WorldWideScience

Sample records for phosphatidylinositol transfer proteins

  1. Phosphatidylinositol transfer protein alpha and its role in neurodegeneration

    NARCIS (Netherlands)

    Bunte, H.

    2007-01-01

    Selective neuronal loss is a prominent feature in neurodegenerative disorders. Recently, a link between neurodegeneration and a deficiency in the protein phosphatidylinositol transfer protein alpha (PI-TPalpha) has been demonstrated. In this context it is of importance that fibroblasts

  2. Ligand and membrane-binding behavior of the phosphatidylinositol transfer proteins PITPα and PITPβ.

    Science.gov (United States)

    Baptist, Matilda; Panagabko, Candace; Cockcroft, Shamshad; Atkinson, Jeffrey

    2016-12-01

    Phosphatidylinositol transfer proteins (PITPs) are believed to be lipid transfer proteins because of their ability to transfer either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane compartments, in vitro. However, the detailed mechanism of this transfer process is not fully established. To further understand the transfer mechanism of PITPs we examined the interaction of PITPs with membranes using dual polarization interferometry (DPI), which measures protein binding affinity on a flat immobilized lipid surface. In addition, a fluorescence resonance energy transfer (FRET)-based assay was also employed to monitor how quickly PITPs transfer their ligands to lipid vesicles. DPI analysis revealed that PITPβ had a higher affinity to membranes compared with PITPα. Furthermore, the FRET-based transfer assay revealed that PITPβ has a higher ligand transfer rate compared with PITPα. However, both PITPα and PITPβ demonstrated a preference for highly curved membrane surfaces during ligand transfer. In other words, ligand transfer rate was higher when the accepting vesicles were highly curved.

  3. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle

    DEFF Research Database (Denmark)

    Grabon, Aby; Orłowski, Adam; Tripathi, Ashutosh

    2017-01-01

    . However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical...... analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability......Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling...

  4. The role of phosphatidylinositol-transfer proteins at membrane contact sites.

    Science.gov (United States)

    Selitrennik, Michael; Lev, Sima

    2016-04-15

    Phosphatidylinositol-transfer proteins (PITPs) have been initially identified as soluble factors that accelerate the monomeric exchange of either phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayersin vitro They are highly conserved in eukaryotes and have been implicated in different cellular processes, including vesicular trafficking, signal transduction, and lipid metabolism. Recent studies suggest that PITPs function at membrane contact sites (MCSs) to facilitate the transport of PI from its synthesis site at the endoplasmic reticulum (ER) to various membrane compartments. In this review, we describe the underlying mechanism of PITPs targeting to MCSs, discuss their cellular roles and potential mode of action. © 2016 Authors; published by Portland Press Limited.

  5. Modifier Genes for Mouse Phosphatidylinositol Transfer Protein alpha (vibrator) That Bypass Juvenile Lethality

    NARCIS (Netherlands)

    Concepcion, Dorothy; Johannes, Frank; Lo, Yuan Hung; Yao, Jay; Fong, Jerry; Hamilton, Bruce A.

    Phosphatidylinositol transfer proteins (PITPs) mediate lipid signaling and membrane trafficking in eukaryotic cells. Loss-of-function mutations of the gene encoding PITP alpha in mice result in a range of dosage-sensitive phenotypes, including neurological dysfunction, neurodegeneration, and

  6. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle.

    Science.gov (United States)

    Grabon, Aby; Orłowski, Adam; Tripathi, Ashutosh; Vuorio, Joni; Javanainen, Matti; Róg, Tomasz; Lönnfors, Max; McDermott, Mark I; Siebert, Garland; Somerharju, Pentti; Vattulainen, Ilpo; Bankaitis, Vytas A

    2017-09-01

    Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The anti-apoptotic activity associated with phosphatidylinositol transfer protein α activates the MAPK and Akt/PKB pathway

    NARCIS (Netherlands)

    Schenning, M.; Goedhart, J.; Gadella (jr.), T.W.J.; Avram, D.; Wirtz, K.W.A.; Snoek, G.T.

    2008-01-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein α (PI-TPα; SPIα cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts

  8. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels

    NARCIS (Netherlands)

    van Tiel, Claudia M.; Westerman, Jan; Paasman, Marten A.; Hoebens, Martha M.; Wirtz, Karel W. A.; Snoek, Gerry T.

    2002-01-01

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165)

  9. The anti-apoptotic activity associated with phosphatidylinositol transfer protein alpha activates the MAPK and Akt/PKB pathway.

    Science.gov (United States)

    Schenning, Martijn; Goedhart, Joachim; Gadella, Theodorus W J; Avram, Diana; Wirtz, Karel W A; Snoek, Gerry T

    2008-10-01

    The conditioned medium (CM) from mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein alpha (PI-TPalpha; SPIalpha cells) demonstrates an increased anti-apoptotic activity compared with CM from wild type NIH3T3 (wtNIH3T3) cells. As previously shown, the anti-apoptotic activity acts by activating a G protein-coupled receptor, most probably a cannabinoid 1 (CB1)-like receptor as the activity was blocked by both pertussis toxin and rimonabant [M. Schenning, C.M. van Tiel, D. Van Manen, J.C. Stam, B.M. Gadella, K.W. Wirtz and G.T. Snoek, Phosphatidylinositol transfer protein alpha regulates growth and apoptosis of NIH3T3 cells: involvement of a cannabinoid 1-like receptor, J. Lipid Res. 45 (2004) 1555-1564]. The CB1 receptor appears to be expressed in mouse fibroblast cells, at levels in the order SPIalpha>wtNIH3T3>SPIbeta cells (i.e. wild type cells overexpressing PI-TPbeta). Upon incubation of SPIbeta cells with the PI-TPalpha-dependent anti-apoptotic factors, both the ERK/MAP kinase and the Akt/PKB pathway are activated in a CB1 receptor dependent manner as shown by Western blotting. In addition, activation of ERK2 was also shown by EYFP-ERK2 translocation to the nucleus, as visualized by confocal laser scanning microscopy. The subsequent activation of the anti-apoptotic transcription factor NF-kappaB is in line with the increased resistance towards UV-induced apoptosis. On the other hand, receptor activation by CM from SPIalpha cells was not linked to phospholipase C activation as the YFP-labelled C2-domain of protein kinase C was not translocated to the plasma membrane of SPIbeta cells as visualized by confocal laser scanning microscopy.

  10. The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding.

    Science.gov (United States)

    Prchal, Jan; Srb, Pavel; Hunter, Eric; Ruml, Tomáš; Hrabal, Richard

    2012-10-26

    We determined the solution structure of myristoylated Mason-Pfizer monkey virus matrix protein by NMR spectroscopy. The myristoyl group is buried inside the protein and causes a slight reorientation of the helices. This reorientation leads to the creation of a binding site for phosphatidylinositols. The interaction between the matrix protein and phosphatidylinositols carrying C(8) fatty acid chains was monitored by observation of concentration-dependent chemical shift changes of the affected amino acid residues, a saturation transfer difference experiment and changes in (31)P chemical shifts. No differences in the binding mode or affinity were observed with differently phosphorylated phosphatidylinositols. The structure of the matrix protein-phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] complex was then calculated with HADDOCK software based on the intermolecular nuclear Overhauser enhancement contacts between the ligand and the matrix protein obtained from a (13)C-filtered/(13)C-edited nuclear Overhauser enhancement spectroscopy experiment. PI(4,5)P(2) binding was not strong enough for triggering of the myristoyl-switch. The structural changes of the myristoylated matrix protein were also found to result in a drop in the oligomerization capacity of the protein. Copyright © 2012. Published by Elsevier Ltd.

  11. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    OpenAIRE

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2015-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to de...

  12. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.; Temple, Brenda R.S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A. [Emory-MED; (SBU); (TAM); (UNC); (Vanderbilt-MED); (Utah); (UCHSC)

    2014-07-11

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  13. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.; Temple, Brenda R.S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A. (Emory-MED); (UNCSM); (UNC); (UCHSC); (TAM); (Vanderbilt-MED); (SBU); (Utah)

    2016-07-06

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  14. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain.

    Science.gov (United States)

    Prashek, Jennifer; Bouyain, Samuel; Fu, Mingui; Li, Yong; Berkes, Dusan; Yao, Xiaolan

    2017-08-25

    De novo synthesis of the sphingolipid sphingomyelin requires non-vesicular transport of ceramide from the endoplasmic reticulum to the Golgi by the multidomain protein ceramide transfer protein (CERT). CERT's N-terminal pleckstrin homology (PH) domain targets it to the Golgi by binding to phosphatidylinositol 4-phosphate (PtdIns(4)P) in the Golgi membrane, whereas its C-terminal StAR-related lipid transfer domain (START) carries out ceramide transfer. Hyperphosphorylation of a serine-rich motif immediately after the PH domain decreases both PtdIns(4)P binding and ceramide transfer by CERT. This down-regulation requires both the PH and START domains, suggesting a possible inhibitory interaction between the two domains. In this study we show that isolated PH and START domains interact with each other. The crystal structure of a PH-START complex revealed that the START domain binds to the PH domain at the same site for PtdIns(4)P-binding, suggesting that the START domain competes with PtdIns(4)P for association with the PH domain. We further report that mutations disrupting the PH-START interaction increase both PtdIns(4)P-binding affinity and ceramide transfer activity of a CERT-serine-rich phosphorylation mimic. We also found that these mutations increase the Golgi localization of CERT inside the cell, consistent with enhanced PtdIns(4)P binding of the mutant. Collectively, our structural, biochemical, and cellular investigations provide important structural insight into the regulation of CERT function and localization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Crystallization and preliminary X-ray diffraction analysis of phospholipid-bound Sfh1p, a member of the Saccharomyces cerevisiae Sec14p-like phosphatidylinositol transfer protein family

    International Nuclear Information System (INIS)

    Schaaf, Gabriel; Betts, Laurie; Garrett, Teresa A.; Raetz, Christian R. H.; Bankaitis, Vytas A.

    2006-01-01

    Yeast Sfh1p, a close homolog of the Sec14p phosphatidylinositol transfer protein, was crystallized in the absence of detergent. X-ray data have been collected to 2.5 Å. Sec14p is the major phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein in the budding yeast Saccharomyces cerevisiae and is the founding member of a large eukaryotic protein superfamily. This protein catalyzes the exchange of either PtdIns or PtdCho between membrane bilayers in vitro and this exchange reaction requires no external input of energy or of other protein cofactors. Despite the previous elucidation of the crystal structure of a detergent-bound form of Sec14p, the conformational changes that accompany the phospholipid-exchange reaction remain undefined. Moreover, a structural appreciation of how Sec14p or its homologs bind their various phospholipid substrates remains elusive. Here, the purification and crystallization of yeast Sfh1p, the protein most closely related to Sec14p, are reported. A combination of electrospray ionization mass-spectrometry and collision-induced decomposition mass-spectrometry methods indicate that recombinant Sfh1p loads predominantly with phosphatidylethanolamine. Unlike phospholipid-bound forms of Sec14p, this form of Sfh1p crystallizes readily in the absence of detergent. Sfh1p crystals diffract to 2.5 Å and belong to the orthorhombic primitive space group P2 1 2 1 2 1 , with unit-cell parameters a = 49.40, b = 71.55, c = 98.21 Å, α = β = γ = 90°. One Sfh1p molecule is present in the asymmetric unit (V M = 2.5 Å 3 Da −1 ; V s = 50%). Crystallization of a phospholipid-bound Sec14p-like protein is a critical first step in obtaining the first high-resolution picture of how proteins of the Sec14p superfamily bind their phospholipid ligands. This information will significantly extend our current understanding of how Sec14p-like proteins catalyze phospholipid exchange

  16. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools*

    Science.gov (United States)

    Goto, Asako; Charman, Mark; Ridgway, Neale D.

    2016-01-01

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50–70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. PMID:26601944

  17. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)

    The adiponectin/phosphatidylinositol 3-kinase/protein kinase B (ADP/PI3k/Akt) signal transduction pathway has an important role in promoting cell survival. This study was designed to determine if the ADP/PI3K/Akt signaling pathway has a role in the mechanism of ischemia–reperfusion injury in vivo. Sprague–Dawley rats ...

  18. Oxysterol-binding Protein Activation at Endoplasmic Reticulum-Golgi Contact Sites Reorganizes Phosphatidylinositol 4-Phosphate Pools.

    Science.gov (United States)

    Goto, Asako; Charman, Mark; Ridgway, Neale D

    2016-01-15

    Oxysterol-binding protein (OSBP) exchanges cholesterol and phosphatidylinositol 4-phosphate (PI-4P) at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi/trans-Golgi network. 25-Hydroxycholesterol (25OH) competitively inhibits this exchange reaction in vitro and causes the constitutive localization of OSBP at the ER/Golgi interface and PI-4P-dependent recruitment of ceramide transfer protein (CERT) for sphingomyelin synthesis. We used PI-4P probes and mass analysis to determine how OSBP controls the availability of PI-4P for this metabolic pathway. Treatment of fibroblasts or Chinese hamster ovary (CHO) cells with 25OH caused a 50-70% reduction in Golgi-associated immunoreactive PI-4P that correlated with Golgi localization of OSBP. In contrast, 25OH caused an OSBP-dependent enrichment in Golgi PI-4P that was detected with a pleckstrin homology domain probe. The cellular mass of phosphatidylinositol monophosphates and Golgi PI-4P measured with an unbiased PI-4P probe (P4M) was unaffected by 25OH and OSBP silencing, indicating that OSBP shifts the distribution of PI-4P upon localization to ER-Golgi contact sites. The PI-4P and sterol binding activities of OSBP were both required for 25OH activation of sphingomyelin synthesis, suggesting that 25OH must be exchanged for PI-4P to be concentrated at contact sites. We propose a model wherein 25OH activation of OSBP promotes the binding and retention of PI-4P at ER-Golgi contact sites. This pool of PI-4P specifically recruits pleckstrin homology domain-containing proteins involved in lipid transfer and metabolism, such as CERT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels.

    Science.gov (United States)

    van Tiel, Claudia M; Westerman, Jan; Paasman, Marten A; Hoebens, Martha M; Wirtz, Karel W A; Snoek, Gerry T

    2002-06-21

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.

  20. Features of the Phosphatidylinositol Cycle and its Role in Signal Transduction.

    Science.gov (United States)

    Epand, Richard M

    2017-08-01

    The phosphatidylinositol cycle (PI-cycle) has a central role in cell signaling. It is the major pathway for the synthesis of phosphatidylinositol and its phosphorylated forms. In addition, some lipid intermediates of the PI-cycle, including diacylglycerol and phosphatidic acid, are also important lipid signaling agents. The PI-cycle has some features that are important for the understanding of its role in the cell. As a cycle, the intermediates will be regenerated. The PI-cycle requires a large amount of metabolic energy. There are different steps of the cycle that occur in two different membranes, the plasma membrane and the endoplasmic reticulum. In order to complete the PI-cycle lipid must be transferred between the two membranes. The role of the Nir proteins in the process has recently been elucidated. The lipid intermediates of the PI-cycle are normally highly enriched with 1-stearoyl-2-arachidonoyl molecular species in mammals. This enrichment will be retained as long as the intermediates are segregated from other lipids of the cell. However, there is a significant fraction (>15 %) of lipids in the PI-cycle of normal cells that have other acyl chains. Phosphatidylinositol largely devoid of arachidonoyl chains are found in cancer cells. Phosphatidylinositol species with less unsaturation will not be as readily converted to phosphatidylinositol-3,4,5-trisphosphate, the lipid required for the activation of Akt with resulting effects on cell proliferation. Thus, the cyclical nature of the PI-cycle, its dependence on acyl chain composition and its requirement for lipid transfer between two membranes, explain many of the biological properties of this cycle.

  1. Activation of oocyte phosphatidylinositol kinase by polyamines

    International Nuclear Information System (INIS)

    Allende, J.E.; Carrasco, D.; Allende, C.C.

    1987-01-01

    Membrane bound phosphatidylinositol is phosphorylated by a specific membrane enzyme to form phosphatidylinositol 4 phosphate (PIP) which in turn is again phosphorylated to generate phosphatidylinositol 4,5 biphosphate (PIPP). The regulation of phosphatidylinositol phosphorylation and hydrolysis is relevant to the possible role of inositol phosphates as second messengers of hormone action. The membranes of Xenopus laevis oocytes contain a phosphatidylinositol kinase that can generate radioactive PIP after incubation with [ 32 ATP]. The radioactive product is extracted with methanol-chloroform and isolated by thin layer chromatography. The oocyte enzyme has an app Km for ATP of 80 μM and cannot use GTP as a phosphate donor. The formation of PIP is greatly stimulated by the addition of synthetic peptides containing clusters of polylysine at concentrations 0.5 mM. A similar effect is observed with a lysine rich peptide that corresponds to the 14 amino acids of the carboxyl terminus of the Kirstein ras 2 protein and also by polyornithine. Polyarginine and histone H 1 have much lower effects. Peptides containing polylysine clusters have also been found to affect the activity of other key membrane enzymes such as protein kinases and adenylate cyclase

  2. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  3. A conserved function in phosphatidylinositol metabolism for mammalian Vps13 family proteins.

    Directory of Open Access Journals (Sweden)

    Jae-Sook Park

    Full Text Available The Vps13 protein family is highly conserved in eukaryotic cells. In humans, mutations in the gene encoding the family member VPS13A lead to the neurodegenerative disorder chorea-acanthocytosis. In the yeast Saccharomyces cerevisiae, there is just a single version of VPS13, thereby simplifying the task of unraveling its molecular function(s. While VPS13 was originally identified in yeast by its role in vacuolar sorting, recent studies have revealed a completely different function for VPS13 in sporulation, where VPS13 regulates phosphatidylinositol-4-phosphate (PtdIns(4P levels in the prospore membrane. This discovery raises the possibility that the disease phenotype associated with vps13A mutants in humans is due to misregulation of PtdIns(4P in membranes. To determine whether VPS13A affects PtdIns(4P in membranes from mammalian neuronal cells, phosphatidylinositol phosphate pools were compared in PC12 tissue culture cells in the absence or presence of VPS13A. Consistent with the yeast results, the localization of PtdIns(4P is specifically altered in VPS13A knockdown cells while other phosphatidylinositol phosphates appear unaffected. In addition, VPS13A is necessary to prevent the premature degeneration of neurites that develop in response to Nerve Growth Factor. The regulation of PtdIns(4P is therefore a conserved function of the Vps13 family and may play a role in the maintenance of neuronal processes in mammals.

  4. Phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma

    International Nuclear Information System (INIS)

    Low, M.G.; Prasad, A.R.S.

    1988-01-01

    An enzyme activity capable of degrading the glycosyl-phosphatidylinositol membrane anchor of cell-surface proteins has previously been reported in a number of mammalian tissues. The experiments reported here demonstrate that this anchor-degrading activity is also abundant in mammalian plasma. The activity was inhibited by EGTA or 1,10-phenanthroline. It was capable of removing the anchor from alkaline phosphatase, 5'-nucleotidase, and variant surface glycoprotein but had little or no activity toward phosphatidylinositol or phosphatidylcholine. Phosphatidic acid was the only 3 H-labeled product when this enzyme hydrolyzed [ 3 H]myristate-labeled variant surface glycoprotein. It could be distinguished from the Ca 2 =-dependent inositol phospholipid-specific phospholipase C activity in several rat tissues on the basis of its molecular size and its sensitivity to 1,10-phenanthroline. The data therefore suggest that this activity is due to a phospholipase D with specificity for glycosylphosphatidylinositol structures. Although the precise physiological function of this anchor-specific phospholipase D remains to be determined, these findings indicate that it could play an important role in regulating the expression and release of cell-surface proteins in vivo

  5. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)

    2012-06-19

    Jun 19, 2012 ... Lysis buffer (SDS Lysis Buffer) was added to the samples overnight at 4°C. An equal amount of protein was loaded by the Coomassie method for protein quantification after electrophoretic separation. Protein was transferred onto polyvinylidene fluoride (PVDF) membranes. The transferred blot was blocked ...

  6. Phospholipid transfer activities in toad oocytes and developing embryos

    International Nuclear Information System (INIS)

    Rusinol, A.; Salomon, R.A.; Bloj, B.

    1987-01-01

    The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing 14 C-labeled phospholipids and 3 H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily after fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth

  7. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis.

    Science.gov (United States)

    Mohammadi, M; Dionne, C A; Li, W; Li, N; Spivak, T; Honegger, A M; Jaye, M; Schlessinger, J

    1992-08-20

    Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.

  8. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  9. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    OpenAIRE

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulat...

  10. Electrophoretic transfer protein zymography.

    Science.gov (United States)

    Pan, Daniel; Hill, Adam P; Kashou, Anthony; Wilson, Karl A; Tan-Wilson, Anna

    2011-04-15

    Zymography detects and characterizes proteolytic enzymes by electrophoresis of protease-containing samples into a nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel containing a copolymerized protein substrate. The usefulness of zymography for molecular weight determination and proteomic analysis is hampered by the fact that some proteases exhibit slower migration through a gel that contains substrate protein. This article introduces electrophoretic transfer protein zymography as one solution to this problem. In this technique, samples containing proteolytic enzymes are first resolved in nonreducing SDS-PAGE on a gel without protein substrate. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel previously prepared with a copolymerized protein substrate. The receiving gel is then developed as a zymogram to visualize clear or lightly stained bands in a dark background. Band intensities are linearly related to the amount of protease, extending the usefulness of the technique so long as conditions for transfer and development of the zymogram are kept constant. Conditions of transfer, such as the pore sizes of resolving and receiving gels and the transfer time relative to the molecular weight of the protease, are explored. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate

    NARCIS (Netherlands)

    van Zeijl, Leonie; Ponsioen, Bas; Giepmans, Ben N G; Ariaens, Aafke; Postma, Friso R; Várnai, Péter; Balla, Tamas; Divecha, Nullin; Jalink, Kees; Moolenaar, Wouter H

    2007-01-01

    Cell-cell communication through connexin43 (Cx43)-based gap junction channels is rapidly inhibited upon activation of various G protein coupled receptors; however, the mechanism is unknown. We show that Cx43-based cell-cell communication is inhibited by depletion of phosphatidylinositol

  12. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9.

    Directory of Open Access Journals (Sweden)

    Xinwei Liu

    Full Text Available Oxysterol binding protein (OSBP and OSBP-related proteins (ORPS have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE were poor ligands for OSBP. In contrast, both long (ORP9L and short (ORP9S variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  13. Characterization of the sterol and phosphatidylinositol 4-phosphate binding properties of Golgi-associated OSBP-related protein 9 (ORP9).

    Science.gov (United States)

    Liu, Xinwei; Ridgway, Neale D

    2014-01-01

    Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.

  14. Problems with multiple use of transfer buffer in protein electrophoretic transfer.

    Science.gov (United States)

    Dorri, Yaser; Kurien, Biji T; Scofield, R Hal

    2010-04-01

    Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al. claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150-200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.

  15. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  16. Enhanced resistance in Theobroma cacao against oomycete and fungal pathogens by secretion of phosphatidylinositol-3-phosphate-binding proteins.

    Science.gov (United States)

    Helliwell, Emily E; Vega-Arreguín, Julio; Shi, Zi; Bailey, Bryan; Xiao, Shunyuan; Maximova, Siela N; Tyler, Brett M; Guiltinan, Mark J

    2016-03-01

    The internalization of some oomycete and fungal pathogen effectors into host plant cells has been reported to be blocked by proteins that bind to the effectors' cell entry receptor, phosphatidylinositol-3-phosphate (PI3P). This finding suggested a novel strategy for disease control by engineering plants to secrete PI3P-binding proteins. In this study, we tested this strategy using the chocolate tree Theobroma cacao. Transient expression and secretion of four different PI3P-binding proteins in detached leaves of T. cacao greatly reduced infection by two oomycete pathogens, Phytophthora tropicalis and Phytophthora palmivora, which cause black pod disease. Lesion size and pathogen growth were reduced by up to 85%. Resistance was not conferred by proteins lacking a secretory leader, by proteins with mutations in their PI3P-binding site, or by a secreted PI4P-binding protein. Stably transformed, transgenic T. cacao plants expressing two different PI3P-binding proteins showed substantially enhanced resistance to both P. tropicalis and P. palmivora, as well as to the fungal pathogen Colletotrichum theobromicola. These results demonstrate that secretion of PI3P-binding proteins is an effective way to increase disease resistance in T. cacao, and potentially in other plants, against a broad spectrum of pathogens. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Phosphatidylinositol-3-kinase-dependent phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK fusion-protein

    International Nuclear Information System (INIS)

    Hussain, Alamdar; Faryal, Rani; Nore, Beston F.; Mohamed, Abdalla J.; Smith, C.I. Edvard

    2009-01-01

    Recurrent chromosomal translocations have long been implicated in various types of lymphomas and other malignancies. Novel recurrent t(5;9)(q33;q22) has been recently discovered in un-specified peripheral T-cell lymphoma. To elucidate the role of this translocation, the corresponding fusion construct encoding the N-terminal portion of the ITK kinase and the C-terminal catalytic region of the SYK kinase was generated. We herein show that the ITK-SYK fusion-protein is constitutively active. Moreover, we demonstrate that ITK-SYK is phosphorylated on key tyrosine residues and is capable of potently phosphorylating the related adapter proteins BLNK and SLP-76. In transiently transfected cells, SYK was phosphorylated at Y352 but not detectably at the activation-loop tyrosines Y525/Y526. In contrast, ITK-SYK was phosphorylated both at Y212 and the activation-loop tyrosines Y385/Y386, corresponding to Y352 and Y525/Y526 in SYK, respectively. In resting primary lymphocytes, ITK-SYK predominantly localizes to the cell surface. In addition, we demonstrate that following stimulation, the ITK-SYK fusion-protein in cell lines translocates to the cell membrane and, moreover, that this phenomenon as well as SLP-76 phosphorylation are blocked upon phosphatidylinositol-3-kinase (PI3-kinase) inhibition.

  18. In vivo binding properties of SH2 domains from GTPase-activating protein and phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Cooper, J A; Kashishian, A

    1993-01-01

    We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774

  19. Brain cortex phosphatidylserine inhibits phosphatidylinositol turnover in rat anterior pituitary glands

    International Nuclear Information System (INIS)

    Bonetti, A.C.; Canonico, P.L.; MacLeod, R.M.

    1985-01-01

    The in vitro effect of bovine brain cortex phosphatidylserine on 32 Pi incorporation into phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine of rat anterior pituitary glands was studied. Phosphatidylserine (0.1 to 66.6 microM) decreased the incorporation of 32 Pi into phosphatidylinositol, but not phosphatidylcholine or phosphatidylethanolamine, in a concentration-related manner. The inhibitory effect of phosphatidylinositol was similar to that of dopamine in the same experimental conditions. The combined effects of submaximal concentrations of dopamine and phosphatidylserine elicited an apparently additive inhibitory effect on phosphatidylinositol synthesis. The inhibitory effect of phosphatidylserine was completely reversed by haloperidol and sulpiride and only partially by pimozide, antidopaminergic agents which per se do not affect phosphatidylinositol synthesis. The stimulatory effect of TRH to increase 32 Pi incorporation into phosphatidylinositol was decreased by phosphatidylserine. These observations suggest that the decrease in prolactin release in the presence of phosphatidylserine may be evoked through a dopaminergic mechanism

  20. Plasma cholesteryl ester transfer protein mass and phospholipid transfer protein activity are associated with leptin in type 2 diabetes mellitus

    NARCIS (Netherlands)

    Dullaart, R. P. F.; de Vries, R.; Dallinga-Thie, G. M.; van Tol, A.; Sluiter, W. J.

    Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP

  1. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    International Nuclear Information System (INIS)

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A.

    1989-01-01

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation

  2. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis

    DEFF Research Database (Denmark)

    Walter, Alexander M; Müller, Rainer; Tawfik, Bassam

    2017-01-01

    Phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] is essential for exocytosis. Classical ways of manipulating PI(4,5)P2 levels are slower than metabolism, making it difficult to distinguish effects of PI(4,5)P2 from those of its metabolites. We developed a membrane-permeant, photoactivatable PI(4......,5)P2, which is loaded into cells in an inactive form and activated by light, allowing sub-second increases in PI(4,5)P2 levels. By combining this compound with electrophysiological measurements in mouse adrenal chromaffin cells, we show that PI(4,5)P2 uncaging potentiates exocytosis and identify...... synaptotagmin-1 (the Ca(2+) sensor for exocytosis) and Munc13-2 (a vesicle priming protein) as the relevant effector proteins. PI(4,5)P2 activation of exocytosis did not depend on the PI(4,5)P2-binding CAPS-proteins, suggesting that PI(4,5)P2 uncaging bypasses CAPS-function. Finally, PI(4,5)P2 uncaging...

  3. Structural analysis of phosphatidylinositol 4-kinase III beta (PI4KB) - 14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro

    Czech Academy of Sciences Publication Activity Database

    Chalupská, Dominika; Eisenreichová, Andrea; Rozycki, B.; Řežábková, L.; Humpolíčková, Jana; Klíma, Martin; Bouřa, Evžen

    2017-01-01

    Roč. 200, č. 1 (2017), s. 36-44 ISSN 1047-8477 R&D Projects: GA ČR(CZ) GA17-05200S Institutional support: RVO:61388963 Keywords : lipid * kinase * PI4KB * 14-3-3 protein * phosphatidylinositol Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.767, year: 2016

  4. Modulation of Bacillus thuringiensis Phosphatidylinositol-Specific Phospholipase C Activity by Mutations in the Putative Dimerization Interface

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X.; Shao, C; Zhang, X; Zambonelli, C; Redfield, A; Head, J; Seaton, B; Roberts, M

    2009-01-01

    Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more of these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.

  5. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  6. Membranes and mammalian glycolipid transferring proteins.

    Science.gov (United States)

    Tuuf, Jessica; Mattjus, Peter

    2014-02-01

    Glycolipids are synthesized in and on various organelles throughout the cell. Their trafficking inside the cell is complex and involves both vesicular and protein-mediated machineries. Most important for the bulk lipid transport is the vesicular system, however, lipids moved by transfer proteins are also becoming more characterized. Here we review the latest advances in the glycolipid transfer protein (GLTP) and the phosphoinositol 4-phosphate adaptor protein-2 (FAPP2) field, from a membrane point of view. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Determination of phospholipid transfer proteins in rat tissues by immunoassays

    International Nuclear Information System (INIS)

    Teerlink, T.

    1983-01-01

    Several quantitative immunoassays have been developed for two phospholipid transfer proteins from rat liver, i.e. the phosphatidylcholine transfer protein and the non-specific lipid transfer protein. The development of a double-antibody radioimmunoassay for the phosphatidylcholine transfer protein is described. The transfer protein was labelled with iodine-125 by the mild glucose oxidase-lactoperoxidase method. Although less than one tyrosine residue per molecule of transfer protein was labelled, only 20% of the labelled transfer protein was immunoprecipitable. This value could be increased to 80% by purifying the labelled protein by affinity chromatography on a column of anti-phosphatidylcholine transfer protein-IgG coupled to Sepharose 4B. The radioimmunoassay was used to determine the levels of phosphatidylcholine transfer protein in homogenates and 105 000 xg supernatants from various rat tissues as well as several Morris hepatomas. An enzyme immunoassay for the non-specific lipid transfer protein is also described. The antiserum that was raised especially by the author was cross-reactive with the non-specific lipid transfer protein present in 105 000 xg supernatants from human, mouse and bovine liver. The non-specific lipid transfer protein lost its immunoreactivity upon labelling with iodine-125 using different labelling techniques. Therefore, a regular radioimmunoassay could not be developed. The results of these different assays were compared. (Auth.)

  8. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    Science.gov (United States)

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of

  9. Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations

    NARCIS (Netherlands)

    Dullaart, RPF; De Vries, R; Scheek, L; Borggreve, SE; Van Gent, T; Dallinga-Thie, GM; Ito, M; Nagano, M; Sluiter, WJ; Hattori, H; Van Tol, A

    Background: Human plasma contains two lipid transfer proteins, cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), which are crucial in reverse cholesterol transport. Methods: Plasma CETP and PLTP activity levels and concentrations in 16 type 2 diabetic patients and

  10. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers

    OpenAIRE

    de Saint-Jean, Maud; Delfosse, Vanessa; Douguet, Dominique; Chicanne, Gaetan; Payrastre, Bernard; Bourguet, William; Antonny, Bruno; Drin, Guillaume

    2011-01-01

    Osh/Orp proteins transport sterols between organelles and are involved in phosphoinositide metabolism. The link between these two aspects remains elusive. Using novel assays, we address the influence of membrane composition on the ability of Osh4p/Kes1p to extract, deliver, or transport dehydroergosterol (DHE). Surprisingly, phosphatidylinositol 4-phosphate (PI(4)P) specifically inhibited DHE extraction because PI(4)P was itself efficiently extracted by Osh4p. We solve the structure of the Os...

  11. Detection of proteins on blot transfer membranes.

    Science.gov (United States)

    Sasse, Joachim; Gallagher, Sean R

    2003-11-01

    In the basic and alternate protocols of this unit, proteins are stained after electroblotting from polyacrylamide gels to blot transfer membranes. If the samples of interest are electrophoresed in duplicate and transferred to a blot transfer membrane, half of the membrane can be stained to determine the efficiency of transfer to the membrane and the other half can be used for immunoblotting (i.e., western blotting). Detection limits of each staining method are given along with a list of compatible blot transfer membranes and gels. A support protocol describes a method for alkali treatment that enhances subsequent staining of bound proteins.

  12. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H. (Amgen)

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  13. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  14. Insight into Phosphatidylinositol-Dependent Membrane Localization of the Innate Immune Adaptor Protein Toll/Interleukin 1 Receptor Domain-Containing Adaptor Protein

    Directory of Open Access Journals (Sweden)

    Mahesh Chandra Patra

    2018-01-01

    Full Text Available The toll/interleukin 1 receptor (TIR domain-containing adaptor protein (TIRAP plays an important role in the toll-like receptor (TLR 2, TLR4, TLR7, and TLR9 signaling pathways. TIRAP anchors to phosphatidylinositol (PI 4,5-bisphosphate (PIP2 on the plasma membrane and PI (3,4,5-trisphosphate (PIP3 on the endosomal membrane and assists in recruitment of the myeloid differentiation primary response 88 protein to activated TLRs. To date, the structure and mechanism of TIRAP’s membrane association are only partially understood. Here, we modeled an all-residue TIRAP dimer using homology modeling, threading, and protein–protein docking strategies. Molecular dynamics simulations revealed that PIP2 creates a stable microdomain in a dipalmitoylphosphatidylcholine bilayer, providing TIRAP with its physiologically relevant orientation. Computed binding free energy values suggest that the affinity of PI-binding domain (PBD for PIP2 is stronger than that of TIRAP as a whole for PIP2 and that the short PI-binding motif (PBM contributes to the affinity between PBD and PIP2. Four PIP2 molecules can be accommodated by distinct lysine-rich surfaces on the dimeric PBM. Along with the known PI-binding residues (K15, K16, K31, and K32, additional positively charged residues (K34, K35, and R36 showed strong affinity toward PIP2. Lysine-to-alanine mutations at the PI-binding residues abolished TIRAP’s affinity for PIP2; however, K34, K35, and R36 consistently interacted with PIP2 headgroups through hydrogen bond (H-bond and electrostatic interactions. TIRAP exhibited a PIP2-analogous intermolecular contact and binding affinity toward PIP3, aided by an H-bond network involving K34, K35, and R36. The present study extends our understanding of TIRAP’s membrane association, which could be helpful in designing peptide decoys to block TLR2-, TLR4-, TLR7-, and TLR9-mediated autoimmune diseases.

  15. Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity.

    Science.gov (United States)

    Hausser, Angelika; Link, Gisela; Hoene, Miriam; Russo, Chiara; Selchow, Olaf; Pfizenmaier, Klaus

    2006-09-01

    Phosphatidylinositol-4-kinase-IIIbeta (PI4KIIIbeta) is activated at the Golgi compartment by PKD-mediated phosphorylation. Subsequent mechanisms responsible for continuous PtdIns(4)P production at Golgi membranes and potential interaction partners of activated PI4KIIIbeta are unknown. Here we identify phosphoserine/-threonine binding 14-3-3 proteins as novel regulators of PI4KIIIbeta activity downstream of this phosphorylation. The PI4KIIIbeta-14-3-3 interaction, evident from GST pulldowns, co-immunoprecipitations and bimolecular fluorescence complementation, was augmented by phosphatase inhibition with okadaic acid. Binding of 14-3-3 proteins to PI4KIIIbeta involved the PKD phosphorylation site Ser294, evident from reduced 14-3-3 binding to a S294A PI4KIIIbeta mutant. Expression of dominant negative 14-3-3 proteins resulted in decreased PI4KIIIbeta Ser294 phosphorylation, whereas wildtype 14-3-3 proteins increased phospho-PI4KIIIbeta levels. This was because of protection of PI4KIIIbeta Ser294 phosphorylation from phosphatase-mediated dephosphorylation. The functional significance of the PI4KIIIbeta-14-3-3 interaction was evident from a reduction of PI4KIIIbeta activity upon dominant negative 14-3-3 protein expression. We propose that 14-3-3 proteins function as positive regulators of PI4KIIIbeta activity by protecting the lipid kinase from active site dephosphorylation, thereby ensuring a continuous supply of PtdIns(4)P at the Golgi compartment.

  16. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    Energy Technology Data Exchange (ETDEWEB)

    Reidick, Christina [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany); El Magraoui, Fouzi; Meyer, Helmut E. [Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund 44139 (Germany); Stenmark, Harald [Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo 0310 (Norway); Platta, Harald W., E-mail: harald.platta@rub.de [Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Bochum 44801 (Germany)

    2014-12-23

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept.

  17. Regulation of the Tumor-Suppressor Function of the Class III Phosphatidylinositol 3-Kinase Complex by Ubiquitin and SUMO

    International Nuclear Information System (INIS)

    Reidick, Christina; El Magraoui, Fouzi; Meyer, Helmut E.; Stenmark, Harald; Platta, Harald W.

    2014-01-01

    The occurrence of cancer is often associated with a dysfunction in one of the three central membrane-involution processes—autophagy, endocytosis or cytokinesis. Interestingly, all three pathways are controlled by the same central signaling module: the class III phosphatidylinositol 3-kinase (PI3K-III) complex and its catalytic product, the phosphorylated lipid phosphatidylinositol 3-phosphate (PtdIns3P). The activity of the catalytic subunit of the PI3K-III complex, the lipid-kinase VPS34, requires the presence of the membrane-targeting factor VPS15 as well as the adaptor protein Beclin 1. Furthermore, a growing list of regulatory proteins associates with VPS34 via Beclin 1. These accessory factors define distinct subunit compositions and thereby guide the PI3K-III complex to its different cellular and physiological roles. Here we discuss the regulation of the PI3K-III complex components by ubiquitination and SUMOylation. Especially Beclin 1 has emerged as a highly regulated protein, which can be modified with Lys11-, Lys48- or Lys63-linked polyubiquitin chains catalyzed by distinct E3 ligases from the RING-, HECT-, RBR- or Cullin-type. We also point out other cross-links of these ligases with autophagy in order to discuss how these data might be merged into a general concept

  18. Fitness and virulence of a coxsackievirus mutant that can circumnavigate the need for phosphatidylinositol 4-kinase class III beta

    NARCIS (Netherlands)

    Thibaut, Hendrik Jan; van der Schaar, Hilde M; Lanke, Kjerstin H W; Verbeken, Erik; Andrews, Martin; Leyssen, Pieter; Neyts, Johan; van Kuppeveld, Frank J M

    2014-01-01

    Coxsackieviruses require phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) for replication but can bypass this need by an H57Y mutation in protein 3A (3A-H57Y). We show that mutant coxsackievirus is not outcompeted by wild-type virus during 10 passages in vitro. In mice, the mutant virus proved as

  19. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    International Nuclear Information System (INIS)

    Hwang, P.M.; Verma, A.; Bredt, D.S.; Snyder, S.H.

    1990-01-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of 45 Ca 2+ , inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of [ 3 H]cytidine diphosphate diacylglycerol formed from [ 3 H]cytidine. Accumulated 45 Ca 2+ , inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited by low concentrations of denatonium, a potently bitter tastant

  20. Alpha 1-adrenergic stimulation of phosphatidylinositol turnover and respiration of brown fat cells

    International Nuclear Information System (INIS)

    Mohell, N.; Wallace, M.; Fain, J.N.

    1984-01-01

    The alpha-adrenergic agonist phenylephrine (in the presence of the beta-adrenergic antagonist alprenolol) stimulated respiration and incorporation of [ 3 H]glycerol and [ 32 P] P/sub i/ into phosphatidylinositol of hamster brown fat cells in a concentration-dependent manner. Both responses were preferentially inhibited by prazosin as compared with yohimbine, indicating alpha 1 specificity. Uniquely, prazosin inhibition of phenylephrine-stimulated phosphatidylinositol metabolism had two components, since 30% of the response was inhibited by less than 1 nM prazosin, 10 nM gave no further inhibition, and 100 nM prazosin completely inhibited the response. The phosphatidylinositol response was still present in Ca 2 +-free buffer, although reduced in magnitude. The concentration relationships of the effects of agonists and antagonists were compared with those of previous results of [ 3 H]prazosin binding and with phenylephrine potency to compete for binding. On the basis of these comparisons, it is suggested that the highly prazosin-sensitive part of the phosphatidylinositol response may be closely associated with receptor occupation

  1. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    International Nuclear Information System (INIS)

    Boura, Evzen; Nencka, Radim

    2015-01-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine

  2. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Evzen, E-mail: boura@uochb.cas.cz; Nencka, Radim, E-mail: nencka@uochb.cas.cz

    2015-10-01

    The phosphatidylinositol 4-kinases (PI4Ks) synthesize phosphatidylinositol 4-phosphate (PI4P), a key member of the phosphoinositide family. PI4P defines the membranes of Golgi and trans-Golgi network (TGN) and regulates trafficking to and from the Golgi. Humans have two type II PI4Ks (α and β) and two type III enzymes (α and β). Recently, the crystal structures were solved for both type II and type III kinase revealing atomic details of their function. Importantly, the type III PI4Ks are hijacked by +RNA viruses to create so-called membranous web, an extensively phosphorylated and modified membrane system dedicated to their replication. Therefore, selective and potent inhibitors of PI4Ks have been developed as potential antiviral agents. Here we focus on the structure and function of PI4Ks and their potential in human medicine.

  3. Involvement of Phosphatidylinositol 3-kinase in the regulation of proline catabolism in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Anne-Sophie eLeprince

    2015-01-01

    Full Text Available Plant adaptation to abiotic stresses such as drought and salinity involves complex regulatory processes. Deciphering the signalling components that are involved in stress signal transduction and cellular responses is of importance to understand how plants cope with salt stress. Accumulation of osmolytes such as proline is considered to participate in the osmotic adjustment of plant cells to salinity. Proline accumulation results from a tight regulation between its biosynthesis and catabolism. Lipid signal components such as phospholipases C and D have previously been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. In this study, we demonstrate that proline metabolism is also regulated by class-III Phosphatidylinositol 3-kinase (PI3K, VPS34, which catalyses the formation of phosphatidylinositol 3-phosphate (PI3P from phosphatidylinositol. Using pharmacological and biochemical approaches, we show that the PI3K inhibitor, LY294002, affects PI3P levels in vivo and that it triggers a decrease in proline accumulation in response to salt treatment of A. thaliana seedlings. The lower proline accumulation is correlated with a lower transcript level of Pyrroline-5-carboxylate synthetase 1 biosynthetic enzyme and higher transcript and protein levels of Proline dehydrogenase 1 (ProDH1, a key-enzyme in proline catabolism. We also found that the ProDH1 expression is induced in a pi3k-hemizygous mutant, further demonstrating that PI3K is involved in the regulation of proline catabolism through transcriptional regulation of ProDH1. A broader metabolomic analysis indicates that LY294002 also reduced other metabolites, such as hydrophobic and aromatic amino acids and sugars like raffinose.

  4. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action.

    Science.gov (United States)

    Deng, Youping; Bhattacharya, Sujoy; Swamy, O Rama; Tandon, Ruchi; Wang, Yong; Janda, Robert; Riedel, Heimo

    2003-10-10

    The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling

  5. The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival

    DEFF Research Database (Denmark)

    Ditlevsen, Dorte K; Køhler, Lene B; Pedersen, Martin Volmer

    2003-01-01

    The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein...... kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating...... that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data...

  6. Phosphatidylinositol response and proliferation of oxidative enzyme-activated human T lymphocytes: suppression by plasma lipoproteins

    International Nuclear Information System (INIS)

    Akeson, A.L.; Scupham, D.W.; Harmony, J.A.

    1984-01-01

    The phosphatidylinositol (PI) response and DNA synthesis of neuraminidase and galactose oxidase (NAGO)-stimulated human T lymphocytes are suppressed by low density lipoproteins (LDL). To understand the mechanism of lymphocyte activation more fully, the PI response and DNA synthesis and suppression of these events by LDL in NAGO-stimulated T lymphocytes were characterized. Between 30 min and 6 hr after NAGO stimulation, there was an increase of 32 Pi incorporation into PI without increased incorporation into the phosphorylated forms of PI or into other phospholipids. DNA synthesis as determined by [ 3 H]thymidine incorporation depended on the lymphocyte-accessory monocyte ratio and total cell density. Optimal stimulation of the PI response and DNA synthesis occurred at the same concentration of neuraminidase and galactose oxidase. While the PI response was only partially suppressed by LDL with optimal suppression at 10 to 20 micrograms of protein/ml, DNA synthesis was completely suppressed although at much higher LDL concentrations, greater than 100 micrograms protein/ml. As monocyte numbers are increased, LDL suppression of DNA synthesis is decreased. The ability of NAGO to stimulate the PI response and DNA synthesis in a similar way, and the suppression of both events by LDL, suggests the PI response is important for lymphocyte activation and proliferation. Stimulation of human T lymphocytes by oxidative mitogens, neuraminidase, and galactose oxidase caused increased phosphatidylinositol metabolism and increased DNA synthesis. Both responses were suppressed by low density lipoproteins

  7. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    Science.gov (United States)

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  8. Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection.

