WorldWideScience

Sample records for phosphate-solubilizing rhizobacteria mycorrhizal

  1. The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops

    International Nuclear Information System (INIS)

    Barea, J.M.; Toro, M.; Azcon, R.; Orozco, M.O.; Campos, E.; Azcon, R.

    2002-01-01

    A pot experiment was designed to evaluate the interactive effects of multifunctional microbial inoculation treatments and rock phosphate (RP) application on N and P uptake by alfalfa through the use of 15 N and 32 P isotopic dilution approaches. The microbial inocula consisted of a wild type (WT) Rhizobium meliloti strain, the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, and a phosphate solubilizing rhizobacterium (Enterobacter sp.). Inoculated microorganisms were established in the root tissues and/or in the rhizosphere soil of alfalfa plants (Medicago sativa L.). Improvements in N and P accumulation in alfalfa corroborate beneficial effects of Rhizobium and AM interactions. Inoculation with selected rhizobacteria improved the AM effect on N or P accumulation in both the RP-added soil and in the non RP-amended controls. Measurements of the 15 N/ 14 N ratio in plant shoots indicate an enhancement of the N 2 fixation rates in Rhizobium-inoculated AM-plants, over that achieved by Rhizobium in non-mycorrhizal plants. Whether or not RP was added, AM-inoculated plants showed a lower specific activity ( 32 P/ 31 P) than did their comparable non-mycorrhizal controls, suggesting that the plant was using otherwise unavailable P sources. The phosphate-solubilizing, AM-associated, microbiota could in fact release phosphate ions, either from the added RP or from the indigenous 'less-available' soil phosphate. A low Ca concentrations in the test soil may have benefited P solubilization. Under field conditions, the inoculation with AM fungi significantly increased plant biomass and N and P accumulation in plant tissues. Phosphate-solubilizing rhizobacteria improved mycorrhizal responses in soil dually receiving RP and organic matter amendments. Organic matter addition favoured RP solubilization. This, together with a tailored microbial inoculation, increased the agronomic efficiency of RP in the test soil that was Ca deficient at neutral

  2. The application of isotopic ({sup 32}P and {sup 15}N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops

    Energy Technology Data Exchange (ETDEWEB)

    Barea, J.M. [Departamento de Microbiologia del Suelo y Sistemas Simbioticos (Spain)]. E-mail: jmbarea@eez.csic.es; Toro, M.; Azcon, R. [Departamento de Microbiologia del Suelo y Sistemas Simbioticos (Spain); Orozco, M.O. [Instituto de Sistematica y Ecologia, Academia Cubana de Ciencias, Habana (Cuba); Campos, E. [Departamento de Ciencias de la Tierra y Quimica Ambiental Estacion Experimental del Zaidin (CSIC), Granada (Spain); Azcon, R. [Departamento de Microbiologia del Suelo y Sistemas Simbioticos (Spain)

    2002-05-15

    A pot experiment was designed to evaluate the interactive effects of multifunctional microbial inoculation treatments and rock phosphate (RP) application on N and P uptake by alfalfa through the use of {sup 15}N and {sup 32}P isotopic dilution approaches. The microbial inocula consisted of a wild type (WT) Rhizobium meliloti strain, the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, and a phosphate solubilizing rhizobacterium (Enterobacter sp.). Inoculated microorganisms were established in the root tissues and/or in the rhizosphere soil of alfalfa plants (Medicago sativa L.). Improvements in N and P accumulation in alfalfa corroborate beneficial effects of Rhizobium and AM interactions. Inoculation with selected rhizobacteria improved the AM effect on N or P accumulation in both the RP-added soil and in the non RP-amended controls. Measurements of the {sup 15}N/{sup 14}N ratio in plant shoots indicate an enhancement of the N{sub 2} fixation rates in Rhizobium-inoculated AM-plants, over that achieved by Rhizobium in non-mycorrhizal plants. Whether or not RP was added, AM-inoculated plants showed a lower specific activity ({sup 32}P/{sup 31}P) than did their comparable non-mycorrhizal controls, suggesting that the plant was using otherwise unavailable P sources. The phosphate-solubilizing, AM-associated, microbiota could in fact release phosphate ions, either from the added RP or from the indigenous 'less-available' soil phosphate. A low Ca concentrations in the test soil may have benefited P solubilization. Under field conditions, the inoculation with AM fungi significantly increased plant biomass and N and P accumulation in plant tissues. Phosphate-solubilizing rhizobacteria improved mycorrhizal responses in soil dually receiving RP and organic matter amendments. Organic matter addition favoured RP solubilization. This, together with a tailored microbial inoculation, increased the agronomic efficiency of RP in the

  3. Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize

    International Nuclear Information System (INIS)

    Wahid, F.; Sharif, M.; Khan, M. A.; Khan, S. A.

    2016-01-01

    The beneficial microbes like arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) are known to play an important role in phosphorous (P) supply to plants in a sustainable manner in P deficient soils. In this scenario, a pot experiment was conducted under greenhouse condition to assess the synergistic effect of AMF and PSB strains (Coccus DIM7 Streptococcus PIM6 and Bacillus sp. PIS7) on P solubility from RP and their successive uptake by maize (Zea-mays L. Azam) crop at alkaline soil. The experiment was completely randomized design with three replications having calcareous silty clay loam soil, low in organic matter, nitrogen and phosphorus contents. RP was used as a crude phosphate alone and/or in combination with the native AMF and PSB inoculum. The Results indicated that the rhizosphere interactions between AMF and PSB significantly promote RP mineralization in soil and improved all growth parameters including shoot (56 percent), root yield (52 percent), height (41 percent), N (80 percent) and P (91 percent) uptake by the maize plants as compared to control and single inoculation. A remarkable increase in soil spore density, PSB population and percent root colonization in maize plants were also recorded by the combined inoculation of AMF and PSB with RP. From this study, it is concluded that the combined application of AMF and PSB with RP has the potential to improve maize growth and nutrients uptake. Moreover, AMF and PSB inoculants are recommended as useful biofertilizers for enhancing P solubility and bioavailability in P deficient agricultural soils. (author)

  4. The Effect of Plant Growth Promoting Rhizobacteria (PGPR and Phosphate Solubilizing Microorganism (PSM on Yield and Yield Components of Wheat (cv. N80 under Different Nitrogen and Phosphorous Fertilizers Levels in Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    S. H Bahari saravi

    2013-04-01

    Full Text Available In order to evaluate the effect of plant growth promoting rhizobacteria (PGPR and phosphate solubilizing microorganism (PSM on yield and yield components of wheat a pot experiment was conducted at Sari Agricultural Sciences and Natural Resources University during 2009. Experiment was arranged in factorial based on completely randomized design in three replicates. Treatments were included bio-fertilizer in four levels (non-inoculation control, Phosphate Barvare 2 (Pseudomonas fluorescens+Bacillus subtilis, Supernitroplus (Azotobacter brasilense+Azospirillum lipoferum and Nitroxine (Azospirillum + Pseudomona + Bacillus, three levels of chemical nitrogen fertilizer (0, 75 and 150 kg urea/ha and three levels of phosphorus fertilizer (0, 60 and 120 kg super phosphate triple/ha. Results showed that the studied treatments (biofertilizer, nitrogen and phosphate inorganic fertilizers had significant effect on grain number per spike, 1000 grain weight, grain yield, straw yield, biological yield and harvest index. Interaction effect between biofertilizer and chemical fertilizers was significant in terms of grain yield. The maximum grain yield was resulted from simultaneously applying of Nitroxine and 75 kg ha-1 nitrogen fertilizer. By contrast, the highest straw yield was obtained when 150 kg nitrogen fertilizer was used. Grain yield had the maximum correlation with biological yield (r=0.85**. Grain yield positively and significantly correlated with grain number per spike (r=0.73**, 1000 grain weight (r=0.68**, straw yield (r=0.56** and harvest index (r=0.69**. In conclusion biofertilizer inoculations could reduce application of nitrogen and phosphorus chemical fertilizers and increase plant performance.

  5. Rock phosphate solubilization by the ectomycorrhizal fungus ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... phosphate solubilization is accompanied by acid production. Thus, the evidence ..... of organic acids. (Khan et al., 2010) such as acetate, lactate, oxalate, ... (2014) also observed that oxalic acid was secreted by L. fraterna to ...

  6. BIOFERTILIZATION WITH RHIZOBACTERIA AND A CONSORTIUM OF ARBUSCULAR MYCORRHIZAL FUNGI IN CITRUS ROOTSTOCKS

    Directory of Open Access Journals (Sweden)

    Roberto Gregorio Chiquito-Contreras

    2012-11-01

    Full Text Available Biofertilization of plants with rhizobacteria and vesicular arbuscular mycorrhizae (mycorrhizal consortium, potentially promotes plant growth and health, and reduces the use of agrochemicals. The effect of individual and combined biofertilization with three strains of rhizobacteria and the mycorrhizal consortium (MTZ-1 was evaluated under nursery conditions on the growth of rootstocks of Citrus volkameriana and Rangpur lime grafted with Tahiti lime. Plants were inoculated individually and combined with the rhizobacteria strains FCA-8, FCA-56 and FCA-60 of Pseudomonas putida, and with MTZ-1; 50 % fertilization also was applied (18-46-00 N-P-K and compared with controls that received nursery management and 100 % fertilization. A split-plot experimental design with five replications per treatment was established. Individual and combined biofertilization with the three strains of bacteria and MTZ-1 positively promoted the growth of C. volkameriana, and Rangpur lime grafted with Tahiti lime, similar to the control with 100 % fertilization. The nutrient content of Tahiti lime leaves was similar to the control for both rootstocks. The presence of rhizobacterial and mycorrhizal populations in the combined biofertilization treatments demonstrated a positive synergism in the colonization of rootstock roots. Results demonstrate the potential of the three strains of P. putida and the MTZ-1 mycorrhizal consortium on the promotion of plant growth and assimilation of nutrients.

  7. [Phosphate-solubilizing activity of aerobic methylobacteria].

    Science.gov (United States)

    Agafonova, N V; Kaparullina, E N; Doronina, N V; Trotsenko, Iu A

    2014-01-01

    Phosphate-solubilizing activity was found in 14 strains of plant-associated aerobic methylobacteria belonging to the genera Methylophilus, Methylobacillus, Methylovorus, Methylopila, Methylobacterium, Delftia, and Ancyclobacter. The growth of methylobacteria on medium with methanol as the carbon and energy source and insoluble tricalcium phosphate as the phosphorus source was accompanied by a decrease in pH due to the accumulation of up to 7 mM formic acid as a methanol oxidation intermediate and by release of 120-280 μM phosphate ions, which can be used by both bacteria and plants. Phosphate-solubilizing activity is a newly revealed role of methylobacteria in phytosymbiosis.

  8. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  9. Occurrence and functioning of phosphate solubilizing ...

    African Journals Online (AJOL)

    Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree ( Elaeis guineensis ) rhizosphere in Cameroon. ... While the use of soluble mineral phosphate fertilizers is the obvious best means to combat phosphate ... in order to improve agricultural production, using low inputs technology. Isolates ...

  10. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  11. Isolation and Characterization of Efficient Phosphate Solubilizing ...

    African Journals Online (AJOL)

    Vostro154032bit

    ABSTRACT. Applications of biofertilizer have great practical importance for increasing fertility of the soil and reducing environmental pollution. Screening and characterizing phosphate solubilizing Bacillus. (PSB) strains from different agroecologies of Tigray soil and in vitro assessment for the adaptability under different ...

  12. Isolation and characterization of efficient Phosphate Solubilizing ...

    African Journals Online (AJOL)

    Applications of biofertilizer have great practical importance for increasing fertility of the soil and reducing environmental pollution. Screening and characterizing phosphate solubilizing Bacillus (PSB) strains from different agroecologies of Tigray soil and in vitro assessment for the adaptability under different abiotic stress ...

  13. Rock phosphate solubilization by the ectomycorrhizal fungus ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... To evaluate phosphate solubilization of ... and MHB had the potential to solubilize these phosphates by decreasing the pH and confirmed that ... Minerals like N, P, K, Ca, S, Zn, Cu and Sr are ... sterile distilled water, chopped, homogenized in 10 ml sterile .... The role of carbon source is important in mineral.

  14. Isolation and Characterization of Efficient Phosphate Solubilizing ...

    African Journals Online (AJOL)

    Vostro154032bit

    Research Article http://dx.doi.org/10.4314/mejs.v9i2.9. Momona Ethiopian Journal of Science (MEJS), V9(2):262-273,2017 ©CNCS, Mekelle University, ISSN:2220-184X. Isolation and Characterization of Efficient Phosphate Solubilizing Bacillus (PSB) from Different Agro-ecological Zones of Tigray Soil, Ethiopia. Kibrom, F.G.

  15. Isolation and screening phosphate solubilizers from composts as biofertilizer

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim; Latiffah Norddin; Abdul Razak Ruslan

    2006-01-01

    Phosphate solubilizers are miroorganisms that able to solubilize insoluble inorganic phosphate compounds or hydrolyze organic phosphate to inorganic P. Therefore make the P to be available for plant and consequently enhance plant growth and yield. Recently, phosphate solubilizing microorganisms has been shown to play an important role in the biofertilizer industry. Fifty-one bacterial were isolated from eleven composts. Most of the phosphate solubilizers were isolated from natural farming composted compost and normal composting compost. This shows that both of these composts are more suitable to use for phosphate solubilizer isolation compare commercial composts. Fourteen of the isolates were found to be phosphate solubilizers. These isolates produced a clear zone on the phosphate agar plates, showing their potential as biofertilizer. AP3 was significantly produced the largest clear zone compared with other isolates. This indicates that isolate AP 3 could be a good phosphate solubilizer. Thus, their effectiveness in the greenhouse and field should be evaluated. (Author)

  16. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    Mineral phosphate solubilizing bacterial community in agro-ecosystem. N Saha, S Biswas. Abstract. The present communication deals with the assessment of phosphate solubilizing bacterial community structure across artificially created fertility gradient with regards to N, P and K status of soil in the experimental site.

  17. Phosphate Solubilizing Bacteria Adaptive to Vinasse

    Directory of Open Access Journals (Sweden)

    Kahar Muzakhar

    2015-06-01

    Full Text Available Microorganisms identified as phosphate solubilizing bacteria (PSB adaptive to vinasse were successfully screened from sugarcane soil from an agriculatural estate in Jatiroto. By conducting a screening on Pikovskaya’s agar medium (PAM, we found that five different isolates were detected as PSB (pvk-5a, pvk-5b, pvk-6b, pvk-7a, and pvk-8a. Of the five isolates only three could be grown and were found to be adaptive to vinasse based medium without any nutrients added (pvk-5a, pvk-5b and pvk-7a. The three isolates were characterized as coccus and Gram negative with no endospores detected. We suggest that these three isolates can be used as biofertilizer agent to support organic farming.

  18. Evaluation of the influence of nitrogen fixing, phosphate solubilizing ...

    African Journals Online (AJOL)

    Three biofertilizers nitrobein, phosphorein, and potash, containing nitrogen fixing, phosphate solubilizing, and potash mobilizing microorganisms, respectively were studied in peanut (Arachis hypogea L.) and sunflower (Helianthus annuus L.). Amendment with each of these biofertilizers enhanced different growth ...

  19. Crude oil degradation by phosphate-solubilizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; David, J.J.; Chandramohan, D.

    Phosphate-solubilizing bacteria were isolated from tropical areas around the Indian peninsula. Two of the isolates showed high phosphatase activity. The isolates were identified as Klebsiella pneumoniae and Bacillus pumilus, and they showed high...

  20. Occurrence of symbiotic fungi and rhizospheric phosphate solubilization in weeds - doi: 10.4025/actasciagron.v35i1.15047

    Directory of Open Access Journals (Sweden)

    Edson Aparecido dos Santos

    2012-08-01

    Full Text Available Studies on the ecology of the organisms involved in the production process are necessary for the development of sustainable agriculture, and sustainability is currently closely linked to the profitability of production. The objective of this study was to verify the occurrence of arbuscular mycorrhizal fungi in weeds infesting Brazilian crops and to evaluate the inorganic phosphate solubilization potential of the associated microbiota. A total of 36 weed species were evaluated for the occurrence of mycorrhizae; of these, 11 were selected to evaluate their potential for total and relative phosphate solubilization. All of the species demonstrated mycorrhizal colonization, including a member of the Brassicaceae family, which is usually assumed to be non-mycorrhizal. In most of the species, morphological types of arbuscular and coiled hyphae were observed, with the coiled hyphae being the most common in the grasses. Dark septate endophytic fungi were observed in most of the plants. The weeds presented different potentials for P solubilization in the rhizosphere; Amaranthus retroflexus, Bidens pilosa and Leonotis nepetaefolia showed high values of relative phosphate solubilization. This is the first report on the mycorrhizae and phosphate solubilization activity in weeds in Brazil.

  1. Performance of phosphate solubilizing bacteria for improving growth ...

    African Journals Online (AJOL)

    The ability of phosphate solubilizing bacteria (PSB) to convert insoluble forms of phosphorus to an accessible form is an important trait in sustainable farming for increasing plant yields. The beneficial effects of PSB on crop productivity have been widely described, but the use of PSB as biofertilizer is scarcely documented in ...

  2. Interaction Effects of Phosphate Solubilizing Bacteria and Mycorrhiza on the Growth and Phosphorus uptakeof Sorghum

    Directory of Open Access Journals (Sweden)

    Abdolhossein ziaeyan

    2017-01-01

    Full Text Available Introduction: The most abundant of agricultural soils in Iran, are calcareous. In calcareous soils, phosphorus fertilizers use efficiency is low. The usage of soil microorganisms is one of the effective ways to increment the uptake of phosphorus in calcareous soils. This microorganisms using various mechanisms, including the production of plant hormones or the production of organic and inorganic acids to dissolve the insoluble phosphorous compounds. Mycorrhizal symbiosis is also one of the most recognized and important symbiosis relationship found in the world. In a mycorrhizal symbiosis,plants can be able to absorb more nutrients and water from soil and fungus plays a protective role as a growth enhancer and make the plants more tolerable to biotic (pathogens and abiotic (drought, cold and salinity stresses .This research conducted to study phosphate solubilizing bacteria and mycorrhiza roles on sorghum growth and phosphorus availability to this plant. Materials and methods: To achieve the desired goals, a pot experiment was conducted as a factorial in completely randomized design with sixteen treatments in three replications. The treatments were combination of four P levels of zero, 25, 50, and 75 mg kg-1 P2O5 from triple super phosphate source, the two treatments of inoculation and without inoculation of phosphate solubilizing bacteria and the two treatments of inoculation and no inoculation of mycorrizal fungus. Required fertilizers based on initial soil test results were supplied. Accordingly, the same amount of nitrogen, 80 mg kg-1 (30 mg kg-1 before planting and 50 mg kg-1 after planting twice as urea source, 10 mg Zn kg-1 and 5 mg kg-1 Cu per kg soil as the forms of Zinc sulphate (ZnSO4.7H2O and copper sulphate (CuSO4.H2O were added to each soil sample. Required Phosphorus also was calculated based on treatments and added to potting soil. Each pot size was 5 kg. every sample was thoroughly mixed and then were placed in pots. At the same

  3. An efficient method for qualitative screening of phosphate-solubilizing bacteria.

    Science.gov (United States)

    Mehta, S; Nautiyal, C S

    2001-07-01

    An efficient protocol was developed for qualitative screening of phosphate-solubilizing bacteria, based upon visual observation. Our results indicate that, by using our formulation containing bromophenol blue, it is possible to quickly screen on a qualitative basis the phosphate-solubilizing bacteria. Qualitative analysis of the phosphate solubilized by various groups correlated well with grouping based upon quantitative analysis of bacteria isolated from soil, effect of carbon, nitrogen, salts, and phosphate solubilization-defective transposon mutants. However, unlike quantitative analysis methods that involve time-consuming biochemical procedures, the time for screening phosphate-solubilizing bacteria is significantly reduced by using our simple protocol. Therefore, it is envisaged that usage of this formulation based upon qualitative analysis will be salutary for the quick screening of phosphate-solubilizing bacteria. Our results indicate that the formulation can also be used as a quality control test for expeditiously screening the commercial bioinoculant preparations, based on phosphate solubilizers.

  4. Phosphate solubilizing ability of two Arctic Aspergillus niger strains

    Directory of Open Access Journals (Sweden)

    Shiv Mohan Singh,

    2011-06-01

    Full Text Available Many filamentous fungi were isolated from the soils of Ny-Ålesund, Spitsbergen, Svalbard, and were screened in vitro for their phosphate solubilizing ability. Two strains of Aspergillus niger showed good tricalcium phosphate (TCP solubilizing ability in Pikovskaya's medium. The TCP solubilization index was calculated at varying levels of pH and temperatures. The ability of Aspergillus niger strain-1 to solubilize and release inorganic-P was 285 µg ml–1, while Aspergillus niger strain-2 solubilized 262 µg ml–1 from 0.5% TCP after seven days. This is the first report of TCP solubilization by Arctic strains that may serve as very good phosphate solubilizers in the form of biofertilizer.

  5. Phosphate solubilization as a microbial strategy for promoting plant growth

    Directory of Open Access Journals (Sweden)

    Mayra Eleonora Beltrán Pineda

    2014-01-01

    Full Text Available Because of the constant application of chemical inputs in Agroecosystem, the cost of crop production and environmental quality of soil and water have been affected. Microorganisms carry out most biogeochemical cycles; therefore, their role is essential for agro ecosystem balance. One such functional group is the phosphate solubilizing microorganisms, which are recognized plant growth promoters. These microbial populations perform an important activity, since in many soils there are large reserves of insoluble phosphorus, as a result of fixing much of the phosphorus fertilizer applied, which cannot be assimilated by the plant. The phosphate solubilizing microorganisms use different solubilization mechanisms such as the production of organic acids, which solubilize theses insoluble phosphates in the rhizosphere region. Soluble phosphates are absorbed by the plant, which enhances their growth and productivity. By using these phosphate reserves in soils, application of chemical fertilizers is decreased, on the one hand, can again be fixed by ions Ca, Al or Fe making them insoluble and, by the other hand, increase the costs of crop production. Microbial populations have been widely studied in different types of ecosystems, both natural and Agroecosystem. Thanks to its effectiveness, in laboratory and field studies, the phosphate solubilizing phenotype is of great interest to microbial ecologists who have begun to establish the molecular basis of the traitr.

  6. Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions

    Directory of Open Access Journals (Sweden)

    Martha Viviana Torres Cely

    2016-11-01

    Full Text Available Schizolobium parahyba var. amazonicum (Huber ex Ducke occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF and plant growth-promoting rhizobacteria (PGPR on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce and Acaulospora sp. (Ac; two native strains of Rhizobium sp. (Rh1 and Rh2; and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2 in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1 were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  7. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    Science.gov (United States)

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  8. Effect of Combined Application of Phosphate Solubilizing Bacteria and Phosphrous Fertilizer on Growth and Yield of Sesame

    Directory of Open Access Journals (Sweden)

    S. Nikmehr

    2016-02-01

    Full Text Available Introduction: Phosphorus (P is considered to be one of the most essential macro elements required for growth and development of plants, but, due to low solubility and fixation in soils, only a small fraction of phosphorus in soil (1 ppm or 0.1% is readily available to plants. chemical fertilizers are widely used in meeting the phosphorous need of crops. However, as the fertilizer production is dependent upon fossil energy sources, continuous use of chemical fertilizers has become a matter of great concern, not only because of the diminishing availability of costly inputs but environmental concerns also. Under this background, it has obviously brought the subject of mineral phosphate solubilization in the forefront. A group of soil microorganisms is recognized to be involved in microbial phosphate solubilization mechanisms through which insoluble forms of inorganic and organic phosphates convert into soluble forms (HPO4-2 or H2PO4-. Acidification of the medium, chelating, exchange reactions and production of various acids has been discussed as the key processes attributed to the conversion. Phosphate solubilizing bacteria (PSB are a group of plant growth promoting rhizobacteria (PGPR that convert unavailable forms of phosphorus to available forms and it helps to the growth and yield of plant. The use of plant growth promoting rhizobacteria (PGPR is considered one of the most important factors increasing sesame yields. Therefore, the aim of the present study was to investigate the interactive effects of PGPR and phosphorus fertilizer on some growth parameters and components of yield and also phosphorus and Zinc uptake in sesame. Materials and Methods: In order to investigation of the effect of combined application of phosphate solubilizing bacteria and phosphorus fertilizer on growth and yield of Sesame, a greenhouse experiment was conducted as factorial based on completely randomized design with three replications including five levels of

  9. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    Science.gov (United States)

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  10. Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria

    KAUST Repository

    Eida, Abdul Aziz

    2017-08-01

    The general inaccessibility of soil phosphorous (P) to plants in combination with the depletion of global P reserves provides an incentive for researchers to find sustainable solutions to sustain food security for the ever-increasing world population. Bio-fertilizers based on bacteria and fungi able to solubilize endogenous P in soils have a high potential for increasing nutrient availability in agriculture. However, the inconsistency of bio-fertilizer performance in the field poses a major challenge for farmers. This discrepancy is thought to stem from the complexity of the interactions between crop plants, microbes, and their soil environments, as well as our lack of understanding of the processes involved. For farmers, a clear beneficial effect across different soil types, crop species, environmental conditions, and microbial communities will be required to make it worth to adopt bio-fertilizer technology based on phosphate-solubilizing microbes (PSMs). Here, we attempt to review the current knowledge of the complexity of the P-solubilization mechanisms used by PSMs and how they may be affected by interactions in the field. We also identify possible explanations for the inconsistent performance of P-solubilizing bacteria in the field and ways to solve these obstacles.

  11. Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria

    KAUST Repository

    Eida, Abdul Aziz; Hirt, Heribert; Saad, Maged

    2017-01-01

    The general inaccessibility of soil phosphorous (P) to plants in combination with the depletion of global P reserves provides an incentive for researchers to find sustainable solutions to sustain food security for the ever-increasing world population. Bio-fertilizers based on bacteria and fungi able to solubilize endogenous P in soils have a high potential for increasing nutrient availability in agriculture. However, the inconsistency of bio-fertilizer performance in the field poses a major challenge for farmers. This discrepancy is thought to stem from the complexity of the interactions between crop plants, microbes, and their soil environments, as well as our lack of understanding of the processes involved. For farmers, a clear beneficial effect across different soil types, crop species, environmental conditions, and microbial communities will be required to make it worth to adopt bio-fertilizer technology based on phosphate-solubilizing microbes (PSMs). Here, we attempt to review the current knowledge of the complexity of the P-solubilization mechanisms used by PSMs and how they may be affected by interactions in the field. We also identify possible explanations for the inconsistent performance of P-solubilizing bacteria in the field and ways to solve these obstacles.

