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.

  9. The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase.

    Directory of Open Access Journals (Sweden)

    Kathleen Kong

    2014-05-01

    Full Text Available Adenoviruses infect epithelial cells lining mucous membranes to cause acute diseases in people. They are also utilized as vectors for vaccination and for gene and cancer therapy, as well as tools to discover mechanisms of cancer due to their tumorigenic potential in experimental animals. The adenovirus E4-ORF1 gene encodes an oncoprotein that promotes viral replication, cell survival, and transformation by activating phosphatidylinositol 3-kinase (PI3K. While the mechanism of activation is not understood, this function depends on a complex formed between E4-ORF1 and the membrane-associated cellular PDZ protein Discs Large 1 (Dlg1, a common viral target having both tumor suppressor and oncogenic functions. Here, we report that in human epithelial cells, E4-ORF1 interacts with the regulatory and catalytic subunits of PI3K and elevates their levels. Like PI3K activation, PI3K protein elevation by E4-ORF1 requires Dlg1. We further show that Dlg1, E4-ORF1, and PI3K form a ternary complex at the plasma membrane. At this site, Dlg1 also co-localizes with the activated PI3K effector protein Akt, indicating that the ternary complex mediates PI3K signaling. Signifying the functional importance of the ternary complex, the capacity of E4-ORF1 to induce soft agar growth and focus formation in cells is ablated either by a mutation that prevents E4-ORF1 binding to Dlg1 or by a PI3K inhibitor drug. These results demonstrate that E4-ORF1 interacts with Dlg1 and PI3K to assemble a ternary complex where E4-ORF1 hijacks the Dlg1 oncogenic function to relocate cytoplasmic PI3K to the membrane for constitutive activation. This novel mechanism of Dlg1 subversion by adenovirus to dysregulate PI3K could be used by other pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 and activate PI3K in cells.

  10. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar CellsSummary

    Directory of Open Access Journals (Sweden)

    Scott W. Messenger

    2015-11-01

    Full Text Available Background & Aims: Pancreatic acinar cells have an expanded apical endosomal system, the physiologic and pathophysiologic significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate [PI(3,5P2] is an essential phospholipid generated by phosphatidylinositol 3-phosphate 5-kinase (PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI3P. PI(3,5P2 is necessary for maturation of early endosomes (EE to late endosomes (LE. Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Methods: Inhibition of EE to LE trafficking was achieved using pharmacologic inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1, and trypsinogen activation in response to supramaximal cholecystokinin (CCK-8, bile acids, and cigarette toxin was determined. Results: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to supramaximal CCK-8, tobacco toxin, and bile salts in both rodent and human acini. Conclusions: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular

  11. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified...... LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric...... kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co...

  12. A lipid binding domain in sphingosine kinase 2

    International Nuclear Information System (INIS)

    Don, Anthony S.; Rosen, Hugh

    2009-01-01

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  13. Milrinone-induced postconditioning reduces hepatic ischemia-reperfusion injury in rats: the roles of phosphatidylinositol 3-kinase and nitric oxide.

    Science.gov (United States)

    Toyoda, Tomomi; Tosaka, Shinya; Tosaka, Reiko; Maekawa, Takuji; Cho, Sungsam; Eguchi, Susumu; Nakashima, Masahiro; Sumikawa, Koji

    2014-01-01

    Ischemic postconditioning (PostC) protects the liver against ischemia-reperfusion (IR) injury. Milrinone, a phosphodiesterase 3 inhibitor, has been reported to exhibit preconditioning properties against hepatic IR injury; however, its PostC properties remain unknown. This study investigated whether milrinone has PostC properties against hepatic IR injury and the roles of phosphatidylinositol 3-kinase (PI3K) and nitric oxide synthase (NOS). Male Wistar rats were separated into six groups: (1) group S: animals that underwent sham operation without ischemia, (2) group C: ischemia followed by reperfusion with no other intervention, (3) group M: milrinone administered immediately after reperfusion, (4) group MW: wortmannin, a PI3K inhibitor, injected before milrinone administration, (5) group MN: l-NAME, a NOS inhibitor, injected before milrinone administration, and (6) group MD, milrinone administered 30 min after reperfusion. Except for group S, all groups underwent 1 h of warm ischemia of median and left lateral lobes, followed by 5 h of reperfusion. Biochemical liver function analysis and histologic examination were performed. Serum aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase levels, histologic damage scores, and apoptotic rate in group M were significantly lower than those in group C. The inhibition of PI3K or NOS prevented this protective effect. Milrinone administered 30 min after reperfusion did not show obvious protective effects. Milrinone-induced PostC protects against hepatic IR injury when it is administered immediately after reperfusion, and PI3K and NOS may play an important role in this protective effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  15. Foot-and-mouth disease virus induces autophagosomes during cell entry via a class III phosphatidylinositol 3-kinase-independent pathway.

    Science.gov (United States)

    Berryman, Stephen; Brooks, Elizabeth; Burman, Alison; Hawes, Philippa; Roberts, Rebecca; Netherton, Christopher; Monaghan, Paul; Whelband, Matthew; Cottam, Eleanor; Elazar, Zvulun; Jackson, Terry; Wileman, Thomas

    2012-12-01

    Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.

  16. Adenovirus Protein E4-ORF1 activation of PI3 kinase reveals differential regulation of downstream effector pathways in adipocytes

    OpenAIRE

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K.; McGraw, Timothy E.

    2016-01-01

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but...

  17. Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.

    Science.gov (United States)

    She, Hua; Mao, Zixu

    2017-01-01

    The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.

  18. PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast

    DEFF Research Database (Denmark)

    Le Guédard, Marina; Bessoule, Jean-Jacques; Boyer, Valérie

    2009-01-01

    complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild......-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid...... as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol....

  19. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  20. The involvement of Gab1 and PI 3-kinase in β1 integrin signaling in keratinocytes

    International Nuclear Information System (INIS)

    Kuwano, Yoshihiro; Fujimoto, Manabu; Watanabe, Rei; Ishiura, Nobuko; Nakashima, Hiroko; Komine, Mayumi; Hamazaki, Tatsuo S.; Tamaki, Kunihiko; Okochi, Hitoshi

    2007-01-01

    The control of the stem cell compartment in epidermis is closely linked to the regulation of keratinocyte proliferation and differentiation. β1 integrins are expressed 2-fold higher by stem cells than transit-amplifying cells. Signaling from these β1 integrins is critical for the regulation of the epidermal stem cell compartment. To clarify the functional relevance of this differential expression of β1 integrins, we established HaCaT cells with high β1integrin expression by repeated flow cytometric sorting of this population from the parental cell line. In these obtained cells expressing β1 integrins by 5-fold, MAPK activation was markedly increased. Regarding the upstream of MAPK, Gab1 phosphorylation was also higher with high β1 integrin expression, while Shc phosphorylation was not altered. In addition, enhanced phosphatidylinositol 3-kinase activation was also observed. These observations suggest that Gab1 and phosphatidylinositol 3-kinase play pivotal roles in the β1 integrin-mediated regulation of the epidermal stem cell compartment

  1. Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2)-dependent Oligomerization of Fibroblast Growth Factor 2 (FGF2) Triggers the Formation of a Lipidic Membrane Pore Implicated in Unconventional Secretion*

    Science.gov (United States)

    Steringer, Julia P.; Bleicken, Stephanie; Andreas, Helena; Zacherl, Sonja; Laussmann, Mareike; Temmerman, Koen; Contreras, F. Xabier; Bharat, Tanmay A. M.; Lechner, Johannes; Müller, Hans-Michael; Briggs, John A. G.; García-Sáez, Ana J.; Nickel, Walter

    2012-01-01

    Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate. PMID:22730382

  2. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2008-10-01

    Full Text Available Abstract Background SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA, but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E, each of which show a different phenotype during RA-mediated differentiation. Findings SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF for full differentiation. After exposing cells to a PI3K inhibitor, LY294002, we identified 386 genes and categorised these genes into two clusters dependent on the PI3K signalling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster, including 158 neural genes, was greatly reduced in SK-N-SH cells and partially impaired in SH-SY5Y-E cells, which is consistent with a defect in the neuronal phenotype of these cells. Additional stimulation with BDNF induced a set of neural genes that were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in differentiated SH-SY5Y-A cells. Conclusion We identified gene clusters controlled by PI3K- and TRKB-mediated signalling pathways during the differentiation of two subtypes of SH-SY5Y cells. The TRKB-mediated bypass pathway compensates for impaired neural function generated by defects in several signalling pathways, including PI3K in SH-SY5Y-E cells. Our expression profiling data will be useful for further elucidation of the signal transduction-transcriptional network involving PI3K or TRKB.

  3. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane.

    Science.gov (United States)

    Baskin, Jeremy M; Wu, Xudong; Christiano, Romain; Oh, Michael S; Schauder, Curtis M; Gazzerro, Elisabetta; Messa, Mirko; Baldassari, Simona; Assereto, Stefania; Biancheri, Roberta; Zara, Federico; Minetti, Carlo; Raimondi, Andrea; Simons, Mikael; Walther, Tobias C; Reinisch, Karin M; De Camilli, Pietro

    2016-01-01

    Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.

  4. 21 CFR 184.1697 - Riboflavin-5′-phosphate (sodium).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Riboflavin-5â²-phosphate (sodium). 184.1697 Section... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1697 Riboflavin-5′-phosphate (sodium). (a) Riboflavin-5′-phosphate (sodium) (C17H20N4O9PNa·2H2O, CAS Reg. No 130-40-5) occurs as the dihydrate in yellow...

  5. Role of Ocrl1 and Inpp5E in primary cilia assembly and maintenance: a phosphatidylinositol phosphatase relay system?

    Directory of Open Access Journals (Sweden)

    Madhivanan K

    2016-02-01

    Full Text Available Kayalvizhi Madhivanan,* Swetha Ramadesikan,* R Claudio Aguilar Department of Biological Sciences, Purdue University, West Lafayette, IN, USA *These authors contributed equally to this work Abstract: The primary cilium (PC is a plasma membrane-derived structure of great importance for cell and organismal physiology. Indeed, abnormalities in assembly or function of the PC trigger the onset of a group of genetic diseases collectively known as ciliopathies. In recent years, it has become evident that the integrity and function of the PC depends substantially on signaling elements such as phosphoinositides (PI and their regulators. Because phospholipids such as PI(4,5P2 constitute recruitment platforms for cytoskeleton, signaling, and trafficking machinery, control over their levels is critical for PC function. Although information about phosphoinositol phosphate (PIP kinases in the PC is scarce, a growing body of evidence supports a role for PIP phosphatases in cilia assembly/maintenance. Indeed, deficiencies in two 5′ PIP phosphatases, Inpp5E and Ocrl1, are clearly linked to ciliopathies like Joubert/MORM syndromes, or ciliopathy-associated diseases like Lowe syndrome. Here, we review the unique roles of these proteins and their specific site of action for ensuring ciliary integrity. Further, we discuss the possibility that a phosphatase relay system able to pass PI control from a preciliary to an intraciliary compartment is in place to ensure PC integrity/function. Keywords: primary cilia, Ocrl1, Inpp5E, Pip2, Pip3

  6. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1).

    Science.gov (United States)

    De Jesús-Pérez, José J; Cruz-Rangel, Silvia; Espino-Saldaña, Ángeles E; Martínez-Torres, Ataúlfo; Qu, Zhiqiang; Hartzell, H Criss; Corral-Fernandez, Nancy E; Pérez-Cornejo, Patricia; Arreola, Jorge

    2018-03-01

    The TMEM16A-mediated Ca 2+ -activated Cl - current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca 2+ . On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Suppression of chemotaxis by SSeCKS via scaffolding of phosphoinositol phosphates and the recruitment of the Cdc42 GEF, Frabin, to the leading edge.

    Science.gov (United States)

    Ko, Hyun-Kyung; Guo, Li-wu; Su, Bing; Gao, Lingqiu; Gelman, Irwin H

    2014-01-01

    Chemotaxis is controlled by interactions between receptors, Rho-family GTPases, phosphatidylinositol 3-kinases, and cytoskeleton remodeling proteins. We investigated how the metastasis suppressor, SSeCKS, attenuates chemotaxis. Chemotaxis activity inversely correlated with SSeCKS levels in mouse embryo fibroblasts (MEF), DU145 and MDA-MB-231 cancer cells. SSeCKS loss induced chemotactic velocity and linear directionality, correlating with replacement of leading edge lamellipodia with fascin-enriched filopodia-like extensions, the formation of thickened longitudinal F-actin stress fibers reaching to filopodial tips, relative enrichments at the leading edge of phosphatidylinositol (3,4,5)P3 (PIP3), Akt, PKC-ζ, Cdc42-GTP and active Src (SrcpoY416), and a loss of Rac1. Leading edge lamellipodia and chemotaxis inhibition in SSeCKS-null MEF could be restored by full-length SSeCKS or SSeCKS deleted of its Src-binding domain (ΔSrc), but not by SSeCKS deleted of its three MARCKS (myristylated alanine-rich C kinase substrate) polybasic domains (ΔPBD), which bind PIP2 and PIP3. The enrichment of activated Cdc42 in SSeCKS-null leading edge filopodia correlated with recruitment of the Cdc42-specific guanine nucleotide exchange factor, Frabin, likely recruited via multiple PIP2/3-binding domains. Frabin knockdown in SSeCKS-null MEF restores leading edge lamellipodia and chemotaxis inhibition. However, SSeCKS failed to co-immunoprecipitate with Rac1, Cdc42 or Frabin. Consistent with the notion that chemotaxis is controlled by SSeCKS-PIP (vs. -Src) scaffolding activity, constitutively-active phosphatidylinositol 3-kinase could override the ability of the Src inhibitor, SKI-606, to suppress chemotaxis and filopodial enrichment of Frabin in SSeCKS-null MEF. Our data suggest a role for SSeCKS in controlling Rac1 vs. Cdc42-induced cellular dynamics at the leading chemotactic edge through the scaffolding of phospholipids and signal mediators, and through the reorganization of the

  8. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Birkedal, Henrik; Olsen, Jakob

    2016-01-01

    Caries is caused by acid production in biofilms on dental surfaces. Preventing caries therefore involves control of microorganisms and/or the acid produced. Here, calcium-phosphate-osteopontin particles are presented as a new approach to caries control. The particles are made by co......-precipitation and designed to bind to bacteria in biofilms, impede biofilm build-up without killing the microflora, and release phosphate ions to buffer bacterial acid production if the pH decreases below 6. Analysis of biofilm formation and pH in a five-species biofilm model for dental caries showed that treatment......H always remained above 5.5. Hence, calcium-phosphate-osteopontin particles show potential for applications in caries control....

  10. Sphingosine Kinase 1 and Sphingosine-1-Phosphate Signaling in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Yonghua Bao

    2017-10-01

    Full Text Available Sphingosine kinase 1 (Sphk1 is a highly conserved lipid kinase that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P. Growing studies have demonstrated that Sphk1 is overexpressed in various types of solid cancers and can be induced by growth factors, cytokines, and carcinogens, leading to the increase of S1P production. Subsequently, the increased Sphk1/S1P facilitates cancer cell proliferation, mobility, angiogenesis, invasion, and metastasis. Therefore, Sphk1/S1P signaling plays oncogenic roles. This review summarizes the features of Sphk1/S1P signaling and their functions in colorectal cancer cell growth, tumorigenesis, and metastasis, as well as the possible underlying mechanisms.

  11. Novel adenosine 3',5'-cyclic monophosphate dependent protein kinases in a marine diatom

    International Nuclear Information System (INIS)

    Lin, P.P.C.; Volcani, B.E.

    1989-01-01

    Two novel adenosine 3',5'-cyclic monophosphate (cAMP) dependent protein kinases have been isolated from the diatom Cylindrotheca fusiformis. The kinases, designated I and II, are eluted from DEAE-Sephacel at 0.10 and 0.15 M NaCl. They have a high affinity for cAMP and are activated by micromolar cAMP. They exhibit maximal activity at 5 mM Mg 2+ and pH 8 with the preferred phosphate donor ATP and phosphate acceptor histone H1. They phosphorylate sea urchin sperm histone H1 on a single serine site in the sequence Arg-Lys-Gly-Ser( 32 P)-Ser-Asn-Ala-Arg and have an apparent M r of 75,000 as determined by gel filtration and sucrose density sedimentation. In the kinase I preparation a single protein band with an apparent M r of about 78,000 is photolabeled with 8-azido[ 32 P]cAMP and is also phosphorylated with [γ- 32 P]ATP in a cAMP-dependent manner, after autoradiography following sodium dodecyl sulfate gel electrophoresis. The rate of phosphorylation of the 78,000-dalton band is independent of the enzyme concentration. The results indicate that (i) these diatom cAMP-dependent protein kinases are monomeric proteins, possessing both the cAMP-binding regulatory and catalytic domains on the same polypeptide chain, (ii) the enzymes do not dissociate into smaller species upon activation by binding cAMP, and (iii) self-phosphorylation of the enzymes by an intrapeptide reaction is cAMP dependent. The two diatom cAMP kinases are refractory to the heat-stable protein kinase modulator from rabbit muscle, but they respond differently to proteolytic degradation and to inhibition by arachidonic acid and several microbial alkaloids

  12. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis.

    Science.gov (United States)

    Princz, Lissa N; Wild, Philipp; Bittmann, Julia; Aguado, F Javier; Blanco, Miguel G; Matos, Joao; Pfander, Boris

    2017-03-01

    DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81-Mms4, this cell cycle stage-specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with Cdc5-both kinases bind to as well as phosphorylate Mus81-Mms4 in an interdependent manner. Moreover, DDK-mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81-Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  13. Characterization of Runella slithyformis HD-Pnk, a bifunctional DNA/RNA end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase domain.

    Science.gov (United States)

    Munir, Annum; Shuman, Stewart

    2016-11-28

    5' and 3' end healing are key steps in nucleic acid break repair in which 5' -OH ends are phosphorylated by a polynucleotide kinase and 3' -PO 4 or 2',3' -cyclic-PO 4 ends are hydrolyzed by a phosphoesterase to generate the 5' -PO 4 and 3' -OH termini required for sealing by classic polynucleotide ligases. End healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5' -OH polynucleotides (9-mers or longer) in the presence of magnesium and any NTP donor. HD-Pnk dephosphorylates RNA 2',3' -cyclic phosphate, RNA 3' -phosphate, RNA 2' -phosphate, and DNA 3' -phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper or cobalt. HD-Pnkp homologs are present in genera from eleven bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. The present study provides insights to the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnkp as the exemplar of a novel clade of dual 5' and 3' end-healing enzymes that phosphorylate 5' -OH termini and dephosphorylate 2',3' -cyclic-PO 4 , 3' -PO 4 , and 2' -PO 4 ends. The distinctive feature of HD-Pnk is its domain composition: a fusion of an N-terminal HD phosphohydrolase module to a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, domain order, and similar polypeptide size are distributed widely among genera from eleven bacterial phyla. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Intercalation compounds of vanadium(5) phosphates with glycerol

    International Nuclear Information System (INIS)

    Yakovleva, T.N.; Vykhodtseva, K.I.; Tarasova, D.V.; Soderzhinova, M.M.

    1997-01-01

    Interaction products of glycerol aqueous solutions with vanadium(5) phosphates were investigated by the methods of ESR, X-ray phase and thermal analyses. It is shown that glycerol molecules enter the interlayer space of VOPO 4 · 2H 2 O lattice with formation of disordered intercalated compounds with glycerol on the basis of partially reduced vanadium phosphate form when using α-VOPO 4 . 16 refs., 4 figs., 1 tab

  15. Down-Regulation of the Na+-Coupled Phosphate Transporter NaPi-IIa by AMP-Activated Protein Kinase

    Directory of Open Access Journals (Sweden)

    Miribane Dërmaku-Sopjani

    2013-11-01

    Full Text Available Background/Aims: The Na+-coupled phosphate transporter NaPi-IIa is the main carrier accomplishing renal tubular phosphate reabsorption. It is driven by the electrochemical Na+ gradient across the apical cell membrane, which is maintained by Na+ extrusion across the basolateral cell membrane through the Na+/K+ ATPase. The operation of NaPi-IIa thus requires energy in order to avoid cellular Na+ accumulation and K+ loss with eventual decrease of cell membrane potential, Cl- entry and cell swelling. Upon energy depletion, early inhibition of Na+-coupled transport processes may delay cell swelling and thus foster cell survival. Energy depletion is sensed by the AMP-activated protein kinase (AMPK, a serine/threonine kinase stimulating several cellular mechanisms increasing energy production and limiting energy utilization. The present study explored whether AMPK influences the activity of NAPi-IIa. Methods: cRNA encoding NAPi-IIa was injected into Xenopus oocytes with or without additional expression of wild-type AMPK (AMPKα1-HA+AMPKβ1-Flag+AMPKγ1-HA, of inactive AMPKαK45R (AMPKα1K45R+AMPKβ1-Flag+AMPKγ1-HA or of constitutively active AMPKγR70Q (AMPKα1-HA+AMPKβ1-Flag+AMPKγ1R70Q. NaPi-IIa activity was estimated from phosphate-induced current in dual electrode voltage clamp experiments. Results: In NaPi-IIa-expressing, but not in water-injected Xenopus oocytes, the addition of phosphate (1 mM to the extracellular bath solution generated a current (Ip, which was significantly decreased by coexpression of wild-type AMPK and of AMPKγR70Q but not of AMPKαK45R. The phosphate-induced current in NaPi-IIa- and AMPK-expressing Xenopus ooocytes was significantly increased by AMPK inhibitor Compound C (20 µM. Kinetic analysis revealed that AMPK significantly decreased the maximal transport rate. Conclusion: The AMP-activated protein kinase AMPK is a powerful regulator of NaPi-IIa and thus of renal tubular phosphate transport.

  16. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    International Nuclear Information System (INIS)

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  17. Insulin and IGF-1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage.

    Science.gov (United States)

    Zaika, Oleg; Palygin, Oleg; Tomilin, Viktor; Mamenko, Mykola; Staruschenko, Alexander; Pochynyuk, Oleh

    2016-02-15

    Potassium Kir4.1/5.1 channels are abundantly expressed at the basolateral membrane of principal cells in the cortical collecting duct (CCD), where they are thought to modulate transport rates by controlling transepithelial voltage. Insulin and insulin-like growth factor-1 (IGF-1) stimulate apically localized epithelial sodium channels (ENaC) to augment sodium reabsorption in the CCD. However, little is known about their actions on potassium channels localized at the basolateral membrane. In this study, we implemented patch-clamp analysis in freshly isolated murine CCD to assess the effect of these hormones on Kir4.1/5.1 at both single channel and cellular levels. We demonstrated that K(+)-selective conductance via Kir4.1/5.1 is the major contributor to the macroscopic current recorded from the basolateral side in principal cells. Acute treatment with 10 μM amiloride (ENaC blocker), 100 nM tertiapin-Q (TPNQ; ROMK inhibitor), and 100 μM ouabain (Na(+)-K(+)-ATPase blocker) failed to produce a measurable effect on the macroscopic current. In contrast, Kir4.1 inhibitor nortriptyline (100 μM), but not fluoxetine (100 μM), virtually abolished whole cell K(+)-selective conductance. Insulin (100 nM) markedly increased the open probability of Kir4.1/5.1 and nortriptyline-sensitive whole cell current, leading to significant hyperpolarization of the basolateral membrane. Inhibition of the phosphatidylinositol 3-kinase cascade with LY294002 (20 μM) abolished action of insulin on Kir4.1/5.1. IGF-1 had similar stimulatory actions on Kir4.1/5.1-mediated conductance only when applied at a higher (500 nM) concentration and was ineffective at 100 nM. We concluded that both insulin and, to a lesser extent, IGF-1 activate Kir4.1/5.1 channel activity and open probability to hyperpolarize the basolateral membrane, thereby facilitating Na(+) reabsorption in the CCD. Copyright © 2016 the American Physiological Society.

  18. The lipid kinase PI5P4Kβ is an intracellular GTP sensor for metabolism and tumorigenesis

    Science.gov (United States)

    Sumita, Kazutaka; Lo, Yu-Hua; Takeuchi, Koh; Senda, Miki; Kofuji, Satoshi; Ikeda, Yoshiki; Terakawa, Jumpei; Sasaki, Mika; Yoshino, Hirofumi; Majd, Nazanin; Zheng, Yuxiang; Kahoud, Emily Rose; Yokota, Takehiro; Emerling, Brooke M.; Asara, John M.; Ishida, Tetsuo; Locasale, Jason W.; Daikoku, Takiko; Anastasiou, Dimitrios; Senda, Toshiya; Sasaki, Atsuo T.

    2016-01-01

    Summary While cellular GTP concentration dramatically changes in response to an organism’s cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kβ, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kβ preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kβ is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kβ is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kβ. The critical role of the GTP-sensing activity of PI5P4Kβ in cancer signifies this lipid kinase as a cancer therapeutic target. PMID:26774281

  19. The Fab1/PIKfyve Phosphoinositide Phosphate Kinase Is Not Necessary to Maintain the pH of Lysosomes and of the Yeast Vacuole*

    Science.gov (United States)

    Ho, Cheuk Y.; Choy, Christopher H.; Wattson, Christina A.; Johnson, Danielle E.; Botelho, Roberto J.

    2015-01-01

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH lysosomes. PMID:25713145

  20. Programmed cell death 4 protein (Pdcd4) and homeodomain-interacting protein kinase 2 (Hipk2) antagonistically control translation of Hipk2 mRNA.

    Science.gov (United States)

    Ohnheiser, Johanna; Ferlemann, Eva; Haas, Astrid; Müller, Jan P; Werwein, Eugen; Fehler, Olesja; Biyanee, Abhiruchi; Klempnauer, Karl-Heinz

    2015-07-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) is a highly conserved RNA-binding protein that inhibits the translation of specific mRNAs. Here, we have identified the homeobox-interacting protein kinase-2 (Hipk2) mRNA as a novel translational target of Pdcd4. Unlike most other protein kinases Hipk2 is constitutively active after being synthesized by the ribosome and its expression and activity are thought to be mainly controlled by modulation of the half-life of the kinase. Our work provides the first evidence that Hipk2 expression is also controlled on the level of translation. We show that Hipk2 stimulates the translation of its own mRNA and that Pdcd4 suppresses the translation of Hipk2 mRNA by interfering with this auto-regulatory feedback mechanism. We also show that the translation of the related kinase Hipk1 is controlled by a similar feedback loop and that Hipk2 also stimulates the translation of Hipk1 mRNA. Taken together, our work describes a novel mechanism of translational suppression by Pdcd4 and shows for the first time that Hipk2 controls its own synthesis by an auto-regulatory feedback mechanism. Furthermore, the effect of Hipk2 on the translation of Hipk1 RNA suggests that Hipk2 and Pdcd4 can act in similar manner to control the translation of other mRNAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes

    DEFF Research Database (Denmark)

    Karlsson, Richard; Engström, Maria; Jönsson, Maria

    2003-01-01

    Cytokines such as interleukin 3 (IL-3), kit ligand (KL), and flt3 ligand (FL) promote survival of hematopoietic stem cells and myeloid progenitor cells. In many cell types, members of the Bcl-2 gene family are major regulators of survival, but the mediating mechanisms are not fully understood....... Using two myeloid progenitor cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow progenitors, we demonstrate that KL-mediated survival is dependent on the activation of phosphatidylinositol-3 (PI-3) kinase. The inhibitor LY294002 was able to completely abolish survival mediated by KL...

  2. Is inositol (1,3,4,5)-tetrakisphosphate a new second messenger?

    International Nuclear Information System (INIS)

    Hansen, C.A.; Williamson, J.R.

    1986-01-01

    Hormone-stimulated hydrolysis of inositol (Ins) lipids results in the rapid formation of Ins(1,4,5)P 3 , the second messenger for intracellular Ca 2+ mobilization. Recently, a more polar inositol phosphate, Ins(1,3,4,5)P 4 as well as its probable hydrolysis product Ins(1,3,4)P 3 have been reported to accumulate in carbachol-stimulated brain slices. Vasopressin addition to hepatocytes prelabeled with [ 3 H]-Ins also showed a rapid increase of Ins(1,3,4,5)P 4 , which was similar to that of Ins(1,4,5)P 3 , while the accumulation of Ins(1,3,4)P 3 was slower. In order to examine whether Ins(1,3,4,5)P 4 has any functional effects on Ca 2+ homeostasis, it was synthesized enzymatically from [ 3 H]-Ins(1,4,5)P 3 using a partially purified phosphoinositol kinase activity from rat brain cortex. [ 3 H]-labeled inositol phosphates were separated by anion exchange chromatography and analyzed by HPLC using ammonium formate/phosphoric acid gradient elution. Preliminary experiments indicate that Ins(1,3,4,5)P 4 up to 10 μM does not release Ca 2+ from vesicular pools in saponin-permeabilized hepatocytes. It has a slight inhibitory effect on Ins(1,4,5)P 3 -induced Ca 2+ release. The effect of Ins(1,3,4,5)P 4 on plasma membrane Ca 2+ fluxes are presently being investigated

  3. Synthesis and SAR of 1-acetanilide-4-aminopyrazole-substituted quinazolines: selective inhibitors of Aurora B kinase with potent anti-tumor activity.

    Science.gov (United States)

    Foote, Kevin M; Mortlock, Andrew A; Heron, Nicola M; Jung, Frédéric H; Hill, George B; Pasquet, Georges; Brady, Madeleine C; Green, Stephen; Heaton, Simon P; Kearney, Sarah; Keen, Nicholas J; Odedra, Rajesh; Wedge, Stephen R; Wilkinson, Robert W

    2008-03-15

    A new class of 1-acetanilide-4-aminopyrazole-substituted quinazoline Aurora kinase inhibitors has been discovered possessing highly potent cellular activity. Continuous infusion into athymic mice bearing SW620 tumors of the soluble phosphate derivative 2 led to dose-proportional exposure of the des-phosphate compound 8 with a high-unbound fraction. The combination of potent cell activity and high free-drug exposure led to pharmacodynamic changes in the tumor at low doses, indicative of Aurora B-kinase inhibition and a reduction in tumor volume.

  4. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling

    International Nuclear Information System (INIS)

    Szymanska, Ewelina; Korzeniowski, Marek; Raynal, Patrick; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2009-01-01

    Receptor FcγIIA (FcγRIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P 2 and PI(4,5)P 2 -synthesizing PIP5-kinase Iα to rafts contributes to FcγRIIA signaling. A fraction of PIP5-kinase Iα was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P 2 . PIP5-kinase Iα bound PI(4,5)P 2 , and depletion of the lipid displaced PIP5-kinase Iα from the DRM. Activation of FcγRIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P 2 . Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After FcγRIIA activation, PIP5-kinase Iα and PI(4,5)P 2 co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase Iα and PI(4,5)P 2 were present at the edges of electron-dense assemblies containing activated FcγRIIA in their core. The data suggest that activation of FcγRIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase Iα and PI(4,5)P 2

  5. Phosphate Metabolism in CKD Stages 3–5: Dietary and Pharmacological Control

    Directory of Open Access Journals (Sweden)

    Markus Ketteler

    2011-01-01

    Full Text Available When compared to the available information for patients on dialysis (CKD stage 5D, data on the epidemiology and appropriate treatment of calcium and phosphate metabolism in the predialysis stages of chronic kidney disease (CKD are quite limited. Perceptible derangements of calcium and phosphate levels start to become apparent when GFR falls below 30 mL/min in some, but not all, patients. However, hyperphosphatemia may be a significant morbidity and mortality risk predictor in predialysis CKD stages. The RIND study, evaluating progression of coronary artery calcification in incident hemodialysis patients, indirectly demonstrated that vascular calcification processes start to manifest in CKD patients prior to the dialysis stage, which may be closely linked to early and invisible derangements in calcium and phosphate homeostasis. Novel insights into the pathophysiology of calcium and phosphate handling such as the discovery of FGF23 and other phosphatonins suggest that a more complex assessment of phosphate balance is warranted, possibly including measurements of fractional phosphate excretion and phosphatonin levels in order to appropriately evaluate disordered metabolism in earlier stages of kidney disease. As a consequence, early and preventive treatment approaches may have to be developed for patients in CKD stages 3-5 to halt progression of CKD-MBD.

  6. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4 reveals a requirement for MAPK signalling in mouse sex determination.

    Directory of Open Access Journals (Sweden)

    Debora Bogani

    2009-09-01

    Full Text Available Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY gonad, sex-determining region of the Y (SRY protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4, a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas. These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and

  7. Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    Science.gov (United States)

    Bogani, Debora; Siggers, Pam; Brixey, Rachel; Warr, Nick; Beddow, Sarah; Edwards, Jessica; Williams, Debbie; Wilhelm, Dagmar; Koopman, Peter; Flavell, Richard A.; Chi, Hongbo; Ostrer, Harry; Wells, Sara; Cheeseman, Michael; Greenfield, Andy

    2009-01-01

    Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel

  8. The new InsP3Kinase inhibitor BIP-4 is competitive to InsP3 and blocks proliferation and adhesion of lung cancer cells.

    Science.gov (United States)

    Schröder, Dominik; Tödter, Klaus; Gonzalez, Beatriz; Franco-Echevarría, Elsa; Rohaly, Gabor; Blecher, Christine; Lin, Hong-Ying; Mayr, Georg W; Windhorst, Sabine

    2015-07-15

    As ectopic expression of the neuronal inositol-1,4,5-trisphosphate-3-kinase A (InsP3Kinase) in tumor cells increases the metastatic potential, InsP3Kinase is an interesting target for tumor therapy. Recently, we have identified a membrane-permeable InsP3Kinase inhibitor (BAMB-4) exhibiting an IC50-value of 20 μM. Here we characterized a new InsP3Kinase inhibitor which shows a 130-fold lower IC50 value (157 ± 57 nM) as compared to BAMB-4. We demonstrate that this nitrophenolic compound, BIP-4, is non-competitive to ATP but competitive to InsP3, thus exhibits a high selectivity for inhibition of InsP3Kinase activity. Docking analysis suggested a putative binding mode of this molecule into the InsP3Kinase active site. Determination of cellular uptake in lung cancer cells (H1299) revealed that 6% of extracellular BIP-4 is internalized by non-endosomal uptake, showing that BIP-4 is not trapped inside endo/lysosomes but is available to inhibit cellular InsP3Kinase activity. Interestingly, we found that BIP-4 mediated inhibition of InsP3Kinase activity in the two lung cancer cell lines H1299 and LN4323 inhibited proliferation and adhesion at IC50 values of 3 μM or 2 μM, respectively. InsP3Kinase inhibition did not alter ATP-induced calcium signals but significantly reduced the level of Ins(1,3,4,5,6)P5. From these data we conclude that the inhibitory effect of BIP-4 on proliferation and adhesion of lung cancer cells does not result from alterations of calcium but from alterations of inositol phosphate signals. In summary, we reveal that inhibition of cellular InsP3Kinase by BIP-4 impairs proliferation and adhesion and therefore BIP-4 might be a promising compound to reduce the metastatic potential of lung carcinoma cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor.

    Science.gov (United States)

    Mallon, Robert; Hollander, Irwin; Feldberg, Larry; Lucas, Judy; Soloveva, Veronica; Venkatesan, Aranapakam; Dehnhardt, Christoph; Delos Santos, Efren; Chen, Zecheng; Dos Santos, Osvaldo; Ayral-Kaloustian, Semiramis; Gibbons, Jay

    2010-04-01

    PKI-402 is a selective, reversible, ATP-competitive, equipotent inhibitor of class I phosphatidylinositol 3-kinases (PI3K), including PI3K-alpha mutants, and mammalian target of rapamycin (mTOR; IC(50) versus PI3K-alpha = 2 nmol/L). PKI-402 inhibited growth of human tumor cell lines derived from breast, brain (glioma), pancreas, and non-small cell lung cancer tissue and suppressed phosphorylation of PI3K and mTOR effector proteins (e.g., Akt at T308) at concentrations that matched those that inhibited cell growth. In MDA-MB-361 [breast: Her2(+) and PIK3CA mutant (E545K)], 30 nmol/L PKI-402 induced cleaved poly(ADP-ribose) polymerase (PARP), a marker for apoptosis. In vivo, PKI-402 inhibited tumor growth in MDA-MB-361, glioma (U87MG), and lung (A549) xenograft models. In MDA-MB-361, PKI-402 at 100 mg/kg (daily for 5 days, one round) reduced initial tumor volume of 260 mm(3) to 129 mm(3) and prevented tumor regrowth for 70 days. In MDA-MB-361 tumors, PKI-402 (100 mg/kg, single dose) suppressed Akt phosphorylation (at T308) and induced cleaved PARP. Suppression of phosphorylated Akt (p-Akt) was complete at 8 hours and still evident at 24 hours. Cleaved PARP was evident at 8 and 24 hours. In normal tissue (heart and lung), PKI-402 (100 mg/kg) had minimal effect on p-Akt, with no detectable cleaved PARP. Preferential accumulation of PKI-402 in tumor tissue was observed. Complete, sustained suppression of Akt phosphorylation may cause tumor regression in MDA-MB-361 and other xenograft models. We are testing whether dual PI3K/mTOR inhibitors can durably suppress p-Akt, induce cleaved PARP, and cause tumor regression in a diverse set of human tumor xenograft models. Mol Cancer Ther; 9(4); 976-84. (c)2010 AACR.

  10. The discovery and the structural basis of an imidazo[4,5-b]pyridine-based p21-activated kinase 4 inhibitor.

    Science.gov (United States)

    Park, Jeung Kuk; Kim, Sunmin; Han, Yu Jin; Kim, Seong Hwan; Kang, Nam Sook; Lee, Hyuk; Park, SangYoun

    2016-06-01

    p21-Activated kinases (PAKs) which belong to the family of ste20 serine/threonine protein kinases regulate cytoskeletal reorganization, cell motility, cell proliferation, and oncogenic transformation which are all related to the cellular functions during cancer induction and metastasis. The fact that PAK mutations are detected in multiple tumor tissues makes PAKs a novel therapeutic drug target. In this study, an imidazo[4,5-b]pyridine-based PAK4 inhibitor, KY-04045 (6-Bromo-2-(3-isopropyl-1-methyl-1H-pyrazol-4-yl)-1H-imidazo[4,5-b]pyridine), was discovered using a virtual site-directed fragment-based drug design and was validated using an inhibition assay. Although PAK4 affinity to KY-04045 seems much weaker than that of the reported PAK4 inhibitors, the location of KY-04045 is clearly defined in the structure of PAK4 co-crystallized with KY-04045. The crystal structure illustrates that the pyrazole and imidazopyridine rings of KY-04045 are sufficient for mediating PAK4 hinge loop interaction. Hence, we believe that KY-04045 can be exploited as a basic building block in designing novel imidazo[4,5-b]pyridine-based PAK4 inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2′,3′-Phosphoesterase HD Domain and a C-Terminal 5′-OH Polynucleotide Kinase Domain

    Science.gov (United States)

    Munir, Annum

    2016-01-01

    ABSTRACT 5′- and 3′-end-healing reactions are key steps in nucleic acid break repair in which 5′-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3′-PO4 or 2′,3′-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5′-PO4 and 3′-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2′,3′-phosphoesterase HD domain and a C-terminal 5′-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5′-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2′,3′-cyclic phosphate, RNA 3′-phosphate, RNA 2′-phosphate, and DNA 3′-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5′- and 3′-end-healing enzymes that phosphorylate 5′-OH termini and dephosphorylate 2′,3′-cyclic-PO4, 3′-PO4, and 2′-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla. PMID:27895092

  12. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.