    Science.gov (United States)

    Lu, Shan; Chen, Linlin; Tao, Kai; Sun, Nannan; Wu, Yuren; Lu, Xiaoxue; Wang, Yuanchao; Dou, Daolong

    2013-09-01

    RxLR effectors produced by Phytophthora pathogens have been proposed to bind to phosphatidylinositol 3-phosphate (PtdIns(3)P) to mediate their translocation into host cells and/or to increase their stability in planta. Since the levels of PtdIns(3)P in plants are low, we examined whether Phytophthora species may produce PtdIns(3)P to promote infection. We observed that PtdIns(3)P-specific GFP biosensors could bind to P. parasitica and P. sojae hyphae during infection of Nicotiana benthamiana leaves transiently secreting the biosensors, suggesting that the hyphae exposed PtdIns(3)P on their plasma membrane and/or secreted PtdIns(3)P. Silencing of the phosphatidylinositol 3-kinases (PI3K) genes, treatment with LY294002, or expression of PtdIns(3)P-binding proteins by P. sojae reduced the virulence of the pathogen on soybean, indicating that pathogen-synthesized PtdIns(3)P was required for full virulence. Secretion of PtdIns(3)P-binding proteins or of a PI3P-5-kinase by N. benthamiana leaves significantly increased the level of resistance to infection by P. parasitica and P. capsici. Together, our results support the hypothesis that Phytophthora species produce external PtdIns(3)P to aid in infection, such as to promote entry of RxLR effectors into host cells. Our results derived from P. sojae RxLR effector Avr1b confirm that both the N-terminus and the C-terminus of this effector can bind PtdIns(3)P.

  9. Functional studies on the phosphatidychloride transfer protein

    NARCIS (Netherlands)

    Brouwer, A.P.M. de

    2002-01-01

    The phosphatidylcholine transfer protein (PC-TP) has been studied for over 30 years now. Despite extensive research concerning the biochemical, biophysical and structural properties of PC-TP, the function of this protein is still elusive. We have studied in vitro the folding and the mechanism of PC

  10. Transfer buffer containing methanol can be reused multiple times in protein electrotransfer.

    Science.gov (United States)

    Pettegrew, Colin J; Jayini, Renuka; Islam, M Rafiq

    2009-04-01

    We investigated the feasibility of repeated use of transfer buffer containing methanol in electrotransfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to polyvinylidene difluoride (PVDF) membrane using a prestained protein marker of broad molecular sizes. Transfer of the antitumor protein p53 in HEK293T cell extracts, using fresh and used transfer buffer, followed by detection with anti-p53 antibody was also performed to test detectability in immunoblot. Results from these experiments indicate that the transfer buffer can be reused at least five times and maintain a similar extent of protein transfer to PVDF membrane. Repeated use of the transfer buffer containing methanol will significantly reduce the volume of hazardous waste generated and its disposal cost as well as its adverse effect on environment.

  11. PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast

    NARCIS (Netherlands)

    Le Guédard, Marina; Bessoule, Jean-Jacques; Boyer, Valérie; Ayciriex, Sophie; Velours, Gisèle; Kulik, Willem; Ejsing, Christer S.; Shevchenko, Andrej; Coulon, Denis; Lessire, René; Testet, Eric

    2009-01-01

    In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either

  12. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  13. Genetically encoded fluorescent probe to visualize phosphatidylinositol

    Czech Academy of Sciences Publication Activity Database

    Eisenreichová, Andrea; Humpolíčková, Jana; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 364-365 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : phosphatidylinositol * fluorescent probe Subject RIV: CE - Biochemistry

  14. Dynamics in electron transfer protein complexes

    OpenAIRE

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...

  15. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    Science.gov (United States)

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells

  16. Acute and chronic effects of a 24-hour intravenous triglyceride emulsion challenge on plasma lecithin : cholesterol acyltransferase, phospholipid transfer protein, and cholesteryl ester transfer protein activities

    NARCIS (Netherlands)

    Riemens, SC; Van Tol, A; Sluiter, WJ; Dullaart, RPF

    Lecithin:cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and cholesteryl ester transfer protein (CETP) are key factors in remodeling of high density lipoproteins (HDL) and triglyceride-rich lipoproteins. We examined the effect of a large, 24 h intravenous fat load on plasma

  17. Non-opsonic phagocytosis of Legionella pneumophila by macrophages is mediated by phosphatidylinositol 3-kinase.

    Directory of Open Access Journals (Sweden)

    Souvenir D Tachado

    Full Text Available BACKGROUND: Legionella pneumophila, is an intracellular pathogen that causes Legionnaires' disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3, a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85alpha subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells. CONCLUSION/SIGNIFICANCE: Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies for undermining L. pneumophila host uptake and reducing pathogenesis of Legionnaires' disease.

  18. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    Science.gov (United States)

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  19. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  20. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    Science.gov (United States)

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-02-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulated, phospholipase D-dependent PC hydrolysis and subsequent translocation of PKC-alpha and PKC-beta to the plasma membrane. Wortmannin did not inhibit PKC directly in vitro, or the PKC-dependent effects of phorbol esters on glucose transport in intact adipocytes. The PKC inhibitor RO 31-8220 did not inhibit PI 3-kinase directly or its activation in situ by insulin, but inhibited both insulin-stimulated and phorbol ester-stimulated glucose transport. Our findings suggest that insulin acts through PI 3-kinase to activate a PC-specific phospholipase D and causes the translocative activation of PKC-alpha and PKC-beta in plasma membranes of rat adipocytes.

  1. Conformational dependence of a protein kinase phosphate transfer reaction

    Science.gov (United States)

    Labute, Montiago; Henkelman, Graeme; Tung, Chang-Shung; Fenimore, Paul; McMahon, Ben

    2007-03-01

    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase have been calculated using plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. Our results demonstrate that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site [1]. [1] G.H. Henkelman, M.X. LaBute, C.-S. Tung, P.W. Fenimore, B.H. McMahon, Proc. Natl. Acad. Sci. USA vol. 102, no. 43:15347-15351 (2005).

  2. Kinetics of proton transfer in a green fluorescent protein: A laser ...

    Indian Academy of Sciences (India)

    Unknown

    therefore implicates bulk solvent-controlled protein dynamics in the protonation process. ... recently to protein–protein interactions in the bacterial response regulator SpoOF. NMR ..... molecular mechanism for redox-driven proton transfer to a buried iron–sulphur cluster ... Dynamic simulations of proton transfer from bulk.

  3. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Todd J Treangen

    2011-01-01

    Full Text Available Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus, average-sized genomes (Bacillus, Enterobacteriaceae, and large genomes (Pseudomonas, Bradyrhizobiaceae to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.

  4. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  5. Phosphatidylinositol 4-kinases: Function, structure, and inhibition

    Czech Academy of Sciences Publication Activity Database

    Bouřa, Evžen; Nencka, Radim

    2015-01-01

    Roč. 337, č. 2 (2015), s. 136-145 ISSN 0014-4827 R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302; GA ČR GA15-09310S EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : phosphatidylinositol 4-kinase * inhibitor * crystal structure * virus Subject RIV: CC - Organic Chemistry Impact factor: 3.378, year: 2015

  6. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells

    NARCIS (Netherlands)

    Vermeer, J.E.M.; Thole, J.M.; Goedhart, J.; Nielsen, E.; Munnik, T.; Gadella, T.W.J.

    2009-01-01

    Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant

  7. PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast

    DEFF Research Database (Denmark)

    Le Guédard, Marina; Bessoule, Jean-Jacques; Boyer, Valérie

    2009-01-01

    complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild......-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid...... as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol....

  8. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  9. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in type 2 diabetes : effects of apolipoproteins

    NARCIS (Netherlands)

    Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.; van Tol, Arie

    Purpose of review Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in

  10. Metabolism of phospholipids in peripheral nerve from rats with chronic streptozotocin-induced diabetes: increased turnover of phosphatidylinositol-4,5-bisphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Bell, M E; Peterson, R G; Eichberg, J

    1982-07-01

    The effect of chronic streptozotocin-induced diabetes on phospholipid metabolism in rat sciatic nerve in vitro was investigated. In normal nerve incubated for 2 h in Krebs-Ringer-bicarbonate buffer containing (/sup 32/P)orthophosphate, radioactivity was primarily incorporated into phosphatidylinositol-4,5-bisphosphate and phosphatidylcholine. Smaller amounts were present in phosphatidylinositol-4-phosphate, phosphatidylinositol, and phosphatidic acid. As compared to controls, phosphatidylinositol-4,5-bisphosphate in nerves from animals made diabetic 2, 10, and 20 weeks earlier accounted for 30-46% more of the isotope, expressed as a percentage, incorporated into all phospholipids. In contrast, the proportion of radioactivity in phosphatidylcholine decreased by 10-25%. When the results were expressed as the quantity of phosphorus incorporated into phospholipid, only phosphatidylinositol-4,5-bisphosphate displayed a change. The amount of isotope which entered this lipid increased 60% and 67% for 2- and 10-week diabetic animals, respectively. Increased phosphatidylinositol-4,5-bisphosphate labeling was observed when epineurial-free preparations were used or when the composition of the incubation medium was varied. Sciatic and caudal nerve conduction velocities were decreased after 10 and 20 weeks but were unchanged after 2 weeks. Researchers conclude that an increase in the turnover of phosphatidylinositol-4,5-bisphosphate in sciatic nerve from streptozotocin-diabetic rats appears relatively early and persists throughout the course of the disease. This metabolic alteration may be related to a primary defect responsible for the accompanying deficient peripheral nerve function.

  11. Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique.

    Science.gov (United States)

    Ohvo-Rekilä, Henna; Mattjus, Peter

    2011-01-01

    The glycolipid transfer protein (GLTP) is a protein capable of binding and transferring glycolipids. GLTP is cytosolic and it can interact through its FFAT-like (two phenylalanines in an acidic tract) motif with proteins localized on the surface of the endoplasmic reticulum. Previous in vitro work with GLTP has focused mainly on the complete transfer reaction of the protein, that is, binding and subsequent removal of the glycolipid from the donor membrane, transfer through the aqueous environment, and the final release of the glycolipid to an acceptor membrane. Using bilayer vesicles and surface plasmon resonance spectroscopy, we have now, for the first time, analyzed the binding and lipid removal capacity of GLTP with a completely label-free technique. This technique is focused on the initial steps in GLTP-mediated transfer and the parameters affecting these steps can be more precisely determined. We used the new approach for detailed structure-function studies of GLTP by examining the glycolipid transfer capacity of specific GLTP tryptophan mutants. Tryptophan 96 is crucial for the transfer activity of the protein and tryptophan 142 is an important part of the proteins membrane interacting domain. Further, we varied the composition of the used lipid vesicles and gained information on the effect of membrane properties on GLTP activity. GLTP prefers to interact with more tightly packed membranes, although GLTP-mediated transfer is faster from more fluid membranes. This technique is very useful for the study of membrane-protein interactions and lipid-transfer rates and it can easily be adapted to other membrane-interacting proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. [Better performance of Western blotting: quick vs slow protein transfer, blotting membranes and the visualization methods].

    Science.gov (United States)

    Kong, Ling-Quan; Pu, Ying-Hui; Ma, Shi-Kun

    2008-01-01

    To study how the choices of the quick vs slow protein transfer, the blotting membranes and the visualization methods influence the performance of Western blotting. The cellular proteins were abstracted from human breast cell line MDA-MB-231 for analysis with Western blotting using quick (2 h) and slow (overnight) protein transfer, different blotting membranes (nitrocellulose, PVDF and nylon membranes) and different visualization methods (ECL and DAB). In Western blotting with slow and quick protein transfer, the prestained marker presented more distinct bands on nitrocellulose membrane than on the nylon and PVDF membranes, and the latter also showed clear bands on the back of the membrane to very likely cause confusion, which did not occur with nitrocellulose membrane. PVDF membrane allowed slightly clearer visualization of the proteins with DAB method as compared with nitrocellulose and nylon membranes, and on the latter two membranes, quick protein transfer was likely to result in somehow irregular bands in comparison with slow protein transfer. With slow protein transfer and chemiluminescence for visualization, all the 3 membranes showed clear background, while with quick protein transfer, nylon membrane gave rise to obvious background noise but the other two membranes did not. Different membranes should be selected for immunoblotting according to the actual needs of the experiment. Slow transfer of the proteins onto the membranes often has better effect than quick transfer, and enhanced chemiluminescence is superior to DAB for protein visualization and allows highly specific and sensitive analysis of the protein expressions.

  13. Novel adapter proteins that link the human GM-CSF receptor to the phosphatidylino-sitol 3-kinase and Shc/Grb2/ras signaling pathways.

    Science.gov (United States)

    Jücker, M; Feldman, R A

    1996-01-01

    We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.

  14. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    Science.gov (United States)

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  15. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.

    Science.gov (United States)

    Niemiec, Moritz S; Weise, Christoph F; Wittung-Stafshede, Pernilla

    2012-01-01

    Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.

  16. Osh4p is needed to reduce the level of phosphatidylinositol-4-phosphate on secretory vesicles as they mature

    OpenAIRE

    Ling, Yading; Hayano, Scott; Novick, Peter

    2014-01-01

    Phosphatidylinositol-4-phosphate (PI4P) is produced on both the Golgi and the plasma membrane. Despite extensive vesicular traffic between these compartments, genetic analysis suggests that the two pools of PI4P do not efficiently mix with one another. Several lines of evidence indicate that the PI4P produced on the Golgi is normally incorporated into secretory vesicles, but the fate of that pool has been unclear. We show here that in yeast the oxysterol-binding proteins Osh1?Osh7 are collect...

  17. First principles design of a core bioenergetic transmembrane electron-transfer protein

    Energy Technology Data Exchange (ETDEWEB)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.; Wiedman, Gregory; Moser, Christopher C.; Leslie Dutton, P.; Discher, Bohdana M.

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  18. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  19. Preferential transfer of certain plasma membrane proteins onto T and B cells by trogocytosis.

    Directory of Open Access Journals (Sweden)

    Sandrine Daubeuf

    2010-01-01

    Full Text Available T and B cells capture antigens via membrane fragments of antigen presenting cells (APC in a process termed trogocytosis. Whether (and how a preferential transfer of some APC components occurs during trogocytosis is still largely unknown. We analyzed the transfer onto murine T and B cells of a large panel of fluorescent proteins with different intra-cellular localizations in the APC or various types of anchors in the plasma membrane (PM. Only the latter were transferred by trogocytosis, albeit with different efficiencies. Unexpectedly, proteins anchored to the PM's cytoplasmic face, or recruited to it via interaction with phosphinositides, were more efficiently transferred than those facing the outside of the cell. For proteins spanning the PM's whole width, transfer efficiency was found to vary quite substantially, with tetraspanins, CD4 and FcRgamma found among the most efficiently transferred proteins. We exploited our findings to set immunodiagnostic assays based on the capture of preferentially transferred components onto T or B cells. The preferential transfer documented here should prove useful in deciphering the cellular structures involved in trogocytosis.

  20. Probing hydrogen bonding interactions and proton transfer in proteins

    Science.gov (United States)

    Nie, Beining

    Scope and method of study. Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. It is therefore important to probe dynamic changes in hydrogen bonding interactions during protein folding and function. Time-resolved Fourier transform infrared spectroscopy is highly sensitive to hydrogen bonding interactions. However, it lacks quantitative correlation between the vibrational frequencies and the number, type, and strength of hydrogen bonding interactions of ionizable and polar residues. We employ quantum physics theory based ab initio calculations to study the effects of hydrogen bonding interactions on vibrational frequencies of Asp, Glu, and Tyr residues and to develop vibrational spectral markers for probing hydrogen bonding interactions using infrared spectroscopy. In addition, proton transfer process plays a crucial role in a wide range of energy transduction, signal transduction, and enzymatic reactions. We study the structural basis for proton transfer using photoactive yellow protein as an excellent model system. Molecular dynamics simulation is employed to investigate the structures of early intermediate states. Quantum theory based ab initio calculations are used to study the impact of hydrogen bond interactions on proton affinity and proton transfer. Findings and conclusions. Our extensive density function theory based calculations provide rich structural, spectral, and energetic information on hydrogen bonding properties of protonated side chain groups of Asp/Glu and Tyr. We developed vibrational spectral markers and 2D FTIR spectroscopy for structural characterization on the number and the type of hydrogen bonding interactions of the COOH group of Asp/Glu and neutral phenolic group of Tyr. These developments greatly enhance the power of time-resolved FTIR spectroscopy as a major experimental tool for structural characterization of functionally important

  1. Neomysin inhibits Ca2+-stimulated phosphatidylinositol hydrolysis and protects cultured rat cardiomyocytes from Ca2+-dependent cell injury

    International Nuclear Information System (INIS)

    Babson, J.R.; Dougherty, J.M.

    1991-01-01

    Exposure of cultured rat cardiomyocytes to ionomycin and extracellular Ca 2+ leads to a rapid, sustained increase in intracellular free Ca 2+ as monitored by Ca 2+ -dependent phosphorylase a activation and to a subsequent loss of cardiomyocyte viability as determined by lactate dehydrogenase (LDH) leakage. The intracellular free Ca 2+ increase coincided with a rapid hydrolysis of phosphatidylinositol that preceded cell death. Phosphatidylinositol hydrolysis was monitored by the release of radiolabeled phosphoinositides from cardiomyocytes prelabeled with [2- 3 H]-myo-inositol. Neomycin, a known inhibitor of phospholipase C, inhibited the phosphatidylinositol hydrolysis and markedly reduced the extent of cell injury. Inhibitors of other Ca 2+ -activated processes, including intracellular proteases and phospholipase A 2 , had no effect on ionomycin-mediated cell injury. These data suggest that ionomycin-induced Ca 2+ -dependent cell injury in cultured cardiomyocytes may be due in part to the stimulation of phosphatidylinositol hydrolysis, presumably catalyzed by a Ca 2+ -dependent phospholipase C

  2. Purine analogs as phosphatidylinositol 4-kinase III beta inhibitors

    Czech Academy of Sciences Publication Activity Database

    Šála, Michal; Kögler, Martin; Plačková, Pavla; Mejdrová, Ivana; Hřebabecký, Hubert; Procházková, Eliška; Strunin, Dmytro; Lee, G.; Birkuš, G.; Weber, Jan; Mertlíková-Kaiserová, Helena; Nencka, Radim

    2016-01-01

    Roč. 26, č. 11 (2016), s. 2706-2712 ISSN 0960-894X R&D Projects: GA ČR GA15-09310S; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : phosphatidylinositol 4-kinase * purine * PI4K III beta * antiviral agent * hepatitis C virus Subject RIV: CC - Organic Chemistry Impact factor: 2.454, year: 2016

  3. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    Science.gov (United States)

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095

  4. Solution structure of a syndecan-4 cytoplasmic domain and its interaction with phosphatidylinositol 4,5-bisphosphate

    DEFF Research Database (Denmark)

    Lee, D; Oh, E S; Woods, A

    1998-01-01

    Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a coreceptor with integrins in cell adhesion. It has been suggested to form a ternary signaling complex with protein kinase Calpha and phosphatidylinositol 4,5-bisphosphate (PIP2). Syndecans each have a unique, central, and variable (V......) region in their cytoplasmic domains, and that of syndecan-4 is critical to its interaction with protein kinase C and PIP2. Two oligopeptides corresponding to the variable region (4V) and whole domain (4L) of syndecan-4 cytoplasmic domain were synthesized for nuclear magnetic resonance (NMR) studies. Data...... and dynamical simulated annealing calculations. The 4V peptide in the presence of PIP2 formed a compact dimer with two twisted strands packed parallel to each other and the exposed surface of the dimer consisted of highly charged and polar residues. The overall three-dimensional structure in solution exhibits...

  5. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    Science.gov (United States)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  6. Phospholipid transfer from vesicles to high density lipoproteins, catalyzed by human plasma phospholipid transfer protein

    International Nuclear Information System (INIS)

    Sweeny, S.A.

    1985-01-01

    Human plasma phospholipid transfer protein (PLTP) catalyzes the mass transfer of phosphatidylcholine (PC). Partial purification of PLTP yielded proteins with apparent M/sub r/ = 59,000 and 40,000 by SDS-PAGE. PLTP activity was measured by transfer of [ 14 C]L-α-dipalmitoyl PC from egg-PC vesicles to HDL. Activity was enhanced at low pH (4.5) upon addition of β-mercaptoethanol while Ca +2 and Na + had no effect. E/sub act/ for facilitated PC transfer was 18.2 +/- 2 kcal/mol. The donor specificity of PLTP was examined using vesicles containing egg-PC plus cholesterol or sphingomyelin. The fluidity of the donor membrane (measured by fluorescence polarization of diphenylhexatriene) correlated strongly with a decrease in PLTP activity. Phosphatidic acid did not affect activity. Increase in vesicle size reduced activity. The acceptor specificity of PLTP was examined using chemically modified HDL. PLTP activity increased up to 1.7-fold with an initial increase in negative charge and then decreased upon extensive modification. A mechanism is proposed where PLTP binds to vesicls and enhances the diffusion of PC into the medium where it is adsorbed by HDL

  7. Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men

    NARCIS (Netherlands)

    S.C. Riemens; A. van Tol (Arie); B.K. Stulp; R.P.F. Dullaart (Robin)

    1999-01-01

    textabstractLecithin:cholesteryl acyl transferase (LCAT), cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), and lipoprotein lipases are involved in high density lipoprotein (HDL) metabolism. We evaluated the influence of insulin

  8. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    Science.gov (United States)

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  9. The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein.

    Science.gov (United States)

    Gabus, C; Auxilien, S; Péchoux, C; Dormont, D; Swietnicki, W; Morillas, M; Surewicz, W; Nandi, P; Darlix, J L

    2001-04-06

    The transmissible spongiform encephalopathies are fatal neurodegenerative diseases that are associated with the accumulation of a protease-resistant form of the cellular prion protein (PrP). Although PrP is highly conserved and widely expressed in vertebrates, its function remains a matter of speculation. Indeed PrP null mice develop normally and are healthy. Recent results show that PrP binds to nucleic acids in vitro and is found associated with retroviral particles. Furthermore, in mice the scrapie infectious process appears to be accelerated by MuLV replication. These observations prompted us to further investigate the interaction between PrP and nucleic acids, and compare it with that of the retroviral nucleocapsid protein (NC). As the major nucleic acid-binding protein of the retroviral particle, NC protein is tightly associated with the genomic RNA in the virion nucleocapsid, where it chaperones proviral DNA synthesis by reverse transcriptase. Our results show that the human prion protein (huPrP) functionally resembles NCp7 of HIV-1. Both proteins form large nucleoprotein complexes upon binding to DNA. They accelerate the hybridization of complementary DNA strands and chaperone viral DNA synthesis during the minus and plus DNA strand transfers necessary to generate the long terminal repeats. The DNA-binding and strand transfer properties of huPrP appear to map to the N-terminal fragment comprising residues 23 to 144, whereas the C-terminal domain is inactive. These findings suggest that PrP could be involved in nucleic acid metabolism in vivo. Copyright 2001 Academic Press.

  10. Antimicrobial activity of Brassica nectar lipid transfer protein

    Science.gov (United States)

    Antimicrobial peptides (AMPs) provide an ancient, innate immunity conserved in all multicellular organisms. In plants, there are several large families of AMPs defined by sequence similarity. The nonspecific lipid transfer protein (LTP) family is defined by a conserved signature of eight cysteines a...

  11. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling.

    Science.gov (United States)

    Liang, Genqing; Bansal, Geetanjali; Xie, Zhihui; Druey, Kirk M

    2009-08-07

    Aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway supports growth of many tumors including those of breast, lung, and prostate. Resistance of breast cancer cells to targeted chemotherapies including tyrosine kinase inhibitors (TKI) has been linked to persistent PI3K activity, which may in part be due to increased membrane expression of epidermal growth factor (EGF) receptors (HER2 and HER3). Recently we found that proteins of the RGS (regulator of G protein signaling) family suppress PI3K activity downstream of the receptor by sequestering its p85alpha subunit from signaling complexes. Because a substantial percentage of breast tumors have RGS16 mutations and reduced RGS16 protein expression, we investigated the link between regulation of PI3K activity by RGS16 and breast cancer cell growth. RGS16 overexpression in MCF7 breast cancer cells inhibited EGF-induced proliferation and Akt phosphorylation, whereas shRNA-mediated extinction of RGS16 augmented cell growth and resistance to TKI treatment. Exposure to TKI also reduced RGS16 expression in MCF7 and BT474 cell lines. RGS16 bound the amino-terminal SH2 and inter-SH2 domains of p85alpha and inhibited its interaction with the EGF receptor-associated adapter protein Gab1. These results suggest that the loss of RGS16 in some breast tumors enhances PI3K signaling elicited by growth factors and thereby promotes proliferation and TKI evasion downstream of HER activation.

  12. Radical transfer between proteins: role of tyrosine, tryptophan and protein peroxyl radicals

    International Nuclear Information System (INIS)

    Irwin, J.A.; Ostdal, H.; Davies, M.J.

    1998-01-01

    Reaction of the Fe(III) forms of the heme proteins myoglobin (Mb) and horseradish peroxidase (HRP) with H 2 O 2 gives rise to high-oxidation-state heme-derived species which can be described as a Fe(IV)-oxo porphyrin radical-cation ('Compound 1'). In the case of Mb, the Fe(IV)-oxo porphyrin radical-cation undergoes rapid electron transfer with the surrounding protein to give protein (globin)-derived radicals and an Fe(lV)-oxo species ('Compound 2'). The globin-derived radicals have been shown to be located at two (or more) sites: Tyr-103 or Trp-14, with the latter radical known to react with oxygen to give a Trp-derived peroxyl radical (Mb-Trp-OO*). With HRP, the Fe(lV)-oxo porphyrin radical-cation carries out two successive one-electron oxidation reactions at the exposed heme edge to give firstly 'Compound 2' [the Fe(lV)oxo species] and then the resting Fe(III) state of the enzyme. n this study we have investigated whether the Trp-14 peroxyl radical from Mb and the Compound 1 and 2 species from HRP (in the absence and presence of free Tyr) can oxidise amino acids, peptides and proteins. Such reactions constitute intermolecular protein-to-protein radical transfer reactions and hence protein chain-oxidation. We have also examined whether these oxidants react with antioxidants. Reaction of these heme-protein derived oxidants with amino acids, proteins and antioxidants has been carried out at room temperature for defined periods of time before freeze-quenching to 77K to halt reaction. The radical species present in the reaction system at the time of freezing were subsequently examined by EPR spectroscopy at 77K. Three free amino acids, Tyr, Trp and Cys (with Cys the least efficient) have been shown to react rapidly with Mb-Trp-OO*, as evidenced by the loss of the characteristic EPR features of Mb-Trp-OO* on inclusion of increasing concentrations of the amino acids. All other amino acids are much less reactive. Evidence has also been obtained for (inefficient) hydrogen

  13. Fast electron transfer through a single molecule natively structured redox protein

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Macdonald, J. Emyr

    2012-01-01

    The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conduc...

  14. Class IA phosphatidylinositol 3-kinase p110α regulates phagosome maturation.

    Directory of Open Access Journals (Sweden)

    Emily P Thi

    Full Text Available Of the various phosphatidylinositol 3- kinases (PI3Ks, only the class III enzyme Vps34 has been shown to regulate phagosome maturation. During studies of phagosome maturation in THP-1 cells deficient in class IA PI3K p110α, we discovered that this PI3K isoform is required for vacuole maturation to progress beyond acquisition of Rab7 leading to delivery of lysosomal markers. Bead phagosomes from THP-1 cells acquired p110α and contained PI3P and PI(3,4,5P3; however, p110α and PI(3,4,5P3 levels in phagosomes from p110α knockdown cells were decreased. Phagosomes from p110α knock down cells showed normal acquisition of both Rab5 and EEA-1, but were markedly deficient in the lysosomal markers LAMP-1 and LAMP-2, and the lysosomal hydrolase, β-galactosidase. Phagosomes from p110α deficient cells also displayed impaired fusion with Texas Red dextran-loaded lysosomes. Despite lacking lysosomal components, phagosomes from p110α deficient cells recruited normal levels of Rab7, Rab-interacting lysosomal protein (RILP and homotypic vacuole fusion and protein sorting (HOPs components Vps41 and Vps16. The latter observations demonstrated that phagosomal Rab7 was active and capable of recruiting effectors involved in membrane fusion. Nevertheless, active Rab7 was not sufficient to bring about the delivery of lysosomal proteins to the maturing vacuole, which is shown for the first time to be dependent on a class I PI3K.

  15. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Directory of Open Access Journals (Sweden)

    Aysima Hacisuleyman

    2017-01-01

    Full Text Available It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  16. Entropy Transfer between Residue Pairs and Allostery in Proteins: Quantifying Allosteric Communication in Ubiquitin.

    Science.gov (United States)

    Hacisuleyman, Aysima; Erman, Burak

    2017-01-01

    It has recently been proposed by Gunasakaran et al. that allostery may be an intrinsic property of all proteins. Here, we develop a computational method that can determine and quantify allosteric activity in any given protein. Based on Schreiber's transfer entropy formulation, our approach leads to an information transfer landscape for the protein that shows the presence of entropy sinks and sources and explains how pairs of residues communicate with each other using entropy transfer. The model can identify the residues that drive the fluctuations of others. We apply the model to Ubiquitin, whose allosteric activity has not been emphasized until recently, and show that there are indeed systematic pathways of entropy and information transfer between residues that correlate well with the activities of the protein. We use 600 nanosecond molecular dynamics trajectories for Ubiquitin and its complex with human polymerase iota and evaluate entropy transfer between all pairs of residues of Ubiquitin and quantify the binding susceptibility changes upon complex formation. We explain the complex formation propensities of Ubiquitin in terms of entropy transfer. Important residues taking part in allosteric communication in Ubiquitin predicted by our approach are in agreement with results of NMR relaxation dispersion experiments. Finally, we show that time delayed correlation of fluctuations of two interacting residues possesses an intrinsic causality that tells which residue controls the interaction and which one is controlled. Our work shows that time delayed correlations, entropy transfer and causality are the required new concepts for explaining allosteric communication in proteins.

  17. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  18. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  19. The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase–Protein Kinase B–Mammalian Target of Rapamycin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Changsong Yu

    2016-05-01

    Full Text Available Glucagon-like peptide-2 (GLP-2 is important for intestinal barrier function and regulation of tight junction (TJ proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER in lipopolysaccharide (LPS stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K-protein kinase B (Akt-mammalian target of rapamycin (mTOR signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 μg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1 mRNA, proteins expressions (p<0.01 respectively. GLP-2 (100 nmol/L promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01 respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01 following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01. In conclusion, these results indicated that GLP-2 can promote TJ’s expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway.

  20. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr

    2016-02-19

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulation of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2

  1. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  2. Single-step azide introduction in proteins via an aqueous diazo transfer

    NARCIS (Netherlands)

    van Dongen, S.F.M.; Teeuwen, R.L.M.; Nallani, M.; van Berkel, S.S.; Cornelissen, J.J.L.M.; Nolte, R.J.M.; van Hest, J.C.M.

    The controlled introduction of azides in proteins provides targetable handles for selective protein manipulation. We present here an efficient diazo transfer protocol that can be applied in an aqueous solution, leading to the facile introduction of azides in the side chains of lysine residues and at

  3. Single-Step Azide Introduction in Proteins via an Aqueous Diazo Transfer

    NARCIS (Netherlands)

    van Dongen, Stijn; Teeuwen, R.L.M.; Nallani, Madhavan; van Berkel, S.S; Cornelissen, Jeroen Johannes Lambertus Maria; Nolte, Roeland; van Hest, Jan

    2009-01-01

    The controlled introduction of azides in proteins provides targetable handles for selective protein manipulation. We present here an efficient diazo transfer protocol that can be applied in an aqueous solution, leading to the facile introduction of azides in the side chains of lysine residues and at

  4. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells.

    Science.gov (United States)

    Hertel, Fabian; Switalski, Agathe; Mintert-Jancke, Elisa; Karavassilidou, Katharina; Bender, Kirsten; Pott, Lutz; Kienitz, Marie-Cécile

    2011-01-01

    Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5)P(2) in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET), to monitor changes in plasma membrane(.) For controlled and reversible depletion of PtdIns(4,5)P(2), voltage-sensing phosphoinositide phosphatases (VSD) have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1) fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP), from a single open reading frame (ORF) in adult rat cardiac myocytes. Expression and correct targeting of ECFP-PH-PLCδ1(,) EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5)P(2) in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K(+) (GIRK) current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5)P(2) was identified. Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection-resistant postmitotic cells. Generally, adenoviral

  5. A genetically encoded tool kit for manipulating and monitoring membrane phosphatidylinositol 4,5-bisphosphate in intact cells.

    Directory of Open Access Journals (Sweden)

    Fabian Hertel

    Full Text Available BACKGROUND: Most ion channels are regulated by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5P(2 in the cell membrane by diverse mechanisms. Important molecular tools to study ion channel regulation by PtdIns(4,5P(2 in living cells have been developed in the past. These include fluorescent PH-domains as sensors for Förster resonance energy transfer (FRET, to monitor changes in plasma membrane(. For controlled and reversible depletion of PtdIns(4,5P(2, voltage-sensing phosphoinositide phosphatases (VSD have been demonstrated as a superior tool, since they are independent of cellular signaling pathways. Combining these methods in intact cells requires multiple transfections. We used self-cleaving viral 2A-peptide sequences for adenovirus driven expression of the PH-domain of phospholipase-Cδ1 (PLCδ1 fused to ECFP and EYFP respectively and Ciona intestinalis VSP (Ci-VSP, from a single open reading frame (ORF in adult rat cardiac myocytes. METHODS AND RESULTS: Expression and correct targeting of ECFP-PH-PLCδ1(, EYFP-PH-PLCδ1, and Ci-VSP from a single tricistronic vector containing 2A-peptide sequences first was demonstrated in HEK293 cells by voltage-controlled FRET measurements and Western blotting. Adult rat cardiac myocytes expressed Ci-VSP and the two fluorescent PH-domains within 4 days after gene transfer using the vector integrated into an adenoviral construct. Activation of Ci-VSP by depolarization resulted in rapid changes in FRET ratio indicating depletion of PtdIns(4,5P(2 in the plasma membrane. This was paralleled by inhibition of endogenous G protein activated K(+ (GIRK current. By comparing changes in FRET and current, a component of GIRK inhibition by adrenergic receptors unrelated to depletion of PtdIns(4,5P(2 was identified. CONCLUSIONS: Expression of a FRET sensor pair and Ci-VSP from a single ORF provides a useful approach to study regulation of ion channels by phosphoinositides in cell lines and transfection

  6. Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Jücker, M; Feldman, R A

    1995-11-17

    Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.

  7. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2.

    Science.gov (United States)

    Ogren, John I; Tong, Ashley L; Gordon, Samuel C; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E; Cao, Jianshu; Schlau-Cohen, Gabriela S

    2018-03-28

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to

  8. Isotype-specific inhibition of the phosphatidylinositol-3-kinase pathway in hematologic malignancies

    Directory of Open Access Journals (Sweden)

    Castillo JJ

    2014-02-01

    Full Text Available Jorge J Castillo,1 Meera Iyengar,2 Benjamin Kuritzky,2 Kenneth D Bishop2 1Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, 2Division of Hematology and Oncology, Rhode Island Hospital, Providence, RI, USA Abstract: In the last decade, the advent of biological targeted therapies has revolutionized the management of several types of cancer, especially in the realm of hematologic malignancies. One of these pathways, and the center of this review, is the phosphatidylinositol-3-kinase (PI3K pathway. The PI3K pathway seems to play an important role in the pathogenesis and survival advantage in hematologic malignancies, such as leukemia, lymphoma, and myeloma. The objectives of the present review, hence, are to describe the current knowledge on the PI3K pathway and its isoforms, and to summarize preclinical and clinical studies using PI3K inhibitors, focusing on the advances made in hematologic malignancies. Keywords: phosphatidylinositol-3-kinase pathway, inhibitors, leukemia, lymphoma, myeloma

  9. Light- and GTP-activated hydrolysis of phosphatidylinositol bisphosphate in squid photoreceptor membranes

    International Nuclear Information System (INIS)

    Baer, K.M.; Saibil, H.R.

    1988-01-01

    Light stimulates the hydrolysis of exogenous, [ 3 H]inositol-labeled phosphatidylinositol bisphosphate (PtdInsP2) added to squid photoreceptor membranes, releasing inositol trisphosphate (InsP3). At free calcium levels of 0.05 microM or greater, hydrolysis of the labeled lipid is stimulated up to 4-fold by GTP and light together, but not separately. This activity is the biochemical counterpart of observations on intact retina showing that a rhodopsin-activated GTP-binding protein is involved in visual transduction in invertebrates, and that InsP3 release is correlated with visual excitation and adaptation. Using an in vitro assay, we investigated the calcium and GTP dependence of the phospholipase activity. At calcium concentrations between 0.1 and 0.5 microM, some hydrolysis occurs independently of GTP and light, with a light- and GTP-activated component superimposed. At 1 microM calcium there is no background activity, and hydrolysis absolutely requires both GTP and light. Ion exchange chromatography on Dowex 1 (formate form) of the water-soluble products released at 1 microM calcium reveals that the product is almost entirely InsP3. Invertebrate rhodopsin is homologous in sequence and function to vertebrate visual pigment, which modulates the concentration of cyclic GMP through the mediation of the GTP-binding protein transducin. While there is some evidence that light also modulates PtdInsP2 content in vertebrate photoreceptors, the case for its involvement in phototransduction is stronger for the invertebrate systems. The results reported here support the scheme of rhodopsin----GTP-binding protein----phospholipase C activation in invertebrate photoreceptors

  10. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  11. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  12. Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions.

    Science.gov (United States)

    Hacisuleyman, Aysima; Erman, Burak

    2017-06-01

    A fast and approximate method of generating allosteric communication landscapes in proteins is presented by using Schreiber's entropy transfer concept in combination with the Gaussian Network Model of proteins. Predictions of the model and the allosteric communication landscapes generated show that information transfer in proteins does not necessarily take place along a single path, but an ensemble of pathways is possible. The model emphasizes that knowledge of entropy only is not sufficient for determining allosteric communication and additional information based on time delayed correlations should be introduced, which leads to the presence of causality in proteins. The model provides a simple tool for mapping entropy sink-source relations into pairs of residues. By this approach, residues that should be manipulated to control protein activity may be determined. This should be of great importance for allosteric drug design and for understanding the effects of mutations on function. The model is applied to determine allosteric communication in three proteins, Ubiquitin, Pyruvate Kinase, and the PDZ domain. Predictions are in agreement with molecular dynamics simulations and experimental evidence. Proteins 2017; 85:1056-1064. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Measurement of lipid transfer protein in 88 apple cultivars

    NARCIS (Netherlands)

    Sancho, Ana I.; van Ree, Ronald; van Leeuwen, Astrid; Meulenbroek, Bert J.; van de Weg, Eric W.; Gilissen, Luud J. W. J.; Puehringer, Helene; Laimer, Margit; Martinelli, Alessio; Zaccharini, Marzio; Vazquez-Cortes, Sonia; Fernandez-Rivas, Montserrat; Hoffmann-Sommergruber, Karin; Mills, E. N. Clare; Zuidmeer, Laurian

    2008-01-01

    Background: Fruits are a major cause of food allergy in adults. Lipid transfer proteins (LTP) are implicated in severe allergic reactions to fruits, but little is known about LTP content in different cultivars. Objective: Determination of the levels of LTP in a wide range of apple cultivars.

  14. Role of phosphatidylinositol 4,5-bisphosphate in regulating EHD2 plasma membrane localization.

    Directory of Open Access Journals (Sweden)

    Laura C Simone

    Full Text Available The four mammalian C-terminal Eps15 homology domain-containing proteins (EHD1-EHD4 play pivotal roles in endocytic membrane trafficking. While EHD1, EHD3 and EHD4 associate with intracellular tubular/vesicular membranes, EHD2 localizes to the inner leaflet of the plasma membrane. Currently, little is known about the regulation of EHD2. Thus, we sought to define the factors responsible for EHD2's association with the plasma membrane. The subcellular localization of endogenous EHD2 was examined in HeLa cells using confocal microscopy. Although EHD partner proteins typically mediate EHD membrane recruitment, EHD2 was targeted to the plasma membrane independent of two well-characterized binding proteins, syndapin2 and EHBP1. Additionally, the EH domain of EHD2, which facilitates canonical EHD protein interactions, was not required to direct overexpressed EHD2 to the cell surface. On the other hand, several lines of evidence indicate that the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 plays a crucial role in regulating EHD2 subcellular localization. Pharmacologic perturbation of PIP2 metabolism altered PIP2 plasma membrane distribution (as assessed by confocal microscopy, and caused EHD2 to redistribute away from the plasma membrane. Furthermore, overexpressed EHD2 localized to PIP2-enriched vacuoles generated by active Arf6. Finally, we show that although cytochalasin D caused actin microfilaments to collapse, EHD2 was nevertheless maintained at the plasma membrane. Intriguingly, cytochalasin D induced relocalization of both PIP2 and EHD2 to actin aggregates, supporting a role of PIP2 in controlling EHD2 subcellular localization. Altogether, these studies emphasize the significance of membrane lipid composition for EHD2 subcellular distribution and offer new insights into the regulation of this important endocytic protein.

  15. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    International Nuclear Information System (INIS)

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-01-01

    Highlights: → We analyzed Phosphatidylinositol 5-phosphate kinase IIβ (PIPKIIβ) function in cancer. → PIPKIIβ is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. → PIPKIIβ suppresses cellular motility through E-cadherin induction in SW480 cells. → Nuclear PIP 2 but not plasma membrane-localized PIP 2 mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1α,25-dihydroxyvitamin D 3 (1α,25(OH) 2 D 3 ) has anti-cancer activity in several colon cancers. 1α,25(OH) 2 D 3 induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKIIβ) but not PIPKIIα is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLCδ1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P 2 ) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLCδ1 PHD inhibited 1α,25(OH) 2 D 3 -induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P 2 production mediates E-cadherin expression through PIPKIIβ in a VDR-dependent manner. PIPKIIβ is also involved in the suppression of the cell motility induced by 1α,25(OH) 2 D 3 . These results indicate that PIPKIIβ-mediated PI(4,5)P 2 signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  16. Study of protein-probe complexation equilibria and protein-surfactant interaction using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mahanta, Subrata; Balia Singh, Rupashree; Bagchi, Arnab [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India); Nath, Debnarayan [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Guchhait, Nikhil, E-mail: nguchhait@yahoo.co [Department of Chemistry University of Calcutta 92, A.P.C. Road, Kolkata 700009 (India)

    2010-06-15

    In this paper, we demonstrate the interaction between intramolecular charge transfer (ICT) probe-Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) with bovine serum albumin (BSA) using absorption and fluorescence emission spectroscopy. The nature of probe protein binding interaction, fluorescence resonance energy transfer from protein to probe and time resolved fluorescence decay measurement predict that the probe molecule binds strongly to the hydrophobic cavity of the protein. Furthermore, the interaction of the anionic surfactant sodium dodecyl sulphate (SDS) with water soluble protein BSA has been investigated using MDMANA as fluorescenece probe. The changes in the spectral characteristics of charge transfer fluorescence probe MDMANA in BSA-SDS environment reflects well the nature of the protein-surfactant binding interaction such as specific binding, non-cooperative binding, cooperative binding and saturation binding.

  17. Phosphatidylinositol 3,4,5-trisphosphate modulation in SHIP2-deficient mouse embryonic fibroblasts.

    Science.gov (United States)

    Blero, Daniel; Zhang, Jing; Pesesse, Xavier; Payrastre, Bernard; Dumont, Jacques E; Schurmans, Stéphane; Erneux, Christophe

    2005-05-01

    SHIP2, the ubiquitous SH2 domain containing inositol 5-phosphatase, includes a series of protein interacting domains and has the ability to dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]in vitro. The present study, which was undertaken to evaluate the impact of SHIP2 on PtdIns(3,4,5)P(3) levels, was performed in a mouse embryonic fibroblast (MEF) model using SHIP2 deficient (-/-) MEF cells derived from knockout mice. PtdIns(3,4,5)P(3) was upregulated in serum stimulated -/- MEF cells as compared to +/+ MEF cells. Although the absence of SHIP2 had no effect on basal PtdIns(3,4,5)P(3) levels, we show here that this lipid was significantly upregulated in SHIP2 -/- cells but only after short-term (i.e. 5-10 min) incubation with serum. The difference in PtdIns(3,4,5)P(3) levels in heterozygous fibroblast cells was intermediate between the +/+ and the -/- cells. In our model, insulin-like growth factor-1 stimulation did not show this upregulation. Serum stimulated phosphoinositide 3-kinase (PI 3-kinase) activity appeared to be comparable between +/+ and -/- cells. Moreover, protein kinase B, but not mitogen activated protein kinase activity, was also potentiated in SHIP2 deficient cells stimulated by serum. The upregulation of protein kinase B activity in serum stimulated cells was totally reversed in the presence of the PI 3-kinase inhibitor LY-294002, in both +/+ and -/- cells. Altogether, these data establish a link between SHIP2 and the acute control of PtdIns(3,4,5)P(3) levels in intact cells.