  12. Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Dastager, S.G.; Damare, S.R.

    . 2005, Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology & Biochemistry. 37, 1970–1974. 6. Collins C.H., Lyne P.M., 1980, Microbiological methods. London: Butterworth and Co..., Studies on phosphobacteriain Cochin Backwater. J. Mar. Biolog Associ. India. 29, 297–305. 21. Ramachandran K., Srinivasan V., Hamza S., Anandaraj M., 2007, Phosphate solubilizing bacteria isolated from the rhizosphere soil and its growth promotion...

  13. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2013-01-01

    Full Text Available A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB and organic acids (oxalic & malic on phosphate (P solubilization from phosphate rock (PR and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM, and PSB strain (Bacillus sp. were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1, plant P uptake (0.78 P pot−1, and plant biomass (33.26 mg. Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1 compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.

  14. Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2011-01-01

    Full Text Available Widawati S (2011 Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem. Biodiversitas 12: 17-21. Soil, water, sand, and plant rhizosphere samples collected from coastal ecosystem of Laki Island-Jakarta were screened for phosphate solubilizing bacteria (PSB. While the population was dependent on the cultivation media and the sample type, the highest bacterial population was observed in the rhizosphere of Ipomea aquatica. The PSB strains isolated from the sample registered 18.59 g-1L-1, 18.31 g-1L-1, and 5.68 g-1L-1 of calcium phosphate (Ca-P, Al-P and rock phosphate solubilization after 7-days. Phosphate solubilizing capacity was the highest in the Ca-P medium. Two strains, 13 and 14, registered highest Phosphomonoesterase activities (2.01 µgNP.g-1.h-1 and 1.85NP µg.g-1.h-1 were identified as Serattia marcescens, and Pseudomonas fluorescense, respectively. Both strains were isolated from the crops of Amaranthus hybridus and I. aquatica, respectively, which are commonly observed in coastal ecosystems. The presence of phosphate solubilizing microorganisms and their ability to solubilize various types of phosphate species are indicative of the important role of both species of bacteria in the biogeochemical cycle of phosphorus and the plant growth in coastal ecosystems.

  15. Microbial efficacy of phosphate solubilization in agro-saline soils of various areas of sindh region

    International Nuclear Information System (INIS)

    Noor, A.A.; Shah, F.A.

    2013-01-01

    Microorganisms are the most prominent entities for solubilization of phosphate in various soils of different areas of Sindh Province including Tando Muhammad Khan, Tando Allah Yar, Nawabshah, Rato Dero-Larkana, Shikarpur and Umer Kot. These soils, having varying concentrations of chemicals, different climatic conditions, pH and varying numbers of microorganisms for PSA (Phosphate Solubilization Activity). This presentation shows the isolation of different fungi and bacteria capable Psa including fungi (Fusarium sp. Aspergillus sp. Penicillium sp. and Rhizopus sp.) and bacteria (Bacillus sp. Pseudomonas sp. and Arthrobacter sp.). From the observations, it was revealed that fungi Aspergillus sp. and Bacillus sp. showed greater phosphate solubilization activity as compared to other fungi and bacteria showing 60 and 53.33% Psa (Phosphate Solubilizing Activity) respectively. (author)

  16. Optimization of Liquid Medium for High Phosphate Solubilization by Serratia Marcescens Strain AGKT4

    Directory of Open Access Journals (Sweden)

    Mohd Yusoff Abd. Samad

    2017-12-01

    Full Text Available This study is on the optimization of the medium for solubilization of phosphate based on the Box-Behnken design and response surface methodology. Optimization of the liquid medium for phosphate solubilization using Serratia marcescens strain AGKT4 was carried out by varying the concentrations of 3 ingredients; the fructose, peptone and inoculum size of bacteria. A mathematical model derived from the response surface methodology was then validated statistically for the target test variables. The highest phosphate solubilization in the medium was achieved at the optimal concentrations of fructose and peptone at 6% (w/v and 0.6% (w/v, respectively. The maximum phosphate solubilization at these concentrations was 239.12 µg/mL. Under the same conditions, the bacterial growth in the medium was 9 log10 CFU.

  17. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation.

    Science.gov (United States)

    Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S

    2017-10-01

    Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.

  18. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil

    DEFF Research Database (Denmark)

    Zheng, Bang Xiao; Bi, Qing Fang; Hao, Xiuli

    2017-01-01

    A Gram-stain-negative and rod-shaped bacterial strain, 12-OD1T, with rock phosphate solubilizing ability was isolated from agricultural soil in Hailun, Heilongjiang, PR China. The isolate was affiliated to the genus Massilia, based on 16S rRNA gene sequence alignments, having the highest similari......A Gram-stain-negative and rod-shaped bacterial strain, 12-OD1T, with rock phosphate solubilizing ability was isolated from agricultural soil in Hailun, Heilongjiang, PR China. The isolate was affiliated to the genus Massilia, based on 16S rRNA gene sequence alignments, having the highest...

  19. Isolation of phosphatase-producing phosphate solubilizing bacteria from Loriya hot spring: Investigation of phosphate solubilizing in the presence of different parameters

    Directory of Open Access Journals (Sweden)

    Maryam Parhamfar

    2014-04-01

    Full Text Available Introduction: Biofertilizers are the microorganisms that can convert useless nutrient to usable compounds. Unlike fertilizer, cost of biofertilizer production is low and doesn’t produce ecosystem pollution. Phosphate fertilizers can be replaced by phosphate biofertilizer to produce improvement. So, it is necessary to screen the climate-compatible phosphate solubilizing bacteria. Materials and methods: In this project samples were picked up from Loriya hot spring, which are located in Jiroft. Samples were incubated in PKV medium for 3 days. Screening of phosphate solubilizing bacteria was performed on the specific media, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Phosphate solubilizing activity of this strain was considered in different carbon, nitrogen, phosphate and pH sources. Results: Sequence alignment and phylogenetic tree results show that B. sp. LOR033 is closely related to Bacillus licheniformis, with 97% homology. In addition, results show that maximum enzyme production was performed after 2 days that incubation pH was decreased simultaneously when the time was increased. Carbon sources investigation show that glucose is the most appropriate in enzyme production and phosphate releasing. Furthermore, results show that the optimum initial pH for phytase production was pH5.0. Different phosphate sources show that tricalcium phosphate has the suitable effect on enzyme activity in three days of incubation. Discussion and conclusion: Phosphatase enzyme production capacity, growth in acidic pH and phosphate solubilizing potential in different salt and phosphate sources show that this strain has considerable importance as biofertilizers.

  20. Isolation of Indigenous Bacteria of Phosphate Solubilizing from Green Bean Rhizospheres

    Directory of Open Access Journals (Sweden)

    N Arfarita

    2017-04-01

    Full Text Available The use of phosphate-solubilizing bacteria (PSB as a biological fertilizer of Agricultural land is one solution to overcome problem of phosphate availability for plants. However, often application of a biological fertilizer is ineffective for certain places. The purpose of this study was to obtain indigenous phosphate solubilizing bacterial isolates that can be effective in the area of Malang. Samples were collected from rhizosphereof green bean plants at three locations in Malang, East Java. The study was conducted to determine the total bacterial population of soil samples, to select the best three bacterial isolates in phosphate solubilizing ability, which is not antagonistic and nonpathogenic for plants,along with observing its potential as a bacterial consortium. The highest total population was found in FHR samples of 1.5x1011 CFU / mL. We have selected three bacterial isolates namely SPP1, SPP2 and SPP3. They were not antagonistic to each other and nonpathogenic on mungbean sprouts. They had possibility of producing growth hormone which characterized by an increasing in length of plant and total root length, be compared to controls. Strain SPP2 has shown the highest activity of phosphate solubilization then was selected for 16S rRNA identification. Similarity test of genome sequence of strain SPP2 had 99% similarity with Pseudomonas plecoglossicida strain PR19

  1. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains.

    Science.gov (United States)

    Rodríguez, H; Gonzalez, T; Selman, G

    2001-11-30

    A genetic construction was carried out using the broad host range vector pKT230 and plasmid pMCG898, which encodes the Erwinia herbicola pyrroloquinoline quinone (PQQ) synthase, a gene involved in mineral phosphate solubilization (mps). The final construction was transformed and expressed in Escherichia coli MC1061, and the recombinant plasmids were transferred to Burkholderia cepacia IS-16 and Pseudomonas sp. PSS recipient cells by conjugation. Clones containing recombinant plasmids produced higher clearing halos in plates with insoluble phosphate as the unique (P) source, in comparison with those of strains without plasmids, demonstrating the heterologous expression of the E. herbicola gene in the recipient strains. This genetic manipulation allowed the increase in mps ability of both strains, enhancing their potentialities as growth promoters of agricultural crops. These results represent the first report on the application of the recombinant DNA methodology for the obtaining of improved phosphate solubilizing ability from rhizobacterial strains for biofertilization purposes.

  2. Phosphate solubilizing bacteria and alkaline phosphatase activity in coastal waters off Trivandrum

    Digital Repository Service at National Institute of Oceanography (India)

    Mamatha, S.S.; Gobika, A.; Janani, P.

    , Korea. Marine Pollution Bulletin. 62. pp. 2476–2482. 98 Journal of Coastal Environment Illmer, P. and Schinner, F. 1995. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biology and Biochemistry. 27. pp. 57...-solubilising microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils. 30. 460-468. Wurl, O. 2009. Practical guidelines for the analysis of sea water. CRC Press, Boca Raton. pp. 143-178. Zohary, T...

  3. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    OpenAIRE

    Lílian Estrela Borges Baldotto; Marihus Altoé Baldotto; Fábio Lopes Olivares; Adriane Nunes de Souza

    2014-01-01

    Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs abl...

  4. Test of Lignin and Cellulose Decomposition and Phosphate Solubilization by Soil Fungi of Gunung Halimun

    OpenAIRE

    Suciatmih, Suciatmih

    2001-01-01

    In order to know the capability of lignin and cellulose degradation and phosphate solubilization by soil fungi of Gunung Halimun National Park, a study was carried out to qualitatively analyse its physiological properties. Out of 35 soil fungi tested, 1 species that belonged to Basidiomycetes degraded lignin, 32 species degraded cellulose, and 31 species dissolved inorganic phosphate.The presence of soil fungi that degraded cellulose and dissolved phosphate could be used as a candidate for bi...

  5. Effect of phosphate-solubilizing bacteria isolated from semiarid soils on pitahaya seedlings (Hylocereus undatus)

    OpenAIRE

    Bautista-Cruz, Angélica; Ortiz-Hernández, Yolanda Donají; Martínez-Gallegos, Verónica; Martínez Gutiérrez, Gabino

    2015-01-01

    Phosphate-solubilizing bacteria (PSB) are a group of organisms that solubilize fixed forms of phosphorus, making it available for the plant growth. The effect of three PSB strains, called PSBMi, PSBHc and PSBVa, on growth of pitahaya seedlings (Hylocereus undatus) was studied in a growth chamber. The results indicated that plant stem diameter, plant height, plant total dry weight and root length were greatest in pitahaya seedlings inoculated with PSBMi. The increase in these plant growth vari...

  6. [Growth and photochemical efficiency of photosystem ii in seedlings of two varieties of Capsicum annuum L. inoculated with rhizobacteria and arbuscular mycorrhizal fungi].

    Science.gov (United States)

    Angulo-Castro, Azareel; Ferrera-Cerrato, Ronald; Alarcón, Alejandro; Almaraz-Suárez, Juan José; Delgadillo-Martínez, Julián; Jiménez-Fernández, Maribel; García-Barradas, Oscar

    Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are a biological alternative for the sustainable management of Capsicum annuum L. This research work evaluated the effects of both PGPR and AMF on bell pepper and jalapeno pepper plants. Five bacterial strains isolated from several locations in Estado de Mexico were used: [P61 (Pseudomonas tolaasii), A46 (P. tolaasii), R44 (Bacillus pumilus), BSP1.1 (Paenibacillus sp.), and OLs-Sf5 (Pseudomonas sp.)], and three treatments with AMF [H1 (consortium isolated from pepper crops in the State of Puebla), H2 (Rhizophagus intraradices), and H3 (consortium isolated from the rhizosphere of lemon trees, State of Tabasco)]. In addition, a fertilized treatment (Steiner nutrient solution at 25%) and an unfertilized control were included. Seedlings of "Caloro" jalapeno pepper and "California Wonder" bell pepper were inoculated with AMF at seed sowing, and PGPR were inoculated after 15 days of seedling emergence; seedlings were grown under plant growth chamber conditions. P61 bacterium and H1 AMF consortia were the most effective microorganisms for jalapeno pepper whereas R44 bacterium and AMF H3 and H1 were the most effective for bell peppers, when compared to the unfertilized control. Furthermore, P61 and R44 bacteria showed beneficial effects on PSII efficiency. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization.

    Science.gov (United States)

    Jayashree, Shanmugam; Vadivukkarasi, Ponnusamy; Anand, Kirupanithi; Kato, Yuko; Seshadri, Sundaram

    2011-08-01

    Thirteen pink-pigmented facultative methylotrophic (PPFM) strains isolated from Adyar and Cooum rivers in Chennai and forest soil samples in Tamil Nadu, India, along with Methylobacterium extorquens, M. organophilum, M. gregans, and M. komagatae were screened for phosphate solubilization in plates. P-solubilization index of the PPFMs grown on NBRIP-BPB plates for 7 days ranged from 1.1 to 2.7. The growth of PPFMs in tricalcium phosphate amended media was found directly proportional to the glucose concentration. Higher phosphate solubilization was observed in four strains MSF 32 (415 mg l(-l)), MDW 80 (301 mg l(-l)), M. komagatae (279 mg l(-l)), and MSF 34 (202 mg l(-l)), after 7 days of incubation. A drop in the media pH from 6.6 to 3.4 was associated with an increase in titratable acidity. Acid phosphatase activity was more pronounced in the culture filtrate than alkaline phosphatase activity. Adherence of phosphate to densely grown bacterial surface was observed under scanning electron microscope after 7-day-old cultures. Biochemical characterization and screening for methanol dehydrogenase gene (mxaF) confirmed the strains as methylotrophs. The mxaF gene sequence from MSF 32 clustered towards M. lusitanum sp. with 99% similarity. This study forms the first detailed report on phosphate solubilization by the PPFMs.

  8. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  9. [Filamentous and phosphate solubilizing fungi relationships with some edaphic parameters and coffee plantations management].

    Science.gov (United States)

    Posada, Raúl Hernando; Sánchez de Prager, Marina; Sieverding, Ewald; Aguilar Dorantes, Karla; Heredia-Abarca, Gabriela Patricia

    2012-09-01

    Soil properties and the environment have multiple outcomes on fungal communities. Although, the interaction effects between management intensity, pH, available phosphorus, organic carbon, soil texture and different fractions of water stable macro-aggregates on the communities of microscopic filamentous fungi (MFF), iron phosphate solubilizing fungi (PSF-Fe), and iron and calcium phosphate solubilizing fungi (PSF-(Fe+Ca)), have been previously evaluated in field conditions, this has never been performed in terms of their combined effects, neither with phosphate solubilizing fungi. To assess this, we collected 40 composite soil samples from eight Mexican and Colombian coffee plantations, with different management intensities and physico-chemical edaphic parameters, during 2008-2009. We isolated different communities of MFF, PSF-Fe and PSF-(Fe+Ca), by wet sieving and soil particles culture in Potato-Dextrose-Agar from soil samples, and we classified isolates in terms of their phosphate solubilizing ability. Following the principal component analysis results, we decided to analyze fungal communities and abiotic factors interactions for each country separately. Structural Equation Models revealed that organic carbon was positively associated to MFF richness and number of isolates (lambda>0.58), but its relationship with PSF-Fe and PSF-(Fe+Ca) were variable; while the available phosphorus, pH and water stable macro-aggregate fractions did not show a clear pattern. Management intensity was negatively related to PSF-Fe (lambda coffee plantations. We found that the relationships of clay and organic carbon content, and available phosphorus and soil pH, with the species richness and number of isolates of MFF, PSF-Fe and PSF-(Fe+Ca) were highly variable; this made impossible to generalize the responses between saprotrophic fungal groups and geographic zones. The management intensity was not related to species richness and number of isolates of MFF in any coffee areas, while

  10. Evaluation of the Effects of Bio Fertilizers Containing non Symbiotic Nitrogen Fixing and Phosphate Solubilizing Bacteria on Quantitative and Qualitative Traits of Wheat

    Directory of Open Access Journals (Sweden)

    M Mohtadi

    2016-02-01

    Full Text Available Introduction Wheat crop plays an important role in food security in a country such as Iran. Therefore, serious attention has been paid to ecological farming systems and sustainable management of wheat. For this purpose extensive efforts is done to find proper strategies to improve the quality of soil, agricultural products and started removal pollutants. One of the factors to achieve sustainable agriculture is to use natural agents such as biofertilizers. Several mechanisms are proposed to explain how effective plant growth promoting rhizobacteria is for growth and development of plants. These mechanisms include two groups, direct and indirect in general. Indirect mechanism is to increase absorption and availability of the nutrient elements soluble, producing plant growth regulators, siderophore production of iron chelator, and the phosphate soluble. Through indirect mechanisms such as antagonistic relation, PGPRs moderate the harmful effects of of plant pathogens and thereby lead to increase plant growth. The main goal of this study was to investigate the effect of biofertilizers containing non-symbiotic nitrogen fixing and phosphate solubilizing bacteria on quantitative and qualitative traits of wheat. Materials and Methods This Experiment was conducted in the research farm of Baykola agricultural research stations affiliated by agriculture and natural resources research center of Mazandaran during 2011-12 cropping season. In order to determine physical and chemical properties of the soil samples were taken from the depth of 0-30 cm,. Experimental design was split plots arrangement based on randomized complete block design with three replications. In this experiment chemical fertilizer was assumed as the main plot in 3 levels include: 1- noconsumption (C0, 2- equivalent to 50% of the fertilizer recommendations (C1, 3- equivalent to 100% of the fertilizer recommendations(C2 and two types of biological fertilizers was applied in the sub plot in

  11. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil.

    Science.gov (United States)

    Jeong, Seulki; Moon, Hee Sun; Shin, Doyun; Nam, Kyoungphile

    2013-12-15

    This study was conducted to investigate whether or not phosphate-solubilizing bacteria (PSB) as a kind of plant growth promoting rhizobacteria enhance the uptake of Cd by plants. In addition, the effect of PSB augmentation during phytoextraction on the microbial community of indigenous soil bacteria was also studied. In the initial Cd-contaminated soil, the major phyla were Proteobacteria (35%), Actinobacteria (38%) and Firmicutes (8%). While Proteobacteria were dominant at the second and sixth week (41 and 54%, respectively) in inoculated soil, Firmicutes (mainly belonging to the Bacilli class-61%), dramatically increased in the eight-week soil. For the uninoculated soil, the proportion of α-Proteobacteria increased after eight weeks (32%). Interestingly, Actinobacteria class, which was originally present in the soil (37%), seemed to disappear during phytoremediation, irrespective of whether PSB was inoculated or not. Cluster analysis and Principal Component Analysis revealed that the microbial community of eight-week inoculated soil was completely separated from the other soil samples, due to the dramatic increase of Bacillus aryabhattai. These findings revealed that it took at least eight weeks for the inoculated Bacillus sp. to functionally adapt to the introduced soil, against competition with indigenous microorganisms in soil. An ecological understanding of interaction among augmented bacteria, plant and indigenous soil bacteria is needed, for proper management of phytoextraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Distribution of phosphate solubilizer fungi on soil microhabitats in two landscapes from Guaviare, Colombia

    Directory of Open Access Journals (Sweden)

    Diana Fernanda Vera

    2002-01-01

    Full Text Available The distribution of the phosphate solubilizer mycobiota in two different soil microhabitats present in Guaviare, Colombia, were studied. Twelve samples from Arazá rhizosphere (Eugenia stipitata McVaugh and from soil without roots were processed using the soil wahing method (Domsch  et al., 1980. The percentage of colonization of soil particles by fungi was 69 %, with a higher intensity of colonization coming from the rhizospheric microhabitat. The high percentage of potential solubilizer colonies may point to this type of soil as reserve pf solubilizer fungi. The rhizospheric effect has been the main factor involved in the composition of the solubilizer fungi community.

  13. Identification of phosphate solubilizing bacteria in a Andisol of Colombian coffee region

    Directory of Open Access Journals (Sweden)

    Carlos Adolfo Cisneros Rojas

    2017-01-01

    Full Text Available Phosphorus is an essential nutrient for coffee growing, however, in Colombia most of the soils have low concentrations of this element. A strategy to supply the demand is the use of phosphate solubilizing microorganisms (PSM, in that order, 26 rhizospheric bacteria of Typic melanudans soil of Cajibío (Cauca, Colombia were isolated, in three agroecosystems: coffee at full sun exposure, coffee with shade and relic secondary forest, evaluating the phosphate solubilizing efficiency (PSE for Ca-P, Al-P, Fe-P in the solid and liquid Pikovskaya media. It showed the following solubilization sequence: Ca-P> Al-P> Fe-P. Two isolated bacteria were identified by DNA extraction and analysis of the 16S rRNA gene as Kocuria sp, and Bacillus subtilis. Later, using HPLC were identified organic acids present in the three phosphorus sources as: citric, gluconic, D- and L-malic, D- and L-lactic acid with higher presence in Ca-P-Kocuria sp. Strong acidification was observed for Fe-P and Al-P in all conditions.

  14. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  15. Artificial citrate operon and Vitreoscilla hemoglobin gene enhanced mineral phosphate solubilizing ability of Enterobacter hormaechei DHRSS.

    Science.gov (United States)

    Yadav, Kavita; Kumar, Chanchal; Archana, G; Kumar, G Naresh

    2014-10-01

    Mineral phosphate solubilization by bacteria is mediated through secretion of organic acids, among which citrate is one of the most effective. To overproduce citrate in bacterial systems, an artificial citrate operon comprising of genes encoding NADH-insensitive citrate synthase of E. coli and Salmonella typhimurium sodium-dependent citrate transporter was constructed. In order to improve its mineral phosphate solubilizing (MPS) ability, the citrate operon was incorporated into E. hormaechei DHRSS. The artificial citrate operon transformant secreted 7.2 mM citric acid whereas in the native strain, it was undetectable. The transformant released 0.82 mM phosphate in flask studies in buffered medium containing rock phosphate as sole P source. In fermenter studies, similar phenotype was observed under aerobic conditions. However, under microaerobic conditions, no citrate was detected and P release was not observed. Therefore, an artificial citrate gene cluster containing Vitreoscilla hemoglobin (vgb) gene under its native promoter, along with artificial citrate operon under constitutive tac promoter, was constructed and transformed into E. hormaechei DHRSS. This transformant secreted 9 mM citric acid under microaerobic conditions and released 1.0 mM P. Thus, incorporation of citrate operon along with vgb gene improves MPS ability of E. hormaechei DHRSS under buffered, microaerobic conditions mimicking rhizospheric environment.

  16. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Javadi Nobandegani

    2015-01-01

    Full Text Available Phosphate solubilizing bacteria (PSB can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang oil palm field (University Putra Malaysia. Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer in an oil palm field.

  17. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    Science.gov (United States)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  18. EVALUATION OF PHOSPHATE SOLUBILIZING MICROORGANISMS (PSMs FROM RHIZOSPHERE SOIL OF DIFFERENT CROP PLANTS AND ITS ANTAGONISTIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Samikan Krishnakumar

    2014-04-01

    Full Text Available Indigenous rhizosphere soil samples were collected during study period (October 2011 – March 2012 of different crop plant from Thiruvannamalai District, Tamilnadu, India for the enumeration of Phosphate solubilizing microorganisms (PSMs. Efficient phosphate solubilizing bacteria, fungi and heterotrophic bacteria were enumerated. Maximum heterotrophic bacterial populations (19.4 X105, phosphate solubilizing bacteria (4.7 X 105 were recorded in the month of February and phosphate solubilizing fungi (3.9 X 102 were documented in the month of December in rhizosphere soil of ground nut. Minimum bacterial populations (14.3 X 105 were observed in rhizosphere soil of chilli in the month of March. Lowest phosphate solubilizing bacteria (1.2 X105 and phosphate solubilzing fungi (1.2 X 102 were observed in rhizosphere soil of paddy during the month of October. Phosphate solubilizing bacteria Pseudomonassp. - BS1, Bacillus sp. – BS2, Micrococcus sp. – BS3 and fungi Aspergillus sp. – FS1, Penicillium sp. – FS2.and Trichoderma sp. – FS3 were identified. Pseudomonas sp. - BS1. exhibited maximum solubilizing efficiency (SE and solubilizing index (SI of 300.0 and 4.0 respectively. In fungi Aspergillus sp. – FS1 showed a maximum solubilizing efficiency (SE and solubilizing index(SI of 283.3 and 3.8 respectively. Antagonistic activity of P-solubilizing Pseudomonassp. - BS1 was deliberated against selected fungal plant pathogens. Among pathogens studied Aspergillus sp. showed a maximum inhibition activity (16 mm and minimum activity (12 mm was observed against Fusarium sp. Moreover inhibition efficiency (IE and inhibition index (II of Pseudomonas sp. - BS1. also calculated base on the antagonistic activity. Aspergillus sp. exhibited highest inhibition efficiency and inhibition index of 166.6 and 3.6 respectively.

  19. Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.)

    NARCIS (Netherlands)

    Tahir, M.; Mirza, M.S.; Zaheer, A.; Rocha Dimitrov, M.; Smidt, H.; Hameed, S.

    2013-01-01

    The aim of the present study was to isolate phosphate solubilizing bacteria from wheat rhizosphere and investigate their potential for plant growth promotion. Three phosphate solubilizing bacterial strains were isolated by serial dilution method from the rhizosphere of wheat grown under wheat-cotton

  20. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Liu, X.; Cheng, B.S.; Ma, X.L.; Lyu, X.; Zhao, X.; Ju, Y.; Min, Z.; Fang, Y.