    Science.gov (United States)

    Ho, Cheuk Y; Choy, Christopher H; Wattson, Christina A; Johnson, Danielle E; Botelho, Roberto J

    2015-04-10

    Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH lysosomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The dynamics of plasma membrane PtdIns(4,5)P(2) at fertilization of mouse eggs.

    Science.gov (United States)

    Halet, Guillaume; Tunwell, Richard; Balla, Tamas; Swann, Karl; Carroll, John

    2002-05-15

    A series of intracellular Ca2+ oscillations are responsible for triggering egg activation and cortical granule exocytosis at fertilization in mammals. These Ca2+ oscillations are generated by an increase in inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], which results from the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)]. Using confocal imaging to simultaneously monitor Ca2+ and plasma membrane PtdIns(4,5)P(2) in single living mouse eggs we have sought to establish the relationship between the kinetics of PtdIns(4,5)P(2) metabolism and the Ca2+ oscillations at fertilization. We report that there is no detectable net loss of plasma membrane PtdIns(4,5)P(2) either during the latent period or during the subsequent Ca2+ oscillations. When phosphatidylinositol 4-kinase is inhibited with micromolar wortmannin a limited decrease in plasma membrane PtdIns(4,5)P(2) is detected in half the eggs studied. Although we were unable to detect a widespread loss of PtdIns(4,5)P(2), we found that fertilization triggers a net increase in plasma membrane PtdIns(4,5)P(2) that is localized to the vegetal cortex. The fertilization-induced increase in PtdIns(4,5)P(2) follows the increase in Ca2+, is blocked by Ca2+ buffers and can be mimicked, albeit with slower kinetics, by photoreleasing Ins(1,4,5)P(3). Inhibition of Ca2+-dependent exocytosis of cortical granules, without interfering with Ca2+ transients, inhibits the PtdIns(4,5)P(2) increase. The increase appears to be due to de novo synthesis since it is inhibited by micromolar wortmannin. Finally, there is no increase in PtdIns(4,5)P(2) in immature oocytes that are not competent to extrude cortical granules. These studies suggest that fertilization does not deplete plasma membrane PtdIns(4,5)P(2) and that one of the pathways for increasing PtdIns(4,5)P(2) at fertilization is invoked by exocytosis of cortical granules.

  14. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    Science.gov (United States)

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  15. Low PIP4K2B expression in human breast tumors correlates with reduced patient survival: A role for PIP4K2B in the regulation of E-cadherin expression.

    Science.gov (United States)

    Keune, Willem-Jan; Sims, Andrew H; Jones, David R; Bultsma, Yvette; Lynch, James T; Jirström, Karin; Landberg, Goran; Divecha, Nullin

    2013-12-01

    Phosphatidylinositol-5-phosphate (PtdIns5P) 4-kinase β (PIP4K2B) directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2]. PIP4K2B has been linked to the regulation of gene transcription, to TP53 and AKT activation, and to the regulation of cellular reactive oxygen accumulation. However, its role in human tumor development and on patient survival is not known. Here, we have interrogated the expression of PIP4K2B in a cohort (489) of patients with breast tumor using immunohistochemical staining and by a meta-analysis of gene expression profiles from 2,999 breast tumors, both with associated clinical outcome data. Low PIP4K2B expression was associated with increased tumor size, high Nottingham histological grade, Ki67 expression, and distant metastasis, whereas high PIP4K2B expression strongly associated with ERBB2 expression. Kaplan-Meier curves showed that both high and low PIP4K2B expression correlated with poorer patient survival compared with intermediate expression. In normal (MCF10A) and tumor (MCF7) breast epithelial cell lines, mimicking low PIP4K2B expression, using short hairpin RNA interference-mediated knockdown, led to a decrease in the transcription and expression of the tumor suppressor protein E-cadherin (CDH1). In MCF10A cells, knockdown of PIP4K2B enhanced TGF-β-induced epithelial to mesenchymal transition (EMT), a process required during the development of metastasis. Analysis of gene expression datasets confirmed the association between low PIP4K2B and low CDH1expression. Decreased CDH1 expression and enhancement of TGF-β-induced EMT by reduced PIP4K2B expression might, in part, explain the association between low PIP4K2B expression and poor patient survival.

  16. 5´AMP activated protein kinase α2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Annemarie; Jeppesen, Jacob

    2015-01-01

    after prolonged exercise and during the following six hours post exercise in 5´AMP activated protein kinase (AMPK)α2 and α1 knock-out (KO) and wild type (WT) mice with free access to food. Substrate oxidation was similar during exercise at the same relative intensity between genotypes. During post...

  17. Use of actin-bound adenosine 5'-diphosphate as a method to determine the specific 32P-radioactivity of the gamma-phosphoryl group of adenosine 5'-triphosphate in a highly compartmentalized cell, the platelet

    International Nuclear Information System (INIS)

    Verhoeven, A.J.; Cook, C.A.; Holmsen, H.

    1988-01-01

    Determination of the specific 32 P-radioactivity of cytoplasmic ATP in 32 P-Pi-labeled platelets is complicated by the presence of a large pool of metabolically inactive, granule-stored nucleotides. Moreover, our data show that the specific 32 P-radioactivity of cytoplasmic ATP is severely underestimated when determined in platelets after the complete secretion of granule-stored nucleotides, possibly due to isotopic dilution with granule-stored phosphate. As F-actin-bound ADP is ethanol-insoluble, this pool can be readily separated from the other nucleotide pools in platelets. Here we show that the specific 32 P-radioactivity of F-actin-bound ADP accurately reflects that of the gamma-phosphoryl group of cytoplasmic ATP. During uptake of 32 P-Pi by human platelets the specific 32 P-radioactivity of F-actin-bound ADP equals that of the monoester phosphates of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, which are in metabolic equilibrium with cytoplasmic ATP. Therefore, this method enables the determination of the specific 32 P-radioactivity of the gamma-phosphoryl group of cytoplasmic ATP in platelets even under short-term labeling conditions

  18. Phosphatidylinositol 3-Kinase γ is required for the development of experimental cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Norinne Lacerda-Queiroz

    Full Text Available Experimental cerebral malaria (ECM is characterized by a strong immune response, with leukocyte recruitment, blood-brain barrier breakdown and hemorrhage in the central nervous system. Phosphatidylinositol 3-kinase γ (PI3Kγ is central in signaling diverse cellular functions. Using PI3Kγ-deficient mice (PI3Kγ-/- and a specific PI3Kγ inhibitor, we investigated the relevance of PI3Kγ for the outcome and the neuroinflammatory process triggered by Plasmodium berghei ANKA (PbA infection. Infected PI3Kγ-/- mice had greater survival despite similar parasitemia levels in comparison with infected wild type mice. Histopathological analysis demonstrated reduced hemorrhage, leukocyte accumulation and vascular obstruction in the brain of infected PI3Kγ-/- mice. PI3Kγ deficiency also presented lower microglial activation (Iba-1+ reactive microglia and T cell cytotoxicity (Granzyme B expression in the brain. Additionally, on day 6 post-infection, CD3+CD8+ T cells were significantly reduced in the brain of infected PI3Kγ-/- mice when compared to infected wild type mice. Furthermore, expression of CD44 in CD8+ T cell population in the brain tissue and levels of phospho-IkB-α in the whole brain were also markedly lower in infected PI3Kγ-/- mice when compared with infected wild type mice. Finally, AS605240, a specific PI3Kγ inhibitor, significantly delayed lethality in infected wild type mice. In brief, our results indicate a pivotal role for PI3Kγ in the pathogenesis of ECM.

  19. The frequencies and clinical implications of mutations in 33 kinase-related genes in locally advanced rectal cancer: a pilot study.

    LENUS (Irish Health Repository)

    Abdul-Jalil, Khairun I

    2014-08-01

    Locally advanced rectal cancer (LARC: T3\\/4 and\\/or node-positive) is treated with preoperative\\/neoadjuvant chemoradiotherapy (CRT), but responses are not uniform. The phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and related pathways are implicated in rectal cancer tumorigenesis. Here, we investigated the association between genetic mutations in these pathways and LARC clinical outcomes.

  20. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism.

    Science.gov (United States)

    Miallau, Linda; Hunter, William N; McSweeney, Sean M; Leonard, Gordon A

    2007-07-06

    High resolution structures of Staphylococcus aureus d-tagatose-6-phosphate kinase (LacC) in two crystal forms are herein reported. The structures define LacC in apoform, in binary complexes with ADP or the co-factor analogue AMP-PNP, and in a ternary complex with AMP-PNP and D-tagatose-6-phosphate. The tertiary structure of the LacC monomer, which is closely related to other members of the pfkB subfamily of carbohydrate kinases, is composed of a large alpha/beta core domain and a smaller, largely beta "lid." Four extended polypeptide segments connect these two domains. Dimerization of LacC occurs via interactions between lid domains, which come together to form a beta-clasp structure. Residues from both subunits contribute to substrate binding. LacC adopts a closed structure required for phosphoryl transfer only when both substrate and co-factor are bound. A reaction mechanism similar to that used by other phosphoryl transferases is proposed, although unusually, when both substrate and co-factor are bound to the enzyme two Mg(2+) ions are observed in the active site. A new motif of amino acid sequence conservation common to the pfkB subfamily of carbohydrate kinases is identified.

  1. The phosphatidylinositol-3 kinase pathway is not essential for insulin-like growth factor I receptor-mediated clonogenic radioresistance

    International Nuclear Information System (INIS)

    Yu, Dong; Watanabe, Hiroshi; Shibuya, Hitoshi; Miura, Masahiko

    2002-01-01

    The insulin-like growth factor I receptor (IGF-IR) is known to induce clonogenic radioresistance in cells following ionizing irradiation. To explore the downstream signaling pathways, we focused on the phosphatidylinositol-3 kinase (PI3-K) pathway, which is thought to be the primary cell survival signal originating from the receptor. For this purpose, R- cells deficient in the endogenous IGF-IR were used as a recipient of the human IGF-IR with or without mutations at potential PI3-K activation sites: NPXY 950 and Y 1316 XXM. Mutats with double mutation at Y950/Y1316 exhibited not abrogated, but reduced activation of insulin receptor substance-1 (IRS-1), PI3-K, and Akt upon IGF-I stimulation. However, the mutants had the same clonogenic radioresistance as cells with wild type (WT) receptors. Neither wortmannin nor LY294002, specific inhibitors of PI3-K, affected the radioresistance of cells with WT receptors at concentrations specific for PI3-K. Collectively, these results indicate that the PI3-K pathway is not essential for IGF-IR-mediated clonogenic radioresistance. (author)

  2. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression

    International Nuclear Information System (INIS)

    McDonald, Gail T.; Sullivan, Richard; Pare, Genevieve C.; Graham, Charles H.

    2010-01-01

    Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G 1 phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21 Waf1/Cip1 and p27 Kip1 ; and knockdown of p27 kip1 with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.

  3. Signal-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate without activation of phospholipase C: implications on gating of Drosophila TRPL (transient receptor potential-like) channel.

    Science.gov (United States)

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-06

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P(2) in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P(2) was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P(2) is not an inhibitor of TRPL channel activation. PI(4,5)P(2) hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P(2) levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P(2) is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.

  4. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    Energy Technology Data Exchange (ETDEWEB)

    Eyre, Nicholas S., E-mail: nicholas.eyre@adelaide.edu.au [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Hampton-Smith, Rachel J.; Aloia, Amanda L. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia); Eddes, James S. [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Simpson, Kaylene J. [Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville (Australia); Hoffmann, Peter [Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide (Australia); Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide (Australia); Beard, Michael R. [School of Biological Sciences and Research Centre for Infectious Diseases, University of Adelaide, Adelaide (Australia); Centre for Cancer Biology, SA Pathology, Adelaide (Australia)

    2016-04-15

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.

  5. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  6. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Directory of Open Access Journals (Sweden)

    Inger Lindin

    2014-03-01

    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  7. Proteomic analysis of phosphoproteins sensitive to a phosphatidylinositol 3-kinase inhibitor, ZSTK474, by using SELDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Yamori Takao

    2009-03-01

    Full Text Available Abstract Background Phosphoproteins play important roles in a vast series of biological processes. Recent proteomic technologies offer the comprehensive analyses of phosphoproteins. Recently, we demonstrated that surface-enhanced laser desorption/ionization time of flight mass (SELDI-TOF MS would detect phosphoproteins quantitatively, which was a new application of SELDI-TOF MS. Results We combined immobilized metal affinity chromatography (IMAC with SELDI-TOF MS. After SELDI-TOF MS analysis of IMAC-enrichment phosphoproteins from A549 cancer cells, a series of protein peaks at 12.9, 12.8, 12.7 and 12.6 kDa was obtained in a mass spectrum. The peak intensities of these proteins decreased after a phosphatase treatment and, interestingly, they also decreased when the cells were pre-treated with a novel phosphatidylinositol 3-kinase (PI3K inhibitor, ZSTK474, suggesting that these proteins were ZSTK474-sensitive phosphoproteins. Identity of the phosphoproteins, which were predicted as the multi-phosphorylated forms of 4E-binding protein 1 (4E-BP1 with the aid of TagIdent algorithm, was confirmed by immunoprecipitation and subsequent SELDI-TOF MS analysis. 4E-BP1 is a downstream component of the PI3K/Akt/mTOR pathway and it regulates protein synthesis. We also investigated the effect of ZSTK474 on 4E-BP1 phosphorylation using phospho-specific antibodies. ZSTK474, which have little inhibitory activity for mTOR, inhibited phosphorylation of Ser65, Thr70 and Thr37/46 in 4E-BP1. In contrast, rapamycin, an inhibitor of mTOR, blocked phosphorylation only of Ser65 and Thr70. These results suggest that ZSTK474 and rapamycin inhibited the phosphorylation of 4E-BP1 in a different manner. Conclusion We identified a group of ZSTK474-sensitive phosphoproteins as the multi-phosphorylated form of 4E-BP1 by combining IMAC, SELDI-TOF MS and antibodies.

  8. In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARgamma in L6 myotubes.

    Science.gov (United States)

    Anandharajan, R; Jaiganesh, S; Shankernarayanan, N P; Viswakarma, R A; Balakrishnan, A

    2006-06-01

    The purpose of the present study is to investigate the effect of methanolic extracts of Aegles marmelos and Syzygium cumini on a battery of targets glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPARgamma) and phosphatidylinositol 3' kinase (PI3 kinase) involved in glucose transport. A. marmelos and S. cumini are anti-diabetic medicinal plants being used in Indian traditional medicine. Different solvent extracts extracted sequentially were analysed for glucose uptake activity at each step and methanol extracts were found to be significantly active at 100ng/ml dose comparable with insulin and rosiglitazone. Elevation of Glut-4, PPARgamma and PI3 kinase by A. marmelos and S. cumini in association with glucose transport supported the up-regulation of glucose uptake. The inhibitory effect of cycloheximide on A. marmelos- and S. cumini-mediated glucose uptake suggested that new protein synthesis is required for the elevated glucose transport. Current observation concludes that methanolic extracts of A. marmelos and S. cumini activate glucose transport in a PI3 kinase-dependent fashion.

  9. Creatine-creatine phosphate shuttle modeled as two-compartment system at different levels of creatine kinase activity

    DEFF Research Database (Denmark)

    Fedosov, Sergey

    1994-01-01

    In order to characterize ADP-ATP and creatine-creatine phosphate (Cr-CrP) shuttles a minimal mathematical model with two compartments and cyclic turnover of matter was designed. The 'mitochondrial' compartment contained 'ATP-synthase' and 'mitochondrial ereatine kinase' (mitCK). The 'cytoplasmic......' compartment consisted of 'ATPase', 'cytoplasmic creatine kinase' (cytCK) and an 'ADP-binding structure'. The exchange of metabolites between these compartments was limited. Different levels of cytCK and mitCK expression as welt as different exchange rate constants between the compartments were assigned...

  10. Novel adapter proteins that link the human GM-CSF receptor to the phosphatidylino-sitol 3-kinase and Shc/Grb2/ras signaling pathways.

    Science.gov (United States)

    Jücker, M; Feldman, R A

    1996-01-01

    We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.

  11. The Structural Basis for Calcium Inhibition of Lipid Kinase PI4K II alpha and Comparison With the Apo State

    Czech Academy of Sciences Publication Activity Database

    Bäumlová, Adriana; Gregor, Jiří; Bouřa, Evžen

    2016-01-01

    Roč. 65, č. 6 (2016), s. 987-993 ISSN 0862-8408 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : lipid kinase * calcium * phosphatidylinositol * crystal structure Subject RIV: CE - Biochemistry Impact factor: 1.461, year: 2016 http://www.biomed.cas.cz/physiolres/pdf/65/65_987.pdf

  12. [Effects of polydatin on learning and memory and Cdk5 kinase activity in the hippocampus of rats with chronic alcoholism].

    Science.gov (United States)

    Li, Xin-juan; Zhang, Yan; Xu, Chun-yang; Li, Shuang; Du, Ai-lin; Zhang, Li-bin; Zhang, Rui-ling

    2015-03-01

    To observe the effects of polydatin on learning and memory and cyclin-dependent kinase 5 (Cdk5) kinase activity in the hippocampus of rats with chronic alcoholism. Forty rats were randomly divided into 4 groups: control group, chronic alcoholism group, low and high polydatin group. The rat chronic alcoholism model was established by ethanol 3.0 g/(kg · d) (intragastric administration). The abstinence scoring was used to evaluate the rats withdrawal symptoms; cognitive function was measured by Morris water maze experiment; Cdk5 protein expression in the hippocampus was detected by immunofluorescence; Cdk5 kinase activity in the hippocampus was detected by liquid scintillation counting method. The abstinence score, escape latency, Cdk5 kinase activity in chronic alcoholism group rats were significantly higher than those of control group (P chronic alcoholism group (P chronic alcoholism group( P chronic alcoholism group were significantly increased compared with control group (P chronic alcoholism group ( P chronic alcoholism damage may interrelate with regulation of Cdk5 kinase activity.

  13. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of use...

  14. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis.

    Science.gov (United States)

    Mohammadi, M; Dionne, C A; Li, W; Li, N; Spivak, T; Honegger, A M; Jaye, M; Schlessinger, J

    1992-08-20

    Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.

  15. Correlation between phosphatidylinositol labeling and contraction in rabbit aorta: effect of alpha-1 adrenergic activation

    International Nuclear Information System (INIS)

    Villalobos-Molina, R.; Uc, M.; Hong, E.; Garcia-Sainz, J.A.

    1982-01-01

    Activation of rabbit aortic strips with alpha adrenergic agonists increased the labeling (with [ 32 P]Pi) of phosphatidylinositol (PI) and phosphatidic acid and contracted the vascular preparations in dose-related fashion. Epinephrine, norepinephrine and methoxamine produced maximal effects, whereas clonidine behaved as partial agonist and B-HT 933 (2-amino-6-ethyl-4,5,7,8-tetrahydro-6H-oxazole-[5,4-d] azepin dihydrochloride) was almost without activity in the two experimental models used. Phenylephrine was a full agonist in producing contraction, but failed to elicit the maximal increase in PI labeling. The EC50 values to produce contraction of aortic strips were lower for all agonists than those required to increase the incorporation of radioactive phosphate into PI, but there was a good correlation between the two sets of data. The increased PI labeling and contraction of aortic strips induced by epinephrine were antagonized by prazosin and yohimbine in dose-related fashion, but the first alpha blocker was about three orders of magnitude more potent than the second in antagonizing the two effects. The present results indicate that both stimulation of PI labeling and contraction are mediated through activation of alpha-1 adrenoceptors in rabbit aorta

  16. Structure-based prediction and identification of 4-epimerization activity of phosphate sugars in class II aldolases.

    Science.gov (United States)

    Lee, Seon-Hwa; Hong, Seung-Hye; An, Jung-Ung; Kim, Kyoung-Rok; Kim, Dong-Eun; Kang, Lin-Woo; Oh, Deok-Kun

    2017-05-16

    Sugar 4-epimerization reactions are important for the production of rare sugars and their derivatives, which have various potential industrial applications. For example, the production of tagatose, a functional sweetener, from fructose by sugar 4-epimerization is currently constrained because a fructose 4-epimerase does not exist in nature. We found that class II D-fructose-1,6-bisphosphate aldolase (FbaA) catalyzed the 4-epimerization of D-fructose-6-phosphate (F6P) to D-tagatose-6-phosphate (T6P) based on the prediction via structural comparisons with epimerase and molecular docking and the identification of the condensed products of C3 sugars. In vivo, the 4-epimerization activity of FbaA is normally repressed. This can be explained by our results showing the catalytic efficiency of D-fructose-6-phosphate kinase for F6P phosphorylation was significantly higher than that of FbaA for F6P epimerization. Here, we identified the epimerization reactions and the responsible catalytic residues through observation of the reactions of FbaA and L-rhamnulose-1-phosphate aldolases (RhaD) variants with substituted catalytic residues using different substrates. Moreover, we obtained detailed potential epimerization reaction mechanism of FbaA and a general epimerization mechanism of the class II aldolases L-fuculose-1-phosphate aldolase, RhaD, and FbaA. Thus, class II aldolases can be used as 4-epimerases for the stereo-selective synthesis of valuable carbohydrates.

  17. Phosphorylation of the Grb2- and phosphatidylinositol 3-kinase p85-binding p36/38 by Syk in Lck-negative T cells.

    Science.gov (United States)

    von Willebrand, M; Williams, S; Tailor, P; Mustelin, T

    1998-06-01

    Activation of the mitogen-activated protein kinase (MAPK) pathway by the T-cell antigen receptor (TCR) in T cells involves a positive role for phosphatidylinositol 3-kinase (PI3K) activity. We recently reported that over-expression of the Syk protein tyrosine kinase in the Lck-negative JCaM1 cells enabled the TCR to induce a normal activation of the Erk2 MAPK and enhanced transcription of a reporter gene driven by the nuclear factor of activated T cells and AP-1. Because this system allows us to analyse the targets for Syk in receptor-mediated signalling, we examined the role of PI3K in signalling events between the TCR-regulated Syk and the downstream activation of Erk2. We report that inhibition of PI3K by wortmannin or an inhibitory p85 construct, p85deltaiSH2, reduced the TCR-induced Syk-dependent activation of Erk2, as well as the appearance of phospho-Erk and phospho-Mek. At the same time, expression of Syk resulted in the activation-dependent phosphorylation of three proteins that bound to the src homology 2 (SH2) domains of PI3K p85. The strongest of these bands had an apparent molecular mass of 36-38 kDa on SDS gels, and it was quantitatively removed from the lysates by adsorption to a fusion protein containing the SH2 domain of Grb2. The appearance of this band was Syk dependent, and it was seen only upon triggering of the TCR complex. Thus, p36/38 was phosphorylated by Syk or a Syk-regulated kinase, and this protein may provide a link to the recruitment and activation of PI3K, as well as to the Ras-MAPK pathway, in TCR-triggered T cells.

  18. Ca2+-mediated generation of inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. Studies with K+, glucose, and carbamylcholine

    International Nuclear Information System (INIS)

    Biden, T.J.; Peter-Riesch, B.; Schlegel, W.; Wollheim, C.B.

    1987-01-01

    The role of Ca2+ in the generation of inositol phosphates was investigated using rat pancreatic islets after steady state labeling with myo-[2- 3 H]inositol. Depolarizing K+ concentrations (24 mM) evoked early (2 s) increases in inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) and inositol 1,3,4,5-tetrakisphosphate (Ins-1,3,4,5-P4) as measured by high performance anion-exchange chromatography. The increase in Ins-1,4,5-P3 was transient and was followed by a more pronounced rise in Ins-1,3,4-P3. These effects were dependent on the presence of extracellular Ca2+ but were not secondary to release of either neurotransmitters or metabolites of arachidonic acid. K+ also promoted the breakdown of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) and of the other phosphoinositides. Glucose (16.7 mM) was less marked in its effects but still promoted rapid increases in Ins-1,3,4,5-P4 (2 s) and Ins-1,4,5-P3 (10 s) and a slower rise in Ins-1,3,4-P3 (30 s). The levels of all three metabolites rose steadily over 10 min stimulation. These responses to glucose could be largely, although not entirely, inhibited by depletion of extracellular Ca2+ or by Ca2+ channel blockade with verapamil (20 microM). Carbamylcholine (0.5 mM) was the most potent stimulus used evoking early rises in Ins-1,4,5-P3 and Ins-1,3,4,5-P4 (2 s) followed by Ins-1,3,4-P3 (10 s), effects which were only partially dependent on extracellular Ca2+. The results suggest that a Ca2+-mediated PtdIns-4,5-P2 hydrolysis accounts for most of the Ins-1,4,5-P3 generated in response to glucose but not carbamylcholine

  19. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.

    Science.gov (United States)

    Pang, Jiayun; Scrutton, Nigel S; Sutcliffe, Michael J

    2014-09-01

    A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5'-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial "strain" energy on the orientation of the cyclic intermediate to control its trajectory. In addition the "strain" energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reduction of nucleotides by ionizing radiation: uridine 5' phosphate, and cytidine 3' phosphate

    International Nuclear Information System (INIS)

    Box, H.C.; Potter, W.R.; Budzinski, E.E.

    1974-01-01

    Anions formed by the addition of an electron to the uracil base were observed in single crystals of the barium salt of uridine 5' phosphate x irradiated at 4.2 0 K. The hyperfine coupling tensor for the C 6 -H proton was deduced from ENDOR measurements; the principal values are -59.12, -32.92 and -16.24 MHz. Similar measurements were made on single crystals of cytidine 3' phosphate. The principal values for the C 6 -H proton hyperfine coupling in the anion formed on the cytosine base are -59.26, -33.98 and -14.68 MHz. (U.S.)

  1. Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons

    OpenAIRE

    Kruse, Martin; Vivas, Oscar; Traynor-Kaplan, Alexis; Hille, Bertil

    2016-01-01

    In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate...

  2. High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors.

    Science.gov (United States)

    Myers, Stephanie M; Bawn, Ruth H; Bisset, Louise C; Blackburn, Timothy J; Cottyn, Betty; Molyneux, Lauren; Wong, Ai-Ching; Cano, Celine; Clegg, William; Harrington, Ross W; Leung, Hing; Rigoreau, Laurent; Vidot, Sandrine; Golding, Bernard T; Griffin, Roger J; Hammonds, Tim; Newell, David R; Hardcastle, Ian R

    2016-08-08

    The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP progressive binding system, and used to identify hits from a library of 57 617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and reassay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38α kinase.

  3. Discovery of potent 1H-imidazo[4,5-b]pyridine-based c-Met kinase inhibitors via mechanism-directed structural optimization.

    Science.gov (United States)

    An, Xiao-De; Liu, Hongyan; Xu, Zhong-Liang; Jin, Yi; Peng, Xia; Yao, Ying-Ming; Geng, Meiyu; Long, Ya-Qiu

    2015-02-01

    Starting from our previously identified novel c-Met kinase inhibitors bearing 1H-imidazo[4,5-h][1,6]naphthyridin-2(3H)-one scaffold, a global structural exploration was conducted to furnish an optimal binding motif for further development, directed by the enzyme inhibitory mechanism. First round SAR study picked two imidazonaphthyridinone frameworks with 1,8- and 3,5-disubstitution pattern as class I and class II c-Met kinase inhibitors, respectively. Further structural optimization on type II inhibitors by truncation of the imidazonaphthyridinone core and incorporation of an N-phenyl cyclopropane-1,1-dicarboxamide pharmacophore led to the discovery of novel imidazopyridine-based c-Met kinase inhibitors, displaying nanomolar enzyme inhibitory activity and improved Met kinase selectivity. More significantly, the new chemotype c-Met kinase inhibitors effectively inhibited Met phosphorylation and its downstream signaling as well as the proliferation of Met-dependent EBC-1 human lung cancer cells at submicromolar concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells.

    Science.gov (United States)

    Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M

    2015-08-21

    The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. ALK5 kinase inhibitory activity and synthesis of 2,3,4-substituted 5,5-dimethyl-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles

    Czech Academy of Sciences Publication Activity Database

    Řezníčková, Eva; Tenora, L.; Pospíšilová, Pavlína; Galeta, J.; Jorda, Radek; Berka, K.; Majer, Pavel; Potáček, M.; Kryštof, Vladimír

    2017-01-01

    Roč. 127, FEB 15 (2017), s. 632-642 ISSN 0223-5234 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA15-15264S; GA MŠk(CZ) LM2015047 Institutional support: RVO:61389030 ; RVO:61388963 Keywords : i-receptor kinase * beta signaling pathway * small- molecule inhibitor * tgf-beta * domain inhibitors * growth * fibrosis * cancer * potent * series * Transforming growth factor beta receptor I * Protein kinase * Inhibitor * Substituted pyrrolo[1,2-b]pyrazoles Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy; Pharmacology and pharmacy (UOCHB-X) Impact factor: 4.519, year: 2016

  6. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    Science.gov (United States)

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-11-08

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosphoglycan (IPG) mediator, prepared from beef liver, bypassed this defect and comparably activated G3PAT in cell-free adipocyte preparations of both diabetic GK and control rats. A myo-inositol-containing IPG mediator did not activate G3PAT. Relative to control adipocytes, labeling of GPI by [3H]glucosamine was diminished by 50% and insulin failed to stimulate GPI hydrolysis in GK adipocytes. In contrast to GPI-dependent G3PAT activation, insulin-stimulated hexose transport was intact in adipocytes and soleus and gastrocnemius muscles of the GK rat, as was insulin-induced activation of mitogen-activated protein kinase and protein kinase C. We conclude that (i) chiro-inositol-containing IPG mediator activates G3PAT during insulin action, (ii) diabetic GK rats have a defect in synthesizing or releasing functional chiro-inositol-containing IPG, and (iii) defective IPG-regulated intracellular glucose metabolism contributes importantly to insulin resistance in diabetic GK rats.

  7. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  8. The reduction of nucleotides by ionizing radiation: uridine 5' phosphate and cytidine 3' phosphate

    International Nuclear Information System (INIS)

    Box, H.C.; Potter, W.R.; Budzinski, E.E.

    1975-01-01

    Anions formed by the addition of an electron to the uracil base were observed in single crystals of the barium salt of uridine 5' phosphate x-irradiated at 4.2 degreeK. The hyperfine coupling tensor for the C 6 --H proton was deduced from ENDOR measurements; the principal values are -59.12, -32.92, and -16.24 MHz. Similar measurements were made on single crystals of cytidine 3' phosphate. The principal values for the C 6 --H proton hyperfine coupling in the anion formed on the cytosine base are -59.26, -33.98, and -14.68 MHz

  9. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  10. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.

    Science.gov (United States)

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-02-18

    Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU.

  11. Rho-kinase inhibitor and nicotinamide adenine dinucleotide phosphate oxidase inhibitor prevent impairment of endothelium-dependent cerebral vasodilation by acute cigarette smoking in rats.

    Science.gov (United States)

    Iida, Hiroki; Iida, Mami; Takenaka, Motoyasu; Fukuoka, Naokazu; Dohi, Shuji

    2008-06-01

    We previously reported that acute cigarette smoking can cause a dysfunction of endothelium-dependent vasodilation in cerebral vessels, and that blocking the angiotensin II (Ang II) type 1 (AT1) receptor with valsartan prevented this impairment. Our aim was to investigate the effects of a Rho-kinase inhibitor (fasudil) and a Nicotinamide Adenine Dinucleotide PHosphate (NADPH) oxidase inhibitor (apocynin) on smoking-induced endothelial dysfunction in cerebral arterioles. In Sprague-Dawley rats, we used a closed cranial window preparation to measure changes in pial vessel diameters following topical acetylcholine (ACh) before smoking. After one-minute smoking, we again examined the arteriolar responses to ACh. Finally, after intravenous fasudil or apocynin pre-treatment we re-examined the vasodilator responses to topical ACh (before and after cigarette smoking). Under control conditions, cerebral arterioles were dose-dependently dilated by topical ACh (10(-6) M and 10(-5) M). One hour after a one-minute smoking (1 mg-nicotine cigarette), 10(-5) M ACh constricted cerebral arterioles. However, one hour after a one-minute smoking, 10(-5) M ACh dilated cerebral pial arteries both in the fasudil pre-treatment and the apocynin pre-treatment groups, responses that were significantly different from those obtained without fasudil or apocynin pre-treatment. Thus, inhibition of Rho-kinase and NADPH oxidase activities may prevent the above smoking-induced impairment of endothelium-dependent vasodilation.

  12. Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction.

    Science.gov (United States)

    Epand, Richard M

    2017-08-01

    The phosphatidylinositol cycle (PI-cycle) has a central role in cell signaling. It is the major pathway for the synthesis of phosphatidylinositol and its phosphorylated forms. In addition, some lipid intermediates of the PI-cycle, including diacylglycerol and phosphatidic acid, are also important lipid signaling agents. The PI-cycle has some features that are important for the understanding of its role in the cell. As a cycle, the intermediates will be regenerated. The PI-cycle requires a large amount of metabolic energy. There are different steps of the cycle that occur in two different membranes, the plasma membrane and the endoplasmic reticulum. In order to complete the PI-cycle lipid must be transferred between the two membranes. The role of the Nir proteins in the process has recently been elucidated. The lipid intermediates of the PI-cycle are normally highly enriched with 1-stearoyl-2-arachidonoyl molecular species in mammals. This enrichment will be retained as long as the intermediates are segregated from other lipids of the cell. However, there is a significant fraction (>15 %) of lipids in the PI-cycle of normal cells that have other acyl chains. Phosphatidylinositol largely devoid of arachidonoyl chains are found in cancer cells. Phosphatidylinositol species with less unsaturation will not be as readily converted to phosphatidylinositol-3,4,5-trisphosphate, the lipid required for the activation of Akt with resulting effects on cell proliferation. Thus, the cyclical nature of the PI-cycle, its dependence on acyl chain composition and its requirement for lipid transfer between two membranes, explain many of the biological properties of this cycle.

  13. Downregulation of RBO-PI4KIIIα Facilitates Aβ42 Secretion and Ameliorates Neural Deficits in Aβ42-Expressing Drosophila.

    Science.gov (United States)

    Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De

    2017-05-10

    Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI 4 P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ 42 -expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ 42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ 42 release and that PI4P facilitated the assembly or oligomerization of Aβ 42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ 42 release and consequently reduces neuronal Aβ 42 accumulation likely via decreasing Aβ 42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment. SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ 42 -expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI 4 P-against the defects caused by Aβ 42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ 42 accumulation, and interestingly increased neuronal Aβ 42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright

  14. Autonomous control of phosphatidylinositol turnover by histamine and acetylcholine receptors in the NIE-115 neuron-like cell line

    International Nuclear Information System (INIS)

    Large, T.H.; Lambert, M.P.; Cohen, N.M.; Klein, W.L.

    1986-01-01

    Histamine was found to stimulate the turnover of phosphatidylinositol (PI) in cultures of neuron-like NE-115 cells. Turnover was measured by increased production of ( 3 H)inositol phosphates (breakdown) and by accelerated incorporation of 32 P into PI (resynthesis). Data were consistent with hydrolysis of polyphosphoinositides being the initial event in receptor-stimulated PI turnover. This response to histamine desensitized within 10 min. Receptor systems for histamine and acetylcholine were tested for possible interactions: PI turnover in response to dual stimulation was approximately equal to the sum of the individual responses while prior desensitization of the acetylcholine receptor system had no effect on subsequent stimulation of the histamine receptor system. These results are consistent with the hypothesis that components of acetylcholine and histamine receptor systems responsible for PI turnover are autonomously organised and regulated. (author)

  15. Ovarian expressed microsomal epoxide hydrolase: Role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Poulomi, E-mail: poulomib@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States); Sen, Nivedita, E-mail: nsen@email.arizona.edu [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Hoyer, Patricia B., E-mail: Hoyer@u.arizona.edu [Department of Physiology, University of Arizona, Tucson, AZ 85724 (United States); Keating, Aileen F., E-mail: akeating@iastate.edu [Department of Animal Science, Iowa State University, Ames, IA 50011 (United States)

    2012-01-01

    4-vinylcyclohexene diepoxide (VCD) is a metabolite of 4-vinylcyclohexene (VCH) which has the potential to be formed in the ovary through CYP2E1 activity. VCD specifically destroys primordial and small primary follicles in the rodent ovary. Mouse ovaries exposed to VCD demonstrate increased mRNA and protein expression of microsomal epoxide hydrolase (mEH), and an inactive tetrol metabolite (4-(1,2-dihydroxy)ethyl-1,2-dihydroxycyclohexane) can be formed in mouse ovarian follicles, potentially through detoxification action of mEH. In contrast, mEH can bioactivate another ovotoxic chemical, 7,12-dimethylbenz[a]anthracene (DMBA) to a more toxic compound, DMBA-3,4-diol-1,2-epoxide. Thus, the present study evaluated a functional role for mEH during detoxification of VCD. Additionally, because inhibition of the phosphatidyinositol-3 kinase (PI3K) signaling pathway in a previous study protected primordial follicles from VCD-induced destruction, but accelerated DMBA-induced ovotoxicity, a role for PI3K in ovarian mEH regulation was evaluated. Using a post-natal day (PND) 4 Fischer 344 rat whole ovary culture system inhibition of mEH using cyclohexene oxide during VCD exposure resulted in a greater (P < 0.05) loss of primordial and small primary follicles relative to VCD-treated ovaries. Also, relative to controls, meh mRNA was increased (P < 0.05) on day 4 of VCD (30 μM) exposure, followed by increased (P < 0.05) mEH protein after 6 days. Furthermore, inhibition of PI3K signaling increased mEH mRNA and protein expression. Thus, these results support a functional role for mEH in the rat ovary, and demonstrate the involvement of PI3K signaling in regulation of ovarian xenobiotic metabolism by mEH. -- Highlights: ► Ovarian mEH functions to metabolize VCD to a less toxic compound. ► mEH expression is increased in a temporal pattern in response to VCD exposure. ► PI3K signaling is involved in regulation of ovarian mEH expression.

  16. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    Science.gov (United States)

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  17. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    Science.gov (United States)

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  18. Pyridox(am)ine-5-Phosphate Oxidase Deficiency Treatable Cause of Neonatal Epileptic Encephalopathy With Burst Suppression: Case Report and Review of the Literature.