  18. The human adenovirus E4-ORF1 protein subverts discs large 1 to mediate membrane recruitment and dysregulation of phosphatidylinositol 3-kinase.

    Directory of Open Access Journals (Sweden)

    Kathleen Kong

    2014-05-01

    Full Text Available Adenoviruses infect epithelial cells lining mucous membranes to cause acute diseases in people. They are also utilized as vectors for vaccination and for gene and cancer therapy, as well as tools to discover mechanisms of cancer due to their tumorigenic potential in experimental animals. The adenovirus E4-ORF1 gene encodes an oncoprotein that promotes viral replication, cell survival, and transformation by activating phosphatidylinositol 3-kinase (PI3K. While the mechanism of activation is not understood, this function depends on a complex formed between E4-ORF1 and the membrane-associated cellular PDZ protein Discs Large 1 (Dlg1, a common viral target having both tumor suppressor and oncogenic functions. Here, we report that in human epithelial cells, E4-ORF1 interacts with the regulatory and catalytic subunits of PI3K and elevates their levels. Like PI3K activation, PI3K protein elevation by E4-ORF1 requires Dlg1. We further show that Dlg1, E4-ORF1, and PI3K form a ternary complex at the plasma membrane. At this site, Dlg1 also co-localizes with the activated PI3K effector protein Akt, indicating that the ternary complex mediates PI3K signaling. Signifying the functional importance of the ternary complex, the capacity of E4-ORF1 to induce soft agar growth and focus formation in cells is ablated either by a mutation that prevents E4-ORF1 binding to Dlg1 or by a PI3K inhibitor drug. These results demonstrate that E4-ORF1 interacts with Dlg1 and PI3K to assemble a ternary complex where E4-ORF1 hijacks the Dlg1 oncogenic function to relocate cytoplasmic PI3K to the membrane for constitutive activation. This novel mechanism of Dlg1 subversion by adenovirus to dysregulate PI3K could be used by other pathogenic viruses, such as human papillomavirus, human T-cell leukemia virus type 1, and influenza A virus, which also target Dlg1 and activate PI3K in cells.

  19. Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate

    Directory of Open Access Journals (Sweden)

    Mayinger Peter

    2008-01-01

    Full Text Available Abstract Background Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown. Results Here we show that the expression of lipid phosphatase Sac1p in the yeast Saccharomyces cerevisiae is regulated in response to changes in phosphatidylinositol-4-phosphate (PI(4P concentrations. Unlike genes encoding enzymes involved in phospholipid biosynthesis, expression of the SAC1 gene is independent of inositol levels. We identified a novel 9-bp motif within the 5' untranslated region (5'-UTR of SAC1 that is responsible for PI(4P-mediated regulation. Upregulation of SAC1 promoter activity correlates with elevated levels of Sac1 protein levels. Conclusion Regulation of Sac1p expression via the concentration of its major substrate PI(4P ensures proper maintenance of compartment-specific pools of PI(4P.

  20. Conditions that allow for effective transfer of membrane proteins onto nitrocellulose membrane in Western blots.

    Science.gov (United States)

    Abeyrathne, Priyanka D; Lam, Joseph S

    2007-04-01

    A major hurdle in characterizing bacterial membrane proteins by Western blotting is the ineffectiveness of transferring these proteins from sodium dodecyl sulfate -- polyacrylamide gel electrophoresis (SDS-PAGE) gel onto nitrocellulose membrane, using standard Western blot buffers and electrophoretic conditions. In this study, we compared a number of modified Western blotting buffers and arrived at a composition designated as the SDS-PAGE-Urea Lysis buffer. The use of this buffer and specific conditions allowed the reproducible transfer of highly hydrophobic bacterial membrane proteins with 2-12 transmembrane-spanning segments as well as soluble proteins onto nitrocellulose membranes. This method should be broadly applicable for immunochemical studies of other membrane proteins.

  1. Lipid transfer proteins from fruit: cloning, expression and quantification

    NARCIS (Netherlands)

    Zuidmeer, Laurian; van Leeuwen, W. Astrid; Budde, Ilona Kleine; Cornelissen, Jessica; Bulder, Ingrid; Rafalska, Ilona; Besolí, Noèlia Telléz; Akkerdaas, Jaap H.; Asero, Riccardo; Fernandez Rivas, Montserrat; Rivas, Montserrat Fernandez; Gonzalez Mancebo, Eloina; Mancebo, Eloina Gonzalez; van Ree, Ronald

    2005-01-01

    BACKGROUND: Lipid transfer proteins (LTP) are stable, potentially life-threatening allergens in fruits and many other vegetable foods. The aim of this study was to clone and express recombinant apple LTP (Mal d 3), as has previously been done for peach LTP (Pru p 3) and set up quantitative tests for

  2. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    Science.gov (United States)

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  3. Phospholipid transfer protein activity and incident type 2 diabetes mellitus

    NARCIS (Netherlands)

    Abbasi, Ali; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    2015-01-01

    Background: The plasma activity of phospholipid transfer protein (PLTP), which has multifaceted functions in lipoprotein metabolism and in inflammatory responses, is elevated in insulin resistant conditions. We determined the association of plasma PLTP activity with incident type 2 diabetes mellitus

  4. Phospholipid transfer protein activity and incident type 2 diabetes mellitus

    NARCIS (Netherlands)

    Abbasi, Ali; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    2015-01-01

    The plasma activity of phospholipid transfer protein (PLTP), which has multifaceted functions in lipoprotein metabolism and in inflammatory responses, is elevated in insulin resistant conditions. We determined the association of plasma PLTP activity with incident type 2 diabetes mellitus (T2DM).

  5. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    OpenAIRE

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are ca...

  6. Preparation of fluorescent tocopherols for use in protein binding and localization with the alpha-tocopherol transfer protein.

    Science.gov (United States)

    Nava, Phillip; Cecchini, Matt; Chirico, Sara; Gordon, Heather; Morley, Samantha; Manor, Danny; Atkinson, Jeffrey

    2006-06-01

    Sixteen fluorescent analogues of the lipid-soluble antioxidant vitamin alpha-tocopherol were prepared incorporating fluorophores at the terminus of omega-functionalized 2-n-alkyl-substituted chromanols (1a-d and 4a-d) that match the methylation pattern of alpha-tocopherol, the most biologically active form of vitamin E. The fluorophores used include 9-anthroyloxy (AO), 7-nitrobenz-2-oxa-1,3-diazole (NBD), N-methyl anthranilamide (NMA), and dansyl (DAN). The compounds were designed to function as fluorescent reporter ligands for protein-binding and lipid transfer assays. The fluorophores were chosen to maximize the fluorescence changes observed upon moving from an aqueous environment (low fluorescence intensity) to an hydrophobic environment such as a protein's binding site (high fluorescence intensity). Compounds 9d (anthroyloxy) and 10d (nitrobenzoxadiazole), having a C9-carbon chain between the chromanol and the fluorophore, were shown to bind specifically and reversibly to recombinant human tocopherol transfer protein (alpha-TTP) with dissociation constants of approximately 280 and 60 nM, respectively, as compared to 25 nM for the natural ligand 2R,4'R,8'R-alpha-tocopherol. Thus, compounds have been prepared that allow the investigation of the rate of alpha-TTP-mediated inter-membrane transfer of alpha-tocopherol and to investigate the mechanism of alpha-TTP function at membranes of different composition.

  7. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR)

    Science.gov (United States)

    Laszlo, Kenneth J.; Bush, Matthew F.

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.

  8. The Arabidopsis SKU5 gene encodes an extracellular glycosyl phosphatidylinositol-anchored glycoprotein involved in directional root growth

    Science.gov (United States)

    Sedbrook, John C.; Carroll, Kathleen L.; Hung, Kai F.; Masson, Patrick H.; Somerville, Chris R.

    2002-01-01

    To investigate how roots respond to directional cues, we characterized a T-DNA-tagged Arabidopsis mutant named sku5 in which the roots skewed and looped away from the normal downward direction of growth on inclined agar surfaces. sku5 roots and etiolated hypocotyls were slightly shorter than normal and exhibited a counterclockwise (left-handed) axial rotation bias. The surface-dependent skewing phenotype disappeared when the roots penetrated the agar surface, but the axial rotation defect persisted, revealing that these two directional growth processes are separable. The SKU5 gene belongs to a 19-member gene family designated SKS (SKU5 Similar) that is related structurally to the multiple-copper oxidases ascorbate oxidase and laccase. However, the SKS proteins lack several of the conserved copper binding motifs characteristic of copper oxidases, and no enzymatic function could be assigned to the SKU5 protein. Analysis of plants expressing SKU5 reporter constructs and protein gel blot analysis showed that SKU5 was expressed most strongly in expanding tissues. SKU5 was glycosylated and modified by glycosyl phosphatidylinositol and localized to both the plasma membrane and the cell wall. Our observations suggest that SKU5 affects two directional growth processes, possibly by participating in cell wall expansion.

  9. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yijun [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan (China); Pattnaik, Asit K. [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States); Song, Cheng [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Li, Gang, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing (China)

    2012-03-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  10. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    International Nuclear Information System (INIS)

    Du, Yijun; Pattnaik, Asit K.; Song, Cheng; Yoo, Dongwan; Li, Gang

    2012-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  11. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    Science.gov (United States)

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  12. [Cloning, mutagenesis and symbiotic phenotype of three lipid transfer protein encoding genes from Mesorhizobium huakuii 7653R].

    Science.gov (United States)

    Li, Yanan; Zeng, Xiaobo; Zhou, Xuejuan; Li, Youguo

    2016-12-04

    Lipid transfer protein superfamily is involved in lipid transport and metabolism. This study aimed to construct mutants of three lipid transfer protein encoding genes in Mesorhizobium huakuii 7653R, and to study the phenotypes and function of mutations during symbiosis with Astragalus sinicus. We used bioinformatics to predict structure characteristics and biological functions of lipid transfer proteins, and conducted semi-quantitative and fluorescent quantitative real-time PCR to analyze the expression levels of target genes in free-living and symbiotic conditions. Using pK19mob insertion mutagenesis to construct mutants, we carried out pot plant experiments to observe symbiotic phenotypes. MCHK-5577, MCHK-2172 and MCHK-2779 genes encoding proteins belonged to START/RHO alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) superfamily, involved in lipid transport or metabolism, and were identical to M. loti at 95% level. Gene relative transcription level of the three genes all increased compared to free-living condition. We obtained three mutants. Compared with wild-type 7653R, above-ground biomass of plants and nodulenitrogenase activity induced by the three mutants significantly decreased. Results indicated that lipid transfer protein encoding genes of Mesorhizobium huakuii 7653R may play important roles in symbiotic nitrogen fixation, and the mutations significantly affected the symbiotic phenotypes. The present work provided a basis to study further symbiotic function mechanism associated with lipid transfer proteins from rhizobia.

  13. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    Science.gov (United States)

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  14. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    Science.gov (United States)

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM. (c) 2009 Wiley-Liss, Inc.

  15. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    International Nuclear Information System (INIS)

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-01-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85α and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1

  16. STIM proteins and the endoplasmic reticulum-plasma membrane junctions.

    Science.gov (United States)

    Carrasco, Silvia; Meyer, Tobias

    2011-01-01

    Eukaryotic organelles can interact with each other through stable junctions where the two membranes are kept in close apposition. The junction that connects the endoplasmic reticulum to the plasma membrane (ER-PM junction) is unique in providing a direct communication link between the ER and the PM. In a recently discovered signaling process, STIM (stromal-interacting molecule) proteins sense a drop in ER Ca(2+) levels and directly activate Orai PM Ca(2+) channels across the junction space. In an inverse process, a voltage-gated PM Ca(2+) channel can directly open ER ryanodine-receptor Ca(2+) channels in striated-muscle cells. Although ER-PM junctions were first described 50 years ago, their broad importance in Ca(2+) signaling, as well as in the regulation of cholesterol and phosphatidylinositol lipid transfer, has only recently been realized. Here, we discuss research from different fields to provide a broad perspective on the structures and unique roles of ER-PM junctions in controlling signaling and metabolic processes.

  17. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    International Nuclear Information System (INIS)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s −1 ) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening

  18. SH2/SH3 signaling proteins.

    Science.gov (United States)

    Schlessinger, J

    1994-02-01

    SH2 and SH3 domains are small protein modules that mediate protein-protein interactions in signal transduction pathways that are activated by protein tyrosine kinases. SH2 domains bind to short phosphotyrosine-containing sequences in growth factor receptors and other phosphoproteins. SH3 domains bind to target proteins through sequences containing proline and hydrophobic amino acids. SH2 and SH3 domain containing proteins, such as Grb2 and phospholipase C gamma, utilize these modules in order to link receptor and cytoplasmic protein tyrosine kinases to the Ras signaling pathway and to phosphatidylinositol hydrolysis, respectively. The three-dimensional structures of several SH2 and SH3 domains have been determined by NMR and X-ray crystallography, and the molecular basis of their specificity is beginning to be unveiled.

  19. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate.

    Science.gov (United States)

    Zoncu, Roberto; Perera, Rushika M; Sebastian, Rafael; Nakatsu, Fubito; Chen, Hong; Balla, Tamas; Ayala, Guillermo; Toomre, Derek; De Camilli, Pietro V

    2007-03-06

    Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], a phosphoinositide concentrated predominantly in the plasma membrane, binds endocytic clathrin adaptors, many of their accessory factors, and a variety of actin-regulatory proteins. Here we have used fluorescent fusion proteins and total internal reflection fluorescence microscopy to investigate the effect of acute PI(4,5)P(2) breakdown on the dynamics of endocytic clathrin-coated pit components and of the actin regulatory complex, Arp2/3. PI(4,5)P(2) breakdown was achieved by the inducible recruitment to the plasma membrane of an inositol 5-phosphatase module through the rapamycin/FRB/FKBP system or by treatment with ionomycin. PI(4,5)P(2) depletion resulted in a dramatic loss of clathrin puncta, which correlated with a massive dissociation of endocytic adaptors from the plasma membrane. Remaining clathrin spots at the cell surface had only weak fluorescence and were static over time. Dynamin and the p20 subunit of the Arp2/3 actin regulatory complex, which were concentrated at late-stage clathrin-coated pits and in lamellipodia, also dissociated from the plasma membrane, and these changes correlated with an arrest of motility at the cell edge. These findings demonstrate the critical importance of PI(4,5)P(2) in clathrin coat dynamics and Arp2/3-dependent actin regulation.

  20. Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway*

    Science.gov (United States)

    Liberman, Rachel; Bond, Sarah; Shainheit, Mara G.; Stadecker, Miguel J.; Forgac, Michael

    2014-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps composed of a peripheral V1 domain and a membrane-embedded V0 domain. Regulated assembly of V1 and V0 represents an important regulatory mechanism for controlling V-ATPase activity in vivo. Previous work has shown that V-ATPase assembly increases during maturation of bone marrow-derived dendritic cells induced by activation of Toll-like receptors. This increased assembly is essential for antigen processing, which is dependent upon an acidic lysosomal pH. Cluster disruption of dendritic cells induces a semi-mature phenotype associated with immune tolerance. Thus, semi-mature dendritic cells are able to process and present self-peptides to suppress autoimmune responses. We have investigated V-ATPase assembly in bone marrow-derived, murine dendritic cells and observed an increase in assembly following cluster disruption. This increased assembly is not dependent upon new protein synthesis and is associated with an increase in concanamycin A-sensitive proton transport in FITC-loaded lysosomes. Inhibition of phosphatidylinositol 3-kinase with wortmannin or mTORC1 with rapamycin effectively inhibits the increased assembly observed upon cluster disruption. These results suggest that the phosphatidylinositol 3-kinase/mTOR pathway is involved in controlling V-ATPase assembly during dendritic cell maturation. PMID:24273170

  1. Phospholipase D function in Saccharomyces cerevisiae.

    Science.gov (United States)

    Mendonsa, Rima; Engebrecht, JoAnne

    2009-09-01

    Phosphatidylinositol 4,5-bisphosphate-regulated phosphatidylcholine-specific phospholipase D is conserved from yeast to man. The essential role of this enzyme in yeast is to mediate the fusion of Golgi and endosome-derived vesicles to generate the prospore membrane during the developmental program of sporulation, through the production of the fusogenic lipid phosphatidic acid. In addition to recruiting proteins required for fusion, phosphatidic acid is believed to lower the energy barrier to stimulate membrane curvature. During mitotic growth, phospholipase D activity is dispensable unless the major phosphatidylinositol/phosphatidylcholine transfer protein is absent; it also appears to play a nonessential role in the mating signal transduction pathway. The regulation of phospholipase D activity during both sporulation and mitotic growth is still not fully understood and awaits further characterization.

  2. Evidence for glycosyl-phosphatidylinositol anchoring of Toxoplasma gondii major surface antigens

    International Nuclear Information System (INIS)

    Tomavo, S.; Schwarz, R.T.; Dubremetz, J.F.

    1989-01-01

    The four major surface antigens of Toxoplasma gondii tachyzoites (P43, P35, P30, and P22) were made water soluble by phosphatidylinositol-specific phospholipase C (PI-PLC). These antigens were biosynthetically labeled with 3 H-fatty acids, [ 3 H]ethanolamine, and [ 3 H]carbohydrates. Treatment of 3 H-fatty-acid-labeled parasite lysates with PI-PLC removed the radioactive label from these antigens. A cross-reacting determinant was exposed on these antigens after PI-PLC treatment

  3. Calcium-independent phosphatidylinositol response in gonadotropin-releasing-hormone-stimulated pituitary cells.

    OpenAIRE

    Naor, Z; Molcho, J; Zakut, H; Yavin, E

    1985-01-01

    This paper describes the effect of gonadotropin-releasing hormone (GnRH, gonadoliberin) on phospholipid metabolism in cultured rat pituitary cells. The cells were incubated with [32P]Pi to label endogenous phospholipids (10-60 min) and then stimulated with GnRH for up to 60 min. Cellular phospholipids were separated by two-dimensional t.l.c. and the radioactivity was determined. Phosphatidylinositol (PI), a minor constituent of cellular phospholipids (7.7%), was the major labelled phospholipi...

  4. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    International Nuclear Information System (INIS)

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y.

    1991-01-01

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100 degree C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein

  5. Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of the trk proto-oncogene with src homology 2 domains.

    Science.gov (United States)

    Ohmichi, M; Decker, S J; Saltiel, A R

    1992-10-01

    Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.

  6. Ultrafast Nonradiative Decay and Excitation Energy Transfer by Carotenoids in Photosynthetic Light-Harvesting Proteins

    Science.gov (United States)

    Ghosh, Soumen

    This dissertation investigates the photophysical and structural dynamics that allow carotenoids to serve as efficient excitation energy transfer donor to chlorophyll acceptors in photosynthetic light harvesting proteins. Femtosecond transient grating spectroscopy with optical heterodyne detection has been employed to follow the nonradiative decay pathways of carotenoids and excitation energy transfer to chlorophylls. It was found that the optically prepared S2 (11Bu+) state of beta-carotene decays in 12 fs fs to populate an intermediate electronic state, Sx, which then decays nonradiatively to the S 1 state. The ultrafast rise of the dispersion component of the heterodyne transient grating signal reports the formation of Sx intermediate since the rise of the dispersion signal is controlled by the loss of stimulated emission from the S2 state. These findings were extended to studies of peridinin, a carbonyl substituted carotenoid that serves as a photosynthetic light-harvesting chromophore in dinoflagellates. Numerical simulations using nonlinear response formalism and the multimode Brownian oscillator model assigned the Sx intermediate to a torsionally distorted structure evolving on the S2 potential surface. The decay of the Sx state is promoted by large amplitude out-of-plane torsional motions and is significantly retarded by solvent friction owing to the development of an intramolecular charge transfer character in peridinin. The slowing of the nonradiative decay allows the Sx state to transfer significant portion of the excitation energy to chlorophyll a acceptors in the peridinin-chlorophyll a protein. The results of heterodyne transient grating study on peridinin-chlorophyll a protein suggests two distinct energy transfer channels from peridinin to chlorophyll a: a 30 fs process involving quantum coherence and delocalized peridinin-Chl states and an incoherent, 2.5 ps process involving the distorted S2 state of peridinin. The torsional evolution on the S2

  7. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking

    NARCIS (Netherlands)

    Sinclair, Linda V.; Finlay, David; Feijoo, Carmen; Cornish, Georgina H.; Gray, Alex; Ager, Ann; Okkenhaug, Klaus; Hagenbeek, Thijs J.; Spits, Hergen; Cantrell, Doreen A.

    2008-01-01

    Phosphatidylinositol-3-OH kinase (PI(3)K) and the nutrient sensor mTOR are evolutionarily conserved regulators of cell metabolism. Here we show that PI(3)K and mTOR determined the repertoire of adhesion and chemokine receptors expressed by T lymphocytes. The key lymph node-homing receptors CD62L

  8. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    Energy Technology Data Exchange (ETDEWEB)

    Cuttitta, Christina M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314 (United States); Ericson, Daniel L. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260 (United States); Scalia, Alexander [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 11973-5000 (United States); Roessler, Christian G. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Teplitsky, Ella [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Stony Brook University, Stony Brook, NY 11794-5215 (United States); Joshi, Karan [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); PEC University of Technology, Chandigarh (India); Campos, Olven [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414 (United States); Agarwal, Rakhi; Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sweet, Robert M.; Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  9. A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure.

    Science.gov (United States)

    Nagata, Chisako; Miwa, Chika; Tanaka, Natsuki; Kato, Mariko; Suito, Momoe; Tsuchihira, Ayako; Sato, Yori; Segami, Shoji; Maeshima, Masayoshi

    2016-05-01

    The Ca(2+)-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca(2+)-calmodulin complex as well as free Ca(2+). Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1-GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1-GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1-GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role.

  10. A novel bi-protein bio-interphase of cytochrome c and glucose oxidase: Electron transfer and electrocatalysis

    International Nuclear Information System (INIS)

    Song, Yonghai; Liu, Hongyu; Wang, Yu; Wang, Li

    2013-01-01

    Graphical abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) nanocomposites modified glassy carbon electrode. Electron transfer and electrocatalysis of the novel bi-protein bio-interphase were investigated. The bio-interphase developed here not only successfully achieved DET of GOD, but also showed great potential for the fabrication of novel glucose biosensors with linear response up to 18 mM. Highlights: ► A bio-interphase composed of cytochrome c and glucose oxidase was developed. ► The electron transfer in the bio-interphase was investigated. ► Electrocatalytic performances of bio-interphase were explored. ► The bio-interphase exhibited good electrocatalytic response glucose. - Abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) hybrid nanocomposites modified glassy carbon electrode to prepare a novel bi-protein bio-interphase. Electron transfer and electrocatalysis of the bi-protein bio-interphase were investigated in detail. The results showed that the PDDA–Gp–AuNPs nanocomposites accelerated the electron transfer between proteins and electrode. The bi-protein exhibited effective direct electron transfer (DET) reaction with an apparent rate constant (k s ) of 2.36 s −1 . The optimal molar ratio and total amount of Cyt c and GOD in the bio-interphase for DET of GOD was estimated to be about 3:1 and 1.40 nmol, respectively. The bi-protein bio-interphase could be used to detect glucose based on the consumption of O 2 with the oxidation of glucose catalyzed by GOD. The resulted biosensor exhibits wide linear range from 2.0 to 18.0 mM. Thus, this study not only successfully achieved DET of GOD, but also constructed a novel biosensor for glucose detection

  11. Primary root protophloem differentiation requires balanced phosphatidylinositol-4,5-biphosphate levels and systemically affects root branching.

    Science.gov (United States)

    Rodriguez-Villalon, Antia; Gujas, Bojan; van Wijk, Ringo; Munnik, Teun; Hardtke, Christian S

    2015-04-15

    Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, clavata3/embryo surrounding region 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture. © 2015. Published by The Company of Biologists Ltd.

  12. Resonance Energy Transfer between protein and rhamnolipid capped ZnS quantum dots: Application in in-gel staining of proteins

    Science.gov (United States)

    Janakiraman, Narayanan; Mohan, Abhilash; Kannan, Ashwin; Pennathur, Gautam

    The interaction of proteins with quantum dots is an interesting field of research. These interactions occur at the nanoscale. We have probed the interaction of Bovine Serum Albumin (BSA) and Candida rugosa lipase (CRL) with rhamnolipid capped ZnS (RhlZnSQDs) using absorption and fluorescence spectroscopy. Optical studies on mixtures of RhlZnSQDs and proteins resulted in Förster's Resonance Energy Transfer (FRET) from proteins to QDs. This phenomenon has been exploited to detect proteins in agarose gel electrophoresis. The activity of the CRL was unaffected on the addition of QDs as revealed by zymography.

  13. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)

    2000-01-01

    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  14. Phosphatidylcholine Transfer Protein Interacts with Thioesterase Superfamily Member 2 to Attenuate Insulin Signaling

    OpenAIRE

    Ersoy, Baran A.; Tarun, Akansha; D’Aquino, Katharine; Hancer, Nancy J.; Ukomadu, Chinweike; White, Morris F.; Michel, Thomas; Manning, Brendan D.; Cohen, David E.

    2013-01-01

    Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenc...

  15. Protein Phosphatase 2A Signaling in Human Prostate Cancer

    Science.gov (United States)

    2014-08-01

    phosphatidylinositol 3’-kinase and Akt/protein kinase B. Cancer Res 1999;59:1449-53. (14) Grethe S, Porn -Ares MI. p38 MAPK regulates phosphorylation of Bad...growth and sig- nalling. Biochem J 2001;353:417–39. 15. Grethe S, Porn -Ares MI. p38 MAPK regulates phosphorylation of Bad via PP2A-dependent suppression of

  16. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons.

    Science.gov (United States)

    Grigoryan, Sergei; Yee, Michael B; Glick, Yair; Gerber, Doron; Kepten, Eldad; Garini, Yuval; Yang, In Hong; Kinchington, Paul R; Goldstein, Ronald S

    2015-01-01

    Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.

  17. Protein electron transfer: is biology (thermo)dynamic?

    International Nuclear Information System (INIS)

    Matyushov, Dmitry V

    2015-01-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic

  18. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    Science.gov (United States)

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  19. Synthesis of anti-tumour phosphatidylinositol analogues from glucose by the use of ring-closing olefin metathesis

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Skytte, Dorthe M.; Madsen, Robert

    2004-01-01

    A divergent strategy is described for synthesis of the novel phosphatidylinositols 1-3. The synthetic approach commences from benzyl-protected methyl 6-iodo-6-deoxy-a-D-glucopyranoside, which undergoes zinc-mediated reductive fragmentation followed by vinyl Grignard addition and ring-closing meta...

  20. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening.

    Science.gov (United States)

    Wagle, Neil; Xian, Jun; Shishova, Ekaterina Y; Wei, Jie; Glicksman, Marcie A; Cuny, Gregory D; Stein, Ross L; Cohen, David E

    2008-12-01

    Phosphatidylcholine transfer protein (PC-TP, also referred to as StarD2) is a highly specific intracellular lipid-binding protein that catalyzes the transfer of phosphatidylcholines between membranes in vitro. Recent studies have suggested that PC-TP in vivo functions to regulate fatty acid and glucose metabolism, possibly via interactions with selected other proteins. To begin to address the relationship between activity in vitro and biological function, we undertook a high-throughput screen to identify small-molecule inhibitors of the phosphatidylcholine transfer activity of PC-TP. After adapting a fluorescence quench assay to measure phosphatidylcholine transfer activity, we screened 114,752 compounds of a small-molecule library. The high-throughput screen identified 14 potential PC-TP inhibitors. Of these, 6 compounds exhibited characteristics consistent with specific inhibition of PC-TP activity, with IC(50) values that ranged from 4.1 to 95.0muM under conditions of the in vitro assay. These compounds should serve as valuable reagents to elucidate the biological function of PC-TP. Because mice with homozygous disruption of the PC-TP gene (Pctp) are sensitized to insulin action and relatively resistant to the development of atherosclerosis, these inhibitors may also prove to be of value in the management of diabetes and atherosclerotic cardiovascular diseases.

  1. Clinical importance of non-specific lipid transfer proteins as food allergens

    NARCIS (Netherlands)

    van Ree, R.

    2002-01-01

    Non-specific lipid transfer proteins (nsLTPs) have recently been identified as plant food allergens. They are good examples of true food allergens, in the sense that they are capable of sensitizing, i.e. inducing specific IgE, as well as of eliciting severe symptoms. This is in contrast with most

  2. Lipid transfer proteins do their thing anchored at membrane contact sites… but what is their thing?

    Science.gov (United States)

    Wong, Louise H; Levine, Tim P

    2016-04-15

    Membrane contact sites are structures where two organelles come close together to regulate flow of material and information between them. One type of inter-organelle communication is lipid exchange, which must occur for membrane maintenance and in response to environmental and cellular stimuli. Soluble lipid transfer proteins have been extensively studied, but additional families of transfer proteins have been identified that are anchored into membranes by transmembrane helices so that they cannot diffuse through the cytosol to deliver lipids. If such proteins target membrane contact sites they may be major players in lipid metabolism. The eukaryotic family of so-called Lipid transfer proteins Anchored at Membrane contact sites (LAMs) all contain both a sterol-specific lipid transfer domain in the StARkin superfamily (related to StART/Bet_v1), and one or more transmembrane helices anchoring them in the endoplasmic reticulum (ER), making them interesting subjects for study in relation to sterol metabolism. They target a variety of membrane contact sites, including newly described contacts between organelles that were already known to make contact by other means. Lam1-4p target punctate ER-plasma membrane contacts. Lam5p and Lam6p target multiple contacts including a new category: vacuolar non-NVJ cytoplasmic ER (VancE) contacts. These developments confirm previous observations on tubular lipid-binding proteins (TULIPs) that established the importance of membrane anchored proteins for lipid traffic. However, the question remaining to be solved is the most difficult of all: are LAMs transporters, or alternately are they regulators that affect traffic more indirectly? © 2016 Authors; published by Portland Press Limited.

  3. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    OpenAIRE

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present ...

  4. Tyrphostin AG1478 Inhibits Encephalomyocarditis Virus and Hepatitis C Virus by Targeting Phosphatidylinositol 4-Kinase IIIα

    NARCIS (Netherlands)

    Dorobantu, Cristina M.; Harak, Christian; Klein, Rahel; van der Linden, Lonneke; Strating, Jeroen R. P. M.; van der Schaar, Hilde M.; Lohmann, Volker; van Kuppeveld, Frank J. M.

    2016-01-01

    Encephalomyocarditis virus (EMCV), like hepatitis C virus (HCV), requires phosphatidylinositol 4-kinase IIIα (PI4KA) for genome replication. Here, we demonstrate that tyrphostin AG1478, a known epidermal growth factor receptor (EGFR) inhibitor, also inhibits PI4KA activity, both in vitro and in

  5. A conserved endoplasmic reticulum membrane protein complex (EMC facilitates phospholipid transfer from the ER to mitochondria.

    Directory of Open Access Journals (Sweden)

    Sujoy Lahiri

    2014-10-01

    Full Text Available Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC has decreased phosphatidylserine (PS transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE. Cells lacking EMC proteins and the ER-mitochondria tethering complex called ERMES (the ER-mitochondria encounter structure are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER-mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth.

  6. Breeding bread wheat cultivars for high protein content by transfer of protein genes from Triticum dicoccoides

    International Nuclear Information System (INIS)

    Grama, A.; Gerechter-Amitai, Z.K.; Blum, A.; Rubenthaler, G.L.

    1984-01-01

    Triticum dicoccoides sel. G-25, a selection of wild emmer with a protein content of 20.5% and a kernel weight of 31.5 mg, was used as the donor of protein genes. Since this selection is highly resistant to stripe rust, the object of the crossing programme was to transfer this resistance, together with the high protein potential, to durum and bread wheat cultivars susceptible to the disease. In the tetraploid lines obtained from the T. dicoccoides/T. durum cross, the protein values ranged from 17 to 22%. These lines had resistance to stripe rust from the wild emmer and to stem rust from the durum. After two further crosses between these tetraploid lines and T. aestivum cultivars, several lines were selected which combined good yield, high protein level and resistance to rust diseases. These lines attained protein levels of 14 to 19% in the whole grain and 14 to 17% in the flour, combined with yields of 4.5 to 6.0 t/ha. They had also inherited resistance to stem rust, and in some instances also to leaf rust, from the cultivated wheat parental lines. (author)

  7. Free cholesterol is a potent regulator of lipid transfer protein function

    International Nuclear Information System (INIS)

    Morton, R.E.

    1988-01-01

    This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface

  8. The role of profilin and lipid transfer protein in strawberry allergy in the Mediterranean area

    NARCIS (Netherlands)

    Zuidmeer, L.; Salentijn, E.; Rivas, M. F.; Mancebo, E. G.; Asero, R.; Matos, C. I.; Pelgrom, K. T. B.; Gilissen, L. J. W. J.; van Ree, R.

    2006-01-01

    BACKGROUND: In contrast to other Rosaceae fruit, only few cases of patients with adverse reactions to strawberry are listed in literature. OBJECTIVE To identify allergenic proteins in strawberry and to express and characterize recombinant strawberry lipid transfer protein (LTP; rFra a 3). METHODS:

  9. SH2 domains of the p85 alpha subunit of phosphatidylinositol 3-kinase regulate binding to growth factor receptors.

    Science.gov (United States)

    McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A

    1992-01-01

    The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092

  10. Effect of growth hormone replacement therapy on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities in growth hormone-deficient adults

    NARCIS (Netherlands)

    J.A. Beentjes; A. van Tol (Arie); W.J. Sluiter (Wim); R.P.F. Dullaart (Robin)

    2000-01-01

    textabstractThe effects of growth hormone (GH) replacement on plasma lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), factors involved in high density lipoprotein (HDL) metabolism, are

  11. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    Science.gov (United States)

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  12. Severe immediate allergic reactions to grapes: part of a lipid transfer protein-associated clinical syndrome

    NARCIS (Netherlands)

    Vassilopoulou, Emilia; Zuidmeer, Laurian; Akkerdaas, Jaap; Tassios, Ioannis; Rigby, Neil R.; Mills, E. N. Clare; van Ree, Ronald; Saxoni-Papageorgiou, Photini; Papadopoulos, Nikolaos G.

    2007-01-01

    BACKGROUND: Grape allergy is considered rare; grape lipid transfer protein (LTP; Vit v 1), an endochitinase and a thaumatin-like protein (TLP) have been reported as grape allergens. A considerable number of patients have referred to our department for severe reactions to grapes, and several IgE

  13. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  14. Molecular aspects of the interaction between Mason-Pfizer monkey virus matrix protein and artificial phospholipid membrane

    Czech Academy of Sciences Publication Activity Database

    Junková, P.; Prchal, J.; Spiwok, V.; Pleskot, Roman; Kadlec, Jan; Krásný, L.; Hynek, R.; Hrabal, R.; Ruml, T.

    2016-01-01

    Roč. 84, č. 11 (2016), s. 1717-1727 ISSN 0887-3585 Institutional support: RVO:61388963 Keywords : covalent labelling * mass spectrometry * multiscale molecular dynamics * protein-membrane interaction * phosphatidylinositol-(4,5)-bisphosphate * liposomes Subject RIV: CE - Biochemistry Impact factor: 2.289, year: 2016

  15. Plasma membrane phosphatidylinositol 4,5 bisphosphate is required for internalization of foot-and-mouth disease virus and vesicular stomatitis virus.

    Directory of Open Access Journals (Sweden)

    Angela Vázquez-Calvo

    Full Text Available Phosphatidylinositol-4,5-bisphosphate, PI(4,5P(2, is a phospholipid which plays important roles in clathrin-mediated endocytosis. To investigate the possible role of this lipid on viral entry, two viruses important for animal health were selected: the enveloped vesicular stomatitis virus (VSV - which uses a well characterized clathrin mediated endocytic route - and two different variants of the non-enveloped foot-and-mouth disease virus (FMDV with distinct receptor specificities. The expression of a dominant negative dynamin, a PI(4,5P(2 effector protein, inhibited the internalization and infection of VSV and both FMDV isolates. Depletion of PI(4,5P(2 from plasma membrane using ionomycin or an inducible system, and inhibition of its de novo synthesis with 1-butanol revealed that VSV as well as FMDV C-S8c1, which uses integrins as receptor, displayed a high dependence on PI(4,5P(2 for internalization. Expression of a kinase dead mutant (KD of phosphatidylinositol-4-phosphate-5-kinase Iα (PIP5K-Iα, an enzyme responsible for PI(4,5P(2 synthesis that regulates clathrin-dependent endocytosis, also impaired entry and infection of VSV and FMDV C-S8c1. Interestingly FMDV MARLS variant that uses receptors other than integrins for cell entry was less sensitive to PI(4,5P(2 depletion, and was not inhibited by the expression of the KD PIP5K-Iα mutant suggesting the involvement of endocytic routes other than the clathrin-mediated on its entry. These results highlight the role of PI(4,5P(2 and PIP5K-Iα on clathrin-mediated viral entry.

  16. Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

    Science.gov (United States)

    Kim, Soohee; Lee, Seung Heon; Kang, Sukmo; Lee, Lyon; Park, Jung-Duck; Ryu, Doug-Young

    2011-01-01

    Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also involved in the regulation of catalase expression. To examine the involvement of c-Met and PI3K pathways in the arsenite-induced downregulation of catalase, catalase mRNA and protein expression were analyzed in the human hepatoma cell line HepG2 treated with arsenite and either an inhibitor of c-Met (PHA665752 (PHA)) or of PI3K (LY294002 (LY)). Arsenite treatment markedly activated Akt and decreased the levels of both catalase mRNA and protein. Both PHA and LY attenuated arsenite-induced activation of Akt. PHA and LY treatment also prevented the inhibitory effect of arsenite on catalase protein expression but did not affect the level of catalase mRNA. These findings suggest that arsenite-induced inhibition of catalase expression is regulated at the mRNA and post-transcriptional levels in HepG2 cells, and that the post-transcriptional regulation is mediated via c-Met- and PI3K-dependent mechanisms.

  17. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha; Bhar, Kaushik; Siddhanta, Anirban, E-mail: asiddhanto@yahoo.com

    2013-09-20

    Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool of PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.

  18. Plasma phospholipid transfer protein activity is related to insulin resistance : impaired acute lowering by insulin in obese Type II diabetic patients

    NARCIS (Netherlands)

    Riemens, SC; van Tol, A; Sluiter, WJ; Dullaart, RPF

    Cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) have important functions in high density lipoprotein (HDL) metabolism. We determined the association of plasma CETP and PLTP activities (measured with exogenous' substrate assays) with insulin resistance, plasma

  19. Calcium Directly Regulates Phosphatidylinositol 4,5-Bisphosphate Headgroup Conformation and Recognition

    DEFF Research Database (Denmark)

    Bilkova, Eva; Pleskot, Roman; Rissanen, Sami

    2017-01-01

    ), is completely inhibited in the presence of Ca2+, while Mg2+ has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles. Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal how Ca2+ binding to the PI(4,5)P2...... phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI...

  20. Cholesteryl ester transfer protein (cetp) inhibition in the treatment of cancer

    KAUST Repository

    Kaur, Mandeep; Esau, Luke E.; Sagar, Sunii

    2016-01-01

    In one embodiment, the invention provides methods of treatment which use therapeutically effective amounts of Choleste ryl Ester Transfer Protein (CETP) inhibitors to treat a variety of cancers. In certain embodiments, the inhibitor is a CETP-inhibiting small molecule, CETP-inhibiting antisense oligonucleotide, CETP-inhibiting siRNA or a CETP- inhibiting antibody. Related pharmaceutical compositions, kits, diagnostics and screens are also provided.

  1. Cholesteryl ester transfer protein (cetp) inhibition in the treatment of cancer

    KAUST Repository

    Kaur, Mandeep

    2016-09-01

    In one embodiment, the invention provides methods of treatment which use therapeutically effective amounts of Choleste ryl Ester Transfer Protein (CETP) inhibitors to treat a variety of cancers. In certain embodiments, the inhibitor is a CETP-inhibiting small molecule, CETP-inhibiting antisense oligonucleotide, CETP-inhibiting siRNA or a CETP- inhibiting antibody. Related pharmaceutical compositions, kits, diagnostics and screens are also provided.

  2. Physical Characterization of Synthetic Phosphatidylinositol Dimannosides and Analogues in Binary Systems with Phosphatidylcholine

    DEFF Research Database (Denmark)

    Hubert, Madlen; Larsen, David S; Hayman, Colin M

    2014-01-01

    Native phosphatidylinositol mannosides (PIMs) from the cell wall of Mycobacterium bovis (M. bovis) and synthetic analogues have been identified to exert immunostimulatory activities. These activities have been investigated using particulate delivery systems containing native mannosylated lipids...... the design of liposome-based delivery systems. In mixed films the phosphoglycolipids were found to be miscible with PC based on evaluation of collapse pressures and deviations of experimental molecular areas from calculated ideal values. Concanavalin A (ConA) agglutination confirmed the presence...

  3. Effect of growth hormone replacement therapy on plasma lecithin : cholesterol acyltransferase and lipid transfer protein activities in growth hormone-deficient adults

    NARCIS (Netherlands)

    Beentjes, JAM; van Tol, A; Sluiter, WJ; Dullaart, RPF

    The effects of growth hormone (GH) replacement on plasma lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), factors involved in high density lipoprotein (HDL) metabolism, We unknown. We carried out a 6 mouths study in 24

  4. A cost-effective device for the rapid transfer of gel-separated proteins onto membranes.

    Science.gov (United States)

    Tam, Hann W; Huang, Yu-Chen; Tam, Ming F

    2009-03-01

    We describe here the fabrication of a cost-effective semi-dry blotting apparatus for the transfer of proteins onto membranes. Graphite sheets were used as electrodes. Protein mixtures were separated on NuPAGE 4% to 12% polyacrylamide gradient gels. With a Tris-bicine buffer, we demonstrated that close to 80% of the proteins with apparent molecular mass of 80kDa or less were removed from the gels after 8min of blotting. The process is much faster than the techniques reported previously in the literature.

  5. Reversible assembly of protein-DNA nanostructures triggered by mediated electron transfer

    International Nuclear Information System (INIS)

    Vogt, Stephan; Wenderhold-Reeb, Sabine; Nöll, Gilbert

    2017-01-01

    Stable protein-DNA nanostructures have been assembled by reconstitution of the multi-ligand binding flavoprotein dodecin on top of flavin-terminated dsDNA monolayers on gold electrodes. These structures could be disassembled by electrochemical flavin reduction via mediated electron transfer. For this purpose a negative potential was applied at the Au working electrode in the presence of the redox mediator bis-(ammoniumethyl)-4,4′-bipyridinium tetrabromide. The stepwise formation of the flavin-terminated dsDNA monolayers as well as the binding and electrochemically triggered release of apododecin were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) measurements. The assembly and disassembly of the protein-DNA nanostructures were fully reversible processes, which could be carried out multiple times at the same flavin-dsDNA modified surface. When a negative potential was applied in the absence of a redox mediator apododecin could not be released, i.e. direct electron transfer was not possible. As alternative redox mediators also methylene blue and phenosafranine were studied, but in the presence of these molecules apododecin was released without applying a potential, probably because the tricyclic aromatic compounds are able to replace the flavins at the binding sites.

  6. Stem cell factor induces phosphatidylinositol 3'-kinase-dependent Lyn/Tec/Dok-1 complex formation in hematopoietic cells

    NARCIS (Netherlands)

    van Dijk, T. B.; van den Akker, E.; Amelsvoort, M. P.; Mano, H.; Löwenberg, B.; von Lindern, M.

    2000-01-01

    Stem cell factor (SCF) has an important role in the proliferation, differentiation, survival, and migration of hematopoietic cells. SCF exerts its effects by binding to cKit, a receptor with intrinsic tyrosine kinase activity. Activation of phosphatidylinositol 3'-kinase (PI3-K) by cKit was

  7. Biochemical characterization of the tomato phosphatidylinositol-specific phospholipase C (PI-PLC) family and its role in plant immunity

    NARCIS (Netherlands)

    Abd-El-Haliem, Ahmed; Vossen, J.H.; Zeijl, van Arjan; Dezhsetan, Sara; Testerink, Christa; Seidl, M.F.; Beck, Martina; Strutt, James; Robatzek, Silke; Joosten, M.H.A.J.

    2016-01-01

    Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs

  8. Regulation of Lipid and Glucose Metabolism by Phosphatidylcholine Transfer Protein

    Science.gov (United States)

    Kang, Hye Won; Wei, Jie; Cohen, David E.

    2010-01-01

    Phosphatidylcholine transfer protein (PC-TP, a.k.a. StARD2) binds phosphatidylcholines and catalyzes their intermembrane transfer and exchange in vitro. The structure of PC-TP comprises a hydrophobic pocket and a well-defined head-group binding site, and its gene expression is regulated by peroxisome proliferator activated receptor α. Recent studies have revealed key regulatory roles for PC-TP in lipid and glucose metabolism. Notably, Pctp−/− mice are sensitized to insulin action and exhibit more efficient brown fat-mediated thermogenesis. PC-TP appears to limit access of fatty acids to mitochondria by stimulating the activity of thioesterase superfamily member 2, a newly characterized long-chain fatty acyl-CoA thioesterase. Because PC-TP discriminates among phosphatidylcholines within lipid bilayers, it may function as a sensor that links metabolic regulation to membrane composition. PMID:20338778

  9. Quinoline-3-carboxamide Derivatives as Potential Cholesteryl Ester Transfer Protein Inhibitors

    Directory of Open Access Journals (Sweden)

    Jing-Kang Shen

    2012-05-01

    Full Text Available A series of novel quinoline-3-carboxamide derivatives 1017 and 2327 were designed and synthesized as cholesteryl ester transfer protein (CETP inhibitors. All of them exhibited activity against CETP. Particularly, compounds 24 and 26 displayed the best activity against CETP with the same inhibitory rate of 80.1%.