    2016-07-01

    Phosphate-solubilizing bacteria (PSB) have the ability to solubilize insoluble phosphorus (P) and release soluble P. Extensive research has been performed with respect to PSB isolation from the rhizospheres of various plants, but little is known about the prevalence of PSB in the grapevine rhizosphere. In this study, we aimed to isolate and identify PSB from the grapevine rhizosphere in five vineyards of Northwest China, to characterize their plant-growth-promoting (PGP) traits, evaluate the effect of stress on their phosphate-solubilizing activity (PSA), and test their ability to stimulate the growth of Vitis vinifera L. cv. Cabernet Sauvignon. From the vineyard soils, 66 PSB isolates were screened, and 10 strains with high PSA were identified by 16S rRNA sequencing. Sequence analysis revealed that these 10 strains belonged to 4 genera and 5 species: Bacillus aryabhattai, B. megaterium, Klebsiella variicola, Stenotrophomonas rhizophila, and Enterobacter aerogenes. The selected PSB strains JY17 (B. aryabhattai) and JY22 (B. aryabhattai) were positive for multiple PGP traits, including nitrogen fixation and production of indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, and protease. JY17 and JY22 showed strong PSA under stress conditions of high pH, high salt, and high temperature. Therefore, these two isolates can be used as biofertilizers in saline-alkaline soils. The inoculation with PSB significantly facilitated the growth of V. vinifera cv. Cabernet Sauvignon under greenhouse conditions. Use of these PSB as biofertilizers will increase the available P content in soils, minimize P-fertilizer application, reduce environmental pollution, and promote sustainable agriculture.

  1. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers

    International Nuclear Information System (INIS)

    Liu, M.; Liu, X.; Cheng, B.S.; Ma, X.L.; Lyu, X.; Zhao, X.; Ju, Y.; Min, Z.; Fang, Y.

    2016-01-01

    Phosphate-solubilizing bacteria (PSB) have the ability to solubilize insoluble phosphorus (P) and release soluble P. Extensive research has been performed with respect to PSB isolation from the rhizospheres of various plants, but little is known about the prevalence of PSB in the grapevine rhizosphere. In this study, we aimed to isolate and identify PSB from the grapevine rhizosphere in five vineyards of Northwest China, to characterize their plant-growth-promoting (PGP) traits, evaluate the effect of stress on their phosphate-solubilizing activity (PSA), and test their ability to stimulate the growth of Vitis vinifera L. cv. Cabernet Sauvignon. From the vineyard soils, 66 PSB isolates were screened, and 10 strains with high PSA were identified by 16S rRNA sequencing. Sequence analysis revealed that these 10 strains belonged to 4 genera and 5 species: Bacillus aryabhattai, B. megaterium, Klebsiella variicola, Stenotrophomonas rhizophila, and Enterobacter aerogenes. The selected PSB strains JY17 (B. aryabhattai) and JY22 (B. aryabhattai) were positive for multiple PGP traits, including nitrogen fixation and production of indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, and protease. JY17 and JY22 showed strong PSA under stress conditions of high pH, high salt, and high temperature. Therefore, these two isolates can be used as biofertilizers in saline-alkaline soils. The inoculation with PSB significantly facilitated the growth of V. vinifera cv. Cabernet Sauvignon under greenhouse conditions. Use of these PSB as biofertilizers will increase the available P content in soils, minimize P-fertilizer application, reduce environmental pollution, and promote sustainable agriculture.

  2. Mineral phosphate solubilization by wild type and radiation induced mutants of pantoea dispersa and pantoea terrae

    International Nuclear Information System (INIS)

    Murugesan, Senthilkumar; Lee, Young Keun; Kim, Jung Hun

    2009-01-01

    Three mineral phosphate solubilizing (MPS) bacteria where isolated from rhizosphere soil samples of common bean and weed plants. 16S rDNA analysis indicated that the isolate P2 and P3 are closely related to Pantoea dispersa while isolate P4 is closely related to Pantoea terrae. Islates P2 and P3 recorded 381.60 μg ml -1 of tricalcium phosphate (TCP) solubilization respectively on 3 days incubation. Isolate P4 recorded the TCP solubilization of 215.85 μg ml -1 and the pH was dropped to 4.44 on 24 h incubation. Further incubation of P4 sharply decreased the available phosphorous to 28.94 μg ml -1 and pH level was raised to 6.32. Gamma radiation induced mutagenesis was carried out at LD 99 dose of the wild type strains. The total of 14 mutant clones with enhanced MPS activity and 4 clones with decreased activity were selected based on solubilization index (SI) and phosphate solubilization assay. Mutant P2-M1 recorded the highest P-solubilizing potential among any other wild or mutnat clones by releasing 504.21 μg ml -1 of phosphorous i.e. 35% higher than its wild type by the end of day 5. A comparative evaluation of TCP solubilization by wild type isolates of Pantoea and their mutants, led to select three MPS mutant clones such as P2-M1, P3-M2 and P3-M4 with a potential to release >471.67 μg ml 1 of phosphorous from TCP. These over expressing mutant clones are considered as suitable candidates for biofertilization

  3. Effect of diazotrophic bacteria as phosphate solubilizing and indolic compound producers on maize plants

    Directory of Open Access Journals (Sweden)

    Mónica Del Pilar López Ortega

    2013-07-01

    Full Text Available Phosphorus is limiting for growth of maize plants, and because of that use of fertilizers like Rock Phosphate has been proposed. However, direct use of Rock Phosphate is not recommended because of its low availability, so it is necessary to improve it. In this study, a group of diazotrophic bacteria were evaluated as phosphate-solubilizing bacteria, for their production of indolic compounds and for their effects on growth of maize plants. Strains of the genera Azosporillum, Azotobacter, Rhizobium and Klebsiella, were quantitatively evaluated for solubilization of Ca3(PO42 and rock phosphate as a single source of phosphorous in SRS culture media. Additionally, the phosphatase enzyme activity was quantified at pH 5.0, 7.0 and 8.0 using p-nitrophenyl phosphate, and production of indolic compound was determined by colorimetric quantification. The effect of inoculation of bacteria on maize was determined in a completely randomized greenhouse experiment where root and shoot dry weights and phosphorus content were assessed. Results showed that strain C50 produced 107.2 mg .L-1 of available-P after 12 days of fermentation, and AC10 strain had the highest phosphatase activity at pH 8 with 12.7 mg of p-nitrophenol mL .h-1. All strains synthetized indolic compounds, and strain AV5 strain produced the most at 63.03 µg .mL-1. These diazotrophic bacteria increased plant biomass up to 39 % and accumulation of phosphorus by 10%. Hence, use of diazotrphic phosphate-solubilizing bacteria may represent an alternative technology for fertilization systems in maize plants.

  4. Finger Millet Growth and Nutrient Uptake Is Improved in Intercropping With Pigeon Pea Through “Biofertilization” and “Bioirrigation” Mediated by Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Krishna Saharan

    2018-06-01

    Full Text Available Legume-cereal intercropping is well known in traditional dry land agriculture. Here, we tested whether finger millet, a shallow-rooted cereal, can profit from neighboring pigeon pea, a deep-rooted legume, in the presence of “biofertilization” with arbuscular mycorrhizal fungi (AMF and plant growth-promoting rhizobacteria (PGPR, under drought conditions. We conducted a greenhouse experiment using compartmented microcosms. Pigeon pea was grown in a deep compartment with access to a moist substrate layer at the bottom, whereas finger millet was grown in a neighboring shallow compartment, separated by 25-μm nylon mesh, without access to the moist substrate layer. In the presence of a common mycorrhizal network (CMN, with or without PGPR, a drought condition had little negative effect on the biomass production of the finger millet plant whereas in absence of biofertilization, finger millet biomass production was less than half compared to well-watered condition. Biofertilization strongly increased nitrogen and phosphorus uptake by both plants, both under well-watered and drought conditions. In the presence of AMF, both plants also acquired 15N and 33P, offered in a labeling compartment accessible to fungal hyphae but not to roots. Our results show that “biofertilization” with AMF alleviates the negative effects of drought condition on finger millet, indicating that the CMN connecting pigeon pea and finger millet exert clearly a positive influence in this simulated intercropping system.

  5. Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth.

    Science.gov (United States)

    Santana, E B; Marques, E L S; Dias, J C T

    2016-10-05

    Microorganisms with the ability to release nutrients to the soil from insoluble sources may be useful for plant cultivation. We evaluated the growth-promoting effect on Jatropha curcas L. of phosphate-solubilizing bacteria (PSB) and the native microbiota in soil with or without rock dust. J. curcas L. is important for biodiesel production. The experiments were performed in a greenhouse under a random-statistical design with 14 replicates. The soil received increasing dosages of rock dust. The presence of resident microorganisms and PSB inoculum was correlated with plant height, biomass production, and phosphorus content in plants for 120 days. Native soil microorganisms were detected and identified using denaturing gradient gel electrophoresis and DNA sequence analysis. Several bacterial populations belonged to the genus Bacillus. Populations associated with the phyla Chytridiomycota and Ascomycota were detected among the fungi. The best results for the variable plant height were correlated with the presence of resident microbiota and rock dust until the end of the experiment. The largest biomass production and the highest content of phosphorus occurred in the presence of soil-resident microbiota only up to 120 days. No significant effects were observed for biomass production with the use of PSB combined with rock dust. J. curcas L. under the influence of only resident microbiota showed the best plant growth results. Future research will focus on the specificity of resident microbiota activity in plant growth promotion and the isolation of these microorganisms to produce a new inoculum to be tested in various plants.

  6. Artificial Citrate Operon Confers Mineral Phosphate Solubilization Ability to Diverse Fluorescent Pseudomonads

    Science.gov (United States)

    Adhikary, Hemanta; Sanghavi, Paulomi B.; Macwan, Silviya R.; Archana, Gattupalli; Naresh Kumar, G.

    2014-01-01

    Citric acid is a strong acid with good cation chelating ability and can be very efficient in solubilizing mineral phosphates. Only a few phosphate solubilizing bacteria and fungi are known to secrete citric acids. In this work, we incorporated artificial citrate operon containing NADH insensitive citrate synthase (gltA1) and citrate transporter (citC) genes into the genome of six-plant growth promoting P. fluorescens strains viz., PfO-1, Pf5, CHAO1, P109, ATCC13525 and Fp315 using MiniTn7 transposon gene delivery system. Comprehensive biochemical characterization of the genomic integrants and their comparison with plasmid transformants of the same operon in M9 minimal medium reveals the highest amount of ∼7.6±0.41 mM citric and 29.95±2.8 mM gluconic acid secretion along with ∼43.2±3.24 mM intracellular citrate without affecting the growth of these P. fluorescens strains. All genomic integrants showed enhanced citric and gluconic acid secretion on Tris-Cl rock phosphate (TRP) buffered medium, which was sufficient to release 200–1000 µM Pi in TRP medium. This study demonstrates that MPS ability could be achieved in natural fluorescent pseudomonads by incorporation of artificial citrate operon not only as plasmid but also by genomic integration. PMID:25259527

  7. The variable charge of andisols as affected by nanoparticles of rock phosphate and phosphate solubilizing bacteria

    Science.gov (United States)

    Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.

    2018-02-01

    Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.

  8. Field studies on two rock phosphate solubilizing actinomycete isolates as biofertilizer sources

    Science.gov (United States)

    Mba, Caroline C.

    1994-03-01

    Recently biotechnology is focusing attention on utilization of biological resources to solve a number of environmental problems such as soil fertility management. Results of microbial studies on earthworm compost in the University of Nigeria farm identified a number of rock phosphate solubilizing actinomycetes. Two of these, isclates 02 and 13, were found to be efficient rock phosphate (RP) solubilizers and fast-growing cellulolytic microbes producing extracellular hydrolase enzymes. In this preliminary field study the two microbial isolates were investigated with respect to their effects on the growth of soybean and egusi as well as their effect on the incidence of toxicity of poultry droppings. Application of these isolates in poultry manure-treated field plots, as microbial fertilizers, brought about yield increases of 43% and 17% with soybeans and 19% and 33% with egusi, respectively. Soil properties were also improved. With isolates 02 and 13, the soil available phosphorus increased at the five-leaf stage, while N-fixation in the soil increased by 45% or 11% relative to control. It was further observed that air-dried poultry manure after four days of incubation was still toxic to soybean. The toxic effect of the applied poultry manure was reduced or eliminated with microbial fertilizers 02 or 13, respectively. The beneficial effects of the microbial organic fertilizer are discussed. Justification for more intensive research on rock phosphate organic fertilizer is highlighted.

  9. Effect of phosphate solubilizing bacteria on the growth of Agave angustifolia Haw (Maguey Espadin)

    International Nuclear Information System (INIS)

    Cruz, A.B.; Gutierrez, G.M.

    2015-01-01

    Experiments were conducted to evaluate the potential effects of phosphate solubilizing bacteria (PSB) on the growth of maguey espadin (Agave angustifolia Haw.). A total of nine strains of PSB, previously isolated in the maguey rhizosphere and identified as PSBVa, PSBVb, PSBVf, PSBHa, PSBHc, PSBHd, PSBMg, PSBMh and PSBMi were tested on maguey plants grown in phosphorus-deficient sterilized and unsterilized soils of three sites where maguey is grown (valley, hill and mountain) under greenhouse conditions. Aerial dry weight and the total weight of maguey plants inoculated with PSBMh in unsterile mountain soil increased by 12.14% and 10.99% respectively, compared with the uninoculated control. Total root dry weight increased by 17.85% with PSBMh in sterile mountain soils and by 11.64% with PSBMg in unsterile mountain soils, with respect to the uninoculated sterile and unsterile control respectively. Plant stem diameter increased by 13.61% with PSBVb in unsterile valley soil, compared to the uninoculated control. Root length was 56.84% higher with PSBMi in unsterile mountain soils than the uninoculated control. Plant leaf number increased by 35% with PSBHd in unsterile hill soil, with respect to the uninoculated control. In all treatments, the available phosphorus at harvest was higher than pre-planting levels. This study suggests that isolated PSBMh, PSBMg and PSBMi are the most efficient biofertilizers for maguey espadin cultivation. (author)

  10. Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin

    2017-01-01

    The presence of heavy metals in the soil is a matter of growing concern due to their toxic and non-biodegradable nature. Lack of effectiveness of various conventional methods due to economic and technical constraints resulted in the search for an eco-friendly and cost-effective biological techniques for heavy metal removal from the environment. Until now, phytoremediation has emerged as an innovative technique to address the problem. However, the efficiency of phytoremediation process is hindered under the high metal concentration conditions. Hence, phosphate solubilizing microbes (PSM) assisted phytoremediation technique is gaining more insight as it can reduce the contamination load even under elevated metal stressed conditions. These microbes convert heavy metals into soluble and bioavailable forms, which consequently facilitate phytoremediation. Several studies have reported that the use of microbial consortium for remediation is considered more effective as compared to single strain pure culture. Therefore, this review paper focuses on the current trends in research related to PSM mediated uptake of heavy metal by plants. The efficiency of PSM consortia in enhancing the phytoremediation process has also been reviewed. Moreover, the role of phosphatase enzymes in the mineralization of organic forms of phosphate in soil is further discussed. Biosurfactant mediated bioremediation of metal polluted soils is a matter of extensive research nowadays. Hence, the recent advancement of using biosurfactants in enhanced phytoremediation of metal stressed soils is also described.

  11. Isolation and characterization of a phosphate solubilizing heavy metal tolerant bacterium from River Ganga, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2015-12-01

    Full Text Available Phosphates solubilizing bacterial (PSB strains were isolated from the jute mill effluent discharge area of the Ganga river water at Bansberia, West Bengal, India. Experimental studies found that the strain KUPSB16 was effective in solubilization of phosphate with phosphate solubilization index (SI = 3.14 in Pikovskaya’s agar plates along with maximum solubilized phosphate production of 208.18 g mL-1 in broth culture. Highest drop in pH value was associated with maximum amount of phosphate solubilization by the PSB strain KUPSB16 where pH decreased to 3.53 from initial value of 7.0±0.2. The isolated PSB strains were tested for tolerance against four heavy metals such as cadmium (Cd, chromium (Cr, lead (Pb and zinc (Zn at concentrations 1-15 mM. The results showed that most of the PSB isolates grew well at low concentrations of heavy metals and their number gradually decreased as the concentration increased. Isolated PSB strain KUPSB16 was tested for its multiple metal resistances. Minimal inhibitory concentrations (MIC for Cd2+, Cr6+, Pb2+ and Zn2+ in tris-minimal broth medium were 4.2, 5.5, 3.6 and 9.5 mM respectively. The MIC values for the metals studied on agar medium was higher than in broth medium and ranged from 4.8-11.0 mM. The isolated bacterial strain KUPSB16 was subjected to morphological, physiological and biochemical characterization and identified as the species of the genus Bacillus. The phosphate solubilizing bacterium possessing the properties of multiple heavy metal tolerance in heavy metal contaminated areas might be exploited for bioremediation studies in future.

  12. Changes of Phosphate Solubilizing Bacteria Population on Paddy Field with Intensive Farming became Sustainable Organic Farming System

    Directory of Open Access Journals (Sweden)

    Dermiyati

    2009-05-01

    Full Text Available The research aimed to study the change of population of phosphate solubilizing microorganisms according to the application time of bokashi which were applied continously on organic paddy rice fields since years of 2000 up to 2006. The research was conducted in a Randomized Completely Block Design in four replicates. The treatments were without bokashi (control; with intensively application of NPK fertilizers, bokashi application for 3 planting seasons (12 t ha-1, bokashi application for 4 planting seasons (16 t ha-1, bokashi application for 7 planting seasons (28 t ha-1, and bokashi application for 9 planting seasons (36 t ha-1. The results showed that the population of phosphate solubilizing microorganisms were not affected by continously applied of bokashi and did not have correlations to organic carbon, total nitrogen, ratio C/N, soil pH, and soil water content. However, the phosphate solubilizing microorganisms had played a role in the availability of the soil available-P which were shown by increasing of paddy yields year by year, although the contribution of soil phosphorus from bokashi is a relatively low. Yet, the bokashi application on the organic paddy fields did not increase the soil availble-P because most of the P which was absorbed by the plants coming from residual P fertilizers either from bokashi or SP-36 which were intensevely given before.

  13. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India

    Directory of Open Access Journals (Sweden)

    B.C. Behera

    2017-06-01

    Full Text Available Phosphorus is an essential element for all life forms. Phosphate solubilizing bacteria are capable of converting phosphate into a bioavailable form through solubilization and mineralization processes. Hence in the present study a phosphate solubilizing bacterium, PSB-37, was isolated from mangrove soil of the Mahanadi river delta using NBRIP-agar and NBRIP-BPB broth containing tricalcium phosphate as the phosphate source. Based on phenotypic and molecular characterization, the strain was identified as Serratia sp. The maximum phosphate solubilizing activity of the strain was determined to be 44.84 μg/ml, accompanied by a decrease in pH of the growth medium from 7.0 to 3.15. During phosphate solubilization, various organic acids, such as malic acid (237 mg/l, lactic acid (599.5 mg/l and acetic acid (5.0 mg/l were also detected in the broth culture through HPLC analysis. Acid phosphatase activity was determined by performing p-nitrophenyl phosphate assay (pNPP of the bacterial broth culture. Optimum acid phosphatase activity was observed at 48 h of incubation (76.808 U/ml, temperature of 45 °C (77.87 U/ml, an agitation rate of 100 rpm (80.40 U/ml, pH 5.0 (80.66 U/ml and with glucose as a original carbon source (80.6 U/ml and ammonium sulphate as a original nitrogen source (80.92 U/ml. Characterization of the partially purified acid phosphatase showed maximum activity at pH 5.0 (85.6 U/ml, temperature of 45 °C (97.87 U/ml and substrate concentration of 2.5 mg/ml (92.7 U/ml. Hence the present phosphate solubilizing and acid phosphatase production activity of the bacterium may have probable use for future industrial, agricultural and biotechnological application.

  14. Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Mukhtar, Salma; Shahid, Izzah; Mehnaz, Samina; Malik, Kauser A

    2017-12-01

    Biofertilizers are usually carrier-based inoculants containing beneficial microorganisms. Incorporation of microorganisms in carrier material enables easy-handling, long-term storage and high effectiveness of biofertilizers. Objective of the present study was to assess enriched biogas sludge and soil as biofertilizer carriers on growth and yield of wheat. Six phosphate solubilizing strains were used in this study. Three phosphate solubilizing strains, 77-NS2 (Bacillus endophyticus), 77-CS-S1 (Bacillus sphaericus) and 77-NS5 (Enterobacter aerogenes) were isolated from the rhizosphere of sugarcane, two strains, PSB5 (Bacillus safensis) and PSB12 (Bacillus megaterium) from the rhizosphere of wheat and one halophilic phosphate solubilizing strain AT2RP3 (Virgibacillus sp.) from the rhizosphere of Atriplex amnicola, were used as bioinoculants. Phosphate solubilization ability of these strains was checked in vitro in Pikovskaya medium, containing rock phosphate (RP) as insoluble P source, individually supplemented with three different carbon sources, i.e., glucose, sucrose and maltose. Maximum phosphate solubilization; 305.6μg/ml, 217.2μg/ml and 148.1μg/ml was observed in Bacillus strain PSB12 in Pikovskaya medium containing sucrose, maltose and glucose respectively. A field experiment and pot experiments in climate control room were conducted to study the effects of biogas sludge and enriched soil based phosphorous biofertilizers on growth of wheat. Bacillus strain PSB12 significantly increased root and shoot dry weights and lengths using biogas sludge as carrier material in climate control room experiments. While in field conditions, significant increase in root and shoot dry weights, lengths and seed weights was seen by PSB12 and PSB5 (Bacillus) and Enterobacter strain 77-NS5 using biogas sludge as carrier. PSB12 also significantly increased both root and shoot dry weights and lengths in field conditions when used as enriched soil based inoculum. These results

  15. Sucrose dependent mineral phosphate solubilization in Enterobacter asburiae PSI3 by heterologous overexpression of periplasmic invertases.

    Science.gov (United States)

    Kumar, Chanchal; Wagh, Jitendra; Archana, G; Naresh Kumar, G

    2016-12-01

    Enterobacter asburiae PSI3 solubilizes mineral phosphates in the presence of glucose by the secretion of gluconic acid generated by the action of a periplasmic pyrroloquinoline quinone dependent glucose dehydrogenase. In order to achieve mineral phosphate solubilization phenotype in the presence of sucrose, plasmids pCNK4 and pCNK5 containing genes encoding the invertase enzyme of Zymomonas mobilis (invB) and of Saccharomyces cerevisiae (suc2) under constitutive promoters were constructed with malE signal sequence (in case of invB alone as the suc2 is secreted natively). When introduced into E. asburiae PSI3, E. a. (pCNK4) and E. a. (pCNK5) transformants secreted 21.65 ± 0.94 and 22 ± 1.3 mM gluconic acid, respectively, in the presence of 75 mM sucrose and they also solubilized 180 ± 4.3 and 438 ± 7.3 µM P from the rock phosphate. In the presence of a mixture of 50 mM sucrose and 25 mM glucose, E. a. (pCNK5) secreted 34 ± 2.3 mM gluconic acid and released 479 ± 8.1 µM P. Moreover, in the presence of a mixture of eight sugars (10 mM each) in the medium, E. a. (pCNK5) released 414 ± 5.3 µM P in the buffered medium. Thus, this study demonstrates incorporation of periplasmic invertase imparted P solubilization ability to E. asburiae PSI3 in the presence of sucrose and mixture of sugars.

  16. Effect of phosphate solubilizing bacteria on the phosphorus availability and yield of cotton (gossypium)

    International Nuclear Information System (INIS)

    Akhtar, N.; Iqbal, A.; Qureshi, M.A.; Khan, K.H

    2010-01-01

    Phosphate solubilizing bacteria (PSB) and plants have symbiotic relationship, as bacteria provide soluble phosphate for the plants and plants supply root borne carbon compounds which can be metabolized for bacterial growth. PSB solubilize the applied and fixed soil phosphorus resulting in higher crop yield. Intensive cropping has resulted in wide spread deficiency of Phosphorus in our soils and situation is becoming more serious because of a drastic increase in the cost of phosphatic fertilizers. Keeping in view the capabilities of microbes (Bacillus sp.), a field experiment was conducted on cotton at farmer field district Faisalabad in 2008. Effect of PSM (Bacillus spp.) was studied at three phosphorus levels i.e.20, 40 and 60 kg ha-l while N was applied at recommended dose (120 kg ha/sup -1/). Bacillus spp. was applied as seed coating to the cotton crop (Var. BT 121). Recommended plant protection measures were adopted. Results revealed that Bacillus spp. significantly increased the seed cotton yield; number of boll plant-I, boll weight, plant height, GOT (%), staple length, plant P and available P in the soil. Maximum seed cotton yield 4250 kg ha/sup -l/ was obtained with Bacillus inoculation along with 60 kg of P followed by 4162 kg ha/sup -1/ with Bacillus inoculation and 40 kg of P compared with their respective controls i.e.4093 and 3962 kg ha/sup -1/ respectively. Soil P was improved from 8.1 to 9.5 ppm by Bacillus inoculation. Phosphorus in plant matter was also higher (0.39%) as compare with control (0.36%). Rhizosphere soil pH was found slightly decreased (8.12 to 8.0) by Bacillus inoculation compare with control. It is concluded that PSB inoculation not only exerts beneficial effect on crop growth but also enhances the phosphorus concentration in the plant and soil. (author)

  17. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    Science.gov (United States)

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  18. Isolation, Characterization, and Molecular Identification of Phosphate Solubilizing Bacteria from Several Tropical Soils

    Directory of Open Access Journals (Sweden)

    Fahrizal Hazra

    2013-03-01

    Full Text Available The objectives of the research were: (i to isolate and characterize of phosphate solubilizing bacteria (PSB and (ii to identify PSB based on molecular amplification of 16S rRNA gene. Soil samples were collected from rhizosphere in Bogor, West Nusa Tenggara, and East Nusa Tenggara. Several stages in this research were: (i isolation PSB in Pikovskaya agar, (ii morphological and biochemical characterization of PSB, (iii measurement of phosphatase enzymes, and (iv measurement of secreting indole acetic acid phytohormone. As many as 29 isolates of PSB have been collected and three isolates of them, namely: P 3.5 (East Nusa Tenggara, P 6.2 (West Nusa Tenggara, and P 10.1 (Citeureup, West Java were chosen for further study. There were many characteristics of isolate P 10.1: (i it had capable to solubilize P with the value of highest solubilization index (1.80, (ii it had the highest phosphatase enzyme (120.40 mg kg-1, and (iii it had the highest pH decrease at each observation for six days. Isolates P 3.5 and P 10.1 were the Gram-negative bacteria with coccus shapes and isolate P 6.2 was a Gram-negative bacteria with bacillus shape. Deoxiribonucleat Acid (DNA amplification of these bacteria employing 16S rRNA primers generated the 1,300bp-PCR product. The results of the analysis of 16S rRNA gene sequences showed that isolates P 3.5 and P 10.1 has 98% similarity with Gluconacetobacter sp. strains Rg1-MS-CO and isolate P 6.2 has 97% similarity with Enterobacter sp. pp9c strains.