    Science.gov (United States)

    Guerin, Andrea; Aziz, Aly S; Mutch, Carly; Lewis, Jillian; Go, Cristina Y; Mercimek-Mahmutoglu, Saadet

    2015-08-01

    Pyridox(am)ine-5-phosphate oxidase deficiency is an autosomal recessive disorder of pyridoxine metabolism. Intractable neonatal epileptic encephalopathy is the classical presentation. Pyridoxal-5-phosphate or pyridoxine supplementation improves symptoms. We report a patient with myoclonic and tonic seizures at the age of 1 hour. Pyridoxal-5-phosphate was started on the first day of life and seizures stopped at the age of 3 days, but encephalopathy persisted for 4 weeks. She had normal neurodevelopmental outcome at the age of 12 months on pyridoxal-5-phosphate monotherapy. She had novel homozygous pathogenic frameshift mutation (c.448_451del;p.Pro150Argfs*27) in the PNPO gene. Long-lasting encephalopathy despite well-controlled clinical seizures does neither confirm nor exclude pyridox(am)ine-5-phosphate oxidase deficiency. Normal neurodevelopmental outcome of our patient emphasizes the importance of pyridoxal-5-phosphate treatment. Pyridox(am)ine-5-phosphate oxidase deficiency should be included in the differential diagnosis of Ohtahara syndrome and neonatal myoclonic encephalopathy as a treatable underlying cause. In addition, we reviewed the literature for pyridox(am)ine-5-phosphate oxidase deficiency and summarized herein all confirmed cases. © The Author(s) 2014.

  19. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    Science.gov (United States)

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  20. Crystallization and preliminary X-ray diffraction analysis of inositol 1,3,4,5,6-pentakisphosphate kinase from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Baños-Sanz, Jose Ignacio; Villate, Maider; Sanz-Aparicio, Julia; Brearley, Charles Alistair; González, Beatriz

    2009-01-01

    Inositol 1,3,4,5,6-pentakisphosphate kinase from A. thaliana has been expressed in E. coli, purified and crystallized and diffraction data have been collected to 2.3 Å resolution. Two heavy-atom crystal derivatives are under study. Inositol 1,3,4,5,6-pentakisphosphate kinase (IP 5 2-K) is an enzyme involved in inositol metabolism that synthesizes IP 6 (inositol 1,2,3,4,5,6-hexakisphosphate) from inositol 1,3,4,5,6-pentakisphosphate (IP 5 ) and ATP. IP 6 is the major phosphorus reserve in plants, while in mammals it is involved in multiple cellular events such as DNA editing and chromatin remodelling. In addition, IP 6 is the precursor of other highly phosphorylated inositols which also play highly relevant roles. IP 5 2-K is the only enzyme that phosphorylates the 2-OH axial position of the inositide and understanding its molecular mechanism of substrate specificity is of great interest in cell biology. IP 5 2-K from Arabidopsis thaliana has been expressed in Escherichia coli as two different fusion proteins and purified. Both protein preparations yielded crystals of different quality, always in the presence of IP 6 . The best crystals obtained for X-ray crystallographic analysis belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 58.124, b = 113.591, c = 142.478 Å. Several diffraction data sets were collected for the native enzyme and two heavy-atom derivatives using a synchrotron source

  1. Modulation of Bacillus thuringiensis Phosphatidylinositol-Specific Phospholipase C Activity by Mutations in the Putative Dimerization Interface

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X.; Shao, C; Zhang, X; Zambonelli, C; Redfield, A; Head, J; Seaton, B; Roberts, M

    2009-01-01

    Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more of these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.

  2. The selective and inducible activation of endogenous PI 3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth.

    Science.gov (United States)

    Ashcroft, M; Stephens, R M; Hallberg, B; Downward, J; Kaplan, D R

    1999-08-12

    The Trk/Nerve Growth Factor receptor mediates the rapid activation of a number of intracellular signaling proteins, including phosphatidylinositol 3-kinase (PI 3-kinase). Here, we describe a novel, NGF-inducible system that we used to specifically address the signaling potential of endogenous PI 3-kinase in NGF-mediated neuronal survival and differentiation processes. This system utilizes a Trk receptor mutant (Trk(def)) lacking sequences Y490, Y785 and KFG important for the activation of the major Trk targets; SHC, PLC-gammal, Ras, PI 3-kinase and SNT. Trk(def) was kinase active but defective for NGF-induced responses when stably expressed in PC12nnr5 cells (which lack detectable levels of TrkA and are non-responsive to NGF). The PI 3-kinase consensus binding site, YxxM (YVPM), was introduced into the insert region within the kinase domain of Trk(def). NGF-stimulated tyrosine phosphorylation of the Trk(def)+PI 3-kinase addback receptor, resulted in the direct association and selective activation of PI 3-kinase in vitro and the production of PI(3,4)P2 and PI(3,4,5)P3 in vivo (comparable to wild-type). PC12nnr5 cells stably expressing Trk(def) + PI 3-kinase, initiated neurite outgrowth but failed to stably extend and maintain these neurites in response to NGF as compared to PC12 parental cells, or PC12nnr5 cells overexpressing wild-type Trk. However, Trk(def) + PI 3-kinase was fully competent in mediating NGF-induced survival processes. We propose that while endogenous PI 3-kinase can contribute in part to neurite initiation processes, its selective activation and subsequent signaling to downstream effectors such as Akt, functions mainly to promote cell survival in the PC12 system.

  3. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Alessandro Cannavo

    2017-08-01

    Full Text Available The sphingosine kinases 1 and 2 (SphK1 and 2 catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P. The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull’s eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.

  4. Small Molecules Targeting Ataxia Telangiectasia and Rad3-Related (ATR) Kinase: An Emerging way to Enhance Existing Cancer Therapy

    Czech Academy of Sciences Publication Activity Database

    Andrs, M.; Korábečný, J.; Nepovimova, E.; Jun, D.; Hodný, Zdeněk; Kuca, K.

    2016-01-01

    Roč. 16, č. 3 (2016), s. 200-208 ISSN 1568-0096 Institutional support: RVO:68378050 Keywords : Ataxia telangiectasia and Rad3-related kinase (ATR) * cancer * chemosensitization * DNA damage response * phosphatidylinositol 3-kinase-related protein kinases (PIKK) * radiosensitization * synthetic lethality Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.992, year: 2016

  5. Kinetics and thermodynamics of the binding of riboflavin, riboflavin 5'-phosphate and riboflavin 3',5'-bisphosphate by apoflavodoxins.

    OpenAIRE

    Pueyo, J J; Curley, G P; Mayhew, S G

    1996-01-01

    The reactions of excess apoflavodoxin from Desulfovibrio vulgaris, Anabaena variabilis and Azotobacter vinelandii with ribo- flavin 5«-phosphate (FMN), riboflavin 3«,5«-bisphosphate and riboflavin are pseudo-first-order. The rates increase with decreasing pH in the range pH 5-8, and, in general, they increase with increasing ionic strength to approach a maximum at an ionic strength greater than 0.4 M. The rate of FMN binding in phosphate at high pH increases to a maximum ...

  6. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    Science.gov (United States)

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  7. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation

    International Nuclear Information System (INIS)

    Kim, Mi-Kyoung; Lee, Ha Young; Kwak, Jong-Young; Park, Joo-In; Yun, Jeanho; Bae, Yoe-Sik

    2006-01-01

    Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P 2 , S1P 3 , S1P 4 , but not S1P 1 . When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P 1 - and S1P 4 -selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinase is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G i protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process

  8. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase III beta (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology

    Czech Academy of Sciences Publication Activity Database

    Mejdrová, Ivana; Chalupská, Dominika; Plačková, Pavla; Müller, C.; Šála, Michal; Klíma, Martin; Bäumlová, Adriana; Hřebabecký, Hubert; Procházková, Eliška; Dejmek, Milan; Strunin, Dmytro; Weber, Jan; Lee, G.; Matoušová, Marika; Mertlíková-Kaiserová, Helena; Ziebuhr, J.; Birkuš, G.; Bouřa, Evžen; Nencka, Radim

    2017-01-01

    Roč. 60, č. 1 (2017), s. 100-118 ISSN 0022-2623 R&D Projects: GA ČR GA15-09310S EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : C virus replication * lipid kinase * crystal structure Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 6.259, year: 2016

  9. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    Science.gov (United States)

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM. (c) 2009 Wiley-Liss, Inc.

  10. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    Directory of Open Access Journals (Sweden)

    Agarwala Usha

    2011-06-01

    Full Text Available Abstract Background Cyclin-dependent kinases 2, 4 and 6 (Cdk2, Cdk4, Cdk6 are closely structurally homologous proteins which are classically understood to control the transition from the G1 to the S-phases of the cell cycle by combining with their appropriate cyclin D or cyclin E partners to form kinase-active holoenzymes. Deregulation of Cdk4 is widespread in human cancer, CDK4 gene knockout is highly protective against chemical and oncogene-mediated epithelial carcinogenesis, despite the continued presence of CDK2 and CDK6; and overexpresssion of Cdk4 promotes skin carcinogenesis. Surprisingly, however, Cdk4 kinase inhibitors have not yet fulfilled their expectation as 'blockbuster' anticancer agents. Resistance to inhibition of Cdk4 kinase in some cases could potentially be due to a non-kinase activity, as recently reported with epidermal growth factor receptor. Results A search for a potential functional site of non-kinase activity present in Cdk4 but not Cdk2 or Cdk6 revealed a previously-unidentified loop on the outside of the C'-terminal non-kinase domain of Cdk4, containing a central amino-acid sequence, Pro-Arg-Gly-Pro-Arg-Pro (PRGPRP. An isolated hexapeptide with this sequence and its cyclic amphiphilic congeners are selectively lethal at high doses to a wide range of human cancer cell lines whilst sparing normal diploid keratinocytes and fibroblasts. Treated cancer cells do not exhibit the wide variability of dose response typically seen with other anticancer agents. Cancer cell killing by PRGPRP, in a cyclic amphiphilic cassette, requires cells to be in cycle but does not perturb cell cycle distribution and is accompanied by altered relative Cdk4/Cdk1 expression and selective decrease in ATP levels. Morphological features of apoptosis are absent and cancer cell death does not appear to involve autophagy. Conclusion These findings suggest a potential new paradigm for the development of broad-spectrum cancer specific therapeutics with

  11. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I; Thompson, John; Joris, Bernard; Battistel, Marcos D

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated. © 2015 S. Karger AG, Basel.

  12. c-Met Overexpression Contributes to the Acquired Apoptotic Resistance of Nonadherent Ovarian Cancer Cells through a Cross Talk Mediated by Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/2

    Directory of Open Access Journals (Sweden)

    Maggie K.S. Tang

    2010-02-01

    Full Text Available Ovarian cancer is the most lethal gynecologic cancer mainly because of widespread peritoneal dissemination and malignant ascites. Key to this is the capacity of tumor cells to escape suspension-induced apoptosis (anoikis, which also underlies their resistance to chemotherapy. Here, we used a nonadherent cell culture model to investigate the molecular mechanisms of apoptotic resistance of ovarian cancer cells that may mimic the chemoresistance found in solid tumors. We found that ovarian cancer cells acquired a remarkable resistance to anoikis and apoptosis induced by exposure to clinically relevant doses of two front-line chemotherapeutic drugs cisplatin and paclitaxel when grown in three-dimensional than monolayer cultures. Inhibition of the hepatocyte growth factor (HGF receptor c-Met, which is frequently overexpressed in ovarian cancer, by a specific inhibitor or small interfering RNA blocked the acquired anoikis resistance and restored chemosensitivity in three-dimensional not in two-dimensional cultures. These effects were found to be dependent on both phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK 1/2 signaling pathways. Inhibitors of PI3K/Akt abrogated ERK1/2 activation and its associated anoikis resistance in response to HGF, suggesting a signaling relay between these two pathways. Furthermore, we identified a central role of Ras as a mechanism of this cross talk. Interestingly, Ras did not lie upstream of PI3K/Akt, whereas PI3K/Akt signaling to ERK1/2 involved Ras. These findings shed new light on the apoptotic resistance mechanism of nonadherent ovarian cancer ascites cells and may have important clinical implications.

  13. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Calabrese, J.C.; Wawrzak, Z.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg{sup 2+} for activity. The first three-dimensional structure of the enzyme was determined at 1.4 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an {alpha} + {beta} fold having a complex linkage of {beta} strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg{sup 2+} cofactor within the active site.

  14. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides

    Directory of Open Access Journals (Sweden)

    Mila Elich

    2018-05-01

    Full Text Available One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5trisphosphate (PIP3 by class I phosphoinositide 3 kinases (PI3K. Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2, PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5tetrakisphosphate (IP4 and inositol-heptakisphosphate (IP7. Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.

  15. Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

    Science.gov (United States)

    Kim, Soohee; Lee, Seung Heon; Kang, Sukmo; Lee, Lyon; Park, Jung-Duck; Ryu, Doug-Young

    2011-01-01

    Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also involved in the regulation of catalase expression. To examine the involvement of c-Met and PI3K pathways in the arsenite-induced downregulation of catalase, catalase mRNA and protein expression were analyzed in the human hepatoma cell line HepG2 treated with arsenite and either an inhibitor of c-Met (PHA665752 (PHA)) or of PI3K (LY294002 (LY)). Arsenite treatment markedly activated Akt and decreased the levels of both catalase mRNA and protein. Both PHA and LY attenuated arsenite-induced activation of Akt. PHA and LY treatment also prevented the inhibitory effect of arsenite on catalase protein expression but did not affect the level of catalase mRNA. These findings suggest that arsenite-induced inhibition of catalase expression is regulated at the mRNA and post-transcriptional levels in HepG2 cells, and that the post-transcriptional regulation is mediated via c-Met- and PI3K-dependent mechanisms.

  16. The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation

    DEFF Research Database (Denmark)

    Guerra, B; Götz, C; Wagner, P

    1997-01-01

    The oncogene product MDM2 can be phosphorylated by protein kinase CK2 in vitro 0.5-1 mol of phosphate were incorporated per mol MDM2 protein. The catalytic subunit of protein kinase CK2 (alpha-subunit) catalyzed the incorporation of twice as much phosphate into the MDM2 protein as it was obtained...

  17. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    Science.gov (United States)

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  18. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Thole, J.M.; Vermeer, J.E.M.; Zhang, Y.; Gadella, Th.W.J.; Nielsen, E.

    2008-01-01

    Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed

  19. Early effects of Escherichia coli endotoxin infusion on vasopressin-stimulated breakdown and metabolism of inositol lipids in rat hepatocytes

    International Nuclear Information System (INIS)

    Rodriguez de Turco, E.B.; Spitzer, J.A.

    1988-01-01

    The turnover of vasopressin-stimulated 32P-phosphoinositides and 32P-phosphatidic acid and accumulation of [2-3H]-inositol phosphates were examined in hepatocytes from rats infused i.v. with saline and E. coli endotoxin for 3 hrs. Within 60s of VP stimulation the decrease in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labeling as well as the increased uptake of 32P into phosphatidic acid were similar in both groups. However, at a later time (300s) the 32P-phosphatidylinositol turnover was greatly decreased concomitantly with a higher labeling of phosphatidic acid. The accumulation of [2-3H]-inositol phosphates in ET-cells was significantly decreased both at 30s and 600s after VP addition. The distribution of [2-3H]-inositol labeling accumulated in the different inositol phosphate fractions over the first 30s of VP stimulation showed a tendency to lower accumulation of inositol trisphosphate, and a significantly lower accumulation of inositol bisphosphate simultaneously with a higher labeling of the inositol tetrakisphosphate fraction. These observations reflect an early effect of ET-infusion on VP-stimulated inositol lipid turnover and on the subsequent metabolism of the released inositol phosphates

  20. Synthesis and Physicochemical Characterization of D-Tagatose-1-phosphate: The Substrate of the Tagatose-1-Phosphate Kinase TagK in the PTS-mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I.; Thompson, John; Joris, Bernard; Battistel, Marcos D.

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multi-component PEP-dependent:tag-PTS present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by 31P and 1H NMR spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-Tagatose catabolic Pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TFHis6) of Escherichia coli. The active fusion enzyme was named TagK-TFHis6. Tag-1P and D-fructose-1-phosphate (Fru-1P) are substrates for the TagK-TFHis6 enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate (Tag-6P) and D-fructose-6-phosphate (Fru-6P) are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific enzyme II (EIITag) in E.coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and EI, to restore the phosphate transfer is demonstrated. PMID:26159072

  1. Insulin-induced activation of glycerol-3-phosphate acyltransferase by a chiro-inositol-containing insulin mediator is defective in adipocytes of insulin-resistant, type II diabetic, Goto-Kakizaki rats.

    OpenAIRE

    Farese, R V; Standaert, M L; Yamada, K; Huang, L C; Zhang, C; Cooper, D R; Wang, Z; Yang, Y; Suzuki, S; Toyota, T

    1994-01-01

    Type II diabetic Goto-Kakizaki (GK) rats were insulin-resistant in euglycemic-hyperinsulinemic clamp studies. We therefore examined insulin signaling systems in control Wistar and diabetic GK rats. Glycerol-3-phosphate acyltransferase (G3PAT), which is activated by headgroup mediators released from glycosyl-phosphatidylinositol (GPI), was activated by insulin in intact and cell-free adipocyte preparations of control, but not diabetic, rats. A specific chiro-inositol-containing inositol phosph...

  2. Photoaffinity labeling of cAMP-dependent protein kinase by 4-azido-2-nitrophenyladenylyl pyrophosphate

    International Nuclear Information System (INIS)

    Johnson, D.R.; Ho, H.T.; Wong, S.S.

    1986-01-01

    A photoaffinity analogue of ATP, 4-azido-2-nitrophenyl-adenylyl pyrophosphate (ANAP) has been synthesized to investigate the topographical interaction between the catalytic and the regulatory subunits of the bovine heart type II cAMP-dependent protein kinase. The synthesis involves coupling of 4-azido-2-nitrophenyl phosphate with adenosine 5'-monophosphomorpholidate. ANAP has an absorption maximum at 260 nm (molar absorptivity = 35.4 x 10 3 M -1 cm -1 ) and a shoulder at 320 nm. Kinetically, ANAP inhibits the enzyme competitively against ATP with a Ki of 0.37 mM. The catalytic subunit is inactivated by ANAP upon photolysis in the presence of magnesium ion. ATP protects the enzyme from photoinactivation but the regulatory subunit does not. Gel electrophoretic analysis of the enzyme labeled by [ 14 C]ANAP shows that the photoincorporated ANAP is associated mainly with the catalytic subunit, even when the regulator dimer is in twelve fold excess. Little or no ANAP is found incorporated into the regulator subunit. The data suggest that the photoreactive portion of ANAP does not lie within reach of the regulatory protein when the analogue is bound to the catalytic subunit

  3. 2-Aminopyridine-Based Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Inhibitors: Assessment of Mechanism-Based Safety.

    Science.gov (United States)

    Dow, Robert L; Ammirati, Mark; Bagley, Scott W; Bhattacharya, Samit K; Buckbinder, Leonard; Cortes, Christian; El-Kattan, Ayman F; Ford, Kristen; Freeman, Gary B; Guimarães, Cristiano R W; Liu, Shenping; Niosi, Mark; Skoura, Athanasia; Tess, David

    2018-04-12

    Studies have linked the serine-threonine kinase MAP4K4 to the regulation of a number of biological processes and/or diseases, including diabetes, cancer, inflammation, and angiogenesis. With a majority of the members of our lead series (e.g., 1) suffering from time-dependent inhibition (TDI) of CYP3A4, we sought design avenues that would eliminate this risk. One such approach arose from the observation that carboxylic acid-based intermediates employed in our discovery efforts retained high MAP4K4 inhibitory potency and were devoid of the TDI risk. The medicinal chemistry effort that led to the discovery of this central nervous system-impaired inhibitor together with its preclinical safety profile is described.

  4. GCN5 regulates the activation of PI3K/Akt survival pathway in B cells exposed to oxidative stress via controlling gene expressions of Syk and Btk.

    Science.gov (United States)

    Kikuchi, Hidehiko; Kuribayashi, Futoshi; Takami, Yasunari; Imajoh-Ohmi, Shinobu; Nakayama, Tatsuo

    2011-02-25

    Histone acetyltransferase(s) (HATs) are involved in the acetylation of core histones, which is an important event for transcription regulation through alterations in the chromatin structure in eukaryotes. General control non-depressible 5 (GCN5) was first identified as a global coactivator and transcription-related HAT. Here we report that GCN5 regulates the activation of phosphatidylinositol 3-kinase (PI3K)/acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) survival pathway in B cells exposed to oxidative stress via controlling gene expressions of spleen tyrosine kinase (Syk) and Bruton's tyrosine kinase (Btk). The GCN5-deficiency remarkably caused apoptotic cell death by treatment with exogenous hydrogen peroxide (H(2)O(2)) in chicken DT40 cells. In GCN5-deficient DT40 cells, gene expressions of Syk and Btk, which are involved in activation of PI3K/Akt survival pathway in DT40 cells exposed to exogenous H(2)O(2), were remarkably decreased compared with those in wild type DT40 cells. In addition, phosphorylation of Akt in H(2)O(2)-treated GCN5-deficient cells was remarkably suppressed as compared to that of DT40. Chromatin immunoprecipitation assay revealed that GCN5 binds to proximal 5'-upstream regions of Syk and Btk genes in vivo. These results suggest that GCN5 takes part in transcriptional regulations of the Syk and Btk genes, and plays a key role in epigenetic regulation of PI3K/Akt survival pathway in B cells exposed to reactive oxygen species such as H(2)O(2). Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Sequence analysis of the PIP5K locus in Eimeria maxima provides further evidence for eimerian genome plasticity and segmental organization.

    Science.gov (United States)

    Song, B K; Pan, M Z; Lau, Y L; Wan, K L

    2014-07-29

    Commercial flocks infected by Eimeria species parasites, including Eimeria maxima, have an increased risk of developing clinical or subclinical coccidiosis; an intestinal enteritis associated with increased mortality rates in poultry. Currently, infection control is largely based on chemotherapy or live vaccines; however, drug resistance is common and vaccines are relatively expensive. The development of new cost-effective intervention measures will benefit from unraveling the complex genetic mechanisms that underlie host-parasite interactions, including the identification and characterization of genes encoding proteins such as phosphatidylinositol 4-phosphate 5-kinase (PIP5K). We previously identified a PIP5K coding sequence within the E. maxima genome. In this study, we analyzed two bacterial artificial chromosome clones presenting a ~145-kb E. maxima (Weybridge strain) genomic region spanning the PIP5K gene locus. Sequence analysis revealed that ~95% of the simple sequence repeats detected were located within regions comparable to the previously described feature-rich segments of the Eimeria tenella genome. Comparative sequence analysis with the orthologous E. maxima (Houghton strain) region revealed a moderate level of conserved synteny. Unique segmental organizations and telomere-like repeats were also observed in both genomes. A number of incomplete transposable elements were detected and further scrutiny of these elements in both orthologous segments revealed interesting nesting events, which may play a role in facilitating genome plasticity in E. maxima. The current analysis provides more detailed information about the genome organization of E. maxima and may help to reveal genotypic differences that are important for expression of traits related to pathogenicity and virulence.

  6. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  7. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

    Science.gov (United States)

    2014-01-01

    The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development. PMID:25247188

  8. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.

    Science.gov (United States)

    Guerriero, Réjean M; Patel, Archana A; Walsh, Brian; Baumer, Fiona M; Shah, Ankoor S; Peters, Jurriaan M; Rodan, Lance H; Agrawal, Pankaj B; Pearl, Phillip L; Takeoka, Masanori

    2017-11-01

    Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Deficient tyrosine phosphorylation of c-Cbl and associated proteins in phorbol ester-resistant EL4 mouse thymoma cells.

    Science.gov (United States)

    Luo, X; Sando, J J

    1997-05-02

    Two tyrosine phosphoproteins in phorbol ester-sensitive EL4 (S-EL4) mouse thymoma cells have been identified as the p120 c-Cbl protooncogene product and the p85 subunit of phosphatidylinositol 3-kinase. Tyrosine phosphorylation of p120 and p85 increased rapidly after phorbol ester stimulation. Phorbol ester-resistant EL4 (R-EL4) cells expressed comparable amounts of c-Cbl and phosphatidylinositol 3-kinase protein but greatly diminished tyrosine phosphorylation. Co-immunoprecipitation experiments revealed complexes of c-Cbl with p85, and of p85 with the tyrosine kinase Lck in phorbol ester-stimulated S-EL4 but not in unstimulated S-EL4 or in R-EL4 cells. In vitro binding of c-Cbl with Lck SH2 or SH3 domains was detected in both S-EL4 and R-EL4 cells, suggesting that c-Cbl, p85, and Lck may form a ternary complex. In vitro kinase assays revealed phosphorylation of p85 by Lck only in phorbol ester-stimulated S-EL4 cells. Collectively, these results suggest that Cbl-p85 and Lck-p85 complexes may form in unstimulated S-EL4 and R-EL4 cells but were not detected due to absence of tyrosine phosphorylation of p85. Greatly decreased tyrosine phosphorylation of c-Cbl and p85 in the complexes may contribute to the failure of R-EL4 cells to respond to phorbol ester.

  10. Mixed phosphates of the Na3PO4 - LnPO4 systems

    International Nuclear Information System (INIS)

    Slivko, T.A.; Smirnova, I.N.; Zimina, G.V.; Spiridonov, F.M.; Chudinova, N.N.

    2002-01-01

    The phase relationships in the systems Na 3 PO 4 - LnPO 4 (subsolidus 950 Deg C cross-sections), where Ln=Sm, Eu, Tb, Dy, Ho, Tm, Yb, Lu, were studied by X-ray analysis. Reactions of the components were deduced, formed phases were separated and identified. The Na 6 Ln 3 (PO 4 ) 5 (Ln=Dy, Ho, Tm), Na 3 Ln 2 (PO 4 ) 3 (Ln=Tm, Yb, Lu) compounds and phases of the unstable composition Na 6+x Ln 3-x/3 (PO 4 ) 5 (Ln=Yb, Lu, 0 ≤ x ≤ 1.5) were detected for the first time. In all systems the existence of the Na 3-x Ln x/3 PO 4 unstable composition phase on the basis of the high temperature modification of sodium phosphate (sp. gr. Fm3m) is established, suggesting that stabilization of this modification by rare earth ions is possible [ru

  11. Csk Homologous Kinase, a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis

    Science.gov (United States)

    2010-08-31

    SH2 ) and SH3 domains and lacks the consensus tyrosine phosphorylation and myristylation sites found in Src family kinases . CHK has been shown to...0350 TITLE: Csk Homologous Kinase , a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis PRINCIPAL INVESTIGATOR: Byeong-Chel...1 AUG 2009 - 31 JUL 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-09-1-0350 Csk Homologous Kinase , a Potential Regulator

  12. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    Science.gov (United States)

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916

  13. Preliminary X-ray crystallographic analysis of the d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Petrareanu, Georgiana; Balasu, Mihaela C.; Zander, Ulrich; Scheidig, Axel J.; Szedlacsek, Stefan E.

    2010-01-01

    The expression, purification, preliminary crystallization and crystallographic analysis of phosphoketolase from L. lactis ssp. lactis (strain IL 1403) are reported. Phosphoketolases are thiamine diphosphate-dependent enzymes which play a central role in the pentose-phosphate pathway of heterofermentative lactic acid bacteria. They belong to the family of aldehyde-lyases and in the presence of phosphate ion cleave the carbon–carbon bond of the specific substrate d-xylulose 5-phosphate (or d-fructose 6-phosphate) to give acetyl phosphate and d-glyceraldehyde 3-phosphate (or d-erythrose 4-phosphate). Structural information about phosphoketolases is particularly important in order to fully understand their mechanism as well as the steric course of phosphoketolase-catalyzed reactions. Here, the purification, preliminary crystallization and crystallographic characterization of d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis are reported. The presence of thiamine diphosphate during purification was essential for the enzymatic activity of the purified protein. The crystals belonged to the monoclinic space group P2 1 . Diffraction data were obtained to a resolution of 2.2 Å

  14. PAK4 crystal structures suggest unusual kinase conformational movements.

    Science.gov (United States)

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  15. Calcium-phosphate-osteopontin particles for caries control

    DEFF Research Database (Denmark)

    Schlafer, Sebastian

    Oftentimes caries lesions develop in protected sites that are difficult to access by self-performed mechanical tooth cleaning. At present, there is a growing interest in chemical adjuncts to mechanical procedures of oral hygiene that aim at biofilm control rather than biofilm eradication. Calcium......-phosphate-osteopontin particles are a new promising therapeutic approach to caries control. They are designed to bind to dental biofilms and interfere with biofilm build-up, lowering the bacterial burden on the tooth surface without affecting bacterial viability in the oral cavity. Moreover, they dissolve when pH in the biofilm...... drops to 6 or below and release buffering phosphate ions that stabilize biofilm pH above the critical level for enamel dissolution. With that twofold approach, calcium-phosphate-osteopontin particles may make a relevant contribution to clinical caries control....

  16. Multimerization of the cytoplasmic domain of syndecan-4 is required for its ability to activate protein kinase C

    DEFF Research Database (Denmark)

    Oh, E S; Woods, A; Couchman, J R

    1997-01-01

    of syndecan-4 (4L) containing a membrane-proximal basic sequence did not form higher order oligomers and could not regulate the activity of PKCalphabetagamma unless induced to aggregate by phosphatidylinositol 4,5-bisphosphate. Oligomerization and PKC regulatory activity of the 4V peptide were both increased...... by addition of N-terminal cysteine and reduced by phosphorylation of the cysteine thiol group. Concentration of syndecan-4 at sites of focal adhesion formation may enhance multimerization and both localize PKC and potentiate its activity to induce stable complex formation....

  17. Thermodynamic properties of crystalline Sr0.5Zr2(PO4)3 phosphate from T → 0 to 665 K

    International Nuclear Information System (INIS)

    Pet'kov, V.I.; Markin, A.V.; Bykova, T.A.; Sukhanov, M.V.; Smirnova, N.N.; Loshkarev, V.N.

    2007-01-01

    The temperature dependence of the heat capacity of crystalline Sr 0.5 Zr 2 (PO 4 ) 3 phosphate was studied by precision adiabatic vacuum and dynamic scanning calorimetry over the temperature range 7-665 K. The low-temperature dependence of the heat capacity was analyzed using the Debye theory of the heat capacity of solids and its multifractal generalization, which allowed conclusions to be drawn about the heterodynamic characteristics of the structure. The experimental data obtained were used to calculate the standard thermodynamic functions of Sr 0.5 Zr 2 (PO 4 ) 3 from T → 0 to 665 K. The standard absolute entropy of Sr 0.5 Zr 2 (PO 4 ) 3 was in turn used to calculate the standard entropy of its formation from simple substances at 298.15 K [ru

  18. Interaction of adsorption of reactive yellow 4 from aqueous solutions onto synthesized calcium phosphate

    Directory of Open Access Journals (Sweden)

    H. El Boujaady

    2017-01-01

    Full Text Available The interaction of reactive yellow 4 with Apatitic Tricalcium Phosphate (PTCa has been investigated in aqueous medium to understand the mechanism of adsorption and explore the potentiality of this phosphate toward controlling pollution resulting from textile dyes. Transmission electron microscopy (TEM analysis demonstrates that the adsorbent is composed of needle-like nanoparticles and the SAED pattern exhibits spotted sharp and continuous rings that evidence polycrystalline grains. X-ray diffraction results showed that, the crystallinity of the dye decreased after interaction with RY4 indicatating incorporation of the dye into the micropores and macropores of the adsorbent. The results of Fourier transform infrared (FTIR spectroscopy indicate that the adsorption is due to the electrostatic interaction between the –SO3- groups of dye and the surface of the Phosphate. The desorption efficiency was very high at about 99.4%. The presence of calcium ions favored the adsorption of the dye, while the phosphate ions inhibited it.

  19. Uptake of CrO{sub 4}{sup 2-} ions by Fe-treated tri-calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Serrano G, J.; Ramirez S, J. L.; Bonifacio M, J.; Granados C, F.; Badillo A, V. E., E-mail: juan.serrano@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    CrO{sub 4}{sup 2-} ion adsorption of Fe-treated tri-calcium phosphate was studied by batch experiments as a function of contact time, initial concentration of metal ion and temperature. Adsorption results showed that at ph 5.5 and 1.0 x 10{sup -4} M chromium concentration the adsorption capacity of Fe-treated tri-calcium phosphate for CrO{sub 4}{sup 2-} ions was 7.10 x 10{sup -3} mmol/g. Chromium adsorption data on Fe-treated tri-calcium phosphate at various initial concentration fitted the Freundlich isotherm. By temperature studies the thermodynamic parameters {Delta}H{sup 0}, {Delta}G{sup 0} and {Delta}S{sup 0} were estimated and the obtained results showed that the adsorption reaction was endothermic and spontaneous. (Author)

  20. Human adenylate kinases – classification, structure, physiological and pathological importance

    Directory of Open Access Journals (Sweden)

    Magdalena Wujak

    2015-01-01

    Full Text Available Adenylate kinase (AK, EC 2.7.4.3 is a ubiquitous phosphotransferase which catalyzes the reversible transfer of high-energy β – and γ-phosphate groups between nucleotides. All classified AKs show a similar structure: they contain a large central CORE region, nucleoside monophosphate and triphosphate binding domains (NMPbd and NTPbd and the LID domain. Analysis of amino acid sequence similarity revealed the presence of as many as nine human AK isoenzymes, which demonstrate different organ-tissue and intercellular localization. Among these kinases, only two, AK1 and AK2, fulfill the structural and functional criterion by the highest affinity for adenine nucleotides and the utilization of only AMP or dAMP as phosphate acceptors. Human AK isoenzymes are involved in nucleotide homeostasis and monitor disturbances of cell energy charge. Participating in large regulatory protein complexes, AK supplies high energy substrates for controlling the functions of channels and transporters as well as ligands for extracellular P2 nucleotide receptors. In pathological conditions AK can take over the function of other kinases, such as creatine kinase in oxygen-depleted myocardium. Directed mutagenesis and genetic studies of diseases (such as aleukocytosis, hemolytic anemia, primary ciliary dyskinesia (PCD link the presence and activity of AK with etiology of these disturbances. Moreover, AK participates in regulation of differentiation and maturation of cells as well as in apoptosis and oncogenesis. Involvement of AK in a wide range of processes and the correlation between AK and etiology of diseases support the medical potential for the use of adenylate kinases in the diagnosis and treatment of certain diseases. This paper summarizes the current knowledge on the structure, properties and functions of human adenylate kinase.

  1. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  2. Syndecan-4 and integrins: combinatorial signaling in cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1999-01-01

    It is now becoming clear that additional transmembrane components can modify integrin-mediated adhesion. Syndecan-4 is a transmembrane heparan sulfate proteoglycan whose external glycosaminoglycan chains can bind extracellular matrix ligands and whose core protein cytoplasmic domain can signal...... during adhesion. Two papers in this issue of JCS demonstrate, through transfection studies, that syndecan-4 plays roles in the formation of focal adhesions and stress fibers. Overexpression of syndecan-4 increases focal adhesion formation, whereas a partially truncated core protein that lacks the binding...... site for protein kinase C(&agr;) and phosphatidylinositol 4, 5-bisphosphate acts as a dominant negative inhibitor of focal adhesion formation. Focal adhesion induction does not require interaction between heparan sulfate glycosaminoglycan and ligand but can occur when non-glycanated core protein...

  3. 4-[4-(4-Fluorophenyl-2-methyl-5-oxo-2,5-dihydroisoxazol-3-yl]-1-methylpyridinium iodide–4-[3-(4-fluorophenyl-2-methyl-5-oxo-2,5-dihydroisoxazol-4-yl]-1-methylpyridinium iodide (0.6/0.4

    Directory of Open Access Journals (Sweden)

    Simona Margutti

    2008-01-01

    Full Text Available The crystal structure of the title compound, C16H16FN2O2+·I−, was determined as part of a study of the biological activity of isoxazolone derivatives as p38 mitogen-activated protein kinase (MAPK inhibitors. The X-ray crystal structure of 4-[4-(4-fluorophenyl-2-methyl-5-oxo-2,5-dihydroisoxazol-3-yl]-1-methylpyridinium iodide showed the presence of the regioisomer 4-[3-(4-fluorophenyl-2-methyl-5-oxo-2,5-dihydroisoxazol-4-yl]-1-methylpyridinium iodide. The synthesis of the former compound was achieved by reacting 4-(4-fluorophenyl-3-(4-pyridylisoxazol-5(2H-one after treatment with Et3N in dimethylformamide, with iodomethane. The unexpected formation of the regioisomer could be explained by a rearrangement occurring via aziridine of the isoxazolone compound. The regioisomers have site occupancies of 0.632 (4/0.368 (4. The two six members rings make a dihedral angle of 66.8 (2°.

  4. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  5. 4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1α and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Gao Ning; Nester, Rebecca A.; Sarkar, Mohamadi A.

    2004-01-01

    Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix transcription factor composed of HIF-1α and HIF-1β subunits. HIF-1 expression is induced by hypoxia, growth factors, and activation of oncogenes. HIF-1 activates downstream target genes such as vascular endothelial growth factor A (VEGF-A), which plays an important role in tumor progression and angiogenesis. Estrogen exposure is considered to be the major risk factor for ovarian cancer. Estradiol (E2) is usually metabolized by CYP1A1/1A2 and CYP3A4 to the 2-hydroxy estradiol (2-OHE2) and 4-hydroxy estradiol (4-OHE2) in human liver. Many reports have suggested that the formation of 4-OHE2 is important for mammary carcinogenesis. However, the formation of 2-OHE2 may play an important role in exhibiting anticarcinogenic effects. In the present study, we have demonstrated that one of the catechol estrogen metabolites of E2, 4-OHE2, induces HIF-1α and VEGF-A expression at protein level in two human ovarian cancer cell lines, OVCAR-3 and A2780-CP70 cells, in dose- and time-dependent manners, whereas the other catechol estrogen metabolite of E2, 2-OHE2, does not alter HIF-1α and VEGF-A expression. To explore the mechanism of 4-OHE2-induced HIF-1α and VEGF-A expression, we studied whether phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase (MAPK) signaling pathways are involved in 4-OHE2-induced HIF-1α and VEGF-A expression. Our findings indicate that PI3K inhibitors, LY294002 and wortmannin, inhibited HIF-1α and VEGF-A expression, whereas MAPK inhibitor, PD98059, did not alter HIF-1α and VEGF-A expression induced by 4-OHE2. 4-OHE2, but not 2-OHE2, also induced Akt phosphorylation at Ser473 in dose- and time-dependent manners, and LY294002 and wortmannin inhibited Akt phosphorylation at Ser473 induced by 4-OHE2. Our results also indicated that the mTOR/FRAP inhibitor, rapamycin, inhibited 4-OHE2-induced HIF-1α and VEGF-A expression. These results suggest that the PI3K

  6. Stimulation of casein kinase II by epidermal growth factor: Relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit

    International Nuclear Information System (INIS)

    Ackerman, P.; Osheroff, N.; Glover, C.V.C.