  10. Andrographolide inhibits hypoxia-inducible factor-1 through phosphatidylinositol 3-kinase/AKT pathway and suppresses breast cancer growth

    Directory of Open Access Journals (Sweden)

    Li J

    2015-02-01

    Full Text Available Jie Li,1 Chao Zhang,1 Hongchuan Jiang,1 Jiao Cheng21Department of General Surgery, 2Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Beijing, People’s Republic of ChinaAbstract: Hypoxia-inducible factor-1 (HIF-1 is a master regulator of the transcriptional response to hypoxia. HIF-1α is one of the most compelling anticancer targets. Andrographolide (Andro was newly identified to inhibit HIF-1 in T47D cells (a half maximal effective concentration [EC50] of 1.03×10-7 mol/L, by a dual-luciferase reporter assay. It suppressed HIF-1α protein and gene accumulation, which was dependent on the inhibition of upstream phosphatidylinositol 3-kinase (PI3K/AKT pathway. It also abrogated the expression of HIF-1 target vascular endothelial growth factor (VEGF gene and protein. Further, Andro inhibited T47D and MDA-MB-231 cell proliferation and colony formation. In addition, it exhibited significant in vivo efficacy and antitumor potential against the MDA-MB-231 xenograft in nude mice. In conclusion, these results highlighted the potential effects of Andro, which inhibits HIF-1, and hence may be developed as an antitumor agent for breast cancer therapy in future.Keywords: Andrographolide (Andro, HIF-1α, inhibit, breast cancer, hypoxia, PI3k/AKT/mTOR pathway

  11. Intravascular local gene transfer mediated by protein-coated metallic stent.

    Science.gov (United States)

    Yuan, J; Gao, R; Shi, R; Song, L; Tang, J; Li, Y; Tang, C; Meng, L; Yuan, W; Chen, Z

    2001-10-01

    To assess the feasibility, efficiency and selectivity of adenovirus-mediated gene transfer to local arterial wall by protein-coated metallic stent. A replication-defective recombinant adenovirus carrying the Lac Z reporter gene for nuclear-specific beta-galactosidase (Ad-beta gal) was used in this study. The coating for metallic stent was made by immersing it in a gelatin solution containing crosslinker. The coated stents were mounted on a 4.0 or 3.0 mm percutaneous transluminal coronary angioplasty (PTCA) balloon and submersed into a high-titer Ad-beta gal viral stock (2 x 10(10) pfu/ml) for 3 min, and then implanted into the carotid arteries in 4 mini-swines and into the left anterior descending branch of the coronary artery in 2 mini-swines via 8F large lumen guiding catheters. The animals were sacrificed 7 (n = 4), 14 (n = 1) and 21 (n = 1) days after implantation, respectively. The beta-galactosidase expression was assessed by X-gal staining. The results showed that the expression of transgene was detected in all animal. In 1 of carotid artery with an intact intima, the beta-gal expression was limited to endothelial cells. In vessels with denuded endothelium, gene expression was found in the sub-intima, media and adventitia. The transfection efficiency of medial smooth muscle cells was 38.6%. In 2 animals sacrificed 7 days after transfection, a microscopic examination of X-gal-stained samples did not show evidence of transfection in remote organs and arterial segments adjacent to the treated arterial site. Adenovirus-mediated arterial gene transfer to endothelial, smooth muscle cells and adventitia by protein-coated metallic stent is feasible. The transfection efficiency is higher. The coated stent may act as a good carrier of adenovirus-mediated gene transfer and have a potential to prevent restenosis following PTCA.

  12. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    Science.gov (United States)

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  13. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton.

    Science.gov (United States)

    Long, Qin; Yue, Fang; Liu, Ruochen; Song, Shuiqing; Li, Xianbi; Ding, Bo; Yan, Xingying; Pei, Yan

    2018-05-11

    Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.

  14. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface.

    Science.gov (United States)

    Martin-DeLeon, Patricia A

    2015-01-01

    A variety of glycosylphosphatidylinositol (GPI)-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF) during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP) which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the transfer of proteins associated with the membrane-free fraction of ELF. While the nonvesicular fraction is more efficient, both pathways are dependent on hydrophobic interactions between the GPI-anchor and the external lipid layer of the sperm surface. More recently proteomic and hypothesis-driven studies have shown that EP from several mammals carry transmembrane (TM) proteins, including plasma membrane Ca 2 + -ATPase 4 (PMCA4). Synthesized in the testis, PMCA4 is an essential protein and the major Ca 2 + efflux pump in murine spermatozoa. Delivery of PMCA4 to spermatozoa from bovine and mouse EP during epididymal maturation and in vitro suggests that the docking of EP on the sperm surface precedes fusion, and experimental evidence supports a fusogenic mechanism for TM proteins. Fusion is facilitated by CD9, which generates fusion-competent sites on membranes. On the basis of knowledge of PMCA4's interacting partners a number of TM and membrane-associated proteins have been identified or are predicted to be present, in the epididymosomal cargo deliverable to spermatozoa. These Ca 2 + -dependent proteins, undetected in proteomic studies, play essential roles in sperm motility and fertility, and their detection highlights the usefulness of the hypothesis-driven approach.

  15. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface

    Directory of Open Access Journals (Sweden)

    Patricia A Martin-DeLeon

    2015-01-01

    Full Text Available A variety of glycosylphosphatidylinositol (GPI-linked proteins are acquired on spermatozoa from epididymal luminal fluids (ELF during sperm maturation. These proteins serve roles in immunoprotection and in key steps of fertilization such as capacitation, acrosomal exocytosis and sperm-egg interactions. Their acquisition on sperm cells is mediated both by membrane vesicles (epididymosomes, EP which were first reported to dock on the sperm surface, and by lipid carriers which facilitate the transfer of proteins associated with the membrane-free fraction of ELF. While the nonvesicular fraction is more efficient, both pathways are dependent on hydrophobic interactions between the GPI-anchor and the external lipid layer of the sperm surface. More recently proteomic and hypothesis-driven studies have shown that EP from several mammals carry transmembrane (TM proteins, including plasma membrane Ca 2 + -ATPase 4 (PMCA4. Synthesized in the testis, PMCA4 is an essential protein and the major Ca 2 + efflux pump in murine spermatozoa. Delivery of PMCA4 to spermatozoa from bovine and mouse EP during epididymal maturation and in vitro suggests that the docking of EP on the sperm surface precedes fusion, and experimental evidence supports a fusogenic mechanism for TM proteins. Fusion is facilitated by CD9, which generates fusion-competent sites on membranes. On the basis of knowledge of PMCA4′s interacting partners a number of TM and membrane-associated proteins have been identified or are predicted to be present, in the epididymosomal cargo deliverable to spermatozoa. These Ca 2 + -dependent proteins, undetected in proteomic studies, play essential roles in sperm motility and fertility, and their detection highlights the usefulness of the hypothesis-driven approach.

  16. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea

    NARCIS (Netherlands)

    Gonorazky, Gabriela; Guzzo, María Carla; Abd-El-Haliem, Ahmed M.; Joosten, Matthieu H.A.J.; Laxalt, Ana María

    2016-01-01

    The tomato [Solanum lycopersicum (Sl)] phosphatidylinositol-phospholipase C (PI-PLC) gene family is composed of six members, named SlPLC1 to SlPLC6, differentially regulated on pathogen attack. We have previously shown that the fungal elicitor xylanase induces a raise of SlPLC2 and SlPLC5

  17. Identification of a common amino acid polymorphism in the p85alpha regulatory subunit of phosphatidylinositol 3-kinase

    DEFF Research Database (Denmark)

    Hansen, Torben; Andersen, C B; Echwald, Søren Morgenthaler

    1997-01-01

    Phosphatidylinositol 3-kinase (PI3-K) may regulate the basal plasma membrane glucose transporter recycling and the organization of the transporter intracellular pool in addition to being an insulin signal for translocation of glucose transporters to the plasma membrane. The objectives of the pres...

  18. Probability weighted ensemble transfer learning for predicting interactions between HIV-1 and human proteins.

    Directory of Open Access Journals (Sweden)

    Suyu Mei

    Full Text Available Reconstruction of host-pathogen protein interaction networks is of great significance to reveal the underlying microbic pathogenesis. However, the current experimentally-derived networks are generally small and should be augmented by computational methods for less-biased biological inference. From the point of view of computational modelling, data scarcity, data unavailability and negative data sampling are the three major problems for host-pathogen protein interaction networks reconstruction. In this work, we are motivated to address the three concerns and propose a probability weighted ensemble transfer learning model for HIV-human protein interaction prediction (PWEN-TLM, where support vector machine (SVM is adopted as the individual classifier of the ensemble model. In the model, data scarcity and data unavailability are tackled by homolog knowledge transfer. The importance of homolog knowledge is measured by the ROC-AUC metric of the individual classifiers, whose outputs are probability weighted to yield the final decision. In addition, we further validate the assumption that only the homolog knowledge is sufficient to train a satisfactory model for host-pathogen protein interaction prediction. Thus the model is more robust against data unavailability with less demanding data constraint. As regards with negative data construction, experiments show that exclusiveness of subcellular co-localized proteins is unbiased and more reliable than random sampling. Last, we conduct analysis of overlapped predictions between our model and the existing models, and apply the model to novel host-pathogen PPIs recognition for further biological research.

  19. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components

    DEFF Research Database (Denmark)

    Tang, Ning; Skibsted, Leif Horsfelt

    2017-01-01

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)=O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine a...

  20. Simulation of fluorescence resonance energy transfer experiments: effect of the dyes on protein folding

    International Nuclear Information System (INIS)

    Allen, Lucy R; Paci, Emanuele

    2010-01-01

    Fluorescence resonance energy transfer is a powerful technique which is often used to probe the properties of proteins and complex macromolecules. The technique relies on relatively large fluorescent dyes which are engineered into the molecule of interest. In the case of small proteins, these dyes may affect the stability of the protein, and modify the folding kinetics and the folding mechanisms which are being probed. Here we use atomistic simulation to investigate the effect that commonly used fluorescent dyes have on the folding of a four-helix bundle protein. We show that, depending on where the dyes are attached, their effect on the kinetic and thermodynamic properties of the protein may be significant. We find that, while the overall folding mechanism is not affected by the dyes, they can destabilize, or even stabilize, intermediate states.

  1. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    Energy Technology Data Exchange (ETDEWEB)

    Gizatullina, Albina K. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Telezhinskaya, Irina N.; Balandin, Sergey V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Shenkarev, Zakhar O. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Arseniev, Alexander S. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Ovchinnikova, Tatiana V., E-mail: ovch@ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation)

    2013-10-04

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å{sup 3}). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.

  2. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    International Nuclear Information System (INIS)

    Gizatullina, Albina K.; Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V.; Telezhinskaya, Irina N.; Balandin, Sergey V.; Shenkarev, Zakhar O.; Arseniev, Alexander S.; Ovchinnikova, Tatiana V.

    2013-01-01

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å 3 ). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours

  3. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    Science.gov (United States)

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Lipid transfer protein: A pan-allergen in plant-derived foods that is highly resistant to pepsin digestion

    NARCIS (Netherlands)

    Asero, R.; Mistrello, G.; Roncarolo, D.; Vries, de S.C.; Gautier, M.F.; Ciurana, C.L.; Verbeek, E.; Mohammadi, T.; Knul-Brettlova, V.; Akkerdaas, J.H.; Bulder, I.; Aalberse, R.C.; Ree, van R.

    2001-01-01

    Background: Lipid transfer proteins (LTPs) are stable and highly conserved proteins of around 10 kD. They have recently been identified as allergens in fruits of the Rosaceae family. Objective: The aim of this study was to investigate whether the highly conserved structure of LTPs justifies a

  5. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... plasma total triacylglycerol (P = 0.0361), and higher plasma glucose (P = 0.033). Plasma HDL-cholesterol and insulin concentrations and activities of cholesterol ester transfer protein and phospholipid transfer protein did not differ significantly between the diets. Conclusions: Compared with fat high...

  6. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves

    DEFF Research Database (Denmark)

    Kristensen, A K; Brunstedt, J; Madsen, M T

    2000-01-01

    A novel protein (IWF5) comprising 92 amino acids has been purified from the intercellular washing fluid of sugar beet leaves using cation exchange chromatography and reversed phase high performance liquid chromatography. Based on amino acid sequence homology, including the presence of eight...... cysteines at conserved positions, the protein can be classified as a member of the plant family of non-specific lipid transfer proteins (nsLTPs). The protein is 47% identical to IWF1, an antifungal nsLTP previously isolated from leaves of sugar beet. A potential site for N-linked glycosylation present...

  7. Foot-and-mouth disease virus induces autophagosomes during cell entry via a class III phosphatidylinositol 3-kinase-independent pathway.

    Science.gov (United States)

    Berryman, Stephen; Brooks, Elizabeth; Burman, Alison; Hawes, Philippa; Roberts, Rebecca; Netherton, Christopher; Monaghan, Paul; Whelband, Matthew; Cottam, Eleanor; Elazar, Zvulun; Jackson, Terry; Wileman, Thomas

    2012-12-01

    Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.

  8. Immune response in mice to ingested soya protein: antibody production, oral tolerance and maternal transfer

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Pedersen, Susanne Brix; Frøkiær, Hanne

    2004-01-01

    antibody response in the offspring, bat in this case in the absence of oral tolerance. This indicates that, under certain conditions, factors involved in spontaneous antibody production can be transmitted from mother to offspring. Understanding the immune response to soya protein ingested under healthy...... by ELISA, and to the presence of oral tolerance detected as a suppressed antibody and cell-proliferation response upon immunisation with soya protein. F0 mice generated soya-specific antibodies, while oral tolerance to the same soya proteins was also clearly induced. When F0 dams were transferred to soya...

  9. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  10. Differential Effects of Phosphatidylinositol 4-Kinase (PI4K and 3-Kinase (PI3K Inhibitors on Stomatal Responses to Environmental Signals

    Directory of Open Access Journals (Sweden)

    Koh Iba

    2017-05-01

    Full Text Available Specific cellular components including products of phosphatidylinositol (PI metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K and PI3K, were used to investigate stomatal closure in response to CO2, darkness, and abscisic acid (ABA. Treatment with PAO, a specific inhibitor of PI4K, specifically inhibited the stomatal response to CO2 compared with that to darkness and ABA. In contrast, treatment with LY294002, a PI3K-specific inhibitor, specifically inhibited the stomatal response to darkness compared with that to CO2 and ABA. The specific inhibitory effects of PAO and LY294002 were also observed as changes in the spatial density of dot-like structures labeled by green fluorescent protein-tagged PATROL1, a protein that controls stomatal aperture possibly via regulation of H+-ATPase amount in guard cell plasma membranes. Our results suggest an important role for PI4K and PI3K in the CO2 and darkness signal transduction pathways, respectively, that mediate PATROL1 dynamics.

  11. Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion

    NARCIS (Netherlands)

    Asero, R.; Mistrello, G.; Roncarolo, D.; de Vries, S. C.; Gautier, M. F.; Ciurana, C. L.; Verbeek, E.; Mohammadi, T.; Knul-Brettlova, V.; Akkerdaas, J. H.; Bulder, I.; Aalberse, R. C.; van Ree, R.

    2001-01-01

    Lipid transfer proteins (LTPs) are stable and highly conserved proteins of around 10 kD. They have recently been identified as allergens in fruits of the Rosaceae family. The aim of this study was to investigate whether the highly conserved structure of LTPs justifies a designation as a true

  12. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    DEFF Research Database (Denmark)

    Lenaerts, Tom; Ferkinghoff-Borg, Jesper; Stricher, Francois

    2008-01-01

    instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how...... distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located......Background: Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism...

  13. In Situ Blotting : A Novel Method for Direct Transfer of Native Proteins from Sectioned Tissue to Blotting Membrane

    NARCIS (Netherlands)

    Okabe, Masashi; Nyakas, Csaba; Buwalda, Bauke; Luiten, Paul G.M.

    1993-01-01

    We describe a novel technique for direct transfer of native proteins from unfixed frozen tissue sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility

  14. In-silico assessment of protein-protein electron transfer. a case study: cytochrome c peroxidase--cytochrome c.

    Directory of Open Access Journals (Sweden)

    Frank H Wallrapp

    Full Text Available The fast development of software and hardware is notably helping in closing the gap between macroscopic and microscopic data. Using a novel theoretical strategy combining molecular dynamics simulations, conformational clustering, ab-initio quantum mechanics and electronic coupling calculations, we show how computational methodologies are mature enough to provide accurate atomistic details into the mechanism of electron transfer (ET processes in complex protein systems, known to be a significant challenge. We performed a quantitative study of the ET between Cytochrome c Peroxidase and its redox partner Cytochrome c. Our results confirm the ET mechanism as hole transfer (HT through residues Ala194, Ala193, Gly192 and Trp191 of CcP. Furthermore, our findings indicate the fine evolution of the enzyme to approach an elevated turnover rate of 5.47 × 10(6 s(-1 for the ET between Cytc and CcP through establishment of a localized bridge state in Trp191.

  15. Deletion of PTEN Produces Deficits in Conditioned Fear and Increases Fragile X Mental Retardation Protein

    Science.gov (United States)

    Lugo, Joaquin N.; Smith, Gregory D.; Morrison, Jessica B.; White, Jessika

    2013-01-01

    The phosphatase and tensin homolog detected on chromosome 10 (PTEN) gene product modulates activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway. The PI3K pathway has been found to be involved in the regulation of the fragile X mental retardation protein, which is important for long-term depression and in the formation of new…

  16. Nanoscale charge transfer in redox proteins and DNA: Towards biomolecular electronics

    International Nuclear Information System (INIS)

    Artés, Juan Manuel; López-Martínez, Montserrat; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2014-01-01

    Understanding how charges move through and between biomolecules is a fundamental question that constitutes the basis for many biological processes. On the other hand, it has potential applications in the design of sensors based on biomolecules and single molecule devices. In this review we introduce the study of the electron transfer (ET) process in biomolecules, providing an overview of the fundamental theory behind it and the different experimental approaches. The ET in proteins is introduced by reviewing a complete electronic characterization of a redox protein (azurin) using electrochemical scanning tunnelling microscopy (ECSTM). The ET process in DNA is overviewed and results from different experimental approaches are discussed. Finally, future directions in the study of the ET process in biomolecules are introduced as well as examples of possible technological applications

  17. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  18. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    Science.gov (United States)

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  19. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway.

    Science.gov (United States)

    Bezerra, Maria É S; Barberino, Ricássio S; Menezes, Vanúzia G; Gouveia, Bruna B; Macedo, Taís J S; Santos, Jamile M S; Monte, Alane P O; Barros, Vanessa R P; Matos, Maria H T

    2018-05-30

    We investigated the effects of insulin-like growth factor 1 (IGF-1) on the morphology and follicular activation of ovine preantral follicles cultured in situ and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway is involved in IGF-1 action in the sheep ovary. Ovine ovarian fragments were fixed for histological and terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) analyses (fresh control) or cultured in supplemented alpha-minimum essential medium (α-MEM+; control) or α-MEM+ with IGF-1 (1, 10, 50, 100 or 200ngmL-1) for 7 days. Follicles were classified as normal or atretic, primordial or growing and the oocyte and follicle diameters were measured. DNA fragmentation was evaluated by TUNEL assay. Proliferating cell nuclear antigen (PCNA) immunohistochemistry was performed on the fresh control, α-MEM+ and 100ngmL-1 IGF-1 samples. Inhibition of PI3K activity was performed through pretreatment with the PI3K inhibitor LY294002 and phosphorylated AKT (pAKT) expression was analysed after culture in the absence or presence of LY294002. IGF-1 at 100ngmL-1 increased (PIGF-1. LY294002 significantly inhibited follicular activation stimulated by α-MEM+ and 100ngmL-1 IGF-1 and reduced pAKT expression in follicles. Overall, IGF-1 at 100ngmL-1 promoted primordial follicle activation, cell proliferation and reduced DNA fragmentation after in situ culture through the PI3K/AKT pathway.

  20. High-resolution slab gel isoelectric focusing: methods for quantitative electrophoretic transfer and immunodetection of proteins as applied to the study of the multiple isoelectric forms of ornithine decarboxylase.

    Science.gov (United States)

    Reddy, S G; Cochran, B J; Worth, L L; Knutson, V P; Haddox, M K

    1994-04-01

    A high-resolution isoelectric focusing vertical slab gel method which can resolve proteins which differ by a single charge was developed and this method was applied to the study of the multiple isoelectric forms of ornithine decarboxylase. Separation of proteins at this high level of resolution was achieved by increasing the ampholyte concentration in the gels to 6%. Various lots of ampholytes, from the same or different commercial sources, differed significantly in their protein binding capacity. Ampholytes bound to proteins interfered both with the electrophoretic transfer of proteins from the gel to immunoblotting membranes and with the ability of antibodies to interact with proteins on the immunoblotting membranes. Increasing the amount of protein loaded into a gel lane also decreased the efficiency of the electrophoretic transfer and immunodetection. To overcome these problems, both gel washing and gel electrophoretic transfer protocols for disrupting the ampholyte-protein binding and enabling a quantitative electrophoretic transfer of proteins were developed. Two gel washing procedures, with either thiocyanate or borate buffers, and a two-step electrophoretic transfer method are described. The choice of which method to use to optimally disrupt the ampholyte-protein binding was found to vary with each lot of ampholytes employed.

  1. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  2. Toward Bayesian inference of the spatial distribution of proteins from three-cube Förster resonance energy transfer data

    DEFF Research Database (Denmark)

    Hooghoudt, Jan Otto; Barroso, Margarida; Waagepetersen, Rasmus Plenge

    2017-01-01

    Főrster resonance energy transfer (FRET) is a quantum-physical phenomenon where energy may be transferred from one molecule to a neighbour molecule if the molecules are close enough. Using fluorophore molecule marking of proteins in a cell it is possible to measure in microscopic images to what....... In this paper we propose a new likelihood-based approach to statistical inference for FRET microscopic data. The likelihood function is obtained from a detailed modeling of the FRET data generating mechanism conditional on a protein configuration. We next follow a Bayesian approach and introduce a spatial point...

  3. Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer.

    Science.gov (United States)

    De, Abhijit; Gambhir, Sanjiv Sam

    2005-12-01

    This study demonstrates a significant advancement of imaging of a distance-dependent physical process, known as the bioluminescent resonance energy transfer (BRET2) signal in living subjects, by using a cooled charge-coupled device (CCD) camera. A CCD camera-based spectral imaging strategy enables simultaneous visualization and quantitation of BRET signal from live cells and cells implanted in living mice. We used the BRET2 system, which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC (DBC) as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. To accomplish this objective in this proof-of-principle study, the donor and acceptor proteins were fused to FKBP12 and FRB, respectively, which are known to interact only in the presence of the small molecule mediator rapamycin. Mammalian cells expressing these fusion constructs were imaged using a cooled-CCD camera either directly from culture dishes or by implanting them into mice. By comparing the emission photon yields in the presence and absence of rapamycin, the specific BRET signal was determined. The CCD imaging approach of BRET signal is particularly appealing due to its capacity to seamlessly bridge the gap between in vitro and in vivo studies. This work validates BRET as a powerful tool for interrogating and observing protein-protein interactions directly at limited depths in living mice.

  4. Factor VII and protein C are phosphatidic acid-binding proteins.

    Science.gov (United States)

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  5. Proteomic analysis of phosphoproteins sensitive to a phosphatidylinositol 3-kinase inhibitor, ZSTK474, by using SELDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Yamori Takao

    2009-03-01

    Full Text Available Abstract Background Phosphoproteins play important roles in a vast series of biological processes. Recent proteomic technologies offer the comprehensive analyses of phosphoproteins. Recently, we demonstrated that surface-enhanced laser desorption/ionization time of flight mass (SELDI-TOF MS would detect phosphoproteins quantitatively, which was a new application of SELDI-TOF MS. Results We combined immobilized metal affinity chromatography (IMAC with SELDI-TOF MS. After SELDI-TOF MS analysis of IMAC-enrichment phosphoproteins from A549 cancer cells, a series of protein peaks at 12.9, 12.8, 12.7 and 12.6 kDa was obtained in a mass spectrum. The peak intensities of these proteins decreased after a phosphatase treatment and, interestingly, they also decreased when the cells were pre-treated with a novel phosphatidylinositol 3-kinase (PI3K inhibitor, ZSTK474, suggesting that these proteins were ZSTK474-sensitive phosphoproteins. Identity of the phosphoproteins, which were predicted as the multi-phosphorylated forms of 4E-binding protein 1 (4E-BP1 with the aid of TagIdent algorithm, was confirmed by immunoprecipitation and subsequent SELDI-TOF MS analysis. 4E-BP1 is a downstream component of the PI3K/Akt/mTOR pathway and it regulates protein synthesis. We also investigated the effect of ZSTK474 on 4E-BP1 phosphorylation using phospho-specific antibodies. ZSTK474, which have little inhibitory activity for mTOR, inhibited phosphorylation of Ser65, Thr70 and Thr37/46 in 4E-BP1. In contrast, rapamycin, an inhibitor of mTOR, blocked phosphorylation only of Ser65 and Thr70. These results suggest that ZSTK474 and rapamycin inhibited the phosphorylation of 4E-BP1 in a different manner. Conclusion We identified a group of ZSTK474-sensitive phosphoproteins as the multi-phosphorylated form of 4E-BP1 by combining IMAC, SELDI-TOF MS and antibodies.

  6. Plasma membrane associated phospholipase C from human platelets: Synergistic stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis by thrombin and guanosine 5'-O-(3-thiotriphosphate)

    International Nuclear Information System (INIS)

    Baldassare, J.J.; Henderson, P.A.; Fisher, G.J.

    1989-01-01

    The effects of thrombin and GTPγS on the hydrolysis of phosphoinositides by membrane-associated phospholipase C (PLC) from human platelets were examined with endogenous [ 3 H]inositol-labeled membranes or with lipid vesicles containing either [ 3 H]phosphatidylinositol or [ 3 H]phosphatidylinositol 4,5-bisphosphate. GTPγS (1 μM) or thrombin (1 unit/mL) did not stimulate release of inositol trisphosphate (IP 3 ), inositol bisphosphate (IP 2 ), or inositol phosphate (IP) from [ 3 H]inositol-labeled membranes. IP 2 and IP 3 , but not IP, from [ 3 H]inositol-labeled membranes were, however, stimulated 3-fold by GTPγS (1 μM) plus thrombin (1 unit/mL). A higher concentration of GTPγS (100 μM) alone also stimulated IP 2 and IP 3 , but not IP, release. In the presence of 1 mM calcium, release of IP 2 and IP 3 was increased 6-fold over basal levels; however, formation of IP was not observed. At submicromolar calcium concentration, hydrolysis of exogenous phosphatidylinositol 4,5-bisphosphate (PIP 2 ) by platelet membrane associated PLC was also markedly enhanced by GTPγS (100 μM) or GTPγS (1 μM) plus thrombin (1 unit/mL). Under identical conditions, exogenous phosphatidylinositol (PI) was not hydrolyzed. The same substrate specificity was observed when the membrane-associated PLC was activated with 1 mM calcium. Thrombin-induced hydrolysis of PIP 2 was inhibited by treatment of the membranes with pertussis toxin or pretreatment of intact platelets with 12-O-tetradecanoyl-13-acetate (TPA) prior to preparation of membranes. Pertussis toxin did not inhibit GTPγS (100 μM) or calcium (1 mM) dependent PIP 2 breakdown, while TPA inhibited GTPγS-dependent but not calcium-dependent phospholipase C activity

  7. The CDM Superfamily Protein MBC Directs Myoblast Fusion through a Mechanism That Requires Phosphatidylinositol 3,4,5-Triphosphate Binding but Is Independent of Direct Interaction with DCrk▿§

    Science.gov (United States)

    Balagopalan, Lakshmi; Chen, Mei-Hui; Geisbrecht, Erika R.; Abmayr, Susan M.

    2006-01-01

    myoblast city (mbc), a member of the CDM superfamily, is essential in the Drosophila melanogaster embryo for fusion of myoblasts into multinucleate fibers. Using germ line clones in which both maternal and zygotic contributions were eliminated and rescue of the zygotic loss-of-function phenotype, we established that mbc is required in the fusion-competent subset of myoblasts. Along with its close orthologs Dock180 and CED-5, MBC has an SH3 domain at its N terminus, conserved internal domains termed DHR1 and DHR2 (or “Docker”), and C-terminal proline-rich domains that associate with the adapter protein DCrk. The importance of these domains has been evaluated by the ability of MBC mutations and deletions to rescue the mbc loss-of-function muscle phenotype. We demonstrate that the SH3 and Docker domains are essential. Moreover, ethyl methanesulfonate-induced mutations that change amino acids within the MBC Docker domain to residues that are conserved in other CDM family members nevertheless eliminate MBC function in the embryo, which suggests that these sites may mediate interactions specific to Drosophila MBC. A functional requirement for the conserved DHR1 domain, which binds to phosphatidylinositol 3,4,5-triphosphate, implicates phosphoinositide signaling in myoblast fusion. Finally, the proline-rich C-terminal sites mediate strong interactions with DCrk, as expected. These sites are not required for MBC to rescue the muscle loss-of-function phenotype, however, which suggests that MBC's role in myoblast fusion can be carried out independently of direct DCrk binding. PMID:17030600

  8. Correlation of repressed transcription of alpha-tocopherol transfer protein with serum alpha-tocopherol during hepatocarcinogenesis

    NARCIS (Netherlands)

    Wu, C. G.; Hoek, F. J.; Groenink, M.; Reitsma, P. H.; van Deventer, S. J.; Chamuleau, R. A.

    1997-01-01

    Using a subtraction-enhanced display technique, we identified a rodent alpha-tocopherol transfer protein (alpha-TTP) cDNA which exhibited markedly lower messenger RNA (mRNA) amounts in rat hepatocellular carcinoma (HCC) than in healthy controls. Several lines of evidence have substantiated that

  9. Contact- and Protein Transfer-Dependent Stimulation of Assembly of the Gliding Motility Machinery in Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Beata Jakobczak

    2015-07-01

    Full Text Available Bacteria engage in contact-dependent activities to coordinate cellular activities that aid their survival. Cells of Myxococcus xanthus move over surfaces by means of type IV pili and gliding motility. Upon direct contact, cells physically exchange outer membrane (OM lipoproteins, and this transfer can rescue motility in mutants lacking lipoproteins required for motility. The mechanism of gliding motility and its stimulation by transferred OM lipoproteins remain poorly characterized. We investigated the function of CglC, GltB, GltA and GltC, all of which are required for gliding. We demonstrate that CglC is an OM lipoprotein, GltB and GltA are integral OM β-barrel proteins, and GltC is a soluble periplasmic protein. GltB and GltA are mutually stabilizing, and both are required to stabilize GltC, whereas CglC accumulate independently of GltB, GltA and GltC. Consistently, purified GltB, GltA and GltC proteins interact in all pair-wise combinations. Using active fluorescently-tagged fusion proteins, we demonstrate that GltB, GltA and GltC are integral components of the gliding motility complex. Incorporation of GltB and GltA into this complex depends on CglC and GltC as well as on the cytoplasmic AglZ protein and the inner membrane protein AglQ, both of which are components of the gliding motility complex. Conversely, incorporation of AglZ and AglQ into the gliding motility complex depends on CglC, GltB, GltA and GltC. Remarkably, physical transfer of the OM lipoprotein CglC to a ΔcglC recipient stimulates assembly of the gliding motility complex in the recipient likely by facilitating the OM integration of GltB and GltA. These data provide evidence that the gliding motility complex in M. xanthus includes OM proteins and suggest that this complex extends from the cytoplasm across the cell envelope to the OM. These data add assembly of gliding motility complexes in M. xanthus to the growing list of contact-dependent activities in bacteria.

  10. Analysis of close associations of uropod-associated proteins in human T-cells using the proximity ligation assay

    Directory of Open Access Journals (Sweden)

    Tommy Baumann

    2013-10-01

    Full Text Available We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90 also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET. We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation.

  11. Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate

    Czech Academy of Sciences Publication Activity Database

    Benedikt, Jan; Teisinger, Jan; Vyklický st., Ladislav; Vlachová, Viktorie

    2007-01-01

    Roč. 100, č. 1 (2007), s. 211-224 ISSN 0022-3042 R&D Projects: GA ČR GA305/06/0319; GA ČR GA309/04/0496; GA MŠk 1M0517; GA MŠk LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : Cold /menthol receptor * ethanol * phosphatidylinositol Subject RIV: ED - Physiology Impact factor: 4.451, year: 2007

  12. Highly Selective Phosphatidylinositol 4-Kinase III beta Inhibitors and Structural Insight into Their Mode of Action

    Czech Academy of Sciences Publication Activity Database

    Mejdrová, Ivana; Chalupská, Dominika; Kögler, Martin; Šála, Michal; Plačková, Pavla; Bäumlová, Adriana; Hřebabecký, Hubert; Procházková, Eliška; Dejmek, Milan; Guillon, Rémi; Strunin, Dmytro; Weber, Jan; Lee, G.; Birkuš, G.; Mertlíková-Kaiserová, Helena; Bouřa, Evžen; Nencka, Radim

    2015-01-01

    Roč. 58, č. 9 (2015), s. 3767-3793 ISSN 0022-2623 R&D Projects: GA MŠk LO1302; GA ČR GA15-09310S; GA ČR GJ15-21030Y EU Projects: European Commission(XE) 333916 - STARPI4K Institutional support: RVO:61388963 Keywords : phosphatidylinositol 4-kinase III beta * broad-spectrum antiviral agents * positive-sense RNA viruses Subject RIV: CC - Organic Chemistry Impact factor: 5.589, year: 2015

  13. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    Science.gov (United States)

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. © 2016 The Authors.

  14. Folding Membrane Proteins by Deep Transfer Learning

    KAUST Repository

    Wang, Sheng

    2017-08-29

    Computational elucidation of membrane protein (MP) structures is challenging partially due to lack of sufficient solved structures for homology modeling. Here, we describe a high-throughput deep transfer learning method that first predicts MP contacts by learning from non-MPs and then predicts 3D structure models using the predicted contacts as distance restraints. Tested on 510 non-redundant MPs, our method has contact prediction accuracy at least 0.18 better than existing methods, predicts correct folds for 218 MPs, and generates 3D models with root-mean-square deviation (RMSD) less than 4 and 5 Å for 57 and 108 MPs, respectively. A rigorous blind test in the continuous automated model evaluation project shows that our method predicted high-resolution 3D models for two recent test MPs of 210 residues with RMSD ∼2 Å. We estimated that our method could predict correct folds for 1,345–1,871 reviewed human multi-pass MPs including a few hundred new folds, which shall facilitate the discovery of drugs targeting at MPs.

  15. Transfer Zymography.

    Science.gov (United States)

    Pan, Daniel; Wilson, Karl A; Tan-Wilson, Anna

    2017-01-01

    The technique described here, transfer zymography, was developed to overcome two limitations of conventional zymography. When proteolytic enzymes are resolved by nonreducing SDS-PAGE into a polyacrylamide gel with copolymerized protein substrate, the presence of the protein substrate can result in anomalous, often slower, migration of the protease and an estimated mass higher than its actual mass. A further drawback is that the presence of a high background of substrate protein interferes with proteomic analysis of the protease band by excision, tryptic digestion, and LC-MS/MS analysis. In transfer zymography, the proteolytic enzymes are resolved by conventional nonreducing SDS-PAGE, without protein substrate in the gel. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel that contains the protein substrate, by a process similar to western blotting. The receiving gel is then processed in a manner similar to conventional zymography. SDS is removed by Triton X-100 and incubated in conditions suitable for the proteolytic activity. After protein staining, followed by destaining, bands representing regions with active protease are visualized as clear bands in a darkly stained background. For proteomic analysis, electrophoresis is carried out simultaneously on a second resolving gel, and the bands corresponding to the clear regions in the receiving gel after zymogram development are excised for proteomic analysis.

  16. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism

    International Nuclear Information System (INIS)

    Gottschalk, Alexander R.; Doan, Albert; Nakamura, Jean L.; Stokoe, David; Haas-Kogan, Daphne A.

    2005-01-01

    Purpose: To identify whether inhibition of phosphatidylinositol-3-kinase (PI3K) causes increased radiosensitivity through inhibition of protein kinase B (PKB), implicating PKB as an important therapeutic target in prostate cancer. Methods and Materials: The prostate cancer cell line LNCaP was treated with the PI3K inhibitor LY294002, radiation, and combinations of the two therapies. Apoptosis and survival were measured by cell cycle analysis, Western blot analysis for cleaved poly (ADP-ribose) polymerase, and clonogenic survival. To test the hypothesis that inhibition of PKB is responsible for LY294002-induced radiosensitivity, LNCaP cells expressing a constitutively active form of PKB were used. Results: The combination of PI3K inhibition and radiation caused an increase in apoptosis and a decrease in clonogenic survival when compared to either modality alone. The expression of constitutively activated PKB blocked apoptosis induced by combination of PI3K inhibition and radiation and prevented radiosensitization by LY294002. Conclusion: These data indicate that PI3K inhibition increases sensitivity of prostate cancer cell lines to ionizing radiation through inactivation of PKB. Therefore, PTEN mutations, which lead to PKB activation, may play an important role in the resistance of prostate cancer to radiation therapy. Targeted therapy against PKB could be beneficial in the management of prostate cancer patients

  17. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase

    Science.gov (United States)

    Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao

    2016-01-01

    Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na+/H+ exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826

  18. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.

    Science.gov (United States)

    Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise

    2014-04-01

    Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water

    International Nuclear Information System (INIS)

    Dalvit, Claudio; Pevarello, Paolo; Tato, Marco; Veronesi, Marina; Vulpetti, Anna; Sundstroem, Michael

    2000-01-01

    A powerful screening by NMR methodology (WaterLOGSY), based on transfer of magnetization from bulk water, for the identification of compounds that interact with target biomolecules (proteins, RNA and DNA fragments) is described. The method exploits efficiently the large reservoir of H 2 O magnetization. The high sensitivity of the technique reduces the amount of biomolecule and ligands needed for the screening, which constitutes an important requirement for high throughput screening by NMR of large libraries of compounds. Application of the method to a compound mixture against the cyclin-dependent kinase 2 (cdk2) protein is presented

  20. Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function.

    Science.gov (United States)

    Stubenrauch, Christopher J; Dougan, Gordon; Lithgow, Trevor; Heinz, Eva

    2017-11-01

    Fimbriae are long, adhesive structures widespread throughout members of the family Enterobacteriaceae. They are multimeric extrusions, which are moved out of the bacterial cell through an integral outer membrane protein called usher. The complex folding mechanics of the usher protein were recently revealed to be catalysed by the membrane-embedded translocation and assembly module (TAM). Here, we examine the diversity of usher proteins across a wide range of extraintestinal (ExPEC) and enteropathogenic (EPEC) Escherichia coli , and further focus on a so far undescribed chaperone-usher system, with this usher referred to as UshC. The fimbrial system containing UshC is distributed across a discrete set of EPEC types, including model strains like E2348/67, as well as ExPEC ST131, currently the most prominent multi-drug-resistant uropathogenic E. coli strain worldwide. Deletion of the TAM from a naive strain of E. coli results in a drastic time delay in folding of UshC, which can be observed for a protein from EPEC as well as for two introduced proteins from related organisms, Yersinia and Enterobacter We suggest that this models why the TAM machinery is essential for efficient folding of proteins acquired via lateral gene transfer. © 2017 The Authors.

  1. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    Directory of Open Access Journals (Sweden)

    Amar B. T. Ghisaidoobe

    2014-12-01

    Full Text Available F resonance energy transfer (FRET occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (\\(\\uplambda_{\\textsc{ex}}\\sim\\ nm, \\(\\uplambda_{\\textsc{em}}\\sim\\ 350 nm, in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the proteinlocal environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic F resonance energy transfer (iFRET, a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins.

  2. Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins

    DEFF Research Database (Denmark)

    Pastorello, Elide A; Farioli, Laura; Conti, Amedeo

    2007-01-01

    for sodium dodecyl sulfate-polyacrylamide gel electrophoresis/immunoblotting of the three Osborne's protein fractions (albumin/globulin, gliadins and glutenins) of raw and cooked wheat. Thermal sensitivity of wheat lipid transfer protein (LTP) was investigated by spectroscopic approaches. IgE cross...

  3. Biomolecular Mechanisms of Mercury Transfers and Transformations by Proteins of the Mer Operon

    Science.gov (United States)

    Miller, S. M.; Hong, B.; Nauss, R.; Momany, C.; Summers, A. O.; Feng, X.; Harwood, I.; Stroud, R.

    2008-12-01

    Aerobic bacteria exhibiting resistance to the toxic effects of Hg(II) and organomercurials [RHg(I), e.g. MeHg(I)] and are widely found in both pristine and mercury contaminated environments. Resistance, afforded by a plasmid- or transposon-associated mer operon, involves an unusual pathway where Hg(II) and organomercurials [RHg(I)] undergo facilitated entry into the bacterial cytoplasm via an integral membrane transport protein (MerT) and are then "detoxified" by the concerted effort of two enzymes, organomercurial lyase (MerB), which catalyzes dealkylation (i.e., demethylation) of RHg(I) to Hg(II) and a hydrocarbon, and mercuric ion reductase (MerA), which catalyzes reduction of Hg(II) to Hg(0) as the ultimate detoxification for the organism. With a widespread distribution, these bacterial transformations play a significant role in the fate of mercury in the environment. Our focus is on elucidation of the molecular mechanisms for the transport and catalytic transformations of RHg(I) and Hg(II) by these proteins and the factors that influence the overall efficiency of the process. Current efforts are focused primarily on elucidating details of RHg(I) binding and dealkylation by MerB as well as the mechanism for transfer of the Hg(II) product to MerA. Key findings include the demonstration of a non-cysteine residue as essential for the catalytic activity and demonstration that direct transfer of Hg(II) to MerA proceeds more rapidly and more completely than transfer to small MW thiols such as cysteines or glutathione. Reuslts of these studies as well as an overview of our current understanding of the whole system will be presented.

  4. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; van de Kamp, M

    1992-01-01

    -6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine...... the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism....

  5. Phosphorylation of the Grb2- and phosphatidylinositol 3-kinase p85-binding p36/38 by Syk in Lck-negative T cells.

    Science.gov (United States)

    von Willebrand, M; Williams, S; Tailor, P; Mustelin, T

    1998-06-01

    Activation of the mitogen-activated protein kinase (MAPK) pathway by the T-cell antigen receptor (TCR) in T cells involves a positive role for phosphatidylinositol 3-kinase (PI3K) activity. We recently reported that over-expression of the Syk protein tyrosine kinase in the Lck-negative JCaM1 cells enabled the TCR to induce a normal activation of the Erk2 MAPK and enhanced transcription of a reporter gene driven by the nuclear factor of activated T cells and AP-1. Because this system allows us to analyse the targets for Syk in receptor-mediated signalling, we examined the role of PI3K in signalling events between the TCR-regulated Syk and the downstream activation of Erk2. We report that inhibition of PI3K by wortmannin or an inhibitory p85 construct, p85deltaiSH2, reduced the TCR-induced Syk-dependent activation of Erk2, as well as the appearance of phospho-Erk and phospho-Mek. At the same time, expression of Syk resulted in the activation-dependent phosphorylation of three proteins that bound to the src homology 2 (SH2) domains of PI3K p85. The strongest of these bands had an apparent molecular mass of 36-38 kDa on SDS gels, and it was quantitatively removed from the lysates by adsorption to a fusion protein containing the SH2 domain of Grb2. The appearance of this band was Syk dependent, and it was seen only upon triggering of the TCR complex. Thus, p36/38 was phosphorylated by Syk or a Syk-regulated kinase, and this protein may provide a link to the recruitment and activation of PI3K, as well as to the Ras-MAPK pathway, in TCR-triggered T cells.

  6. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Science.gov (United States)

    Cohen, Aviv; Weindling, Esther; Rabinovich, Efrat; Nachman, Iftach; Fuchs, Shai; Chuartzman, Silvia; Gal, Lihi; Schuldiner, Maya; Bar-Nun, Shoshana

    2016-01-01

    Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR), the unfolded protein response (UPR) and the endoplasmic reticulum-associated protein degradation (ERAD), was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  7. The lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Otoikhian, Adenike [Oregon Health & Sciences University; Barry, Amanda N. [Los Alamos National Laboratory; Mayfield, Mary [Oregon Health & Science University; Nilges, Mark [Illinois EPR Center; Huang, Yiping [Johns Hopkins University; Lutsenko, Svetlana [Johns Hopkins University; Blackburn, Ninian [Oregon Health & Science University

    2012-05-14

    Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper translocating ATPase (ATP7A or ATP7B) but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1, 15N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased towards 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met while at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.

  8. Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Weihong; Li Tanping; Zhang Luyuan; Yang Yi; Kao Yating; Wang Lijuan [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States); Zhong Dongping [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States)], E-mail: dongping@mps.ohio-state.edu

    2008-06-23

    Quenching of tryptophan fluorescence in proteins has been critical to the understanding of protein dynamics and enzyme reactions using tryptophan as a molecular optical probe. We report here our systematic examinations of potential quenching residues with more than 40 proteins. With site-directed mutation, we placed tryptophan to desired positions or altered its neighboring residues to screen quenching groups among 20 amino acid residues and of peptide backbones. With femtosecond resolution, we observed the ultrafast quenching dynamics within 100 ps and identified two ultrafast quenching groups, the carbonyl- and sulfur-containing residues. The former is glutamine and glutamate residues and the later is disulfide bond and cysteine residue. The quenching by the peptide-bond carbonyl group as well as other potential residues mostly occurs in longer than 100 ps. These ultrafast quenching dynamics occur at van der Waals distances through intraprotein electron transfer with high directionality. Following optimal molecular orbital overlap, electron jumps from the benzene ring of the indole moiety in a vertical orientation to the LUMO of acceptor quenching residues. Molecular dynamics simulations were invoked to elucidate various correlations of quenching dynamics with separation distances, relative orientations, local fluctuations and reaction heterogeneity. These unique ultrafast quenching pairs, as recently found to extensively occur in high-resolution protein structures, may have significant biological implications.