  19. PHOSPHATE-SOLUBILISING RHIZOBACTERIA ASSOCIATED WITH PHASEOLUS COCCINEUS L. RHIZOSPHERE

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-10-01

    Full Text Available Native phosphate solubilizing bacteria were isolated from runner bean rhizosphere in order to study their effect on releases of soluble phosphorus from inorganic P sources. 34.37% of the rhizobacteria isolates solubilized CaHPO4 in the qualitative P-solubilization plate method after seven days of incubation. The best PSB isolates were selected for further study concerning P-solubilization in liquid culture. All these isolates showed higher potential for solubilization of inorganic P as indicated by the increase of P amount in the RPAM medium. Our results showed that PSB strains play a significant role in the acidification of the medium facilitating the P solubilization probably due to organic acid production.

  20. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika

    2018-02-01

    In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30  ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Isolation and Identification of Phosphate Solubilizing and Nitrogen Fixing Bacteria from Soil in Wamena Biological Garden, Jayawijaya, Papua

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2005-07-01

    Full Text Available A study was undertaken to investigate the occurrence of phosphate solubilizing bacteria (PSB and nitrogen-fixing bacteria (NFB from soil samples of Wamena Biological Garden (WbiG. Eleven soil samples were collected randomly to estimate microbial population which used plate count method. The result showed that the microbial population ranged from 5.0x103-7.5x106 cells of bacteria/gram of soil and 5.0x103-1.5x107 cells of bacteria/gram of soil for PSB and NFB respectively. There were 17 isolates which have been identified till genus and species. The isolated microorganism were identified as PSB i.e. Bacillus sp., B. pantothenticus, B. megatherium, Flavobacterium sp., F. breve, Klebsiella sp., K. aerogenes, Chromobacterium lividum, Enterobacter alvei, E. agglomerans, Pseudomonas sp., Proteus sp. and as NFB i.e. Azotobacter sp., A. chroococcum, A. paspalii, Rhizobium sp., and Azospirillum sp.

  2. An optimized regulating method for composting phosphorus fractions transformation based on biochar addition and phosphate-solubilizing bacteria inoculation.

    Science.gov (United States)

    Wei, Yuquan; Zhao, Yue; Wang, Huan; Lu, Qian; Cao, Zhenyu; Cui, Hongyang; Zhu, Longji; Wei, Zimin

    2016-12-01

    The study was conducted to investigate the influence of biochar and/or phosphate-solubilizing bacteria (PSB) inoculants on microbial biomass, bacterial community composition and phosphorus (P) fractions during kitchen waste composting amended with rock phosphate (RP). There were distinct differences in the physic-chemical parameters, the proportion of P fractions and bacterial diversity in different treatments. The contribution of available P fractions increased during composting especially in the treatment with the addition of PSB and biochar. Redundancy analysis showed that bacterial compositions were significantly influenced by P content, inoculation and biochar. Variance partitioning further showed that synergy of inoculated PSB and indigenous bacterial communities and the joint effect between biochar and bacteria explained the largest two proportion of the variation in P fractions. Therefore, the combined application of PSB and biochar to improve the inoculation effect and an optimized regulating method were suggested based on the distribution of P fractions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting.

    Science.gov (United States)

    Wei, Yuquan; Zhao, Yue; Fan, Yuying; Lu, Qian; Li, Mingxiao; Wei, Qingbin; Zhao, Yi; Cao, Zhenyu; Wei, Zimin

    2017-10-01

    This study aimed to assess the effect of phosphate-solubilizing bacteria (PSB) application and inoculation methods on rock phosphate (RP) solubilization and bacterial community during composting. The results showed that PSB inoculation in different stages of composting, especially both in the beginning and cooling stages, not only improved the diversity and abundance of PSB and bacterial community, but also distinctly increased the content of potential available phosphorus. Redundancy analysis indicated that the combined inoculation of PSB in the initial stage with higher inoculation amount and in the cooling stage with lower inoculation amount was the best way to improve the inoculation effect and increase the solubilization and utilization of RP during composting. Besides, we suggested three methods to improve phosphorus transformation and long-term utilization efficiency in composts based on biological fixation of phosphates by humic substance and phosphate-accumulating organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L.) under water deficit stress.

    Science.gov (United States)

    Ehteshami, S M R; Aghaalikhani, M; Khavazi, K; Chaichi, M R

    2007-10-15

    The effect of seed inoculation by phosphate solubilizing microorganisms on growth, yield and nutrient uptake of maize (Zea mays L. SC. 704) was studied in a field experiment. Positive effect on plant growth, nutrient uptake, grain yield and yield components in maize plants was recorded in the treatment receiving mixed inoculum of Glomus intraradices (AM) and Pseudomonas fluorescens (Pf). Co-inoculation treatment significantly increased grain yield, yield components, harvest index, grain N and P, soil available P, root colonization percentage and crop WUE under water deficit stress. In some of investigated characteristics under well-watered conditions, chemical fertilizer treatment was higher than double inoculated treatments, but this difference was not significant. Seed inoculation only with AM positively affected the measured parameters as amount as co-inoculated treatments. According to the results showed in contrast to the inoculated treatments with AM+Pf and AM, the application of alone Pf caused a comparatively poor response. Therefore, this microorganism needs to a complement for its activity in soil. All of measured parameters in inoculated treatments were higher than uninoculated treatments under water deficit stress conditions. Furthermore, the investigated characteristics of co-inoculated plants under severe water deficit stress conditions were significantly lower than co-inoculated plants under well-watered and moderate-stressed conditions. Therefore it could be stated, these microorganisms need more time to fix and establishing themselves in soil. The present finding showed that phosphate-solubilizing microorganisms can interact positively in promoting plant growth as well as P uptake of maize plants, leading to plant tolerance improving under water deficit stress conditions.

  5. Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67.

    Science.gov (United States)

    Wagh, Jitendra; Shah, Sonal; Bhandari, Praveena; Archana, G; Kumar, G Naresh

    2014-06-01

    Gluconic acid secretion mediated by the direct oxidation of glucose by pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is responsible for mineral phosphate solubilization in Gram-negative bacteria. Herbaspirillum seropedicae Z67 (ATCC 35892) genome encodes GDH apoprotein but lacks genes for the biosynthesis of its cofactor PQQ. In this study, pqqE of Erwinia herbicola (in plasmid pJNK1) and pqq gene clusters of Pseudomonas fluorescens B16 (pOK53) and Acinetobacter calcoaceticus (pSS2) were over-expressed in H. seropedicae Z67. Transformants Hs (pSS2) and Hs (pOK53) secreted micromolar levels of PQQ and attained high GDH activity leading to secretion of 33.46 mM gluconic acid when grown on 50 mM glucose while Hs (pJNK1) was ineffective. Hs (pJNK1) failed to solubilize rock phosphate, while Hs (pSS2) and Hs (pOK53) liberated 125.47 μM and 168.07 μM P, respectively, in minimal medium containing 50 mM glucose under aerobic conditions. Moreover, under N-free minimal medium, Hs (pSS2) and Hs (pOK53) not only released significant P but also showed enhanced growth, biofilm formation, and exopolysaccharide (EPS) secretion. However, indole acetic acid (IAA) production was suppressed. Thus, the addition of the pqq gene cluster, but not pqqE alone, is sufficient for engineering phosphate solubilization in H. seropedicae Z67 without compromising growth under nitrogen-fixing conditions.

  6. EFFICIENCY OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR IN SUGARCANE

    Directory of Open Access Journals (Sweden)

    Antonio Morgado González

    2015-10-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are an alternative for promoting sugarcane (Saccharum spp. development. Growth promotion was evaluated in sugarcane vitroplants inoculated separately with twenty-four strains of seven different bacterial species. Total indole synthesis and phosphate solubilization activity were determined in each strain. The experimental unit was one 5 L pot filled with a sterile mixture of farm soil-agrolite and one plant. The experimental design was completely random. Inoculation consisted of 1.0 mL of bacterial suspension (1 × 107 CFU. Plant height, stem diameter, number of shoots, leaf area and dry matter of shoot and root were determined every two weeks. The Ochrobactrum anthropi strains N208 and IMP311 and Pseudomonas luteola IMPCA244 had the highest production of total indoles (116.69, 115.70 and 117.34 µg mL-1, respectively. The Stenotrophomonas maltophilia strains CA158 and 79 exhibited the highest values of phosphate solubilization (222.43 and 216.38 µg mL-1, respectively. In general, plant height increased 27.75%, stem diameter 30.75%, number of tillers 38.5%, leaf area 49%, aerial dry matter 59.75% and root dry matter 59.5%. P. luteola, P. f luorescens, O. anthropi and S. maltophilia exhibited the highest values of the leaf area index, net assimilation, and relative and absolute growth rates. P. luteola IMPCA244, O. anthropi IMP311, Aeromonas salmonicida N264, Burkholderia cepacia N172, P. f luorescens N50 and S. maltophilia 79 promoted the highest values in different response variables throughout the study. Before using these strains as sugarcane biofertilizer, additional studies are required.

  7. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger

    Science.gov (United States)

    Li, Zhen; Bai, Tongshuo; Dai, Letian; Wang, Fuwei; Tao, Jinjin; Meng, Shiting; Hu, Yunxiao; Wang, Shimei; Hu, Shuijin

    2016-04-01

    Phosphate solubilizing fungi (PSF) have huge potentials in enhancing release of phosphorus from fertilizer. Two PSF (NJDL-03 and NJDL-12) were isolated and identified as Penicillium oxalicum and Aspergillus niger respectively in this study. The quantification and identification of organic acids were performed by HPLC. Total concentrations of organic acids secreted by NJDL-03 and NJDL-12 are ~4000 and ~10,000 mg/L with pH values of 3.6 and 2.4 respectively after five-days culture. Oxalic acid dominates acidity in the medium due to its high concentration and high acidity constant. The two fungi were also cultured for five days with the initial pH values of the medium varied from 6.5 to 1.5. The biomass reached the maximum when the initial pH values are 4.5 for NJDL-03 and 2.5 for NJDL-12. The organic acids for NJDL-12 reach the maximum at the initial pH = 5.5. However, the acids by NJDL-03 continue to decrease and proliferation of the fungus terminates at pH = 2.5. The citric acid production increases significantly for NJDL-12 at acidic environment, whereas formic and oxalic acids decrease sharply for both two fungi. This study shows that NJDL-12 has higher ability in acid production and has stronger adaptability to acidic environment than NJDL-03.

  8. Organic acids production by rhizosphere microorganisms isolated from a Typic Melanudands and its effects on the inorganic phosphates solubilization

    Directory of Open Access Journals (Sweden)

    Eduardo José Serna Posso

    2017-04-01

    Full Text Available It has been established that organic acid secretion by rhizosphere microorganisms is one of the mechanisms to solubilize the phosphorus (P attached to insoluble mineral compounds in soil. This action is an important biotechnological alternative, especially in those soils where high fixation of this nutrient occurs, a very common situation in the tropics. This research evaluated the ability performed by five bacterial and five fungal isolates from Typic Melanudands soil to produce organic acids and generate available phosphorus from insoluble P sources. Given these concerns, the selected microorganisms were replicated for 7 days in liquid medium Pikovskaya (PVK modified sources tricalcium phosphate (P-Ca, aluminum phosphate (P-Al and iron phosphate (P-Fe. The results indicated that phosphorus availability in the media, correlates positively with the organic acids production in each of the sources used (P-Ca (0.63, P-Al (0.67 and P-Fe (0.63. In turn, the chemical processes linked to the phosphates solubilization (e.g., Ca availability affected the development of the microorganisms tested. Both, fungi and bacteria varied in their ability production and type of metabolized organic acids, the most frequent were as follows: citric and gluconic acid.

  9. Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7.

    Science.gov (United States)

    Zhu, Hong-Ji; Sun, Li-Fan; Zhang, Yan-Fei; Zhang, Xiao-Li; Qiao, Jian-Jun

    2012-05-01

    To develop high-efficient biofertilizer, an environmental stress-tolerant phosphate-solubilizing microorganism (PSM) was isolated from agricultural wastes compost, and then applied to spent mushroom substrate (SMS). The isolate FL7 was identified as Pichia farinose with resistance against multiple environmental stresses, including 5-45°C temperature, 3-10 pH range, 0-23% (w/v) NaCl and 0-6M ammonium ion. Under the optimized cultivation condition, 852.8 mg/l total organic acids can be produced and pH can be reduced to 3.8 after 60 h, meanwhile, the soluble phosphate content reached 816.16 mg/l. The P. farinose was used to convert SMS to a phosphate biofertilizer through a semi-solid fermentation (SSF) process. After fermentation of 10 days, cell density can be increased to 5.6 × 10(8)CFU/g in biomass and pH in this medium can be decreased to 4.0. SMS biofertilizer produced by P. farinose significantly improved the growth of soybean in pot experiments, demonstrating a tremendous potential in agricultural application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria

    Science.gov (United States)

    Amanullah

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha-1) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition. PMID:26697038

  11. Adaptation of six shallots varieties to phosphate solubilizing bacteria on the flower formation, seeds fromation, and yields on the lowland

    Science.gov (United States)

    Triharyanto, E.; Sudadi; Rawandari, S.

    2018-03-01

    Using seeds as planting materials is a solution to improve the quality and quantity of shallot. This study aims to determine the interaction between shallot varieties and Phosphate- Solubilizing Bacteria (PSB) on the flowering and shallot yield on the lowlands. The research was conducted in Mijil Village, Jaten, Karanganyar, 98 m altitude with Vertisol-type soil order in June to December 2016, using Randomized Complete Block Design (RCBD) with two factors. Shallot varieties used as factors are Bima, Manjung, Ilokos, Bima (bulb seeds), Mentes and Rubaru. PSB factors are control and with PSB inoculation. Observed variables included plant height, number of leaves, flowering percentage, seed formation and shallot bulb yield. Results showed that there was no interaction between varieties and PSB inoculation on all observed variables. However, PSB inoculation were able to increase the number of flowering plants and seed weight per plot. Bima variety have the highest average yield compared to other varieties in terms of number of leaves, number of bulbs per plant and bulb weight per plot (fresh harvest weight 317.74 g equivalent to 17.65 ton per hectare and dry weight 288.16 g consumption equivalent to 16 ton per hectare).

  12. Phosphorus and compost management influence maize (Zea mays productivity under semiarid condition with and without phosphate solubilizing bacteria

    Directory of Open Access Journals (Sweden)

    Amanullah eAmanullah

    2015-12-01

    Full Text Available Phosphorus (P unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB on the yield and yield components of maize (Zea mays L., cv. Azam. The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1 inoculated seed with PSB (+ and (2 seed not inoculated with PSB (- or control] and three compost application times [(30, 15 and 0 days before sowing (DBS] combination (six treatments were used as main plot factor, while four P levels (25, 50, 75 and 100 kg P ha-1 used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1 had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+ had tremendously increased yield and yield components of maize over PSB-control plots (- under semiarid condition.

  13. Effect of Rhizobium and Phosphate Solubilizing Bacterial Inoculants on Symbiotic Traits, Nodule Leghemoglobin, and Yield of Chickpea Genotypes

    Directory of Open Access Journals (Sweden)

    G. S. Tagore

    2013-01-01

    Full Text Available A field experiment was carried out during the rabi season of 2004-05 to find out the effect of Rhizobium and phosphate solubilizing bacterial (PSB inoculants on symbiotic traits, nodule leghemoglobin, and yield of five elite genotypes of chickpea. Among the chickpea genotypes, IG-593 performed better in respect of symbiotic parameters including nodule number, nodule fresh weight, nodule dry weight, shoot dry weight, yield attributes and yield. Leghemoglobin content (2.55 mg g−1 of fresh nodule was also higher under IG-593. Among microbial inoculants, the Rhizobium + PSB was found most effective in terms of nodule number (27.66 nodules plant−1, nodule fresh weight (144.90 mg plant−1, nodule dry weight (74.30 mg plant−1, shoot dry weight (11.76 g plant−1, and leghemoglobin content (2.29 mg g−1 of fresh nodule and also showed its positive effect in enhancing all the yield attributing parameters, grain and straw yields.

  14. Augmentation of potential phosphate solubilizing bacteria (PSB stimulate growth of green mustard (Brasica caventis Oed. in marginal soil

    Directory of Open Access Journals (Sweden)

    SULIASIH

    2006-01-01

    Full Text Available The potential of phosphate solubilizing bacteria/PSB (Bacillus megaterium, B. pantothenticus, Chromobacterium lividum and Klebsiella aerogenes were used as biofertilizer to increase the fresh leaf production of green mustard (Brasica caventis Oed.. An experiment was conducted at green house condition. The experiment were used 18 treatments such as single isolate of potential PSB (A,B,C,D, inoculants contain two isolates of potential PSB (E,F,G,H,I,J, inoculants contain three isolates of potential PSB (K, L, M, N, inoculants contain four isolate of potential PSB (O, chemistry fertilizer (P = control 1, organic fertilizer (Q = control 2, and without fertilizer (R = control 3. The treatments were arranged in Completely Randomized Design (CRD with 5 replications. The result showed that the inoculants of potential PSB increased the fresh plant production of green mustard. The mix of four isolates of potential PSB (inoculants O was the best to increase the fresh plant production of green mustard until 32.87% than other PSB inoculants, 207.84% than control 1,217.23% than control 2, and 930.60% than control 3.

  15. effect of two rock phosphates and inoculation with VA mycorrhizae and phosphate solubilizing bacteria on the chickpea-rhizobium symbiosis

    International Nuclear Information System (INIS)

    Soliman, S.M.; Galal, Y.G.M.; El-Ghandour, I.A.

    2004-01-01

    A pot experiment was conducted tracing the effect of two types of phosphorus applied at different rates on the release of nitrogen from fertilizer and its impact on biological nitrogen fixation . chickpea (Cicer Arietinum c v. Cicer 36-ICARDA) was inoculated with peat-based inoculum of phosphorin (Bacillus Megatherium phosphate solubilizing bacteria), Mycorrhizae (VAM) and a mixture of phosphorin and VAM. three types of P fertilizer, i.e.superphosphate, rock P 1 (Safaga) and rock P2 (Abou-Trtour) were applied at rate of 25 and 50 mg Pkg -1 soil in the presence or absence of inoculum. labelled ammonium sulfate with 15 N 10% atom excess was applied at rates of 15 and 30 mg N kg -1 soil for chickpea and barley (reference crop) respectively . Addition of phosphorus fertilizers, especially at the high rates, positively affected the growth and dry weight as compared to the unfertilized control. infections with VAM mixed with phosphorin under low level of rock P (Abou-tarour) gave the highest values of dry weight and N and P uptake when compared with both superphosphate-P source and control. biological N 2 fixed was higher in dual inoculation treatments (i.e.phosphorin +VAM) than those receiving a single inoculum. the percentages of N 2 -fixed ranged from 24 to 53 according to inoculation treatments, P sources and levels

  16. P contribution derived from phosphate solubilizing microorganism activity, rock phosphate and SP-36 determination by isotope "3"2P technique

    International Nuclear Information System (INIS)

    Anggi Nico Flatian; Iswandi Anas; Atang Sutandi; Ishak

    2016-01-01

    The "3"2P isotope technique has been used to trace P nutrients in the soil and soil-plant systems. The use of the isotope "3"2P has made it possible to differentiate the P contribution derived from phosphate solubilizing microorganism activity and the fertilizer P in the soil. The aims of the study were to obtain the quantitative data of P contribution derived from phosphate-solubilizing microorganism activity (Aspergillus niger and Burkholderia cepacia), rock phosphate and SP-36 through P uptake by the plants using isotope "3"2P technique and also to study the effects on growth and production of corn plants. The results were showed that phosphate-solubilizing microorganism, rock phosphate and SP-36 was produced specific activity ("3"2P) lower than control. The results were indicated that all treatments could contribute P for the plants. The lower specific activity was caused by supply P from rock phosphate and SP-36, and also was caused by solubilized of unavailable "3"1P from PSM activity, which decreased specific activity on labeled soil. The combination of phosphate-solubilizing microorganism and SP-36 treatments produced the highest P contribution, significantly higher than control and SP-36 only. Phosphate derived from combination of microorganism and SP-36 treatments ranging from 56.06% - 68.54% after 50 days planting, after 35 days planting, 51.96% - 59.65% on stover, 46.33% - 47.70% on grain and 53.02% - 59.87% on corn cob. In addition, the treatments could significantly support the plant growth and yield. It is expressed by increased number of leave at 35 days after planting, dry weight of leave at 35 days after planting and dry weight of grain. (author)

  17. Investigation the Effects of Different Doses Organic Fertilizers and Phosphate Solubilizing Bacterias on Yield and Nutrient Contents in Chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Ferit SÖNMEZ

    2015-07-01

    Full Text Available The study was conducted to determine the effect of phosphate solubilizing bacteria (N2; Bacillus megaterium M-3, TV-6I; Cellulosimicrobium cellulans, TV-34A; Hafnia Alve, TV-69E; Acetobacter pasteurianus and TV-83F; Bacillus cereus and organic fertilizer (0, 10 and 20 ton / ha on the seed yield and nutrient content of chickpea under field conditions in 2010 and 2011 growing seasons. Phosphate solubilizing bacteria used in this study were determined by the separate investigation conducted in chamber room by using ten phosphate solubilizing bacteria and organic fertilizer (control, %5,%10. The tiral were laid out with a factorial design in randomized complete block with three replications. In this study, plant height, primary branches, secondary branches and number of pods per plant, number of seeds per pod, grain yield and biological yield and nutrient content of stem and seed were determined. According to the results of the study bacteria applications increased significantly biological and seed yield. Bacteria applications without organic fertilizer increased nutrient contents of seed and steed except cupper content. In case of inoculation with organic fertilizer provided more increases in biological and seed yields. The highest seed yield were obtained from application of 20 ton/ha + N2 (Bacillus megaterium M-3 with 1020 kg/ha and 1793 kg/ha in 2010 and 2011 years, respectively. Bacteria without organic fertilizer application were more active in terms of phosphorus uptake in both years. 

  18. Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera.

    Science.gov (United States)

    Fatima, Faria; Bajpai, Preeti; Pathak, Neelam; Singh, Sarika; Priya, Shivam; Verma, Smita Rastogi

    2015-02-27

    Particulates of nanometers size have occupied a significant area in the field of medicinal and agricultural purposes due to their large surface-to-volume ratio and exceptional physicochemical, electronic and mechanical properties. Myconanotechnology, an interface between mycology and nanotechnology is budding nowadays for nanoparticle-fabrication using fungus or its metabolites. In the present study, we have isolated and characterized a novel phosphate solubilizing fungus B. tetramera KF934408 from rhizospheric soil. This phosphatase releasing fungus was subjected to extracellular synthesis of metal nanoparticles by redox reaction. Silver (AgNPs) and gold nanoparticles (AuNPs) were characterized by dynamic light scattering and transmission electron microscopic analysis. The formulated AgNPs were irregular shaped with a size ranging between 54.78 nm to 73.49 nm whereas AuNPs were spherical or hexagonal, with a size of 58.4 and 261.73 nm, respectively. The nanoparticles were assessed for their antibacterial and antifungal efficacy. The results showed effective antimicrobial activity of AgNPs against Bacillus cereus, Staphylococcus aureus, Enterobacter aeroginosa and Trichoderma sp. at higher concentrations, however, AuNPs possessed only moderate antibacterial efficacy while they found no antifungal activity. Cytotoxicity analysis of nanoparticles on J774 and THP1 α cell lines revealed the dose dependence in case of AgNPs, while AuNPs were non-toxic at both low and high doses. Furthermore, significant elevation of intracellular ROS was observed after 4 h of incubation with both the nanoparticles. The capping of fungal proteins on the particulates might be involved in the activities demonstrated by these inert metal nanoparticles. In conclusion, the findings showed that the metal nanoparticles synthesized by fungus B. tetramera could be used as an antimicrobial agents as well as cost effective and nontoxic immunomodulatory delivery vehicle.

  19. Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11.

    Science.gov (United States)

    Shahid, Muhammad; Hameed, Sohail; Imran, Asma; Ali, Saira; van Elsas, Jan Dirk

    2012-08-01

    An Enterobacter sp. Fs-11 was isolated from sunflower rhizosphere, identified on the basis of 16S rRNA gene sequence analysis (GeneBank accession no. GQ179978) and studied for its root colonization and growth promotion ability in sunflower. Morphologically, it was rod shaped Gram-negative, motile bacterium, producing 4.5 μg mL(-1) indole acetic acid in tryptophan-supplemented medium. It utilized 27 out of 95 substrates in BIOLOG GN2 micro plate system. It was able to convert insoluble tri-calcium phosphate to soluble phosphorus up to 43.5 μg mL(-1) with decrease in pH of the medium up to 4.5 after 10 days incubation at 28 ± 2 °C in the Pikovskaya's broth. High performance liquid chromatography of cell free supernatant showed that Fs-11 produced malic acid and gluconic acid (2.43 and 16.64 μg mL(-1), respectively) in Pikovskaya's broth. Analysis of 900 bp fragment of pyrroloquinoline quinine pqqE gene sequence showed 98 % homology with that of E. cloacae pqqE gene. Confocal laser scanning microscope revealed strong colonization of fluorescently labeled Fs-11 with sunflower roots. Sunflower inoculation with Fs-11 and its rifampicin resistant derivative in sterile sand and natural soil showed that Fs-11 colonized sunflower roots up to 30 days after transplanting in both sterile sand as well as natural soil. Moreover, Fs-11 inoculation resulted in increased plant height, fresh weight, dry weight and total phosphorus contents as compared to un-inoculated plants. The data showed that Enterobacter sp. Fs-11 is an efficient phosphate solubilizing and plant growth promoting rhizobacterium and has great potential to be used as bio-inoculant for sunflower under phosphorus deficient conditions.