    1990-01-01

    To determine relationships between the hormonal activation of casein kinase II and its phosphorylation state, epidermal growth factor (EGF)-treated and EGF-naive human A-431 carcinoma cells were cultured in the presence of [ 32 P]orthophosphate. Immunoprecipitation experiments indicated that casein kinase II in the cytosol of EGF-treated cells contained approximately 3-fold more incorporated [ 32 P]phosphate than did its counterpart in untreated cells. Levels of kinase phosphorylation paralleled levels of kinase activity over a wide range of EGF concentrations as well as over a time course of hormone action. Approximately 97% of the incorporated [ 32 P]phosphate was found in the β subunit of casein kinase II. Both activated and hormone-naive kinase contained radioactive phosphoserine and phosphothreonine but no phosphotyronsine. On the basis of proteolytic mapping experiments, EGF treatment of A-431 cells led to an increase in the average [ 32 P]phosphate content (i.e., hyperphosphorylation) of casein kinase II β subunit peptides which were modified prior to hormone treatment. Finally, the effect of alkaline phosphatase on the reaction kinetics of activated casein kinase II indicated that hormonal stimulation of the kinase resulted from the increase in its phosphorylation state

  7. Synthesis, structure and electrochemical properties of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, Stanislav S. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow (Russian Federation); Kuzovchikov, Sergey M.; Khasanova, Nellie R.; Drozhzhin, Oleg A.; Filimonov, Dmitriy S. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Karakulina, Olesia M.; Hadermann, Joke [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Abakumov, Artem M. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Skoltech Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, 143026 Moscow (Russian Federation); EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Antipov, Evgeny V. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation)

    2016-10-15

    LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F fluoride-phosphate was synthesized via conventional solid-state and novel freeze-drying routes. The crystal structure was refined based on neutron powder diffraction (NPD) data and validated by electron diffraction (ED) and high-resolution transmission electron microscopy (HRTEM). The alkali ions are ordered in LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F and the transition metals jointly occupy the same crystallographic sites. The oxidation state and oxygen coordination environment of the Fe atoms were verified by {sup 57}Fe Mössbauer spectroscopy. Electrochemical tests of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F cathode material demonstrated a reversible activity of the Fe{sup 3+}/Fe{sup 2+} redox couple at the electrode potential near 3.4 V and minor activity of the Co{sup 3+}/Co{sup 2+} redox couple over 5 V vs Li/Li{sup +}. The material exhibited the discharge capacity of more than 82% (theo.) regarding Fe{sup 3+}/Fe{sup 2+} in the 2.4÷4.6 V vs Li/Li{sup +} potential range. - Graphical abstract: The ball-polyhedral representation of the LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F crystal structure. The MO{sub 4}F{sub 2} units are depicted as blue octahedra, PO{sub 4} units as orange tetrahedra, sodium atoms are designated as yellow (Na1), lithium – red and brown (Li2, Li3 resp.), fluorine – green, oxygen – violet spheres. - Highlights: • Freeze-drying method was successfully applied to the synthesis of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F. • The crystal structure of LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F was refined based on NPD and validated by ED and HRTEM. • LiNaCo{sub 0.5}Fe{sub 0.5}PO{sub 4}F demonstrated a reversible Li de/intercalation in the 2.5÷4.6 V vs Li/Li{sup +} range.

  8. A strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes damaging errors in thiamin biosynthesis.

    Science.gov (United States)

    Thamm, Antje M; Li, Gengnan; Taja-Moreno, Marlene; Gerdes, Svetlana Y; de Crécy-Lagard, Valérie; Bruner, Steven D; Hanson, Andrew D

    2017-07-20

    The canonical kinase (ThiD) that converts the thiamin biosynthesis intermediate hydroxymethylpyrimidine (HMP) monophosphate to the diphosphate can also very efficiently convert free HMP to the monophosphate in prokaryotes, plants, and fungi. This HMP kinase activity enables salvage of HMP, but it is not substrate-specific and so allows toxic HMP analogs and damage products to infiltrate the thiamin biosynthesis pathway. Comparative analysis of bacterial genomes uncovered a gene, thiD2 , that is often fused to the thiamin synthesis gene thiE and could potentially encode a replacement for ThiD. Standalone ThiD2 proteins and ThiD2 fusion domains are small (~130-residues) and do not belong to any previously known protein family. Genetic and biochemical analyses showed that representative standalone and fused ThiD2 proteins catalyze phosphorylation of HMP monophosphate, but not of HMP or its toxic analogs and damage products such as bacimethrin and 5-(hydroxymethyl)-2-methylpyrimidin-4-ol. As strictly monofunctional HMP monophosphate kinases, ThiD2 proteins eliminate a potentially fatal vulnerability of canonical ThiD, at the cost of the ability to reclaim HMP formed by thiamin turnover. ©2017 The Author(s).

  9. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae*

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M.

    2016-01-01

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1–77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1–77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. PMID:27834677

  11. Effects of in vitro hypoxia on depolarization-stimulated accumulation of inositol phosphates in synaptosomes

    International Nuclear Information System (INIS)

    Huang, H.M.; Gibson, G.E.

    1989-01-01

    The effects of potassium and in vitro histotoxic hypoxia on phosphatidylinositol turnover in rat cortical synaptosomes were determined. [2- 3 H] Inositol prelabelled rat synaptosomes were prepared from cerebral cortex slices that had been incubated with [2- 3 H] inositol. Depolarization with 60 mM KCl increased [2- 3 H] inositol phosphates in a time dependent manner. Depolarization with 60 mM KCl increased [2- 3 H]inositol trisphosphate transiently at 5 s. K + induced rapid formation of [2- 3 H] inositol monophosphate with time. One minute of hypoxia enhance sium-stimulate [2 3 H]inositol bisphosphate and maintained an elevated level for at least 5 min. K + stimulated gradual formation of [2- 3 H] inositol monophosphate with time. One minute of hypoxia enhanced potassium-stimulated [2- 3 H] inositol bisphosphate formation. However, 30 min of hypoxia impaired potassium-stimulated accumulation of [2- 3 H]inositol phosphates. The effects of histotoxic hypoxia were all dependent upon calcium in the medium and on K + -depolarization. Thus, hypoxia altered the K + induced accumulation of inositol phosphates in prelabelled synaptosomes in a time dependent, biphasic manner that was calcium dependent

  12. The Role of Phosphatidylinositol 3' -OH Kinase Signaling in Mammary Tumorigenesis

    National Research Council Canada - National Science Library

    Hutchinson, John

    2002-01-01

    ...) and its downstream target Akt kinase in the induction of mammary tumors. To assess the role of Akt in mammary development and tumorigenesis, we generated transgenic mice that express an activated Akt (Akt-DD...

  13. Brain cortex phosphatidylserine inhibits phosphatidylinositol turnover in rat anterior pituitary glands

    International Nuclear Information System (INIS)

    Bonetti, A.C.; Canonico, P.L.; MacLeod, R.M.

    1985-01-01

    The in vitro effect of bovine brain cortex phosphatidylserine on 32 Pi incorporation into phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine of rat anterior pituitary glands was studied. Phosphatidylserine (0.1 to 66.6 microM) decreased the incorporation of 32 Pi into phosphatidylinositol, but not phosphatidylcholine or phosphatidylethanolamine, in a concentration-related manner. The inhibitory effect of phosphatidylinositol was similar to that of dopamine in the same experimental conditions. The combined effects of submaximal concentrations of dopamine and phosphatidylserine elicited an apparently additive inhibitory effect on phosphatidylinositol synthesis. The inhibitory effect of phosphatidylserine was completely reversed by haloperidol and sulpiride and only partially by pimozide, antidopaminergic agents which per se do not affect phosphatidylinositol synthesis. The stimulatory effect of TRH to increase 32 Pi incorporation into phosphatidylinositol was decreased by phosphatidylserine. These observations suggest that the decrease in prolactin release in the presence of phosphatidylserine may be evoked through a dopaminergic mechanism

  14. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes.

    Science.gov (United States)

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K; McGraw, Timothy E

    2016-12-20

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin's effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes

    Directory of Open Access Journals (Sweden)

    Natasha Chaudhary

    2016-12-01

    Full Text Available Insulin activation of phosphatidylinositol 3-kinase (PI3K regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin’s effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types.

  16. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Hougaard, Charlotte; Hoffmann, Else K

    2006-01-01

    swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P(2......) analogue or a PtdIns(4,5)P(2)-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P(2). It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part......The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P(2...

  17. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Template-directed ligation of tethered mononucleotides by t4 DNA ligase for kinase ribozyme selection.

    Directory of Open Access Journals (Sweden)

    David G Nickens

    Full Text Available BACKGROUND: In vitro selection of kinase ribozymes for small molecule metabolites, such as free nucleosides, will require partition systems that discriminate active from inactive RNA species. While nucleic acid catalysis of phosphoryl transfer is well established for phosphorylation of 5' or 2' OH of oligonucleotide substrates, phosphorylation of diffusible small molecules has not been demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: This study demonstrates the ability of T4 DNA ligase to capture RNA strands in which a tethered monodeoxynucleoside has acquired a 5' phosphate. The ligation reaction therefore mimics the partition step of a selection for nucleoside kinase (deoxyribozymes. Ligation with tethered substrates was considerably slower than with nicked, fully duplex DNA, even though the deoxynucleotides at the ligation junction were Watson-Crick base paired in the tethered substrate. Ligation increased markedly when the bridging template strand contained unpaired spacer nucleotides across from the flexible tether, according to the trends: A(2>A(1>A(3>A(4>A(0>A(6>A(8>A(10 and T(2>T(3>T(4>T(6 approximately T(1>T(8>T(10. Bridging T's generally gave higher yield of ligated product than bridging A's. ATP concentrations above 33 microM accumulated adenylated intermediate and decreased yields of the gap-sealed product, likely due to re-adenylation of dissociated enzyme. Under optimized conditions, T4 DNA ligase efficiently (>90% joined a correctly paired, or TratioG wobble-paired, substrate on the 3' side of the ligation junction while discriminating approximately 100-fold against most mispaired substrates. Tethered dC and dG gave the highest ligation rates and yields, followed by tethered deoxyinosine (dI and dT, with the slowest reactions for tethered dA. The same kinetic trends were observed in ligase-mediated capture in complex reaction mixtures with multiple substrates. The "universal" analog 5-nitroindole (dNI did not support ligation when

  19. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    Science.gov (United States)

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  20. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells.

    Science.gov (United States)

    Hammond, Gerald R V; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas

    2015-01-01

    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid's synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2.

  1. Neodymium-doped Sr5(PO4)3F and Sr5(VO4)3F

    International Nuclear Information System (INIS)

    Corker, D.L.; Nicholls, J.; Loutts, G.B.

    1995-01-01

    Neodymium-doped Sr 5 (PO 4 ) 3 F [neodymium strontium fluoride phosphate, (Nd,Sr) 5 (PO 4 ) 3 F] and neodymium-doped Sr 5 (VO 4 ) 3 F [neodymium strontium fluoride vanadate, (Nd,Sr) 5 (VO 4 ) 3 F] crystallize in space group P6 3 /m and are isostructural with calcium fluorophosphate, Ca 5 (PO 4 ) 3 F. There are two different Sr sites in Sr 5 (XO 4 ) 3 F, denoted Sr(1) and Sr(2). Using single-crystal X-ray diffraction the two structures were refined to R factors of 2.3 and 2.2%, respectively, showing that Nd is present at both Sr sites in (Sr,Nd) 5 (VO 4 ) 3 F but only at the Sr(2) site in (Sr,Nd) 5 (PO 4 ) 3 F. (orig.)

  2. Studies of ATM Kinase Activity Using Engineered ATM Sensitive to ATP Analogues (ATM-AS).

    Science.gov (United States)

    Enari, Masato; Matsushima-Hibiya, Yuko; Miyazaki, Makoto; Otomo, Ryo

    2017-01-01

    Ataxia-telangiectasia mutated (ATM) protein is a member of the phosphatidylinositol 3-phosphate kinase (PI3-K)-related protein kinase (PIKK) family and is implicated in the initiation of signaling pathways following DNA double strand breaks (DSBs) elicited by exposure to ionizing irradiation (IR) or radiomimetic compounds. Loss of function of the ATM gene product results in the human genetic disorder ataxia-telangiectasia (A-T) characterized by neurodegeneration, immunodeficiency, genomic instability, and cancer predisposition. In response to DSBs, ATM is activated and phosphorylates Ser/Thr-Gln (S/T-Q) sequences on numerous proteins participating in DNA-damage responses. Among these proteins, phosphorylation of the tumor suppressor p53 at Ser15 is known as a target for ATM, which leads to the dissociation of MDM2, an E3 ubiquitin ligase, from p53 to prevent MDM2-dependent p53 degradation. Ser46 on p53 is phosphorylated in response to DSBs and contributes to the preferential transactivation of pro-apoptotic genes, such as p53AIP1, Noxa, and PUMA, to prevent tumor formation. Our group have shown that not only ATM preferentially phosphorylates S/T-Q sequences, but also Ser46, which is a noncanonical site with an S-P sequence for ATM. Ser46 on p53 is directly phosphorylated by ATM in a p53 conformation-dependent manner using the ATP analogue-accepting ATM mutant (ATM-AS) system. This protocol summarizes an approach to identify direct numerous targets for ATM kinase and is used to elucidate ATM signaling pathways in the DNA damage responses.

  3. The Role of Phosphatidylinositol 3' -OH Kinase Signaling in Mammary Tumorigenesis

    National Research Council Canada - National Science Library

    Hutchinson, John

    2001-01-01

    ...) and its downstream targets such as the Akt kinase in the induction of mammary tumors. To assess the role of Akt in mammary development and tumorigenesis, we have generated transgenic mice that express an activated Akt (Akt-DD...

  4. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  5. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation

    DEFF Research Database (Denmark)

    Kalscheuer, Vera M; Musante, Luciana; Fang, Cheng

    2009-01-01

    show binds phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P), a phosphoinositide with an emerging role in membrane trafficking and signal transduction, rather than phosphatidylinositol 3,4,5-trisphosphate (PIP3/PtdIns-3,4,5-P) as previously suggested in the "membrane activation model" of gephyrin...... clustering. Consistent with this finding, expression of truncated collybistin proteins in cultured neurons interferes with synaptic localization of endogenous gephyrin and GABA(A) receptors. These results suggest that collybistin has a key role in membrane trafficking of gephyrin and selected GABA...

  6. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    Science.gov (United States)

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  7. myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development

    KAUST Repository

    Chen, Hao

    2010-06-01

    myo-Inositol-1-phosphate synthase is a conserved enzyme that catalyzes the first committed and rate-limiting step in inositol biosynthesis. Despite its wide occurrence in all eukaryotes, the role of myo-inositol-1-phosphate synthase and de novo inositol biosynthesis in cell signaling and organism development has been unclear. In this study, we isolated loss-of-function mutants in the Arabidopsis MIPS1 gene from different ecotypes. It was found that all mips1 mutants are defective in embryogenesis, cotyledon venation patterning, root growth, and root cap development. The mutant roots are also agravitropic and have reduced basipetal auxin transport. mips1 mutants have significantly reduced levels of major phosphatidylinositols and exhibit much slower rates of endocytosis. Treatment with brefeldin A induces slower PIN2 protein aggregation in mips1, indicating altered PIN2 trafficking. Our results demonstrate that MIPS1 is critical for maintaining phosphatidylinositol levels and affects pattern formation in plants likely through regulation of auxin distribution. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Protective effect of sauchinone against regional myocardial ischemia/reperfusion injury: inhibition of p38 MAPK and JNK death signaling pathways.

    Science.gov (United States)

    Kim, Seok Jai; Jeong, Cheol Won; Bae, Hong Beom; Kwak, Sang Hyun; Son, Jong-Keun; Seo, Chang-Seob; Lee, Hyun-Jung; Lee, JongUn; Yoo, Kyung Yeon

    2012-05-01

    Sauchinone has been known to have anti-inflammatory and antioxidant effects. We determined whether sauchinone is beneficial in regional myocardial ischemia/reperfusion (I/R) injury. Rats were subjected to 20 min occlusion of the left anterior descending coronary artery, followed by 2 hr reperfusion. Sauchinone (10 mg/kg) was administered intraperitoneally 30 min before the onset of ischemia. The infarct size was measured 2 hr after resuming the perfusion. The expression of cell death kinases (p38 and JNK) and reperfusion injury salvage kinases (phosphatidylinositol-3-OH kinases-Akt, extra-cellular signal-regulated kinases [ERK1/2])/glycogen synthase kinase (GSK)-3β was determined 5 min after resuming the perfusion. Sauchinone significantly reduced the infarct size (29.0% ± 5.3% in the sauchinone group vs 44.4% ± 6.1% in the control, P death signaling pathways.

  9. Participation of intracellular signal transduction in the radio-adaptive response induced by low-dose X-irradiation in human embryonic cells

    International Nuclear Information System (INIS)

    Ishii, Keiichiro; Hoshi, Yuko; Iwasaki, Toshiyasu; Watanabe, Masami.

    1996-01-01

    To elucidate the induction mechanism of radio-adaptive response in normal cells, we searched the literatures of the intracellular signal transduction. Furthermore, we examined the induction of radio-adaptive response with or without inhibitors of several kinds of protein kinase. The major results obtained were as follows; (1) According to the literature survey it is revealed that there are 4 intracellular signal transduction pathways which are possibly involved in the induction of radio-adaptive response: pathways depending on cAMP, calcium, cGMP, or protein-tyrosine kinase. (2) Addition of either inhibitor of protein-tyrosine kinase or protein kinase C to the cell culture medium during the low-dose X-irradiation inhibited the induction of radio-adaptive response. However, the addition of inhibitor of cAMP-dependent protein kinase, cGMP-dependent protein kinase, or Ca 2+ -calmodulin kinase II failed to inhibit the induction of radio-adaptive response. (3) These results suggest that the signal induced in cells by low-dose X-irradiation was transduced from protein-tyrosine kinase to protein kinase C via either pathway of phosphatidylinositol 3-kinase or splitting of profilin binding phosphatidylinositol 4,5-bisphosphate. (author)

  10. Phospholipase C-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate underlies agmatine-induced suppression of N-type Ca2+ channel in rat celiac ganglion neurons.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2017-03-04

    Agmatine suppresses peripheral sympathetic tone by modulating Cav2.2 channels in peripheral sympathetic neurons. However, the detailed cellular signaling mechanism underlying the agmatine-induced Cav2.2 inhibition remains unclear. Therefore, in the present study, we investigated the electrophysiological mechanism for the agmatine-induced inhibition of Cav2.2 current (I Cav2.2 ) in rat celiac ganglion (CG) neurons. Consistent with previous reports, agmatine inhibited I Cav2.2 in a VI manner. The agmatine-induced inhibition of the I Cav2.2 current was also almost completely hindered by the blockade of the imidazoline I 2 receptor (IR 2 ), and an IR 2 agonist mimicked the inhibitory effect of agmatine on I Cav2.2 , implying involvement of IR 2 . The agmatine-induced I Cav2.2 inhibition was significantly hampered by the blockade of G protein or phospholipase C (PLC), but not by the pretreatment with pertussis toxin. In addition, diC8-phosphatidylinositol 4,5-bisphosphate (PIP 2 ) dialysis nearly completely hampered agmatine-induced inhibition, which became irreversible when PIP 2 resynthesis was blocked. These results suggest that in rat peripheral sympathetic neurons, agmatine-induced IR 2 activation suppresses Cav2.2 channel voltage-independently, and that the PLC-dependent PIP 2 hydrolysis is responsible for the agmatine-induced suppression of the Cav2.2 channel. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Lipid composition of cAMP-dependent protein kinase mutants of Aspergillus niger.

    Science.gov (United States)

    Jernejc, Katarina; Bencina, Mojca

    2003-08-29

    Lipid composition of cAMP-dependent protein kinase (PKA) Aspergillus niger mutants with overexpressed or deleted genes for either regulatory and/or the catalytic subunit of PKA was analyzed. Disruption of the gene encoding the PKA regulatory subunit resulted in 20% less total lipids, 30% less neutral lipids, four times more glycolipids and two-fold higher triacylglycerol lipase activity compared to the control strain. Concomitantly a five-fold decrease in phosphatidylcholine, accompanied with 1.5-, 1.8- and 2.8-fold increases in phosphatidylethanolamine, lysophosphatidylethanolamine and phosphatidylinositol, was determined, respectively. The lack of PKA activity, due to the disruption of a gene encoding the PKA catalytic subunit, resulted in a 1.6-times increase in total lipids with two times more neutral lipids associated with lower triacylglycerol lipase activity and a decrease in phospholipids. The mutants with unrestricted PKA activity synthesized twice as much citric acid as the control strain and three times more than strains lacking PKA activity. The results indicate the involvement of cAMP-mediated PKA activity in regulation of lipid biosynthesis as well as citric acid synthesis.

  12. Ins(1,4,5)P{sub 3} facilitates ATP accumulation via phosphocreatine/creatine kinase in the endoplasmic reticulum extracted from MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing [Medical Research Center, School of Medicine, Fukuoka University, Fukuoka 814-0180 (Japan); Department of Dental Implantology, School of Stomatology, Tongji University, Shanghai 200072 (China); Ogata, Shigenori [Joint Laboratory for Frontier Medical Science, School of Medicine, Fukuoka University, Fukuoka 814-0180 (Japan); Segawa, Masaru [Central Laboratory for Pathology and Morphology, School of Medicine, Fukuoka University, Fukuoka 814-0180 (Japan); Usune, Sadaharu [Research Laboratory of Biodynamics, School of Medicine, Fukuoka University, Fukuoka 814-0180 (Japan); Zhao, Yumei [Department of Pediatric Dentistry, School of Dentistry of Shanghai Tongji University, Shanghai 200072 (China); Katsuragi, Takeshi, E-mail: katsurag@fukuoka-u.ac.jp [Medical Research Center, School of Medicine, Fukuoka University, Fukuoka 814-0180 (Japan)

    2010-07-02

    So far, the content and accumulation of ATP in isolated endoplasmic reticulum (ER) are little understood. First, we confirmed using electron microscopic and Western blotting techniques that the samples extracted from MDCK cells are endoplasmic reticulum (ER). The amounts of ATP in the extracted ER were measured from the filtrate after a spinning down of ultrafiltration spin column packed with ER. When the ER sample (5 {mu}g) after 3 days freezing was suspended in intracellular medium (ICM), 0.1% Triton X and ultrapure water (UPW), ATP amounts from the ER with UPW were the highest and over 10 times compared with that from the control with ICM, indicating that UPW is the most effective tool in destroying the ER membrane. After a 10-min-incubation with ICM containing phosphocreatine (PCr)/creatine kinase (CK) of the fresh ER. ATP amounts in the filtrate obtained by spinning down were not changed from that in the control (no PCr/CK). However, ATP amounts in the filtrate from the second spinning down of the ER (treated with PCr/CK) suspended in UPW became over 10-fold compared with the control. When 1 {mu}M inositol(1,4,5)trisphosphate (Ins(1,4,5)P{sub 3}) was added in the incubation medium (ICM with PCr/CK), ATP amounts from the filtrate after the second spinning down were further enhanced around three times. This enhancement was almost canceled by Ca{sup 2+}-removal from ICM and by adding thapsigargin, a Ca{sup 2+}-ATPase inhibitor, but not by 2-APB and heparin, Ins(1,4,5)P{sub 3} receptor antagonists. Administration of 500 {mu}M adenosine to the incubation medium (with PCr/CK) failed to enhance the accumulation of ATP in the ER. These findings suggest that the ER originally contains ATP and ATP accumulation in the ER is promoted by PCr/CK and Ins(1,4,5)P{sub 3}.

  13. mGluR5 stimulating Homer–PIKE formation initiates icariin induced cardiomyogenesis of mouse embryonic stem cells by activating reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Limin; Huang, Yujie; Zhang, Yingying [Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, No. 866, Yu Hang Tang Road, Hangzhou 310058 (China); Zhao, Qingwei [The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing Chun Road, Hangzhou 310003 (China); Zheng, Bei; Lou, Yijia [Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, No. 866, Yu Hang Tang Road, Hangzhou 310058 (China); Zhu, Danyan, E-mail: zdyzxb@zju.edu.cn [Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, No. 866, Yu Hang Tang Road, Hangzhou 310058 (China)

    2013-06-10

    Icariin (ICA) has been reported to facilitate cardiac differentiation of mouse embryonic stem (ES) cells; however, the mechanism by which ICA induced cardiomyogenesis has not been fully elucidated yet. Here, an underlying signaling network including metabotropic glutamate receptor 5 (mGluR5), Homer, phosphatidylinositol 3-Kinase Enhancer (PIKE), phosphatidylinositol 3-Kinase (PI3K), reactive oxygen species (ROS) and nuclear factor-kappaB (NF-κB) was investigated in ICA induced cardiomyogenesis. Our results showed that the co-expression of mGluR5 together with α-actinin or Troponin T in embryoid bodies (EBs) treated with ICA was elevated to 10.86% and 9.62%, compared with the case in the control (4.04% and 3.45%, respectively). Exposure of EBs to ICA for 2 h remarkably increased the dimeric form of mGluR5, which was inhibited by small interfering RNA targeting mGluR5 (si-mGluR5). Moreover, the extracellular glutamate concentration in ICA treatment medium was elevated to 28.9±3.5 μM. Furthermore, the activation of mGluR5 by ICA triggered the formation of Homer–PIKE complex and activated PI3K, stimulating ROS generation and NF-κB nuclear translocation. Knockdown of mGluR5 or inhibition of PI3K by LY294002 blocked ICA induced cardiomyogenesis via repressing mGluR5 pathway, reducing ROS and NF-κB activation. These results revealed that the inducible mechanisms of ICA were related to activate mGluR5 pathway. -- Highlights: • ICA increased mGluR5 expression in cardiac differentiation of ES cells. • ICA enhanced the glutamate level and the receptor mGluR5 dimerization, stimulating the formation of Homer–PIKE complex. • Knockdown of mGluR5 or inhibition of PI3K by LY294002 inhibited ICA induced ROS generation and NF-κB nuclear translocation.

  14. Activated type I TGFbeta receptor (Alk5) kinase confers enhancedsurvival to mammary epithelial cells and accelerates mammary tumorprogression

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka-Cook, Rebecca S.; Shin, Incheol; Yi, Jae Youn; Easterly,Evangeline; Barcellos-Hoff, Mary Helen; Yingling, Jonathan M.; Zent, Roy; Arteaga, Carlos L.

    2005-01-02

    The transforming growth factor-betas (TGF{beta}s) are members of a large superfamily of pleiotropic cytokines that also includes the activins and the bone morphogenetic proteins (BMPs). Members of the TGF{beta} family regulate complex physiological processes such cell proliferation, differentiation, adhesion, cell-cell and cell-matrix interactions, motility, and cell death, among others (Massague, 1998). Dysregulation of TGF{beta} signaling contributes to several pathological processes including cancer, fibrosis, and auto-immune disorders (Massague et al., 2000). The TGF{beta}s elicit their biological effects by binding to type II and type I transmembrane receptor serine-threonine kinases (T{beta}RII and T{beta}RI) which, in turn, phosphorylated Smad 2 and Smad 3. Phosphorylated Smad 2/3 associate with Smad 4 and, as a heteromeric complex, translocate to the nucleus where they regulate gene transcription. The inhibitory Smad7 down regulates TGF{beta} signaling by binding to activated T{beta}RI and interfering with its ability to phosphorylate Smad 2/3 (Derynck and Zhang, 2003; Shi and Massague, 2003). Signaling is also regulated by Smad proteolysis. TGF{beta} receptor-mediated activation results in multi-ubiquitination of Smad 2 in the nucleus and subsequent degradation of Smad 2 by the proteasome (Lo and Massague, 1999). Activation of TGF{beta} receptors also induces mobilization of a Smad 7-Smurf complex from the nucleus to the cytoplasm; this complex recognizes the activated receptors and mediates their ubiquitination and internalization via caveolin-rich vesicles, leading to termination of TGF{beta} signaling (Di Guglielmo et al., 2003). Other signal transducers/pathways have been implicated in TGF{beta} actions. These include the extracellular signal-regulated kinase (Erk), c-Jun N-terminal kinase (Jnk), p38 mitogen-activated protein kinase (MAPK), protein phosphatase PP2A, phosphatidylinositol-3 kinase (PI3K), and the family of Rho GTPases [reviewed in

  15. Phosphate Starvation Inducible Metabolism in Lycopersicon esculentum1

    Science.gov (United States)

    Goldstein, Alan H.; Baertlein, Dawn A.; McDaniel, Robert G.

    1988-01-01

    Both tomato (Lycopersicon esculentum cv VF 36) plants and suspension cultured cells show phosphate starvation inducible (psi) excretion of acid phosphatase (Apase). Apase excretion in vitro was proportional to the level of exogenous orthophosphate (Pi). Intracellular Apase activity remained the same in both Pi-starved and sufficient cells, while Apase excreted by the starved cells increased by as much as six times over unstressed control cells on a dry weight basis. At peak induction, 50% of total Apase was excreted. Ten day old tomato seedlings grown without Pi showed slight growth reduction versus unstressed control plants. The Pi-depleted roots showed psi enhancement of Apase activity. Severely starved seedlings (17 days) reached only one-third of the biomass of unstressed control plants but, because of a combination of psi Apase excretion by roots and a shift in biomass to this organ, they excreted 5.5 times the Apase activity of the unstressed control. Observed psi Apase excretion may be part of a phosphate starvation rescue system in plants. The utility of the visible indicator dye 5-bromo-4-chloro-3-indolyl-phosphate-p-toluidine as a phenotypic marker for plant Apase excretion is demonstrated. Images Fig. 5 PMID:16666212

  16. Enhancement of Human Endothelial Cell Adhesion to Type I Collagen by Lysophosphatidic Acid (LPA and Sphingosine-1-Phosphate (S1P

    Directory of Open Access Journals (Sweden)

    Hsinyu Lee

    2004-06-01

    Full Text Available The diverse cellular effects of lysophosphatidic acid (LPA and sphingosine-1-phosphate (S1P are transduced by two structurally homologous subfamilies of G protein-coupled receptors, which are encoded by endothelial differentiation genes (Edg Rs. Human umbilical cord vein endothelial cells (HUVECs express Edg Rs for LPA (Edg2 and S1P (Edg1 and 3, which transduce signals for migration of HUVECs through micropore filters coated with type I collagen. Since activation of integrins is essential for optimal migration of endothelial cells, we now examine the capacity of LPA and S1P to augment integrin mediation of endothelial cell binding to type I collagen. Lysophospholipid enhancement of HUVEC adhesion to type I collagen is detectable within 20 minutes. Enhancement of adhesion by both LPA and S1P is significant at 50 nM and optimal at 5µM. Pertussis toxin (PTx, a specific inhibitor of Gi, and C3 exotoxin, a specific inhibitor of Rho, both suppress LPA and S1P enhancement of HUVEC adhesion. In contrast, PD98059, which blocks MAP kinase kinase (MEK, and wortmannin, which inhibits phosphatidylinositol 3-kinase (PI3K, had no effect on LPA- or S1P-enhancement of HUVEC adhesion. Neutralizing monoclonal antibodies specific for α2 and β1 integrin chains, concomitantly decrease LPA and S1P enhancement of HUVEC adhesion to type I collagen. LPA and S1P thus promote type I collagen-dependent adhesion and migration of HUVECs by recruiting α2 and β1 integrin through both Gi and Rho pathways. Integrin α2/β1 therefore appears to be critical on the effects of LPA and S1P on endothelial cell physiology.

  17. Overexpression, crystallization and preliminary X-ray analysis of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase from Bifidobacterium breve

    International Nuclear Information System (INIS)

    Suzuki, Ryuichiro; Kim, Byung-Jun; Shibata, Tsuyoshi; Iwamoto, Yuki; Katayama, Takane; Ashida, Hisashi; Wakagi, Takayoshi; Shoun, Hirofumi; Fushinobu, Shinya; Yamamoto, Kenji

    2010-01-01

    Xylulose-5-phosphate/fructose-6-phosphate phosphoketolase from B. breve was overexpressed and crystallized. The crystals belonged to the tetragonal space group I422 and diffracted to beyond 1.7 Å resolution. The xylulose-5-phosphate/fructose-6-phosphate phosphoketolase gene from Bifidobacterium breve was cloned and overexpressed in Escherichia coli. The enzyme was purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method. Crystals were obtained at 293 K using 0.05 mM thiamine diphosphate, 0.25 mM MgCl 2 , 24%(w/v) PEG 6000 and 0.1 M Bicine pH 9.0. The crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 174.8, c = 163.8 Å, and diffracted to beyond 1.7 Å resolution

  18. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2006-02-01

    Erythronate-4-phosphate dehydrogenase from P. aeruginosa was crystallized and X-ray diffraction data were collected to 2.20 Å resolution. The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-α-ketobutyrate. It belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B{sub 6} (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 Å from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 Å. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (V{sub M}) of 3.64 Å{sup 3} Da{sup −1} and a solvent content of 66%.

  19. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-01-01

    Erythronate-4-phosphate dehydrogenase from P. aeruginosa was crystallized and X-ray diffraction data were collected to 2.20 Å resolution. The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-α-ketobutyrate. It belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B 6 (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 Å from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 Å. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (V M ) of 3.64 Å 3 Da −1 and a solvent content of 66%

  20. n-3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation.

    Science.gov (United States)

    Hou, Tim Y; Monk, Jennifer M; Fan, Yang-Yi; Barhoumi, Rola; Chen, Yong Q; Rivera, Gonzalo M; McMurray, David N; Chapkin, Robert S

    2012-04-01

    n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.

  1. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-02-01

    The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-alpha-ketobutyrate. It belongs to the D-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 A from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 A. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (VM) of 3.64 A3 Da(-1) and a solvent content of 66%.

  2. Thermodynamics of the hydrolysis reactions of α-D-galactose 1-phosphate, sn-glycerol 3-phosphate, 4-nitrophenyl phosphate, phosphocreatine, and 3-phospho-D-glycerate

    International Nuclear Information System (INIS)

    Goldberg, Robert N.; Lang, Brian E.; Lo, Catherine; Ross, David J.; Tewari, Yadu B.

    2009-01-01

    Microcalorimetry, high-performance liquid chromatography (h.p.l.c.), and an enzymatic assay have been used to conduct a thermodynamic investigation of five phosphate hydrolysis reactions: {α-D-galactose 1-phosphate(aq) + H 2 O(l) = D-galactose(aq) + orthophosphate(aq)} (1), {sn-glycerol 3-phosphate(aq) + H 2 O(l) = glycerol(aq) + orthophosphate(aq)} (2), {4-nitrophenyl phosphate(aq) + H 2 O(l) = 4-nitrophenol(aq) + orthophosphate(aq)} (3), {phosphocreatine(aq) + H 2 O(l) = creatine(aq) + orthophosphate(aq)} (4), and {3-phospho-D-glycerate(aq) + H 2 O(l) = D-glycerate(aq) + orthophosphate(aq)} (5). Calorimetrically determined enthalpies of reaction Δ r H(cal) were measured for reactions (1)-(5) and the apparent equilibrium constant K' was measured for reaction (2). The pKs and standard enthalpies of reaction Δ r H 0 for the H + and Mg 2+ binding reactions of the reactants and products in the aforementioned reactions were obtained either from the literature or by estimation. A chemical equilibrium model was then used to calculate standard equilibrium constants K and standard enthalpies of reaction Δ r H 0 for chemical reference reactions that correspond to the overall biochemical reactions that were studied experimentally. Property values from the literature and thermodynamic network calculations were used to obtain values of the equilibrium constants for the chemical reference reactions that correspond to the overall biochemical reactions (1). These values were compared with other results from the literature and also correlated with structural features. The results obtained in this study can be used in the chemical equilibrium model to calculate values of K', the standard apparent Gibbs free energy changes Δ r G '0 , the standard apparent enthalpy changes Δ r H '0 , changes in binding of the proton Δ r N(H + ), and the position of equilibrium for the overall biochemical reactions considered in this study over a reasonably wide range of temperature, pH, p

  3. A unified nomenclature and amino acid numbering for human PTEN

    NARCIS (Netherlands)

    Pulido, Rafael; Baker, Suzanne J; Barata, Joao T; Carracedo, Arkaitz; Cid, Victor J; Chin-Sang, Ian D; Davé, Vrushank; den Hertog, Jeroen; Devreotes, Peter; Eickholt, Britta J; Eng, Charis; Furnari, Frank B; Georgescu, Maria-Magdalena; Gericke, Arne; Hopkins, Benjamin; Jiang, Xeujun; Lee, Seung-Rock; Lösche, Mathias; Malaney, Prerna; Matias-Guiu, Xavier; Molina, María; Pandolfi, Pier Paolo; Parsons, Ramon; Pinton, Paolo; Rivas, Carmen; Rocha, Rafael M; Rodríguez, Manuel S; Ross, Alonzo H; Serrano, Manuel; Stambolic, Vuk; Stiles, Bangyan; Suzuki, Akira; Tan, Seong-Seng; Tonks, Nicholas K; Trotman, Lloyd C; Wolff, Nicolas; Woscholski, Rudiger; Wu, Hong; Leslie, Nicholas R

    2014-01-01

    The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line

  4. Availability of rock phosphate with low P content in some Albanian soil: use of 32PO4

    International Nuclear Information System (INIS)

    Fardeau, J.C.; Migadel, F.; Gjermani, A.; Malja, S.