  9. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  10. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings

    NARCIS (Netherlands)

    Leeuwen, van W.; Vermeer, J.E.M.; Gadella, T.W.J.; Munnik, T.

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P-2] is an important signalling lipid in mammalian cells, where it functions as a second-messenger precursor in response to agonist-dependent activation of phospholipase C (PLC) but also operates as a signalling molecule on its own. Much of the

  11. Effect of in vitro gastric and duodenal digestion on the allergenicity of grape lipid transfer protein

    NARCIS (Netherlands)

    Vassilopoulou, Emilia; Rigby, Neil; Moreno, F. Javier; Zuidmeer, Laurian; Akkerdaas, Jaap; Tassios, Ioannis; Papadopoulos, Nikos G.; Saxoni-Papageorgiou, Photini; van Ree, Ronald; Mills, Clare

    2006-01-01

    BACKGROUND: Severe grape allergy has been linked to lipid transfer protein (LTP) sensitization. LTPs are known to be resistant to pepsin digestion, although the effect of gastroduodenal digestion on its allergenicity has not been reported. OBJECTIVE: We sought to investigate the effect of gastric

  12. PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity

    Science.gov (United States)

    Deckert, Valérie; Daien, Claire I.; Che, Hélène; Elhmioui, Jamila; Lemaire, Stéphanie; Pais de Barros, Jean-Paul; Desrumaux, Catherine; Combe, Bernard; Hahne, Michael; Lagrost, Laurent; Morel, Jacques

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA. PMID:29565987

  13. Evidence for methyl group transfer between the methyl-accepting chemotaxis proteins in Bacillus subtilis

    International Nuclear Information System (INIS)

    Bedale, W.A.; Nettleton, D.O.; Sopata, C.S.; Thoelke, M.S.; Ordal, G.W.

    1988-01-01

    The authors present evidence for methyl (as methyl or methoxy) transfer from the methyl-accepting chemotaxis proteins H1 and possibly H3 of Bacillus subtilis to the methyl-accepting chemotaxis protein H2. This methyl transfer, which has been observed in vitro was strongly stimulated by the chemoattractant aspartate and thus may plan an important role in the sensory processing system of this organism. Although radiolabeling of H1 and H3 began at once after the addition of [ 3 H] methionine, radiolabeling of H2 showed a lag. Furthermore, the addition of excess nonradioactive methionine caused immediate exponential delabeling of H1 and H3 while labeling of H2 continued to increase. Methylation of H2 required the chemotactic methyltransferase, probably to first methylate H1 and H3. Aspartate caused increased labeling of H2 and strongly decreased labeling of H1 and H3 after the addition of nonradioactive methionine. Without the addition of nonradioactive methionine, aspartate caused demethylation of H1 and to a lesser extent H3, with an approximately equal increase of methylation of H2

  14. Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability.

    Science.gov (United States)

    Yu, Yang; Guo, Shoudong; Feng, Yumei; Feng, Lei; Cui, Yingjie; Song, Guohua; Luo, Tian; Zhang, Ke; Wang, Yiwei; Jiang, Xian-Cheng; Qin, Shucun

    2014-02-01

    Sphingosine-1-phosphate (S1P) is an amphiphilic signaling molecule, which is enriched in functional high density lipoprotein (HDL) and shows arterial protection. The distribution of S1P is changed with increased plasma phospholipid transfer protein (PLTP) activity and impaired HDL function in patients with coronary heart diseases. Therefore, we hypothesized that PLTP might transfer S1P among cells or lipoproteins. We found that plasma S1P contents were decreased by 60.1 % in PLTP knockout mice (PLTP-/-, N = 5) compared with their wild type littermates (WT, N = 5) (151.70 ± 38.59 vs. 379.32 ± 59.90 nmol/l, PS1P content in HDL fraction (HDL-S1P) from PLTP-/- was decreased by 64.7 % compared with WT (49.36 ± 1.49 vs. 139.76 ± 2.94 nmol/l, PS1P transfer assay indicated that PLTP could facilitate S1P transport from erythrocytes to HDL at 37 °C in D-Hanks buffer. Plasma content of apolipoprotein M, a specific adaptor of S1P, was not changed in PLTP-/- compared with WT. Therefore, we concluded that PLTP was a key factor to maintain plasma HDL-S1P, and PLTP deficiency could decrease the S1P content in plasma lipoproteins, which involves its capability of transferring S1P from erythrocyte to HDL.

  15. Cholesteryl Ester Transfer Protein (CETP) genotype and cognitive function in persons aged 35 years or older

    NARCIS (Netherlands)

    Izaks, Gerbrand J.; van der Knaap, Aafke M.; Gansevoort, Ron T.; Navis, Gerjan; Slaets, Joris P. J.; Dullaart, Robin P. F.

    Common polymorphisms of the Cholestryl Ester Transfer Protein (CETP) gene may predict lower risk of cognitive decline. We investigated the association of cognitive function with CETP genotype in a population-based cohort of 4135 persons aged 35-82 years. Cognitive function was measured with the Ruff

  16. Formation of long-lived radicals on proteins by radical transfer from heme enzymes--a common process?

    DEFF Research Database (Denmark)

    Ostdal, H; Andersen, H J; Davies, Michael Jonathan

    1999-01-01

    concentrations were observed after limited digestion, although this effect was less marked with the HRP/H2O2/BSA system than with Fe(III)Mb/H2O2/BSA, consistent with different modes of radical transfer. More extensive digestion of BSA decreased the radical concentration to levels below those detected with native...... investigated using horseradish peroxidase (HRP)/H2O2, in the presence and absence of added tyrosine. Incubation of HRP with H2O2 and bovine or human serum albumins, in the presence and absence of tyrosine, gave long-lived albumin-derived radicals as detected by EPR spectroscopy. Evidence has been obtained...... for these albumin radicals being located on buried tyrosine residues on the basis of blocking experiments. The effect of protein conformation on radical transfer has been investigated using partial proteolytic digestion prior to protein oxidation. With HRP/H2O2/BSA and Fe(III)Mb/H2O2/BSA increased radical...

  17. Plasma angiopoietin-like 4 is related to phospholipid transfer protein activity in diabetic and non-diabetic subjects

    NARCIS (Netherlands)

    Gruppen, Eke G.; Kersten, Sander; Dullaart, Robin P.F.

    2018-01-01

    Background: Angiopoietin-like 4 (ANGPTL4) inhibits lipoprotein lipase, whereas phospholipid transfer protein (PLTP) enhances hepatic triglyceride secretion. Both factors may be upregulated by inflammatory pathways. Since the extent to which these circulating factors are interrelated is unknown, we

  18. INSITU BLOTTING - A NOVEL METHOD FOR DIRECT TRANSFER OF NATIVE PROTEINS FROM SECTIONED TISSUE TO BLOTTING MEMBRANE - PROCEDURE AND SOME APPLICATIONS

    NARCIS (Netherlands)

    OKABE, M; NYAKAS, C; BUWALDA, B; LUITEN, PGM

    We describe a novel technique for direct transfer of native proteins from unfixed frozen tissue sections to an immobilizing matrix, e.g., nitrocellulose, polyvinyliden difluoride, or positively charged nylon membranes. Proteins are directly blotted onto the membrane, providing optimal accessibility

  19. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies

    OpenAIRE

    TARDIVEL , Meryem; Bégard , Séverine; Bousset , Luc; Dujardin , Simon; Coens , Audrey; Melki , Ronald; Buée , Luc; Colin , Morvane

    2016-01-01

    A given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer?s disease, is a bona fide constituent of TNTs. This i...

  20. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis

    DEFF Research Database (Denmark)

    Rönnstrand, L; Siegbahn, A; Rorsman, C

    1999-01-01

    ., Siegbahn, A. , Rorsman, C., Engström, U., Wernstedt, C., Heldin, C.-H., and Rönnstrand, L. (1996) EMBO J. 15, 5299-5313). Here we show that the increased chemotaxis correlates with increased activation of phospholipase C-gamma1 (PLC-gamma1), measured as inositol-1,4, 5-trisphosphate release. By two......-dimensional phosphopeptide mapping, the increase in phosphorylation of PLC-gamma1 was shown not to be selective for any site, rather a general increase in phosphorylation of PLC-gamma1 was seen. Specific inhibitors of protein kinase C, bisindolylmaleimide (GF109203X), and phosphatidylinositol 3-kinase (PI3-kinase), LY294002......, did not affect the activation of PLC-gamma1. To assess whether increased activation of PLC-gamma1 is the cause of the hyperchemotactic behavior of the Y934F mutant cell line, we constructed cell lines expressing either wild-type or a catalytically compromised version of PLC-gamma1 under a tetracycline...

  1. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  2. Water-Transfer Slows Aging in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Aviv Cohen

    Full Text Available Transferring Saccharomyces cerevisiae cells to water is known to extend their lifespan. However, it is unclear whether this lifespan extension is due to slowing the aging process or merely keeping old yeast alive. Here we show that in water-transferred yeast, the toxicity of polyQ proteins is decreased and the aging biomarker 47Q aggregates at a reduced rate and to a lesser extent. These beneficial effects of water-transfer could not be reproduced by diluting the growth medium and depended on de novo protein synthesis and proteasomes levels. Interestingly, we found that upon water-transfer 27 proteins are downregulated, 4 proteins are upregulated and 81 proteins change their intracellular localization, hinting at an active genetic program enabling the lifespan extension. Furthermore, the aging-related deterioration of the heat shock response (HSR, the unfolded protein response (UPR and the endoplasmic reticulum-associated protein degradation (ERAD, was largely prevented in water-transferred yeast, as the activities of these proteostatic network pathways remained nearly as robust as in young yeast. The characteristics of young yeast that are actively maintained upon water-transfer indicate that the extended lifespan is the outcome of slowing the rate of the aging process.

  3. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    International Nuclear Information System (INIS)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von

    2007-01-01

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (α/β-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available

  4. Plasma phospholipid transfer protein activity is independently determined by obesity and insulin resistance in non-diabetic subjects

    NARCIS (Netherlands)

    de Vries, Rindert; Kappelle, Paul J. W. H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    2011-01-01

    Phospholipid transfer protein (PLTP) is an emerging cardio-metabolic risk factor which is intricately involved in lipoprotein metabolism. Elevated plasma PLTP activity levels are reported in obesity and diabetes mellitus, but the relative contributions of obesity and insulin resistance to plasma

  5. Plasma phospholipid transfer protein activity is independently determined by obesity and insulin resistance in non-diabetic subjects

    NARCIS (Netherlands)

    de Vries, Rindert; Kappelle, Paul J.W.H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.

    Background: Phospholipid transfer protein (PLTP) is an emerging cardio-metabolic risk factor which is intricately involved in lipoprotein metabolism. Elevated plasma PLTP activity levels are reported in obesity and diabetes mellitus, but the relative contributions of obesity and insulin resistance

  6. Phosphatidylinositol-specific phospholipase C activity in Lactobacillus rhamnosus with capacity to translocate.

    Science.gov (United States)

    Rodriguez, A V; Baigorí, M D; Alvarez, S; Castro, G R; Oliver, G

    2001-10-16

    Phosphatidylinositol-specific phospholipase C (PI-PLC) activity was investigated in 25 different lactic acid bacteria (LAB) strains belonging to the genera Lactobacillus, Weisella, and Enterococcus. PI-PLC activity was detected in 44% of the strains studied in culture medium without carbon source. From the PI-PLC positive strains, Lactobacillus rhamnosus ATCC 7469 was selected for translocation studies. Healthy mice were orally administered with a daily dose of 2.0 x 10(9) of viable L. rhamnosus suspension. Viable bacteria were detected in liver and spleen of mice fed with LAB for 7 days. Bacterial colonies isolated from liver were biochemically characterized, and further subjected to randomly amplified polymorphic DNA. Amplification patterns of five strains displayed identical profiles to L. rhamnosus. PI-PLC activity was determined in the strains recovered from liver.

  7. Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe-2S] cluster chirality, ligand exchange and transfer chemistry.

    Science.gov (United States)

    Sen, Sambuddha; Cowan, J A

    2017-10-01

    Monothiol glutaredoxins (Grx) serve as intermediate cluster carriers in iron-sulfur cluster trafficking. The [2Fe-2S]-bound holo forms of Grx proteins display cysteinyl coordination from exogenous glutathione (GSH), in addition to contact from protein-derived Cys. Herein, we report mechanistic studies that investigate the role of exogenous glutathione in defining cluster chirality, ligand exchange, and the cluster transfer chemistry of Saccharomyces cerevisiae Grx3. Systematic perturbations were introduced to the glutathione-binding site by substitution of conserved charged amino acids that form crucial electrostatic contacts with the glutathione molecule. Native Grx3 could also be reconstituted in the absence of glutathione, with either DTT, BME or free L-cysteine as the source of the exogenous Fe-S ligand contact, while retaining full functional reactivity. The delivery of the [2Fe-2S] cluster to Grx3 from cluster donor proteins such as Isa, Nfu, and a [2Fe-2S](GS) 4 complex, revealed that electrostatic contacts are of key importance for positioning the exogenous glutathione that in turn influences the chiral environment of the cluster. All Grx3 derivatives were reconstituted by standard chemical reconstitution protocols and found to transfer cluster to apo ferredoxin 1 (Fdx1) at rates comparable to native protein, even when using DTT, BME or free L-cysteine as a thiol source in place of GSH during reconstitution. Kinetic analysis of cluster transfer from holo derivatives to apo Fdx1 has led to a mechanistic model for cluster transfer chemistry of native holo Grx3, and identification of the likely rate-limiting step for the reaction.

  8. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    Science.gov (United States)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-04-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ˜0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  9. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    International Nuclear Information System (INIS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-01-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc 1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins

  10. ELEVATED CHOLESTERYL ESTER TRANSFER PROTEIN-ACTIVITY IN IDDM MEN WHO SMOKE - POSSIBLE FACTOR FOR UNFAVORABLE LIPOPROTEIN PROFILE

    NARCIS (Netherlands)

    DULLAART, RPF; GROENER, JEM; DIKKESCHEI, BD; ERKELENS, DW; DOORENBOS, H

    Objectives: To determine the effect of cigarette smoking on the activity of cholesteryl ester transfer protein (CETP) and high-density (HDL), low-density (LDL), and very-low-density (VLDL) lipoproteins in insulin-dependent diabetic (IDDM) men with microvascular complications. Research Design and

  11. Herpesviruses in the Activated Phosphatidylinositol-3-Kinase-δ Syndrome

    Directory of Open Access Journals (Sweden)

    Jeffrey I. Cohen

    2018-02-01

    Full Text Available The phosphatidylinositol-3-kinase (PI3K/Akt pathway is important for multiple stages of herpesvirus replication including virus entry, replication, latency, and reactivation. Recently, patients with gain-of-function mutations in the p110δ-catalytic subunit of PI3K or in the p85-regulatory subunit of PI3K have been reported. These patients have constitutively active PI3K with hyperactivation of Akt. They present with lymphoproliferation and often have infections, particularly recurrent respiratory infections and/or severe virus infections. The most frequent virus infections are due to Epstein–Barr virus (EBV and cytomegalovirus (CMV; patients often present with persistent EBV and/or CMV viremia, EBV lymphoproliferative disease, or CMV lymphadenitis. No patients have been reported with CMV pneumonia, colitis, or retinitis. Other herpesvirus infections have included herpes simplex pneumonia, recurrent zoster, and varicella after vaccination with the varicella vaccine. Additional viral infections have included adenovirus viremia, severe warts, and extensive Molluscum contagiosum virus infection. The increased susceptibility to virus infections in these patients is likely due to a reduced number of long-lived memory CD8 T cells and an increased number of terminally differentiated effector CD8 T cells.

  12. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    Science.gov (United States)

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  13. Radioiodinated, photoactivatable phosphatidylcholine and phosphatidylserine: transfer properties and differential photoreactive interaction with human erythrocyte membrane proteins

    International Nuclear Information System (INIS)

    Schroit, A.J.; Madsen, J.; Ruoho, A.E.

    1987-01-01

    An isotopically labeled cross-linking reagent, succinimido 3-(3-[ 125 I]iodo-4-azidophenyl)propionate, has been synthesized and coupled to 1-acyl-2-(aminocaproyl)phosphatidylcholine according to previously described procedures. 125 I- and N 3 -labeled phosphatidylserine ( 125 I-N 3 -PS) was produced from the phosphatidylcholine (PC) analog by phospholipase D catalyzed base exchange in the presence of L-serine. These phospholipid analogues are photoactivatable, are labeled with 125 I at high specific activity, completely incorporate into synthetic vesicles, and spontaneously transfer between membranes. When an excess of acceptor vesicles or red blood cells (RBC) was mixed with a population of donor vesicles containing the 125 I-N 3 -phospholipids, approximately 40% of the analogues transferred to the acceptor population. After transfer in the dark to RBC, all of the 125 I-N 3 -PC incorporated into the cells could be removed by washing with serum, whereas the 125 I-N 3 -PS could not. After photolabeling of intact RBC, ∼50% of the PC and 20% of the PS cross-linked to membrane proteins as determined by their insolubility in CHCl 3 /MeOH. Analysis of probe distribution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that 125 I-N 3 -PS preferentially labeled a M/sub r/ 30,000 peptide which contained ∼30% of the protein-bound label

  14. Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-Leiden mice

    NARCIS (Netherlands)

    Westerterp, M.; Hoogt, C.C. van der; Haan, W. de; Offerman, E.H.; Dallinga-Thie, G.M.; Jukema, J.W.; Havekes, L.M.; Rensen, P.C.N.

    2006-01-01

    OBJECTIVE - The role of cholesteryl ester transfer protein (CETP) in the development of atherosclerosis is still undergoing debate. Therefore, we evaluated the effect of human CETP expression on atherosclerosis in APOE*3-Leiden (E3L) mice with a humanized lipoprotein profile. METHODS AND RESULTS -

  15. Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2)-dependent Oligomerization of Fibroblast Growth Factor 2 (FGF2) Triggers the Formation of a Lipidic Membrane Pore Implicated in Unconventional Secretion*

    Science.gov (United States)

    Steringer, Julia P.; Bleicken, Stephanie; Andreas, Helena; Zacherl, Sonja; Laussmann, Mareike; Temmerman, Koen; Contreras, F. Xabier; Bharat, Tanmay A. M.; Lechner, Johannes; Müller, Hans-Michael; Briggs, John A. G.; García-Sáez, Ana J.; Nickel, Walter

    2012-01-01

    Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate. PMID:22730382

  16. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  17. Setting up a Bioluminescence Resonance Energy Transfer high throughput screening assay to search for protein/protein interaction inhibitors in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Cyril eCouturier

    2012-09-01

    Full Text Available Each step of the cell life and its response or adaptation to its environment are mediated by a network of protein/protein interactions termed interactome. Our knowledge of this network keeps growing due to the development of sensitive techniques devoted to study these interactions. The bioluminescence resonance energy transfer (BRET technique was primarily developed to allow the dynamic monitoring of protein-protein interactions in living cells, and has widely been used to study receptor activation by intra- or extra-molecular conformational changes within receptors and activated complexes in mammal cells. Some interactions are described as crucial in human pathological processes, and a new class of drugs targeting them has recently emerged. The BRET method is well suited to identify inhibitors of protein-protein interactions and here is described why and how to set up and optimize a High Throughput Screening assay based on BRET to search for such inhibitory compounds. The different parameters to take into account when developing such BRET assays in mammal cells are reviewed to give general guidelines: considerations on the targeted interaction, choice of BRET version, inducibility of the interaction, kinetic of the monitored interaction, and of the BRET reading, influence substrate concentration, number of cells and medium composition used on the Z’ factor, and expected interferences for colored or fluorescent compounds.

  18. Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms

    NARCIS (Netherlands)

    Sofat, Reecha; Hingorani, Aroon D.; Smeeth, Liam; Humphries, Steve E.; Talmud, Philippa J.; Cooper, Jackie; Shah, Tina; Sandhu, Manjinder S.; Ricketts, Sally L.; Boekholdt, S. Matthijs; Wareham, Nicholas; Khaw, Kay Tee; Kumari, Meena; Kivimaki, Mika; Marmot, Michael; Asselbergs, Folkert W.; van der Harst, Pim; Dullaart, Robin P. F.; Navis, Gerjan; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Thompson, John F.; McCaskie, Pamela; Palmer, Lyle J.; Arca, Marcello; Quagliarini, Fabiana; Gaudio, Carlo; Cambien, François; Nicaud, Viviane; Poirer, Odette; Gudnason, Vilmundur; Isaacs, Aaron; Witteman, Jacqueline C. M.; van Duijn, Cornelia M.; Pencina, Michael; Vasan, Ramachandran S.; D'Agostino, Ralph B.; Ordovas, Jose; Li, Tricia Y.; Kakko, Sakari; Kauma, Heikki; Savolainen, Markku J.; Kesäniemi, Y. Antero; Sandhofer, Anton; Paulweber, Bernhard; Sorli, Jose V.; Goto, Akimoto; Yokoyama, Shinji; Okumura, Kenji; Horne, Benjamin D.; Packard, Chris; Freeman, Dilys; Ford, Ian; Sattar, Naveed; McCormack, Valerie; Lawlor, Debbie A.; Ebrahim, Shah; Smith, George Davey; Kastelein, John J. P.; Deanfield, John; Casas, Juan P.

    2010-01-01

    BACKGROUND: Cholesteryl ester transfer protein (CETP) inhibitors raise high-density lipoprotein (HDL) cholesterol, but torcetrapib, the first-in-class inhibitor tested in a large outcome trial, caused an unexpected blood pressure elevation and increased cardiovascular events. Whether the

  19. Lipid transfer protein : a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion

    NARCIS (Netherlands)

    Asero, R.; Mistrello, G.; Roncarolo, D.; Vries, de S.C.; Gautier, M.F.; Ciurana, C.L.; Verbeek, E.; Mohammadi, T.; Knul-Brettlova, V.; Akkerdaas, J.H.; Bulder, I.; Aalberse, R.C.; Ree, van R.

    2000-01-01

    Lipid transfer proteins (LTPs) are small molecules of approximately 10 kD that demonstrate high stability. They have recently been identified as allergens in the Rosaceae subfamilies of the Prunoideae (peach, apricot, plum) and of the Pomoideae (apple). They belong to a family of structurally highly

  20. Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion

    NARCIS (Netherlands)

    Asero, R.; Mistrello, G.; Roncarolo, D.; de Vries, S. C.; Gautier, M. F.; Ciurana, C. L.; Verbeek, E.; Mohammadi, T.; Knul-Brettlova, V.; Akkerdaas, J. H.; Bulder, I.; Aalberse, R. C.; van Ree, R.

    2000-01-01

    Lipid transfer proteins (LTPs) are small molecules of approximately 10 kD that demonstrate high stability. They have recently been identified as allergens in the Rosaceae subfamilies of the Prunoideae (peach, apricot, plum) and of the Pomoideae (apple). They belong to a family of structurally highly

  1. Separating the Mechanism-Based and Off-Target Actions of Cholesteryl Ester Transfer Protein Inhibitors With CETP Gene Polymorphisms

    NARCIS (Netherlands)

    Sofat, Reecha; Hingorani, Aroon D.; Smeeth, Liam; Humphries, Steve E.; Talmud, Philippa J.; Cooper, Jackie; Shah, Tina; Sandhu, Manjinder S.; Ricketts, Sally L.; Boekholdt, S. Matthijs; Wareham, Nicholas; Khaw, Kay Tee; Kumari, Meena; Kivimaki, Mika; Marmot, Michael; Asselbergs, Folkert W.; van der Harst, Pim; Dullaart, Robin P. F.; Navis, Gerjan; van Veldhuisen, Dirk J.; Van Gilst, Wiek H.; Thompson, John F.; McCaskie, Pamela; Palmer, Lyle J.; Arca, Marcello; Quagliarini, Fabiana; Gaudio, Carlo; Cambien, Francois; Nicaud, Viviane; Poirer, Odette; Gudnason, Vilmundur; Isaacs, Aaron; Witteman, Jacqueline C. M.; van Duijn, Cornelia M.; Pencina, Michael; Vasan, Ramachandran S.; D'Agostino, Ralph B.; Ordovas, Jose; Li, Tricia Y.; Kakko, Sakari; Kauma, Heikki; Savolainen, Markku J.; Kesaniemi, Y. Antero; Sandhofer, Anton; Paulweber, Bernhard; Sorli, Jose V.; Goto, Akimoto; Yokoyama, Shinji; Okumura, Kenji; Horne, Benjamin D.; Packard, Chris; Freeman, Dilys; Ford, Ian; Sattar, Naveed; McCormack, Valerie; Lawlor, Debbie A.; Ebrahim, Shah; Smith, George Davey; Kastelein, John J. P.; Deanfield, John; Casas, Juan P.

    2010-01-01

    Background-Cholesteryl ester transfer protein (CETP) inhibitors raise high-density lipoprotein (HDL) cholesterol, but torcetrapib, the first-in-class inhibitor tested in a large outcome trial, caused an unexpected blood pressure elevation and increased cardiovascular events. Whether the hypertensive

  2. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines.

    Directory of Open Access Journals (Sweden)

    Ireos Filipuzzi

    2016-11-01

    Full Text Available Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.

  3. Deciphering the Evolution and Development of the Cuticle by Studying Lipid Transfer Proteins in Mosses and Liverworts

    Directory of Open Access Journals (Sweden)

    Tiina A. Salminen

    2018-01-01

    Full Text Available When plants conquered land, they developed specialized organs, tissues, and cells in order to survive in this new and harsh terrestrial environment. New cell polymers such as the hydrophobic lipid-based polyesters cutin, suberin, and sporopollenin were also developed for protection against water loss, radiation, and other potentially harmful abiotic factors. Cutin and waxes are the main components of the cuticle, which is the waterproof layer covering the epidermis of many aerial organs of land plants. Although the in vivo functions of the group of lipid binding proteins known as lipid transfer proteins (LTPs are still rather unclear, there is accumulating evidence suggesting a role for LTPs in the transfer and deposition of monomers required for cuticle assembly. In this review, we first present an overview of the data connecting LTPs with cuticle synthesis. Furthermore, we propose liverworts and mosses as attractive model systems for revealing the specific function and activity of LTPs in the biosynthesis and evolution of the plant cuticle.

  4. Receptor-G Protein Interaction Studied by Bioluminescence Resonance Energy Transfer: Lessons From Protease-Activated Receptor 1

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAYOUB

    2012-06-01

    Full Text Available Since its development, the bioluminescence resonance energy transfer (BRET approach has been extensively applied to study G protein-coupled receptors (GPCRs in real time and in live cells. One of the major aspects of GPCRs investigated in considerable details is their physical coupling to the heterotrimeric G proteins. As a result, new concepts have emerged, but few questions are still a matter of debate illustrating the complexity of GPCR-G protein interactions and coupling. Here, we summarized the recent advances on our understanding of GPCR-G protein coupling based on BRET approaches and supported by other FRET-based studies. We essentially focused on our recent studies in which we addressed the concept of preassembly versus the agonist-dependent interaction between the protease-activated receptor 1 (PAR1 and its cognate G proteins. We discussed the concept of agonist-induced conformational changes within the preassembled PAR1-G protein complexes as well as the critical question how the multiple coupling of PAR1 with two different G proteins, Gi1 and G12, but also -arrestin 1, can be regulated.

  5. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies.

    Science.gov (United States)

    Tardivel, Meryem; Bégard, Séverine; Bousset, Luc; Dujardin, Simon; Coens, Audrey; Melki, Ronald; Buée, Luc; Colin, Morvane

    2016-11-04

    A given cell makes exchanges with its neighbors through a variety of means ranging from diffusible factors to vesicles. Cells use also tunneling nanotubes (TNTs), filamentous-actin-containing membranous structures that bridge and connect cells. First described in immune cells, TNTs facilitate HIV-1 transfer and are found in various cell types, including neurons. We show that the microtubule-associated protein Tau, a key player in Alzheimer's disease, is a bona fide constituent of TNTs. This is important because Tau appears beside filamentous actin and myosin 10 as a specific marker of these fine protrusions of membranes and cytosol that are difficult to visualize. Furthermore, we observed that exogenous Tau species increase the number of TNTs established between primary neurons, thereby facilitating the intercellular transfer of Tau fibrils. In conclusion, Tau may contribute to the formation and function of the highly dynamic TNTs that may be involved in the prion-like propagation of Tau assemblies.

  6. Förster-type energy transfer as a probe for changes in local fluctuations of the protein matrix.

    Science.gov (United States)

    Somogyi, B; Matkó, J; Papp, S; Hevessy, J; Welch, G R; Damjanovich, S

    1984-07-17

    Much evidence, on both theoretical and experimental sides, indicates the importance of local fluctuations (in energy levels, conformational substates, etc.) of the macromolecular matrix in the biological activity of proteins. We describe here a novel application of the Förster-type energy-transfer process capable of monitoring changes both in local fluctuations and in conformational states of macromolecules. A new energy-transfer parameter, f, is defined as an average transfer efficiency, [E], normalized by the actual average quantum efficiency of the donor fluorescence, [phi D]. A simple oscillator model (for a one donor-one acceptor system) is presented to show the sensitivity of this parameter to changes in amplitudes of local fluctuations. The different modes of averaging (static, dynamic, and intermediate cases) occurring for a given value of the average transfer rate, [kt], and the experimental requirements as well as limitations of the method are also discussed. The experimental tests were performed on the ribonuclease T1-pyridoxamine 5'-phosphate conjugate (a one donor-one acceptor system) by studying the change of the f parameter with temperature, an environmental parameter expectedly perturbing local fluctuations of proteins. The parameter f increased with increasing temperature as expected on the basis of the oscillator model, suggesting that it really reflects changes of fluctuation amplitudes (significant changes in the orientation factor, k2, as well as in the spectral properties of the fluorophores can be excluded by anisotropy measurements and spectral investigations). Possibilities of the general applicability of the method are also discussed.

  7. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Liu, Yang; Lai, Yu-Chiang; Hill, Elaine V; Tyteca, Donatienne; Carpentier, Sarah; Ingvaldsen, Ada; Vertommen, Didier; Lantier, Louise; Foretz, Marc; Dequiedt, Franck; Courtoy, Pierre J; Erneux, Christophe; Viollet, Benoît; Shepherd, Peter R; Tavaré, Jeremy M; Jensen, Jørgen; Rider, Mark H

    2013-10-15

    PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.

  8. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids.

    Directory of Open Access Journals (Sweden)

    Miguel A Martín-Acebes

    Full Text Available West Nile virus (WNV is a neurovirulent mosquito-borne flavivirus, which main natural hosts are birds but it also infects equines and humans, among other mammals. As in the case of other plus-stranded RNA viruses, WNV replication is associated to intracellular membrane rearrangements. Based on results obtained with a variety of viruses, different cellular processes have been shown to play important roles on these membrane rearrangements for efficient viral replication. As these processes are related to lipid metabolism, fatty acid synthesis, as well as generation of a specific lipid microenvironment enriched in phosphatidylinositol-4-phosphate (PI4P, has been associated to it in other viral models. In this study, intracellular membrane rearrangements following infection with a highly neurovirulent strain of WNV were addressed by means of electron and confocal microscopy. Infection of WNV, and specifically viral RNA replication, were dependent on fatty acid synthesis, as revealed by the inhibitory effect of cerulenin and C75, two pharmacological inhibitors of fatty acid synthase, a key enzyme of this process. However, WNV infection did not induce redistribution of PI4P lipids, and PI4P did not localize at viral replication complex. Even more, WNV multiplication was not inhibited by the use of the phosphatidylinositol-4-kinase inhibitor PIK93, while infection by the enterovirus Coxsackievirus B5 was reduced. Similar features were found when infection by other flavivirus, the Usutu virus (USUV, was analyzed. These features of WNV replication could help to design specific antiviral approaches against WNV and other related flaviviruses.

  9. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  10. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.

    Science.gov (United States)

    Tong, Junsen; Manik, Mohammad Kawsar; Im, Young Jun

    2018-01-30

    Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.

  11. Transfer in SDS of biotinylated proteins from acrylamide gels to an avidin-coated membrane filter.

    Science.gov (United States)

    Karlin, Arthur; Wang, Chaojian; Li, Jing; Xu, Qiang

    2004-06-01

    Avidin was covalently linked to aldehyde-derivatized polyethersulfone membrane filters. These filters were used in Western blot analysis of proteins reacted with biotinylation reagents and electrophoresed in sodium dodecyl sulfate (SDS) on polyacrylamide gels. Electrophoretic transfer from the gels to these filters was in 0.1% SDS, in which the covalently bound avidin retained its biotin-binding capacity. We compared Western blots on avidin-coated membrane filters of biotinylated and nonbiotinylated forms of mouse immunoglobulin G (IgG), mouse IgG heavy chain, muscle-type acetylcholine receptor alpha subunit, and fused alpha and beta subunits of receptor. Biotinylated proteins were captured with high specificity compared to their nonbiotinylated counterparts and sensitively detected on the avidin-coated membranes.

  12. The role of Phosphatidylinositol 3 kinase (PI3K and Cycloxygenase-2 (COX2 in carcinogenesis of colorectal polyps

    Directory of Open Access Journals (Sweden)

    Raul Alberto Anselmi Júnior

    2018-01-01

    Full Text Available Objectives: Determine immunohistochemical expression of Phosphatase and tensin homolog (PTEN, Phosphatidylinositol 3 kinase (PI3K, Cycloxygenase-2 (COX2 and one proliferation marker (Ki67 in colorectal polyps and correlate with clinical and pathological data in search of carcinogenic pathways. Methods: The reports of 297 polyps diagnosed through endoscopy were reviewed for parameters including age, gender, prior colorectal cancer, the presence of multiple polyps, and polyps’ location, appearance and size. Was conducted a microscopic morphometric computerized analysis of immunohistochemical expression using, the selected antibodies and correlated with clinical and pathological variables. Results: The tissue immunohistochemical expression was higher in right colon polyps for the proliferation marker and Phosphatidylinositol 3 kinase (p ≤ 0.0001 and 0.057 respectively. Cycloxygenase-2 and Phosphatase and tensin homolog demonstrated higher tissue immunoexpression in pedunculated polyps (p = 0.009 and 0.002 respectively. Cycloxygenase-2 exhibited higher immunoexpression in larger polyps (p = 0.005. Phosphatidylinositol 3 kinase, Cycloxygenase-2, Phosphatase and tensin homolog and the proliferation marker exhibited higher immunoexpression in high-grade dysplastic polyps (p = 0.031, 0.013, 0.044 and <0.001 respectively. Phosphatase and tensin homolog labeling was higher in polyps with high-grade dysplasia and lower in some of serrated lesions (p = 0.044. Conclusions: The greater expression of the proliferation marker and Phosphatidylinositol 3 kinase in the right colon may be related to right-sided colorectal carcinogenesis. The proliferation marker, Cycloxygenase-2 and Phosphatidylinositol 3 kinase results can be associated with progression of polyps to colorectal cancer. The higher Phosphatase and tensin homolog expression suggests its attempt to control the cell cycle. Resumo: Objetivos: Determinar a expressão imuno-histoquímica de

  13. Signal-dependent Hydrolysis of Phosphatidylinositol 4,5-Bisphosphate without Activation of Phospholipase C

    Science.gov (United States)

    Lev, Shaya; Katz, Ben; Tzarfaty, Vered; Minke, Baruch

    2012-01-01

    In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P2 in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P2 was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P2 is not an inhibitor of TRPL channel activation. PI(4,5)P2 hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P2 levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P2 is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating. PMID:22065576

  14. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    Directory of Open Access Journals (Sweden)

    Serrano Luis

    2008-10-01

    Full Text Available Abstract Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures.

  15. Introduction to protein blotting.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    Protein blotting is a powerful and important procedure for the immunodetection of proteins following electrophoresis, particularly proteins that are of low abundance. Since the inception of the protocol for protein transfer from an electrophoresed gel to a membrane in 1979, protein blotting has evolved greatly. The scientific community is now confronted with a variety of ways and means to carry out this transfer.

  16. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: Use of the INEPT [insensitive nucleus enhancement by polarization transfer] experiment to follow individual amides in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    Henry, G.D.; Sykes, B.D.

    1990-01-01

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1 H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10 5 -fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use 15 N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the 15 N nucleus from a coupled proton; when 15 N-labeled protonated protein is dissolved in 2 H 2 O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H + and OH - ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k ex ). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations

  17. Tolerability, pharmacokinetics and pharmacodynamics of TA-8995, a selective cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects

    NARCIS (Netherlands)

    Ford, John; Lawson, Matt; Fowler, David; Maruyama, Nobuko; Mito, Seiji; Tomiyasu, Koichi; Kinoshita, Shuji; Suzuki, Chisa; Kawaguchi, Atsuhiro; Round, Patrick; Boyce, Malcolm; Warrington, Steve; Weber, Werner; van Deventer, Sander; Kastelein, John J. P.

    2014-01-01

    Two double-blind, randomized studies were conducted to assess the tolerability, pharmacokinetics and pharmacodynamics of oral TA-8995, a new cholesteryl ester transfer protein (CETP) inhibitor, in healthy subjects. Study 1: Subjects received single doses of TA-8995 or placebo (fasted). Doses were 5,

  18. Phosphatidylinositol 4,5-Bisphosphate (PtdIns(4,5)P2) Specifically Induces Membrane Penetration and Deformation by Bin/Amphiphysin/Rvs (BAR) Domains*

    Science.gov (United States)

    Yoon, Youngdae; Zhang, Xiuqi; Cho, Wonhwa

    2012-01-01

    Cellular proteins containing Bin/amphiphysin/Rvs (BAR) domains play a key role in clathrin-mediated endocytosis. Despite extensive structural and functional studies of BAR domains, it is still unknown how exactly these domains interact with the plasma membrane containing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and whether they function by a universal mechanism or by different mechanisms. Here we report that PtdIns(4,5)P2 specifically induces partial membrane penetration of the N-terminal amphiphilic α-helix (H0) of two representative N-BAR domains from Drosophila amphiphysin (dAmp-BAR) and rat endophilin A1 (EndoA1-BAR). Our quantitative fluorescence imaging analysis shows that PtdIns(4,5)P2-dependent membrane penetration of H0 is important for self-association of membrane-bound dAmp-BAR and EndoA1-BAR and their membrane deformation activity. EndoA1-BAR behaves differently from dAmp-BAR because the former has an additional amphiphilic α-helix that penetrates the membrane in a PtdIns(4,5)P2-independent manner. Depletion of PtdIns(4,5)P2 from the plasma membrane of HEK293 cells abrogated the membrane deforming activity of EndoA1-BAR and dAmp-BAR. Collectively, these studies suggest that the local PtdIns(4,5)P2 concentration in the plasma membrane may regulate the membrane interaction and deformation by N-BAR domain-containing proteins during clathrin-mediated endocytosis. PMID:22888025

  19. Gab Docking Proteins in Cardiovascular Disease, Cancer, and Inflammation

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakaoka

    2013-01-01

    Full Text Available The docking proteins of the Grb2-associated binder (Gab family have emerged as crucial signaling compartments in metazoans. In mammals, the Gab proteins, consisting of Gab1, Gab2, and Gab3, are involved in the amplification and integration of signal transduction evoked by a variety of extracellular stimuli, including growth factors, cytokines, antigens, and other molecules. Gab proteins lack the enzymatic activity themselves; however, when phosphorylated on tyrosine residues, they provide binding sites for multiple Src homology-2 (SH2 domain-containing proteins, such as SH2-containing protein tyrosine phosphatase 2 (SHP2, phosphatidylinositol 3-kinase regulatory subunit p85, phospholipase Cγ, Crk, and GC-GAP. Through these interactions, the Gab proteins transduce signals from activated receptors into pathways with distinct biological functions, thereby contributing to signal diversification. They are known to play crucial roles in numerous physiological processes through their associations with SHP2 and p85. In addition, abnormal Gab protein signaling has been linked to human diseases including cancer, cardiovascular disease, and inflammatory disorders. In this paper, we provide an overview of the structure, effector functions, and regulation of the Gab docking proteins, with a special focus on their associations with cardiovascular disease, cancer, and inflammation.

  20. Glycolipid precursors for the membrane anchor of Trypanosoma brucei variant surface glycoproteins. II. Lipid structures of phosphatidylinositol-specific phospholipase C sensitive and resistant glycolipids

    International Nuclear Information System (INIS)

    Mayor, S.; Menon, A.K.; Cross, G.A.

    1990-01-01

    A common diagnostic feature of glycosylinositol phospholipid (GPI)-anchored proteins is their release from the membrane by a phosphatidylinositol-specific phospholipase C (PI-PLC). However, some GPI-anchored proteins are resistant to this enzyme. The best characterized example of this subclass is the human erythrocyte acetylcholinesterase, where the structural basis of PI-PLC resistance has been shown to be the acylation of an inositol hydroxyl group(s). Both PI-PLC-sensitive and resistant GPI-anchor precursors (P2 and P3, respectively) have been found in Trypanosoma brucei, where the major surface glycoprotein is anchored by a PI-PLC-sensitive glycolipid anchor. The accompanying paper shows that P2 and P3 have identical glycans, indistinguishable from the common core glycan found on all the characterized GPI protein anchors. This paper shows that the single difference between P2 and P3, and the basis for the PI-PLC insusceptibility of P3, is a fatty acid, ester-linked to the inositol residue in P3. The inositol-linked fatty acid can be removed by treatment with mild base to restore PI-PLC sensitivity. Biosynthetic labeling experiments with [3H]palmitic acid and [3H]myristic acid show that [3H]palmitic acid specifically labels the inositol residue in P3 while [3H]myristic acid labels the diacylglycerol portion. Possible models to account for the simultaneous presence of PI-PLC-resistant and sensitive glycolipids are discussed in the context of available information on the biosynthesis of GPI-anchors

  1. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations

    DEFF Research Database (Denmark)

    Aijanen, T.; Koivuniemi, A.; Javanainen, M.

    2014-01-01

    Cholesteryl ester transfer protein (CETP) mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides) and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity...... and thereby raise high density lipoprotein (HDL)-cholesterol and decrease low density lipoprotein (LDL)-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics...... simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site...

  2. Evolutionary novelty in gravity sensing through horizontal gene transfer and high-order protein assembly.

    Directory of Open Access Journals (Sweden)

    Tu Anh Nguyen

    2018-04-01

    Full Text Available Horizontal gene transfer (HGT can promote evolutionary adaptation by transforming a species' relationship to the environment. In most well-understood cases of HGT, acquired and donor functions appear to remain closely related. Thus, the degree to which HGT can lead to evolutionary novelties remains unclear. Mucorales fungi sense gravity through the sedimentation of vacuolar protein crystals. Here, we identify the octahedral crystal matrix protein (OCTIN. Phylogenetic analysis strongly supports acquisition of octin by HGT from bacteria. A bacterial OCTIN forms high-order periplasmic oligomers, and inter-molecular disulphide bonds are formed by both fungal and bacterial OCTINs, suggesting that they share elements of a conserved assembly mechanism. However, estimated sedimentation velocities preclude a gravity-sensing function for the bacterial structures. Together, our data suggest that HGT from bacteria into the Mucorales allowed a dramatic increase in assembly scale and emergence of the gravity-sensing function. We conclude that HGT can lead to evolutionary novelties that emerge depending on the physiological and cellular context of protein assembly.

  3. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    Science.gov (United States)

    Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I

    2015-10-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular

  4. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    Directory of Open Access Journals (Sweden)

    Shimon Bershtein

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR, with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90% in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM, correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the

  5. Epidural ropivacaine hydrochloride during labour: protein binding, placental transfer and neonatal outcome.

    LENUS (Irish Health Repository)

    Porter, J M

    2012-02-03

    This study was undertaken: (i) to quantify the effects of labour and epidural analgesia on plasma alpha1-acid glycoprotein concentration, (ii) to examine the effects of changes in plasma alpha1-acid glycoprotein concentration on plasma protein binding and placental transfer of ropivacaine, and (iii) to examine the association between umbilical venous ropivacaine concentration and neurobehavioural function in the neonate. Multiparous patients undergoing induction of labour received a continuous epidural infusion of 0.1% ropivacaine following an epidural bolus. A significant association was demonstrated between maternal plasma alpha1-acid glycoprotein concentration and 1\\/free fraction of ropivacaine 60 min after starting ropivacaine administration (r(2) = 0.77) but not at delivery. No significant correlation was demonstrable between maternal unbound ropivacaine concentration and either neonatal (cord) ropivacaine concentration or UV\\/MV (a measure of placental transfer). Thirty minutes after delivery, 9\\/10 neonates had neurological and adaptive capacity scores < 35, whereas only three infants had scores < 35 at 2 h. All scores exceeded 35 16 h after delivery. No association between mean (SD) umbilical venous ropivacaine concentration [0.09 (0.08) mg x l(-1)] and neurological and adaptive capacity scores was demonstrated.

  6. High plasma cholesteryl ester transfer protein levels may favour reduced incidence of cardiovascular events in men with low triglycerides

    NARCIS (Netherlands)

    Borggreve, Susanna E.; Hillege, Hans L.; Dallinga-Thie, Geesje M.; de Jong, Paul E.; Wolffenbuttel, Bruce H. R.; Grobbee, Diederik E.; van Tol, Arie; Dullaart, Robin P. F.