  20. Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste.

    Science.gov (United States)

    Estrada-Bonilla, German A; Lopes, Cintia M; Durrer, Ademir; Alves, Paulo R L; Passaglia, Nicolle; Cardoso, Elke J B N

    2017-07-01

    Sugarcane processing generates a large quantity of residues, such as filter cake and ashes, which are sometimes composted prior to their amendment in soil. However, important issues still have to be addressed on this subject, such as the description of bacterial succession that occurs throughout the composting process and the possibilities of using phosphate-solubilizing bacteria (PSB) during the process to improve phosphorus (P) availability in the compost end product. Consequently, this study evaluated the bacterial diversity and P dynamics during the composting process when inoculated with Pseudomonas aeruginosa PSBR12 and Bacillus sp. BACBR01. To characterize the bacterial community structure during composting, and to compare PSB-inoculated compost with non-inoculated compost, partial sequencing of the bacterial 16S rRNA gene and sequential P fractionation were used. The data indicated that members of the order Lactobacillales prevailed in the early stages of composting for up to 30 days, mostly due to initial changes in pH and the C/N ratio. This dominant bacterial group was then slowly replaced by Bacillales during a composting process of up to 60 days. In addition, inoculation of PSB reduced the levels of Ca-bound P by 21% and increased the labile organic P fraction. In PSB-inoculated compost, Ca-P compound solubilization occurred concomitantly with an increase of the genus Bacillus. The bacterial succession and the final community is described in compost from sugarcane residues and the possible use of these inoculants to improve P availability in the final compost is validated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect

    Directory of Open Access Journals (Sweden)

    Anjali Chauhan

    Full Text Available Abstract Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260 mg/L, nitrogen fixation (202.91 nmol ethylene mL-1 h-1, indole-3-acetic acid (IAA (8.1 µg/mL, siderophores (61.60%, HCN (hydrogen cyanide production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC study showed that isolate CKMV1 produced mainly gluconic (1.34% and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh gene and pyrroloquinoline quinone synthase (pqq gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58% followed by Fusarium oxysporum (64.3%, Dematophora necatrix (52.71%, Rhizoctonia solani (91.58%, Alternaria sp. (71.08% and Phytophthora sp. (71.37%. Remarkable increase was observed in seed germination (27.07%, shoot length (42.33%, root length (52.6%, shoot dry weight (62.01% and root dry weight (45.7% along with NPK (0.74, 0.36, 1.82% content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR.

  2. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect.

    Science.gov (United States)

    Chauhan, Anjali; Guleria, Shiwani; Balgir, Praveen P; Walia, Abhishek; Mahajan, Rishi; Mehta, Preeti; Shirkot, Chand Karan

    Aneurinibacillus aneurinilyticus strain CKMV1 was isolated from rhizosphere of Valeriana jatamansi and possessed multiple plant growth promoting traits like production of phosphate solubilization (260mg/L), nitrogen fixation (202.91nmolethylenemL -1 h -1 ), indole-3-acetic acid (IAA) (8.1μg/mL), siderophores (61.60%), HCN (hydrogen cyanide) production and antifungal activity. We investigated the ability of isolate CKMV1 to solubilize insoluble P via mechanism of organic acid production. High-performance liquid chromatography (HPLC) study showed that isolate CKMV1 produced mainly gluconic (1.34%) and oxalic acids. However, genetic evidences for nitrogen fixation and phosphate solubilization by organic acid production have been reported first time for A. aneurinilyticus strain CKMV1. A unique combination of glucose dehydrogenase (gdh) gene and pyrroloquinoline quinone synthase (pqq) gene, a cofactor of gdh involved in phosphate solubilization has been elucidated. Nitrogenase (nif H) gene for nitrogen fixation was reported from A. aneurinilyticus. It was notable that isolate CKMV1 exhibited highest antifungal against Sclerotium rolfsii (93.58%) followed by Fusarium oxysporum (64.3%), Dematophora necatrix (52.71%), Rhizoctonia solani (91.58%), Alternaria sp. (71.08%) and Phytophthora sp. (71.37%). Remarkable increase was observed in seed germination (27.07%), shoot length (42.33%), root length (52.6%), shoot dry weight (62.01%) and root dry weight (45.7%) along with NPK (0.74, 0.36, 1.82%) content of tomato under net house condition. Isolate CKMV1 possessed traits related to plant growth promotion, therefore, could be a potential candidate for the development of biofertiliser or biocontrol agent and this is the first study to include the Aneurinibacillus as PGPR. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of Lycopodium cernuum L. (Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India.

    Science.gov (United States)

    Ghosh, Ranjan; Barman, Soma; Mukherjee, Rajib; Mandal, Narayan C

    2016-02-01

    Profuse growth of Lycpodium cernuum L. was found in phosphate deficient red lateritic soil of West Bengal, India. Interaction of vesicular-arbuscular mycorrhiza (VAM) with Lycopodium rhizoids were described earlier but association of PGPR with their rhizoids were not studied. Three potent phosphate solubilizing bacterial strains (P4, P9 and P10) associated with L. cernuum rhizoids were isolated and identified by 16S rDNA homologies on Ez-Taxon database as Burkholderia tropica, Burkholderia unamae and Burkholderia cepacia respectively. Day wise kinetics of phosphate solubilization against Ca3(PO4)2 suggested P4 (580.56±13.38 μg ml(-1)) as maximum mineral phosphate solubilizer followed by P9 (517.12±17.15 μg ml(-1)) and P10 (485.18±14.23 μg ml(-1)) at 28 °C. Release of bound phosphates by isolated strains from ferric phosphate (FePO4), aluminum phosphate (AlPO4) and four different complex rock phosphates indicated their very good phosphate solubilizng efficacy. Nitrogen independent solubilizition also supports their nitrogen fixing capabilities. Inhibition of P solubilization by calcium salts and induction by EDTA suggested pH dependent chelation of metal cations by all of the isolates. Rhizoidal colonization potentials of Burkholderia spp. were confirmed by in planta experiment and also using scanning electron microscope (SEM). Increases of total phosphate content in Lycopodium plants upon soil treatment with these isolates were also recorded. In addition siderophore production on CAS agar medium, tryptophan dependent IAA production and antifungal activities against pathogenic fungi by rhizospheric isolates deep-rooted that they have definite role in nutrient mobilization for successful colonization of L. cernuum in nutrient deficient lateritic soil. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Characterization of Phosphate Solubilizing Bacteria in Sediments from a Shallow Eutrophic Lake and a Wetland: Isolation, Molecular Identification and Phosphorus Release Ability Determination

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2010-11-01

    Full Text Available The transformation of phosphorus (P is a major factor of lake eutrophication, and phosphate releasing bacteria play an important role in the release process. Experiments were conducted to investigate P content and characterize phosphate solubilizing bacterial composition at the molecular level in a shallow eutrophic lake and a wetland. Results showed that P concentrations were relatively high and derived from agricultural runoff and domestic or industrial pollution. Enumeration and molecular identification of these strains indicated that these bacterial groups were abundant in the ecosystem and various kinds of bacteria participated in the phosphorus release process. Twelve phosphate solubilizing bacteria, including eight organic P-solubilizing bacteria (OPBs and four inorganic P-solubilizing bacteria (IPBs, which belonged to three different families, were isolated and identified. Cupriavidus basilensis was found for the first time to have the ability to mineralize organic P (OP. Laboratory tests on P release ability revealed that IPBs were more effective at releasing P than OPBs. The most efficient IPB strain could accumulate over 170 mg·L-1 orthophosphate, while the equivalent OPB strain only liberated less than 4 mg·L-1 orthophosphate in liquid culture. The results obtained from this investigation should help clarify the roles of microorganisms in aquatic systems and the mechanisms of eutrophication.

  5. HemX is required for production of 2-ketogluconate, the predominant organic anion required for inorganic phosphate solubilization by Burkholderia sp. Ha185.

    Science.gov (United States)

    Hsu, Pei-Chun Lisa; Condron, Leo; O'Callaghan, Maureen; Hurst, Mark R H

    2015-12-01

    The bacterium Burkholderia sp. Ha185 readily solubilizes inorganic phosphate by releasing the low molecular weight organic anion, 2-ketogluconate. Using random transposon mutagenesis and in silico analysis, a mutation that caused almost complete abolition of phosphate solubilization was located within hemX, which is part of the hem operon. Burkholderia sp. Ha185 HemX is a multidomain protein, predicted to encode a bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase, which has not previously been implicated in phosphate solubilization. Complementation of hemX restored the ability of the mutant to solubilize phosphate in both plate and liquid cultures. Based on a combination of organic-anion profiling, quantitative polymerase chain reaction and in silico analyses, hemX was confirmed to be solely responsible for hydroxyapatite solubilization in Burkholderia sp. Ha185. It is proposed that the biosynthesis of a yet to be determined redox cofactor by HemX is the main pathway for generating 2-ketogluconate via a haem-dependent gluconate 2-dehydrogenase in Burkholderia sp. Ha185. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

    Science.gov (United States)

    Wei, Yuquan; Zhao, Yue; Shi, Mingzi; Cao, Zhenyu; Lu, Qian; Yang, Tianxue; Fan, Yuying; Wei, Zimin

    2018-01-01

    Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal.

    Science.gov (United States)

    Das, Amal Chandra; Debnath, Anjan

    2006-11-01

    A field experiment has been conducted with four systemic herbicides viz., butachlor [N-(butoxymethyl)-2-chloro-2',6'-diethyl-acetanilide], fluchloralin [N-(2-chloroethyl)-(2,6-dinitro-N-propyl-4-trifluoromethyl) aniline], oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopro poxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at their recommended field rates (2.0, 1.5, 0.4 and 0.12kga.i.ha(-1), respectively) to investigate their effects on growth and activities of aerobic non-symbiotic N(2)-fixing bacteria and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in the rhizosphere soils as well as yield of the rice crop (Oryza sativa L cv. IR-36). Application of herbicides, in general, highly stimulated the population and activities of the target microorganisms, which resulted in a greater amount of atmospheric nitrogen fixation and phosphate solubilization in the rhizosphere soils of the test crop. The greater microbial activities subsequently augmented the mineralization and availability of nitrogen and phosphorus in the soil solution, which in turn increased the yield of the crop. Among the herbicides, oxyfluorfen was most stimulative followed by fluchloralin and oxadiazon in augmenting the microbial activities in soil. Butachlor also accentuated the mineralization and availability of nitrogen due to higher incitement of non-symbiotic N(2)-fixing bacteria in paddy soil. The grain and straw yields of the crop were also significantly increased due to the application of oxyfluorfen (20.2% and 21%) followed by fluchloralin (13.1% and 15.4%) and butachlor (9.1% and 10.2%), respectively.

  8. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    NARCIS (Netherlands)

    Pineda, A.; Soler Gamborena, R.; Weldegergis, B.T.; Shimwela, M.M.; Loon, van J.J.A.; Dicke, M.

    2013-01-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it

  9. The population of phosphate solubilizing bacteria (PSB from Cikaniki, Botol Mountain, and Ciptarasa Area, and the ability of PSB to solubilize insoluble P in solid pikovskaya medium

    Directory of Open Access Journals (Sweden)

    SULIASIH

    2006-04-01

    Full Text Available Phosphate solubilizing bacteria (PSB were collected from plant rhizosphere at Cikaniki (1100 m asl., soil at Botol Mountain (1000, 1500, and 1800 m asl., and Ciptarasa (600, 1000, and 1500 m asl., area at Gunung Halimun National Park (GHNP. The soil ware collected randomly from 3 areas and taken from 0-15 cm depth in the plants rhizosphere at Cikaniki and forest floor soil in Gunung Botol and Ciptarasa. The result showed that the difference of elevation area, soil pH, forest vegetation, and microbial habitat (rhizosphere and forest floor were not the inhabitation factors of the biodiversity of PSB and their ability to solubilize insoluble phosphate, but the inhabitation factors on the growth of the PSB population. The highest population of PSB at GHNP was founded in the plant rhizosphere of Altingia exelsa Norona and Schima wallichii (Dc. Korth (107sel/g soil at Cikaniki and in the forest floor soil (108sel/g soil at Botol Mountain (1000 m asl.. Pseudomonas sp., Bacillus sp., Bacillus megaterium, and Chromobacterium sp. dominated Cikaniki, Botol Mountain and Ciptarasa area. Those isolates could solubilize insoluble phosphate on solid Pikovskaya medium with the range of diameter is 1.5-2.5 cm.

  10. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119.

    Science.gov (United States)

    Ludueña, Liliana M; Anzuay, Maria S; Magallanes-Noguera, Cynthia; Tonelli, Maria L; Ibañez, Fernando J; Angelini, Jorge G; Fabra, Adriana; McIntosh, Matthew; Taurian, Tania

    2017-10-01

    The mineral phosphate-solubilizing phenotype in bacteria is attributed predominantly to secretion of gluconic acid produced by oxidation of glucose by the glucose dehydrogenase enzyme and its cofactor, pyrroloquinoline quinone. This study analyzes pqqE gene expression and pqq promoter activity in the native phosphate-solubilizing bacterium Serratia sp S119 growing under P-limitation, and in the presence of root exudates obtained from peanut plants, also growing under P-limitation. Results indicated that Serratia sp. S119 contains a pqq operon composed of six genes (pqqA,B,C,D,E,F) and two promoters, one upstream of pqqA and other between pqqA and pqqB. PqqE gene expression and pqq promoter activity increased under P-limiting growth conditions and not under N-deficient conditions. In the plant-bacteria interaction assay, the activity of the bacterial pqq promoter region varied depending on the concentration and type of root exudates and on the bacterial growth phase. Root exudates from peanut plants growing under P-available and P-limiting conditions showed differences in their composition. It is concluded from this study that the response of Serratia sp. S119 to phosphorus limitation involves an increase in expression of pqq genes, and that molecules exuded by peanut roots modify expression of these phosphate-solubilizing bacterial genes during plant-bacteria interactions. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Purple corn-associated rhizobacteria with potential for plant growth promotion.

    Science.gov (United States)

    Castellano-Hinojosa, A; Pérez-Tapia, V; Bedmar, E J; Santillana, N

    2018-05-01

    Purple corn (Zea mays var. purple amylaceum) is a native variety of the Peruvian Andes, cultivated at 3000 m since the pre-Inca times without N fertilization. We aimed to isolate and identify native plant growth-promoting rhizobacteria (PGPR) for future microbial-based inoculants. Eighteen strains were isolated from the rhizosphere of purple corn plants grown without N fertilization in Ayacucho (Peru). The 16S rRNA gene clustered the 18 strains into nine groups that contained species of Bacillus, Stenotrophomonas, Achromobacter, Paenibacillus, Pseudomonas and Lysinibacillus. A representative strain from each group was selected and assayed for N 2 fixation, phosphate solubilization, indole acetic and siderophore production, 1-aminocyclopropane-1-carboxylic acid deaminase activity and biocontrol abilities. Inoculation of purple corn plants with single and combined strains selected after a principal component analysis caused significant increases in root and shoot dry weight, total C and N contents of the plants. PGPRs can support growth and crop production of purple corn in the Peruvian Andes and constitute the base for microbial-based inoculants. This study enlarges our knowledge on plant-microbial interactions in high altitude mountains and provides new applications for PGPR inoculation in purple amylaceum corn, which is part of the staple diet for the native Quechua communities. © 2018 The Society for Applied Microbiology.

  12. Effect of phosphate - solubilizing bacteria and compost on the nutritional characteristics of the oil palm crop (Elaeis guineensis Jacq. in Casanare, Colombia

    Directory of Open Access Journals (Sweden)

    Anamaría García

    2012-08-01

    Full Text Available In accordance with interest to include biological practices in fertilization programs for commercially important crops, the effect of a bioinoculant application based on phosphate solubilizing bacteria along with compost was evaluated on oil palm cultivation in the nursery stage and in a definitive area. The five treatments that were evaluated included: (C compost, (CQ compost and chemical fertilizers 50/50, (IC compost and inoculant, (IQ chemical fertilizers and inoculant and (ICQ inoculant, compost and chemical fertilizers 50/50; as a positive control it was used a plant group fertilized with traditional chemical compounds. Organic matter was added at 2% (w/w at nursery stage and 15 kg/plant in the definitive area. Response variables includedagronomic variables were evaluated (total height, height to bifurcation, bulb diameter and number of leaves and soil physicochemical variables (pH, oxidizable organic carbon (OOC, extractable phosphorus and total boron, measured during 8 months in the nursery area and 6 months in the definitive area. The results showed that the evaluated compost constitutes an alternative for palm fertilization in the definitive area, as source of nutrients that meet crop demand at this stage of the crop, matching the nutritional levels of the control plants (P≥0.005. Meanwhile, in the nursery area, chemical fertilization is essential to ensure the quality of the plants during the first stage of growth, since, at this stage, plants require high amount of N, which is not supplied by the compost. Finally, it was not possible to demonstrate the promoting effect of the microbial inoculant on plant growth, so it is necessary to complement this research in regard to this product

  13. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran.

    Science.gov (United States)

    Bakhshandeh, E; Rahimian, H; Pirdashti, H; Nematzadeh, G A

    2015-11-01

    This study aimed to evaluate the efficiency of four phosphate-solubilizing bacteria (PSB) on the growth and yield of rice under different soil conditions. Bacterial strains were Rahnella aquatillis (KM977991), Enterobacter sp. (KM977992), Pseudomonas fluorescens and Pseudomonas putida. These studies were conducted on different rice cultivars ('Shiroodi', 'Tarom' and 'Tarom Hashemi') in both pot and field experiments. Measurements started from transplanting and continued throughout the growing season in field experiments. Single PSB inoculations in field trials increased grain yield, biological yield, total number of stems hill(-1) , number of panicles hill(-1) and plant height by 8·50-26·9%, 12·4-30·9%, 20·3-38·7%, 22·1-36·1% and 0·85-3·35% in experiment 1, by 7·74-14·7%, 4·22-12·6%, 6·67-16·7%, 4·0-15·4% and 3·15-4·20% in experiment 2 and by 23·4-37%, 16·1-36·4%, 30·2-39·1%, 28·8-34% and 2·11-4·55% in experiment 3, respectively, compared to the control. Our results indicate that the application of triple super phosphate together with PSB inoculations resulted in reducing the use of chemical fertilizers (about 67%) and increasing fertilizer use efficiency. This study clearly indicates that these PSBs can be used as biofertilizers in ecological rice agricultural systems. To the best of our knowledge, this is first report on the association of Rahnella aquatilis with rice and also the application of a mathematical model to evaluate the effect of PSBs on rice growth. © 2015 The Society for Applied Microbiology.

  14. P retention and cation exchange as affected by nanoparticle of volcanic ash and application of phosphate solubilizing bacteria on Andisol Ciater, West Java, Indonesia

    Science.gov (United States)

    Fitriatin, Betty Natalie; Arifin, Mahfud; Devnita, Rina; Yuniarti, Anni; Haryanto, Rachmat; Setiabudi, Mariska Amalia

    2018-02-01

    Andisols is a soil with high retention of phosphate and cannot be absorbed by plants. Some of soil bacteria have the ability to solubilize P and make it available to growing plants are known phosphate solubilizing bacteria (PSB). The research aims to study the effect of nanoparticle volcanic ash and phosphate solubilising bacteria (PSB) on P retention and cation exchangeable (CEC) in Andisol Ciater, West Java. This research was conducted from October 2016 to March 2017. The design of the analysis used was a complete randomized factorial design with two factors. The first factor was nanoparticle volcanic ash (a) consists of four dosages based on weight percentage (0%, 2.5%, 5.0% and 7.5%) and the second factor was PSB (h) consists of two dosages (without biofertilizer and with biofertilizer 1 g/Kg soil). The combination treatments replicated three times were incubated for 4 months. Soil samples were analyzed at first month and fourth month after incubation. The results showed that all dosages of nanoparticle volcanic ash and application of PSB decreased P retention by 75-77% at the first month after incubation. Nanoparticle volcanic ash dosage decreased to 7.5% the P retention reaches 90.36% in the fourth month after incubation. The nanoparticle of volcanic ash dosage 7.5% increased with CEC (24.787 cmol.kg-1 and 16.555 cmol.kg-1) at the first and fourth months after incubation. The application of PSB increased the CEC (28.606 cmol.kg-1) in the first month after incubation.

  15. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    Full Text Available A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia. The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c kg(-1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis. The isolated strains were capable of producing indoleacetic acid (IAA and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65% existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  16. Assessment of Culturable Tea Rhizobacteria Isolated from Tea Estates of Assam, India for Growth Promotion in Commercial Tea Cultivars

    Science.gov (United States)

    Dutta, Jintu; Handique, Pratap J.; Thakur, Debajit

    2015-01-01

    In the present study, 217 rhizobacterial isolates were obtained from six different tea estates of Assam, India and subjected to preliminary in vitro plant growth promotion (PGP) screening for indole acetic acid (IAA) production, phosphate solubilization, siderophore production and ammonia production. Fifty isolates showed all the PGP traits and five isolates did not exhibit any PGP traits. These 50 potential isolates were further analyzed for quantitative estimation of the PGP traits along with the aminocyclopropane-1-carboxylate (ACC) deaminase, protease and cellulose production. After several rounds of screening, four rhizobacteria were selected based on their maximum ability to produce in vitro PGP traits and their partial 16S rRNA gene sequence analysis revealed that they belong to Enterobacter lignolyticus strain TG1, Burkholderia sp. stain TT6, Bacillus pseudomycoides strain SN29 and Pseudomonas aeruginosa strain KH45. To evaluate the efficacy of these four rhizobacteria as plant growth promoters, three different commercially important tea clones TV1, TV19, and TV20 plants were inoculated with these rhizobacteria in greenhouse condition and compared to the uninoculated control plants. Though, all the rhizobacterial treatments showed an increase in plant growth compared to control but the multivariate PCA analysis confirmed more growth promotion by TG1 and SN29 strains than the other treatments in all three clones. To validate this result, the fold change analysis was performed and it revealed that the tea clone TV19 plants inoculated with the E. lignolyticus strain TG1 showed maximum root biomass production with an increase in 4.3-fold, shoot biomass with increase in 3.1-fold, root length by 2.2-fold and shoot length by 1.6-fold. Moreover, two way ANOVA analysis also revealed that rhizobacterial treatment in different tea clones showed the significant increase (P biofertilizer for growth promotion of tea crops. PMID:26617590

  17. Exploring the phosphate solubilizing capacity of soil bacteria through the application of 32P radioisotope techniques and X-ray diffraction method

    International Nuclear Information System (INIS)

    Jumaniyazova, G. I.; Tillayev, T. S.; Takhtobin, K. S.; Kalonov, M.

    2003-01-01

    One of global ecological problems of agriculture is the problem o ver phosphatization o f soils [1]. Till now process of biological transformation of phosphorus in soil poorly studied, the optimum methods of its regulation are not detected, in this connection, annually to agriculture the large damage is put. Only of 10 %-25 % of phosphorus, introduced by the way fertilizers to acquire by plants, the other main part, as a result of chemical changes in soil, transforms in insoluble, hard to reach for plants forms. It demands new deposits of fertilizers and, thus, there is an accumulation in soil of insoluble compounds of phosphorus ( o ver phosphatization o f soils). The situation is aggravated by vast application of complex fertilizers, keeping apart from phosphorus nitrogen and potassium, that entailed an accumulation and excess one at lack of other elements. Such unbalance influence both on quality of agricultural production and on a harvest as a whole. It is known, that the part of soil bacteria is capable to participate in decomposing insoluble phosphoric compounds, secreting an acids and enzymes [2]. Soil bacteria have symbiotic relationship with roots systems of plants (rhizosphere) and other microorganisms, they augment the contents of solvable phosphorus in soil, which is easy assimilate by plants. It increases efficiency of other kinds of fertilizers, keeping nitrogen, the potassium and as a whole leads to favourable, balanced composition of soil [3]. The methods with application of an isotope of phosphorus-32 allow to study processes of mobilization and immobilization of soil phosphorus, quantitatively to evaluate a role of different strains of bacteria and have large theoretical and practical value [4]. The aim of our investigations was to isolate the phosphate solubilizing bacteria from cotton and sugar-beet rhizosphere and elaborate on the basis of application of an isotope D-32 a method of a quantitative assessment of capacity of soil bacteria strains

  18. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India.

    Science.gov (United States)

    Dutta, Jintu; Thakur, Debajit

    2017-01-01

    Plant growth promoting rhizobacteria (PGPR) are studied in different agricultural crops but the interaction of PGPR of tea crop is not yet studied well. In the present study, the indigenous tea rhizobacteria were isolated from seven tea estates of Darjeeling located in West Bengal, India. A total of 150 rhizobacterial isolates were screened for antagonistic activity against six different fungal pathogens i.e. Nigrospora sphaerica (KJ767520), Pestalotiopsis theae (ITCC 6599), Curvularia eragostidis (ITCC 6429), Glomerella cingulata (MTCC 2033), Rhizoctonia Solani (MTCC 4633) and Fusarium oxysporum (MTCC 284), out of which 48 isolates were antagonist to at least one fungal pathogen used. These 48 isolates exhibited multifarious antifungal properties like the production of siderophore, chitinase, protease and cellulase and also plant growth promoting (PGP) traits like IAA production, phosphate solubilization, ammonia and ACC deaminase production. Amplified ribosomal DNA restriction analysis (ARDRA) and BOX-PCR analysis based genotyping clustered the isolates into different groups. Finally, four isolates were selected for plant growth promotion study in two tea commercial cultivars TV-1 and Teenali-17 in nursery conditions. The plant growth promotion study showed that the inoculation of consortia of these four PGPR isolates significantly increased the growth of tea plant in nursery conditions. Thus this study underlines the commercial potential of these selected PGPR isolates for sustainable tea cultivation.

  19. Evaluation of multifarious plant growth promoting traits, antagonistic potential and phylogenetic affiliation of rhizobacteria associated with commercial tea plants grown in Darjeeling, India.