    1983-10-01

    The availability of a calcareous low P content rock phosphate (4,3% P) was measured. This Albanian ore was used, in pot experiments, on various local soils whose the pH is situated between 4,9 to 7,5. This phosphate was labelled with 32 P and 45 Ca in a reactor. The residual effect of this fertilizer was deduced from the results of isotopic dilution kinetic of phosphate ions realized in soil-solution systemes. The main results can be summarized as follow: 1. When the soil-water pH was higher than 6,1, the utilization coefficient of phosphorus was minus than 1%, even with 5,5 mounths. 2. The ratio of P and Ca derived from fertilizer and taken up by the crop is most generally different of those measured in the fertilizer. It depends of the soil constitution. 3. The analysis of isotopic dilution kinetic of phosphate ions shows that in the major part of these soils, whose the fixing capacity is very high, the rock phosphate and also superphosphate at 230 kg P 2 O 5 .ha -1 rate does not increase available soil phosphorus; it is only with rates over 800 kg P 2 O 5 .ha -1 that this objective can be reached. These results explain again that the fixing capacity of soil for phosphorus is a characteristic more useful for fertilization technique than the available phosphorus quantity [fr

  5. Altered expression of sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 in mouse hippocampus after kainic acid treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hoon; Jeon, Byeong Tak; Jeong, Eun Ae [Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Biomedical Center (BK21), Gyeongsang National University School of Medicine, Jinju, Gyeongnam 660-751 (Korea, Republic of); Kim, Joon Soo; Cho, Yong Woon [Department of Neurosurgery, Masan Samsung Hospital, Sungkyunkwan University School of Medicine, Masan, Gyeongnam 630-723 (Korea, Republic of); Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung [Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Biomedical Center (BK21), Gyeongsang National University School of Medicine, Jinju, Gyeongnam 660-751 (Korea, Republic of); Roh, Gu Seob, E-mail: anaroh@gnu.ac.kr [Department of Anatomy and Neurobiology, Institute of Health Sciences, Medical Research Center for Neural Dysfunction, Biomedical Center (BK21), Gyeongsang National University School of Medicine, Jinju, Gyeongnam 660-751 (Korea, Republic of)

    2010-03-12

    Kainic acid (KA) induces hippocampal cell death and astrocyte proliferation. There are reports that sphingosine kinase (SPHK)1 and sphingosine-1- phosphate (S1P) receptor 1 (S1P{sub 1}) signaling axis controls astrocyte proliferation. Here we examined the temporal changes of SPHK1/S1P{sub 1} in mouse hippocampus during KA-induced hippocampal cell death. Mice were killed at 2, 6, 24, or 48 h after KA (30 mg/kg) injection. There was an increase in Fluoro-Jade B-positive cells in the hippocampus of KA-treated mice with temporal changes of glial fibrillary acidic protein (GFAP) expression. The lowest level of SPHK1 protein expression was found 2 h after KA treatment. Six hours after KA treatment, the expression of SPHK1 and S1P{sub 1} proteins steadily increased in the hippocampus. In immunohistochemical analysis, SPHK1 and S1P{sub 1} are more immunoreactive in astrocytes within the hippocampus of KA-treated mice than in hippocampus of control mice. These results indicate that SPHK1/S1P{sub 1} signaling axis may play an important role in astrocytes proliferation during KA-induced excitotoxicity.

  6. Altered expression of sphingosine kinase 1 and sphingosine-1-phosphate receptor 1 in mouse hippocampus after kainic acid treatment

    International Nuclear Information System (INIS)

    Lee, Dong Hoon; Jeon, Byeong Tak; Jeong, Eun Ae; Kim, Joon Soo; Cho, Yong Woon; Kim, Hyun Joon; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung; Roh, Gu Seob

    2010-01-01

    Kainic acid (KA) induces hippocampal cell death and astrocyte proliferation. There are reports that sphingosine kinase (SPHK)1 and sphingosine-1- phosphate (S1P) receptor 1 (S1P 1 ) signaling axis controls astrocyte proliferation. Here we examined the temporal changes of SPHK1/S1P 1 in mouse hippocampus during KA-induced hippocampal cell death. Mice were killed at 2, 6, 24, or 48 h after KA (30 mg/kg) injection. There was an increase in Fluoro-Jade B-positive cells in the hippocampus of KA-treated mice with temporal changes of glial fibrillary acidic protein (GFAP) expression. The lowest level of SPHK1 protein expression was found 2 h after KA treatment. Six hours after KA treatment, the expression of SPHK1 and S1P 1 proteins steadily increased in the hippocampus. In immunohistochemical analysis, SPHK1 and S1P 1 are more immunoreactive in astrocytes within the hippocampus of KA-treated mice than in hippocampus of control mice. These results indicate that SPHK1/S1P 1 signaling axis may play an important role in astrocytes proliferation during KA-induced excitotoxicity.

  7. Genetic Evidence for the Physiological Significance of the d-Tagatose 6-Phosphate Pathway of Lactose and d-Galactose Degradation in Staphylococcus aureus1

    Science.gov (United States)

    Bissett, Donald L.; Anderson, Richard L.

    1974-01-01

    Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain. PMID:4277494

  8. Uranium abundance in some sudanese phosphate ores

    International Nuclear Information System (INIS)

    Adam, A.A.; Eltayeb, M.A.H.

    2009-01-01

    This work was carried out mainly to analysis of some Sudanese phosphate ores, for their uranium abundance and total phosphorus content measured as P 2 O 5 %. For this purpose, 30 samples of two types of phosphate ore from Eastern Nuba Mountains, in Sudan namely, Kurun and Uro areas were examined. In addition, the relationship between uranium and major, and trace elements were obtained, also, the natural radioactivity of the phosphate samples was measured, in order to characterize and differentiate between the two types of phosphate ores. The uranium abundance in Uro phosphate with 20.3% P 2 O 5 is five time higher than in Kurun phosphate with 26.7% P 2 O 5 . The average of uranium content was found to be 56.6 and 310 mg/kg for Kurun and Uro phosphate ore, respectively. The main elements in Kurun and Uro phosphate ore are silicon, aluminum, and phosphorus, while the most abundant trace elements in these two ores are titanium, strontium and barium. Pearson correlation coefficient revealed that uranium in Kurun phosphate shows strong positive correlation with P 2 O 5 , and its distribution is essentially controlled by the variations of P2O5 concentration, whereas uranium in Uro phosphate shows strong positive correlation with strontium, and its distribution is controlled by the variations of Sr concentration. Uranium behaves in different ways in Kurun phosphate and in Uro phosphate. Uro phosphate shows higher concentrations of all the estimated radionuclides than Kurun phosphate. According to the obtained results, it can be concluded that Uro phosphate is consider as secondary uranium source, and is more suitable for uranium recovery, because it has high uranium abundance and low P 2 O 5 %, than Kurun phosphate. (authors) [es

  9. Inhibition of Anaerobic Phosphate Release by Nitric Oxide in Activated Sludge

    Science.gov (United States)

    Van Niel, E. W. J.; Appeldoorn, K. J.; Zehnder, A. J. B.; Kortstee, G. J. J.

    1998-01-01

    Activated sludge not containing significant numbers of denitrifying, polyphosphate [poly(P)]-accumulating bacteria was grown in a fill-and-draw system and exposed to alternating anaerobic and aerobic periods. During the aerobic period, poly(P) accumulated up to 100 mg of P · g of (dry) weight. When portions of the sludge were incubated anaerobically in the presence of acetate, 80 to 90% of the intracellular poly(P) was degraded and released as orthophosphate. Degradation of poly(P) was mainly catalyzed by the concerted action of polyphosphate:AMP phosphotransferase and adenylate kinase, resulting in ATP formation. In the presence of 0.3 mM nitric oxide (NO) in the liquid-phase release of phosphate, uptake of acetate, formation of poly-β-hydroxybutyrate, utilization of glycogen, and formation of ATP were severely inhibited or completely abolished. In cell extracts of the sludge, adenylate kinase activity was completely inhibited by 0.15 mM NO. The nature of this inhibition was probably noncompetitive, similar to that with hog adenylate kinase. Activated sludge polyphosphate glucokinase was also completely inhibited by 0.15 mM NO. It is concluded that the inhibitory effect of NO on acetate-mediated phosphate release by the sludge used in this study is due to the inhibition of adenylate kinase in the phosphate-releasing organisms. The inhibitory effect of nitrate and nitrite on phosphate release is probably due to their conversion to NO. The lack of any inhibitory effect of NO on adenylate kinase of the poly(P)-accumulating Acinetobacter johnsonii 210A suggests that this type of organism is not involved in the enhanced biological phosphate removal by the sludges used. PMID:9687452

  10. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Demirkiran, Hande [Graduate Student, Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States); Hu Yongfeng; Zuin, Lucia [Beamline Scientist, Canadian Light Source, Saskatoon, SK (Canada); Appathurai, Narayana [Beamline Scientist, Synchrotron Radiation Center, Madison, WI (United States); Aswath, Pranesh B., E-mail: aswath@uta.edu [Materials Science and Engineering Department, University of Texas at Arlington, Arlington, TX (United States)

    2011-03-12

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts (< 5 wt.%) of Bioglass (registered) 45S5 was added it behaved as a sintering aid and also enhanced the decomposition of hydroxyapatite to {beta}-tricalcium phosphate. However when 10 wt.% and 25 wt.% Bioglass (registered) 45S5 was used it resulted in the formation of Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4} and Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L{sub 2,3}-edge and calcium (Ca) K-edge XANES. Si L{sub 2,3}-edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L{sub 2,3}-edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and {beta}-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na{sub 3}Ca{sub 6}(PO{sub 4}){sub 5} in a silicate matrix indicating that it is more soluble compared to the other compositions.

  11. Synthesis and characterization of the novel rare earth orthophosphates Y0.5Er0.5PO4 and Y0.5Yb0.5PO4

    International Nuclear Information System (INIS)

    Schildhammer, Daniel; Petschnig, Lucas L.; Fuhrmann, Gerda; Heymann, Gunter; Schottenberger, Herwig; Huppertz, Hubert; Tribus, Martina

    2016-01-01

    The new mixed rare earth (RE) orthophosphates Y 0.5 Er 0.5 PO 4 and Y 0.5 Yb 0.5 PO 4 were synthesized by a classical solid state reaction in an electrical furnace at 1200 C. As starting materials, the corresponding rare earth oxides and diammonium hydrogen phosphate were used. The powder diffraction analyses revealed that the new compounds Y 0.5 Er 0.5 PO 4 and Y 0.5 Yb 0.5 PO 4 crystallize in a zircon-type structure being isostructural with the rare earth orthophosphate YPO 4 . Y 0.5 Er 0.5 PO 4 and Y 0.5 Yb 0.5 PO 4 crystallize in the tetragonal space group I4 1 /amd (no. 141) with four formula units in the unit cell. The structural parameters based on Rietveld refinements are a = 687.27(2), c = 601.50(2) pm, V = 0.28412(1) nm 3 , R p = 0.0143, and R wp = 0.0186 (all data) for Y 0.5 Er 0.5 PO 4 and a = 684.61(2), c = 599.31(2) pm, V = 0.28089(2) nm 3 , R p = 0.0242, and R wp = 0.0313 (all data) for Y 0.5 Yb 0.5 PO 4 . Furthermore, the structure of Y 0.5 Er 0.5 PO 4 was refined from single-crystal X-ray diffraction data: a = 687.78(5), c = 601.85(4) pm, V = 0.28470(5) nm 3 , R 1 = 0.0165, and wR 2 = 0.0385 (all data). In both compounds, the rare earth metal ions are eightfold coordinated by oxygen atoms, forming two unique interlocking tetrahedra with two individual RE-O distances. The tetrahedral phosphate groups [PO 4 ] 3- are slightly distorted in both compounds. The individual rare earth ions share a common position (Wyckoff site 4a). The presence of two rare earth ions in the structures of the new orthophosphates Y 0.5 Er 0.5 PO 4 and Y 0.5 Yb 0.5 PO 4 was additionally confirmed by single-crystal EDX spectroscopy revealing a ratio of 1:1.

  12. LuxS-independent formation of AI-2 from ribulose-5-phosphate

    Directory of Open Access Journals (Sweden)

    Hardie Kim R

    2008-06-01

    Full Text Available Abstract Background In many bacteria, the signal molecule AI-2 is generated from its precursor S-ribosyl-L-homocysteine in a reaction catalysed by the enzyme LuxS. However, generation of AI-2-like activity has also been reported for organisms lacking the luxS gene and the existence of alternative pathways for AI-2 formation in Escherichia coli has recently been predicted by stochastic modelling. Here, we investigate the possibility that spontaneous conversion of ribulose-5-phosphate could be responsible for AI-2 generation in the absence of luxS. Results Buffered solutions of ribulose-5-phosphate, but not ribose-5-phosphate, were found to contain high levels of AI-2 activity following incubation at concentrations similar to those reported in vivo. To test whether this process contributes to AI-2 formation by bacterial cells in vivo, an improved Vibrio harveyi bioassay was used. In agreement with previous studies, culture supernatants of E. coli and Staphylococcus aureus luxS mutants were found not to contain detectable levels of AI-2 activity. However, low activities were detected in an E. coli pgi-eda-edd-luxS mutant, a strain which degrades glucose entirely via the oxidative pentose phosphate pathway, with ribulose-5-phosphate as an obligatory intermediate. Conclusion Our results suggest that LuxS-independent formation of AI-2, via spontaneous conversion of ribulose-5-phosphate, may indeed occur in vivo. It does not contribute to AI-2 formation in wildtype E. coli and S. aureus under the conditions tested, but may be responsible for the AI-2-like activities reported for other organisms lacking the luxS gene.

  13. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism.

    Science.gov (United States)

    Yang, Po-Min; Huang, Yu-Ting; Zhang, Yu-Qi; Hsieh, Chia-Wen; Wung, Being-Sun

    2016-12-01

    The production of nitric oxide (NO) by endothelial NO synthase (eNOS) plays a major role in maintaining vascular homeostasis. This study elucidated the potential role of carbon monoxide (CO)-releasing molecules (CORMs) in NO production and explored the underlying mechanisms in endothelial cells. We observed that 25μM CORM-2 could increase NO production and stimulate an increase in the intracellular Ca 2+ level. Furthermore, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid caused CORM-2-induced NO production, which was abolished by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (BAPTA-AM), indicating that intracellular Ca 2+ release plays a major role in eNOS activation. The inhibition of the IP3 receptor diminished the CORM-2-induced intracellular Ca 2+ increase and NO production. Furthermore, CORM-2 induced eNOS Ser 1179 phosphorylation and eNOS dimerization, but it did not alter eNOS expression. CORM-2 (25μM) also prolonged Akt phosphorylation, lasting for at least 12h. Pretreatment with phosphatidylinositol 3-kinase inhibitors (wortmannin or LY294002) inhibited the increases in NO production and phosphorylation but did not affect eNOS dimerization. CORM-2-induced eNOS Ser 1179 phosphorylation was intracellularly calcium-dependent, because pretreatment with an intracellular Ca 2+ chelator (BAPTA-AM) inhibited this process. Although CORM-2 increases intracellular reactive oxygen species (ROS), pretreatment with antioxidant enzyme catalase and N-acetyl-cysteine did not abolish the CORM-2-induced eNOS activity or phosphorylation, signifying that ROS is not involved in this activity. Hence, CORM-2 enhances eNOS activation through intracellular calcium release, Akt phosphorylation, and eNOS dimerization. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    Science.gov (United States)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  15. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  16. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  17. DEVELOPMENT OF A METHOD FOR QUANTITATING SPHINGOID BASE 1-PHOSPHATES IN BLOOD SPOTS

    Science.gov (United States)

    Red blood cells (RBC) accumulate, store and release sphingoid base 1-phosphates,important ligands for the extracellular receptors S1P1-5. The ability of RBC to accumulate these bioactive lipids is because, with the exception of sphingosine kinase, the enzymes responsible for metabolizing sphingosine...

  18. p110α Hot Spot Mutations E545K and H1047R Exert Metabolic Reprogramming Independently of p110α Kinase Activity.

    Science.gov (United States)

    Chaudhari, Aditi; Krumlinde, Daniel; Lundqvist, Annika; Akyürek, Levent M; Bandaru, Sashidhar; Skålén, Kristina; Ståhlman, Marcus; Borén, Jan; Wettergren, Yvonne; Ejeskär, Katarina; Rotter Sopasakis, Victoria

    2015-10-01

    The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate

    Science.gov (United States)

    Wang, Qi; Vogan, Erik M; Nocka, Laura M; Rosen, Connor E; Zorn, Julie A; Harrison, Stephen C; Kuriyan, John

    2015-01-01

    Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk. DOI: http://dx.doi.org/10.7554/eLife.06074.001 PMID:25699547

  20. Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5

    OpenAIRE

    Zhang, Duanwu; Tomisato, Wataru; Su, Lijing; Sun, Lei; Choi, Jin Huk; Zhang, Zhao; Wang, Kuan-wen; Zhan, Xiaoming; Choi, Mihwa; Li, Xiaohong; Tang, Miao; Castro-Perez, Jose M.; Hildebrand, Sara; Murray, Anne R.; Moresco, Eva Marie Y.

    2017-01-01

    We discovered a previously unrecognized regulator of cholesterol biosynthesis, glycerol kinase 5 (GK5), which functions exclusively in the skin independently of cholesterol regulation in other tissues. GK5 negatively regulates the processing and nuclear localization of sterol regulatory element binding proteins, transcription factors that control expression of virtually all cholesterol synthesis enzymes. Excessive amounts of cholesterol, triglycerides, and ceramides were found in the skin of ...

  1. Structure and Function of the Hypertension Variant A486V of G Protein-coupled Receptor Kinase 4

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Samantha J.; Parthasarathy, Gopal; Darke, Paul L.; Diehl, Ronald E.; Ford, Rachael E.; Hall, Dawn L.; Johnson, Scott A.; Reid, John C.; Rickert, Keith W.; Shipman, Jennifer M.; Soisson, Stephen M.; Zuck, Paul; Munshi, Sanjeev K.; Lumb, Kevin J. (Merck)

    2015-07-01

    G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl β,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobe and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.

  2. Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.

    Science.gov (United States)

    Doo, Ah-Reum; Kim, Seung-Nam; Kim, Seung-Tae; Park, Ji-Yeun; Chung, Sung-Hyun; Choe, Bo-Young; Chae, Younbyoung; Lee, Hyejung; Yin, Chang-Shik; Park, Hi-Joon

    2012-01-06

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by progressive selective loss of dopaminergic neurons in the substantia nigra. Recently, bee venom was reported to protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mice PD model, however, the underlying mechanism is not fully understood. The objective of the present study is to investigate the neuroprotective mechanism of bee venom against Parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP(+)), in SH-SY5Y human neuroblastoma cells. Our results revealed that bee venom pretreatment (1-100 ng/ml) increased the cell viability and decreased apoptosis assessed by DNA fragmentation and caspase-3 activity assays in MPP(+)-induced cytotoxicity in SH-SY5Y cells. Bee venom increased the anti-apoptotic Bcl-2 expression and decreased the pro-apoptotic Bax, cleaved PARP expressions. In addition, bee venom prevented the MPP(+)-induced suppression of Akt phosphorylation, and the neuroprotective effect of bee venom against MPP(+)-induced cytotoxicity was inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. These results suggest that the anti-apoptotic effect of bee venom is mediated by the cell survival signaling, the PI3K/Akt pathway. These results provide new evidence for elucidating the mechanism of neuroprotection of bee venom against PD. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Dynamics of receptor-operated Ca2+ Currents Through TRPC Channels Controlled via the PI(4,5P2-PLC Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Masayuki X Mori

    2015-02-01

    Full Text Available Transient receptor potential canonical (TRPC channels are Ca2+-permeable, nonselective cation channels that carry receptor-operated Ca2+ currents (ROCs triggered by receptor-induced, phospholipase C (PLC-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5P2. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure. The variability of ROCs may be explained by their complex regulation by PI(4,5P2 and its metabolites, which differentially affect TRPC channel activity. To resolve the complex regulation of ROCs, the use of voltage-sensing phosphoinositide phosphatases and model simulation have helped to reveal the time-dependent contribution of PI(4,5P2 and the possible role of PI(4,5P2 in the regulation of ROCs. These approaches may provide unprecedented insight into the dynamics of PI(4,5P2 regulation of TRPC channels and the fundamental mechanisms underlying transmembrane ion flow. Within that context, we summarize the regulation of TRPC channels and their coupling to receptor-mediated signaling, as well as the application of voltage-sensing phosphoinositide phosphatases to this research. We also discuss the controversial bidirectional effects of PI(4,5P2 using a model simulation that could explain the complicated effects of PI(4,5P2 on different ROCs.

  4. Dynamics of receptor-operated Ca(2+) currents through TRPC channels controlled via the PI(4,5)P2-PLC signaling pathway.

    Science.gov (United States)

    Mori, Masayuki X; Itsuki, Kyohei; Hase, Hideharu; Sawamura, Seishiro; Kurokawa, Tatsuki; Mori, Yasuo; Inoue, Ryuji

    2015-01-01

    Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that carry receptor-operated Ca(2+) currents (ROCs) triggered by receptor-induced, phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction, and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure. The variability of ROCs may be explained by their complex regulation by PI(4,5)P2 and its metabolites, which differentially affect TRPC channel activity. To resolve the complex regulation of ROCs, the use of voltage-sensing phosphoinositide phosphatases and model simulation have helped to reveal the time-dependent contribution of PI(4,5)P2 and the possible role of PI(4,5)P2 in the regulation of ROCs. These approaches may provide unprecedented insight into the dynamics of PI(4,5)P2 regulation of TRPC channels and the fundamental mechanisms underlying transmembrane ion flow. Within that context, we summarize the regulation of TRPC channels and their coupling to receptor-mediated signaling, as well as the application of voltage-sensing phosphoinositide phosphatases to this research. We also discuss the controversial bidirectional effects of PI(4,5)P2 using a model simulation that could explain the complicated effects of PI(4,5)P2 on different ROCs.

  5. Complex phosphates in the Li(Na)3PO4-InPO4 systems

    International Nuclear Information System (INIS)

    Potapova, A.M.; Zimina, G.V.; Smirnova, I.N.; Novoselov, A.V.; Spiridonov, F.M.; Stefanovich, S.Yu.

    2008-01-01

    Subsolidus sections in the systems Li 3 PO 4 -InPO 4 (950 deg C) and Na 3 PO 4 -InPO 4 (800, 900, and 1000 deg C) have been studied by X-ray powder diffraction. The compound Li 3 In(PO 4 ) 2 has been synthesized, and the NASICON-type solid solution Li 3(1-x) In 2+x (PO 4 ) 3 (0.67 ≤ x ≤ 0.80) has been found to exist. In the system Na 3 PO 4 -InPO 4 , the solid solution Na 3(1-x) In x/3 PO 4 (0 ≤ x ≤ 0.2) and two complex phosphates exist: Na 3 In(PO 4 ) 2 and Na 3 In 2 (PO 4 ) 3 . These complex phosphates are dimorphic, with the irreversible-transition temperature equal to 675 and 820 deg C, respectively. Na 3 In(PO 4 ) 2 degrades at 920 deg C. Ionic conductivity has been measured in some phases in the system [ru

  6. PKI-179: an orally efficacious dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor.

    Science.gov (United States)

    Venkatesan, Aranapakam M; Chen, Zecheng; dos Santos, Osvaldo; Dehnhardt, Christoph; Santos, Efren Delos; Ayral-Kaloustian, Semiramis; Mallon, Robert; Hollander, Irwin; Feldberg, Larry; Lucas, Judy; Yu, Ker; Chaudhary, Inder; Mansour, Tarek S

    2010-10-01

    A series of mono-morpholino 1,3,5-triazine derivatives (8a-8q) bearing a 3-oxa-8-azabicyclo[3.2.1]octane were prepared and evaluated for PI3-kinase/mTOR activity. Replacement of one of the bis-morpholines in lead compound 1 (PKI-587) with 3-oxa-8-azabicyclo[3.2.1]octane and reduction of the molecular weight yielded 8m (PKI-179), an orally efficacious dual PI3-kinase/mTOR inhibitor. The in vitro activity, in vivo efficacy, and PK properties of 8m are discussed. Copyright © 2010. Published by Elsevier Ltd.

  7. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    Science.gov (United States)

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  8. Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4.

    Science.gov (United States)

    Klaus-Heisen, Dörte; Nurisso, Alessandra; Pietraszewska-Bogiel, Anna; Mbengue, Malick; Camut, Sylvie; Timmers, Ton; Pichereaux, Carole; Rossignol, Michel; Gadella, Theodorus W J; Imberty, Anne; Lefebvre, Benoit; Cullimore, Julie V

    2011-04-01

    Phylogenetic analysis has previously shown that plant receptor-like kinases (RLKs) are monophyletic with respect to the kinase domain and share an evolutionary origin with the animal interleukin-1 receptor-associated kinase/Pelle-soluble kinases. The lysin motif domain-containing receptor-like kinase-3 (LYK3) of the legume Medicago truncatula shows 33% amino acid sequence identity with human IRAK-4 over the kinase domain. Using the structure of this animal kinase as a template, homology modeling revealed that the plant RLK contains structural features particular to this group of kinases, including the tyrosine gatekeeper and the N-terminal extension α-helix B. Functional analysis revealed the importance of these conserved features for kinase activity and suggests that kinase activity is essential for the biological role of LYK3 in the establishment of the root nodule nitrogen-fixing symbiosis with rhizobia bacteria. The kinase domain of LYK3 has dual serine/threonine and tyrosine specificity, and mass spectrometry analysis identified seven serine, eight threonine, and one tyrosine residue as autophosphorylation sites in vitro. Three activation loop serine/threonine residues are required for biological activity, and molecular dynamics simulations suggest that Thr-475 is the prototypical phosphorylated residue that interacts with the conserved arginine in the catalytic loop, whereas Ser-471 and Thr-472 may be secondary sites. A threonine in the juxtamembrane region and two threonines in the C-terminal lobe of the kinase domain are important for biological but not kinase activity. We present evidence that the structure-function similarities that we have identified between LYK3 and IRAK-4 may be more widely applicable to plant RLKs in general.

  9. Crystal from and aggregate controls of hydroxyapatites and related phosphates; Suisan apataito oyobi kanren rinsan enrui no kessho oyobi kessho shugotai no keitai seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, N.; Wakana, Y.; Kaji, H. [Taihei Chemical Industrial Co. Ltd., Osaka (Japan)

    1995-09-01

    Potassium phosphates are compounds with the composition of Ca/P=0.5-2.0, and regarding potassium phosphates of apatitic structure, research has been made in the fields of biomaterial, base material for tooth paste, base material for cosmetics, etc. since 1980`s. In particular, hydroxyapatites (HAP) and tricalcium phosphates (TCP) are now sold as artificial bones, artificial tooth roots, etc.. In this article, the synthetic methods and morphological controls of HAP, TCP, tetracalcium phosphates (TTCP) and fluorine apatites (FAP), and the properties of products of 4 kinds of hydroxyapatites (HAP-100, HAP-200, HAP-300, and spherical HAP), 2 kinds of tricalcium phosphates ({beta}-TCP-100 and {alpha}-TCP), TTCP and FAP are introduced. The particle morphology of the above chemical compounds depend on the respective synthetic methods and stable production of calcium phosphates require technology as well as facilities of high degree. 26 refs., 17 figs., 2 tabs.

  10. Purification and properties of adenosine kinase from rat brain.

    Science.gov (United States)

    Yamada, Y; Goto, H; Ogasawara, N

    1980-12-04

    Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.

  11. PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation

    DEFF Research Database (Denmark)

    Plantard, Laure; Arjonen, Antti; Lock, John G

    2010-01-01

    Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] is a key regulator of cell signaling that acts by recruiting proteins to the cell membrane, such as at the leading edge during cell migration. Here, we show that PtdIns (3,4,5)P3 plays a central role in filopodia formation via the bindi...... endosomal vesicles. Given that the localization of Myo10 was dynamically restored to filopodia upon reinstatement of PtdIns(3,4,5)P3-binding, our results indicate that PtdIns(3,4,5)P3 binding to the Myo10-PH2 domain is involved in Myo10 trafficking and regulation of filopodia dynamics....

  12. n – 3 polyunsaturated fatty acids suppress phosphatidylinositol 4,5-bisphosphate-dependent actin remodelling during CD4+ T-cell activation

    Science.gov (United States)

    Hou, Tim Y.; Monk, Jennifer M.; Fan, Yang-Yi; Barhoumi, Rola; Chen, Yong Q.; Rivera, Gonzalo M.; McMURRAY, David N.; Chapkin, Robert S.

    2013-01-01

    n – 3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n – 3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n – 3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott–Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n – 3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells. PMID:22250985

  13. Nucleolin (C23), a physiological substrate for casein kinase II

    DEFF Research Database (Denmark)

    Schneider, H R; Issinger, O G

    1988-01-01

    Nucleolin (C23), a 110 kDa phosphoprotein, which is mainly found in the nucleolus has been shown to be a physiological substrate for casein kinase II (CKII). Nucleolin was identified and characterized by immunodetection using an anti-nucleolin antibody. Phosphopeptide patterns from nucleolin...... phosphorylated by purified casein kinase II and of phosphorylated nucleolin which had been isolated from tumor cells grown in the presence of [32P]-o-phosphate, were identical. The partial tryptic digest revealed nine phosphopeptides. Nucleolin isolated from Krebs II mouse ascites cells was phosphorylated...... by purified casein kinase II with about two moles phosphate per one mole of nucleolin....

  14. Sodium butyrate-mediated differentiation of colorectal cancer cells: regulation of PKC-betaII by PI3-kinase

    Czech Academy of Sciences Publication Activity Database

    Turečková, Jolana; Vojtěchová, Martina; Kučerová, Dana; Velek, Jiří; Tuháčková, Zdena

    2005-01-01

    Roč. 15, č. 2 (2005), s. 329-335 ISSN 1107-3756 R&D Projects: GA ČR(CZ) GP301/02/D159; GA AV ČR(CZ) KSK5020115 Keywords : phosphatidylinositol 3-kinase * PKCbetaII * adenocarcinoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.090, year: 2005

  15. Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells.

    Science.gov (United States)

    Tomioku, Kan-Na; Shigekuni, Mikiko; Hayashi, Hiroki; Yoshida, Akane; Futagami, Taiki; Tamaki, Hisanori; Tanabe, Kenji; Fujita, Akikazu

    2018-05-01

    In budding yeast Saccharomyces cerevisiae, PtdIns(4)P serves as an essential signalling molecule in the Golgi complex, endosomal system, and plasma membrane, where it is involved in the control of multiple cellular functions via direct interactions with PtdIns(4)P-binding proteins. To analyse the distribution of PtdIns(4)P in yeast cells at a nanoscale level, we employed an electron microscopy technique that specifically labels PtdIns(4)P on the freeze-fracture replica of the yeast membrane. This method minimizes the possibility of artificial perturbation, because molecules in the membrane are physically immobilised in situ. We observed that PtdIns(4)P is localised on the cytoplasmic leaflet, but not the exoplasmic leaflet, of the plasma membrane, Golgi body, vacuole, and vesicular structure membranes. PtdIns(4)P labelling was not observed in the membrane of the endoplasmic reticulum, and in the outer and inner membranes of the nuclear envelope or mitochondria. PtdIns(4)P forms clusters of plasma membrane and vacuolar membrane according to point pattern analysis of immunogold labelling. There are three kinds of compartments in the cytoplasmic leaflet of the plasma membrane. In the present study, we showed that PtdIns(4)P is specifically localised in the flat undifferentiated plasma membrane compartment. In the vacuolar membrane, PtdIns(4)P was concentrated in intramembrane particle (IMP)-deficient raft-like domains, which are tightly bound to lipid droplets, but not surrounding IMP-rich non-raft domains in geometrical IMP-distributed patterns in the stationary phase. This is the first report showing microdomain formations of PtdIns(4)P in the plasma membrane and vacuolar membrane of budding yeast cells at a nanoscale level, which will illuminate the functionality of PtdIns(4)P in each membrane. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation.

    Science.gov (United States)

    Deegan, Tom D; Yeeles, Joseph Tp; Diffley, John Fx

    2016-05-02

    The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45-MCM-GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK-dependent manner. Sld3 binds specifically to DDK-phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho-MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK-independent replication. Thus, Sld3 is an essential "reader" of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  17. XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite-Bioglass (registered) 45S5 co-sintered bioceramics

    International Nuclear Information System (INIS)

    Demirkiran, Hande; Hu Yongfeng; Zuin, Lucia; Appathurai, Narayana; Aswath, Pranesh B.

    2011-01-01

    Bioglass (registered) 45S5 was co-sintered with hydroxyapatite at 1200 deg. C. When small amounts ( 5 (PO 4 ) 2 SiO 4 and Na 3 Ca 6 (PO 4 ) 5 in an amorphous silicate matrix respectively. These chemistries show improved bioactivity compared to hydroxyapatite and are the subject of this study. The structure of several crystalline calcium and sodium phosphates and silicates as well as the co-sintered hydroxyapatite-Bioglass (registered) 45S5 bioceramics were examined using XANES spectroscopy. The nature of the crystalline and amorphous phases were studied using silicon (Si) and phosphorus (P) K- and L 2,3 -edge and calcium (Ca) K-edge XANES. Si L 2,3 -edge spectra of sintered bioceramic compositions indicates that the primary silicates present in these compositions are sodium silicates in the amorphous state. From Si K-edge spectra, it is shown that the silicates are in a similar structural environment in all the sintered bioceramic compositions with 4-fold coordination. Using P L 2,3 -edge it is clearly shown that there is no evidence of sodium phosphate present in the sintered bioceramic compositions. In the P K-edge spectra, the post-edge shoulder peak at around 2155 eV indicates that this shoulder to be more defined for calcium phosphate compounds with decreasing solubility and increasing thermodynamic stability. This shoulder peak is more noticeable in hydroxyapatite and β-TCP indicating greater stability of the phosphate phase. The only spectra that does not show a noticeable peak is the composition with Na 3 Ca 6 (PO 4 ) 5 in a silicate matrix indicating that it is more soluble compared to the other compositions.

  18. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase III beta (PI4KB)

    Czech Academy of Sciences Publication Activity Database

    Humpolíčková, Jana; Mejdrová, Ivana; Matoušová, Marika; Nencka, Radim; Bouřa, Evžen

    2017-01-01

    Roč. 60, č. 1 (2017), s. 119-127 ISSN 0022-2623 R&D Projects: GA ČR GA15-09310S EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : crystal structure * replication * PI4KIII beta Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 6.259, year: 2016

  19. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  20. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions

    International Nuclear Information System (INIS)

    Cao Xinde; Harris, Willie G.; Josan, Manohardeep S.; Nair, Vimala D.

    2007-01-01

    Precipitation of Ca phosphates plays an important role in controlling P activity and availability in environmental systems. The purpose of this study was to determine inhibitory effects on Ca phosphate precipitation by Mg 2+ , SO 4 2- , CO 3 2- , humic acid, oxalic acid, biogenic Si, and Si-rich soil clay commonly found in soils, sediments, and waste streams. Precipitation rates were determined by measuring decrease of P concentration in solutions during the first 60 min; and precipitated solid phases identified using X-ray diffraction and electron microscopy. Poorly-crystalline hydroxyapatite (HAP: Ca 5 (PO 4 ) 3 OH) formed in control solutions over the experiment period of 24 h, following a second-order dependence on P concentration. Humic acid and Mg 2+ significantly inhibited formation of HAP, allowing formation of a more soluble amorphous Ca phosphate phase (ACP), and thus reducing the precipitation rate constants by 94-96%. Inhibition caused by Mg 2+ results from its incorporation into Ca phosphate precipitates, preventing formation of a well-crystalline phase. Humic acid likely suppressed Ca phosphate precipitation by adsorbing onto the newly-formed nuclei. Presence of oxalic acid resulted in almost complete inhibition of HAP precipitation due to preemptive Ca-oxalate formation. Carbonate substituted for phosphate, decreasing the crystallinity of HAP and thus reducing precipitation rate constant by 44%. Sulfate and Si-rich solids had less impact on formation of HAP; while they reduced precipitation in the early stage, they did not differ from the control after 24 h. Results indicate that components (e.g., Mg 2+ , humic acid) producing relatively soluble ACP are more likely to reduce P stability and precipitation rate of Ca phosphate in soils and sediments than are components (e.g., SO 4 2- , Si) that have less effect on the crystallinity

  1. The dephosphorylation pathway of D-myo-inositol 1,3,4,5-tetrakisphosphate in rat brain.

    OpenAIRE

    Erneux, C; Delvaux, A; Moreau, C; Dumont, J E

    1987-01-01

    Dephosphorylation of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was measured in both the soluble and the particulate fractions of rat brain homogenates. Analysis of the hydrolysis of [4,5-32P]Ins(1,3,4,5)P4 showed that for both fractions the 5-phosphate of Ins(1,3,4,5)P4 was removed and inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] was specifically produced. In the soluble fraction, Ins(1,3,4)P3 was further hydrolysed at the 1-phosphate position to inositol 3,4-bisphosphate[Ins(3,4)P2]...

  2. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    International Nuclear Information System (INIS)

    Han, Byung Woo; Bingman, Craig A.; Mahnke, Donna K.; Sabina, Richard L.; Phillips, George N. Jr

    2005-01-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6 2 22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative

  3. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byung Woo [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Bingman, Craig A. [Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Mahnke, Donna K.; Sabina, Richard L. [Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, WI 53226-4801 (United States); Phillips, George N. Jr, E-mail: phillips@biochem.wisc.edu [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States)

    2005-08-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  4. Phosphate steering by Flap Endonuclease 1 promotes 5′-flap specificity and incision to prevent genome instability

    KAUST Repository

    Tsutakawa, Susan E.

    2017-06-27

    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5\\'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5\\'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5\\'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via phosphate steering\\', basic residues energetically steer an inverted ss 5\\'-flap through a gateway over FEN1\\'s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA) repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5\\'-flap specificity and catalysis, preventing genomic instability.

  5. Reactions of the melatonin metabolite N(1)-acetyl-5-methoxykynuramine with carbamoyl phosphate and related compounds.

    Science.gov (United States)

    Kuesel, Jana T; Hardeland, Rüdiger; Pfoertner, Henrike; Aeckerle, Nelia

    2010-01-01

    N-[2-(6-methoxyquinazolin-4-yl)-ethyl] acetamide (MQA) is a compound formed from the melatonin metabolite N(1)-acetyl-5-methoxykynuramine (AMK). We followed MQA production in reaction systems containing various putative reaction partners, in the absence and presence of hydrogen peroxide and/or copper(II). Although MQA may be formally described as a condensation product of either N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) with ammonia, or AMK with formamide, none of these combinations led to substantial quantities of MQA. However, MQA formation was observed in mixtures containing AMK, hydrogen peroxide, hydrogen carbonate and ammonia, or AMK, hydrogen peroxide, copper(II) and potentially carbamoylating agents, such as potassium cyanate or, more efficiently, carbamoyl phosphate. In the presence of hydrogen peroxide, copper(II) and carbamoyl phosphate, MQA was the major product obtained from AMK, but the omission of copper(II) mainly led to another metabolite, 3-acetamidomethyl-6-methoxycinnolinone (AMMC). This was caused by nitric oxide (NO) generated under oxidative conditions from carbamoyl phosphate, as shown by an NO spin trap. MQA formation with carbamoyl phosphate was not due to the possible decomposition product, formamide. The reaction of AMK with carbamoyl phosphate under oxidative conditions, in which inorganic phosphate and water are released and which differs from the typical process of carbamoylation via isocyanate, may be considered as a new physiological route of MQA formation.