    Aims High cholesteryl ester transfer protein (CETP) concentrations are associated with increased risk of cardiovascular disease (CVD) in subjects with high triglycerides. We determined the relationship of plasma CETP with incident CVD in a population with relatively low triglycerides. Methods and

  7. High plasma cholesteryl ester transfer protein levels may favour reduced incidence of cardiovascular events in men with low triglycerides

    NARCIS (Netherlands)

    Borggreve, Susanna E.; Hillege, Hans L.; Dallinga-Thie, Geesje M.; de Jong, Paul E.; Wolffenbuttel, Bruce H. R.; Grobbee, Diederik E.; van Tol, Arie; Dullaart, Robin P. F.

    2007-01-01

    High cholesteryl ester transfer protein (CETP) concentrations are associated with increased risk of cardiovascular disease (CVD) in subjects with high triglycerides. We determined the relationship of plasma CETP with incident CVD in a population with relatively low triglycerides. A nested

  8. Fis protein induced λF-DNA bending observed by single-pair fluorescence resonance energy transfer

    Science.gov (United States)

    Chi-Cheng, Fu; Wunshain, Fann; Yuan Hanna, S.

    2006-03-01

    Fis, a site-specific DNA binding protein, regulates many biological processes including recombination, transcription, and replication in E.coli. Fis induced DNA bending plays an important role in regulating these functions and bending angle range from ˜50 to 95 dependent on the DNA sequence. For instance, the average bending angle of λF-DNA (26 bp, 8.8nm long, contained λF binding site on the center) measured by gel mobility shift assays was ˜ 94 . But the traditional method cannot provide information about the dynamics and the angle distribution. In this study, λF-DNA was labeled with donor (Alexa Fluor 546) and acceptor (Alexa Fluor 647) dyes on its two 5' ends and the donor-acceptor distances were measured using single-pair fluorescence resonance energy transfer (sp-FRET) with and without the present of Fis protein. Combing with structure information of Fis-DNA complex, the sp-FRET results are used to estimate the protein induced DNA bending angle distribution and dynamics.

  9. Presence of an SH2 domain in the actin-binding protein tensin.

    Science.gov (United States)

    Davis, S; Lu, M L; Lo, S H; Lin, S; Butler, J A; Druker, B J; Roberts, T M; An, Q; Chen, L B

    1991-05-03

    The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.

  10. Cholesterol transfer at endosomal-organelle membrane contact sites.

    Science.gov (United States)

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  11. Deciphering the fluorescence resonance energy transfer from denatured transport protein to anthracene 1,5 disulphonate in reverse micellar environment

    Science.gov (United States)

    Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2017-12-01

    Constrained environmental effect inside AOT reverse micellar media has been employed in this work to collect the information about energy transfer efficacy between sodium salt of anthracene 1,5 disulphonate (1,5-AS) with model transport proteins, bovine serum albumin (BSA), and human serum albumin (HSA). Steady state, time-resolved fluorescence and circular dichroism techniques have been used for this purpose and corresponding Fӧrster-type resonance energy transfer (FRET) from tryptophan residues to 1,5-AS indicates that 1,5-AS binds in the vicinity of the tryptophan residue (BSA and HSA) with equal strength. Indication of protein damage from fluorescence data and its confirmation has been measured from CD measurement. Molecular modeling study hereby plays a crucial role to predict the minimum energy docked conformation of the probe inside the protein environment. From the docked conformation the distance between 1,5-AS and tryptophan moiety of BSA/HSA has successfully explained the FRET possibility between them. A comparative modeling study between BSA and HSA with 1,5-AS assigning their binding site within specific amino acids plays a crucial role in support of the FRET study.

  12. [A history and review of cholesterol ester transfer protein inhibitors and their contribution to the understanding of the physiology and pathophysiology of high density lipoprotein].

    Science.gov (United States)

    Corral, Pablo; Schreier, Laura

    2014-01-01

    There is irrefutable evidence that statins reduce the risk of cardiovascular events in a magnitude proportional to the intensity of the decrease in cholesterol transport by the low density lipoproteins. Despite this great advance there is still a residual risk of cardiovascular events. For this reason, an increase in the levels of high density lipoprotein is considered in order to boost the main action of this lipoprotein, which is reverse cholesterol transport. Distinct classes of evidence (epidemiological, genetic, and pathophysiological) show that the inhibition and/or modulation of cholesterol ester transfer protein increases plasma high density lipoprotein-cholesterol levels. The main reason for presenting this review is to look at the physiology of cholesterol ester transfer protein, its interrelationship with high density lipoproteins, and to give an update on the development of different cholesterol ester transfer protein inhibitor/modulator molecules. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  13. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast

    OpenAIRE

    Helliwell, S. B.; Wagner, P.; Kunz, J.; Deuter-Reinhard, M.; Henriquez, R.; Hall, M. N.

    1994-01-01

    The Saccharomyces cerevisiae genes TOR1 and TOR2 were originally identified by mutations that confer resistance to the immunosuppressant rapamycin. TOR2 was previously shown to encode an essential 282-kDa phosphatidylinositol kinase (PI kinase) homologue. The TOR1 gene product is also a large (281 kDa) PI kinase homologue, with 67% identity to TOR2. TOR1 is not essential, but a TOR1 TOR2 double disruption uniquely confers a cell cycle (G1) arrest as does exposure to rapamycin; disruption of T...

  14. Maturity and storage influence on the apple (Malus domestica) allergen Mal d 3, a nonspecific lipid transfer protein

    NARCIS (Netherlands)

    Sancho, Ana I.; Foxall, Robert; Rigby, Neil M.; Browne, Thomas; Zuidmeer, Laurian; van Ree, Ronald; Waldron, Keith W.; Mills, E. N. Clare

    2006-01-01

    Consumption of apples can provoke severe allergic reactions, in susceptible individuals, due to the presence of the allergen Mal d 3, a nonspecific lipid transfer protein, found largely in the fruit skin. Levels of Mal d 3 were determined in peel as a function of apple cultivar, position of the

  15. Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulated by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis

    International Nuclear Information System (INIS)

    Matozaki, T.; Williams, J.A.

    1989-01-01

    Changes in the cellular content of 1,2-diacylglycerol (DAG) in isolated rat pancreatic acini in response to agonist stimulation were studied using a sensitive mass assay. When acini were stimulated by 10 nM COOH-terminal cholecystokinin-octapeptide (CCK8), the increase in DAG was biphasic, consisting of an early peak at 5 s and a second, larger, gradual increase that was maximal by 15 min. The basal level of DAG in acini was 1.04 nmol/mg of protein, which was increased to 1.24 nmol/mg of protein at 5 s and 2.76 nmol/mg of protein at 30 min. In comparison, the increase in DAG stimulated by 30 pM CCK8, a submaximal concentration for amylase release, was monophasic, increasing without an early peak but sustained to 60 min. Other Ca2+-mobilizing secretagogues such as carbamylcholine and bombesin increased DAG in acini, whereas vasoactive intestinal peptide, which acts to increase cAMP, had no effect. Phorbol ester and Ca2+ ionophore also stimulated DAG production. Analysis of the mass level of inositol 1,4,5-trisphosphate (1,4,5-IP3) showed that the generation of 1,4,5-IP3 stimulated by 10 nM CCK8 peaked at 5 s, a finding consistent with the early peak of DAG. The basal level was 4.7 pmol/mg of protein, which was increased to 144.6 pmol/mg of protein at 5 s by 10 nM CCK8. The levels of 1,4,5-IP3 then returned toward basal in contrast to the gradual and sustained increase of DAG. The dose dependencies of 1,4,5-IP3 and DAG formation at 5 s with respect to CCK8 were almost identical. This suggests that phosphatidylinositol 4,5-bisphosphate hydrolysis is a major source of the early increase in DAG but not of the sustained increase in DAG. Therefore, a possible contribution of phosphatidylcholine hydrolysis to DAG formation was examined utilizing acini prelabeled with [3H]choline. CCK8 (1 nM) maximally increased [3H]choline metabolite release by 133% of control at 30 min

  16. Ehrlichia secretes Etf-1 to induce autophagy and capture nutrients for its growth through RAB5 and class III phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Lin, Mingqun; Liu, Hongyan; Xiong, Qingming; Niu, Hua; Cheng, Zhihui; Yamamoto, Akitsugu; Rikihisa, Yasuko

    2016-11-01

    Ehrlichia chaffeensis is an obligatory intracellular bacterium that causes a potentially fatal emerging zoonosis, human monocytic ehrlichiosis. E. chaffeensis has a limited capacity for biosynthesis and metabolism and thus depends mostly on host-synthesized nutrients for growth. Although the host cell cytoplasm is rich with these nutrients, as E. chaffeensis is confined within the early endosome-like membrane-bound compartment, only host nutrients that enter the compartment can be used by this bacterium. How this occurs is unknown. We found that ehrlichial replication depended on autophagy induction involving class III phosphatidylinositol 3-kinase (PtdIns3K) activity, BECN1 (Beclin 1), and ATG5 (autophagy-related 5). Ehrlichia acquired host cell preincorporated amino acids in a class III PtdIns3K-dependent manner and ehrlichial growth was enhanced by treatment with rapamycin, an autophagy inducer. Moreover, ATG5 and RAB5A/B/C were routed to ehrlichial inclusions. RAB5A/B/C siRNA knockdown, or overexpression of a RAB5-specific GTPase-activating protein or dominant-negative RAB5A inhibited ehrlichial infection, indicating the critical role of GTP-bound RAB5 during infection. Both native and ectopically expressed ehrlichial type IV secretion effector protein, Etf-1, bound RAB5 and the autophagy-initiating class III PtdIns3K complex, PIK3C3/VPS34, and BECN1, and homed to ehrlichial inclusions. Ectopically expressed Etf-1 activated class III PtdIns3K as in E. chaffeensis infection and induced autophagosome formation, cleared an aggregation-prone mutant huntingtin protein in a class III PtdIns3K-dependent manner, and enhanced ehrlichial proliferation. These data support the notion that E. chaffeensis secretes Etf-1 to induce autophagy to repurpose the host cytoplasm and capture nutrients for its growth through RAB5 and class III PtdIns3K, while avoiding autolysosomal killing.

  17. Increased expression of Matrix Metalloproteinase 9 in liver from NZB/W F1 mice received antibody against human parvovirus B19 VP1 unique region protein

    Directory of Open Access Journals (Sweden)

    Hsu Gwo-Jong

    2009-01-01

    Full Text Available Abstract Background Human parvovirus B19 infection has been postulated to the anti-phospholipid syndrome (APS in autoimmunity. However, the influence of anti-B19-VP1u antibody in autoimmune diseases is still obscure. Methods To elucidate the effect of anti-B19-VP1u antibodies in systemic lupus erythematosus (SLE, passive transfer of rabbit anti-B19-VP1u IgG was injected intravenously into NZB/W F1 mice. Results Significant reduction of platelet count and prolonged thrombocytopenia time were detected in anti-B19-VP1u IgG group as compared to other groups, whereas significant increases of anti-B19-VP1u, anti-phospholipid (APhL, and anti-double strand DNA (dsDNA antibody binding activity were detected in anti-B19-VP1u group. Additionally, significant increases of matrix metalloproteinase-9 (MMP9 activity and protein expression were detected in B19-VP1u IgG group. Notably, phosphatidylinositol 3-phosphate kinase (PI3K and phosphorylated extracellular signal-regulated kinase (ERK proteins were involved in the induction of MMP9. Conclusion These experimental results firstly demonstrated the aggravated effects of anti-B19-VP1u antibody in disease activity of SLE.

  18. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  19. Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase.

    Science.gov (United States)

    Shyng, S L; Barbieri, A; Gumusboga, A; Cukras, C; Pike, L; Davis, J N; Stahl, P D; Nichols, C G

    2000-01-18

    ATP-sensitive potassium channels (K(ATP) channels) regulate cell excitability in response to metabolic changes. K(ATP) channels are formed as a complex of a sulfonylurea receptor (SURx), a member of the ATP-binding cassette protein family, and an inward rectifier K(+) channel subunit (Kir6.x). Membrane phospholipids, in particular phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), activate K(ATP) channels and antagonize ATP inhibition of K(ATP) channels when applied to inside-out membrane patches. To examine the physiological relevance of this regulatory mechanism, we manipulated membrane PIP(2) levels by expressing either the wild-type or an inactive form of PI-4-phosphate 5-kinase (PIP5K) in COSm6 cells and examined the ATP sensitivity of coexpressed K(ATP) channels. Channels from cells expressing the wild-type PIP5K have a 6-fold lower ATP sensitivity (K(1/2), the half maximal inhibitory concentration, approximately 60 microM) than the sensitivities from control cells (K(1/2) approximately 10 microM). An inactive form of the PIP5K had little effect on the K(1/2) of wild-type channels but increased the ATP-sensitivity of a mutant K(ATP) channel that has an intrinsically lower ATP sensitivity (from K(1/2) approximately 450 microM to K(1/2) approximately 100 microM), suggesting a decrease in membrane PIP(2) levels as a consequence of a dominant-negative effect of the inactive PIP5K. These results show that PIP5K activity, which regulates PIP(2) and PI-3,4,5-P(3) levels, is a significant determinant of the physiological nucleotide sensitivity of K(ATP) channels.

  20. Influence of extracellular matrix proteins on human keratinocyte attachment, proliferation and transfer to a dermal wound model.

    Science.gov (United States)

    Dawson, R A; Goberdhan, N J; Freedlander, E; MacNeil, S

    1996-03-01

    The aim of this study was to investigate whether prior culture of cells on ECM proteins might positively influence the performance of keratinocytes when cells are transferred to a dermal in vitro wound bed model. Keratinocytes were cultured using a method for producing cultured epithelial autografts for severely burned patients (essentially using Green's medium, a mitogen-rich medium containing fetal calf serum, cholera toxin, EGF, insulin, transferrin and triiodothyronine). Cells were cultured either on irradiated 3T3 fibroblasts (as in the standard Rheinwald and Green technique) or, alternatively, on collagen I, collagen IV, matrigel, RGD, vitronectin or fibronectin. Under these conditions matrigel, collagen I and IV enhanced initial attachment, RGD, vitronectin, fibronectin and irradiated 3T3 fibroblasts did not. Proliferation of cells was positively influenced by matrigel, collagen I and IV and irradiated 3T3 fibroblasts; of these, however, only matrigel and 3T3 fibroblasts had sustained significant effects on keratinocyte proliferation over 4 days. Cells on fibronectin showed significantly reduced proliferation. An acellular non-viable dermis was then used to mimic the homograft allodermis onto which cultured epithelial autograft sheets are grafted clinically and cells cultured on the various ECM proteins for 96 h were transferred to this in vitro wound model. None of the substrates enhanced keratinocyte performance on this model. It was concluded that under these conditions some ECM proteins can significantly affect keratinocyte attachment and, to a lesser extent, proliferation but that the culture of keratinocytes on these ECM proteins does not appear to confer any lasting benefit to the attachment of these keratinocytes to an in vitro wound-bed model.

  1. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines.

    Science.gov (United States)

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha

    2012-07-01

    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  2. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. EFFECT OF ADIPOSITY ON PLASMA-LIPID TRANSFER PROTEIN ACTIVITIES - A POSSIBLE LINK BETWEEN INSULIN-RESISTANCE AND HIGH-DENSITY-LIPOPROTEIN METABOLISM

    NARCIS (Netherlands)

    DULLAART, RPF; SLUITER, WJ; DIKKESCHEI, LD; HOOGENBERG, K; VANTOL, A

    The mechanisms responsible for the decreased high density lipoprotein (HDL) cholesterol levels associated with obesity and insulin resistance are not well understood. Lecithin: cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) are key factors in the esterification of

  4. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?

    Science.gov (United States)

    Bellingham, Shayne A; Guo, Belinda B; Coleman, Bradley M; Hill, Andrew F

    2012-01-01

    Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB). When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell-cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP) which is associated with Alzheimer's disease. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I and alpha-synuclein (involved in amyotrophic lateral sclerosis and Parkinson's disease, respectively) are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics, and diagnostics for these diseases.

  5. Regulation of gene expression for defensins and lipid transfer protein in Scots pine seedlings by necrotrophic pathogen Alternaria alternata (Fr.

    Directory of Open Access Journals (Sweden)

    Hrunyk Nataliya

    2017-06-01

    Full Text Available Damping-off disease in pine seedling, caused by fungi and oomycetes (Fusarium, Alternaria, Botrytis, Phytophthora and other species, is one of the most dangerous diseases in conifer nurseries and greenhouses worldwide. Alternaria alternata is a necrotrophic pathogen, which causes early blight in higher plants and results in massive economic losses in agro-industry as well as in forestry. Pine seedlings that lack strong lignificated and suberized cell walls at early stages of their growth are vulnerable to damping-off disease. So, triggering the synthesis of antimicrobial compounds, such as phytoalexins, anticipins and pathogenesis-related (PR proteins, is the main defense strategy to confine pathogens at early stages of pine ontogenesis. Defensins and lipid transfer proteins are members of two PR-protein families (PR-12 and PR-14 respectively and possess antimicrobial activities in vitro through contact toxicity, and the involvement in defense signalling. In this work, we describe the changes in the expression levels of four defensin genes and lipid transfer protein in Scots pine seedlings infected with A. alternata. The expression levels of PsDef1 and PsDef2 increased at 48 h.p.i. (hours post inoculation. The levels of PsDef4 transcripts have increased after 6 and 24 hours. Notably, at 48 h.p.i., the level of PsDef4 transcripts was decreased by 1.2 times compared to control. The level of PsDef3 transcripts was reduced at all three time points. On the other hand, the level of PsLTP1 transcripts increased at 6 h and 48 h.p.i.; while at 24 h.p.i., it decreased by 20% when compared to the control sample. Our results suggest that defensins and lipid transfer protein are involved in the defense response of young Scots pine to necrotrophic pathogen. Thus, those genes can be used as the molecular markers in forestry selection and development of the ecologically friendly remedies for coniferous seedlings cultivation in greenhouses and nurseries.

  6. Leading coordinate analysis of reaction pathways in proton chain transfer: Application to a two-proton transfer model for the green fluorescent protein

    International Nuclear Information System (INIS)

    Wang Sufan; Smith, Sean C.

    2006-01-01

    The 'leading coordinate' approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information

  7. Discovery of a small molecule agonist of phosphatidylinositol 3-kinase p110α that reactivates latent HIV-1.

    Directory of Open Access Journals (Sweden)

    Geneviève Doyon

    Full Text Available Combination antiretroviral therapy (cART can effectively suppress HIV-1 replication, but the latent viral reservoir in resting memory CD4(+ T cells is impervious to cART and represents a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 represents a possible strategy for elimination of this reservoir. In this study we describe the discovery of 1,2,9,10-tetramethoxy-7H-dibenzo[de,g]quinolin-7-one (57704 which reactivates latent HIV-1 in several cell-line models of latency (J89GFP, U1 and ACH-2. 57704 also increased HIV-1 expression in 3 of 4 CD8(+-depleted blood mononuclear cell preparations isolated from HIV-1-infected individuals on suppressive cART. In contrast, vorinostat increased HIV-1 expression in only 1 of the 4 donors tested. Importantly, 57704 does not induce global T cell activation. Mechanistic studies revealed that 57704 reactivates latent HIV-1 via the phosphatidylinositol 3-kinase (PI3K/protein kinase B (Akt signaling pathway. 57704 was found to be an agonist of PI3K with specificity to the p110α isoform, but not the p110β, δ or γ isoforms. Taken together, our work suggests that 57704 could serve as a scaffold for the development of more potent activators of latent HIV-1. Furthermore, it highlights the involvement of the PI3K/Akt pathway in the maintenance of HIV-1 latency.

  8. Inhibitory effects of ethanol on phosphatidylinositol breakdown in pancreatic acini

    International Nuclear Information System (INIS)

    Towner, S.J.; Peppin, J.F.; Tsukamoto, H.

    1986-01-01

    Recently the physiological relationship between the phospholipid effect and secretagogue-induced cellular function has begun to be understood. In this study, the authors investigated acute and chronic effects of ethanol on phosphatidylinositol (PI) synthesis and breakdown in pancreatic acini. Five pairs of male Wistar rats were intragastrically infused for 30 days with high fat diet (25% total calories) plus ethanol or isocaloric dextrose. After intoxication, isolated in HEPES media, followed by 30 min incubation with CCK-8 (0, 100, 300 or 600 pM) and ethanol (0 or 100 mM). Acinar lipids were extracted and counted for labeled PI. Incorporation of 3 H-inositol into alcoholic acinar PI was reduced to 38.2% of that in controls. A percent maximal PI break down by CCK-8 was similar in the two groups (13-24% of basal). However, the magnitude of PI breakdown was markedly lower in alcoholic acini (482 vs 1081 dpm) due to the decreased PI synthesis rate. The presence of 100 mM ethanol in the media further inhibited the breakdown by 50% in this group. These results strongly indicate that chronic ethanol intoxication inhibits PI synthesis and breakdown in pancreatic acini, and that this inhibition can be potentiated by acute ethanol administration

  9. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04814a

    Science.gov (United States)

    Ogren, John I.; Tong, Ashley L.; Gordon, Samuel C.; Chenu, Aurélia; Lu, Yue; Blankenship, Robert E.; Cao, Jianshu

    2018-01-01

    Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein–protein interactions and lipid–protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid–protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference

  10. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis

    Science.gov (United States)

    Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.

    2017-09-01

    High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.

  11. The leukodystrophy protein FAM126A (hyccin) regulates PtdIns(4)P synthesis at the plasma membrane.

    Science.gov (United States)

    Baskin, Jeremy M; Wu, Xudong; Christiano, Romain; Oh, Michael S; Schauder, Curtis M; Gazzerro, Elisabetta; Messa, Mirko; Baldassari, Simona; Assereto, Stefania; Biancheri, Roberta; Zara, Federico; Minetti, Carlo; Raimondi, Andrea; Simons, Mikael; Walther, Tobias C; Reinisch, Karin M; De Camilli, Pietro

    2016-01-01

    Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.

  12. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations.

    Science.gov (United States)

    Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping

    2018-05-03

    Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.

  13. Fisetin targets phosphatidylinositol-3-kinase and induces apoptosis of human B lymphoma Raji cells

    Directory of Open Access Journals (Sweden)

    Ji Yeon Lim

    2015-01-01

    Full Text Available Aberrant regulation of phosphatidylinositol-3-kinases (PI3Ks is known to be involved in the progression of cancers. PI3K-binding flavonoids such as quercetin and myricetin have been shown to inhibit PI3K activity, but the direct targeting of fisetin to PI3K has not been established. Here, we carried out an in silico investigation of fisetin binding to PI3K and determined fisetin’s inhibitory activity in enzymatic and cell-based assays. In addition, fisetin induced apoptosis in human Burkitt’s lymphoma Raji cells by inhibiting both PI3Ks and mammalian target of rapamycin (mTOR. Our results indicate that fisetin may serve as a natural backbone for the development of novel dual inhibitors of PI3Ks and mTOR for the treatment of cancer.

  14. General transfer matrix formalism to calculate DNA-protein-drug binding in gene regulation: application to OR operator of phage lambda.

    Science.gov (United States)

    Teif, Vladimir B

    2007-01-01

    The transfer matrix methodology is proposed as a systematic tool for the statistical-mechanical description of DNA-protein-drug binding involved in gene regulation. We show that a genetic system of several cis-regulatory modules is calculable using this method, considering explicitly the site-overlapping, competitive, cooperative binding of regulatory proteins, their multilayer assembly and DNA looping. In the methodological section, the matrix models are solved for the basic types of short- and long-range interactions between DNA-bound proteins, drugs and nucleosomes. We apply the matrix method to gene regulation at the O(R) operator of phage lambda. The transfer matrix formalism allowed the description of the lambda-switch at a single-nucleotide resolution, taking into account the effects of a range of inter-protein distances. Our calculations confirm previously established roles of the contact CI-Cro-RNAP interactions. Concerning long-range interactions, we show that while the DNA loop between the O(R) and O(L) operators is important at the lysogenic CI concentrations, the interference between the adjacent promoters P(R) and P(RM) becomes more important at small CI concentrations. A large change in the expression pattern may arise in this regime due to anticooperative interactions between DNA-bound RNA polymerases. The applicability of the matrix method to more complex systems is discussed.

  15. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4).

    Science.gov (United States)

    Monari, Stefano; Battistuzzi, Gianantonio; Borsari, Marco; Di Rocco, Giulia; Martini, Laura; Ranieri, Antonio; Sola, Marco

    2009-10-15

    The recombinant diheme cytochrome c(4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 and its Met64Ala and Met164Ala variants, which feature a hydroxide ion axially bound to the heme iron at the N- and C-terminal domains, respectively, were found to exchange electrons efficiently with a gold electrode coated with a SAM of 11-mercapto-1-undecanoic acid. The mutation-induced removal of the redox equivalence of the two heme groups and changes in the net charge of the protein lobes yield two-centered protein systems with unprecedented properties in the electrode-immobilized state. The heterogeneous and intraheme electron transfer processes were characterized for these species in which the high- and low-potential heme groups are swapped over in the bilobal protein framework and experience a constrained (M64A) and unconstrained (M164A) orientation toward the electrode. The reduction thermodynamics for the native and mutated hemes were measured for the first time for a diheme cytochrome c. In the diffusing regime, they reproduce closely those for the corresponding centers in single-heme class-I cytochromes c, despite the low sequence identity. Larger differences are observed in the thermodynamics of the immobilized species and in the heterogeneous electron transfer rate constants. T-dependent kinetic measurements show that the proteins are positioned approximately 7 A from the HOOC-terminated SAM-coated electrode. Protein-electrode orientation and efficient intraheme ET enable the His,OH(-)-ligated heme A of the immobilized Met64Ala variant to carry out the reductive electrocatalysis of molecular oxygen. This system therefore constitutes a novel two-centered heme-based biocatalytic interface to be exploited for "third-generation" amperometric biosensing.

  16. A Novel, Broad-Spectrum Inhibitor of Enterovirus Replication That Targets Host Cell Factor Phosphatidylinositol 4-Kinase IIIβ

    Science.gov (United States)

    van der Schaar, Hilde M.; Leyssen, Pieter; Thibaut, Hendrik J.; de Palma, Armando; van der Linden, Lonneke; Lanke, Kjerstin H. W.; Lacroix, Céline; Verbeken, Erik; Conrath, Katja; MacLeod, Angus M.; Mitchell, Dale R.; Palmer, Nicholas J.; van de Poël, Hervé; Andrews, Martin

    2013-01-01

    Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIβ in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIβ carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model. PMID:23896472

  17. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy

    International Nuclear Information System (INIS)

    Sun Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali

    2012-01-01

    Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1 H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1 H– 13 C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [ 13 CH 3 ]-methyl-labeled, highly deuterated protein systems up to ∼100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.

  18. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.

    Directory of Open Access Journals (Sweden)

    Heli Salmela

    2015-07-01

    Full Text Available Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

  19. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

    Directory of Open Access Journals (Sweden)

    Lauren D. Field

    2015-12-01

    Full Text Available Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor–acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol. We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.

  20. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  1. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation.

    Science.gov (United States)

    Johnson, Jennifer L; Pacquelet, Sandrine; Lane, William S; Eam, Boreth; Catz, Sergio D

    2005-08-01

    Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.

  2. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties.

    Science.gov (United States)

    Bogdanov, Ivan V; Shenkarev, Zakhar O; Finkina, Ekaterina I; Melnikova, Daria N; Rumynskiy, Eugene I; Arseniev, Alexander S; Ovchinnikova, Tatiana V

    2016-04-30

    Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps

  3. Plasma pre beta-HDL formation is decreased by atorvastatin treatment in type 2 diabetes mellitus : Role of phospholipid transfer protein

    NARCIS (Netherlands)

    Dallinga-Thie, G. M.; van Tol, A.; Dullaart, R. P. F.

    Atorvastatin lowers plasma phospholipid transfer protein (PLTP) activity, which stimulates pre-beta-HDL, generation in vitro. We determined the effect of atorvastatin on pre-beta-HDL formation and its relation with PLTP activity in type 2 diabetes. Methods: Plasma pre-beta-HDL formation as well as

  4. Studies on a microbially derived, high molecular weight inhibitor of plasma cholesteryl ester transfer protein

    International Nuclear Information System (INIS)

    Marschke, C.K.; McGee, J.E.; Melchior, G.W.; Castle, C.K.

    1989-01-01

    The authors have isolated an organism which accumulates an inhibitor of Cholesteryl Ester Transfer Protein (CETP). Purification of 100,000-fold was achieved by ammonium sulfate precipitation followed by Hydroxyl Apatite, Agarose AO.5, and Mono Q (Pharmacia) chromatographies. The use of 14 C-labelled protein molecular weight standards followed by SDS-PAGE revealed some proteolytic activity. However, inhibition of the proteases did not affect the inhibitor potency. The inhibitor has an estimated molecular weight of 40 Kd and appears to exist as two forms. One form was eluted from a Mono Q column by 100 mM NaCl while the other was not bound. Our evidence indicated that the bound form was progressively denatured, or proteolyzed, during storage of the fermentation beer, to the unbound form. Importantly though this molecular change did not affect either inhibitory activity or the apparent molecular weight

  5. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea.

    Science.gov (United States)

    Petitjean, Céline; Moreira, David; López-García, Purificación; Brochier-Armanet, Céline

    2012-11-26

    In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer) domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants). Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs) to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  6. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Science.gov (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-07

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  7. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking.

    Directory of Open Access Journals (Sweden)

    Alice A Royal

    Full Text Available The slow delayed-rectifier potassium current (IKs is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1 channel requires phosphatidylinositol-4,5-bisphosphate (PIP2 binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel-phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4P at the plasma membrane (PM or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1. Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.

  8. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB).

    Science.gov (United States)

    Wang, Nai-Jyuan; Lee, Chi-Ching; Cheng, Chao-Sheng; Lo, Wei-Cheng; Yang, Ya-Fen; Chen, Ming-Nan; Lyu, Ping-Chiang

    2012-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defence activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. In this study, we identified 595 nsLTPs from 121 different species and constructed an nsLTPs database--nsLTPDB--which comprises the sequence information, structures, relevant literatures, and biological data of all plant nsLTPs http://nsltpdb.life.nthu.edu.tw/. Meanwhile, bioinformatics and statistics methods were implemented to develop a classification method for nsLTPs based on the patterns of the eight highly-conserved cysteine residues, and to suggest strict Prosite-styled patterns for Type I and Type II nsLTPs. The pattern of Type I is C X2 V X5-7 C [V, L, I] × Y [L, A, V] X8-13 CC × G X12 D × [Q, K, R] X2 CXC X16-21 P X2 C X13-15C, and that of Type II is C X4 L X2 C X9-11 P [S, T] X2 CC X5 Q X2-4 C[L, F]C X2 [A, L, I] × [D, N] P X10-12 [K, R] X4-5 C X3-4 P X0-2 C. Moreover, we referred the Prosite-styled patterns to the experimental mutagenesis data that previously established by our group, and found that the residues with higher conservation played an important role in the structural stability or lipid binding ability of nsLTPs. Taken together, this research has suggested potential residues that might be essential to modulate the structural and functional properties of plant nsLTPs. Finally, we proposed some biologically important sites of the nsLTPs, which are described by using a new Prosite-styled pattern that we defined.

  9. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB

    Directory of Open Access Journals (Sweden)

    Wang Nai-Jyuan

    2012-01-01

    Full Text Available Abstract Background Plant non-specific lipid transfer proteins (nsLTPs are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defence activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. Methods In this study, we identified 595 nsLTPs from 121 different species and constructed an nsLTPs database -- nsLTPDB -- which comprises the sequence information, structures, relevant literatures, and biological data of all plant nsLTPs http://nsltpdb.life.nthu.edu.tw/. Results Meanwhile, bioinformatics and statistics methods were implemented to develop a classification method for nsLTPs based on the patterns of the eight highly-conserved cysteine residues, and to suggest strict Prosite-styled patterns for Type I and Type II nsLTPs. The pattern of Type I is C X2 V X5-7 C [V, L, I] × Y [L, A, V] X8-13 CC × G X12 D × [Q, K, R] X2 CXC X16-21 P X2 C X13-15C, and that of Type II is C X4 L X2 C X9-11 P [S, T] X2 CC X5 Q X2-4 C[L, F]C X2 [A, L, I] × [D, N] P X10-12 [K, R] X4-5 C X3-4 P X0-2 C. Moreover, we referred the Prosite-styled patterns to the experimental mutagenesis data that previously established by our group, and found that the residues with higher conservation played an important role in the structural stability or lipid binding ability of nsLTPs. Conclusions Taken together, this research has suggested potential residues that might be essential to modulate the structural and functional properties of plant nsLTPs. Finally, we proposed some biologically important sites of the nsLTPs, which are described by using a new Prosite-styled pattern that we defined.

  10. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas

    2017-04-01

    Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A novel microfluidic chip electrophoresis strategy for simultaneous, label-free, multi-protein detection based on a graphene energy transfer biosensor.

    Science.gov (United States)

    Lin, Fengming; Zhao, Xiaochao; Wang, Jianshe; Yu, Shiyong; Deng, Yulin; Geng, Lina; Li, HuanJun

    2014-06-07

    A new type of high-throughput and parallel optical sensing platform with a single-color probe based on microfluidic chip electrophoresis combined with aptamer-carboxyfluorescein/graphene oxide energy transfer is reported here. Label-free protein multi-targets were detected, even in challenging complex samples without any pre-treatment.

  12. Molecular characterization of Api g 2, a novel allergenic member of the lipid-transfer protein 1 family from celery stalks

    NARCIS (Netherlands)

    Gadermaier, Gabriele; Egger, Matthias; Girbl, Tamara; Erler, Anja; Harrer, Andrea; Vejvar, Eva; Liso, Marina; Richter, Klaus; Zuidmeer, Laurian; Mari, Adriano; Ferreira, Fatima

    2011-01-01

    Celery represents a relevant cross-reactive food allergen source in the adult population. As the currently known allergens are not typical elicitors of severe symptoms, we aimed to identify and characterize a non-specific lipid transfer protein (nsLTP). MS and cDNA cloning were applied to obtain the

  13. X-ray structure of the mammalian GIRK2-βγ G-protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Whorton, Matthew R.; MacKinnon, Roderick [Rockefeller

    2013-07-30

    G-protein-gated inward rectifier K+ (GIRK) channels allow neurotransmitters, through G-protein-coupled receptor stimulation, to control cellular electrical excitability. In cardiac and neuronal cells this control regulates heart rate and neural circuit activity, respectively. Here we present the 3.5Å resolution crystal structure of the mammalian GIRK2 channel in complex with βγ G-protein subunits, the central signalling complex that links G-protein-coupled receptor stimulation to K+ channel activity. Short-range atomic and long-range electrostatic interactions stabilize four βγ G-protein subunits at the interfaces between four K+ channel subunits, inducing a pre-open state of the channel. The pre-open state exhibits a conformation that is intermediate between the closed conformation and the open conformation of the constitutively active mutant. The resultant structural picture is compatible with ‘membrane delimited’ activation of GIRK channels by G proteins and the characteristic burst kinetics of channel gating. The structures also permit a conceptual understanding of how the signalling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) and intracellular Na+ ions participate in multi-ligand regulation of GIRK channels.

  14. Proton transfer events in GFP

    NARCIS (Netherlands)

    Di Donato, M.; van Wilderen, L.J.G.W.; van Stokkum, I.H.M.; Cohen Stuart, T.A.; Kennis, J.T.M.; Hellingwerf, K.J.; van Grondelle, R.; Groot, M.L.

    2011-01-01

    Proton transfer is one of the most important elementary processes in biology. Green fluorescent protein (GFP) serves as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. Illumination initiates proton

  15. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.

    Science.gov (United States)

    Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-10-15

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.

  16. Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling.

    Science.gov (United States)

    Ersoy, Baran A; Tarun, Akansha; D'Aquino, Katharine; Hancer, Nancy J; Ukomadu, Chinweike; White, Morris F; Michel, Thomas; Manning, Brendan D; Cohen, David E

    2013-07-30

    Phosphatidylcholine transfer protein (PC-TP) is a phospholipid-binding protein that is enriched in liver and that interacts with thioesterase superfamily member 2 (THEM2). Mice lacking either protein exhibit improved hepatic glucose homeostasis and are resistant to diet-induced diabetes. Insulin receptor substrate 2 (IRS2) and mammalian target of rapamycin complex 1 (mTORC1) are key effectors of insulin signaling, which is attenuated in diabetes. We found that PC-TP inhibited IRS2, as evidenced by insulin-independent IRS2 activation after knockdown, genetic ablation, or chemical inhibition of PC-TP. In addition, IRS2 was activated after knockdown of THEM2, providing support for a role for the interaction of PC-TP with THEM2 in suppressing insulin signaling. Additionally, we showed that PC-TP bound to tuberous sclerosis complex 2 (TSC2) and stabilized the components of the TSC1-TSC2 complex, which functions to inhibit mTORC1. Preventing phosphatidylcholine from binding to PC-TP disrupted interactions of PC-TP with THEM2 and TSC2, and disruption of the PC-TP-THEM2 complex was associated with increased activation of both IRS2 and mTORC1. In livers of mice with genetic ablation of PC-TP or that had been treated with a PC-TP inhibitor, steady-state amounts of IRS2 were increased, whereas those of TSC2 were decreased. These findings reveal a phospholipid-dependent mechanism that suppresses insulin signaling downstream of its receptor.

  17. A New Crucial Protein Interaction Element That Targets the Adenovirus E4-ORF1 Oncoprotein to Membrane Vesicles▿

    OpenAIRE

    Chung, Sang-Hyuk; Frese, Kristopher K.; Weiss, Robert S.; Prasad, B. V. Venkataram; Javier, Ronald T.

    2007-01-01

    Human adenovirus type 9 exclusively elicits mammary tumors in experimental animals, and the primary oncogenic determinant of this virus is the E4-ORF1 oncogene, as opposed to the well-known E1A and E1B oncogenes. The tumorigenic potential of E4-ORF1, as well as its ability to oncogenically stimulate phosphatidylinositol 3-kinase (PI3K), depends on a carboxyl-terminal PDZ domain-binding motif (PBM) that mediates interactions with several different membrane-associated cellular PDZ proteins, inc...

  18. β-chain of ATP synthase as a lipophorin binding protein and its role in lipid transfer in the midgut of Panstrongylus megistus (Hemiptera: Reduviidae).

    Science.gov (United States)

    Fruttero, Leonardo L; Demartini, Diogo R; Rubiolo, Edilberto R; Carlini, Célia R; Canavoso, Lilián E

    2014-09-01

    Lipophorin, the main lipoprotein in the circulation of the insects, cycles among peripheral tissues to exchange its lipid cargo at the plasma membrane of target cells, without synthesis or degradation of its apolipoprotein matrix. Currently, there are few characterized candidates supporting the functioning of the docking mechanism of lipophorin-mediated lipid transfer. In this work we combined ligand blotting assays and tandem mass spectrometry to characterize proteins with the property to bind lipophorin at the midgut membrane of Panstrongylus megistus, a vector of Chagas' disease. We further evaluated the role of lipophorin binding proteins in the transfer of lipids between the midgut and lipophorin. The β subunit of the ATP synthase complex (β-ATPase) was identified as a lipophorin binding protein. β-ATPase was detected in enriched midgut membrane preparations free of mitochondria. It was shown that β-ATPase partially co-localizes with lipophorin at the plasma membrane of isolated enterocytes and in the sub-epithelial region of the midgut tissue. The interaction of endogenous lipophorin and β-ATPase was also demonstrated by co-immunoprecipitation assays. Blocking of β-ATPase significantly diminished the binding of lipophorin to the isolated enterocytes and to the midgut tissue. In vivo assays injecting the β-ATPase antibody significantly reduced the transfer of [(3)H]-diacylglycerol from the midgut to the hemolymph in insects fed with [9,10-(3)H]-oleic acid, supporting the involvement of lipophorin-β-ATPase association in the transfer of lipids. In addition, the β-ATPase antibody partially impaired the transfer of fatty acids from lipophorin to the midgut, a less important route of lipid delivery to this tissue. Taken together, the findings strongly suggest that β-ATPase plays a role as a docking lipophorin receptor at the midgut of P. megistus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    Science.gov (United States)

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    Science.gov (United States)

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  1. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    Directory of Open Access Journals (Sweden)

    Petitjean Céline

    2012-11-01

    Full Text Available Abstract Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants. Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  2. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer

    International Nuclear Information System (INIS)

    Huber, J.G.

    1996-01-01

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an α helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S γ -C β -H β )Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven instrumental in affording new

  3. Horizontal gene transfer in chromalveolates

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debashish

    2007-09-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

  4. Western blotting of high and low molecular weight proteins using heat.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  5. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  6. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  7. Other notable protein blotting methods: a brief review.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    Proteins have been transferred from the gel to the membrane by a variety of methods. These include vacuum blotting, centrifuge blotting, electroblotting of proteins to Teflon tape and membranes for N- and C-terminal sequence analysis, multiple tissue blotting, a two-step transfer of low- and high-molecular-weight proteins, acid electroblotting onto activated glass, membrane-array method for the detection of human intestinal bacteria in fecal samples, protein microarray using a new black cellulose nitrate support, electrotransfer using square wave alternating voltage for enhanced protein recovery, polyethylene glycol-mediated significant enhancement of the immunoblotting transfer, parallel protein chemical processing before and during western blot and the molecular scanner concept, electronic western blot of matrix-assisted laser desorption/ionization mass spectrometric-identified polypeptides from parallel processed gel-separated proteins, semidry electroblotting of peptides and proteins from acid-urea polyacrylamide gels, transfer of silver-stained proteins from polyacrylamide gels to polyvinylidene difluoride (PVDF) membranes, and the display of K(+) channel proteins on a solid nitrocellulose support for assaying toxin binding. The quantification of proteins bound to PVDF membranes by elution of CBB, clarification of immunoblots on PVDF for transmission densitometry, gold coating of nonconductive membranes before matrix-assisted laser desorption/ionization tandem mass spectrometric analysis to prevent charging effect for analysis of peptides from PVDF membranes, and a simple method for coating native polysaccharides onto nitrocellulose are some of the methods involving either the manipulation of membranes with transferred proteins or just a passive transfer of antigens to membranes. All these methods are briefly reviewed in this chapter.

  8. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation.

    Science.gov (United States)

    Chang, Jaerak; Lee, Seongju; Blackstone, Craig

    2014-12-01

    Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration.

  9. Glypican-1 mediates both prion protein lipid raft association and disease isoform formation.

    Directory of Open Access Journals (Sweden)

    David R Taylor

    2009-11-01

    Full Text Available In prion diseases, the cellular form of the prion protein, PrP(C, undergoes a conformational conversion to the infectious isoform, PrP(Sc. PrP(C associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs. We show that heparin displaces PrP(C from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrP(C. We then utilised a transmembrane-anchored form of PrP (PrP-TM, which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrP(C to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrP(C from rafts, promoting its endocytosis. Glypican-1 and PrP(C colocalised on the cell surface and both PrP(C and PrP(Sc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrP(Sc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrP(C on the beta-secretase cleavage of the Alzheimer's amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrP(C and PrP(Sc in lipid rafts.

  10. The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor.

    Science.gov (United States)

    Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T

    1992-01-01

    Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663

  11. Refractive-index-based screening of membrane-protein-mediated transfer across biological membranes.

    Science.gov (United States)

    Brändén, Magnus; Tabaei, Seyed R; Fischer, Gerhard; Neutze, Richard; Höök, Fredrik

    2010-07-07

    Numerous membrane-transport proteins are major drug targets, and therefore a key ingredient in pharmaceutical development is the availability of reliable, efficient tools for membrane transport characterization and inhibition. Here, we present the use of evanescent-wave sensing for screening of membrane-protein-mediated transport across lipid bilayer membranes. This method is based on a direct recording of the temporal variations in the refractive index that occur upon a transfer-dependent change in the solute concentration inside liposomes associated to a surface plasmon resonance (SPR) active sensor surface. The applicability of the method is demonstrated by a functional study of the aquaglyceroporin PfAQP from the malaria parasite Plasmodium falciparum. Assays of the temperature dependence of facilitated diffusion of sugar alcohols on a single set of PfAQP-reconstituted liposomes reveal that the activation energies for facilitated diffusion of xylitol and sorbitol are the same as that previously measured for glycerol transport in the aquaglyceroporin of Escherichia coli (5 kcal/mole). These findings indicate that the aquaglyceroporin selectivity filter does not discriminate sugar alcohols based on their length, and that the extra energy cost of dehydration of larger sugar alcohols, upon entering the pore, is compensated for by additional hydrogen-bond interactions within the aquaglyceroporin pore. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions

    Science.gov (United States)

    Pezet, Sophie; Marchand, Fabien; D'Mello, Richard; Grist, John; Clark, Anna K.; Malcangio, Marzia; Dickenson, Anthony H.; Williams, Robert J.; McMahon, Stephen B.