    Directory of Open Access Journals (Sweden)

    Jintu Dutta

    Full Text Available Plant growth promoting rhizobacteria (PGPR are studied in different agricultural crops but the interaction of PGPR of tea crop is not yet studied well. In the present study, the indigenous tea rhizobacteria were isolated from seven tea estates of Darjeeling located in West Bengal, India. A total of 150 rhizobacterial isolates were screened for antagonistic activity against six different fungal pathogens i.e. Nigrospora sphaerica (KJ767520, Pestalotiopsis theae (ITCC 6599, Curvularia eragostidis (ITCC 6429, Glomerella cingulata (MTCC 2033, Rhizoctonia Solani (MTCC 4633 and Fusarium oxysporum (MTCC 284, out of which 48 isolates were antagonist to at least one fungal pathogen used. These 48 isolates exhibited multifarious antifungal properties like the production of siderophore, chitinase, protease and cellulase and also plant growth promoting (PGP traits like IAA production, phosphate solubilization, ammonia and ACC deaminase production. Amplified ribosomal DNA restriction analysis (ARDRA and BOX-PCR analysis based genotyping clustered the isolates into different groups. Finally, four isolates were selected for plant growth promotion study in two tea commercial cultivars TV-1 and Teenali-17 in nursery conditions. The plant growth promotion study showed that the inoculation of consortia of these four PGPR isolates significantly increased the growth of tea plant in nursery conditions. Thus this study underlines the commercial potential of these selected PGPR isolates for sustainable tea cultivation.

  20. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides.

    Science.gov (United States)

    Anzuay, María Soledad; Ciancio, María Gabriela Ruiz; Ludueña, Liliana Mercedes; Angelini, Jorge Guillermo; Barros, Germán; Pastor, Nicolás; Taurian, Tania

    2017-06-01

    The aims of this study were, to analyze in vitro phosphate solubilization activity of six native peanut bacteria and to determine the effect of single and mixed inoculation of these bacteria on peanut and maize plants. Ability to produce organic acids and cofactor PQQ, to solubilize FePO 4 and AlPO 4 and phosphatase activity were analyzed. Also, the ability to solubilize phosphate under abiotic stress and in the presence of pesticides of the selected bacteria was determined. The effect of single and mixed bacterial inocula was analyzed on seed germination, maize plant growth and in a crop rotation plant assay with peanut and maize. The six strains produced gluconic acid and five released cofactor PQQ into the medium. All bacteria showed ability to solubilize phosphate from FePO 4 and AlPO 4 and phosphatase activity. The ability of the bacteria to solubilize tricalcium phosphate under abiotic stress and in presence of pesticides indicated encouraging results. Bacterial inoculation on peanut and maize increased seed germination, plant́s growth and P content. Phosphate solubilizing bacteria used in this study showed efficient phosphate mineralizing and solubilization ability and would be potential P-biofertilizers for peanut and maize. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phyto pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Lioussanne, L.

    2010-07-01

    The mutualistic symbiosis of most land plants with arbuscular mycorrhizal (AM) fungi has been shown to favor mineral and water nutrition and to increase resistance to abiotic and biotic stresses. This review reports the main mechanisms involved in the control of the disease symptoms and of the intraradical proliferation of soilborne phytopathogens by root colonization with AM fungi, with a special emphasis on the role of the rhizobacteria shown to be specifically associated with the AM extraradical network and the mycorrhizosphere (the soil zone with particular characteristics under the influence of the root/AM association). The mycorrhizosphere would constitute an environment conducive to microorganisms antagonistic to pathogen proliferation. Moreover, attempts to identify rhizobacteria from AM structures and/or the mycorrhizosphere often lead to the isolation of organisms showing strong properties of antagonism on various soilborne pathogens. The ability of AM fungi to control soilborne diseases would be strongly related to their capacity to specifically stimulate the establishment of rhizobacteria unfavorable to pathogen development within the mycorrhizosphere before root infection. Current knowledge concerning the mechanisms involved in AM/rhizobacteria interactions are also described in this review. (Author) 101 refs.

  2. Respostas da cultura do rabanete à inoculação de fungos solubilizadores de fosfatos Responses of radish culture to phosphate-solubilizing fungi

    Directory of Open Access Journals (Sweden)

    Charles Narloch

    2002-06-01

    Full Text Available O objetivo deste trabalho foi estudar o efeito dos fungos solubilizadores de fosfatos MSF-044, MSF-062 (Penicillium sp. e MSF-087 (Aspergillus sp. e da aplicação de fosfato solúvel [Ca(H2PO42.2H 2O], nas doses de 0,0 , 4,5 , 9,0 , 17,5 , 35,0 , 70,0 e 140,0 mg kg-1 de P, na produção de matéria seca e na absorção de fósforo pela cultura do rabanete. O experimento foi realizado em solo não-estéril, em casa de vegetação. Os isolados diferiram quanto à capacidade de promover a produção de matéria seca, dependendo da dose de P aplicada. Os isolados MSF-044 e MSF-062 foram mais eficientes sob baixas doses (4,5 a 17,5 mg kg-1 de P, enquanto o isolado MSF-087 proporcionou maior produção de matéria seca somente na dose mais alta (140,0 mg kg-1 de P. Plantas submetidas à inoculação do isolado MSF-062 (Penicillium sp. e com 17,5 mg kg-1 de P apresentaram produção de matéria seca equivalente às obtidas por plantas com até 70,0 mg de P por kg de solo, sem inoculação. A quantidade total de P absorvida pelas plantas não foi influenciada pela inoculação, no solo, dos isolados testados.The objective of this work was to study the effect of phosphate-solubilizing fungi MSF044, MSF-062 (Penicillium sp. and MSF-087 (Aspergillus sp. and soluble phosphate [Ca(H2PO42.2H 2O] at 0.0 , 4.5 , 9.0, 17.5 , 35.0 , 70.0 and 140.0 mg kg-1 P on dry matter production and P uptake of radish, in non-sterilized soil, under green house conditions. Isolates differed in their capacity to stimulate dry matter production of plants, depending upon the P level. Isolates MSF-044 and MSF-062 were more efficient under low P (4.5 to 17.5 mg kg-1 P, while the isolate MSF-087 only stimulated dry matter production in the highest P level (140.0 mg kg-1 P. Plants inoculated with the isolate MSF-062, at 17.5 mg kg-1 P, presented no differences in dry matter compared to non-inoculated plants, with 70.0 mg kg-1 P. Phosphorus uptake by inoculated plants did not differ

  3. Bioaugmentation-assisted phytoextraction of Co, Pb and Zn: an assessment with a phosphate-solubilizing bacterium isolated from metal-contaminated mines of Boryeong Area in South Korea

    Directory of Open Access Journals (Sweden)

    Arunakumara, KKIU.

    2015-01-01

    Full Text Available Description of the subject. Make use of microbes having remarkable metal tolerance and plant growth-promoting abilities to remediate metal-contaminated soils. Objectives. The objectives were to isolate phosphate solubilizing bacterial strain, assess metal (Co, Pb and Zn mobilization potential of the strain and to evaluate the effects of the strain on growth and uptake of metals by Helianthus annuus. Method. A phosphate solubilizing bacterium was isolated from metal-contaminated soils. Heavy metal (Co, Pb and Zn tolerance of the strain was assessed using the agar dilution method. Bacterial-assisted growth promotion and metal uptake by H. annuus was evaluated in a pot experiment. The impact of bacterial inoculation on the mobility of metals in soil was investigated in a batch experiment. Results. The strain showed close proximity with Klebsiella oxytoca JCM1665, according to 16S rRNA sequence analysis. The strain was efficient in solubilizing phosphate, both in the presence and absence of metals. Inoculation of the strain enhanced the growth of H. annuus (49, 22 and 39% respectively in Co, Pb and Zn contaminated soils compared to non-inoculated plants. Accumulation and translocation of Co, Pb and Zn from roots to shoots were also enhanced by the strain. Water soluble fraction of Co, Pb and Zn in soil was increased by 51, 24 and 76% respectively in inoculated soils with regard to those of non-inoculated soils. Conclusions. Taking the plant growth promotion and metal mobilizing potential of the strain into account, practical application of the strain in enhancing phytoextraction of Co, Pb and Zn from contaminated soils could be recommended.

  4. AISLAMIENTO E IDENTIFICACIÓN DE BACTERIAS SOLUBILIZADORAS DE FOSFATOS, HABITANTES DE LA RIZÓSFERA DE CHONTADURO (B. gassipaes Kunth ISOLAMENTO E IDENTIFICAÇÃO DE BACTÉRIAS SOLUBILIZADORAS DA FOSFATO, HABITANTES DA RIZÓSFERA DE CHONTADURO (B. gassipaes Kunth ISOLATION AND IDENTIFICATION OF PHOSPHATE-SOLUBILIZING BACTERIA INHABITING THE RIZHOSPHERE OF PEACH PALM (B. gassipaes Kunth

    Directory of Open Access Journals (Sweden)

    CARLOS PATIÑO TORRES

    2012-12-01

    populações dominante foram: Burkholderia ambifaria e B. sp. 383, seguido por Pseudomonas putida, espécies reconhecidas mundialmente para suaatividade solubilizadora, e como rizobactérias promotoras de crescimento de plantas (RPCP.The chontaduro or pejiyabe (Bactris gasipaes Kunth, is a species native of rainforest of Colombian's Pacific Coast, adapted to soils with high acidity and depleted in nutrients, especially phosphorus.The phosphate solubilizing microorganisms, including bacteria (BSP, improve the availability of this nutrient, therefore, the need to isolate, recognize and identify those in the rhizosphere, as one of the mechanisms of adaptation of this species. Once isolated and purified in medium free of sources of soluble phosphorus, bacterial populations were identified using sequence analysis of 16S rDNA and molecular genotyping by BOX-PCR, stating that in the study site, the dominant populations were Burkholderia ambifaria and B. sp. 383, followed by Pseudomonas putida, species recognized globally for its solubilizing activity, and as plant growth promoting rhizobacteria (PGPR.

  5. Relaciones entre los hongos filamentosos y solubilizadores de fosfatos con algunas variables edáficas y el manejo de cafetales Filamentous and phosphate solubilizing fungi relationships with some edaphic parameters and coffee plantations management

    Directory of Open Access Journals (Sweden)

    Raúl Hernando Posada

    2012-09-01

    Full Text Available El suelo y sus propiedades tienen múltiples relaciones con las comunidades fúngicas. El efecto conjunto de la intensidad de manejo y las variables edáficas, incluida la estabilidad de agregados sobre las comunidades de hongos microscópicos filamentosos (HMF, solubilizadores de fosfato de hierro (HSP-Fe y solubilizadores tanto de fosfato de hierro como de calcio (HSP-(Fe+Ca no han sido evaluadas en campo. A partir de 40 muestras edáficas de ocho plantaciones de café de Colombia y México, con diferentes intensidades de manejo (IMPC y con diferencias en sus variables edáficas, se aislaron y evaluaron las comunidades de HMF, HSP-Fe y HSP-(Fe+Ca durante 2008-2009. Empleando modelos basados en ecuaciones estructurales se encontró que el carbono orgánico se relacionó positivamente con la riqueza y abundancia de HMF (λ>0.58 y fue variable en su relación con HSP-Fe y HSP-(Fe+Ca. Las relaciones del fósforo disponible, pH y las fracciones de macro-agregados fueron altamente variables. El IMPC se relacionó negativamente con HSP-Fe (λ≤-0.21 en cafetales colombianos. Se discuten las interacciones para cada conjunto de variables (químicas, estabilidad de macro-agregados y de manejo de plantación y se explican las relaciones resultantes. Las relaciones de cada variable son inseparables del contexto edáfico y geográfico, los cuales imprimen marcadas diferencias.Soil properties and the environment have multiple outcomes on fungal communities. Although, the interaction effects between management intensity, pH, available phosphorus, organic carbon, soil texture and different fractions of water stable macro-aggregates on the communities of microscopic filamentous fungi (MFF, iron phosphate solubilizing fungi (PSF-Fe, and iron and calcium phosphate solubilizing fungi (PSF-(Fe+Ca, have been previously evaluated in field conditions, this has never been performed in terms of their combined effects, neither with phosphate solubilizing fungi. To

  6. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    Science.gov (United States)

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  7. Lettuce (Lactuca sativa L. seedling production with different sources of phosphate and phosphate solubilizing microorganisms / Produção de mudas de alface (Lactuca sativa L. em presença de diferentes fontes fosfatadas e microrganismos

    Directory of Open Access Journals (Sweden)

    Germano Nunes Silva Filho

    2009-10-01

    Full Text Available The objective of this work was to evaluate the behaviour of phosphate solubilizing microorganisms (fungus: 310A, 061, 062 e 251, bacterias 163, 160 e 161 in promoting nutrition and growth of lettuce(Lactuca sativa L. seedlings cultivated in trays with sterilized substrate fertilized and phosphates source. A randomized completely design was used, with a factorial 4x8 scheme (four treatments with phosphate nutrition and inoculated with eight phosphate solubilizing microorganisms and four replications. Each replication was made of 10 cells. The experiment was evaluated 35 days after planting for dry matter, P percentage and total phosphorus of above ground parts. The triple super phosphate (SFT had better results than the others, including the control treatment, in all analyzed parameters. On the dry matter production, it was observed negative effect from inoculation in five treatments fertilized with SFT. There was no effect of isolates on the phosphorus content values. In the values of total phosphorus, the isolates 061, 062 e 163 increased the parameter values on the fertilized treatment with SFT. The natural phosphates presented low efficiency when compared to dissolvable fertilizer on the availability of phosphorus to the plants.O objetivo deste trabalho foi avaliar o comportamento de microrganismos solubilizadores de fosfatos (fungos: 310A, 061, 062 e 251; bactérias: 163, 160 e 161 na promoção da nutrição e crescimento de mudas de alface (Lactuca sativa L., cultivadas em bandejas com substrato esterilizado e adubadas com fontes fosfatadas. Foi utilizado um delineamento inteiramente casualizado, arranjo fatorial 4 x 8 (quatro tratamentos de adubação fosfatada e oito tratamentos de inoculação microrganismos solubilizadores de fosfatos com quatro repetições por isolado. Cada repetição foi constituída de 10 células. Aos 35 dias de cultivo, as plantas foram colhidas avaliando-se a matéria seca, porcentagem de P e P total da parte a

  8. Potential effects of plant growth promoting rhizobacteria ...

    African Journals Online (AJOL)

    Damping off caused by Sclerotium rolfsii on cowpea results in yield losses with serious socioeconomic implication. Induction of defense responses by plant growth promoting rhizobacteria (PGPR) is largely associated with the production of defense enzyme phenyl ammonia lyase (PAL) and oxidative enzymes like ...

  9. Growth promoting characteristics of rhizobacteria and AM Fungi for biomass amelioration of Zea mays

    Directory of Open Access Journals (Sweden)

    Kumar Manoj

    2015-01-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR and mycorrhiza were evaluated on the growth (biomass and yield of Zea mays. In the present study, selective rhizospheric PGPR (Azotobacter chroococcum, Pseudomonas aeruginosa, Azospirillum brasilense and Streptomyces sp. and a combination of six strains of arbuscular mycorrhizal fungi (AMF (Acaulospora morrowae, Gigaspora margarita, Glomus constrictum, Glomus mossae, Glomus aggregatum and Scutellospora calospora were isolated and identified with standard methods and 16S rRNA sequence analysis. PGPR and AMF were checked for their growth-promoting behavior under specific treatment conditions. The 30-48-day-old treated plants in all combinations showed a significantly higher mass value. The average dry weight from the shoot was in a range from 41-52% as compared to the control. This increase also translated into a higher mass value of the roots. Overall, an 82% growth rate was observed in terms of height as the consequence of biomass production, specifically in the case of AMF + rhizobacteria combination. We report an efficient, sustainable and cost-effective biofertilizer for enhanced biomass of Z. mays, one of the staple food crops worldwide.

  10. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    mulissa

    2016-08-31

    Aug 31, 2016 ... with altitude range from 1,526 (Alamata) to 2,840 masl (Sheno) in. October, 2009 ... distilled water and allowed to germinate on water agar (1%) surface for three days at ... treatment on day 0, 4, 8, and 12 for pH change and soluble P analysis. ...... basis of sensitivity to boiling in water as measured by PCR.

  11. Phosphate solubilizing bacteria around Indian peninsula

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; Chandramohan, D.

    nitrophenylphosphate by the culture. One mole of nitrophenol is equivalent to 1 atom of phosphorus. The absorbance was read at 418 nm using DU-6 Beckmann spectrophotometer. The activity was expressed as ?mol.Pml-1d-1. The cultures which showed good phosphate... suitable controls. Growth was measured at 600 nm using DU-6 Beckmann spectrophotometer and phosphatase activity was measured as described earlier. For testing the rate of survival of PSB on various carriers 2 g of finely powdered sediment, rice...

  12. (VAM) and phosphate solubilizing bacteria (PSB)

    African Journals Online (AJOL)

    User

    2013-09-18

    Sep 18, 2013 ... mycorrhiza (VAM), and phosphate solubilising bacteria (PSB) individually and in .... Two-way analysis of variance (ANOVA) was carried out at a 0.05 level of significance on the data and SPSS version 13.0 was used.

  13. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of chilli (Capsicum annuum L.)

    Science.gov (United States)

    Abbasi, M. K.; Musa, N.; Manzoor, M.

    2015-08-01

    The ability of soil microorganisms and organic manure to convert insoluble phosphorus (P) to an accessible form offers a biological rescue system for improving P utilization efficiency in soil-plant systems. Our objective was to examine the P mineralization potential of two soluble P fertilizers (SPF), i.e., single superphosphate (SSP) and diammonium phosphate (DAP), and of insoluble rock phosphate (RP) with and without phosphate-solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P utilization efficiency (PUE) of chilli (Capsicum annuum L.). An incubation study was carried out on a loam (slightly alkaline) soil with 12 treatments: T0 - control; T1 - RP; T2 - SSP; T3 - DAP; T4 - PM; T5 - 1/2 RP+1/2 SSP; T6 - 1/2 RP+1/2 DAP; T7 - 1/2 RP+1/2 PM; T8 - RP+PSB; T9 - 1/2 RP+1/2 SSP+PSB; T10 - 1/2 RP+1/2 DAP+PSB; and T11 - 1/2 RP+1/2 PM+PSB. Phosphorus mineralization was measured by analyzing extractable P from the amended soil incubated under controlled conditions at 25 °C for periods of 0, 5, 15, 25, 35 and 60 days. A complementary greenhouse experiment was conducted in pots with chilli (Capsicum annuum L.) as a test crop. Growth, yield, P uptake and PUE of the chilli was determined during the study. Results indicated that P mineralization in soil amended with RP was 6.0-11.5 mg kg-1, while both soluble P fertilizers resulted in 68-73 mg P kg-1 at day 0, which decreased by 79-82 % at the end of incubation. The integrated use of PSB and PM with RP in T11 stimulated P mineralization by releasing a maximum of 25 mg P kg-1 that was maintained at high levels without any loss. Use of PSB decreased soil pH. In the greenhouse experiment, RP alone or RP+PSB did not have a significant impact on plant growth. However, the combined use of RP, PM and PSB in T11 resulted in similar growth, yield and P uptake of chilli as DAP. The PUE of applied P varied from 4 to 29 % and was higher in the treatments that included PSB. We conclude

  14. The effect of plant growth promoting rhizobacteria, nitrogen and phosphorus on relative agronomic efficiency of fertilizers, growth parameters and yield of wheat (Triticum aestivum L. cultivar N-80-19 in Sari

    Directory of Open Access Journals (Sweden)

    Z. Saber

    2016-05-01

    Full Text Available In order to evaluate the efficiency of plant growth promoting rhizobacteria (PGPR plus nitrogen and phosphorous chemical fertilizers on relative agronomic efficiency of P and N fertilizers and some agronomic parameters of wheat (Triticum aestivum L. cultivar N-80-19, an experiment was conducted at Sari Agricultural Sciences and Natural Resources University during growing season of 2008-2009. Experiment was arranged in split-split plot based on randomized complete block design with three levels (0, 25 and 50 kg.ha-1 and sub-plots were considered PGPR at four levels (control, inoculation with nitrogen fixing bacteria (PFB, phosphate solubilizing bacteria (PSB and dual inoculation with PFB and PSB with three replications. Results showed that the application of biofertilizers significantly increased relative agronomic efficiency of N and P fertilizers, spike number, plant height, flag leaf area, grain yield and grain weight of wheat. Application of biofertilizers increased wheat grain yield as much as 46.6% as compared to control. Double inoculation of biofertilizers improved relative agronomic efficiency of fertilizers by 58.4 and 76.5% as compared to control, respectively. Integrated treatments showed higher performance compared to separate treatments. Generally, biofertilizers with low levels of P and N fertilizers significantly improved yield components of wheat without any reduction in yield related parameters.

  15. Metabolic and biofungicidal properties of maize rhizobacteria for ...

    African Journals Online (AJOL)

    Plant growth promoting rhizobacteria (PGPR) are known to influence plant growing both by direct and/or indirect mechanisms. This study aimed to establish PGPR profile of 15 bacteria isolated from maize (Zea mays L.) rhizosphere in Benin. These rhizobacteria were screened in vitro for the plant growth promoting traits like ...

  16. deaminase from plant growth promoting rhizobacteria in Striga

    African Journals Online (AJOL)

    Experiments were conducted in pots to determine the growth effect of different rhizobacteria on maize under Striga hermonthica infestation. Three bacteria were selected based on their plant growth promoting effects. Whole bacterial cells of the rhizobacteria were used to amplify 1-amino-cyclopropane-1-carboxylic acid ...

  17. Phosphate-solubilizing fungi isolated from a semiarid area cultivated with melon (Cucumis melo L. cv. gold mine Fungos solubilizadores de fosfato isolados de área semiárida cultivada com melão (Cucumis melo L. cv. gold mine

    Directory of Open Access Journals (Sweden)

    Flavia Paiva Coutinho

    2011-12-01

    Full Text Available Considering that little is known about the occurrence of phosphate-solubilizing fungi from areas cultivated with melon, the phosphate solubilization ability of filamentous fungi isolated in these areas was evaluated. Three hundred and eighteen filamentous fungal isolates belonging to 23 genera were evaluated, besides Aphyllophorales and Mycelia sterilia. From those, 52 were able to solubilize P: Aphyllophorales (2, Aspergillus (34, Penicillium (10 and Rhizopus (6. These results will contribute to subsidizing further research regarding the capacity of these fungi to solubilize other sources of phosphate applied to the melon crop, as well as indicate the need for a screening program to select those with higher capacity and potential for solubilization.Considerando que pouco se conhece sobre a ocorrência de fungos solubilizadores de fosfato de áreas cultivadas com melão, foi avaliada a habilidade de solubilização desse nutriente por fungos filamentosos isolados dessas áreas. Foram avaliadas 318 amostras de fungos filamentosos pertencentes a 23 gêneros, além de Aphyllophorales e Mycelia sterilia. Dessas amostras, 52 apresentaram habilidade para solubilizar o fosfato: Aphyllophorales (2, Aspergillus (34, Penicillium (10 e Rhizopus (6. Esses resultados contribuem para subsidiar pesquisas que testem a capacidade desses fungos em solubilizar outras fontes fosfatadas aplicadas na cultura do melão, assim como indicam a necessidade de selecionar isolados com maior capacidade e potencial para solubilização.

  18. Phosphorus release capacity of soluble P fertilizers and insoluble rock phosphate in response to phosphate solubilizing bacteria and poultry manure and their effect on plant growth promotion and P utilization efficiency of chilli (Capsicum annuum L.)

    Science.gov (United States)

    Abbasi, M. K.; Musa, N.; Manzoor, M.

    2015-01-01

    The ability of soil microorganisms and organic manures to convert insoluble phosphorus (P) to an accessible form offers a biological rescue system for improving P solubilization and utilization in soil-plant systems. Our objective was to examine the P supplying capacity of soluble P fertilizers (SPF) i.e. single super phosphate (SSP) and di-ammonium phosphate (DAP) and insoluble rock phosphate (RP) after adding phosphate solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P-utilization efficiency (PUE) of chill (Capsicum annuum L.). An incubation study was carried-out on a sandy loam neutral soil with twelve treatments including T0: control; T1: RP; T2: SSP; T3: DAP; T4: PM; T5: 1/2 RP + 1/2 SSP; T6: 1/2 RP + 1/2 DAP; T7: 1/2 RP + 1/2 PM; T8: RP + PSB; T9: 1/2 RP + 1/2 SSP + PSB; T10: 1/2 RP + 1/2 DAP + PSB; T11: 1/2 RP + 1/2 PM + PSB. Phosphorus release capacity of added amendments was measured by analyzing extractable P from the amended soil incubated under controlled condition at 25 °C for 0, 5, 15, 25, 35, 60 days period. To complement the incubation study, a greenhouse experiment was conducted in pots with chilli (Capsicum annuum L.) used as a test crop. Growth, yield, P-uptake and PUE of the chilli was determined during the study. Results indicated that P release capacity of soil amended with RP varied between 6.0 and 11.5 mg kg-1 while the soluble P fertilizers i.e. SSP and DAP displayed a maximum of 73 and 68 mg P kg-1 at the start of the experiment (day 0). However, the P released tendency from SSP and DAP declined during incubation and at the end 82 and 79% of P initially present had been lost from the mineral pool. Integrated use of PSB and PM with RP in 1/2 RP + 1/2 PM + PSB treatment stimulated P mineralization by releasing a maximum of 25 mg P kg-1 that was maintained at high levels without any loss. Application of PSB tended to decrease pH showing an acidifying effect on soil. In the greenhouse

  19. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems. This review accentuates the perception of the rhizosphere and plant growth promoting rhizobacteria under the current perspectives. Further, explicit outlooks on the different mechanisms of rhizobacteria mediated plant growth promotion have been described in detail with the recent development and research. Finally, the latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

  20. The effectiveness of various Rhizobacteria carriers to improve the shelf life and the stability of Rhizobacteria as Bioherbicide

    Science.gov (United States)

    Rakian, T. C.; Karimuna, L.; Taufik, M.; Sutariati, G. A. K.; Muhidin; Fermin, U.