  6. Structural characterization of phosphatidylinositol 4-kinase IIIbeta in complex with ATP and inhibitor

    Czech Academy of Sciences Publication Activity Database

    Chalupská, Dominika; Mejdrová, Ivana; Bäumlová, Adriana; Nencka, Radim; Bouřa, Evžen

    2015-01-01

    Roč. 22, č. 1 (2015), s. 33 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA MŠk LO1302 EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : PI4Ks * crystal structure * ATP Subject RIV: CE - Biochemistry

  7. Overexpression, crystallization and preliminary X-­ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa

    Science.gov (United States)

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-01-01

    The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-α-ketobutyrate. It belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 Å from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 Å. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (V M) of 3.64 Å3 Da−1 and a solvent content of 66%. PMID:16511285

  8. Crystal Structure of Ripk4 Reveals Dimerization-Dependent Kinase Activity.

    Science.gov (United States)

    Huang, Christine S; Oberbeck, Nina; Hsiao, Yi-Chun; Liu, Peter; Johnson, Adam R; Dixit, Vishva M; Hymowitz, Sarah G

    2018-05-01

    Receptor-interacting protein kinase 4 (RIPK4) is a highly conserved regulator of epidermal differentiation. Members of the RIPK family possess a common kinase domain as well as unique accessory domains that likely dictate subcellular localization and substrate preferences. Mutations in human RIPK4 manifest as Bartsocas-Papas syndrome (BPS), a genetic disorder characterized by severe craniofacial and limb abnormalities. We describe the structure of the murine Ripk4 (MmRipk4) kinase domain, in ATP- and inhibitor-bound forms. The crystallographic dimer of MmRipk4 is similar to those of RIPK2 and BRAF, and we show that the intact dimeric entity is required for MmRipk4 catalytic activity through a series of engineered mutations and cell-based assays. We also assess the impact of BPS mutations on protein structure and activity to elucidate the molecular origins of the disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The C2 domain of PKCalpha is a Ca2+ -dependent PtdIns(4,5)P2 sensing domain: a new insight into an old pathway.

    Science.gov (United States)

    Sánchez-Bautista, Sonia; Marín-Vicente, Consuelo; Gómez-Fernández, Juan C; Corbalán-García, Senena

    2006-10-06

    The C2 domain is a targeting domain that responds to intracellular Ca2+ signals in classical protein kinases (PKCs) and mediates the translocation of its host protein to membranes. Recent studies have revealed a new motif in the C2 domain, named the lysine-rich cluster, that interacts with acidic phospholipids. The purpose of this work was to characterize the molecular mechanism by which PtdIns(4,5)P2 specifically interacts with this motif. Using a combination of isothermal titration calorimetry, fluorescence resonance energy transfer and time-lapse confocal microscopy, we show here that Ca2+ specifically binds to the Ca2+ -binding region, facilitating PtdIns(4,5)P2 access to the lysine-rich cluster. The magnitude of PtdIns(4,5)P2 binding is greater than in the case of other polyphosphate phosphatidylinositols. Very importantly, the residues involved in PtdIns(4,5)P2 binding are essential for the plasma membrane localization of PKCalpha when RBL-2H3 cells are stimulated through their IgE receptors. Additionally, CFP-PH and CFP-C1 domains were used as bioprobes to demonstrate the co-existence of PtdIns(4,5)P2 and diacylglycerol in the plasma membrane, and it was shown that although a fraction of PtdIns(4,5)P2 is hydrolyzed to generate diacylglycerol and IP3, an important amount still remains in the membrane where it is available to activate PKCalpha. These findings entail revision of the currently accepted model of PKCalpha recruitment to the membrane and its activation.

  10. Availability of rock phosphate with low P content in some Albanian soil: use of /sup 32/PO/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Fardeau, J C; Migadel, F; Gjermani, A; Malja, S

    1983-10-01

    The availability of a calcareous low P content rock phosphate (4,3% P) was measured. This Albanian ore was used, in pot experiments, on various local soils whose pH is situated between 4,9 to 7,5. This phosphate was labelled with /sup 32/P and /sup 45/Ca in a reactor. The residual effect of this fertilizer was deduced from the results of isotopic dilution kinetics of phosphate ions realized in soil-solution systems. The main results can be summarized as follows: 1. When the soil-water pH was higher than 6,1, the utilization coefficient of phosphorus was minus than 1%, even with 5,5 months. 2. The ratio of P and Ca derived from fertilizer and taken up by the crop is most generally different of those measured in the fertilizer. It depends on the soil constitution. 3. The analysis of isotopic dilution kinetics of phosphate ions shows that in the major part of these soils, whose fixing capacity is very high, the rock phosphate and also superphosphate at 230 kg P/sub 2/O/sub 5/.ha/sup -1/ rate does not increase available soil phosphorus; it is only with rates over 800 kg P/sub 2/O/sub 5/.ha/sup -1/ that this objective can be reached. These results explain again that the fixing capacity of soil for phosphorus is a characteristic more useful for fertilization technique than the available phosphorus quantity.

  11. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian B; Nielsen, Jakob N.; Birk, Jesper Bratz

    2004-01-01

    The 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). ...

  12. Stretch activates myosin light chain kinase in arterial smooth muscle

    International Nuclear Information System (INIS)

    Barany, K.; Rokolya, A.; Barany, M.

    1990-01-01

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively

  13. The anti-apoptotic activity associated with phosphatidylinositol transfer protein alpha activates the MAPK and Akt/PKB pathway.

    Science.gov (United States)

    Schenning, Martijn; Goedhart, Joachim; Gadella, Theodorus W J; Avram, Diana; Wirtz, Karel W A; Snoek, Gerry T

    2008-10-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein alpha (PI-TPalpha; SPIalpha cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts by activating a G protein-coupled receptor, most probably a cannabinoid 1 (CB1)-like receptor as the activity was blocked by both pertussis toxin and rimonabant [M. Schenning, C.M. van Tiel, D. Van Manen, J.C. Stam, B.M. Gadella, K.W. Wirtz and G.T. Snoek, Phosphatidylinositol transfer protein alpha regulates growth and apoptosis of NIH3T3 cells: involvement of a cannabinoid 1-like receptor, J. Lipid Res. 45 (2004) 1555-1564]. The CB1 receptor appears to be expressed in mouse fibroblast cells, at levels in the order SPIalpha>wtNIH3T3>SPIbeta cells (i.e. wild type cells overexpressing PI-TPbeta). Upon incubation of SPIbeta cells with the PI-TPalpha-dependent anti-apoptotic factors, both the ERK/MAP kinase and the Akt/PKB pathway are activated in a CB1 receptor dependent manner as shown by Western blotting. In addition, activation of ERK2 was also shown by EYFP-ERK2 translocation to the nucleus, as visualized by confocal laser scanning microscopy. The subsequent activation of the anti-apoptotic transcription factor NF-kappaB is in line with the increased resistance towards UV-induced apoptosis. On the other hand, receptor activation by CM from SPIalpha cells was not linked to phospholipase C activation as the YFP-labelled C2-domain of protein kinase C was not translocated to the plasma membrane of SPIbeta cells as visualized by confocal laser scanning microscopy.

  14. Plasma membrane proteins Slm1 and Slm2 mediate activation of the AGC kinase Ypk1 by TORC2 and sphingolipids in S. cerevisiae.

    Science.gov (United States)

    Niles, Brad J; Powers, Ted

    2012-10-15

    The PH domain-containing proteins Slm1 and Slm2 were originally identified as substrates of the rapamycin-insensitive TOR complex 2 (TORC2) and as mediators of signaling by the lipid second messenger phosphatidyl-inositol-4,5-bisphosphate (PI4,5P2) in budding yeast S. cerevisiae. More recently, these proteins have been identified as critical effectors that facilitate phosphorylation and activation of the AGC kinases Ypk1 and Ypk2 by TORC2. Here, we review the molecular basis for this regulation as well as place it within the context of recent findings that have revealed Slm1/2 and TORC2-dependent phosphorylation of Ypk1 is coupled to the biosynthesis of complex sphingolipids and to their levels within the plasma membrane (PM) as well as other forms of PM stress. Together, these studies reveal the existence of an intricate homeostatic feedback mechanism, whereby the activity of these signaling components is linked to the biosynthesis of PM lipids according to cellular need.

  15. Effects of kinase inhibitors and potassium phosphate (KPi) on site-specific phosphorylation of branched chain α-ketoacid dehydrogenase (BCKDH)

    International Nuclear Information System (INIS)

    Kuntz, M.J.; Shimomura, Y.; Ozawa, T.; Harris, R.A.

    1987-01-01

    BCKDH is phosphorylated by a copurifying kinase at two serine residues on the Elα subunit. Phosphorylation of both sites occurs at about the same rate initially, but inactivation is believed associated only with site 1 phosphorylation. The effects of KPi and known inhibitors of BCKDH kinase, α-chloroisocaproate (CIC) and branched chain α-ketoacids (BCKA), on the phosphorylation of purified rat liver BCKDH were studied. Site-specific phosphorylation was quantitated by thin-layer electrophoresis of tryptic peptides followed by densitometric scanning of autoradiograms. Addition of 5 mM KPi was found necessary to stabilize the BCKDH activity at 37 0 C. Increasing the KPi to 50 mM dramatically increased the CIC and BCKA inhibition of site 1 and site 2 phosphorylation. The finding of enhanced sensitivity of inhibitors with 50 mM KPi may facilitate identification of physiologically important kinase effectors. Regardless of the KPi concentration, CIC and the BCKA showed much more effective inhibition of site 2 than site 1 phosphorylation. Although site 1 is the primary inactivating site, predominant inhibition of site 2 phosphorylation may provide a means of modulating kinase/phosphatase control of BCKDH activity under steady state conditions

  16. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils.

    Science.gov (United States)

    Odemuyiwa, Solomon O; Ilarraza, Ramses; Davoine, Francis; Logan, Michael R; Shayeganpour, Anooshirvan; Wu, Yingqi; Majaesic, Carina; Adamko, Darryl J; Moqbel, Redwan; Lacy, Paige

    2015-04-01

    Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation. © 2014 John Wiley & Sons Ltd.

  17. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A).

    Science.gov (United States)

    Oi, Ami; Katayama, Syouichi; Hatano, Naoya; Sugiyama, Yasunori; Kameshita, Isamu; Sueyoshi, Noriyuki

    2017-01-08

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth

    Science.gov (United States)

    Sedbrook, John C.; Carroll, Kathleen L.; Hung, Kai F.; Masson, Patrick H.; Somerville, Chris R.

    2002-01-01

    To investigate how roots respond to directional cues, we characterized a T-DNA-tagged Arabidopsis mutant named sku5 in which the roots skewed and looped away from the normal downward direction of growth on inclined agar surfaces. sku5 roots and etiolated hypocotyls were slightly shorter than normal and exhibited a counterclockwise (left-handed) axial rotation bias. The surface-dependent skewing phenotype disappeared when the roots penetrated the agar surface, but the axial rotation defect persisted, revealing that these two directional growth processes are separable. The SKU5 gene belongs to a 19-member gene family designated SKS (SKU5 Similar) that is related structurally to the multiple-copper oxidases ascorbate oxidase and laccase. However, the SKS proteins lack several of the conserved copper binding motifs characteristic of copper oxidases, and no enzymatic function could be assigned to the SKU5 protein. Analysis of plants expressing SKU5 reporter constructs and protein gel blot analysis showed that SKU5 was expressed most strongly in expanding tissues. SKU5 was glycosylated and modified by glycosyl phosphatidylinositol and localized to both the plasma membrane and the cell wall. Our observations suggest that SKU5 affects two directional growth processes, possibly by participating in cell wall expansion.

  19. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    Science.gov (United States)

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling. Copyright © 2016 Dean et al.

  20. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2 Gene of Drosophila and Interacts with IP3R to Affect Wing Development

    Directory of Open Access Journals (Sweden)

    Derek M. Dean

    2016-02-01

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy, a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2, a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80ts indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  1. Activation of PLC by an endogenous cytokine (GBP) in Drosophila S3 cells and its application as a model for studying inositol phosphate signalling through ITPK1.

    Science.gov (United States)

    Zhou, Yixing; Wu, Shilan; Wang, Huanchen; Hayakawa, Yoichi; Bird, Gary S; Shears, Stephen B

    2012-12-01

    Using immortalized [3H]inositol-labelled S3 cells, we demonstrated in the present study that various elements of the inositol phosphate signalling cascade are recruited by a Drosophila homologue from a cytokine family of so-called GBPs (growth-blocking peptides). HPLC analysis revealed that dGBP (Drosophila GBP) elevated Ins(1,4,5)P3 levels 9-fold. By using fluorescent Ca2+ probes, we determined that dGBP initially mobilized Ca2+ from intracellular pools; the ensuing depletion of intracellular Ca2+ stores by dGBP subsequently activated a Ca2+ entry pathway. The addition of dsRNA (double-stranded RNA) to knock down expression of the Drosophila Ins(1,4,5)P3 receptor almost completely eliminated mobilization of intracellular Ca2+ stores by dGBP. Taken together, the results of the present study describe a classical activation of PLC (phospholipase C) by dGBP. The peptide also promoted increases in the levels of other inositol phosphates with signalling credentials: Ins(1,3,4,5)P4, Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5. These results greatly expand the regulatory repertoire of the dGBP family, and also characterize S3 cells as a model for studying the regulation of inositol phosphate metabolism and signalling by endogenous cell-surface receptors. We therefore created a cell-line (S3ITPK1) in which heterologous expression of human ITPK (inositol tetrakisphosphate kinase) was controlled by an inducible metallothionein promoter. We found that dGBP-stimulated S3ITPK1 cells did not synthesize Ins(3,4,5,6)P4, contradicting a hypothesis that the PLC-coupled phosphotransferase activity of ITPK1 [Ins(1,3,4,5,6)P5+Ins(1,3,4)P3→Ins(3,4,5,6)P4+Ins(1,3,4,6)P4] is driven solely by the laws of mass action [Chamberlain, Qian, Stiles, Cho, Jones, Lesley, Grabau, Shears and Spraggon (2007) J. Biol. Chem. 282, 28117-28125]. This conclusion represents a fundamental breach in our understanding of ITPK1 signalling.

  2. 5'-nucleotidase and protein kinase activity of plasmatic membrane and 5'-nucleotidase activity of liver homogenate in the third and fourth rat generations born in the Chernobyl accident zone

    International Nuclear Information System (INIS)

    Bezdrobnij, Yu.V.; Serkyiz, Ya.Yi.; Bozhok, O.V.; Yindik, V.M.

    1994-01-01

    The decrease of plasmatic membrane protein kinase activity of 3 - month rat liver was revealed in animals that have been born and kept in the Chernobyl accident zone during three and four generations. Erythrocyte ghost protein kinase activity from those animals was decreased too. 5'-nucleotidase activity in membranes and in homogenates was increased in the third and decreased in the fourth generation. In 6 month rats of the fourth generation in comparison with 3 month rats of this generation plasmatic membrane protein kinase and 5'-nucleotidase activities did not change but 5'nucleotidase activity of homogenate was increased (to control level). The plasmatic membrane protein kinase activity has been supposed to serve as a bio indicator of ionising irradiation at low dose rate

  3. Action of insulin on the surface morphology of hepatocytes: role of phosphatidylinositol 3-kinase in insulin-induced shape change of microvilli.

    Science.gov (United States)

    Lange, K; Brandt, U; Gartzke, J; Bergmann, J

    1998-02-25

    primary products, PIP and PIP2. Thus, activated PI 3-kinase may direct a flux of profilin-actin complexes to the membrane locations of activated insulin receptors, where, due to the release of actin monomers after binding of profilactin to PI(3,4)P2 and PI(3,4,5)P3, massive actin polymerization is initiated. As a consequence, PI 3-kinase activation initiates a vectorial reorganization of the cellular actin system to membrane sites neighboring activated insulin receptors, giving rise to local membrane stress as visualized by extensive surface deformations and shortening of microvilli. In addition, extensive high-affinity binding of F-actin-barbed endcapping proteins enhances the cytoplasmic concentration of rapidly polymerizing filament ends. Consequently, the actin monomer concentration is lowered and the (cytoplasmic) pointed ends of the microvillar shaft bundle depolymerize and become shorter. The observations presented strengthen the previously postulated diffusion-barrier concept of glucose- and ion-uptake regulation and provide a mechanistic basis for explaining the action of insulin and other growth factors on transport processes across the plasma membrane.

  4. Protein kinase mediated upregulation of endothelin A, endothelin B and 5-hydroxytryptamine 1B/1D receptors during organ culture in rat basilar artery

    DEFF Research Database (Denmark)

    Hansen-Schwartz, Jacob; Svensson, Carl-Lennart; Xu, Cang-Bao

    2002-01-01

    with ET-1 (unspecific ET(A) and ET(B) agonist), S6c (specific ET(B) agonist) and 5-CT (5-HT(1) agonist). Levels of mRNA coding for the ET(A), ET(B), 5-HT(1B) and 5-HT(1D) receptors were analysed using real-time RT-PCR. 3. Classical PKC's are critically involved in the appearance of the ET(B) receptor; co....... 2. The effect of inhibiting protein kinases during organ culture with staurosporine (unspecific protein kinase inhibitor), RO 31-7549 (specific inhibitor of classical PKC's) and H 89 (specific inhibitor of PKA) was examined using in vitro pharmacological examination of cultured vessel segments......-culture with RO 31-7549 abolished the contractile response (6.9 +/- 1.8%) and reduced the ET(B) receptor mRNA by 44 +/- 4% as compared to the cultured control. Correlation between decreased ET(B) receptor mRNA and abolished contractile function indicates upstream involvement of PKC. 4. Inhibition of PKA generally...

  5. Profilin binding to sub-micellar concentrations of phosphatidylinositol (4,5) bisphosphate and phosphatidylinositol (3,4,5) trisphosphate

    DEFF Research Database (Denmark)

    Moens, Pierre D J; Bagatolli, Luis A

    2007-01-01

    Profilin is a small (12-15 kDa) actin binding protein which promotes filament turnover. Profilin is also involved in the signaling pathway linking receptors in the cell membrane to the microfilament system within the cell. Profilin is thought to play critical roles in this signaling pathway throu...

  6. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1.

    Science.gov (United States)

    Mazalouskas, Matthew D; Godoy-Ruiz, Raquel; Weber, David J; Zimmer, Danna B; Honkanen, Richard E; Wadzinski, Brian E

    2014-02-14

    Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.

  7. Radical-induced dephosphorylation of fructose phosphates in aqueous solution

    International Nuclear Information System (INIS)

    Zegota, H.; Sonntag, C. von

    1981-01-01

    Oxygen free N 2 O-saturated aqueous solutions of D-fructose-1-phosphate and D-fructose-6-phosphate were γ-irradiated. Inorganic phosphate and phosphate free sugars (containing four to six carbon atoms) were identified and their G-values measured. D-Fructose-1-phosphate yields (G-values in parentheses) inorganic phosphate (1.6), hexos-2-ulose (0.12), 6-deoxy-2,5-hexodiulose (0.16), tetrulose (0.05) and 3-deoxytetrulose (0.15). D-Fructose-6-phosphate yields inorganic phosphate (1.7), hexos-5-ulose (0.1), 6-deoxy-2,5-hexodiulose (0.36), 3-deoxy-2,5-hexodiulose and 2-deoxyhexos-5-ulose (together 0.18). On treatment with alkaline phosphatase further deoxy sugars were recognized and in fructose-1-phosphate G(6-deoxy-2,5-hexodiulose) was increased to a G-value of 0.4. Dephosphorylation is considered to occur mainly after OH attack at C-5 and C-1 in fructose-1-phosphate and at C-5 and C-6 in fructose-6-phosphate. Reaction mechanisms are discussed. (orig.)

  8. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    Directory of Open Access Journals (Sweden)

    Piyaphong Panpisut

    Full Text Available This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM, tristrontium phosphate (TSrP and antimicrobial polylysine (PLS. The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine.Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt% and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM. The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained.Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64% but was always higher than that of Z250 (54%. Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7% followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa.The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and

  9. Ternary phosphates in Ca3(PO4)2-Na3Ln(PO4)2 (Ln-Nd, Eu, Er) systems

    International Nuclear Information System (INIS)

    Lazoryak, B.I.; Ivanov, L.N.; Strunenkova, T.V.; Golubev, V.N.; Viting, B.N.

    1990-01-01

    Ternary phosphates, formed in Ca 3 (PO 4 ) 2 -Na 3 Ln(PO 4 ) 2 (Ln-Nd, Eu, Er) systems were investigated by the methods of X-ray phase, luminescent analyses and IR spectroscopy. 5 regions of homogeneity were found. Two of them (I and II) were distinguished for all systems. Samples in the region of up to 14.285 mol.% Na 3 Ln(PO 4 ) 2 crystallize on the basis of β-Ca 3 (PO 4 ) 2 structure, and in other homogeneity regions - on the basis of β-K 2 SO 4 structure

  10. Hydrothermal synthesis of hydroxyapatite nanorods using pyridoxal-5′-phosphate as a phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang; Chen, Feng; Qi, Chao; Zhao, Jing; Wu, Jin

    2014-07-01

    Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects of experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.

  11. The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase

    Directory of Open Access Journals (Sweden)

    Kenyon Colin P

    2012-08-01

    Full Text Available Abstract Background It has been demonstrated that the adenyl moiety of ATP plays a direct role in the regulation of ATP binding and/or phosphoryl transfer within a range of kinase and synthetase enzymes. The role of the C8-H of ATP in the binding and/or phosphoryl transfer on the enzyme activity of a number of kinase and synthetase enzymes has been elucidated. The intrinsic catalysis rate mediated by each kinase enzyme is complex, yielding apparent KM values ranging from less than 0.4 μM to more than 1 mM for ATP in the various kinases. Using a combination of ATP deuterated at the C8 position (C8D-ATP as a molecular probe with site directed mutagenesis (SDM of conserved amino acid residues in shikimate kinase and adenylate kinase active sites, we have elucidated a mechanism by which the ATP C8-H is induced to be labile in the broader kinase family. We have demonstrated the direct role of the C8-H in the rate of ATP consumption, and the direct role played by conserved Thr residues interacting with the C8-H. The mechanism by which the vast range in KM might be achieved is also suggested by these findings. Results We have demonstrated the mechanism by which the enzyme activities of Group 2 kinases, shikimate kinase (SK and adenylate kinase 1 (AK1, are controlled by the C8-H of ATP. Mutations of the conserved threonine residues associated with the labile C8-H cause the enzymes to lose their saturation kinetics over the concentration range tested. The relationship between the role C8-H of ATP in the reaction mechanism and the ATP concentration as they influence the saturation kinetics of the enzyme activity is also shown. The SDM clearly identified the amino acid residues involved in both the catalysis and regulation of phosphoryl transfer in SK and AK1 as mediated by C8H-ATP. Conclusions The data outlined serves to demonstrate the “push” mechanism associated with the control of the saturation kinetics of Group 2 kinases mediated by ATP C8-H. It

  12. Partial characterization of the cross-reacting determinant, a carbohydrate epitope shared by decay accelerating factor and the variant surface glycoprotein of the African Trypanosoma brucei.

    Science.gov (United States)

    Shak, S; Davitz, M A; Wolinsky, M L; Nussenzweig, V; Turner, M J; Gurnett, A

    1988-03-15

    The variant surface glycoprotein (VSG) of the African trypanosome is anchored in the cell membrane by a complex glycan attached to phosphatidylinositol. The carboxyl terminal portion of VSG contains a cryptic carbohydrate epitope, the cross-reacting determinant (CRD), that is revealed only after removal of the diacylglycerol by phosphatidylinositol-specific phospholipase C (PIPLC) or VSG lipase. Recently, we have shown that after hydrolysis by PIPLC, decay-accelerating factor (DAF)--a mammalian phosphatidylinositol-anchored protein--also contains the CRD epitope. Using a two site immunoradiometric assay in which the capturing antibody is a monoclonal antibody to DAF and the revealing antibody is anti-CRD, we now show that sugar phosphates significantly inhibited the binding of anti-CRD antibody to DAF released by PIPLC. DL-myo-inositol 1,2-cyclic phosphate was the most potent inhibitor of binding (IC50 less than 10(-8) M). Other sugar phosphates, such as alpha-D-glucose-1-phosphate, which also possess adjacent hydroxyl and phosphate moieties in cis also inhibited binding at low concentrations (IC50 = 10(-5) to 10(-4) M). In contrast, sugar phosphates which do not possess adjacent hydroxyl and phosphate moieties in cis and simple sugars weakly inhibited binding (IC50 greater than 10(-3) M). These results suggest that myo-inositol 1,2-cyclic phosphate contributes significantly to the epitope recognized by the anti-CRD antibody and is consistent with analysis of the carboxyl terminus of VSG, which also suggested the presence of the cyclic inositol phosphate. In light of the recent findings that human serum contains a glycan-phosphatidyl-inositol-specific phospholipase D, which converts DAF from a hydrophobic to a hydrophilic form lacking the CRD, the observation that the phosphate is crucial for expression of the epitope may be relevant in understanding the origin of CRD-negative DAF in urine and plasma.

  13. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)

    2012-06-19

    Jun 19, 2012 ... Lysis buffer (SDS Lysis Buffer) was added to the samples overnight at 4°C. An equal amount of protein was loaded by the Coomassie method for protein quantification after electrophoretic separation. Protein was transferred onto polyvinylidene fluoride (PVDF) membranes. The transferred blot was blocked ...

  14. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose phosphate synthase and is required for a proper cold stress response

    KAUST Repository

    Almadanim, M. Cecília

    2017-01-19

    Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analyzing OsCPK17 knockout, silencing, and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose phosphate synthase OsSPS4, and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.

  15. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  16. Autophagic kinases SmVPS34 and SmVPS15 are required for viability in the filamentous ascomycete Sordaria macrospora.

    Science.gov (United States)

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2014-01-01

    Autophagy is a tightly controlled degradation process of all eukaryotes. It includes the sequestration of cytoplasmic contents and organelles within a double-membraned autophagosome. Autophagy involves core autophagy related (atg) genes as well as genes regulating vesicle trafficking. Previously, we analyzed the impact of proteins of the core autophagic machinery SmATG7, SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. While deletion of Smatg8 and Smatg4 abolished fruiting-body formation and impaired vegetative growth, Smatg7 is required for viability. In yeast, the phosphatidylinositol 3-kinase vacuolar protein sorting 34 (Vps34) and its myristoylated membrane targeting unit, the protein kinase Vps15 have been shown to be important regulators of autophagy and vacuolar protein sorting. However, their exact role in filamentous ascomycetes remains elusive. To determine the function of Smvps34 and Smvps15 we isolated genes with high sequence similarity to Saccharomyces cerevisiae VPS34 and VPS15. For both genes we were not able to generate a homokaryotic knockout mutant in S. macrospora, suggesting that Smvps34 and Smvps15 are required for viability. Furthermore, we analyzed the repertoire of vps genes encoded by S. macrospora and could identify putative homologs of nearly all of the 61 VPS genes of S. cerevisiae. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4 includes the regulatory PSTAIRE helix

    Directory of Open Access Journals (Sweden)

    Grassmann Ralph

    2005-09-01

    Full Text Available Abstract Background The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1 is leukemogenic in transgenic mice and induces permanent T-cell growth in vitro. It is found in active CDK holoenzyme complexes from adult T-cell leukemia-derived cultures and stimulates the G1- to-S phase transition by activating the cyclin-dependent kinase (CDK CDK4. The Tax protein directly and specifically interacts with CDK4 and cyclin D2 and binding is required for enhanced CDK4 kinase activity. The protein-protein contact between Tax and the components of the cyclin D/CDK complexes increases the association of CDK4 and its positive regulatory subunit cyclin D and renders the complex resistant to p21CIP inhibition. Tax mutants affecting the N-terminus cannot bind cyclin D and CDK4. Results To analyze, whether the N-terminus of Tax is capable of CDK4-binding, in vitro binding -, pull down -, and mammalian two-hybrid analyses were performed. These experiments revealed that a segment of 40 amino acids is sufficient to interact with CDK4 and cyclin D2. To define a Tax-binding domain and analyze how Tax influences the kinase activity, a series of CDK4 deletion mutants was tested. Different assays revealed two regions which upon deletion consistently result in reduced binding activity. These were isolated and subjected to mammalian two-hybrid analysis to test their potential to interact with the Tax N-terminus. These experiments concurrently revealed binding at the N- and C-terminus of CDK4. The N-terminal segment contains the PSTAIRE helix, which is known to control the access of substrate to the active cleft of CDK4 and thus the kinase activity. Conclusion Since the N- and C-terminus of CDK4 are neighboring in the predicted three-dimensional protein structure, it is conceivable that they comprise a single binding domain, which interacts with the Tax N-terminus.

  18. Mechanism of polyphosphate kinase from Propionibacterium shermanii

    International Nuclear Information System (INIS)

    Robinson, N.A.

    1986-01-01

    Polyphosphate kinase, which catalyzes the reaction shown below, is one of two enzymes which have been reported to catalyze the synthesis of polyphosphate. Purification performed by ammonium sulfate precipitation (0-40% fraction) was followed by chromatography. The enzyme represents 70% of the protein in the hydroxylapatite pool and is stable at this level of purity. The subunit molecular weight was determined by SDS polyacrylamide gel analysis, (83,000 +/- 3000), nondenaturing polyacrylamide gel electrophoresis, (80,000 and 86,000 daltons), gel filtration (Biogel A 0.5m column was 85,000 +/- 4000.) Polyphosphate kinase appears to be a monomeric enzyme of ∼83,000 daltons. Four assays were developed for polyphosphate kinase. Basic proteins such as polylysine stimulate the synthesis of polyphosphate, these proteins cause precipitation of polyphosphate kinase from relatively impure enzyme extracts: Synthesized polyphosphate interacts noncovalently with the basic protein-enzyme precipitate. Efficient synthesis of polyphosphate requires the addition of either phosphate or short chain polyphosphate. Synthesis did occur at 1/10 the rate when neither of these two compounds were included. Initiation, elongation, and termination events of polyphosphate synthesis were examined. Short chain polyphosphate acts as a primer, with [ 32 P] short-chain polyphosphate incorporation into long chain polyphosphate by the kinase

  19. The CDM Superfamily Protein MBC Directs Myoblast Fusion through a Mechanism That Requires Phosphatidylinositol 3,4,5-Triphosphate Binding but Is Independent of Direct Interaction with DCrk▿§

    Science.gov (United States)

    Balagopalan, Lakshmi; Chen, Mei-Hui; Geisbrecht, Erika R.; Abmayr, Susan M.

    2006-01-01

    myoblast city (mbc), a member of the CDM superfamily, is essential in the Drosophila melanogaster embryo for fusion of myoblasts into multinucleate fibers. Using germ line clones in which both maternal and zygotic contributions were eliminated and rescue of the zygotic loss-of-function phenotype, we established that mbc is required in the fusion-competent subset of myoblasts. Along with its close orthologs Dock180 and CED-5, MBC has an SH3 domain at its N terminus, conserved internal domains termed DHR1 and DHR2 (or “Docker”), and C-terminal proline-rich domains that associate with the adapter protein DCrk. The importance of these domains has been evaluated by the ability of MBC mutations and deletions to rescue the mbc loss-of-function muscle phenotype. We demonstrate that the SH3 and Docker domains are essential. Moreover, ethyl methanesulfonate-induced mutations that change amino acids within the MBC Docker domain to residues that are conserved in other CDM family members nevertheless eliminate MBC function in the embryo, which suggests that these sites may mediate interactions specific to Drosophila MBC. A functional requirement for the conserved DHR1 domain, which binds to phosphatidylinositol 3,4,5-triphosphate, implicates phosphoinositide signaling in myoblast fusion. Finally, the proline-rich C-terminal sites mediate strong interactions with DCrk, as expected. These sites are not required for MBC to rescue the muscle loss-of-function phenotype, however, which suggests that MBC's role in myoblast fusion can be carried out independently of direct DCrk binding. PMID:17030600

  20. Novel phenotypes of pyridox(am)ine-5'-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients.

    Science.gov (United States)

    Xue, Jiao; Chang, Xingzhi; Zhang, Yuehua; Yang, Zhixian

    2017-08-01

    To analyze the clinical and genetic characteristics of Chinese patients with pyridox(am)ine-5'-phosphate oxidase (PNPO) deficiency. The clinical presentations and the responses to treatments were analyzed in 4 patients. Blood and urinary metabolic screenings, electroencephalogram (EEG), brain magnetic resonance imaging (MRI) and epilepsy-related genes detection were performed in all patients. Patient 1 and 2 were identical twin brothers, who were born at 35 +5 w gestation with a sign of encephalopathy. Their seizures started within the first day and could not be controlled by pyridoxine or pyridoxal-5'-phosphate (PLP) completely. Patient 3 presented seizures at 5 months, responding well to pyridoxine. Seizures in patient 4 began at 40 days after birth and were controlled by valproic acid and topiramate. EEG showed atypical hypsarrhythmia or multifocal epileptiform discharges in 3 patients, and showed normality in patient 4. MRI showed nonspecific abnormality or normality. Blood metabolic screening showed multiple amino acids level abnormalities in all cases. Urinary metabolic screening showed vanillactic acid prominently elevated in 3 patients. Genetic analysis revealed 5 mutations of PNPO, three of which were novel. The mutation c.445_448del was carried by the twins and patient 3. Assessment of psychomotor development indicated severe delay in 3 patients and borderline to mild delay in patient 3. This is the first time to report patients with PNPO deficiency diagnosed by gene analysis in China. The novel clinical characteristics and novel mutations found here expanded the phenotypes and genotypes of this disease. Further, the frameshift mutation c.445_448del might be high prevalence in PNPO deficiency in Chinese patients.

  1. Design and synthesis of selective CDK8/19 dual inhibitors: Discovery of 4,5-dihydrothieno[3',4':3,4]benzo[1,2-d]isothiazole derivatives.

    Science.gov (United States)

    Ono, Koji; Banno, Hiroshi; Okaniwa, Masanori; Hirayama, Takaharu; Iwamura, Naoki; Hikichi, Yukiko; Murai, Saomi; Hasegawa, Maki; Hasegawa, Yuka; Yonemori, Kazuko; Hata, Akito; Aoyama, Kazunobu; Cary, Douglas R

    2017-04-15

    To develop a novel series of CDK8/19 dual inhibitors, we employed structure-based drug design using docking models based on a library compound, 4,5-dihydroimidazolo[3',4':3,4]benzo[1,2-d]isothiazole 16 bound to CDK8. We designed various [5,6,5]-fused tricyclic scaffolds bearing a carboxamide group to maintain predicted interactions with the backbone CO and NH of Ala100 in the CDK8 kinase hinge region. We found that 4,5-dihydrothieno[3',4':3,4]benzo[1,2-d]isothiazole derivative 29a showed particularly potent enzymatic inhibitory activity in both CDK8/19 (CDK8 IC 50 : 0.76nM, CDK19 IC 50 : 1.7nM). To improve the physicochemical properties and kinase selectivity of this compound, we introduced a substituted 3-pyridyloxy group into the scaffold 8-position. The resulting optimized compound 52h showed excellent in vitro potency (CDK8 IC 50 : 0.46nM, CDK19 IC 50 : 0.99nM), physicochemical properties, and kinase selectivity (only 5 kinases showed DMG activation loop. In vitro pharmacological evaluation of 52h revealed potent suppression of phosphorylated STAT1 in various cancer cells. The high oral bioavailability found for this compound enabled in vivo studies, in which we demonstrated a mechanism-based in vivo PD effect as well as tumor growth suppression in an RPMI8226 human hematopoietic and lymphoid xenograft model in mouse [T/C: -1% (2.5mg/kg, qd)]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Investigating small molecules to inhibit germinal center kinase-like kinase (GLK/MAP4K3) upstream of PKCθ phosphorylation: Potential therapy to modulate T cell dependent immunity.

    Science.gov (United States)

    May-Dracka, Tricia L; Arduini, Robert; Bertolotti-Ciarlet, Andrea; Bhisetti, Govinda; Brickelmaier, Margot; Cahir-McFarland, Ellen; Enyedy, Istvan; Fontenot, Jason D; Hesson, Thomas; Little, Kevin; Lyssikatos, Joe; Marcotte, Douglas; McKee, Timothy; Murugan, Paramasivam; Patterson, Thomas; Peng, Hairuo; Rushe, Mia; Silvian, Laura; Spilker, Kerri; Wu, Ping; Xin, Zhili; Burkly, Linda C

    2018-06-01

    Germinal center kinase-like kinase (GLK, also known as MAP4K3) has been hypothesized to have an effect on key cellular activities, including inflammatory responses. GLK is required for activation of protein kinase C-θ (PKCθ) in T cells. Controlling the activity of T helper cell responses could be valuable for the treatment of autoimmune diseases. This approach circumvents previous unsuccessful approaches to target PKCθ directly. The use of structure based drug design, aided by the first crystal structure of GLK, led to the discovery of several inhibitors that demonstrate potent inhibition of GLK biochemically and in relevant cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)

    International Nuclear Information System (INIS)

    Oi, Ami; Katayama, Syouichi; Hatano, Naoya; Sugiyama, Yasunori; Kameshita, Isamu; Sueyoshi, Noriyuki

    2017-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. - Highlights: • We investigated the mechanism regulating subcellular localization of CDKL5. • DYRK1A was identified as an enzyme that bound to and phosphorylated CDKL5. • The phosphorylation site of CDKL5 was Ser-308, in the vicinity of the NLS. • When DYRK1A was co-expressed, the cytosolic CDKL5 was significantly increased. • In conclusion, DYRK1A regulates CDKL5 localization via phosphorylation on Ser-308.

  4. A simple high-performance liquid chromatography (HPLC) method for the measurement of pyridoxal-5-phosphate and 4-pyridoxic acid in human plasma.

    Science.gov (United States)

    Cabo, Rona; Kozik, Karolina; Milanowski, Maciej; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam

    2014-06-10

    Low concentration of plasma pyridoxal-5-phosphate (PLP) is associated with hyperhomocysteinemia and inflammation. Most methods for the measurement of plasma PLP require large specimen volume and involve the use of toxic reagents. We have developed a HPLC method for the measurement of PLP and 4-pyridoxic acid (4-PA) in plasma, which requires small specimen volume. The samples are prepared without adding any toxic reagents. Furthermore, we have examined whether intake of vitamin B6 affects the concentration of plasma PLP and 4-PA. The coefficient of variation of the method was 6% and the recovery of the added vitamin in plasma was about 100%. The concentrations of plasma PLP and 4-PA in 168 healthy subjects were 40.6 (8.4-165.0) nmol/L, median and (range) and 17.5 (3.7-114.79) nmol/L, median and (range) respectively. In the multiple regression analyses, the concentration of plasma PLP was associated with the concentration of plasma 4-PA (pplasma 4-PA was associated with plasma PLP (pplasma PLP and 4-PA. Our findings demonstrate that plasma 4-PA, BMI and sex are the major determinants of plasma PLP in healthy individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. ADP stimulation of inositol phosphates in hepatocytes: role of conversion to ATP and stimulation of P2Y2 receptors.