    2010-01-01

    Here we show that phosphatidylinositol 3-kinase (PI3K) is a key player in the establishment of central sensitization, the spinal cord phenomenon associated with persistent afferent inputs and contributing to chronic pain states. We demonstrated electrophysiologically that PI3K is required for the full expression of spinal neuronal wind-up. In an inflammatory pain model, intrathecal administration of LY294002, a potent PI3K inhibitor, dose-dependently inhibited pain related behavior. This effect was correlated with a reduction of the phosphorylation of extracellular signal-regulated kinase (ERK) and CaMKinase II. In addition, we observed a significant decrease in the phosphorylation of the NMDA receptor subunit NR2B, decreased translocation to the plasma membrane of the GluR1 AMPA receptor subunit in the spinal cord and a reduction of evoked neuronal activity as measured using c-Fos immunohistochemistry. Our study suggests that PI3K is a major factor in the expression of central sensitization after noxious inflammatory stimuli. PMID:18417706

  13. Hierarchical control of electron-transfer

    DEFF Research Database (Denmark)

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Egger, Louis

    1997-01-01

    In this chapter the role of electron transfer in determining the behaviour of the ATP synthesising enzyme in E. coli is analysed. It is concluded that the latter enzyme lacks control because of special properties of the electron transfer components. These properties range from absence of a strong...... back pressure by the protonmotive force on the rate of electron transfer to hierarchical regulation of the expression of the gens that encode the electron transfer proteins as a response to changes in the bioenergetic properties of the cell.The discussion uses Hierarchical Control Analysis...

  14. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate.

    Science.gov (United States)

    Franke, T F; Kaplan, D R; Cantley, L C; Toker, A

    1997-01-31

    The regulation of the serine-threonine kinase Akt by lipid products of phosphoinositide 3-kinase (PI 3-kinase) was investigated. Akt activity was found to correlate with the amount of phosphatidylinositol-3,4-bisphosphate (PtdIns-3,4-P2) in vivo, and synthetic PtdIns-3,4-P2 activated Akt both in vitro and in vivo. Binding of PtdIns-3,4-P2 occurred within the Akt pleckstrin homology (PH) domain and facilitated dimerization of Akt. Akt mutated in the PH domain was not activated by PI 3-kinase in vivo or by PtdIns-3, 4-P2 in vitro, and it was impaired in binding to PtdIns-3,4-P2. Examination of the binding to other phosphoinositides revealed that they bound to the Akt PH domain with much lower affinity than did PtdIns-3,4-P2 and failed to increase Akt activity. Thus, Akt is apparently regulated by the direct interaction of PtdIns-3,4-P2 with the Akt PH domain.

  15. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components.

    Science.gov (United States)

    Tang, Ning; Skibsted, Leif H

    2017-08-02

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)═O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine and epinephrine are the most efficient food components reducing ferrylmyoglobin to oxymyoglobin, MbFe(II)O 2 , and metmyoglobin, MbFe(III), as revealed by multivariate curve resolution alternating least-squares with second order rate constants of 33.6 ± 2.3 L/mol/s (ΔH ⧧ of 19 ± 5 kJ/mol, ΔS ⧧ of -136 ± 18 J/mol K) and 228.9 ± 13.3 L/mol/s (ΔH ⧧ of 110 ± 7 kJ/mol, ΔS ⧧ of 131 ± 25 J/mol K), respectively, at pH 7.4 and 25 °C. The other tyrosine based food components were found to reduce ferrylmyoglobin to metmyoglobin with similar reduction rates at pH 7.4 and 25 °C. These reduction reactions were enhanced by protonation of ferrylmyoglobin and facilitated proton transfer at acidic conditions. Enthalpy-entropy compensation effects were observed for the activation parameters (ΔH ⧧ and ΔS ⧧ ), indicating the common reaction mechanism. Moreover, principal component analysis combined with heat map were performed to understand the relationship between density functional theory calculated molecular descriptors and kinetic data, which was further modeled by partial least squares for quantitative structure-activity relationship analysis. In addition, a three tyrosine residue containing protein, lysozyme, was also found to be able to reduce ferrylmyoglobin with a second order rate constant of 66 ± 28 L/mol/s as determined by a competitive kinetic method.

  16. Transfer of the human NKG2D ligands UL16 binding proteins (ULBP) 1-3 is related to lytic granule release and leads to ligand retransfer and killing of ULBP-recipient natural killer cells.

    Science.gov (United States)

    López-Cobo, Sheila; Romera-Cárdenas, Gema; García-Cuesta, Eva M; Reyburn, Hugh T; Valés-Gómez, Mar

    2015-09-01

    After immune interactions, membrane fragments can be transferred between cells. This fast transfer of molecules is transient and shows selectivity for certain proteins; however, the constraints underlying acquisition of a protein are unknown. To characterize the mechanism and functional consequences of this process in natural killer (NK) cells, we have compared the transfer of different NKG2D ligands. We show that human NKG2D ligands can be acquired by NK cells with different efficiencies. The main findings are that NKG2D ligand transfer is related to immune activation and receptor-ligand interaction and that NK cells acquire these proteins during interactions with target cells that lead to degranulation. Our results further demonstrate that NK cells that have acquired NKG2D ligands can stimulate activation of autologous NK cells. Surprisingly, NK cells can also re-transfer the acquired molecule to autologous effector cells during this immune recognition that leads to their death. These data demonstrate that transfer of molecules occurs as a consequence of immune recognition and imply that this process might play a role in homeostatic tuning-down of the immune response or be used as marker of interaction. © 2015 John Wiley & Sons Ltd.

  17. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    Science.gov (United States)

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  18. Interaction of Protease-Activated Receptor 2 with G Proteins and Beta-Arrestin 1 Studied by Bioluminescence Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAyoub

    2013-12-01

    Full Text Available G protein-coupled receptors (GPCRs are well recognized as being able to activate several signaling pathways through the activation of different G proteins as well as other signaling proteins such as beta-arrestins. Therefore, understanding how such multiple GPCR-mediated signaling can be integrated constitute an important aspect. Here, we applied bioluminescence resonance energy transfer (BRET to shed more light on the G protein coupling profile of trypsin receptor, or protease-activated receptor 2 (PAR2, and its interaction with beta-arrestin1. Using YFP and Rluc fusion constructs expressed in COS-7 cells, BRET data revealed a pre-assembly of PAR2 with both Galphai1 and Galphao and a rapid and transient activation of these G proteins upon receptor activation. In contrast, no preassembly of PAR2 with Galpha12 could be detected and their physical association can be measured with a very slow and sustained kinetics similar to that of beta-arrestin1 recruitment. These data demonstrate the coupling of PAR2 with Galphai1, Galphao and Galpha12 in COS-7 cells with differences in the kinetics of GPCR-G protein coupling, a parameter that very likely influences the cellular response. Moreover, this further illustrates that preassembly or agonist-induced G protein interaction depends on receptor-G protein pairs indicating another level of complexity and regulation of the signaling of GPCR-G protein complexes and its multiplicity.

  19. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes.

    Science.gov (United States)

    Krause, Christopher D; Izotova, Lara S; Pestka, Sidney

    2013-10-01

    Experiments measuring Fluorescence Resonance Energy Transfer (FRET) between cytokine receptor chains and their associated proteins led to hypotheses describing their organization in intact cells. These interactions occur within a larger protein complex or within a given nano-environment. To illustrate this complexity empirically, we developed a protocol to analyze FRET among more than two fluorescent proteins (multi-FRET). In multi-FRET, we model FRET among more than two fluorophores as the sum of all possible pairwise interactions within the complex. We validated our assumption by demonstrating that FRET among pairs within a fluorescent triplet resembled FRET between each pair measured in the absence of the third fluorophore. FRET between two receptor chains increases with increasing FRET between the ligand-binding chain (e.g., IFN-γR1, IL-10R1 and IFN-λR1) and an acylated fluorescent protein that preferentially resides within subsections of the plasma membrane. The interaction of IL-10R2 with IFN-λR1 or IL-10R1 results in decreased FRET between IL-10R2 and the acylated fluorescent protein. Finally, we analyzed FRET among four fluorescent proteins to demonstrate that as FRET between IFN-γR1 and IFN-γR2 or between IFN-αR1 and IFN-αR2c increases, FRET among other pairs of proteins changes within each complex. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Induction of rat alkaline phosphatase isozymes bearing a glycan-phosphatidylinositol anchor modified by in vivo treatment with a benzimidazole derivative linked to ethylbenzene.

    Science.gov (United States)

    Harada, T; Koyama, I; Sato, K; Komoda, T

    2000-10-01

    Serum alkaline phosphatase (ALP) is detected in soluble-form as a result of translocation from the membrane site by cleavage at the glycosyl-phosphatidylinositol moiety (GPI anchor). It is known that membrane-bound ALP (mALP) can be detected in serum in certain pathological and physiological conditions, and that it can be solubilized in vitro to soluble-ALP (sALP) by phosphatidylinositol-specific phospholipase C (PIPLC), phospholipase D, bile salt, detergent, etc. We observed a marked increase in ALP activity in the serum of rats given a benzimidazole derivative by gavage, and detected it as slow-migrating ALPs (SM-ALPs), which were mALP-like but resistant to PIPLC and n-butanol treatment on disc PAGE. On the other hand, ficin treatment made SM-ALPs shift to the sALP position. The molecular size of the SM-ALPs was smaller than that of sALP on sodium dodecyl sulphide-polyacrylamide slab-gel electrophoresis (SDS-PAGE), and immunoreactivity revealed the intestinal type. SM-ALPs were also detected in the duodenum and jejunum. The main sugar chain structure of SM-ALPs was the biantennary complex-type, which was coincided with intestinal sALP sugar chain. These results suggest that intestinal ALPs induced by the benzimidazole derivative were modified in their C-terminus or GPI anchor region and modification of this region may also participate in translocation into the bloodstream.

  1. Protein-induced geometric constraints and charge transfer in bacteriochlorophyll-histidine complexes in LH2.

    Science.gov (United States)

    Wawrzyniak, Piotr K; Alia, A; Schaap, Roland G; Heemskerk, Mattijs M; de Groot, Huub J M; Buda, Francesco

    2008-12-14

    Bacteriochlorophyll-histidine complexes are ubiquitous in nature and are essential structural motifs supporting the conversion of solar energy into chemically useful compounds in a wide range of photosynthesis processes. A systematic density functional theory study of the NMR chemical shifts for histidine and for bacteriochlorophyll-a-histidine complexes in the light-harvesting complex II (LH2) is performed using the BLYP functional in combination with the 6-311++G(d,p) basis set. The computed chemical shift patterns are consistent with available experimental data for positive and neutral(tau) (N(tau) protonated) crystalline histidines. The results for the bacteriochlorophyll-a-histidine complexes in LH2 provide evidence that the protein environment is stabilizing the histidine close to the Mg ion, thereby inducing a large charge transfer of approximately 0.5 electronic equivalent. Due to this protein-induced geometric constraint, the Mg-coordinated histidine in LH2 appears to be in a frustrated state very different from the formal neutral(pi) (N(pi) protonated) form. This finding could be important for the understanding of basic functional mechanisms involved in tuning the electronic properties and exciton coupling in LH2.

  2. Fragment-based discovery of novel pentacyclic triterpenoid derivatives as cholesteryl ester transfer protein inhibitors.

    Science.gov (United States)

    Chang, Yongzhi; Zhou, Shuxi; Li, Enqin; Zhao, Wenfeng; Ji, Yanpeng; Wen, Xiaoan; Sun, Hongbin; Yuan, Haoliang

    2017-01-27

    Cholesteryl Ester Transfer Protein (CETP) is an important therapeutic target for the treatment of atherosclerotic cardiovascular disease. Our molecular modeling study revealed that pentacyclic triterpenoid compounds could mimic the protein-ligand interactions of the endogenous ligand cholesteryl ester (CE) by occupying its binding site. Alignment of the docking conformations of oleanolic acid (OA), ursolic acid (UA) and the crystal conformations of known CETP inhibitor Torcetrapib in the active site proposed the applicability of fragment-based drug design (FBDD) approaches in this study. Accordingly, a series of pentacyclic triterpenoid derivatives have been designed and synthesized as novel CETP inhibitors. The most potent compound 12e (IC 50 :0.28 μM) validated our strategy for molecular design. Molecular dynamics simulations illustrated that the more stable hydrogen bond interaction of the UA derivative 12e with Ser191 and stronger hydrophobic interactions with Val198, Phe463 than those of OA derivative 12b mainly led to their significantly different CETP inhibitory activity. These novel potent CETP inhibitors based on ursane-type scaffold should deserve further investigation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Efficiency and fidelity of cell-free protein synthesis by transfer RNA from aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Foote, R.S.; Stulberg, M.P.

    1980-01-01

    Transfer RNAs (tRNAs) from heart, kidney, liver, and spleen of mature (10 to 12 months old) and aged (29 months old) C57BL/6 mice were tested for their ability to translate encephalomyocarditis viral RNA in a tRNA-dependent cell-free system derived from mouse ascites tumor cells. The rates of in vitro protein synthesis were compared as a function of tRNA concentration, and the fidelity of translation was examined by sodium dodecyl sulfate gel electrophoresis and isoelectric focusing of the viral polypeptides synthesized in vitro. No significant age-related differences in either the efficiency or fidelity of synthesis were discovered, indicating that alternations in tRNAs are probably not involved in the cellular aging of these tissues.

  4. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2.

    Science.gov (United States)

    Scapa, Erez F; Pocai, Alessandro; Wu, Michele K; Gutierrez-Juarez, Roger; Glenz, Lauren; Kanno, Keishi; Li, Hua; Biddinger, Sudha; Jelicks, Linda A; Rossetti, Luciano; Cohen, David E

    2008-07-01

    Phosphatidylcholine transfer protein (PC-TP, also known as StarD2) is a highly specific intracellular lipid binding protein with accentuated expression in oxidative tissues. Here we show that decreased plasma concentrations of glucose and free fatty acids in fasting PC-TP-deficient (Pctp(-/-)) mice are attributable to increased hepatic insulin sensitivity. In hyperinsulinemic-euglycemic clamp studies, Pctp(-/-) mice exhibited profound reductions in hepatic glucose production, gluconeogenesis, glycogenolysis, and glucose cycling. These changes were explained in part by the lack of PC-TP expression in liver per se and in part by marked alterations in body fat composition. Reduced respiratory quotients in Pctp(-/-) mice were indicative of preferential fatty acid utilization for energy production in oxidative tissues. In the setting of decreased hepatic fatty acid synthesis, increased clearance rates of dietary triglycerides and increased hepatic triglyceride production rates reflected higher turnover in Pctp(-/-) mice. Collectively, these data support a key biological role for PC-TP in the regulation of energy substrate utilization.

  5. A brief review of other notable protein blotting methods.

    Science.gov (United States)

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    A plethora of methods have been used for transferring proteins from the gel to the membrane. These include centrifuge blotting, electroblotting of proteins to Teflon tape and membranes for N- and C-terminal sequence analysis, multiple tissue blotting, a two-step transfer of low and high molecular weight proteins, blotting of Coomassie Brilliant Blue (CBB)-stained proteins from polyacrylamide gels to transparencies, acid electroblotting onto activated glass, membrane-array method for the detection of human intestinal bacteria in fecal samples, protein microarray using a new black cellulose nitrate support, electrotransfer using square wave alternating voltage for enhanced protein recovery, polyethylene glycol-mediated significant enhancement of the immunoblotting transfer, parallel protein chemical processing before and during western blot and the molecular scanner concept, electronic western blot of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry-identified polypeptides from parallel processed gel-separated proteins, semidry electroblotting of peptides and proteins from acid-urea polyacrylamide gels, transfer of silver-stained proteins from polyacrylamide gels to polyvinylidene difluoride (PVDF) membranes, and the display of K(+) channel proteins on a solid nitrocellulose support for assaying toxin binding. The quantification of proteins bound to PVDF membranes by elution of CBB, clarification of immunoblots on PVDF for transmission densitometry, gold coating of nonconductive membranes before MALDI tandem mass spectrometric analysis to prevent charging effect for analysis of peptides from PVDF membranes, and a simple method for coating native polysaccharides onto nitrocellulose are some of the methods involving either the manipulation of membranes with transferred proteins or just a passive transfer of antigens to membranes. All these methods are briefly reviewed in this chapter.

  6. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    International Nuclear Information System (INIS)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-01-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca 2+ concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes

  7. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation.

    Science.gov (United States)

    Lessmann, Eva; Ngo, Mike; Leitges, Michael; Minguet, Susana; Ridgway, Neale D; Huber, Michael

    2007-02-01

    The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.

  8. Adenovirus Protein E4-ORF1 activation of PI3 kinase reveals differential regulation of downstream effector pathways in adipocytes

    OpenAIRE

    Chaudhary, Natasha; Gonzalez, Eva; Chang, Sung-Hee; Geng, Fuqiang; Rafii, Shahin; Altorki, Nasser K.; McGraw, Timothy E.

    2016-01-01

    Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but...

  9. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    Science.gov (United States)

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  10. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available Plant non-specific lipid transfer proteins (nsLTPs constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.

  11. Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex.

    Science.gov (United States)

    Jang, M H; Scrutton, N S; Hille, R

    2000-04-28

    The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.

  12. Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica)

    NARCIS (Netherlands)

    Gao, Z.S.; Weg, van de W.E.; Schaart, J.G.; Meer, van der I.M.; Kodde, L.P.; Laimer, M.; Breiteneder, H.; Hoffmann-Sommergruber, K.; Gilissen, L.J.W.J.

    2005-01-01

    Non-specific lipid transfer proteins (nsLTPs) of Rosaceae fruits, such as peach, apricot, cherry, plum and apple, represent major allergens for Mediterranean atopic populations. As a first step in elucidating the genetics of nsLTPs, we directed the research reported here towards identifying the

  13. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Paquet, Tanya; Le Manach, Claire; Cabrera, Diego González; Younis, Yassir; Henrich, Philipp P; Abraham, Tara S; Lee, Marcus C S; Basak, Rajshekhar; Ghidelli-Disse, Sonja; Lafuente-Monasterio, María José; Bantscheff, Marcus; Ruecker, Andrea; Blagborough, Andrew M; Zakutansky, Sara E; Zeeman, Anne-Marie; White, Karen L; Shackleford, David M; Mannila, Janne; Morizzi, Julia; Scheurer, Christian; Angulo-Barturen, Iñigo; Martínez, María Santos; Ferrer, Santiago; Sanz, Laura María; Gamo, Francisco Javier; Reader, Janette; Botha, Mariette; Dechering, Koen J; Sauerwein, Robert W; Tungtaeng, Anchalee; Vanachayangkul, Pattaraporn; Lim, Chek Shik; Burrows, Jeremy; Witty, Michael J; Marsh, Kennan C; Bodenreider, Christophe; Rochford, Rosemary; Solapure, Suresh M; Jiménez-Díaz, María Belén; Wittlin, Sergio; Charman, Susan A; Donini, Cristina; Campo, Brice; Birkholtz, Lyn-Marie; Hanson, Kirsten K; Drewes, Gerard; Kocken, Clemens H M; Delves, Michael J; Leroy, Didier; Fidock, David A; Waterson, David; Street, Leslie J; Chibale, Kelly

    2017-04-26

    As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment. Copyright © 2017, American Association for the Advancement of Science.

  14. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes.

    Science.gov (United States)

    Spencer, Juliet V

    2007-02-01

    Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.

  15. Checking transfer efficiency and equal loading via qualitative optical way in western blotting.

    Science.gov (United States)

    Gong, Jun-Hua; Gong, Jian-Ping; Zheng, Kai-Wen

    2017-11-01

    The ability to determine that successful transfer and equal loading occur prior to using primary antibodies is important. And total protein staining is commonly used to check transfer efficiency and normalization, which play a crucial role in western blotting. Ponceau S and coomassie blue are commonly used, but there are disadvantages reported in recent years. Therefore, we are interested in finding another method, which is cheap, easy and fast. As we know, protein binding region of PVDF membrane is still hydrophilic when carbinol volatilizes, however, the non-protein binding region of PVDF membrane became hydrophobic again. And this different wettability between non-protein binding region and protein binding region of Polyvinylidene difluoride membrane may be used to check transfer efficiency and equal loading in western blotting. Based on the principle above, we describe an optical approach where an experimenter can observe that the proteins have been transferred to the membrane without any staining within minutes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations.

    Directory of Open Access Journals (Sweden)

    Tarja Äijänen

    2014-11-01

    Full Text Available Cholesteryl ester transfer protein (CETP mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL-cholesterol and decrease low density lipoprotein (LDL-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.

  17. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  18. A Dansyl Fluorescence-Based Assay for Monitoring Kinetics of Lipid Extraction and Transfer

    Science.gov (United States)

    Ran, Yong

    2008-01-01

    Lipid transfer proteins (LTPs) play important roles in cellular biology, and fluorescence spectroscopy has found wide range use as a facile means for time-resolved monitoring of protein-lipid interactions[1]. Here, we show how the fluorescence emission properties of dansyl-DHPE can be exploited to characterize lipid extraction and lipid transfer kinetics. The GM2 activator protein serves as an example LTP where the ability to independently characterize lipid extraction from donor vesicles, formation of a protein:lipid complex in solution, and release of lipid from the complex to acceptor liposomes is crucial for full kinetic characterization of lipid transfer. PMID:18694718

  19. The effect of glutathione as chain transfer agent in PNIPAAm-based thermo-responsive hydrogels for controlled release of proteins.

    Science.gov (United States)

    Drapala, Pawel W; Jiang, Bin; Chiu, Yu-Chieh; Mieler, William F; Brey, Eric M; Kang-Mieler, Jennifer J; Pérez-Luna, Victor H

    2014-03-01

    To control degradation and protein release using thermo-responsive hydrogels for localized delivery of anti-angiogenic proteins. Thermo-responsive hydrogels derived from N-isopropylacrylamide (NIPAAm) and crosslinked with poly(ethylene glycol)-co-(L-lactic acid) diacrylate (Acry-PLLA-b-PEG-b-PLLA-Acry) were synthesized via free radical polymerization in the presence of glutathione, a chain transfer agent (CTA) added to modulate their degradation and release properties. Immunoglobulin G (IgG) and the recombinant proteins Avastin® and Lucentis® were encapsulated in these hydrogels and their release was studied. The encapsulation efficiency of IgG was high (75-87%) and decreased with CTA concentration. The transition temperature of these hydrogels was below physiological temperature, which is important for minimally invasive therapies involving these materials. The toxicity from unreacted monomers and free radical initiators was eliminated with a minimum of three buffer extractions. Addition of CTA accelerated degradation and resulted in complete protein release. Glutathione caused the degradation products to become solubilized even at 37°C. Hydrogels prepared without glutathione did not disintegrate nor released protein completely after 3 weeks at 37°C. PEGylation of IgG postponed the burst release effect. Avastin® and Lucentis® released from degraded hydrogels retained their biological activity. These systems offer a promising platform for the localized delivery of proteins.

  20. Mechanisms of zinc binding to the solute-binding protein AztC and transfer from the metallochaperone AztD.

    Science.gov (United States)

    Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T

    2017-10-20

    Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation.

    Science.gov (United States)

    Tomassen, Monic M M; Barrett, Diane M; van der Valk, Henry C P M; Woltering, Ernst J

    2007-01-01

    An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous reports have shown that PG in tomato may exist in different forms (PG1, PG2a, PG2b, and PGx) commonly referred to as PG isoenzymes. The gene product PG2 is differentially glycosylated and is thought to associate with other proteins to form PG1 and PGx. This association is thought to modulate its pectin-degrading activity in planta. An 8 kDa protein that is part of the tomato PG1 multiprotein complex has been isolated, purified, and functionally characterized. This protein, designated 'activator' (ACT), belongs to the class of non-specific lipid transfer proteins (nsLTPs). ACT is capable of 'converting' the gene product PG2 into a more active and heat-stable form, which increases PG-mediated pectin degradation in vitro and stimulates PG-mediated tissue breakdown in planta. This finding suggests a new, not previously identified, function for nsLTPs in the modification of hydrolytic enzyme activity. It is proposed that ACT plays a role in the modulation of PG activity during tomato fruit softening.

  2. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic.

    Science.gov (United States)

    Ishikura, S; Koshkina, A; Klip, A

    2008-01-01

    Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.

  3. HDL cholesterol response to GH replacement is associated with common cholesteryl ester transfer protein gene variation (-629C>A) and modified by glucocorticoid treatment

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; van den Berg, Gerrit; van der Knaap, Aafke M.; Dijck-Brouwer, Janneke; Dallinga-Thie, Geesje M.; Zelissen, Peter M. J.; Sluiter, Wim J.; van Beek, André P.

    2010-01-01

    GH replacement lowers total cholesterol and low-density lipoprotein cholesterol (LDL-C) in GH-deficient adults, but effects on high-density lipoprotein (HDL) cholesterol (HDL-C) are variable. Both GH and glucocorticoids decrease cholesteryl ester transfer protein (CETP) activity, which is important

  4. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  5. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Patient considerations and clinical impact of cholesteryl ester transfer protein inhibitors in the management of dyslipidemia: focus on anacetrapib

    Directory of Open Access Journals (Sweden)

    Miyares MA

    2012-08-01

    Full Text Available Marta A Miyares, Kyle DavisPharmacy Department, Jackson Memorial Hospital, Miami, FL, USAAbstract: Cardiovascular disease (CVD is responsible for significant morbidity and mortality within the United States and worldwide. Although targeting low-density lipoprotein cholesterol (LDL-C in the prevention of CVD has been shown to be effective, evidence exists to indicate that significant cardiovascular (CV risk remains in patients receiving 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins – a risk that may be correlated with low levels of high-density lipoprotein cholesterol (HDL-C. Among the various tactics under investigation to increase HDL-C, inhibition of cholesteryl ester transfer protein (CETP appears the most adept to raise these levels. Although torcetrapib, a CETP inhibitor, demonstrated significant beneficial changes in HDL-C and LDL-C after 12 months of therapy when coadministered with atorvastatin, patients in the torcetrapib arm experienced a rise in mortality, including increased risk of death from CV and non-CV causes as well as a significant rise in major CV events. Later studies established that the adverse effects of torcetrapib were produced from molecule-specific off-target effects and not to the mechanism of CETP inhibition. These untoward outcomes have not been detected with anacetrapib, the third of the CETP inhibitors to enter Phase III trials. Furthermore, treatment with anacetrapib revealed both a statistically significant decrease in LDL-C and increase in HDL-C over placebo. While the place in therapy of niacin and fibrates to reduce CV events is currently in question secondary to the Atherothrombosis Intervention in Metabolic Syndrome with Low HDL Cholesterol/High Triglyceride and Impact on Global Health Outcomes and the Action to Control CV Risk in Diabetes trials, the ongoing large-scale, randomized–placebo, controlled-outcomes study with anacetrapib coadministered with statin treatment will not

  7. Basal-bolus insulin therapy reduces maternal triglycerides in gestational diabetes without modifying cholesteryl ester transfer protein activity.

    Science.gov (United States)

    Olmos, Pablo R; Borzone, Gisella R

    2017-09-01

    Macrosomia in the offspring of overweight/obese mothers with glucose-controlled gestational diabetes mellitus (GDM) is due to excessive rise of maternal triglycerides (TG). We aimed to ascertain whether basal-bolus insulin therapy (BBIT), or other components of the treatment, could reduce TG in GDM. We studied the records of 131 singleton pregnancies with GDM, using stepwise multiple linear regression, Mann-Whitney, χ 2 , and Jonckheere-Terpstra tests. As maternal TG increased steadily during normal pregnancy, these were transformed as z-scores. The atherogenic index of plasma (AIP) was calculated as a measure of cholesteryl ester transfer protein activity. Multiple regression showed that only BBIT (but neither limitation of weight gain nor metformin) reduced maternal TG z-scores (P = 0.011). When the 131 pregnancies were split into two groups - without BBIT (n = 58; HbA1c = 5.3 ± 0.3%) and with BBIT (n = 73; HbA1c = 5.4 ± 0.6; P = 0.2005) - we observed that BBIT (n = 73) reduced maternal TG z-scores in a dose-related fashion (Jonckheere-Terpstra P = 0.03817). The atherogenic index of plasma remained within normal range in both groups. BBIT (but not weight gain control nor metformin) reduced maternal TG in mothers with glucose-controlled GDM. This beneficial effect of BBIT was not related to changes in the cholesteryl ester transfer protein activity. © 2017 Japan Society of Obstetrics and Gynecology.

  8. Erabulenols, inhibitors of cholesteryl ester transfer protein produced by Penicillium sp. FO-5637. I.Production, isolation and biological properties.

    Science.gov (United States)

    Tomoda, H; Tabata, N; Masuma, R; Si, S Y; Omura, S

    1998-07-01

    Penicillium sp. FO-5637, a soil isolate, was found to produce a series of inhibitors of cholesteryl ester transfer protein (CETP). Novel active compounds, designated erabulenols A and B, were isolated from the fermentation broth of the producing strain by solvent extraction, ODS column chromatography and HPLC. Erabulenols A and B inhibit human CETP activity with IC50 values of 47.7 and 58.2 microM in an in vitro assay system containing 200 microM BSA, respectively.

  9. Genetic incorporation of the protein transduction domain of Tat into Ad5 fiber enhances gene transfer efficacy

    Directory of Open Access Journals (Sweden)

    Siegal Gene P

    2007-10-01

    Full Text Available Abstract Background Human adenovirus serotype 5 (Ad5 has been widely explored as a gene delivery vector for a variety of diseases. Many target cells, however, express low levels of Ad5 native receptor, the Coxsackie-Adenovirus Receptor (CAR, and thus are resistant to Ad5 infection. The Protein Transduction Domain of the HIV Tat protein, namely PTDtat, has been shown to mediate protein transduction in a wide range of cells. We hypothesize that re-targeting Ad5 vector via the PTDtat motif would improve the efficacy of Ad5-mediated gene delivery. Results In this study, we genetically incorporated the PTDtat motif into the knob domain of Ad5 fiber, and rescued the resultant viral vector, Ad5.PTDtat. Our data showed the modification did not interfere with Ad5 binding to its native receptor CAR, suggesting Ad5 infection via the CAR pathway is retained. In addition, we found that Ad5.PTDtat exhibited enhanced gene transfer efficacy in all of the cell lines that we have tested, which included both low-CAR and high-CAR decorated cells. Competitive inhibition assays suggested the enhanced infectivity of Ad5.PTDtat was mediated by binding of the positively charged PTDtat peptide to the negatively charged epitopes on the cells' surface. Furthermore, we investigated in vivo gene delivery efficacy of Ad5.PTDtat using subcutaneous tumor models established with U118MG glioma cells, and found that Ad5.PTDtat exhibited enhanced gene transfer efficacy compared to unmodified Ad5 vector as analyzed by a non-invasive fluorescence imaging technique. Conclusion Genetic incorporation of the PTDtat motif into Ad5 fiber allowed Ad5 vectors to infect cells via an alternative PTDtat targeting motif while retaining the native CAR-mediated infection pathway. The enhanced infectivity was demonstrated in both cultured cells and in in vivo tumor models. Taken together, our study identifies a novel tropism expanded Ad5 vector that may be useful for clinical gene therapy

  10. Phospholipase C-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate underlies agmatine-induced suppression of N-type Ca2+ channel in rat celiac ganglion neurons.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2017-03-04

    Agmatine suppresses peripheral sympathetic tone by modulating Cav2.2 channels in peripheral sympathetic neurons. However, the detailed cellular signaling mechanism underlying the agmatine-induced Cav2.2 inhibition remains unclear. Therefore, in the present study, we investigated the electrophysiological mechanism for the agmatine-induced inhibition of Cav2.2 current (I Cav2.2 ) in rat celiac ganglion (CG) neurons. Consistent with previous reports, agmatine inhibited I Cav2.2 in a VI manner. The agmatine-induced inhibition of the I Cav2.2 current was also almost completely hindered by the blockade of the imidazoline I 2 receptor (IR 2 ), and an IR 2 agonist mimicked the inhibitory effect of agmatine on I Cav2.2 , implying involvement of IR 2 . The agmatine-induced I Cav2.2 inhibition was significantly hampered by the blockade of G protein or phospholipase C (PLC), but not by the pretreatment with pertussis toxin. In addition, diC8-phosphatidylinositol 4,5-bisphosphate (PIP 2 ) dialysis nearly completely hampered agmatine-induced inhibition, which became irreversible when PIP 2 resynthesis was blocked. These results suggest that in rat peripheral sympathetic neurons, agmatine-induced IR 2 activation suppresses Cav2.2 channel voltage-independently, and that the PLC-dependent PIP 2 hydrolysis is responsible for the agmatine-induced suppression of the Cav2.2 channel. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dynamics in electron transfer protein complexes

    NARCIS (Netherlands)

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize

  12. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking.

    Science.gov (United States)

    Pinaud, Fabien; Michalet, Xavier; Iyer, Gopal; Margeat, Emmanuel; Moore, Hsiao-Ping; Weiss, Shimon

    2009-06-01

    Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.

  13. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    Science.gov (United States)

    Zinker, Bradley A.; Rondinone, Cristina M.; Trevillyan, James M.; Gum, Rebecca J.; Clampit, Jill E.; Waring, Jeffrey F.; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E.; Reilly, Regina M.; Koterski, Sandra; Opgenorth, Terry J.; Ulrich, Roger G.; Crosby, Seth; Butler, Madeline; Murray, Susan F.; McKay, Robert A.; Bhanot, Sanjay; Monia, Brett P.; Jirousek, Michael R.

    2002-01-01

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA1C. Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes. PMID:12169659

  14. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    DEFF Research Database (Denmark)

    Edvardsen, K; Chen, W; Rucklidge, G

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother......During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular...... cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9...

  15. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein

    International Nuclear Information System (INIS)

    Dodsworth, Jeremy A.; Leigh, John A.

    2007-01-01

    Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI 1,2 binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI 1,2 binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI 1,2 , decreasing its inhibitory effect. NifI 1,2 prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI 1,2 was unable to bind to an AlF 4 - -stabilized Fe protein:MoFe protein complex. NifI 1,2 inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI 1,2 competes with the Fe protein for binding to MoFe protein and prevents electron transfer

  16. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins.

    Directory of Open Access Journals (Sweden)

    Teruhiko Suzuki

    Full Text Available Microcell-mediated chromosome transfer (MMCT is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell.

  17. NMR structure of the myristylated feline immunodeficiency virus matrix protein.

    Science.gov (United States)

    Brown, Lola A; Cox, Cassiah; Baptiste, Janae; Summers, Holly; Button, Ryan; Bahlow, Kennedy; Spurrier, Vaughn; Kyser, Jenna; Luttge, Benjamin G; Kuo, Lillian; Freed, Eric O; Summers, Michael F

    2015-04-30

    Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag's N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly.

  18. NMR Structure of the Myristylated Feline Immunodeficiency Virus Matrix Protein

    Directory of Open Access Journals (Sweden)

    Lola A. Brown

    2015-04-01

    Full Text Available Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2 is mediated by Gag’s N-terminally myristylated matrix (MA domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV, a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S. These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly.

  19. Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor.

    Science.gov (United States)

    Mallon, Robert; Hollander, Irwin; Feldberg, Larry; Lucas, Judy; Soloveva, Veronica; Venkatesan, Aranapakam; Dehnhardt, Christoph; Delos Santos, Efren; Chen, Zecheng; Dos Santos, Osvaldo; Ayral-Kaloustian, Semiramis; Gibbons, Jay

    2010-04-01

    PKI-402 is a selective, reversible, ATP-competitive, equipotent inhibitor of class I phosphatidylinositol 3-kinases (PI3K), including PI3K-alpha mutants, and mammalian target of rapamycin (mTOR; IC(50) versus PI3K-alpha = 2 nmol/L). PKI-402 inhibited growth of human tumor cell lines derived from breast, brain (glioma), pancreas, and non-small cell lung cancer tissue and suppressed phosphorylation of PI3K and mTOR effector proteins (e.g., Akt at T308) at concentrations that matched those that inhibited cell growth. In MDA-MB-361 [breast: Her2(+) and PIK3CA mutant (E545K)], 30 nmol/L PKI-402 induced cleaved poly(ADP-ribose) polymerase (PARP), a marker for apoptosis. In vivo, PKI-402 inhibited tumor growth in MDA-MB-361, glioma (U87MG), and lung (A549) xenograft models. In MDA-MB-361, PKI-402 at 100 mg/kg (daily for 5 days, one round) reduced initial tumor volume of 260 mm(3) to 129 mm(3) and prevented tumor regrowth for 70 days. In MDA-MB-361 tumors, PKI-402 (100 mg/kg, single dose) suppressed Akt phosphorylation (at T308) and induced cleaved PARP. Suppression of phosphorylated Akt (p-Akt) was complete at 8 hours and still evident at 24 hours. Cleaved PARP was evident at 8 and 24 hours. In normal tissue (heart and lung), PKI-402 (100 mg/kg) had minimal effect on p-Akt, with no detectable cleaved PARP. Preferential accumulation of PKI-402 in tumor tissue was observed. Complete, sustained suppression of Akt phosphorylation may cause tumor regression in MDA-MB-361 and other xenograft models. We are testing whether dual PI3K/mTOR inhibitors can durably suppress p-Akt, induce cleaved PARP, and cause tumor regression in a diverse set of human tumor xenograft models. Mol Cancer Ther; 9(4); 976-84. (c)2010 AACR.

  20. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIβ (PI4KB).

    Science.gov (United States)

    Humpolickova, Jana; Mejdrová, Ivana; Matousova, Marika; Nencka, Radim; Boura, Evzen

    2017-01-12

    The lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KB) is an essential host factor for many positive-sense single-stranded RNA (+RNA) viruses including human pathogens hepatitis C virus (HCV), Severe acute respiratory syndrome (SARS), coxsackie viruses, and rhinoviruses. Inhibitors of PI4KB are considered to be potential broad-spectrum virostatics, and it is therefore critical to develop a biochemical understanding of the kinase. Here, we present highly potent and selective fluorescent inhibitors that we show to be useful chemical biology tools especially in determination of dissociation constants. Moreover, we show that the coumarin-labeled inhibitor can be used to image PI4KB in cells using fluorescence-lifetime imaging microscopy (FLIM) microscopy.

  1. Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects

    Science.gov (United States)

    Dragulescu-Andrasi, Anca; Chan, Carmel T.; Massoud, Tarik F.; Gambhir, Sanjiv S.

    2011-01-01

    Identifying protein–protein interactions (PPIs) is essential for understanding various disease mechanisms and developing new therapeutic approaches. Current methods for assaying cellular intermolecular interactions are mainly used for cells in culture and have limited use for the noninvasive assessment of small animal disease models. Here, we describe red light-emitting reporter systems based on bioluminescence resonance energy transfer (BRET) that allow for assaying PPIs both in cell culture and deep tissues of small animals. These BRET systems consist of the recently developed Renilla reniformis luciferase (RLuc) variants RLuc8 and RLuc8.6, used as BRET donors, combined with two red fluorescent proteins, TagRFP and TurboFP635, as BRET acceptors. In addition to the native coelenterazine luciferase substrate, we used the synthetic derivative coelenterazine-v, which further red-shifts the emission maxima of Renilla luciferases by 35 nm. We show the use of these BRET systems for ratiometric imaging of both cells in culture and deep-tissue small animal tumor models and validate their applicability for studying PPIs in mice in the context of rapamycin-induced FK506 binding protein 12 (FKBP12)-FKBP12 rapamycin binding domain (FRB) association. These red light-emitting BRET systems have great potential for investigating PPIs in the context of drug screening and target validation applications. PMID:21730157

  2. Experimental myositis inducible with transfer of dendritic cells presenting a skeletal muscle C protein-derived CD8 epitope peptide.

    Science.gov (United States)

    Okiyama, Naoko; Hasegawa, Hisanori; Oida, Takatoku; Hirata, Shinya; Yokozeki, Hiroo; Fujimoto, Manabu; Miyasaka, Nobuyuki; Kohsaka, Hitoshi

    2015-07-01

    It is suggested that polymyositis, an autoimmune inflammatory myopathy, is mediated by autoaggressive CD8 T cells. Skeletal muscle C protein is a self-antigen that induces C protein-induced myositis, a murine model of polymyositis. To establish a new murine model of myositis inducible with a single CD8 T-cell epitope peptide that derives from the C protein, three internet-based prediction systems were employed to identify 24 candidate peptides of the immunogenic fragment of the C protein and bind theoretically to major histocompatibility complex class I molecules of C57BL/6 (B6) mice. RMA-S cell assay revealed that a HILIYSDV peptide, amino acid position 399-406 of the C protein, had the highest affinity to the H2-K(b) molecules. Transfer of mature bone marrow-derived dendritic cells pulsed with HILIYSDV induced myositis in naive B6 mice. This myositis was suppressed by anti-CD8-depleting antibodies but not by anti-CD4-depleting antibodies. Because this myositis model is mediated by CD8 T cells independently of CD4 T cells, it should be a useful tool to investigate pathology of polymyositis and develop therapies targeting CD8 T cells. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  4. Energy transfer at the active sites of heme proteins

    International Nuclear Information System (INIS)

    Dlott, D.D.; Hill, J.R.

    1995-01-01

    Experiments using a picosecond pump-probe apparatus at the Picosecond Free-electron Laser Center at Stanford University, were performed to investigate the relaxation of carbon monoxide bound to the active sites of heme proteins. The significance of these experiments is two-fold: (1) they provide detailed information about molecular dynamics occurring at the active sites of proteins; and (2) they provide insight into the nature of vibrational relaxation processes in condensed matter. Molecular engineering is used to construct various molecular systems which are studied with the FEL. We have studied native proteins, mainly myoglobin obtained from different species, mutant proteins produced by genetic engineering using recombinant DNA techniques, and a variety of model systems which mimic the structures of the active sites of native proteins, which are produced using molecular synthesis. Use of these different systems permits us to investigate how specific molecular structural changes affect dynamical processes occurring at the active sites. This research provides insight into the problems of how different species needs are fulfilled by heme proteins which have greatly different functionality, which is induced by rather small structural changes

  5. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells.

    Science.gov (United States)

    Hammond, Gerald R V; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas

    2015-01-01

    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid's synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2.

  6. Legionella phosphatase hydrolyzes phosphatidylinositol 4,5-bisphosphate and inosital triphosphate in human neutrophils

    International Nuclear Information System (INIS)

    Dowling, J.N.; Saha, A.K.; Glew, R.H.

    1987-01-01

    Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP 3 ) was explored. When neutrophil phosphoinositides were labeled with 32 P, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP 2 ) over 2 h. Treatment of [ 3 H]inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP 2 . Following fMLP stimulation, the fractional reduction in PIP 2 and the fractional increase in IP 3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP 3 was reduced by ACP pre-treatment. The reduction in IP 3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP 2 available for hydrolysis. However, some loss of IP 3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP 2 , the prognitor of IP 3 , and by hydrolyzing IP 3 itself

  7. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells.

    Science.gov (United States)

    Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M

    2015-08-21

    The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Autonomous control of phosphatidylinositol turnover by histamine and acetylcholine receptors in the NIE-115 neuron-like cell line

    International Nuclear Information System (INIS)

    Large, T.H.; Lambert, M.P.; Cohen, N.M.; Klein, W.L.

    1986-01-01

    Histamine was found to stimulate the turnover of phosphatidylinositol (PI) in cultures of neuron-like NE-115 cells. Turnover was measured by increased production of ( 3 H)inositol phosphates (breakdown) and by accelerated incorporation of 32 P into PI (resynthesis). Data were consistent with hydrolysis of polyphosphoinositides being the initial event in receptor-stimulated PI turnover. This response to histamine desensitized within 10 min. Receptor systems for histamine and acetylcholine were tested for possible interactions: PI turnover in response to dual stimulation was approximately equal to the sum of the individual responses while prior desensitization of the acetylcholine receptor system had no effect on subsequent stimulation of the histamine receptor system. These results are consistent with the hypothesis that components of acetylcholine and histamine receptor systems responsible for PI turnover are autonomously organised and regulated. (author)

  9. Characterization and antifungal properties of wheat nonspecific lipid transfer proteins.

    Science.gov (United States)

    Sun, Jin-Yue; Gaudet, Denis A; Lu, Zhen-Xiang; Frick, Michele; Puchalski, Byron; Laroche, André

    2008-03-01

    This study simultaneously considered the phylogeny, fatty acid binding ability, and fungal toxicity of a large number of monocot nonspecific lipid transfer proteins (ns-LTP). Nine novel full-length wheat ns-LTP1 clones, all possessing coding sequences of 348 bp, isolated from abiotic- and biotic-stressed cDNA libraries from aerial tissues, exhibited highly conserved coding regions with 78 to 99 and 71 to 100% identity at the nucleotide and amino acid levels, respectively. Phylogenetic analyses revealed two major ns-LTP families in wheat. Eight wheat ns-LTP genes from different clades were cloned into the expression vector pPICZalpha and transformed into Pichia pastoris. Sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and in vitro lipid binding activity assay confirmed that the eight ns-LTP were all successfully expressed and capable of in vitro binding fatty acid molecules. A comparative in vitro study on the toxicity of eight wheat ns-LTP to mycelium growth or spore germination of eight wheat pathogens and three nonwheat pathogens revealed differential toxicities among different ns-LTP. Values indicating 50% inhibition of fungal growth or spore germination of three selected ns-LTP against six fungi ranged from 1 to 7 microM. In vitro lipid-binding activity of ns-LTP was not correlated with their antifungal activity. Using the fluorescent probe SYTOX Green as an indicator of fungal membrane integrity, the in vitro toxicity of wheat ns-LTP was associated with alteration in permeability of fungal membranes.