    2018-02-01

    Deleterius Rhizobacteria (DRB) has a potential to control of weed and act as a bioherbicide. Developing a method to weed control that environmentally sound friendly has been increasingly studied. Rhizobacteria can form colonies on weed rooting and synthesize the secondary metabolite compounds. The effectiveness of rhizobacteria as bioherbicide is determined by its survival to be stored for a long time. The objective of this study is to obtain the type of carrier which effectively maintains the life and stability of DRB. Therefore it is necessary to do in vivo and in-vitro research. This study consists of two stages of testing the effectiveness of the carrier in increasing the shelf life of rhizobacteria and testing the effectiveness stability as a bioherbicide on Ageratum conyzoides weed after storage for 20 weeks. Research was conducted in Agronomy Lab, Agriculture Faculty, Halu Oleo University Kendari, Since August to December 2016. Research found that the talc powder and chaff charcoal powder were effective as a carrier of rhizobacteria and able to maintain the viability of rhizobacteria Bacillus lentus A05 and Pseudomonas aeruginosa A08 for five months and also able to maintain the stability of rhizobacteria as bioherbicide.

  1. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    Science.gov (United States)

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Effect of plant growth promoting rhizobacteria on root morphology of ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... Plant growth promoting rhizobacteria improve the plant growth by a variety of ways like ... preparing textile dye in the Far East, Central and. Northern Asia and ... The experiment was carried out in complete randomized design.

  3. Screening of Plant Growth-Promoting Rhizobacteria from Maize ...

    African Journals Online (AJOL)

    Screening of Plant Growth-Promoting Rhizobacteria from Maize ( Zea Mays ) and Wheat ( Triticum Aestivum ) ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN ... African Journal of Food, Agriculture, Nutrition and Development.

  4. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-06

    Apr 6, 2009 ... effects of PGPR isolates on the growth of rice, a pot culture experiment was conducted. Prior to seeds ... undertaken to screen the PGPR strains that are ..... promoting rhizobacteria on bell pepper production and green peach.

  5. Rhizobacteria in mycorrhizosphere improved plant health and yield of banana by offering proper nourishment and protection against diseases.

    Science.gov (United States)

    Phirke, Niteen V; Kothari, Raman M; Chincholkar, Sudhir B

    2008-12-01

    The corporate R&D banana orchards of Musa paradisiaca (dwarf Cavendish AAA, var. shrimanti) on a medium black alluvial soil with low nutrients harboured diversified species of vesicular-arbuscular mycorrhizal (VAM) fungi. These fungi infected the roots severely (69.2%), showed elevated (69.8 g(-1) soil) spore density, increased soil bacterial density (245 x 10(8) cfu g(-1)), produced siderophores (58.2%) and reduced nematode population (2.3 g(-1)) in the mycorrhizosphere of plants for integrated plant nutrition management (IPNM) system as compared to traditional treatment of applying chemical fertilisers alone and other test treatments. The interactions of plant roots with native VAM and local and applied rhizobacteria in the matrix of soil conditioner enabled proper nourishment and protection of crop in IPNM treatment as compared to traditional way. Hence, exploitation of plant growth promoting rhizobacteria through judiciously designed IPNM system revealed the (a) relatively increased banana productivity (21.6%, 76 MT ha(-1)), (b) least occurrence of fusarial wilt and negligible evidence of Sigatoka, (c) saving of 50% chemical fertilisers and (d) permitted control over soil fertility in producer's favour over traditional cultivation practices. These findings are discussed in detail.

  6. RHIZOBACTERIA AS BIOCONTROL AGENTS OF ROOT ROT DISEASE ON SHALLOT

    Directory of Open Access Journals (Sweden)

    Nunik Iriyanti Ramadhan

    2015-01-01

    Full Text Available Shallot is a high-economic value commodity, but so far the supply is still lower than the demand. One of the production problem is “moler” disease of shallot (MDS caused by Fusarium oxysporum f.sp. cepae (FOCe. The aim of this research was to study the potentiality of shallot rhizobacteria (SRB from various soil ordo to inhibit (MDS. This research was held in the Laboratory of Biology and Soil Health and Greenhouse at UNS. This research was carried out by exploring rhizobacteria of shallot planted on Entisols, Andisols, and Vertisols. Rhizobacteria exploration results were tested for their ability to control Fusarium oxysporum f.sp.cepae (FOCe. Inhibitory ability test of SRB to FOCe was carried out in vitro and on shallot in the greenhouse. The green house research used a Completely Randomized Design (CDR with two factors. The first factor was rhizobacteria combination and the second factor was various soil ordo (Andisols, Entisols, and Vertisols. Each treatment was replicated three times. It was obtained three rhizobacteria isolates from Vertisols (B15: 70%, Andisols (B12:45,55%, and Entisols (B10:46,67% being the highest inhibition results to FOCe. The combination of rhizobacteria B12 and B10 provided the lowest intensity.

  7. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    Science.gov (United States)

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Dicke, M.; Loon, van J.J.A.

    2015-01-01

    Selected strains of non-pathogenic rhizobacteria can trigger induced systemic resistance (ISR) in plants against aboveground insect herbivores. However, the underlying mechanisms of plant-mediated interactions between rhizobacteria and herbivorous insects are still poorly understood. Using

  9. The effect of plant growth promoting rhizobacteria (PGPR on quantitative and qualitative characteristics of Sesamum indicum L. with application of cover crops of Lathyrus sp. and Persian clover (Trifolium resopinatum L.

    Directory of Open Access Journals (Sweden)

    M. Jahan

    2016-05-01

    Full Text Available Cover crops cultivation and application of plant growth rhizobacteria are the key factors to enhance agroecosystem health. A field experiment was conducted at the Research Farm of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during growing season of 2009-2010. A split plot arrangement based on a complete randomized block design with three replications was used. Cultivation and no cultivation of Lathyrus sp. and Persian clover (Trifolium resopinatum in autumn assigned to the main plots. The sub plot factor consisted of three different types of biofertilizers plus control, including 1-nitroxin (containing of Azotobacter sp. and Azospirillum sp., 2- phosphate solubilizing bacteria (PSB (containing of Bacillus sp. and Pseudomonas sp., 3- biosulfur (containing of Thiobacillus ssp. and 4- control (no fertilizer. The results showed the effect of cover crops on seed number and seed weight per plant, biological and seed yield was significant, as the seed yield increased of 9 %. In general, biofertilizers showed superiority due to the most studied traits compared to control. Nitroxin, PSB and biosulfur increased biological yield of 44, 28 and 26 % compared to control, respectively. Cover crops and biofertilizers interactions, showed significant effect on all studied traits, as the highest and the lowest harvest index resulted in cover crop combined with biofertilizers (22.1% and cultivation and no cultivation of cover crops combined with control (15.3%, respectively. The highest seed oil and protein content resulted from cover crops plus biofertilizers (42.4% and cover crops plus PSB (22.5%, respectively. In general, the results showed cover crops cultivation in combination with biofertilizers application could be an ecological alternative for chemical fertilizers, in addition of achieving advantages of cover crops. According to the results, it should be possible to design an ecological cropping system and produce appropriate and healthy

  10. The ability of rhizobacteria to solubilize phosphate and synthesize of indoleacetic acid in cowpea

    Directory of Open Access Journals (Sweden)

    Weslany Silva Rocha

    2018-01-01

    Full Text Available The Cerrado comprises a vast ecoregion in central Brazil where plants show both growth and nitrogen fixation deficiencies due to low soil fertility. Farmers may overcome such problem using species of microorganisms capable of improving soil fertility such as the Rhizobia bacteria. This work aimed to assess the ability of phosphate solubilization and synthesis of indoleacetic acid (IAA of Rhizobium isolates obtained from Cerrado soils in the state of Tocantins, Brazil, evaluating their symbiotic efficiency in cowpea (Vigna unguiculata L. Walp. plants. We used a total of 32 isolates (or strains of Rhizobium and a reference species of Bradyrhizobium. The capacity of phosphate solubilization and synthesis of IAA was evaluated in vitro, while the symbiotic function of rhizobia isolates and the effect on cowpea biomass was assessed in a greenhouse. Only eight strains were able to solubilize calcium phosphate, while all isolates produced IAA. The rhizobia inoculation caused a significant increase in biomass and nodulation of cowpea. The isolates UFT R122 and UFT R124 stood out with the highest values for the studied parameters, showing rises above 33% of relative efficiency in comparison to the treatment with nitrogen fertilization. By associating the results of phosphate solubilization capacity, IAA synthesis, symbiotic ability, and nodulation, we conclude that the isolates that showed good performance are potential inoculants for cowpea in Cerrado soils.

  11. Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures

    Directory of Open Access Journals (Sweden)

    V Bianciotto

    2009-12-01

    Full Text Available Arbuscular mycorrhizal (AM fungi, one of the most important component of the soil microbial community, establish physical interactions with naturally occurring and genetically modified bacterial biofertilizers and biopesticides, commonly referred to as plant growth-promoting rhizobacteria (PGPR. We have used a genetic approach to investigate the bacterial components possibly involved in the attachment of two PGPR (Azospirillum and Rhizobium to AM roots and AM fungal structures. Mutants affected in extracellular polysaccharides (EPS have been tested in in vitro adhesion assays and shown to be strongly impaired in the attachment to both types of surfaces as well as to quartz fibers. Anchoring of rhizobacteria to AM fungal structures may have special ecological and biotechnological significance because it may facilitate colonisation of new rhizospheres by the bacteria, and may be an essential trait for the development of mixed inocula.

  12. Status and phosphorus solubilization potential of bacteria and arbuscular mycorrhizal fungi isolated from various locations of Khyber Pakhtunkhwa province

    International Nuclear Information System (INIS)

    Wahid, F.; Sharif, M.; Khan, M.

    2016-01-01

    The soils of Pakistan are alkaline calcareous in nature and its high pH makes phosphorus (P) unavailable for plants uptake. Chemical sources of P fertilizers are a costly and detrimental practice. Therefore, investigations were conducted to determine the native status of phosphate solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) in three different zones of Khyber Pakhtunkhwa province of Pakistan. In order to select the efficient PSB strains for solubility enhancement of P from rock phosphate (RP), rhizosphere soil samples were collected from irrigated and rainfed fields of maize, sorghum, pastures and vegetables. Population density of PSB ranged from 1.7*107 to 2.7*108 CFU g-1 rhizosphere soil. The bacterial strains Coccus, Streptoccocus and Bacillus sp. were identified on the basis of their microscopic, phenotypic and morphological characters. Most of the AM fungal spores identified were belonging to Glomus mosseae and Glomus intradices. A range of 02-35 spores per 20 g air dried soil were recorded. The PSB strains such as Coccus DIM7, Streptococcus PIM6 and Bacillus sp. PIS7 solubilized more P from RP than any other strain in both of the liquid and solid medium. Results show that areas under investigations are rich in P solubilizing micro flora providing a rich source for inoculum production. Moreover, the PSB strains have the capability to solubilize P from RP that can be used as biofertilizers for optimum crop production. (author)

  13. Does origin of mycorrhizal fungus on mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis?

    NARCIS (Netherlands)

    Heijden, van der E.W.; Kuyper, T.W.

    2001-01-01

    Mycorrhizal effectiveness depends on the compatibility between fungus and plant. Therefore, genetic variation in plant and fungal species affect the effectiveness of the symbiosis. The importance of mycorrhizal plant and mycorrhizal fungus origin was investigated in two experiments. In the first

  14. Plant growth promoting rhizobacteria: Beneficial effects for healthy ...

    African Journals Online (AJOL)

    It is unanimously admitted that the chemical fertilizers and pesticides used in modern agriculture create a real environmental and public health problems. One of the promising solutions to substitute these agrochemicals products is the use of bio-resources, including plant growth promoting rhizobacteria (PGPR). The PGPR ...

  15. Effect of plant-growth-promoting rhizobacteria inoculation on plant ...

    African Journals Online (AJOL)

    A field experiment was conducted in a wet season (Kharif) to study the effects of plant growth-promoting rhizobacteria(PGPR) inoculation on agronomic traits and productivity of Basmati rice (cv. 'Pusa Basmati 1401') in a randomized block with twelve treatments. We evaluated one bacterial (Providencia sp. PW5) and one ...

  16. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the ...

    African Journals Online (AJOL)

    Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms. The use of PGPR is steadily increasing in agriculture and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. Here, we have isolated and ...

  17. Diversity and Plant Growth Promoting Properties of Rhizobacteria ...

    African Journals Online (AJOL)

    characteristics of plant growth promoting rhizobacteria (PGPR) and hence selected for further study. The sixty ... tolerance to a wide range of pH by most of the isolates. The 66 isolates ... chemicals and change in traditional cultivation practices ...

  18. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Science.gov (United States)

    Meyer, Joana Beatrice; Song-Wilson, Yi; Foetzki, Andrea; Luginbühl, Carolin; Winzeler, Michael; Kneubühler, Yvan; Matasci, Caterina; Mascher-Frutschi, Fabio; Kalinina, Olena; Boller, Thomas; Keel, Christoph; Maurhofer, Monika

    2013-01-01

    This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  19. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?

    Directory of Open Access Journals (Sweden)

    Joana Beatrice Meyer

    Full Text Available This study aimed to evaluate the impact of genetically modified (GM wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF. Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.

  20. BACTERIAS NATIVAS SOLUBILIZADORES DE FOSFATOS PARA INCREMENTAR LOS CULTIVOS EN EL DEPARTAMENTO DE CÓRDOBA-COLOMBIA BACTÉRIA NATIVO SOLUBILIZER DE FOSFATOS AO AUMENTO DAS COLHEITAS NO DEPARTAMENTO DE CORDOVA-COLÔMBIA NATIVE PHOSPHATE SOLUBILIZING BACTERIA TO INCREASE THE CROPS IN THE DEPARTMENT OF CORDOVA-COLOMBIA

    Directory of Open Access Journals (Sweden)

    CECILIA LARA

    2011-12-01

    : Burkoldelia cepacia, Enterobacter cloacae, Pantoea sp, Aeromonas, Enterobacter Nakasaki. Cepacia Burkoldelia foi o microrganismo mais capacidade de solubilização de fosfato e foi usado para realizar um pequeno teste em sementes de rabanete (Rhapanus sativus. Verificou-se que uma concentração de 108 UFC/mL, os resultados foram favoráveis para o crescimento eo peso fresco da planta.The aim of this study was to characterize and evaluate native phosphate solubilizing microorganisms from soil samples in the rural area of Cordoba. Primary isolation was performed in the middle SMRS1 in which we observed the appearance of halos of solubilization, at the same time there was a macroscopic and microscopic characterization of the colonies. Was observed, as gram-negative bacilli predominant population at a rate of 93%. We performed qualitative analysis of the strains isolated NBRIP supplemented, at this stage were selected for strains that showed greater than 3 mm IS strains selected for their ability to solubilize phosphate were reviewed using the API 20 E and API 20 NE. The isolated bacteria were: Burkoldelia cepacia, Enterobacter cloacae, Pantoea sp, Aeromonas hydrophila, Enterobacter Nakasaki. Burkoldelia cepacia was the microorganism most phosphate solubilizing capacity and was used to conduct a small trial in radish (Rhapanus sativus seeds. It was found that a concentration of 108 CFUI mL the results were favorable for growth and fresh weight of the plant

  1. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Directory of Open Access Journals (Sweden)

    Franciele Santos

    Full Text Available A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  2. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Science.gov (United States)

    Santos, Franciele; Peñaflor, Maria Fernanda G V; Paré, Paul W; Sanches, Patrícia A; Kamiya, Aline C; Tonelli, Mateus; Nardi, Cristiane; Bento, José Mauricio S

    2014-01-01

    A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  3. Greenhouse and field assessment of rhizobacteria to control guava decline

    Directory of Open Access Journals (Sweden)

    Alexandre Macedo Almeida

    2011-01-01

    Full Text Available In an effort to devise a biological strategy to control guava decline, 120 rhizobacteria isolates were obtained from symptomless guava trees located in Meloidogyne enterolobii-infested orchards. Of those isolates, 44 were assessed for their potential to reduce nematode's reproduction: for each isolate, six guava stem cuttings were embedded for eight hours with bacterial suspension and transplanted. Upon development of the roots, the plants were inoculated with 2000 nematode eggs and allowed to grow for four months under greenhouse. Seedlings embedded with water, inoculated or not with the nematode, served as controls. All treatments were equivalent in the five variables that assessed plant development. Several rhizobacteria reduced (p<0.05 the final nematode population (Fp, Fp/gram of root and reproduction factor, although not to satisfactory levels. Subsequently, a two-year experiment was set up in a guava orchard affected by guava decline, in which three of the most effective rhizobacterial isolates were compared with the biological products Nemat® and Nemaplus® for their ability to reduce variables related to nematode parasitism and increase guava productivity. Seven bimonthly applications of these treatments under the tree canopy were unable to reduce nematode parasitism and increase productivity. The decline and death of some plants forced the experiment to be stopped after the first harvest. In conclusion, rhizobacteria applications seem unable to reduce the parasitism of M. enterolobii on guava plants, and even less to reduce the extensive root decay or alleviate the physiological stress suffered by trees affected by guava decline.

  4. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... patterns. Four insoluble phosphate sources; purulia rock phosphate (PRP), mussourie rock phosphate. (MRP) ... community composition analysis (Garland, 1996a) and ..... the threshold level that enabled only a few species to.

  5. Evaluation methods used for phosphate-solubilizing bacteria ...

    African Journals Online (AJOL)

    This work aimed to evaluate the different selection methods and select inorganic phosphorus-solubilizing bacteria as potential plant-growth promoters. Bacterial isolates obtained from sugarcane roots and soil were tested using solid growth media containing bicalcium phosphate and Irecê Apatite ground rock phosphate as ...

  6. Characterization of Phosphate Solubilizing Faba Bean ( Vicia faba L ...

    African Journals Online (AJOL)

    http://dx.doi.org/10.4314/star.v3i3.2 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers ...

  7. Effects of phosphate solubilizing microorganisms and Rhizobium sp ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... nematode Meloidogyne incognita (Kofoid and White). Chitwood and .... Meloidogyne incognita was collected from chickpea field soil identi- fied with the help perineal pattern ..... japonicum on soybean. Phytopathology, 60: ...

  8. Phosphate solubilizing bacteria: Comparison between coastal and deep sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Biche, S.; Pandey, S.; Gonsalves, M.J.B.D.; Das, A.; Mascarenhas-Pereira, M.B.L.; LokaBharathi, P.A.

    in the CIB sediments (r=0.59) than in the coastal sediments (r= 0.22). It is apparent that the enzyme activity in the coastal sediments could be more for P mobilization and in the oligotrophic deep sea it could be both for P and C mobilization....

  9. Moroccan rock phosphate solubilization during a thermo-anaerobic ...

    African Journals Online (AJOL)

    SWEET

    2013-12-04

    Dec 4, 2013 ... photosynthesis, respiration chain reactions and physiologi- cal chemical ... functional biofertilizer at the high temperatures that occur for decomposing complex organic wastes (Yang, 2003). Since cellulose is mostly present in plant cell walls, .... culture on TSA medium in aerobic and anaerobic conditions.

  10. Isolation and characterization of phosphate-solubilizing bacteria ...

    African Journals Online (AJOL)

    ... in nitrogen, free semi-solid medium and able to produce siderophore. PSB inoculants with their beneficial traits would be considered as potential biofertilizer for the sustainable aerobic rice cultivation system. Key words: Aerobic rice, antagonistic effect, indoleacetic acid, organic acids, phosphorus solubilizing bacteria.

  11. Moroccan rock phosphate solubilization during a thermo-anaerobic ...

    African Journals Online (AJOL)

    In order to investigate the presence of thermo-tolerant rock phosphate (RP) solubilizing anaerobic microbes during the fermentation process, we used grassland as sole organic substrate to evaluate the RP solubilization process under anaerobic thermophilic conditions. The result shows a significant decrease of pH from ...

  12. Isolation of phosphate solubilizer fungi from Araza rhizosphere

    Directory of Open Access Journals (Sweden)

    Diana Fernanda Vera

    2002-01-01

    Full Text Available Araza is an eatable plant, original from the Amazon region which has been describedas a promising species for commercialization (Quevedo 1995. This plant has highproductivity even in low content phosphate soil but the presence of phosphatesolubilizazing microorganisms may contribute to increase this element availability.In this study we report the isolation and characterization of solubilizing fungiprocessed using the soil washing method, from soil samples were Araza is cultivated attwo regions in Guaviare, Colombia. Eighteen isolates of fungi capable of solubilizingphosphate were obtained from 2 different sources. The most importat species that solubilized phosphate from calcium were Trichodermaaureoviride, Aspergillus aculeatus,Trichodermastrain 1 y Trichodermastrain 2 and for phosphate from iron: Aspergillus oryzae,Paecilomycesstrain 3, Gongronella butleri& Fusarium oxysporum

  13. Rock phosphate solubilizing and cellulolytic actinomycete isolates of earthworm casts

    Science.gov (United States)

    Mba, Caroline C.

    1994-03-01

    Four microbial isolates, OP2, OP3, OP6, and OP7, of earthworm casts of Pontoscolex corethrurus were found to be acid tolerant actinomycetes and efficient rock phosphate (RP) solubilizers that could grow fast on NH4Cl-enriched or N-free carboxymethyl cellulose or glucose as sole carbon source. CMC (carboxymethyl cellulose) induced production of extracellular cellulase enzyme and the production of reducing sugar in all the isolates. RP solubilizing power was observed to be inversely related to glucose consumption. The most efficient RP solubilizer was found to consume the least glucose. Growth was faster on cellulose than on glucose media. N-free CMC induced greater glucose production than NH4Cl-enriched CMC medium. Both CMC and glucose media were acidified by all the isolates, however, RP solubilizing power decreased with acidification. Solubilization power was greatest with isolate OP7, which also produced the greatest amount of reducing sugar per gram CMC. Both RP solubilizing power and the cellulolytic efficiency varied among isolates. A minimum of 631 µg P/0.1 g RP and a maximum of 951.4 µg P/0.1 g RP was recorded.

  14. Effects of phosphate solubilizing microorganisms and Rhizobium sp ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... position due to its nutritive values (17-23% protein) in large vegetarian .... Macrophomina phaseolina was isolated from infected chickpea root samples ... inoculated into each pot around the pea seedling. Another PSM,.

  15. Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study.

    Science.gov (United States)

    Rahimzadeh, Saeedeh; Pirzad, Alireza

    2017-08-01

    Drought stress, which is one of the most serious world environmental threats to crop production, might be compensated by some free living and symbiotic soil microorganisms. The physiological response of flax plants to inoculation with two species of arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae or Rhizophagus intraradices) and a phosphate solubilizing bacterium (Pseudomonas putida P13; PSB) was evaluated under different irrigation regimes (irrigation after 60, 120, and 180 mm of evaporation from Class A pan as well-watered, mild, and severe stress, respectively). A factorial (three factors) experiment was conducted for 2 years (2014-2015) based on a randomized complete block design with three replications at Urmia University, Urmia, located at North-West of Iran (37° 39' 24.82″ N44° 58' 12.42″ E). Water deficit decreased biomass, showing that flax was sensitive to drought, and AM root colonization improved the performance of the plant within irrigation levels. In all inoculated and non-inoculated control plants, leaf chlorophyll decreased with increasing irrigation intervals. Water deficit-induced oxidative damage (hydrogen peroxide, malondialdehyde, and electrolyte leakage) were significantly reduced in dual colonized plants. All enzymatic (catalase, superoxide dismutase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (glutathione, ascorbic acid, total carotenoids) antioxidants were reduced by water-limiting irrigation. Dual inoculated plants with AM plus Pseudomonas accumulated more enzymatic and non-enzymatic antioxidants than plants with bacterial or fungal inoculation singly. Dual colonized plants significantly decreased the water deficit-induced glycine betaine and proline in flax leaves. These bacterial-fungal interactions in enzymatic and non-enzymatic defense of flax plants demonstrated equal synergism with both AM fungi species. In conclusion, increased activity of enzymatic antioxidants and higher production of non

  16. Streptomyces rhizobacteria modulate the secondary metabolism of Eucalyptus plants.

    Science.gov (United States)

    Salla, Tamiris Daros; da Silva, Ramos; Astarita, Leandro Vieira; Santarém, Eliane Romanato

    2014-12-01

    The genus Eucalyptus comprises economically important species, such as Eucalyptus grandis and Eucalyptus globulus, used especially as a raw material in many industrial sectors. Species of Eucalyptus are very susceptible to pathogens, mainly fungi, which leads to mortality of plant cuttings in rooting phase. One alternative to promote plant health and development is the potential use of microorganisms that act as agents for biological control, such as plant growth-promoting rhizobacteria (PGPR). Rhizobacteria Streptomyces spp have been considered as PGPR. This study aimed at selecting strains of Streptomyces with ability to promote plant growth and modulate secondary metabolism of E. grandis and E. globulus in vitro plants. The experiments assessed the development of plants (root number and length), changes in key enzymes in plant defense (polyphenol oxidase and peroxidase) and induction of secondary compounds(total phenolic and quercetinic flavonoid fraction). The isolate Streptomyces PM9 showed highest production of indol-3-acetic acid and the best potential for root induction. Treatment of Eucalyptus roots with Streptomyces PM9 caused alterations in enzymes activities during the period of co-cultivation (1-15 days), as well as in the levels of phenolic compounds and flavonoids. Shoots also showed alteration in the secondary metabolism, suggesting induced systemic response. The ability of Streptomyces sp. PM9 on promoting root growth, through production of IAA, and possible role on modulation of secondary metabolism of Eucalyptus plants characterizes this isolate as PGPR and indicates its potential use as a biological control in forestry.

  17. Isolation and Characterization of Diazotrophic Rhizobacteria of Oil Palm Roots

    Directory of Open Access Journals (Sweden)

    Azlin, C. O.

    2005-01-01

    Full Text Available Beneficial rhizobacteria were isolated from two different compartments of oil palm roots; the rhizosphere or rhizoplane and the inner root tissues. The root samples were collected from oil palm plantation at Felda Lepar 9, Temerloh Pahang (Block 17, Square 6 (soil pH 4.30; 10:25 0.01M CaCl2. Identification of the isolates was conducted by classical biochemical and physiological tests. Acetylene Reduction Assay (ARA test was also conducted to quantify the ability of the isolates to fix atmospheric N2. Twenty-nine strains of rhizobacteria were isolated from root samples and were maintained aerobically on N-free solid media. Seven of the isolates were identified as Gram negative while the rest were Gram positive. The isolates were successfully identified as Paenibacillus durus (formerly P. azotofixans, Paenibacillus polymyxa, Azospirillum lipoferum, Herbaspirillum seropedicae and Acetobacter diazotrophicus. The N2 fixation capacities of the isolates ranged from 7.0 x 10-12 to 1.0 x 10-8 mol C2H4/cfu/hour.