    Science.gov (United States)

    Dixon, C Jane; Hall, John F; Boarder, Michael R

    2003-01-01

    1 Accumulation of inositol (poly)phosphates (InsP(x)) has been studied in rat hepatocytes labelled with [(3)H]inositol. Stimulation with ADP resulted in a significant increase in total [(3)H]InsP(x), whereas 2-MeSADP had only a small effect and ADPbetaS was ineffective. UTP and ITP also stimulated substantial increases in [(3)H]InsP(x). 2 The dose-response curve to ADP was largely unaltered by the presence of the P2Y(1) antagonist, adenosine-3'-phosphate-5'-phosphate (A3P5P). Similarly, inclusion of MRS 2179, a more selective P2Y(1) antagonist, had no effect on the dose-response curve to ADP. 3 The inclusion of hexokinase in the assay reduced, but did not abolish, the response to ADP. 4 HPLC analysis revealed that ADP in the medium was rapidly converted to AMP and ATP. The inclusion of hexokinase removed ATP, but exacerbated the decline in ADP concentration, leading to increased levels of AMP. 2-MeSADP was stable in the medium and ATP was largely unaffected. 5 The addition of the adenylate kinase inhibitor, diadenosine pentaphosphate (Ap(5)A) significantly reduced the ADP response. HPLC analysis conducted in parallel demonstrated that this treatment inhibited conversion of ADP to ATP and AMP. 6 Inclusion of the P1 antagonist CGS 15943 had no effect on the dose-response curve to ADP. 7 These observations indicate that hepatocytes respond to ADP with an increase in inositol (poly)phosphates following conversion to ATP. P2Y(1) activation in hepatocytes does not appear to be coupled to inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) production.

  6. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    International Nuclear Information System (INIS)

    Das, Mahua R.; Bag, Arup K.; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K.; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S.

    2016-01-01

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  7. Tyr721 regulates specific binding of the CSF-1 receptor kinase insert to PI 3'-kinase SH2 domains: a model for SH2-mediated receptor-target interactions.

    Science.gov (United States)

    Reedijk, M; Liu, X; van der Geer, P; Letwin, K; Waterfield, M D; Hunter, T; Pawson, T

    1992-01-01

    Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha. Images PMID:1314163

  8. D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate, a mimic of D-myo-inositol 1,3,4,5-tetrakisphosphate: biological activity and pH-dependent conformational properties

    International Nuclear Information System (INIS)

    Horne, Graeme; Maechling, Clarisse; Fleig, Andrea; Hirata, Masato; Penner, Reinhold; Spiess, Bernard; Potter, Barry V.L.

    2004-01-01

    D-6-Deoxy-myo-inositol 1,3,4,5-tetrakisphosphate [D-6-deoxy-Ins(1,3,4,5)P 4 ] 3 is a novel deoxygenated analogue of D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P 4 ] 2, a central and enigmatic molecule in the polyphosphoinositide pathway of cellular signalling. D-6-Deoxy-Ins(1,3,4,5)P 4 is a moderate inhibitor of Ins(1,4,5)P 3 5-phosphatase [1.8 μM] compared to Ins(1,3,4,5)P 4 [0.15 μM] and similar to that of L-Ins(1,3,4,5)P 4 [1.8 μM]. In displacement of [ 3 H] Ins(1,4,5)P 3 from the rat cerebellar Ins(1,4,5)P 3 receptor, while slightly weaker [IC 50 =800 nM] than that of D-Ins(1,3,4,5)P 4 [IC 50 =220 nM], 3 is less markedly different and again similar to that of L-Ins(1,3,4,5)P 4 [IC 50 =660 nM]. 3 is an activator of I CRAC when inward currents are measured in RBL-2H3-M1 cells using patch-clamp electrophysiological techniques with a facilitation curve different to that of Ins(1,3,4,5)P 4 . Physicochemical properties were studied by potentiometric 31 P and 1 H NMR titrations and were similar to those of Ins(1,3,4,5)P 4 apart from the observation of a biphasic titration curve for the P1 phosphate group. A novel vicinal phosphate charge-induced conformational change of the inositol ring above pH 10 was observed for D-6-deoxy-Ins(1,3,4,5)P 4 that would normally be hindered because of the central stabilising role played by the 6-OH group in Ins(1,3,4,5)P 4 . We conclude that the 6-OH group in Ins(1,3,4,5)P 4 is crucial for its physicochemical behaviour and biological properties of this key inositol phosphate

  9. Finding a needle in a haystack: the role of electrostatics in target lipid recognition by PH domains.

    Directory of Open Access Journals (Sweden)

    Craig N Lumb

    Full Text Available Interactions between protein domains and lipid molecules play key roles in controlling cell membrane signalling and trafficking. The pleckstrin homology (PH domain is one of the most widespread, binding specifically to phosphatidylinositol phosphates (PIPs in cell membranes. PH domains must locate specific PIPs in the presence of a background of approximately 20% anionic lipids within the cytoplasmic leaflet of the plasma membrane. We investigate the mechanism of such recognition via a multiscale procedure combining Brownian dynamics (BD and molecular dynamics (MD simulations of the GRP1 PH domain interacting with phosphatidylinositol (3,4,5-trisphosphate (PI(3,4,5P₃. The interaction of GRP1-PH with PI(3,4,5P₃ in a zwitterionic bilayer is compared with the interaction in bilayers containing different levels of anionic 'decoy' lipids. BD simulations reveal both translational and orientational electrostatic steering of the PH domain towards the PI(3,4,5P₃-containing anionic bilayer surface. There is a payoff between non-PIP anionic lipids attracting the PH domain to the bilayer surface in a favourable orientation and their role as 'decoys', disrupting the interaction of GRP1-PH with the PI(3,4,5P₃ molecule. Significantly, approximately 20% anionic lipid in the cytoplasmic leaflet of the bilayer is nearly optimal to both enhance orientational steering and to localise GRP1-PH proximal to the surface of the membrane without sacrificing its ability to locate PI(3,4,5P₃ within the bilayer plane. Subsequent MD simulations reveal binding to PI(3,4,5P₃, forming protein-phosphate contacts comparable to those in X-ray structures. These studies demonstrate a computational framework which addresses lipid recognition within a cell membrane environment, offering a link between structural and cell biological characterisation.

  10. Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches

    NARCIS (Netherlands)

    Postma, M.; Roelofs, J.; Goedhart, J.; Loovers, H.M.; Visser, A.J.W.G.; Haastert, van P.J.M.

    2004-01-01

    The leading edge of Dictyostelium cells in chemoattractant gradients can be visualized using green fluorescent protein (GFP) tagged to the pleckstrin-homology (PH) domain of cytosolic regulator of adenylyl cyclase (CRAC), which presumable binds phosphatidylinositol-(3,4,5)triphosphate

  11. Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches.

    NARCIS (Netherlands)

    Postma, M.; Roelofs, J.; Goedhart, J.; Loovers, H.M.; Visser, A.J.; van Haastert, P.J.

    2004-01-01

    The leading edge of Dictyostelium cells in chemoattractant gradients can be visualized using green fluorescent protein (GFP) tagged to the pleckstrin-homology (PH) domain of cytosolic regulator of adenylyl cyclase (CRAC), which presumable binds phosphatidylinositol-(3,4,5)triphosphate

  12. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells.

    Science.gov (United States)

    Gause, K C; Homma, M K; Licciardi, K A; Seger, R; Ahn, N G; Peterson, M J; Krebs, E G; Meier, K E

    1993-08-05

    Phorbol ester-sensitive and -resistant EL4 thymoma cell lines differ in their ability to activate mitogen-activated protein kinase (MAPK) in response to phorbol ester. Treatment of wild-type EL4 cells with phorbol ester results in the rapid activations of MAPK and pp90rsk kinase, a substrate for MAPK, while neither kinase is activated in response to phorbol ester in variant EL4 cells. This study examines the activation of MAPK kinase (MAPKK), an activator of MAPK, in wild-type and variant EL4 cells. Phosphorylation of a 40-kDa substrate, identified as MAPK, was observed following in vitro phosphorylation reactions using cytosolic extracts or Mono Q column fractions prepared from phorbol ester-treated wild-type EL4 cells. MAPKK activity coeluted with a portion of the inactive MAPK upon Mono Q anion-exchange chromatography, permitting detection of the MAPKK activity in fractions containing both kinases. This MAPKK activity was present in phorbol ester-treated wild-type cells, but not in phorbol ester-treated variant cells or in untreated wild-type or variant cells. The MAPKK from wild-type cells was able to activate MAPK prepared from either wild-type or variant cells. MAPKK activity could be stimulated in both wildtype and variant EL4 cells in response to treatment of cells with okadaic acid. These results indicate that the failure of variant EL4 cells to activate MAP kinase in response to phorbol ester is due to a failure to activate MAPKK. Therefore, the step that confers phorbol ester resistance to variant EL4 cells lies between the activation of protein kinase C and the activation of MAPKK.

  13. In Situ Laser Coating of Calcium Phosphate on TC4 Surface for Enhancing Bioactivity

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; WANG Yong; ZHANG Ya-ping; GAO Jia-cheng

    2007-01-01

    Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight,toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 ·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m-2 and a scanning velocity of 10. 5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2P2O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.

  14. Synthesis and stability of α-tricalcium phosphate doped with dicalcium silicate in the system Ca3(PO4)2-Ca2SiO4

    International Nuclear Information System (INIS)

    Martinez, I.M.; Velasquez, P.A.; De Aza, P.N.

    2010-01-01

    The aim of this study was to synthesize materials of α-tricalcium phosphate doped with small amounts of dicalcium silicate, by solid state reaction, at high temperature and slow cooling to room temperature. The obtained materials were characterized by X-ray diffraction, Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy, showing that there is a region between 0.5 and 4.0 wt.% of dicalcium silicate where solid solution α-tricalcium phosphate (α-TCPss) is stable to room temperature.

  15. Inositol lipid turnover and compartmentation in canine trachealis smooth muscle

    International Nuclear Information System (INIS)

    Baron, C.B.; Pring, M.; Coburn, R.F.

    1989-01-01

    We established conditions for the study of metabolism and compartmentation of inositol phospholipids in canine trachealis muscle. Unstimulated muscle was incubated with myo-[3H]inositol for 30 min at 37 degrees C which resulted in labeling of the tissue free myo-inositol pool, whereas only a small amount of radioactivity was incorporated into inositol phospholipids or inositol phosphates. After addition of 5.5 microM carbachol, phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2), specific radioactivities increased exponentially, reaching apparent constant values in 180-240 min. Initial rates of increases in PI, PIP, and PIP2 specific radioactivities were 39, 32, and 66 times that measured in unstimulated muscle. Metabolic flux rates (nmol.100 nmol total lipid Pi-1.min-1) during development of force averaged 0.42 +/- 0.09 and during force maintenance averaged 0.14 +/- 0.01. Fractions of total PI, PIP, and PIP2 pools that were linked to muscarinic cholinergic activation were estimated to be 0.97, 0.85, and 0.65, respectively. Initial rates of increase in specific radioactivities and specific radioactivities during carbachol activation were similar in PI, PIP, and PIP2 fast active compartments, suggesting metabolic flux from PI to PIP to PIP2 was in near chemical equilibrium. Turnover times for PI, PIP, and PIP2 fast active compartments were estimated to be 21, 1.6, and 4.0 min, respectively

  16. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  17. K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase

    International Nuclear Information System (INIS)

    Nakanishi, S.; Yamada, K.; Kase, H.; Nakamura, S.; Nonomura, Y.

    1988-01-01

    Effects of K-252a, purified from the culture broth of Nocardiopsis sp., on the activity of myosin (light chain kinase were investigated. 1) K-252a affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca 2+ -dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca 2+ -independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10 -6 M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10 -4 M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lowere in the presence of 100 μM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [γ- 32 P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP. These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase

  18. Akt kinases in breast cancer and the results of adjuvant therapy

    International Nuclear Information System (INIS)

    Stål, Olle; Pérez-Tenorio, Gizeh; Åkerberg, Linda; Olsson, Birgit; Nordenskjöld, Bo; Skoog, Lambert; Rutqvist, Lars Erik

    2003-01-01

    The serine/threonine kinase Akt, or protein kinase B, has recently been a focus of interest because of its activity to inhibit apoptosis. It mediates cell survival by acting as a transducer of signals from growth factor receptors that activate phosphatidylinositol 3-kinase. We analysed the expression of the isoforms Akt1 and Akt2 as well as phosphorylated Akt (pAkt) by immunohistochemistry in frozen tumour samples from 280 postmenopausal patients who participated in a randomised trial comparing cyclophosphamide–methotrexate–5-fluorouracil chemotherapy and postoperative radiotherapy. The patients were simultaneously randomised to tamoxifen or to no endocrine treatment. Marked staining was found in 24% of the tumours for Akt1, but in only 4% for Akt2. A low frequency of Akt2-positive cells (1–10%) was observed in another 26% of the tumours. pAkt was significantly associated with both Akt1 and Akt2 expression. Overexpression of erbB2 correlated significantly with pAkt (P = 0.0028). The benefit from tamoxifen was analysed in oestrogen receptor (ER)-positive patients. Patients with a negative status of Akt (no overexpression of Akt1, Akt2 or pAkt) showed significant benefit from tamoxifen. The relative rate of distant recurrence, with versus without tamoxifen, was 0.44 (95% confidence interval [CI], 0.25–0.79) for ER+/Akt1- patients, while it was 0.72 (95% CI, 0.34–1.53) for ER+/Akt1+ patients. The difference in rate ratio did not reach statistical significance. The rate of locoregional recurrence was significantly decreased with radiotherapy versus chemotherapy for Akt-negative patients (rate ratio, 0.23; 95% CI, 0.08–0.67; P = 0.0074), while no benefit was evident for the Akt-positive subgroup (rate ratio, 0.77; 95% CI, 0.31–1.9; P = 0.58). The interaction between Akt and the efficacy of radiotherapy was significant in multivariate analysis (P = 0.042). Activation of the Akt pathway is correlated with erbB2 overexpression in breast cancer. The results

  19. 2,3-Diphosphoglycerate is a nonselective inhibitor of inositol 1,4,5-trisphosphate action and metabolism.

    Science.gov (United States)

    Guillemette, G; Favreau, I; Lamontagne, S; Boulay, G

    1990-04-25

    Inositol 1,4,5-trisphosphate (InsP3) is an important second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C in response to Ca2(+)-mobilizing stimuli. InsP3 interacts with specific intracellular receptors and triggers the release of sequestered Ca2+ from an intracellular store. We have looked at the influence of 2,3-diphosphoglycerate on the action and metabolism of InsP3 in the bovine adrenal cortex. 2,3-Diphosphoglycerate blocked InsP3 binding to adrenal cortex microsomes with a half-maximal efficiency of 0.5 mM. Scatchard analyses revealed that 2,3-diphosphoglycerate did not change the maximal capacity of the microsomes, but decreased their binding affinity for InsP3. The Ca2(+)-releasing activity of InsP3 on the same microsomal preparation was monitored with the fluorescent indicator, Fura-2. 2,3-Diphosphoglycerate blocked this activity with a half-maximal efficiency of 2 mM. The effect of 2,3-diphosphoglycerate could be overcome by supramaximal doses of InsP3, indicating a competitive inhibitory effect. The activity of InsP3 phosphatase from bovine adrenal cortex microsomes was also studied. 2,3-Diphosphoglycerate inhibited the activity of the phosphatase with a half-maximal efficiency of 0.3 mM. Lineweaver-Burke plots revealed that this effect was competitive. Finally, 2,3-diphosphoglycerate was also able to inhibit the activity of a partially purified preparation of InsP3 kinase from bovine adrenal cortex cytosol. The half-maximal dose was around 10 mM and the Lineweaver-Burke plot showed that the inhibition was competitive. These results show that 2,3-diphosphoglycerate can be considered as a structural analog of InsP3. Its inhibitory effects, however, are not selective enough to use it as an InsP3 protective agent in Ca2(+)-mobilization studies.

  20. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    Science.gov (United States)

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of

  1. Cyclin dependent kinase 5 regulates endocytosis in nerve terminals via dynamin I phosphorylation

    International Nuclear Information System (INIS)

    Tan, T.C.; Hansra, G.; Calova, V.; Cousin, M.; Robinson, P.J.

    2002-01-01

    Full text: Synaptic vesicle endocytosis (SVE) in nerve terminals is essential for normal synaptic transmission and for memory retrieval. Dynamin I is a 96kDa nerve terminal phosphoprotein necessary for synaptic vesicle endocytosis in the nerve terminal. Dynamin I is dephosphorylated and rephosphorylated in a cyclical fashion with nerve terminal depolarisation and repolarisation. A number of kinases phosphorylate dynamin I in vitro including PKC, MAP kinase and cdc2. PKC phosphorylates dynamin in the proline rich domain on Ser 795 and is also thought to be the in vivo kinase for dynamin I. Another candidate is the neuron specific kinase cdk5, crucial for CNS development. The aim of this study is to identify the kinase which phosphorylates dynamin I in intact nerve terminals. Here we show that cyclin-dependent kinase 5 (cdk5) phosphorylates dynamin I in the proline-rich tail on Ser-774 or Ser-778. The phosphorylation of these sites but not Ser-795 also occurred in intact nerve terminals suggesting that cdk5 is the physiologically relevant enzyme for dynamin I. Synaptosomes prepared from rat brains (after cervical dislocations) and labelled with 32 Pi, were incubated with 100 M roscovitine (a selective inhibitor of cdks), 10 M Ro 31-8220 (a selective PKC inhibitor) and 100 M PD 98059 (a MEK kinase inhibitor). Dynamin rephosphorylation during repolarisation was reduced in synaptosomes treated with roscovitine and Ro 38-8220 but not in synaptosomes treated with PD 98059. Fluorimetric experiments on intact synaptosomes utilising FM-210 (a fluorescent dye) indicate that endocytosis was reduced in synaptosomes treated with 100 M roscovitine. Our results suggest that dynamin phosphorylation in intact nerve terminals may not be regulated by PKC or MAP kinase and that dynamin phosphorylation by cdk5 may regulate endocytosis. Copyright (2002) Australian Neuroscience Society

  2. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.

    Science.gov (United States)

    Narayana, N; Cox, S; Shaltiel, S; Taylor, S S; Xuong, N

    1997-04-15

    The crystal structure of the hexahistidine-tagged mouse recombinant catalytic subunit (H6-rC) of cAMP-dependent protein kinase (cAPK), complexed with a 20-residue peptide inhibitor from the heat-stable protein kinase inhibitor PKI(5-24) and adenosine, was determined at 2.2 A resolution. Novel crystallization conditions were required to grow the ternary complex crystals. The structure was refined to a final crystallographic R-factor of 18.2% with good stereochemical parameters. The "active" enzyme adopts a "closed" conformation as found in rC:PKI(5-24) [Knighton et al. (1991a,b) Science 253, 407-414, 414-420] and packs in a similar manner with the peptide providing a major contact surface. This structure clearly defines the subsites of the unique nucleotide binding site found in the protein kinase family. The adenosine occupies a mostly hydrophobic pocket at the base of the cleft between the two lobes and is completely buried. The missing triphosphate moiety of ATP is filled with a water molecule (Wtr 415) which replaces the gamma-phosphate of ATP. The glycine-rich loop between beta1 and beta2 helps to anchor the phosphates while the ribose ring is buried beneath beta-strand 2. Another ordered water molecule (Wtr 375) is pentacoordinated with polar atoms from adenosine, Leu 49 in beta-strand 1, Glu 127 in the linker strand between the two lobes, Tyr 330, and a third water molecule, Wtr 359. The conserved nucleotide fold can be defined as a lid comprised of beta-strand 1, the glycine-rich loop, and beta-strand 2. The adenine ring is buried beneath beta-strand 1 and the linker strand (120-127) that joins the small and large lobes. The C-terminal tail containing Tyr 330, a segment that lies outside the conserved core, covers this fold and anchors it in a closed conformation. The main-chain atoms of the flexible glycine-rich loop (residues 50-55) in the ATP binding domain have a mean B-factor of 41.4 A2. This loop is quite mobile, in striking contrast to the other

  3. Detection of bovine herpesvirus 4 glycoprotein B and thymidine kinase DNA by PCR assays in bovine milk

    NARCIS (Netherlands)

    Wellenberg, G.J.; Verstraten, E.; Belak, S.; Verschuren, S.B.E.; Rijsewijk, F.A.M.; Peshev, R.; Oirschot, van J.T.

    2001-01-01

    A polymerase chain reaction (PCR) assay was developed to detect bovine herpesvirus 4 (BHV4) glycoprotein B (gB) DNA, and a nested-PCR assay was modified for the detection of BHV4 thymidine kinase (TK) DNA in bovine milk samples. To identify false-negative PCR results, internal control templates were

  4. The Arabidopsis pi4kIIIβ1β2 double mutant is salicylic acid-overaccumulating: A new example of salicylic acid influence on plant stature

    Czech Academy of Sciences Publication Activity Database

    Janda, Martin; Šašek, Vladimír; Ruelland, E.

    2014-01-01

    Roč. 9, č. 12 (2014) ISSN 1559-2324 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : phosphatidylinositol-4-kinase * plant growth * salicylic acid Subject RIV: ED - Physiology http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25482755

  5. Molecular mechanisms of the synergy between cysteinyl-leukotrienes and receptor tyrosine kinase growth factors on human bronchial fibroblast proliferation

    Directory of Open Access Journals (Sweden)

    Hajime Yoshisue

    2006-12-01

    Full Text Available We have reported that cysteinyl-leukotrienes (cys-LTs synergise not only with epidermal growth factor (EGF but also with platelet-derived growth factor (PDGF and fibroblast growth factor (FGF to induce mitogenesis in human bronchial fibroblasts. We now describe the molecular mechanisms underlying this synergism. Mitogenesis was assessed by incorporation of [3H]thymidine into DNA and changes in protein phosphorylation by Western blotting. Surprisingly, no CysLT receptor antagonists (MK-571, montelukast, BAY u9773 prevented the synergistic mitogenesis. LTD4 did not cause phosphorylation of EGFR nor did it augment EGF-induced phosphorylation of EGFR, and the synergy between LTD4 and EGF was not blocked by the metalloproteinase inhibitor GM6001 or by an HB-EGF neutralising antibody. The EGFR-selective kinase inhibitor, AG1478, suppressed the synergy by LTD4 and EGF, but had no effect on the synergy with PDGF and FGF. While inhibitors of mitogen-activated protein kinase, phosphatidylinositol 3-kinase and protein kinase C (PKC prevented the synergy, these drugs also inhibited mitogenesis elicited by EGF alone. In contrast, pertussis toxin (PTX efficiently inhibited the potentiating effect of LTD4 on EGF-induced mitogenesis, as well as that provoked by PDGF or FGF, but had no effect on mitogenesis elicited by the growth factors alone. Whereas LTD4 alone did not augment phosphorylation of extracellular signal-regulated kinase (Erk-1/2 and Akt, it increased phosphorylation of PKC in a Gi-dependent manner. Addition of LTD4 prolonged the duration of EGF-induced phosphorylation of Erk-1/2 and Akt, both of which were sensitive to PTX. The effect of cys-LTs involves a PTX-sensitive and PKC-mediated intracellular pathway leading to sustained growth factor-dependent phosphorylation of Erk-1/2 and Akt.

  6. Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate.

    Science.gov (United States)

    Frias, Miguel A; James, Richard W; Gerber-Wicht, Christine; Lang, Ursula

    2009-05-01

    High-density lipoprotein (HDL) has been reported to have cardioprotective properties independent from its cholesterol transport activity. The influence of native HDL and reconstituted HDL (rHDL) on Stat3, the transcription factor playing an important role in myocardium adaptation to stress, was analysed in neonatal rat ventricular cardiomyocytes. We have investigated modulating the composition of rHDL as a means of expanding its function and potential cardioprotective effects. Stat3 phosphorylation and activation were determined by western blotting and electrophoretic mobility shift assay (EMSA). In ventricular cardiomyocytes, HDL and the HDL constituent sphingosine-1-phosphate (S1P) induce a concentration- and time-dependent increase in Stat3 activation. They also enhance extracellular signal-regulated kinases (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. U0126, a specific inhibitor of MEK1/2, the upstream activator of ERK1/2, abolishes HDL- and S1P-induced Stat3 activation, whereas the p38 MAPK blocker SB203580 has no significant effect. Inhibition of the tyrosine kinase family Src (Src) caused a significant reduction of Stat3 activation, whereas inhibition of phosphatidylinositol 3-kinase (PI3K) had no effect. S1P and rHDL containing S1P have a similar strong stimulatory action on Stat3, ERK1/2, and p38 MAPK comparable to native HDL. S1P-free rHDL has a much weaker effect. Experiments with agonists and antagonists of the S1P receptor subtypes indicate that HDL and S1P activate Stat3 mainly through the S1P2 receptor. In ventricular cardiomyocytes, addition of S1P to rHDL enhances its therapeutic potential by improving its capacity to activate Stat3. Activation of Stat3 occurs mainly via the S1P constituent and the lipid receptor S1P2 requiring stimulation of ERK1/2 and Src but not p38 MAPK or PI3K. The study underlines the therapeutic potential of tailoring rHDL to confront particular clinical situations.

  7. Do phosphoinositides regulate membrane water permeability of tobacco protoplasts by enhancing the aquaporin pathway?

    Science.gov (United States)

    Ma, Xiaohong; Shatil-Cohen, Arava; Ben-Dor, Shifra; Wigoda, Noa; Perera, Imara Y; Im, Yang Ju; Diminshtein, Sofia; Yu, Ling; Boss, Wendy F; Moshelion, Menachem; Moran, Nava

    2015-03-01

    Enhancing the membrane content of PtdInsP 2 , the already-recognized protein-regulating lipid, increased the osmotic water permeability of tobacco protoplasts, apparently by increasing the abundance of active aquaporins in their membranes. While phosphoinositides are implicated in cell volume changes and are known to regulate some ion channels, their modulation of aquaporins activity has not yet been reported for any organism. To examine this, we compared the osmotic water permeability (P f) of protoplasts isolated from tobacco (Nicotiana tabacum) cultured cells (NT1) with different (genetically lowered or elevated relative to controls) levels of inositol trisphosphate (InsP3) and phosphatidyl inositol [4,5] bisphosphate (PtdInsP2). To achieve this, the cells were transformed with, respectively, the human InsP3 5-phosphatase ('Ptase cells') or human phosphatidylinositol (4) phosphate 5-kinase ('PIPK cells'). The mean P f of the PIPK cells was several-fold higher relative to that of controls and Ptase cells. Three results favor aquaporins over the membrane matrix as underlying this excessive P f: (1) transient expression of the maize aquaporin ZmPIP2;4 in the PIPK cells increased P f by 12-30 μm s(-1), while in the controls only by 3-4 μm s(-1). (2) Cytosol acidification-known to inhibit aquaporins-lowered the P f in the PIPK cells down to control levels. (3) The transcript of at least one aquaporin was elevated in the PIPK cells. Together, the three results demonstrate the differences between the PIPK cells and their controls, and suggest a hitherto unobserved regulation of aquaporins by phosphoinositides, which could occur through direct interaction or indirect phosphoinositides-dependent cellular effects.

  8. Hydrothermal synthesis, structural and physico-chemical characterizations of two Nasicon phosphates: M0.50IITi2(PO4)3 (M = Mn, Co)

    International Nuclear Information System (INIS)

    Essehli, Rachid; Bali, Brahim El; Benmokhtar, S.; Fejfarova, Karla; Dusek, Michal

    2009-01-01

    The family of titanium Nasicon-phosphates of generic formula M 0.5 II Ti 2 (PO 4 ) 3 has been revisited using hydrothermal techniques. Two phases have been synthesized: Mn 0.5 II Ti 2 (PO 4 ) 3 (MnTiP) and Co 0.5 II Ti 2 (PO 4 ) 3 (CoTiP). Single crystal diffraction studies show that they exhibit two different structural types. Mn 0.5 II Ti 2 (PO 4 ) 3 phosphate crystallizes in the R-3 space group, with the cell parameters a = 8.51300(10) A and c = 21.0083(3) A (V = 1318.52(3) A 3 and Z = 6). The Co 0.5 II Ti 2 (PO 4 ) 3 phosphate crystallizes in the R-3c space group, with a = 8.4608(9) A and c = 21.174(2) A (V = 1312.7(2) A 3 and Z = 6). These two compounds are clearly related to the parent Nasicon-type rhombohedral structure, which can be described using [Ti 2 (PO 4 ) 3 ] framework composed of two [TiO 6 ] octahedral interlinked via three [PO 4 ] tetrahedra. 31 P magic-angle spinning nuclear magnetic resonance (MAS-NMR) data are presented as supporting data. Curie-Weiss-type behavior is observed in the magnetic susceptibility. The phases are also characterized by IR spectroscopy and UV-visible.

  9. Cooperative phosphoinositide and peptide binding by PSD-95/discs large/ZO-1 (PDZ) domain of polychaetoid, Drosophila zonulin.

    Science.gov (United States)

    Ivarsson, Ylva; Wawrzyniak, Anna Maria; Wuytens, Gunther; Kosloff, Mickey; Vermeiren, Elke; Raport, Marie; Zimmermann, Pascale

    2011-12-30

    PDZ domains are well known protein-protein interaction modules that, as part of multidomain proteins, assemble molecular complexes. Some PDZ domains have been reported to interact with membrane lipids, in particular phosphatidylinositol phosphates, but few studies have been aimed at elucidating the prevalence or the molecular details of such interactions. We screened 46 Drosophila PDZ domains for phosphoinositide-dependent cellular localization and discovered that the second PDZ domain of polychaetoid (Pyd PDZ2) interacts with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the plasma membrane. Surface plasmon resonance binding experiments with recombinant protein established that Pyd PDZ2 interacts with phosphatidylinositol phosphates with apparent affinities in the micromolar range. Electrostatic interactions involving an extended positively charged surface of Pyd PDZ2 are crucial for the PtdIns(4,5)P(2)-dependent membrane interactions as shown by a combination of three-dimensional modeling, mutagenesis, binding, and localization studies. In vivo localization studies further suggested that both lipid and peptide binding contribute to membrane localization. We identified the transmembrane protein Crumbs as a Pyd PDZ2 ligand and probed the relation between peptide and PtdIns(4,5)P(2) binding. Contrary to the prevalent view on PDZ/peptide/lipid binding, we did not find competition between peptide and lipid ligands. Instead, preloading the protein with the 10-mer Crb3 peptide increased the apparent affinity of Pyd PDZ2 for PtdIns(4,5)P(2) 6-fold. Our results suggest that membrane localization of Pyd PDZ2 may be driven by a combination of peptide and PtdIns(4,5)P(2) binding, which raises the intriguing possibility that the domain may coordinate protein- and phospholipid-mediated signals.

  10. Adherence to phosphate binders in hemodialysis patients: prevalence and determinants.

    Science.gov (United States)

    Van Camp, Yoleen P M; Vrijens, Bernard; Abraham, Ivo; Van Rompaey, Bart; Elseviers, Monique M

    2014-12-01

    Phosphate control is a crucial treatment goal in end-stage renal disease, but poor patient adherence to phosphate binder therapy remains a challenge. This study aimed to estimate the extent of phosphate binder adherence in hemodialysis patients and to identify potential determinants. Phosphate binder adherence was measured blindly in 135 hemodialysis patients for 2 months using the medication event monitoring system. Patient data, gathered at inclusion through medical records, ad hoc questionnaires and the short form (SF)-36 health survey, included: (1) demographics, (2) perceived side-effects, belief in benefit, self-reported adherence to the therapy, (3) knowledge about phosphate binder therapy, (4) social support, and (5) quality of life (SF-36). Phosphatemia data was collected from charts. 'Being adherent' was defined as missing adherent' as missing adherent. Over the entire 8-week period, 22 % of patients were totally adherent. Mean phosphatemia levels were 0.55 mg/dl lower in adherent than nonadherent patients (4.76 vs. 5.31 mg/dl). Determinants for being totally adherent were living with a partner, higher social support (both were interrelated) and higher physical quality of life. Experiencing intake-related inconvenience negatively affected adherence. The social support and quality of life physical score explained 26 % of the variance in adherence. Phosphate binder nonadherence remains a major problem. Interventions should aim, at least, to improve social support. With few associated factors found and yet low adherence, an individualized approach seems indicated.

  11. Alpha 1-adrenergic stimulation of phosphatidylinositol turnover and respiration of brown fat cells

    International Nuclear Information System (INIS)

    Mohell, N.; Wallace, M.; Fain, J.N.

    1984-01-01

    The alpha-adrenergic agonist phenylephrine (in the presence of the beta-adrenergic antagonist alprenolol) stimulated respiration and incorporation of [ 3 H]glycerol and [ 32 P] P/sub i/ into phosphatidylinositol of hamster brown fat cells in a concentration-dependent manner. Both responses were preferentially inhibited by prazosin as compared with yohimbine, indicating alpha 1 specificity. Uniquely, prazosin inhibition of phenylephrine-stimulated phosphatidylinositol metabolism had two components, since 30% of the response was inhibited by less than 1 nM prazosin, 10 nM gave no further inhibition, and 100 nM prazosin completely inhibited the response. The phosphatidylinositol response was still present in Ca 2 +-free buffer, although reduced in magnitude. The concentration relationships of the effects of agonists and antagonists were compared with those of previous results of [ 3 H]prazosin binding and with phenylephrine potency to compete for binding. On the basis of these comparisons, it is suggested that the highly prazosin-sensitive part of the phosphatidylinositol response may be closely associated with receptor occupation

  12. PfPI3K, a Phosphatidylinsoitol-3 kinase in Plasmodium falciparum, is exported to the host erythrocyte and is involved in hemoglobin trafficking

    CSIR Research Space (South Africa)

    Vaid, A

    2010-03-01

    Full Text Available largely unexplored. Our present studies suggest that PfPI3K, a novel phosphatidylinositol-3-kinase (PI3K) in Plasmodium falciparum, is exported to the host erythrocyte by the parasite in an active form. PfPI3K is a versatile enzyme as it can generate...

  13. Synthesis and characterization of the novel rare earth orthophosphates Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Schildhammer, Daniel; Petschnig, Lucas L.; Fuhrmann, Gerda; Heymann, Gunter; Schottenberger, Herwig; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie; Tribus, Martina [Innsbruck Univ. (Austria). Inst. fuer Mineralogie und Petrographie

    2016-02-01

    The new mixed rare earth (RE) orthophosphates Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4} were synthesized by a classical solid state reaction in an electrical furnace at 1200 C. As starting materials, the corresponding rare earth oxides and diammonium hydrogen phosphate were used. The powder diffraction analyses revealed that the new compounds Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4} crystallize in a zircon-type structure being isostructural with the rare earth orthophosphate YPO{sub 4}. Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4} crystallize in the tetragonal space group I4{sub 1}/amd (no. 141) with four formula units in the unit cell. The structural parameters based on Rietveld refinements are a = 687.27(2), c = 601.50(2) pm, V = 0.28412(1) nm{sup 3}, R{sub p} = 0.0143, and R{sub wp} = 0.0186 (all data) for Y{sub 0.5}Er{sub 0.5}PO{sub 4} and a = 684.61(2), c = 599.31(2) pm, V = 0.28089(2) nm{sup 3}, R{sub p} = 0.0242, and R{sub wp} = 0.0313 (all data) for Y{sub 0.5}Yb{sub 0.5}PO{sub 4}. Furthermore, the structure of Y{sub 0.5}Er{sub 0.5}PO{sub 4} was refined from single-crystal X-ray diffraction data: a = 687.78(5), c = 601.85(4) pm, V = 0.28470(5) nm{sup 3}, R{sub 1} = 0.0165, and wR{sub 2} = 0.0385 (all data). In both compounds, the rare earth metal ions are eightfold coordinated by oxygen atoms, forming two unique interlocking tetrahedra with two individual RE-O distances. The tetrahedral phosphate groups [PO{sub 4}]{sup 3-} are slightly distorted in both compounds. The individual rare earth ions share a common position (Wyckoff site 4a). The presence of two rare earth ions in the structures of the new orthophosphates Y{sub 0.5}Er{sub 0.5}PO{sub 4} and Y{sub 0.5}Yb{sub 0.5}PO{sub 4} was additionally confirmed by single-crystal EDX spectroscopy revealing a ratio of 1:1.

  14. Preparation of calcium phosphate paste

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Norzita Yaacob; Idris Besar; Che Seman Mahmood; Rusnah Mustafa

    2010-01-01

    Calcium phosphate paste were prepared by mixing between calcium sodium potassium phosphate, Ca 2 NaK (PO 4 ) 2 (CSPP) and monocalcium phosphate monohydrate, Ca(H 2 PO 4 ) 2 .H 2 O (MCPM). CSPP were obtained by reaction between calcium hydrogen phosphate (CaHPO 4 ), potassium carbonate (K 2 CO 3 ) and sodium carbonate (Na 2 CO 3 ) in solid state sintering process followed by quenching in air at 1000 degree Celsius. The paste was aging in simulated body fluid (SBF) for 0.5, 1, 3, 6, 12, 24, 48 hrs, 3, 7 and 14 days. The morphological investigation indicated the formation of apatite crystal were first growth after 24 hours. The obvious growth of apatite crystal was shown at 3 days. The obvious growth of apatite crystal was shown in 7 and 14 days indicated the prediction of paste would have rapid reaction with bone after implantation. (author)

  15. Metabolism of inositol(1,4,5)trisphosphate by a soluble enzyme fraction from pea (Pisum sativum) roots

    International Nuclear Information System (INIS)

    Drobak, B.K.; Watkins, P.A.C.; Roberts, K.; Chattaway, J.A.; Dawson, A.P.