  10. The α-tocopherol transfer protein is essential for vertebrate embryogenesis.

    Directory of Open Access Journals (Sweden)

    Galen W Miller

    Full Text Available The hepatic α-tocopherol transfer protein (TTP is required for optimal α-tocopherol bioavailability in humans; mutations in the human TTPA gene result in the heritable disorder ataxia with vitamin E deficiency (AVED, OMIM #277460. TTP is also expressed in mammalian uterine and placental cells and in the human embryonic yolk-sac, underscoring TTP's significance during fetal development. TTP and vitamin E are essential for productive pregnancy in rodents, but their precise physiological role in embryogenesis is unknown. We hypothesize that TTP is required to regulate delivery of α-tocopherol to critical target sites in the developing embryo. We tested to find if TTP is essential for proper vertebrate development, utilizing the zebrafish as a non-placental model. We verify that TTP is expressed in the adult zebrafish and its amino acid sequence is homologous to the human ortholog. We show that embryonic transcription of TTP mRNA increases >7-fold during the first 24 hours following fertilization. In situ hybridization demonstrates that Ttpa transcripts are localized in the developing brain, eyes and tail bud at 1-day post fertilization. Inhibiting TTP expression using oligonucleotide morpholinos results in severe malformations of the head and eyes in nearly all morpholino-injected embryos (88% compared with 5.6% in those injected with control morpholinos or 1.7% in non-injected embryos. We conclude that TTP is essential for early development of the vertebrate central nervous system.

  11. A new protein Girdin in tumor metastasis

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; FU Li; GU Feng; MA Yong-jie

    2010-01-01

    @@ The phosphatidylinositol 3-kinase/Akt serine/threonine kinase system regulates multiple cellular processes through the phosphorylation of a great number of downstream substrates and has been recognized as an important pathway for signal transduction, and in cancer invasion and metastasis.

  12. Function and structure of GFP-like proteins in the protein data bank.

    Science.gov (United States)

    Ong, Wayne J-H; Alvarez, Samuel; Leroux, Ivan E; Shahid, Ramza S; Samma, Alex A; Peshkepija, Paola; Morgan, Alicia L; Mulcahy, Shawn; Zimmer, Marc

    2011-04-01

    The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the β-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in β-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.

  13. Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein

    NARCIS (Netherlands)

    Dorobantu, Cristina M|info:eu-repo/dai/nl/372622283; Albulescu, Lucian|info:eu-repo/dai/nl/369492382; Lyoo, Heyrhyoung|info:eu-repo/dai/nl/412352931; van Kampen, Mirjam; De Francesco, Raffaele; Lohmann, Volker; Harak, Christian; van der Schaar, Hilde M|info:eu-repo/dai/nl/318007568; Strating, Jeroen R P M|info:eu-repo/dai/nl/298979594; Gorbalenya, Alexander E; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723

    2016-01-01

    Positive-strand RNA [(+)RNA] viruses are true masters of reprogramming host lipid trafficking and synthesis to support virus genome replication. Via their membrane-associated 3A protein, picornaviruses of the genus Enterovirus (e.g., poliovirus, coxsackievirus, and rhinovirus) subvert Golgi

  14. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling.

    Science.gov (United States)

    Mas, Caroline; Norwood, Suzanne J; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E; Davis, Jasmine L; Teasdale, Rohan D; Collins, Brett M

    2014-10-10

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sung; Saunders, Adam M.; Hamaoka, Brent Y.; Beachy, Philip A.; Leahy, Daniel J. (Stanford-MED); (JHU)

    2011-09-20

    Glypicans are heparan sulfate proteoglycans that modulate the signaling of multiple growth factors active during animal development, and loss of glypican function is associated with widespread developmental abnormalities. Glypicans consist of a conserved, approximately 45-kDa N-terminal protein core region followed by a stalk region that is tethered to the cell membrane by a glycosyl-phosphatidylinositol anchor. The stalk regions are predicted to be random coil but contain a variable number of attachment sites for heparan sulfate chains. Both the N-terminal protein core and the heparan sulfate attachments are important for glypican function. We report here the 2.4-{angstrom} crystal structure of the N-terminal protein core region of the Drosophila glypican Dally-like (Dlp). This structure reveals an elongated, {alpha}-helical fold for glypican core regions that does not appear homologous to any known structure. The Dlp core protein is required for normal responsiveness to Hedgehog (Hh) signals, and we identify a localized region on the Dlp surface important for mediating its function in Hh signaling. Purified Dlp protein core does not, however, interact appreciably with either Hh or an Hh:Ihog complex.

  16. Lipid Exchange Mechanism of the Cholesteryl Ester Transfer Protein Clarified by Atomistic and Coarse-grained Simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vuorela, T.; Kovanen, P. T.

    2012-01-01

    molecular dynamics simulations to unravel the mechanisms associated with the CETP-mediated lipid exchange. To this end we used both atomistic and coarse-grained models whose results were consistent with each other. We found CETP to bind to the surface of high density lipoprotein (HDL) -like lipid droplets......Cholesteryl ester transfer protein (CETP) transports cholesteryl esters, triglycerides, and phospholipids between different lipoprotein fractions in blood plasma. The inhibition of CETP has been shown to be a sound strategy to prevent and treat the development of coronary heart disease. We employed...... evidence that helix X acts as a lid which conducts lipid exchange by alternating the open and closed states. The findings have potential for the design of novel molecular agents to inhibit the activity of CETP....

  17. The transfer of radiocaesium to ewes through a breeding cycle - an illustration of the pitfalls of the transfer coefficient

    International Nuclear Information System (INIS)

    Beresford, N.A.; Mayes, R.W.; Barnett, C.L.; Howard, B.J.

    2007-01-01

    A study to measure the transfer of radiocaesium to adult female sheep through a breeding cycle is described. The transfer of radiocaesium from the diet to muscle (estimated as the equilibrium transfer coefficient) was significantly lower to pregnant, and especially lactating, animals compared to non-lactating and barren animals. High dry matter intake rates were also associated with significantly lower transfer coefficients. Known relationships between dry matter intake rates and protein turnover could credibly explain some of these differences. However, when described as the concentration ratio, radiocaesium transfer to meat was apparently highest during lactation. The apparent difference in results obtained by the two approaches of determining transfer is the consequence of daily dry matter intake being a denominator within the estimation of transfer coefficient. A wider discussion of transfer coefficients and concentration ratios leads us to suggest that the concentration ratio is the more robust and potentially generic parameter

  18. The transfer of radiocaesium to ewes through a breeding cycle - an illustration of the pitfalls of the transfer coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Beresford, N.A. [Centre for Ecology and Hydrology, CEH-Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)], E-mail: nab@ceh.ac.uk; Mayes, R.W. [Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom); Barnett, C.L.; Howard, B.J. [Centre for Ecology and Hydrology, CEH-Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2007-11-15

    A study to measure the transfer of radiocaesium to adult female sheep through a breeding cycle is described. The transfer of radiocaesium from the diet to muscle (estimated as the equilibrium transfer coefficient) was significantly lower to pregnant, and especially lactating, animals compared to non-lactating and barren animals. High dry matter intake rates were also associated with significantly lower transfer coefficients. Known relationships between dry matter intake rates and protein turnover could credibly explain some of these differences. However, when described as the concentration ratio, radiocaesium transfer to meat was apparently highest during lactation. The apparent difference in results obtained by the two approaches of determining transfer is the consequence of daily dry matter intake being a denominator within the estimation of transfer coefficient. A wider discussion of transfer coefficients and concentration ratios leads us to suggest that the concentration ratio is the more robust and potentially generic parameter.

  19. Characterization of Phospholipids in Insulin Secretory Granules and Mitochondria in Pancreatic Beta Cells and Their Changes with Glucose Stimulation*

    Science.gov (United States)

    MacDonald, Michael J.; Ade, Lacmbouh; Ntambi, James M.; Ansari, Israr-Ul H.; Stoker, Scott W.

    2015-01-01

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. PMID:25762724

  20. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production.

    Science.gov (United States)

    Shishova, Ekaterina Y; Stoll, Janis M; Ersoy, Baran A; Shrestha, Sudeep; Scapa, Erez F; Li, Yingxia; Niepel, Michele W; Su, Ya; Jelicks, Linda A; Stahl, Gregory L; Glicksman, Marcie A; Gutierrez-Juarez, Roger; Cuny, Gregory D; Cohen, David E

    2011-08-01

    Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype. Pctp-/- and wildtype mice were subjected to high-fat feeding and rates of hepatic glucose production and glucose clearance were quantified by hyperinsulinemic euglycemic clamp studies and pyruvate tolerance tests. These studies revealed that high-fat diet-induced increases in hepatic glucose production were markedly attenuated in Pctp-/- mice. Small molecule inhibitors of PC-TP were synthesized and their potencies, as well as mechanism of inhibition, were characterized in vitro. An optimized inhibitor was administered to high-fat-fed mice and used to explore effects on insulin signaling in cell culture systems. Small molecule inhibitors bound PC-TP, displaced phosphatidylcholines from the lipid binding site, and increased the thermal stability of the protein. Administration of the optimized inhibitor to wildtype mice attenuated hepatic glucose production associated with high-fat feeding, but had no activity in Pctp-/- mice. Indicative of a mechanism for reducing glucose intolerance that is distinct from commonly utilized insulin-sensitizing agents, the inhibitor promoted insulin-independent phosphorylation of key insulin signaling molecules. These findings suggest PC-TP inhibition as a novel therapeutic strategy in the management of hepatic insulin resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  1. Adsorption and Interfacial Electron Transfer of Saccharomyces Cerevisiae

    DEFF Research Database (Denmark)

    Hansen, Allan Glargaard; Boisen, Anja; Nielsen, Jens Ulrik

    2003-01-01

    We have studied the adsorption and electron-transfer dynamics of Saccharomyces cerevisiae (yeast) iso-l-cytochrome c adsorbed on Au(lll) electrodes in aqueous phosphate buffer media. This cytochrome possesses a thiol group dos e to the protein surface (Cysl02) suitable for linking the protein...

  2. Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt.

    Science.gov (United States)

    Nieuwoudt, Melanie; Lombard, Nicolaas; Rautenbach, Marina

    2014-08-15

    In beer brewing, brewers worldwide strive to obtain product consistency in terms of flavour, colour and foam. Important proteins contributing to beer foam are lipid transfer proteins (LTPs), in particular LTP1 and its lipid-bound isoform LTP1b, which are known to transport lipids in vivo and prevent lipids from destabilising the beer foam. LTP1 and LTP1b were successfully purified using only five purification steps with a high purified protein yield (160 mg LTP1 and LTP1b from 200 g barley). Circular dichroism of LTP1 and LTP1b confirmed that both proteins are highly tolerant to high temperatures (>90 °C) and are pH stable, particularly at a neutral to a more basic pH. Only LTP1 exhibited antiyeast and thermo-stable lytic activity, while LTP1b was inactive, indicating that the fatty acid moiety compromised the antimicrobial activity of LTP1. This lack in antiyeast activity and the positive foam properties of LTP1b would benefit beer fermentation and quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Susanne; Smith, Albert A.; Agarwal, Vipin; Hunkeler, Andreas [ETH Zürich, Physical Chemistry (Switzerland); Org, Mai-Liis; Samoson, Ago, E-mail: ago.samoson@ttu.ee [Tallinn University of Technology, NMR Instituut, Tartu Teadus, Tehnomeedikum (Estonia); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Ernst, Matthias, E-mail: maer@ethz.ch; Meier, Beat H., E-mail: beme@ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2015-10-15

    We discuss the optimum experimental conditions to obtain assignment spectra for solid proteins at magic-angle spinning (MAS) frequencies around 100 kHz. We present a systematic examination of the MAS dependence of the amide proton T{sub 2}′ times and a site-specific comparison of T{sub 2}′ at 93 kHz versus 60 kHz MAS frequency. A quantitative analysis of transfer efficiencies of building blocks, as they are used for typical 3D experiments, was performed. To do this, we compared dipolar-coupling and J-coupling based transfer steps. The building blocks were then combined into 3D experiments for sequential resonance assignment, where we evaluated signal-to-noise ratio and information content of the different 3D spectra in order to identify the best assignment strategy. Based on this comparison, six experiments were selected to optimally assign the model protein ubiquitin, solely using spectra acquired at 93 kHz MAS. Within 3 days of instrument time, the required spectra were recorded from which the backbone resonances have been assigned to over 96 %.

  4. Correlation between phosphatidylinositol labeling and contraction in rabbit aorta: effect of alpha-1 adrenergic activation

    International Nuclear Information System (INIS)

    Villalobos-Molina, R.; Uc, M.; Hong, E.; Garcia-Sainz, J.A.

    1982-01-01

    Activation of rabbit aortic strips with alpha adrenergic agonists increased the labeling (with [ 32 P]Pi) of phosphatidylinositol (PI) and phosphatidic acid and contracted the vascular preparations in dose-related fashion. Epinephrine, norepinephrine and methoxamine produced maximal effects, whereas clonidine behaved as partial agonist and B-HT 933 (2-amino-6-ethyl-4,5,7,8-tetrahydro-6H-oxazole-[5,4-d] azepin dihydrochloride) was almost without activity in the two experimental models used. Phenylephrine was a full agonist in producing contraction, but failed to elicit the maximal increase in PI labeling. The EC50 values to produce contraction of aortic strips were lower for all agonists than those required to increase the incorporation of radioactive phosphate into PI, but there was a good correlation between the two sets of data. The increased PI labeling and contraction of aortic strips induced by epinephrine were antagonized by prazosin and yohimbine in dose-related fashion, but the first alpha blocker was about three orders of magnitude more potent than the second in antagonizing the two effects. The present results indicate that both stimulation of PI labeling and contraction are mediated through activation of alpha-1 adrenoceptors in rabbit aorta

  5. Nuclear Phosphatidylinositol-Phosphate Type I Kinase α-Coupled Star-PAP Polyadenylation Regulates Cell Invasion.

    Science.gov (United States)

    A P, Sudheesh; Laishram, Rakesh S

    2018-03-01

    Star-PAP, a nuclear phosphatidylinositol (PI) signal-regulated poly(A) polymerase (PAP), couples with type I PI phosphate kinase α (PIPKIα) and controls gene expression. We show that Star-PAP and PIPKIα together regulate 3'-end processing and expression of pre-mRNAs encoding key anti-invasive factors ( KISS1R , CDH1 , NME1 , CDH13 , FEZ1 , and WIF1 ) in breast cancer. Consistently, the endogenous Star-PAP level is negatively correlated with the cellular invasiveness of breast cancer cells. While silencing Star-PAP or PIPKIα increases cellular invasiveness in low-invasiveness MCF7 cells, Star-PAP overexpression decreases invasiveness in highly invasive MDA-MB-231 cells in a cellular Star-PAP level-dependent manner. However, expression of the PIPKIα-noninteracting Star-PAP mutant or the phosphodeficient Star-PAP (S6A mutant) has no effect on cellular invasiveness. These results strongly indicate that PIPKIα interaction and Star-PAP S6 phosphorylation are required for Star-PAP-mediated regulation of cancer cell invasion and give specificity to target anti-invasive gene expression. Our study establishes Star-PAP-PIPKIα-mediated 3'-end processing as a key anti-invasive mechanism in breast cancer. Copyright © 2018 A.P. and Laishram.

  6. Molecular Analysis of AFP and HSA Interactions with PTEN Protein

    Directory of Open Access Journals (Sweden)

    Mingyue Zhu

    2015-01-01

    Full Text Available Human cytoplasmic alpha-fetoprotein (AFP has been classified as a member of the albuminoid gene family. The protein sequence of AFP has significant homology to that of human serum albumin (HSA, but its biological characteristics are vastly different from HSA. The AFP functions as a regulator in the phosphatidylinositol 3-kinase (PI3K/protein kinase B (AKT pathway, but HSA plays a key role as a transport protein. To probe their molecular mechanisms, we have applied colocalization, coimmunoprecipitation (co-IP, and molecular docking approaches to analyze the differences between AFP and HSA. The data from colocalization and co-IP displayed a strong interaction between AFP and PTEN (phosphatase and tensin homolog, demonstrating that AFP did bind to PTEN, but HSA did not. The molecular docking study further showed that the AFP domains I and III could contact with PTEN. In silicon substitutions of AFP binding site residues at position 490M/K and 105L/R corresponding to residues K490 and R105 in HSA resulted in steric clashes with PTEN residues R150 and K46, respectively. These steric clashes may explain the reason why HSA cannot bind to PTEN. Ultimately, the experimental results and the molecular modeling data from the interactions of AFP and HSA with PTEN will help us to identify targets for designing drugs and vaccines against human hepatocellular carcinoma.

  7. Structure, function, pharmacology and therapeutic potential of the G protein, Gα/q,11

    Directory of Open Access Journals (Sweden)

    Danielle eKamato

    2015-03-01

    Full Text Available G protein coupled receptors are one of the major classes of cell surface receptors and are associated with a group of G proteins consisting of 3 subunits termed alpha, beta and gamma. G proteins are classified into four families according to their α subunit; Gαi, Gαs, Gα12/13 and Gαq. There are several downstream pathways of Gαq of which the best known is upon activation via GTP, Gαq activates phospholipase Cβ, hydrolysing phosphatidylinositol 4,5-biphosphate into diacylglycerol and inositol triphosphate and activating protein kinase C and increasing calcium efflux from the endoplasmic recticulum. Although G proteins, in particular the Gαq/11 are central elements in GPCR signalling, their actual roles have not yet been thoroughly investigated. The lack of research of the role on Gαq/11 in cell biology is partially due to the obscure nature of the available pharmacological agents. YM-254890 is the most useful Gαq-selective inhibitor with antiplatelet, antithrombotic and thrombolytic effects. YM-254890 inhibits Gαq signalling pathways by preventing the exchange of GDP for GTP. UBO-QIC is a structurally similar compound to YM-254890 which can inhibit platelet aggregation and cause vasorelaxation in rats. Many agents are available for the study of signalling downstream of Gαq/11. The role of G proteins could potentially represents a novel therapeutic target to block all G protein dependent mechanisms. This review will explore the range of pharmacological and molecular tools available for the study of the role of Gαq/11 in GPCR signalling.

  8. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  9. Phosphoinositide 5-phosphatase Fig 4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels.

    Science.gov (United States)

    Duex, Jason E; Nau, Johnathan J; Kauffman, Emily J; Weisman, Lois S

    2006-04-01

    Phosphoinositide lipids regulate complex events via the recruitment of proteins to a specialized region of the membrane at a specific time. Precise control of both the synthesis and turnover of phosphoinositide lipids is integral to membrane trafficking, signal transduction, and cytoskeletal rearrangements. Little is known about the acute regulation of the levels of these signaling lipids. When Saccharomyces cerevisiae cells are treated with hyperosmotic medium the levels of phosphatidylinositol 3,5-bisphosphate (PI3,5P(2)) increase 20-fold. Here we show that this 20-fold increase is rapid and occurs within 5 min. Surprisingly, these elevated levels are transient. Fifteen minutes following hyperosmotic shock they decrease at a rapid rate, even though the cells remain in hyperosmotic medium. In parallel with the rapid increase in the levels of PI3,5P(2), vacuole volume decreases rapidly. Furthermore, concomitant with a return to basal levels of PI3,5P(2) vacuole volume is restored. We show that Fig 4p, consistent with its proposed role as a PI3,5P(2) 5-phosphatase, is required in vivo for this rapid return to basal levels of PI3,5P(2). Surprisingly, we find that Fig 4p is also required for the hyperosmotic shock-induced increase in PI3,5P(2) levels. These findings demonstrate that following hyperosmotic shock, large, transient changes occur in the levels of PI3,5P(2) and further suggest that Fig 4p is important in regulating both the acute rise and subsequent fall in PI3,5P(2) levels.

  10. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    Science.gov (United States)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Protein array staining methods for undefined protein content, manufacturing quality control, and performance validation.

    Science.gov (United States)

    Schabacker, Daniel S; Stefanovska, Ivana; Gavin, Igor; Pedrak, Casandra; Chandler, Darrell P

    2006-12-01

    Methods to assess the quality and performance of protein microarrays fabricated from undefined protein content are required to elucidate slide-to-slide variability and interpolate resulting signal intensity values after an interaction assay. We therefore developed several simple total- and posttranslational modification-specific, on-chip staining methods to quantitatively assess the quality of gel element protein arrays manufactured with whole-cell lysate in vitro protein fractions derived from two-dimensional liquid-phase fractionation (PF2D) technology. A linear dynamic range of at least 3 logs was observed for protein stains and immobilized protein content, with a lower limit of detection at 8 pg of protein per gel element with Deep Purple protein stain and a field-portable microarray imager. Data demonstrate the successful isolation, separation, transfer, and immobilization of putative transmembrane proteins from Yersinia pestis KIM D27 with the combined PF2D and gel element array method. Internal bovine serum albumin standard curves provided a method to assess on-chip PF2D transfer and quantify total protein immobilized per gel element. The basic PF2D array fabrication and quality assurance/quality control methods described here therefore provide a standard operating procedure and basis for developing whole-proteome arrays for interrogating host-pathogen interactions, independent of sequenced genomes, affinity tags, or a priori knowledge of target cell composition.

  12. A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells.

    Science.gov (United States)

    Schulein, Ralf; Guye, Patrick; Rhomberg, Thomas A; Schmid, Michael C; Schröder, Gunnar; Vergunst, Annette C; Carena, Ilaria; Dehio, Christoph

    2005-01-18

    Bacterial type IV secretion (T4S) systems mediate the transfer of macromolecular substrates into various target cells, e.g., the conjugative transfer of DNA into bacteria or the transfer of virulence proteins into eukaryotic host cells. The T4S apparatus VirB of the vascular tumor-inducing pathogen Bartonella henselae causes subversion of human endothelial cell (HEC) function. Here we report the identification of multiple protein substrates of VirB, which, upon translocation into HEC, mediate all known VirB-dependent cellular changes. These Bartonella-translocated effector proteins (Beps) A-G are encoded together with the VirB system and the T4S coupling protein VirD4 on a Bartonella-specific pathogenicity island. The Beps display a modular architecture, suggesting an evolution by extensive domain duplication and reshuffling. The C terminus of each Bep harbors at least one copy of the Bep-intracellular delivery domain and a short positively charged tail sequence. This biparte C terminus constitutes a transfer signal that is sufficient to mediate VirB/VirD4-dependent intracellular delivery of reporter protein fusions. The Bep-intracellular delivery domain is also present in conjugative relaxases of bacterial conjugation systems. We exemplarily show that the C terminus of such a conjugative relaxase mediates protein transfer through the Bartonella henselae VirB/VirD4 system into HEC. Conjugative relaxases may thus represent the evolutionary origin of the here defined T4S signal for protein transfer into human cells.

  13. Maternal protein restriction induces alterations in insulin signaling and ATP sensitive potassium channel protein in hypothalami of intrauterine growth restriction fetal rats.

    Science.gov (United States)

    Liu, Xiaomei; Qi, Ying; Gao, Hong; Jiao, Yisheng; Gu, Hui; Miao, Jianing; Yuan, Zhengwei

    2013-01-01

    It is well recognized that intrauterine growth restriction leads to the development of insulin resistance and type 2 diabetes mellitus in adulthood. To investigate the mechanisms behind this "metabolic imprinting" phenomenon, we examined the impact of maternal undernutrition on insulin signaling pathway and the ATP sensitive potassium channel expression in the hypothalamus of intrauterine growth restriction fetus. Intrauterine growth restriction rat model was developed through maternal low protein diet. The expression and activated levels of insulin signaling molecules and K(ATP) protein in the hypothalami which were dissected at 20 days of gestation, were analyzed by western blot and real time PCR. The tyrosine phosphorylation levels of the insulin receptor substrate 2 and phosphatidylinositol 3'-kinase p85α in the hypothalami of intrauterine growth restriction fetus were markedly reduced. There was also a downregulation of the hypothalamic ATP sensitive potassium channel subunit, sulfonylurea receptor 1, which conveys the insulin signaling. Moreover, the abundances of gluconeogenesis enzymes were increased in the intrauterine growth restriction livers, though no correlation was observed between sulfonylurea receptor 1 and gluconeogenesis enzymes. Our data suggested that aberrant intrauterine milieu impaired insulin signaling in the hypothalamus, and these alterations early in life might contribute to the predisposition of the intrauterine growth restriction fetus toward the adult metabolic disorders.

  14. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  15. Electron transfer reactions in structural units of copper proteins

    International Nuclear Information System (INIS)

    Faraggi, M.

    1975-01-01

    In previous pulse radiolysis studies it was suggested that the reduction of the Cu(II) ions in copper proteins by the hydrated electron is a multi-step electron migration process. The technique has been extended to investigate the reduction of some structural units of these proteins. These studies include: the reaction of the hydrated electron with peptides, the reaction of the disulphide bridge with formate radical ion and radicals produced by the reduction of peptides, and the reaction of Cu(II)-peptide complex with esub(aq)sup(-) and CO 2 - . Using these results the reduction mechanism of copper and other proteins will be discussed. (author)

  16. Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells

    International Nuclear Information System (INIS)

    Miyata, Yoshiki; Sato, Takashi; Ito, Akira

    2005-01-01

    Triptolide, a diterpenoid triepoxide extracted from the Chinese herb Tripterygium wilfordii Hook f., exerts antitumorigenic actions against several tumor cells, but the intracellular target signal molecule(s) for this antitumorigenesis activity of triptolide remains to be identified. In the present study, we demonstrated that triptolide, in a dose-dependent manner, inhibited the proliferation of human fibrosarcoma HT-1080, human squamous carcinoma SAS, and human uterine cervical carcinoma SKG-II cells. In addition, triptolide was found to decrease phosphatidylinositol 3-kinase (PI3K) activity. A PI3K inhibitor, LY-294002, mimicked the triptolide-induced antiproliferative activity in HT-1080, SAS, and SKG-II cells. There was no change in the activity of Akt or protein kinase C (PKC), both of which are downstream effectors in the PI3K pathway. Furthermore, the phosphorylation of Ras, Raf, and mitogen-activated protein/extracellular signal-regulated kinase 1/2 was not modified in HT-1080 cells treated with triptolide. However, the phosphorylation of c-Jun NH 2 -terminal kinase 1 (JNK1) was found to increase in both triptolide- and LY-294002-treated cells. Furthermore, the triptolide-induced inhibition of HT-1080 cell proliferation was not observed by JNK1 siRNA-treatment. These results provide novel evidence that PI3K is a crucial target molecule in the antitumorigenic action of triptolide. They further suggest a possible triptolide-induced inhibitory signal for tumor cell proliferation that is initiated by the decrease in PI3K activity, which in turn leads to the augmentation of JNK1 phosphorylation via the Akt and/or PKC-independent pathway(s). Moreover, it is likely that the activation of JNK1 is required for the triptolide-induced inhibition of tumor proliferation

  17. Role of Tim50 in the transfer of precursor proteins from the outer to the inner membrane of mitochondria.

    Science.gov (United States)

    Mokranjac, Dejana; Sichting, Martin; Popov-Celeketić, Dusan; Mapa, Koyeli; Gevorkyan-Airapetov, Lada; Zohary, Keren; Hell, Kai; Azem, Abdussalam; Neupert, Walter

    2009-03-01

    Transport of essentially all matrix and a number of inner membrane proteins is governed, entirely or in part, by N-terminal presequences and requires a coordinated action of the translocases of outer and inner mitochondrial membranes (TOM and TIM23 complexes). Here, we have analyzed Tim50, a subunit of the TIM23 complex that is implicated in transfer of precursors from TOM to TIM23. Tim50 is recruited to the TIM23 complex via Tim23 in an interaction that is essentially independent of the rest of the translocase. We find Tim50 in close proximity to the intermembrane space side of the TOM complex where it recognizes both types of TIM23 substrates, those that are to be transported into the matrix and those destined to the inner membrane, suggesting that Tim50 recognizes presequences. This function of Tim50 depends on its association with TIM23. We conclude that the efficient transfer of precursors between TOM and TIM23 complexes requires the concerted action of Tim50 with Tim23.

  18. Allergenic relevance of nonspecific lipid transfer proteins 2: Identification and characterization of Api g 6 from celery tuber as representative of a novel IgE-binding protein family.

    Science.gov (United States)

    Vejvar, Eva; Himly, Martin; Briza, Peter; Eichhorn, Stephanie; Ebner, Christof; Hemmer, Wolfgang; Ferreira, Fatima; Gadermaier, Gabriele

    2013-11-01

    Apium graveolens represents a relevant food allergen source linked with severe systemic reactions. We sought to identify an IgE-binding nonspecific lipid transfer protein (nsLTP) in celery tuber. A low molecular weight protein exclusively present in celery tuber was purified and designated Api g 6. The entire protein sequence was obtained by MS and classified as member of the nsLTP2 family. Api g 6 is monomeric in solution with a molecular mass of 6936 Da. The alpha-helical disulfide bond-stabilized structure confers tremendous thermal stability (Tm > 90°C) and high resistance to gastrointestinal digestion. Endolysosomal degradation demonstrated low susceptibility and the presence of a dominant peptide cluster at the C-terminus. Thirty-eight percent of A. graveolens allergic patients demonstrated IgE reactivity to purified natural Api g 6 in ELISA and heat treatment did only partially reduce its allergenic activity. No correlation in IgE binding and limited cross-reactivity was observed with Api g 2 and Art v 3, nsLTP1 from celery stalks and mugwort pollen. Api g 6, a novel nsLTP2 from celery tuber represents the first well-characterized allergen in this protein family. Despite similar structural and physicochemical features as nsLTP1, immunological properties of Api g 6 are distinct which warrants its inclusion in molecule-based diagnosis of A. graveolens allergy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Prevalence of sensitization to Cannabis sativa. Lipid-transfer and thaumatin-like proteins are relevant allergens.

    Science.gov (United States)

    Larramendi, Carlos H; López-Matas, M Ángeles; Ferrer, Angel; Huertas, Angel Julio; Pagán, Juan Antonio; Navarro, Luis Ángel; García-Abujeta, José Luis; Andreu, Carmen; Carnés, Jerónimo

    2013-01-01

    Although allergy to Cannabis sativa was first reported over 40 years ago, the allergenicity has scarcely been studied. The objectives of this study were to investigate the frequency of sensitization to this plant, to analyze the clinical characteristics and allergenic profile of sensitized individuals and to identify the allergens involved. Five hundred and forty-five individuals in Spain attending allergy clinics with respiratory or cutaneous symptoms underwent a skin-prick test (SPT) with C. sativa leaf extract. The extract was characterized by SDS-PAGE and 2-dimensional electrophoresis. Specific IgE to C. sativa was measured in positive SPT individuals. The clinical and allergenic profiles of sensitized individuals were investigated and the most-recognized allergens sequenced and characterized by liquid chromatography-mass spectrometry/mass spectrometry. Of this preselected population, 44 individuals had positive SPT to C. sativa (prevalence 8.1%). Prevalence was higher in individuals who were C. sativa smokers (14.6%). Two individuals reported mild symptoms with C. sativa. Twenty-one individuals from 32 available sera (65.6%) had positive specific IgE to C. sativa. Twelve sera recognized at least 6 different bands in a molecular-weight range of between 10 and 60 kDa. Six of them recognized a 10-kDa band, identified as a lipid transfer protein (LTP) and 8 recognized a 38-kDa band, identified as a thaumatin-like protein. There is a high prevalence of sensitization to C. sativa leaves. The clinical symptoms directly attributed to C. sativa were uncommon and mild. The sensitization profile observed suggests that C. sativa sensitization may be mediated by two mechanisms, i.e. cross-reactivity, mainly with LTP and thaumatin-like protein, and exposure-related 'de novo' sensitization. Copyright © 2013 S. Karger AG, Basel.

  20. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan, E-mail: dole@nmr.mpibpc.mpg.de [Max-Planck Institute for Biophysical chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R{sub 1}ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states.

  1. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform

    International Nuclear Information System (INIS)

    Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan

    2015-01-01

    Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R 1 ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states

  2. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes

    DEFF Research Database (Denmark)

    Karlsson, Richard; Engström, Maria; Jönsson, Maria

    2003-01-01

    Cytokines such as interleukin 3 (IL-3), kit ligand (KL), and flt3 ligand (FL) promote survival of hematopoietic stem cells and myeloid progenitor cells. In many cell types, members of the Bcl-2 gene family are major regulators of survival, but the mediating mechanisms are not fully understood....... Using two myeloid progenitor cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow progenitors, we demonstrate that KL-mediated survival is dependent on the activation of phosphatidylinositol-3 (PI-3) kinase. The inhibitor LY294002 was able to completely abolish survival mediated by KL...

  3. Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Banach, Kathrin; Mollerup, Sarah

    2008-01-01

    that agonist-induced changes in PIP(2) can result in a reduction of the functional coupling of cardiomyocytes and, consequently, in changes in conduction velocity. Intercellular coupling was measured by Lucifer Yellow dye transfer in cultured neonatal rat cardiomyocytes. Conduction velocity was measured...

  4. Molecular mechanisms for protein-encoded inheritance

    Science.gov (United States)

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  5. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C......-terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat......The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared...

  6. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation.

    Science.gov (United States)

    MacDonald, Michael J; Ade, Lacmbouh; Ntambi, James M; Ansari, Israr-Ul H; Stoker, Scott W

    2015-04-24

    The lipid composition of insulin secretory granules (ISG) has never previously been thoroughly characterized. We characterized the phospholipid composition of ISG and mitochondria in pancreatic beta cells without and with glucose stimulation. The phospholipid/protein ratios of most phospholipids containing unsaturated fatty acids were higher in ISG than in whole cells and in mitochondria. The concentrations of negatively charged phospholipids, phosphatidylserine, and phosphatidylinositol in ISG were 5-fold higher than in the whole cell. In ISG phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin, fatty acids 12:0 and 14:0 were high, as were phosphatidylserine and phosphatidylinositol containing 18-carbon unsaturated FA. With glucose stimulation, the concentration of many ISG phosphatidylserines and phosphatidylinositols increased; unsaturated fatty acids in phosphatidylserine increased; and most phosphatidylethanolamines, phosphatidylcholines, sphingomyelins, and lysophosphatidylcholines were unchanged. Unsaturation and shorter fatty acid length in phospholipids facilitate curvature and fluidity of membranes, which favors fusion of membranes. Recent evidence suggests that negatively charged phospholipids, such as phosphatidylserine, act as coupling factors enhancing the interaction of positively charged regions in SNARE proteins in synaptic or secretory vesicle membrane lipid bilayers with positively charged regions in SNARE proteins in the plasma membrane lipid bilayer to facilitate docking of vesicles to the plasma membrane during exocytosis. The results indicate that ISG phospholipids are in a dynamic state and are consistent with the idea that changes in ISG phospholipids facilitate fusion of ISG with the plasma membrane-enhancing glucose-stimulated insulin exocytosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  8. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.; (UNC)

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  9. Transfer of sulfur from IscS to IscU during Fe/S cluster assembly.

    Science.gov (United States)

    Urbina, H D; Silberg, J J; Hoff, K G; Vickery, L E

    2001-11-30

    The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [(35)S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of (35)S from [(35)S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (K(d) approximately 2 microm) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and (35)S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer (35)S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU.

  10. [Detection of protein-protein interactions by FRET and BRET methods].

    Science.gov (United States)

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  11. Spontaneous transfer of stearic acids between human serum albumin and PEG:2000-grafted DPPC membranes.

    Science.gov (United States)

    Pantusa, Manuela; Stirpe, Andrea; Sportelli, Luigi; Bartucci, Rosa

    2010-05-01

    Electron spin resonance (ESR) spectroscopy is used to study the transfer of stearic acids between human serum albumin (HSA) and sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) and of submicellar content of poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Protein/lipid dispersions are considered in which spin-labelled stearic acids at the 16th carbon atom along the acyl chain (16-SASL) are inserted either in the protein or in the SSL. Two component ESR spectra with different rotational mobility are obtained over a broad range of temperature and membrane composition. Indeed, superimposed to an anisotropic protein-signal, appears a more isotropic lipid-signal. Since in the samples only one matrix (protein or membranes) is spin-labelled, the other component accounts for the transfer of 16-SASL between albumin and membranes. The two components have been resolved and quantified by spectral subtractions, and the fraction, f (p) (16-SASL), of spin labels bound non-covalently to the protein has been used to monitor the transfer. It is found that it depends on the type of donor and acceptor matrix, on the physical state of the membranes and on the grafting density of the polymer-lipids. Indeed, it is favoured from SSL to HSA and the fraction of stearic acids transferred increases with temperature in both directions of transfer. Moreover, in the presence of polymer-lipids, the transfer from HSA to SSL is slightly attenuated, especially in the brush regime of the polymer-chains. Instead, the transfer from SSL to HSA is favoured by the polymer-lipids much more in the mushroom than in the brush regime.

  12. Mechanisms of estradiol-induced insulin secretion by the G protein-coupled estrogen receptor GPR30/GPER in pancreatic beta-cells.

    Science.gov (United States)

    Sharma, Geetanjali; Prossnitz, Eric R

    2011-08-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes.

  13. Mechanisms of Estradiol-Induced Insulin Secretion by the G Protein-Coupled Estrogen Receptor GPR30/GPER in Pancreatic β-Cells

    Science.gov (United States)

    Sharma, Geetanjali

    2011-01-01

    Sexual dimorphism and supplementation studies suggest an important role for estrogens in the amelioration of glucose intolerance and diabetes. Because little is known regarding the signaling mechanisms involved in estradiol-mediated insulin secretion, we investigated the role of the G protein-coupled receptor 30, now designated G protein-coupled estrogen receptor (GPER), in activating signal transduction cascades in β-cells, leading to secretion of insulin. GPER function in estradiol-induced signaling in the pancreatic β-cell line MIN6 was assessed using small interfering RNA and GPER-selective ligands (G-1 and G15) and in islets isolated from wild-type and GPER knockout mice. GPER is expressed in MIN6 cells, where estradiol and the GPER-selective agonist G-1 mediate calcium mobilization and activation of ERK and phosphatidylinositol 3-kinase. Both estradiol and G-1 induced insulin secretion under low- and high-glucose conditions, which was inhibited by pretreatment with GPER antagonist G15 as well as depletion of GPER by small interfering RNA. Insulin secretion in response to estradiol and G-1 was dependent on epidermal growth factor receptor and ERK activation and further modulated by phosphatidylinositol 3-kinase activity. In islets isolated from wild-type mice, the GPER antagonist G15 inhibited insulin secretion induced by estradiol and G-1, both of which failed to induce insulin secretion in islets obtained from GPER knockout mice. Our results indicate that GPER activation of the epidermal growth factor receptor and ERK in response to estradiol treatment plays a critical role in the secretion of insulin from β-cells. The results of this study suggest that the activation of downstream signaling pathways by the GPER-selective ligand G-1 could represent a novel therapeutic strategy in the treatment of diabetes. PMID:21673097

  14. Quality Control System for Beer Developed with Monoclonal Antibodies Specific to Barley Lipid Transfer Protein

    Directory of Open Access Journals (Sweden)

    Yukie Murakami-Yamaguchi

    2012-10-01

    Full Text Available Non-specific lipid transfer protein (LTP in barley grain reacted with the IgE in sera drawn from food allergy patients. A sandwich-type of enzyme-linked immunosorbent assay (ELISA was developed with mouse monoclonal antibodies raised against LTP purified with barley flour. This ELISA showed a practical working range of 0.3–3 ng/mL and no cross-reactivity with wheat, adlay and rye. Using this ELISA, LTP was determined in several types of barley-foods, including fermented foods such as malt vinegar, barley-malt miso and beer. LTP content in beer of the same kind was approximately constant, even if manufacturing factory and production days were different. Not only as a factor of foam formation and stability but also as an allergen, controlling and monitoring of LTP in beer should be considered. Taken together, our LTP-detecting ELISA can be proposed as an appropriate system for the quality control of beer.

  15. Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Liu, Zan; Xu, Bo; Nameta, Masaaki; Zhang, Ying; Magdeldin, Sameh; Yoshida, Yutaka; Yamamoto, Keiko; Fujinaka, Hidehiko; Yaoita, Eishin; Tasaki, Masayuki; Nakagawa, Yuki; Saito, Kazuhide; Takahashi, Kota; Yamamoto, Tadashi

    2013-06-01

    Vascular endothelial cells (VECs) play crucial roles in physiological and pathologic conditions in tissues and organs. Most of these roles are related to VEC plasma membrane proteins. In the kidney, VECs are closely associated with structures and functions; however, plasma membrane proteins in kidney VECs remain to be fully elucidated. Rat kidneys were perfused with cationic colloidal silica nanoparticles (CCSN) to label the VEC plasma membrane. The CCSN-labeled plasma membrane fraction was collected by gradient ultracentrifugation. The VEC plasma membrane or whole-kidney lysate proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and digested with trypsin in gels for liquid chromatography-tandem mass spectrometry. Enrichment analysis was then performed. The VEC plasma membrane proteins were purified by the CCSN method with high yield (approximately 20 μg from 1 g of rat kidney). By Mascot search, 582 proteins were identified in the VEC plasma membrane fraction, and 1,205 proteins were identified in the kidney lysate. In addition to 16 VEC marker proteins such as integrin beta-1 and intercellular adhesion molecule-2 (ICAM-2), 8 novel proteins such as Deltex 3-like protein and phosphatidylinositol binding clathrin assembly protein (PICALM) were identified. As expected, many key functions of plasma membranes in general and of endothelial cells in particular (i.e., leukocyte adhesion) were significantly overrepresented in the proteome of CCSN-labeled kidney VEC fraction. The CCSN method is a reliable technique for isolation of VEC plasma membrane from the kidney, and proteomic analysis followed by bioinformatics revealed the characteristics of in vivo VECs in the kidney.

  16. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  17. Profilin binding to sub-micellar concentrations of phosphatidylinositol (4,5) bisphosphate and phosphatidylinositol (3,4,5) trisphosphate

    DEFF Research Database (Denmark)

    Moens, Pierre D J; Bagatolli, Luis A

    2007-01-01

    Profilin is a small (12-15 kDa) actin binding protein which promotes filament turnover. Profilin is also involved in the signaling pathway linking receptors in the cell membrane to the microfilament system within the cell. Profilin is thought to play critical roles in this signaling pathway throu...

  18. Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase

    International Nuclear Information System (INIS)

    Beckmann, J.D.; Frerman, F.E.

    1985-01-01

    The oxidative half-reaction of electron-transfer flavoprotein (ETF), electron transfer from ETF to electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO), is dependent on complementary surface charges on the two proteins. ETF is the positively charged member of the redox pair. The evidence is based on the pH and ionic strength dependencies of the comproportionation of oxidized ETF and ETF hydroquinone catalyzed by ETF-QO and on the effects of chemical modification of ETF on the comproportionation reaction. Acetylation of one and five epsilon-amino groups of lysyl residues results in 3- and 13-fold increases, respectively, in the K/sub m/ of ETF-QO for ETF but no change in V/sub max/. Amidination, which maintains positive charge at modified loci, has no effect on steady-state kinetic constants. These chemical modifications have no effect on the equilibrium constant for equilibration of ETF redox states. The K/sub m/ of ETF-QO for ETF is pH dependent above pH 8.5, suggesting titration of lysyl residues. The ionic strength dependence of TN/KmETF for the reaction follows the limiting Bronsted equation. The ETF-QO-catalyzed comproportionation reaction exhibits a primary deuterium isotope effect in D 2 O, perhaps indicating the participation of solvent water in the electron-transfer reaction

  19. UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer.

    Science.gov (United States)

    Ning, Kuan; Wang, Teng; Sun, Xu; Zhang, Pengfei; Chen, Yun; Jin, Jian; Hua, Dong

    2017-06-01

    Chemotherapy resistance has become a serious challenge in the treatment of breast cancer. Previous studies showed cells can transfer proteins, including those responsible for drug resistance to adjacent cells via exosomes. The switches of drug resistance via exosomes transfer were assessed by CellTiter-Blue Viability assay, flow cytometry, and immunostaining analysis. Relative protein levels of Ubiquitin carboxyl terminal hydrolase-L1 (UCH-L1), P-glycoprotein (P-gp), extracellular-signal regulated protein kinase1/2 (ERK1/2), and phospho-extracellular-signal regulated protein kinase1/2 (p-ERK1/2) were measured by Western blot. Immunohistochemistry was performed on 93 breast cancer samples to assess the associations of UCH-L1 levels with immunofluorescence value of UCH-L1 in circulating exosomes. The Adriamycin-resistant human breast cancer cells (MCF7/ADM) secreted exosomes carrying UCH-L1 and P-gp proteins into the extracellular microenvironment then integrated into Adriamycin-sensitive human breast cancer cells (MCF7/WT) in a time-dependent manner, transferring the chemoresistance phenotype. Notably, in blood samples from patients with breast cancer, the level of exosomes carrying UCH-L1 before chemotherapy was significantly negatively correlated with prognosis. Our study demonstrated that UCH-L1-containing exosomes can transfer chemoresistance to recipient cells and these exosomes may be useful as non-invasive diagnostic biomarkers for detection of chemoresitance in breast cancer patients, achieving more effective and individualized chemotherapy. © 2017 Wiley Periodicals, Inc.

  20. Western Blot of Stained Proteins from Dried Polyacrylamide Gels

    Science.gov (United States)

    Gruber, Claudia; Stan-Lotter, Helga

    1996-01-01

    Western blotting of proteins is customarily performed following their separation on polyacrylamide gels, either prior to staining (1) or, as recently reported, following staining (2). We describe here Western blotting with stained gels, which had been dried and some of which had been stored for years. This procedure permits immunological analysis of proteins, to which antisera may have become available only later, or where the application of newly developed sensitive detection methods is desired. Once rehydration of the gels is achieved, proteins can be-transferred to blotting membranes by any appropriate protocol. Proteins stained with Coomassie Blue have to be detected with a non-chromogenic method, such as the film-based enhanced chemiluminescence (ECL)2) procedure (3). Silver stained proteins, which transfer in the colorless form, may be visualized by any detection method, although, because of the usually very low amounts of proteins, detection by ECL is preferable. Blotting of stained proteins from rehydrated gels is as rapid and as quantitative as from freshly prepared gels, in contrast to blotting from wet stained gels, which requires extensive washing and results in low transfer efficiency (2). Together with a photographic record of the gel pattern, unambiguous identification of immunoreactive proteins from complex mixtures is possible. Some further applications of this work are discussed.