    1991-01-01

    Metabolism of the putative messenger molecule D-myo-inositol(1,4,5)trisphosphate [Ins(1,4,5)P 3 ] in plant cells has been studied using a soluble fraction from pea (pisum sativum) roots as enzyme source and [5- 32 P]Ins(1,4,5)P 3 and [2- 3 H]Ins(1,4,5)P 3 as tracers. Ins(1,4,5)P 3 was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol (4,5) bisphosphate [Ins(4,5)P 2 ] whereas inositol(1,4)bisphosphate [Ins(1,4)P 2 ] was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P 4 . Dephosphorylation of Ins(1,4,5)P 3 to Ins(4,5)P 2 was dependent on Ins(1,4,5)P 3 concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P 3 to Ins(4,5)P 2 and Ins(1,4,5,X)P 4 was inhibited by 55 micromolar Ca 2+ . This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P 3 and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom

  16. The mechanism of phospholipase Cγ1 activation

    Directory of Open Access Journals (Sweden)

    Paweł Krawczyk

    2011-08-01

    Full Text Available Phospholipase C is an enzyme which catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PI(4,5P2 into second messengers inositol-1,4,5-triphosphate (Ins(1,4,5P3 and diacylglycerol (DAG. These messengers then promote the activation of protein kinase C and release of Ca2 from intracellular stores, initiating numerous cellular events including proliferation, differentiation, signal transduction, endocytosis, cytoskeletal reorganization or activation of ion channels. There have been identified 14 isozymes of PLC among which PLCγ1 and PLCγ2 are of particular interest. PLC contains catalytic region XY and a few regulatory domains: PH, EF and C2. The most unique features of these two enzymes are the Src homology domains (SH2, SH3 and split PH domain within the catalytic barrel. PLC1 and PLCγ2 have an identical domain structure, but they differ in their function and occurrence. Phospholipase Cγ1 is expressed ubiquitously, especially in the brain, thymus and lungs.PLCγ1 can be activated by receptor tyrosine kinases (i.e.: PDGFR, EGFR, FGFR, Trk, as well as non-receptor protein kinases (Src, Syk, Tec or phosphatidic acid, tau protein and its analogue.The molecular mechanism of PLCγ1 activation includes membrane recruitment, phosphorylation, rearrangements and activation in the presence of growth factors.In reference to PLCγ1 regulation, a number of positive and negative modulators have been considered. The most important positive modulator is phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5P2. Protein kinase A and C, tyrosine phosphatases (SHP-1, PTP-1B and Cbl, Grb2, Jak2/PTP-1B complex proteins have been described as negative regulators of PLCγ1 activation.

  17. RIPK1 and PGAM5 Control Leishmania Replication through Distinct Mechanisms.

    Science.gov (United States)

    Farias Luz, Nivea; Balaji, Sakthi; Okuda, Kendi; Barreto, Aline Silva; Bertin, John; Gough, Peter J; Gazzinelli, Ricardo; Almeida, Roque P; Bozza, Marcelo T; Borges, Valeria M; Chan, Francis Ka-Ming

    2016-06-15

    Leishmaniasis is an important parasitic disease found in the tropics and subtropics. Cutaneous and visceral leishmaniasis affect an estimated 1.5 million people worldwide. Despite its human health relevance, relatively little is known about the cell death pathways that control Leishmania replication in the host. Necroptosis is a recently identified form of cell death with potent antiviral effects. Receptor interacting protein kinase 1 (RIPK1) is a critical kinase that mediates necroptosis downstream of death receptors and TLRs. Heme, a product of hemoglobin catabolism during certain intracellular pathogen infections, is also a potent inducer of macrophage necroptosis. We found that human visceral leishmaniasis patients exhibit elevated serum levels of heme. Therefore, we examined the impact of heme and necroptosis on Leishmania replication. Indeed, heme potently inhibited Leishmania replication in bone marrow-derived macrophages. Moreover, we found that inhibition of RIPK1 kinase activity also enhanced parasite replication in the absence of heme. We further found that the mitochondrial phosphatase phosphoglycerate mutase family member 5 (PGAM5), a putative downstream effector of RIPK1, was also required for inhibition of Leishmania replication. In mouse infection, both PGAM5 and RIPK1 kinase activity are required for IL-1β expression in response to Leishmania However, PGAM5, but not RIPK1 kinase activity, was directly responsible for Leishmania-induced IL-1β secretion and NO production in bone marrow-derived macrophages. Collectively, these results revealed that RIPK1 and PGAM5 function independently to exert optimal control of Leishmania replication in the host. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture

    Directory of Open Access Journals (Sweden)

    Sonia eGazzarrini

    2014-04-01

    Full Text Available Carbohydrates, or sugars, regulate various aspects of plant growth through modulation of cell division and expansion. Besides playing essential roles as sources of energy for growth and as structural components of cells, carbohydrates also regulate the timing of expression of developmental programs. The disaccharide trehalose is used as an energy source, as a storage and transport molecule for glucose, and as a stress-responsive compound important for cellular protection during stress in all kingdoms. Trehalose, however, is found in very low amounts in most plants, pointing to a signaling over metabolic role for this non-reducing disaccharide. In the last decade, trehalose-6-phosphate (T6P, an intermediate in trehalose metabolism, has been shown to regulate embryonic and vegetative development, flowering time, meristem determinacy and cell fate specification in plants. T6P acts as a global regulator of metabolism and transcription promoting plant growth and triggering developmental phase transitions in response to sugar availability. Among the T6P targets are members of the Sucrose-non-fermenting1-Related Kinase1 (SnRK1 family, which are sensors of energy availability and inhibit plant growth and development during metabolic stress to maintain energy homeostasis. In this review, we will discuss the opposite roles of the sugar metabolite T6P and the SnRK1 kinases in the regulation of developmental phase transitions in response to carbohydrate levels. We will focus on how these two global regulators of metabolic processes integrate environmental cues and interact with hormonal signaling pathways to modulate plant development.

  19. Topotactic insertion of lithium in the layered structure Li4VO(PO4)2: The tunnel structure Li5VO(PO4)2

    International Nuclear Information System (INIS)

    Satya Kishore, M.; Pralong, V.; Caignaert, V.; Malo, S.; Hebert, S.; Varadaraju, U.V.; Raveau, B.

    2008-01-01

    A new V(III) lithium phosphate Li 5 VO(PO 4 ) 2 has been synthesized by electrochemical insertion of lithium into Li 4 VO(PO 4 ) 2 . This phase, which crystallizes in the space group I4/mcm, exhibits a tunnel structure closely related to the layered structure of Li 4 VO(PO 4 ) 2 and to the tunnel structure of VO(H 2 PO 4 ) 2 . The topotactic reactions that take place during lithium exchange and intercalation, starting from VO(H 2 PO 4 ) 2 and going to the final phase Li 5 VO(PO 4 ) 2 are explained on the basis of the flexible coordinations of V 4+ and V 3+ species. The electrochemical and magnetic properties of this new phase are also presented and explained on the basis of the structure dimensionality. - Graphical abstract: Electrochemical synthesis of a new 3D V(III) lithium phosphate, Li 5 VO(PO 4 ) 2 . Starting from the 2D Li 4 VO(PO 4 ) 2 , the topotactic reaction that take place during lithium intercalation is explained on the basis of the flexible coordinations of V 4+ and V 3+ species

  20. A New Crucial Protein Interaction Element That Targets the Adenovirus E4-ORF1 Oncoprotein to Membrane Vesicles▿

    OpenAIRE

    Chung, Sang-Hyuk; Frese, Kristopher K.; Weiss, Robert S.; Prasad, B. V. Venkataram; Javier, Ronald T.

    2007-01-01

    Human adenovirus type 9 exclusively elicits mammary tumors in experimental animals, and the primary oncogenic determinant of this virus is the E4-ORF1 oncogene, as opposed to the well-known E1A and E1B oncogenes. The tumorigenic potential of E4-ORF1, as well as its ability to oncogenically stimulate phosphatidylinositol 3-kinase (PI3K), depends on a carboxyl-terminal PDZ domain-binding motif (PBM) that mediates interactions with several different membrane-associated cellular PDZ proteins, inc...

  1. Characterization of phosphorylation sites in the cytoplasmic domain of the 300 kDa mannose-6-phosphate receptor

    DEFF Research Database (Denmark)

    Rosorius, O; Mieskes, G; Issinger, O G

    1993-01-01

    The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation and the phosphorylat......The human 300 kDa mannose-6-phosphate receptor (MPR 300) is phosphorylated in vivo at serine residues of its cytoplasmic domain. Two-dimensional separation can resolve tryptic phosphopeptides into four major species. To identify the kinases involved in MPR 300 phosphorylation...... and the phosphorylation sites the entire coding sequence of the cytoplasmic tail was expressed in Escherichia coli. The isolated cytoplasmic domain was used as a substrate for four purified serine/threonine kinases [casein kinase II (CK II), protein kinase A (PKA), protein kinase C and Ca2+/calmodulin kinase]. All...... kinases phosphorylate the cytoplasmic tail exclusively on serine residues. Inhibition studies using synthetic peptides, partial sequencing of isolated tryptic phosphopeptides and co-migration with tryptic phosphopeptides from MPR 300 labelled in vivo showed that (i) PKA phosphorylates the cytoplasmic MPR...

  2. Meningococcal X polysaccharide quantification by high-performance anion-exchange chromatography using synthetic N-acetylglucosamine-4-phosphate as standard.

    Science.gov (United States)

    Micoli, F; Adamo, R; Proietti, D; Gavini, M; Romano, M R; MacLennan, C A; Costantino, P; Berti, F

    2013-11-15

    A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Uranium extraction from ores with salicylic acid; I - uranium extraction from input phosphate ore of Abu Zaabal phosphate plant, Egypt

    International Nuclear Information System (INIS)

    Hussein, E.M.

    1997-01-01

    Salicylic acid has been tested (for environmental importance) to extract U from input phosphate ore of Abu-Zaabal phosphate plant, Egypt prior to its processing for production of phosphatic fertilizers. Uranyl ion forms with this acid three stable complexes; namely [UO 2 Sal] degree, [U O 2 SaL 2 ] 2- and UO 2 SaL-3] 4- depending on the total uranyl and salicylic acid concentrations and their ratios. Study of relevant extraction factors revealed however that, the extraction process is controlled by the amount of salicylic acid used, alcohol/aqueous ratio, solid/liquid ratio and time of agitation. The obtained results showed that uranium is selectively leached by the application of such a leaching reagent. In order to recover U from the obtained pregnant leach liquor, the latter is adjusted by ammonia to PH 5-6.5, where the crystalline pp t of N H 4 [UO 2 SaL 3 ] 4 H 2 O has formed. This precipitation has been carried out after concentrating the obtained pregnant leach liquor by its recycle for U extraction from new ore batches. The precipitated ammonium uranyl tri salicylate is calcined at 500 degree C for obtaining pure orange yellow trioxide (UO 3 ) powder. On the basis of one ton ore treatment, an economic flowsheet for U recover y from the study ore material has been suggested

  4. Synthesis and crystal structure of 4-fluorobenzylammonium dihydrogen phosphate, [FC6H4CH2NH3]H2PO4

    Directory of Open Access Journals (Sweden)

    Ali Rayes

    2016-12-01

    Full Text Available The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4−, contains one 4-fluorobenzylammonium cation and one dihydrogen phosphate anion. In the crystal, the H2PO4− anions are linked by O—H...O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3+ cations lie between these anionic layers to maximize the electrostatic interactions and are linked to the H2PO4− anions through N—H...O hydrogen bonds, forming a three-dimensional supramolecular network. Two hydrogen atoms belonging to the dihydrogen phosphate anion are statistically occupied due to disorder along the OH...HO direction.

  5. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi

    2017-07-22

    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4 IKD ). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4 IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4 IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4 IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4 IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Synthesis, structures and properties of the new lithium cobalt(II) phosphate Li4Co(PO4)2

    International Nuclear Information System (INIS)

    Glaum, R.; Gerber, K.; Schulz-Dobrick, M.; Herklotz, M.; Scheiba, F.; Ehrenberg, H.

    2012-01-01

    α-Li 4 Co(PO 4 ) 2 has been synthesized and crystallized by solid-state reactions. The new phosphate crystallizes in the monoclinic system (P2 1 /a, Z=4, a=8.117(3) Å, b=10.303(8) Å, c=8.118(8) Å, β=104.36(8) Å) and is isotypic to α-Li 4 Zn(PO 4 ) 2 . The structure of α-Li 4 Co(PO 4 ) 2 has been determined from single-crystal X-ray diffraction data {R 1 =0.040, wR 2 =0.135, 2278 unique reflections with F o >4σ(F o )}. The crystal structure, which might be regarded as a superstructure of the wurtzite structure type, is build of layers of regular CoO 4 , PO 4 and Li1O 4 tetrahedra. Lithium atoms Li2, Li3 and Li4 are located between these layers. Thermal investigations by in-situ XRPD, DTA/TG and quenching experiments suggest decomposition followed by formation and phase transformation of Li 4 Co(PO 4 ) 2 : α-Li 4 Co(PO 4 ) 2 ⟹ 442°C β-Li 3 PO 4 +LiCoPO 4 ⇌ 773°C β-Li 4 Co(PO 4 ) 2 ⟹ quenchingto25°C α-Li 4 Co(PO 4 ) 2 According to HT-XRPD at θ=850°Cβ-Li 4 Co(PO 4 ) 2 (Pnma, Z=2, 10.3341(8) Å, b=6.5829(5) Å, c=5.0428(3) Å) is isostructural to γ-Li 3 PO 4 . The powder reflectance spectrum of α-Li 4 Co(PO 4 ) 2 shows the typical absorption bands for the tetrahedral chromophore [Co II O 4 ]. - Graphical abstract: The complex formation and decomposition behavior of Li 4 Co(PO 4 ) 2 with temperature has been elucidated. The crystal structure of its α-phase was determined from single crystal data, HT-XRPD allowed derivation of a structure model for the β-phase. Both modifications belong to the Li 3 PO 4 structure family. Highlights: ► Li 4 Co(PO 4 ) 2 exhibits complex thermal behavior. ► The new phosphate belongs to the Li 3 PO 4 structure family. ► A single-crystal structure analysis is provided for the metastable α-Li 4 Co(PO 4 ) 2 . ► From HT-XRPD data a cation distribution model is developed for β-Li 4 Co(PO 4 ) 2 . ► No electrochemical delithiation is observed up to 5 V.

  7. Parkinson-Related LRRK2 Mutation R1628P Enables Cdk5 Phosphorylation of LRRK2 and Upregulates Its Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Yang Shu

    Full Text Available Recent studies have linked certain single nucleotide polymorphisms in the leucine-rich repeat kinase 2 (LRRK2 gene with Parkinson's disease (PD. Among the mutations, LRRK2 c.4883G>C (R1628P variant was identified to have a significant association with the risk of PD in ethnic Han-Chinese populations. But the molecular pathological mechanisms of R1628P mutation in PD is still unknown.Unlike other LRRK2 mutants in the Roc-COR-Kinase domain, the R1628P mutation didn't alter the LRRK2 kinase activity and promote neuronal death directly. LRRK2 R1628P mutation increased the binding affinity of LRRK2 with Cyclin-dependent kinase 5 (Cdk5. Interestingly, R1628P mutation turned its adjacent amino acid residue S1627 on LRRK2 protein to a novel phosphorylation site of Cdk5, which could be defined as a typical type II (+ phosphorylation-related single nucleotide polymorphism. Importantly, we showed that the phosphorylation of S1627 by Cdk5 could activate the LRRK2 kinase, and neurons ectopically expressing R1628P displayed a higher sensitivity to 1-methyl-4-phenylpyridinium, a bioactive metabolite of environmental toxin MPTP, in a Cdk5-dependent manner.Our data indicate that Parkinson-related LRRK2 mutation R1628P leads to Cdk5 phosphorylation of LRRK2 at S1627, which would upregulate the kinase activity of LRRK2 and consequently cause neuronal death.

  8. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    Science.gov (United States)

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  9. The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase–Protein Kinase B–Mammalian Target of Rapamycin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Changsong Yu

    2016-05-01

    Full Text Available Glucagon-like peptide-2 (GLP-2 is important for intestinal barrier function and regulation of tight junction (TJ proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER in lipopolysaccharide (LPS stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K-protein kinase B (Akt-mammalian target of rapamycin (mTOR signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 μg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1 mRNA, proteins expressions (p<0.01 respectively. GLP-2 (100 nmol/L promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01 respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01 following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01. In conclusion, these results indicated that GLP-2 can promote TJ’s expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.

  10. Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain

    DEFF Research Database (Denmark)

    Pandey, A.; Dan, I.; Kristiansen, T.Z.

    2002-01-01

    cloned a novel human PAK family kinase that has been designated as PAK5. PAK5 contains a CDC42/Rac1 interactive binding (CRIB) motif at the N-terminus and a Ste20-like kinase domain at the C-terminus. PAK5 is structurally most related to PAK4 and PAK6 to make up the PAK-II subfamily. We have shown...

  11. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China); Teng, Weiping, E-mail: twpendocrine@yahoo.com.cn [Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang (China)

    2013-09-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  12. Neurotoxicity of developmental hypothyroxinemia and hypothyroidism in rats: Impairments of long-term potentiation are mediated by phosphatidylinositol 3-kinase signaling pathway

    International Nuclear Information System (INIS)

    Wang, Yi; Wei, Wei; Wang, Yuan; Dong, Jing; Song, Binbin; Min, Hui; Teng, Weiping; Chen, Jie

    2013-01-01

    Neurotoxicity of iodine deficiency-induced hypothyroidism during developmental period results in serious impairments of brain function, such as learning and memory. These impairments are largely irreversible, and the underlying mechanisms remain unclear. In addition to hypothyroidism, iodine deficiency may cause hypothyroxinemia, a relatively subtle form of thyroid hormone deficiency. Neurotoxicity of developmental hypothyroxinemia also potentially impairs learning and memory. However, more direct evidence of the associations between developmental hypothyroxinemia and impairments of learning and memory should be provided, and the underlying mechanisms remain to be elucidated. Thus, in the present study, we investigated the effects of developmental hypothyroxinemia and hypothyroidism on long-term potentiation (LTP), a widely accepted cellular model of learning and memory, in the hippocampal CA1 region. The activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway – a pathway closely associated with synaptic plasticity and learning and memory – was also investigated. Wistar rats were treated with iodine deficient diet or methimazole (MMZ) to induce developmental hypothyroxinemia or hypothyroidism. The results showed that developmental hypothyroxinemia caused by mild iodine deficiency and developmental hypothyroidism caused by severe iodine deficiency or MMZ significantly reduced the field-excitatory postsynaptic potential (f-EPSP) slope and the population spike (PS) amplitude. Decreased activation of the PI3K signaling pathway was also observed in rats subjected to developmental hypothyroxinemia or hypothyroidism. Our results may support the hypothesis that neurotoxicity of both developmental hypothyroxinemia and hypothyroidism causes damages to learning and memory. Our results also suggest that decreased activation of the PI3K signaling pathway may contribute to impairments of LTP caused by neurotoxicity of both developmental hypothyroxinemia and

  13. Design and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis.

    Science.gov (United States)

    Kim, Okseon; Jeong, Yujeong; Lee, Hyunseung; Hong, Sun-Sun; Hong, Sungwoo

    2011-04-14

    Phosphatidylinositol 3-kinase α (PI3Kα) is an important regulator of intracellular signaling pathways, controlling remarkably diverse arrays of physiological processes. Because the PI3K pathway is frequently up-regulated in human cancers, the inhibition of PI3Kα can be a promising approach to cancer therapy. In this study, we have designed and synthesized a new series of imidazo[1,2-a]pyridine derivatives as PI3Kα inhibitors through the fragment-growing strategy. By varying groups at the 3- and 6-positions of imidazo[1,2-a]pyridines, we studied the structure-activity relationships (SAR) profiles and identified a series of potent PI3Kα inhibitors. Representative derivatives showed good activity in cellular proliferation and apoptosis assays. Moreover, these inhibitors exhibited noteworthy antiangiogenic activity.

  14. Free radical-mediated stimulation of tyrosine-specific protein kinase in rat liver plasma membrane

    International Nuclear Information System (INIS)

    Chan, T.M.; Tatoyan, A.; Cheng, E.; Shargill, N.S.; Pleta, M.

    1986-01-01

    Incorporation of 32 P from (γ- 32 P)-ATP into endogenous proteins of plasma membranes isolated from rat liver was significantly increased by several naphthoquinones including menadione. This apparent stimulation of membrane-associated protein kinase activity by these compounds was most striking (up to 6-7 fold) when the synthetic copolymers containing glutamate and tyrosine residues (4:1) was used as substrate. Since tyrosine residues are the only possible phosphate acceptor in the copolymers, the quinone-stimulated liver membrane protein kinase is most likely tyrosine specific. Although not required for protein kinase activity, dithiothreitol (DTT) was necessary for its stimulation by these quinonoid compounds. Hydrolysis of ATP was not significantly affected by quinones under the experimental conditions. Both menadione and vitamin k 5 increased phosphorylation of plasma membrane proteins of molecular weight 45 and 60 kd. The stimulatory effect of menadione on protein phosphorylation was prevented by the addition of superoxide dismutase. Dihydroxyfumerate, which spontaneously produces various radical species, and H 2 O 2 , also stimulated tyrosine-specific protein phosphorylation. DTT was also required for their full effect. It, therefore, appears that quinonone stimulation of tyrosine-specific protein phosphorylation is mediated by oxygen radicals

  15. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...

  16. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View.

    Science.gov (United States)

    Keegan, Achsah D; Zamorano, Jose; Keselman, Aleksander; Heller, Nicola M

    2018-01-01

    In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this "IL-4-induced phosphorylated substrate" (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3' kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  17. Synthesis of 4-substituted tetrahydropyridines by cross-coupling of enol phosphates

    DEFF Research Database (Denmark)

    Larsen, U.S.; Martiny, L.; Begtrup, M.

    2005-01-01

    Enol phosphates, synthesized from 4-piperidone, react by palladium catalyzed cross-coupling with arylboronic acids and by iron and palladium catalyzed cross-coupling with Grignard reagents to give 4-substituted tetrahydropyridines. (c) 2005 Elsevier Ltd. All rights reserved....

  18. Microchip Immunoaffinity Electrophoresis of Antibody-Thymidine Kinase 1 Complex

    Science.gov (United States)

    Pagaduan, Jayson V.; Ramsden, Madison; O’Neill, Kim; Woolley, Adam T.

    2015-01-01

    Thymidine kinase-1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody that binds to human TK1. We fabricated poly(methyl methacrylate) microfluidic devices to test the feasibility of detecting antibody (Ab)-pTK1 immune complexes as a step towards TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound antibodies using 0.5X phosphate buffer saline (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the antibody and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 minute for separation. PMID:25486911

  19. Modulation of agonist-induced inositol phosphate metabolism by cyclic adenosine 3',5'-monophosphate in adrenal glomerulosa cells

    International Nuclear Information System (INIS)

    Baukal, A.J.; Hunyady, L.; Balla, T.; Ely, J.A.; Catt, K.J.

    1990-01-01

    Activation of the cAMP messenger system was found to cause specific changes in angiotensin-II (All)-induced inositol phosphate production and metabolism in bovine adrenal glomerulosa cells. Pretreatment of [3H]inositol-labeled glomerulosa cells with 8-bromo-cAMP (8Br-cAMP) caused both short and long term changes in the inositol phosphate response to stimulation by All. Exposure to 8Br-cAMP initially caused dose-dependent enhancement (ED50 = 0.7 microM) of the stimulatory action of All (50 nM; 10 min) on the formation of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and its immediate metabolites. This effect of 8Br-cAMP was also observed in permeabilized [3H]inositol-labeled glomerulosa cells in which degradation of Ins(1,4,5)P3 was inhibited, consistent with increased activity of phospholipase-C. Continued exposure to 8Br-cAMP for 5-16 h caused selective enhancement of the All-induced increases in D-myo-inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4] and myo-inositol 1,4,5,6-tetrakisphosphate. The long term effect of 8Br-cAMP on the 6-phosphorylated InsP4 isomers, but not the initial enhancement of Ins(1,4,5)P3 formation, was inhibited by cycloheximide. The characteristic biphasic kinetics of All-induced Ins(1,4,5)P3 formation were also changed by prolonged treatment with 8Br-cAMP to a monophasic response in which Ins(1,4,5)P3 increased rapidly and remained elevated during All stimulation. In permeabilized glomerulosa cells treated with 8Br-cAMP for 16 h, the conversion of D-myo-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] to Ins(1,3,4,6)P4 was consistently increased, whereas dephosphorylation of Ins(1,4,5)P3 to D-myo-inositol 1,4-bisphosphate and of D-myo-inositol 1,3,4,5-tetrakisphosphate to Ins(1,3,4)P3, was reduced

  20. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    International Nuclear Information System (INIS)

    Akana, J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common (β/α) 8 -barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn 2+ which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn 2+ and inactive apoenzyme cannot be prepared, the affinity for Zn 2+ is decreased by alanine substitutions for the two histidine residues that coordinate the Zn 2+ ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn 2+ . The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn 2+ that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn 2+ and participate as acid/base catalysts are not conserved. We conclude that only the phosphate

  1. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts

  2. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic.

    Science.gov (United States)

    Ishikura, S; Koshkina, A; Klip, A

    2008-01-01

    Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.

  3. Supplementary data: Variation in the PTEN-induced putative kinase ...

    Indian Academy of Sciences (India)

    Variation in the PTEN-induced putative kinase 1 gene associated with the increase risk of type 2 diabetes in northern Chinese. Yanchun Qu, Liang Sun, Ze Yang and Ruifa Han. J. Genet. 90, 125–128. Table 1. Clinical characteristics of cases and controls. Phenotype. T2DM. Controls. P value. Age (years). 49.5 ± 11.1. 50.4 ± ...

  4. Vanadate influence on metabolism of sugar phosphates in fungus Phycomyces blakesleeanus.

    Directory of Open Access Journals (Sweden)

    Milan Žižić

    Full Text Available The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+ on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC, and polyphosphates, UDPG and ATP (31P NMR was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+, indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi.

  5. Synthesis, characterization and inhibitory activities of (4-N3[3,5-3H]Phe10)PKI(6-22)amide and its precursors: photoaffinity labeling peptides for the active site of cyclic AMP-dependent protein kinase.

    Science.gov (United States)

    Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B

    1989-06-01

    PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.

  6. Electrochemical behaviour of a vanadium anode in phosphoric acid and phosphate solutions

    International Nuclear Information System (INIS)

    Alonzo, V.; Darchen, A.; Fur, E. Le; Pivan, J.Y.

    2006-01-01

    Anodic polarisation of a vanadium electrode has been studied in H 3 PO 4 solutions and some phosphate solutions: LiH 2 PO 4 , NaH 2 PO 4 , KH 2 PO 4 and NH 4 H 2 PO 4 . The anodic behaviour of a vanadium electrode showed similarities in weak concentrated H 3 PO 4 , in LiH 2 PO 4 and NaH 2 PO 4 solutions: the polarisation curve exhibited a current peak followed by current oscillations and then a current plateau. Concentrated H 3 PO 4 , 1 M KH 2 PO 4 and NH 4 H 2 PO 4 solutions involved vanadium passivation with a very slight current density plateau. Yellow compound identified to VOPO 4 .2H 2 O was obtained after controlled potential oxidation of vanadium in 5-10 M H 3 PO 4 . Green products were obtained in 1 M phosphate solutions and in 1-3 M H 3 PO 4 on vanadium anode after controlled potential electrolysis. All these vanadophosphate compounds contained the monovalent cation which was present in the solution

  7. Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system.

    Science.gov (United States)

    Monsey, John; Shen, Wei; Schlesinger, Paul; Bose, Ron

    2010-03-05

    Her4 (ErbB-4) and Her2/neu (ErbB-2) are receptor-tyrosine kinases belonging to the epidermal growth factor receptor (EGFR) family. Crystal structures of EGFR and Her4 kinase domains demonstrate kinase dimerization and activation through an allosteric mechanism. The kinase domains form an asymmetric dimer, where the C-lobe surface of one monomer contacts the N-lobe of the other monomer. EGFR kinase dimerization and activation in vitro was previously reported using a nickel-chelating lipid-liposome system, and we now apply this system to all other members of the EGFR family. Polyhistidine-tagged Her4, Her2/neu, and Her3 kinase domains are bound to these nickel-liposomes and are brought to high local concentration, mimicking what happens to full-length receptors in vivo following ligand binding. Addition of nickel-liposomes to Her4 kinase domain results in 40-fold activation in kinase activity and marked enhancement of C-terminal tail autophosphorylation. Activation of Her4 shows a sigmoidal dependence on kinase concentration, consistent with a cooperative process requiring kinase dimerization. Her2/neu kinase activity is also activated by nickel-liposomes, and is increased further by heterodimerization with Her3 or Her4. The ability of Her3 and Her4 to heterodimerize and activate other family members is studied in vitro. Her3 kinase domain readily activates Her2/neu but is a poor activator of Her4, which differs from the prediction made by the asymmetric dimer model. Mutation of Her3 residues (952)ENI(954) to the corresponding sequence in Her4 enhanced the ability of Her3 to activate Her4, demonstrating that sequence differences on the C-lobe surface influence the heterodimerization and activation of ErbB kinase domains.

  8. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning: role of protein kinase B/Akt signaling.

    Science.gov (United States)

    Feng, Jianhua; Fischer, Gregor; Lucchinetti, Eliana; Zhu, Min; Bestmann, Lukas; Jegger, David; Arras, Margarete; Pasch, Thomas; Perriard, Jean-Claude; Schaub, Marcus C; Zaugg, Michael

    2006-05-01

    Postinfarct remodeled myocardium exhibits numerous structural and biochemical alterations. So far, it is unknown whether postconditioning elicited by volatile anesthetics can also provide protection in the remodeled myocardium. Myocardial infarct was induced in male Wistar rats by ligation of the left anterior descending coronary artery. Six weeks later, hearts were buffer-perfused and exposed to 40 min of ischemia followed by 90 min of reperfusion. Anesthetic postconditioning was induced by 15 min of 2.1 vol% isoflurane. In some experiments, LY294002 (15 microM), a phosphatidylinositol 3-kinase inhibitor, was coadministered with isoflurane. Masson's trichrome staining, immunohistochemistry, Western blot analysis, and reverse-transcription polymerase chain reaction served to confirm remodeling. In buffer-perfused hearts, functional recovery was recorded, and acute infarct size was measured using 1% triphenyltetrazolium chloride staining and lactate dehydrogenase release during reperfusion. Western blot analysis was used to determine phosphorylation of reperfusion injury salvage kinases including protein kinase B/Akt and its downstream targets after 15 min of reperfusion. Infarct hearts exhibited typical macroscopic and molecular changes of remodeling. Isoflurane postconditioning improved functional recovery and decreased acute infarct size, as determined by triphenyltetrazolium (35 +/- 5% in unprotected hearts vs. 8 +/- 3% in anesthetic postconditioning; P protection was abolished by LY294002, which inhibited phosphorylation of protein kinase B/Akt and its downstream targets glycogen synthase kinase 3beta, endothelial nitric oxide synthase, and p70S6 kinase. Infarct-remodeled myocardium is receptive to protection by isoflurane postconditioning via protein kinase B/Akt signaling. This is the first time to demonstrate that anesthetic postconditioning retains its marked protection in diseased myocardium.

  9. Modulation of phosphorylation of tocopherol and phosphatidylinositol by hTAP1/SEC14L2-mediated lipid exchange

    Science.gov (United States)

    The vitamin E derivative, alpha-tocopheryl phosphate (aTP), is detectable in cultured cells, plasma and tissues in small amounts, suggesting the existence of enzyme(s) with a-tocopherol (aT) kinase activity. Here, we characterize the production of aTP from aT and [g-32P]-ATP in primary human coronar...

  10. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  11. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption

    DEFF Research Database (Denmark)

    Beck, Halfdan; Nähse-Kumpf, Viola; Larsen, Marie Sofie Yoo

    2012-01-01

    Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation of replic......Activation of oncogenes or inhibition of WEE1 kinase deregulates Cyclin-dependent kinase (CDK) activity and leads to replication stress, however, the underlying mechanism is not understood. We now show that elevation of CDK activity by inhibiting WEE1 kinase rapidly increases initiation...... of replication. This leads to nucleotide shortage and reduces replication fork speed, which is followed by SLX4/MUS81-mediated DNA double-strand breakage. Fork speed is normalized and DNA double-strand break (DSB) formation is suppressed when CDT1, a key factor for replication initiation, is depleted...

  12. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  13. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested......-type mice was also incubated with the AMPK activator A-769662. Incubation of mouse glycolytic extensor digitorum longus and oxidative soleus muscle for 2 h was associated with profound IL-6 mRNA production and protein release, which was suppressed by AICAR (P ... the hypothesis that AMPK modulates IL-6 release from isolated muscle. Skeletal muscle from AMPKalpha2 kinase-dead transgenic, AMPKalpha1 knockout (KO) and AMPKgamma3 KO mice and respective wild-type littermates was incubated in vitro, in the absence or presence of 2 mmol/liter AICAR. Skeletal muscle from wild...

  14. LIM kinase function and renal growth: Potential role for LIM kinases in fetal programming of kidney development.

    Science.gov (United States)

    Sparrow, Alexander J; Sweetman, Dylan; Welham, Simon J M

    2017-10-01

    Maternal dietary restriction during pregnancy impairs nephron development and results in offspring with fewer nephrons. Cell turnover in the early developing kidney is altered by exposure to maternal dietary restriction and may be regulated by the LIM-kinase family of enzymes. We set out to establish whether disturbance of LIM-kinase activity might play a role in the impairment of nephron formation. E12.5 metanephric kidneys and HK2 cells were grown in culture with the pharmacological LIM-kinase inhibitor BMS5. Organs were injected with DiI, imaged and cell numbers measured over 48h to assess growth. Cells undergoing mitosis were visualised by pH3 labelling. Growth of cultured kidneys reduced to 83% of controls after exposure to BMS5 and final cell number to 25% of control levels after 48h. Whilst control and BMS5 treated organs showed cells undergoing mitosis (100±11 cells/field vs 113±18 cells/field respectively) the proportion in anaphase was considerably diminished with BMS5 treatment (7.8±0.8% vs 0.8±0.6% respectively; Plabelled cells migrated in 100% of control cultures vs 0% BMS5 treated organs. The number of nephrogenic precursor cells appeared depleted in whole organs and formation of new nephrons was blocked by exposure to BMS5. Pharmacological blockade of LIM-kinase function in the early developing kidney results in failure of renal development. This is likely due to prevention of dividing cells from completion of mitosis with their resultant loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Thermal expansion of NZP-family alkali-metal (Na, K) zirconium phosphates

    International Nuclear Information System (INIS)

    Orlova, A.I.; Kemenov, D.V.; Pet'kov, V.I.; Samojlov, S.G.; Kazantsev, G.N.

    2000-01-01

    By means of high-temperature X-ray diffraction one investigated into thermal expansion of alkali-zirconium phosphates crystallizing in NaZr 2 (PO 4 ) 3 structure type within 20-700 deg C temperature range. One synthesized phosphates of A x Zr 2.25-0.25x (PO 4 ) 3 type two series where A-Na (x = 0.5; 1.0; 2.0; 3.0; 4.0; 5.0) and K (x = 1.0; 3.0; 5.0). One calculated for them a and c parameters of the elementary cells and α a and α c linear expansion temperature coefficients. Anisotropy of thermal expansion the maximum one for AZr 2 (PO 4 ) 3 and Na 5 Zr(PO 4 ) 3 phosphates was determined. K 5 Zr(PO 4 ) 3 compound was characterized by the minimum thermal expansion at the near-zero anisotropy of Na 5 Zr(PO 4 ) 3 [ru

  16. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    Science.gov (United States)

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  17. The role of phosphatidylinositol-transfer proteins at membrane contact sites.

    Science.gov (United States)

    Selitrennik, Michael; Lev, Sima

    2016-04-15

    Phosphatidylinositol-transfer proteins (PITPs) have been initially identified as soluble factors that accelerate the monomeric exchange of either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayersin vitro They are highly conserved in eukaryotes and have been implicated in different cellular processes, including vesicular trafficking, signal transduction, and lipid metabolism. Recent studies suggest that PITPs function at membrane contact sites (MCSs) to facilitate the transport of PI from its synthesis site at the endoplasmic reticulum (ER) to various membrane compartments. In this review, we describe the underlying mechanism of PITPs targeting to MCSs, discuss their cellular roles and potential mode of action. © 2016 Authors; published by Portland Press Limited.

  18. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ.

    Science.gov (United States)

    Banks, Alexander S; McAllister, Fiona E; Camporez, João Paulo G; Zushin, Peter-James H; Jurczak, Michael J; Laznik-Bogoslavski, Dina; Shulman, Gerald I; Gygi, Steven P; Spiegelman, Bruce M

    2015-01-15

    Obesity-linked insulin resistance is a major precursor to the development of type 2 diabetes. Previous work has shown that phosphorylation of PPARγ (peroxisome proliferator-activated receptor γ) at serine 273 by cyclin-dependent kinase 5 (Cdk5) stimulates diabetogenic gene expression in adipose tissues. Inhibition of this modification is a key therapeutic mechanism for anti-diabetic drugs that bind PPARγ, such as the thiazolidinediones and PPARγ partial agonists or non-agonists. For a better understanding of the importance of this obesity-linked PPARγ phosphorylation, we created mice that ablated Cdk5 specifically in adipose tissues. These mice have both a paradoxical increase in PPARγ phosphorylation at serine 273 and worsened insulin resistance. Unbiased proteomic studies show that extracellular signal-regulated kinase (ERK) kinases are activated in these knockout animals. Here we show that ERK directly phosphorylates serine 273 of PPARγ in a robust manner and that Cdk5 suppresses ERKs through direct action on a novel site in MAP kinase/ERK kinase (MEK). Importantly, pharmacological inhibition of MEK and ERK markedly improves insulin resistance in both obese wild-type and ob/ob mice, and also completely reverses the deleterious effects of the Cdk5 ablation. These data show that an ERK/Cdk5 axis controls PPARγ function and suggest that MEK/ERK inhibitors may hold promise for the treatment of type 2 diabetes.

  19. Adsorption of Phosphate Ion in Water with Lithium-Intercalated Gibbsite

    Directory of Open Access Journals (Sweden)

    Riwandi Sihombing

    2015-12-01

    Full Text Available In order to enhance adsorption capacity of gibbsite (Al(OH3 as an adsorbent for the adsorption of phosphate in water, gibbsite was modified through lithium-intercalation. The purification method of Tributh and Lagaly was applied prior to intercalation. The Li-Intercalation was prepared by the dispersion of gibbsite into LiCl solution for 24 hours. This intercalation formed an cationic clay with the structure of [LiAl2(OH6]+ and exchangeable Cl- anions in the gibbsite interlayer. A phosphate adsorption test using Lithium-intercalated gibbsite (LIG resulted in optimum adsorption occurring at pH 4.5 with an adsorption capacity of 11.198 mg phosphate/g LIG which is equivalent with 1.04 wt% LIG. The adsorption capacity decreased with decreasing amounts of H2PO4-/HPO4- species in the solution. This study showed that LIG has potential as an adsorbent for phosphate in an aqueous solution with pH 4.5–9.5.

  20. PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast

    NARCIS (Netherlands)

    Le Guédard, Marina; Bessoule, Jean-Jacques; Boyer, Valérie; Ayciriex, Sophie; Velours, Gisèle; Kulik, Willem; Ejsing, Christer S.; Shevchenko, Andrej; Coulon, Denis; Lessire, René; Testet, Eric

    2009-01-01

    In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either