  18. Effect of Plant Growth Promoting Rhizobacteria on the Concentration and Uptake of Macro Nutrients by Corn in a Cd-contaminated Calcareous Soil under Drought Stress

    Directory of Open Access Journals (Sweden)

    shahrzad karami

    2017-02-01

    each pot. Each seed of maize was inoculated with 2 mL (1×108 colony-forming units (cfu mL-1 of Micrococcus yunnanensis (a gram positive bacterium with the ability of production of sidrophore and phosphate dissolving characteristic. Each pot was irrigated daily with distilled water to near field capacity by weight, until 15 days after corn planting. Then corn was thinned to 3 plants per pot and irrigation was started with different levels of drought stress (without stress (F.C, 80, and 65% of field capacity by weight. At harvest (8 weeks after planting, the aerial parts of the plants was cut at the soil surface. The harvested plants were washed with distilled water, dried to a constant weight at 65C. Representative samples were dry-ashed and analyzed for macro nutrients. Results and Discussion: The results indicated that the inoculation of bacteria increased shoot dry weight (DW and total uptake of nitrogen (N, phosphorus (P, and potassium (K. Drought stress decreased DW, total uptake of N, P, and K, concentrations of N and K in corn shoots, and concentration of K in the soil. The application of biological fertilizers, such as plant growth promoting rhizobacteria, increase plant growth through increasing microorganism’s activities and population in the soil and so increase macro nutrients uptake by the plant. Phosphate solubilizing rhizobacteria increase plant growth and phosphate availability with production of organic acids and secretion of phosphatase enzymes or protons and conversion of non-soluble phosphates (either organic or inorganic phosphates to the forms that are more available for the plants and improve their nutrition and increase their growth. Drought stress decreases Dry Matter Weight(DMW through decreasing relative humidity of the air of plant growth environment and increases evaporation, transpiration, plant temperature and light intensity of the sun. It prevents normal development of roots, water uptake, and plant growth by reducing the moisture

  19. Plant growth-promoting rhizobacteria (PGPR: their potential as antagonists and biocontrol agents

    Directory of Open Access Journals (Sweden)

    Anelise Beneduzi

    2012-01-01

    Full Text Available Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR. PGPR are highly diverse and in this review we focus on rhizobacteria as biocontrol agents. Their effects can occur via local antagonism to soil-borne pathogens or by induction of systemic resistance against pathogens throughout the entire plant. Several substances produced by antagonistic rhizobacteria have been related to pathogen control and indirect promotion of growth in many plants, such as siderophores and antibiotics. Induced systemic resistance (ISR in plants resembles pathogen-induced systemic acquired resistance (SAR under conditions where the inducing bacteria and the challenging pathogen remain spatially separated. Both types of induced resistance render uninfected plant parts more resistant to pathogens in several plant species. Rhizobacteria induce resistance through the salicylic acid-dependent SAR pathway, or require jasmonic acid and ethylene perception from the plant for ISR. Rhizobacteria belonging to the genera Pseudomonas and Bacillus are well known for their antagonistic effects and their ability to trigger ISR. Resistance-inducing and antagonistic rhizobacteria might be useful in formulating new inoculants with combinations of different mechanisms of action, leading to a more efficient use for biocontrol strategies to improve cropping systems.

  20. New approach for dry formulation techniques for rhizobacteria

    Science.gov (United States)

    Elchin, A. A.; Mashinistova, A. V.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    Two beneficial Pseudomonas isolates selected from rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski have been found to have biocontrol activity. An adequate biocontrol effect requires high yield and long stability of the bacterial preparation [1], which could be achieved by an effective and stable formulation. This study was aimed to test various approaches to dry formulation techniques for Pseudomonas- based preparations. To reach this goal, two drying formulation techniques have been tested: the first one, spray drying and the second, low-temperature contact-convective drying in fluidized bed. The optimal temperature parameters for each technique were estimated. Main merits of the selected approach to dry technique are high yield, moderate specific energy expenditures per 1 kg of evaporated moisture, minimal time of contact of the drying product with drying agent. The technological process for dry formulation included the following stages: the obtaining of cell liquids, the low-temperature concentrating and the subsequent drying of a concentrate. The preliminary technological stages consist in cultivation of the rhizobacteria cultures and concentrating the cell liquids. The following requirements for cultivation regime in laboratory conditions were proposed: optimal temperatures are 26-28°С in 3 days, concentration of viable cells in cell liquid makes 1010-1011 cell/g of absolutely dry substance (ADS). For concentrating the cell liquids the method of a vacuum evaporation, which preserves both rhizobacteria cells and the secondary metabolites of cell liquid, has been used. The process of concentrating was conducted at the minimum possible temperature, i.e. not above 30-33°С. In this case the concentration of viable cells has decreased up to 109-1010 cell/g of ADS. For spray drying the laboratory up-dated drier BUCHI 190, intended for the drying of thermolabile products, was used. The temperatures of an in- and outcoming air did not exceed

  1. Study on rhizobium interaction with osmoprotectant rhizobacteria for improving mung bean yield

    Science.gov (United States)

    Maryani, Y.; Sudadi; Dewi, W. S.; Yunus, A.

    2018-03-01

    Gunungkidul has calcareous soil with limitations including calcareous stone, mostly hilly terrain, and shallow cultivated layer. Furthermore, nowadays we face the disadvantages climates such as long dry seasons, a short rainy season and high temperatures caused by climate change. Climate change leads to irregular rainwater availability for microbes and crops. Research in this field is currently needed as climate change affected directly on crop production, while we need to find the strategy to keep high productivity of the plant. This research aimed to determine the ability of osmoprotectant rhizobacteria and rhizobium to support mung bean yield. Osmoprotectant rhizobacteria were isolated and screened from the calcareous soil in Gunungkidul with disadvantageous climates such as a long dry season, a short rainy season and high temperature. This research was arranged in Completely Randomized Design. The result showed that osmoprotectant rhizobacteria isolate of strain Al24-k and Ver5-k can produce 9.6306 mg g‑1 cell of glycine betaine in a soil density 1.7667 x 107 CFU g‑1 and 11.4870 mg g‑1 cell of glycine betaine in a soil density 1.9667 x 107 CFU g‑1. Inoculation of isolates osmoprotectant rhizobacteria can support mung bean yield. Osmoprotectant rhizobacteria isolate did not effect rhizobium in mung bean rhizosphere.

  2. Portraying mechanics of plant growth promoting rhizobacteria (PGPR: A review

    Directory of Open Access Journals (Sweden)

    Dweipayan Goswami

    2016-12-01

    Full Text Available Population growth and increase in food requirement is the global problem. It is inevitable to introduce new practices that help to increase agricultural productivity. Use of plant growth promoting rhizobacteria (PGPR has shown potentials to be a promising technique in the practice of sustainable agriculture. A group of natural soil microbial flora acquire dwelling in the rhizosphere and on the surface of the plant roots which impose beneficial effect on the overall well-being of the plant are categorized as PGPR. Researchers are actively involved in understanding plant growth promoting mechanics employed by PGPR. Broadly, these are divided into direct and indirect mechanics. Any mechanism that directly enhances plant growth either by providing nutrients or by producing growth regulators are portrayed as direct mechanics. Whereas, any mechanisms that protects plant from acquiring infections (biotic stress or helps plant to grow healthily under environmental stresses (abiotic stress are considered indirect mechanics. This review is focused to describe cogent mechanics employed by PGPR that assists plant to sustain healthy growth. Also, we emphasized on the PGPR-based products which have been commercially developed exploiting these mechanics of PGPR.

  3. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    International Nuclear Information System (INIS)

    Wu, S.C.; Cheung, K.C.; Luo, Y.M.; Wong, M.H.

    2006-01-01

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations

  4. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Cheung, K.C. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Luo, Y.M. [Institute of Soil Science, Chinese Academy of Sciences, Nanjing (China); Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China); Wong, M.H. [Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China) and Joint Open Laboratory on Soil and Environment between HKBU and ISSCAS (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-03-15

    A greenhouse study was carried out with Brassica juncea to critically evaluate effects of bacterial inoculation on the uptake of heavy metals from Pb-Zn mine tailings by plants. Application of plant growth-promoting rhizobacteria, including nitrogen-fixing bacteria and phosphate and potassium solubilizers, might play an important role in the further development of phytoremediation techniques. The presence of these beneficial bacteria stimulated plant growth and protected the plant from metal toxicity. Inoculation with rhizobacteria had little influence on the metal concentrations in plant tissues, but produced a much larger above-ground biomass and altered metal bioavailability in the soil. As a consequence, higher efficiency of phytoextraction was obtained compared with control treatments. - Rhizobacteria promoted growth above normal biomass, but did not influence plant metal concentrations.

  5. Use of rhizobacteria and endophytes for biological control of weeds

    Directory of Open Access Journals (Sweden)

    Trognitz, Friederike

    2014-02-01

    Full Text Available Weeds cause severe yield losses in agriculture, with a maximum estimate of 34% of yield loss worldwide due to competition between the crops and the weeds for nutrition, light and humidity (OERKE, 2006. Invasive plants contribute partially to other problems. The pollen of common ragweed, Ambrosia artemisiifolia L., for example, is five times more allergenic than grass pollen; already ten pollen grains per m3 air can trigger allergy in sensitized patients, including rhinitis, conjunctivitis and asthma. This neophyte from America has extended the season of allergy in European patients to October. Common ragweed is currently most frequent in Hungary, France and Italy. In Austria, ragweed populations along roads have increased dramatically since 2000. The effective means to control this weed of the Asteraceae family are limited; a single plant can produce up to 6000 seeds which stay in the soil for 40 years. Control using selective herbicides is not possible within stands of the Asteraceae member sunflower. Efforts to use herbivore insects as biological control agents also failed due to the unavailability of insects specializing on this ragweed. The use of plant-associated rhizobacteria and endophytes as bio-herbicides offers a novel alternative to conventional methods. By analogy to experiences from other plant-microbe systems, the chances to find microbes of the desired characteristics are highest when isolating and testing specimens directly from ragweed plants. These organisms often have an extremely narrow host range that permits their use for the control of among several even closely related plant species growing together in a field.

  6. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut

    Directory of Open Access Journals (Sweden)

    Sandeep Sharma

    2016-10-01

    Full Text Available Use of Plant growth promoting rhizobacteria (PGPR is a promising strategy to improve the crop production under optimal or sub-optimal conditions. In the present study, five diazotrophic salt tolerant bacteria were isolated from the roots of a halophyte, Arthrocnemum indicum. The isolates were partially characterized in vitro for plant growth promoting traits and evaluated for their potential to promote growth and enhanced salt tolerance in peanut. The 16S rRNA gene sequence homology indicated that these bacterial isolates belong to the genera, Klebisiella, Pseudomonas, Agrobacterium and Ochrobactrum. All isolates were nifH positive and able to produce indole -3-acetic acid (ranging from 11.5 to 19.1 µg ml-1. The isolates showed phosphate solubilisation activity (ranging from 1.4 to 55.6 µg phosphate /mg dry weight, 1-aminocyclopropane-1-carboxylate deaminase activity (0.1 to 0.31 µmol α-kB/µg protein/h and were capable of reducing acetylene in acetylene reduction assay (ranging from 0.95 to 1.8 µmol C2H4 mg protein/h. These isolates successfully colonized the peanut roots and were capable of promoting the growth under non-stress condition. A significant increase in total nitrogen (N content (up to 76% was observed over the non-inoculated control. All isolates showed tolerance to NaCl ranging from 4-8% in nutrient broth medium. Under salt stress, inoculated peanut seedlings maintained ion homeostasis, accumulated less reactive oxygen species (ROS and showed enhanced growth compared to non-inoculated seedlings. Overall, the present study has characterized several potential bacterial strains that showed an enhanced growth promotion effect on peanut under control as well as saline conditions. The results show the possibility to reduce chemical fertilizer inputs and may promote the use of bio-inoculants.

  7. Impact of arbuscular mycorrhizal fungus, Glomus intraradices ...

    African Journals Online (AJOL)

    Aghomotsegin

    leaves were maximum in P. Poae + G.I inoculated plants under water deficit condition. In the presence of ... Plant growth promoting rhizobacteria (PGPR) are usually in contact ... plant hormone indole-3-acetic acid (IAA) and the pathways of its ...

  8. Partner selection in the mycorrhizal mutualism

    NARCIS (Netherlands)

    Werner, G.D.A.; Kiers, E.T.

    2015-01-01

    Partner selection in the mycorrhizal symbiosis is thought to be a key factor stabilising the mutualism. Both plant hosts and mycorrhizal fungi have been shown to preferentially allocate resources to higher quality partners. This can help maintain underground cooperation, although it is likely that

  9. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation

    NARCIS (Netherlands)

    Sobariu, Dana Luminita; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François Xavier; Gavrilescu, Maria

    2016-01-01

    Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and

  10. Study on osmoprotectant rhizobacteria to improve mung bean growth under drought stress

    Science.gov (United States)

    Maryani, Y.; Sudadi; Dewi, W. S.; Yunus, A.

    2018-03-01

    Climate change leads to irregular rainwater availability for crops and thus enhances drought stress. Furthermore, nowadays we face climate disadvantages such as long dry season, short rainy season and high air temperature caused by climate change. This research aimed at studying the ability of osmoprotectant rhizobacteria isolates to support mung bean growth under drought stress. The rhizobacteria were isolated from mung bean’s rhizosphere. The results showed that isolates of strain Al24-k and Ver5-k produced glycine betaine 9.6306 mg g‑1 cell, 1.7667 x 107 CFU g‑1 soil and 11.4870 mg g”1 cell, 1.9667 x 107 CFU g‑1 soil. The isolated rhizobacteria from mung bean’s rhizosphere under field capacity of soil moisture produced glycine betaine 6.8000 mg g‑1 cell, 1.2556 x 107 CFU g‑1 soil. Under 75% field capacity of soil moisture, isolates produced glycine betaine of 6.4059 mg g‑1 cell, 1.3111 x 107 CFU g‑1 soil, while under 50% from field capacity, the isolates produced glycine betaine of 7.4108 mg g‑1 cell, 1.6667 x 107 CFU g‑1 soil. The osmoprotectant rhizobacteria improved the resilience of mung bean to drought stress.

  11. Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria.

    Science.gov (United States)

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-07-01

    The biosurfactant-producing Pseudomonas aeruginosa A11, with plant-growth-promoting (PGP) and multi-metal-resistant (MMR) features was isolated from the rhizosphere of a wild plant Parthenium hysterophorus. The strain A11 was able to utilize glycerol as a carbon source and produce 4,436.9 mg/L of biosurfactant after 120 h of incubation. The biosurfactants was characterized as rhamnolipids (RLs) by thin layer chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and liquid chromatography-mass spectrometry analysis. Eight different RLs congeners were detected with RhaRhaC₁₀C₁₀ being most abundant. The purified rhamnolipid, dirhamnolipid, and monorhamnolipid reduced the surface tension of water to 29, 36, and 42 mN/m with critical micelle concentration of 83, 125, and 150 mg/L, respectively. The strain A11 demonstrated resistance against all the metals detected in rhizosphere except Hg and Ni. The strain A11 also possessed plant-growth-promoting features like siderophores, hydrogen cyanide, catalase, ammonia production, and phosphate solubilization. The dirhamnolipids formed crystals upon incubation at 4 °C, thus making separation of dirhamnolipids easy. Biosurfactant-producing ability along with MMR and PGP traits of the strain A11 makes it a potential candidate for application in the bacterial assisted enhancement of phytoremediation of heavy-metal-contaminated sites.

  12. Phylogeonomics and Ecogenomics of the Mycorrhizal Symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor V.; Kohler, Annegret; Martin, Francis

    2013-05-23

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze 2 dozen mycorrhizal genomes of numerous known mycorrhizal orders and several ecological types (ectomycorrhizal [ECM], ericoid, orchid, and arbuscular). JGI has developed and deployed high-throughput pipelines for genomic, transcriptomic, and re-sequencing, and platforms for assembly, annotation, and analysis. In the last 2 years we have sequenced 21 genomes of mycorrhizal fungi, and resequenced 6 additional strains of L. bicolor. Most of this data is publicly available on JGI MycoCosm?s Mycorrhizal Fungi Portal (http://jgi.doe.gov/Mycorrhizal_fungi/), which provides access to both the genome data and tools with which to analyze the data. These data allow us to address long-standing issues in mycorrhizal evolution and ecology. For example, a major observation of mycorrhizal evolution is that each of the major ecological types appears to have evolved independently in multiple fungal clades. Using an ecogenomic approach we provide preliminary evidence that 2 clades (Cantharellales and Sebacinales) of a single symbiotic ecotype (orchid) utilize some common regulatory (protein tyrosine kinase) and metabolic (lipase) paths, the latter of which may be the product of HGT. Using a phylogenomic approach we provide preliminary evidence that a particular ecotype (ericoid) may have evolved more than once within a major clade (Leotiomycetes).

  13. Effect of two phyto hormone producer rhizobacteria on the bermuda grass growth response and tolerance to phenanthrene

    International Nuclear Information System (INIS)

    Guerrero-Zuniga, A.; Rojas-Contreras, A.; Rodriguez-Dorantes, A.; Montes-Villafan, S.

    2009-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria that have the ability to relieve environmental stress in plants, increasing the plant growth potential. Of importance to phytoremediation, PGPR stimulate plant root development and enhance root growth.This study evaluated the growth response and the tolerance to phenanthrene of Bermuda grass: Cynodon dactylon inoculated with two phytohormone producer rhizobacteria: strains II and III, isolated from a contaminated soil with petroleum hydrocarbons. (Author)

  14. Effect of two phyto hormone producer rhizobacteria on the bermuda grass growth response and tolerance to phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Zuniga, A.; Rojas-Contreras, A.; Rodriguez-Dorantes, A.; Montes-Villafan, S.

    2009-07-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria that have the ability to relieve environmental stress in plants, increasing the plant growth potential. Of importance to phytoremediation, PGPR stimulate plant root development and enhance root growth.This study evaluated the growth response and the tolerance to phenanthrene of Bermuda grass: Cynodon dactylon inoculated with two phytohormone producer rhizobacteria: strains II and III, isolated from a contaminated soil with petroleum hydrocarbons. (Author)

  15. Growth and biomass partitioning of mulungu seedlings in response to phosphorus fertilization and mycorrhizal inoculation

    Directory of Open Access Journals (Sweden)

    Tiago de Sousa Leite

    2014-12-01

    Full Text Available The objective of this work was to evaluate the initial growth and biomass partitioning of mulungu (Erythrina velutina Willd. seedlings under different rates of phosphorus in the presence and absence of arbuscular mycorrhizal fungi (FMA’s. A randomized blocks design in a 5 x 2 factorial arrangement was used, with four replicates and three plants per plot. Treatments consisted of five phosphorus rates (0, 50, 100, 150 and 200 mg.Kg soil-1, using as source the superphosphate fertilizer, and presence or absence of FMA’s. At 98 days after sowing (DAS, shoot height, stem diameter, leaf number, leaf chlorophyll index, leaf dry matter, stem dry matter, root dry matter, leaf area, Dickson quality index and height/stem diameter ratio were evaluated. The phosphorus rate of 200 mg.kg-1 proved to be the most efficient for production of Erythrina velutina seedlings, but with a significant reduction in the biological association of this plant with rhizobacteria. Biomass distribution within the different parts of the plants did not change with distinct rates of P, and there were no benefits in the use of FMA’s until 98 DAS.

  16. Influence of PGPR Bacteria and Arbuscular Mycorrhizal Fungi on Growth and some Physiological Parameters of Onopordon acanthium in a Cd-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    MirHassan Rasouli-Sadaghiani

    2017-02-01

    Full Text Available Introduction: Heavy metals (HMs are serious threat for environment due to their dangerous effects. These metals as contaminants that can be accumulated in soil and after absorption by plants, finally will be found in food chains. Cadmium (Cd is one of the dangerous HMs that threats the health of plants, living organisms and human. Physicochemical remediation methods may cause large changes in different characteristics of soils . Recently environmental-friendly strategies including phytoremediation have been emphasized by researchers. Phytoremediation that refers to the use of plants and their assistance with microorganisms for remediation of contaminated soils is an effective and low cost method for reclamation of heavy metals polluted soils. The most important limitation of phytoremediation is low availability of heavy metals and sensitivity of plants to contamination. There are evidences that soil microbes can help to overcome these limitations through several ways. Plant growth promoting rhizobacteria (PGPR and arbuscular mycorrhizal fungi (AMF are known to enhance plant growth and survival in heavy metal contaminated soils through different mechanisms including producing promoting metabolites, auxin, siderophore and antibiotics. In this study the role of some strains of PGPR (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa and AMF (a mixture of Glomus species including G. intraradices, G. mosseae and G. fasciculatum, on uptake and accumulation of Cd, Fe, Zn and Cu as well as some physiological properties of Onopordon (Onopordon acanthium L were evaluated. Materials and Methods:This study was carried out under greenhouse condition as a factorial experiment based on a randomized complete block design with two factors including Cd concentration (four levels and microbial treatment (three levels in three replications. Consequently, a soil was selected and spiked uniformly with different concentrations of

  17. Effects on Glomus mosseae Root Colonization by Paenibacillus polymyxa and Paenibacillus brasilensis Strains as Related to Soil P-Availability in Winter Wheat

    International Nuclear Information System (INIS)

    Arthurson, V; Granhall, U; Derlund, L; Hjort, K; Muleta, D

    2011-01-01

    Greenhouse experiments were conducted to assess the effects of inoculating winter wheat (Triticum aestivum) with plant growth promoting rhizobacteria (PGPR) of the genus Paenibacillus under phosphate P-limited soil conditions in the presence or absence of the arbuscular mycorrhizal fungus (AMF) Glomus mosseae. Four P. polymyxa strains and one P. brasilensis strain were compared at two cell concentrations (10 6 and 10 8 cells g -1 seeds) of inoculation, and surface sterilized AMF spores were added to pots. Mycorrhizal root colonization, plant growth, and plant uptake of phosphorus were analyzed. Bacterial phosphate solubilization was examined separately in vitro. Most P. polymyxa strains, isolated from wheat, had dramatic effects per se on root growth and root P-content. No treatment gave significant effect on shoot growth. AMF root colonization levels and total plant uptake of P were much stimulated by the addition of most P. polymyxa strains. The AM fungus alone and the P. brasilensis, alone or in combination with the fungus, did not affect total plant P-levels. Our results indicate that practical application of inoculation with plant host-specific rhizobacteria (i.e., P. polymyxa) could positively influence uptake of phosphorus in P-

  18. Mycorrhizal dependency of laurel (Ocotea sp.)

    International Nuclear Information System (INIS)

    Sierra-Escobar, Jorge A; Castro Restrepo, Dagoberto; Osorio Vega, Walter

    2009-01-01

    A greenhouse experiment was carried out to determine the mycorrhizal dependency of laurel (>Ocotea sp.). In order to do this, a completely randomized experimental design was used, with six treatments in a factorial array of 3 x 2 and five repetitions. The treatments involved a combination of three Phosphorus (P) levels in soil solution (0.002, 0.02 and 0.2 mg L-1) and two levels of mycorrhizal inoculation, either inoculated or non-inoculated with Glomus aggregatum Schenck and Smith. The leaf P content as a function of time was used as an output variable. Shoot dry matter, shoot P content, mycorrhizal colonization of roots, and mycorrhizal dependence were measured at harvest. The results indicated that the leaf P content increased significantly when using the mycorrhizal inoculation in laurel at P level 0.2 mg L -1, but not in the other P levels, on some of the sampling days. Shoot dry weight and total plant P content did not increase at all levels of soil available P. Mycorrhizal dependency of laurel reached 28%, which allows this species to be classified as moderately dependent on mycorrhiza.

  19. Diversity and classification of mycorrhizal associations.

    Science.gov (United States)

    Brundrett, Mark

    2004-08-01

    Most mycorrhizas are 'balanced' mutualistic associations in which the fungus and plant exchange commodities required for their growth and survival. Myco-heterotrophic plants have 'exploitative' mycorrhizas where transfer processes apparently benefit only plants. Exploitative associations are symbiotic (in the broad sense), but are not mutualistic. A new definition of mycorrhizas that encompasses all types of these associations while excluding other plant-fungus interactions is provided. This definition recognises the importance of nutrient transfer at an interface resulting from synchronised plant-fungus development. The diversity of interactions between mycorrhizal fungi and plants is considered. Mycorrhizal fungi also function as endophytes, necrotrophs and antagonists of host or non-host plants, with roles that vary during the lifespan of their associations. It is recommended that mycorrhizal associations are defined and classified primarily by anatomical criteria regulated by the host plant. A revised classification scheme for types and categories of mycorrhizal associations defined by these criteria is proposed. The main categories of vesicular-arbuscular mycorrhizal associations (VAM) are 'linear' or 'coiling', and of ectomycorrhizal associations (ECM) are 'epidermal' or 'cortical'. Subcategories of coiling VAM and epidermal ECM occur in certain host plants. Fungus-controlled features result in 'morphotypes' within categories of VAM and ECM. Arbutoid and monotropoid associations should be considered subcategories of epidermal ECM and ectendomycorrhizas should be relegated to an ECM morphotype. Both arbuscules and vesicles define mycorrhizas formed by glomeromycotan fungi. A new classification scheme for categories, subcategories and morphotypes of mycorrhizal associations is provided.

  20. Characterization of rhizobacteria associated to maize crop in IAA, siderophores and salicylic acid metabolite production

    Directory of Open Access Journals (Sweden)

    Annia Hernández

    2004-01-01

    Full Text Available It has been demonstrated that rhizobacteria are able to produce metabolites having agricultural interest, including salicylic acid, the siderophores and phytohormones. Indol acetic acid (IAA is the most well-known and studied auxin, playing a governing role in culture growth. The object of this work was to characterise rhizobacteria associated with the maize crop in terms of producing IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia and Pseudomonas fluorescens strains previously isolated from maize Francisco variety rhizosphere were used. Colorimetric and chromatographic techniques for detecting these metabolites were studied; multi-variable analysis of hierarchic conglomerate and complete ligament were used for selecting the best strains for producing metabolites of interest. These results demonstrated that all rhizobacteria strains studied produced IAA, siderophores and salicylic acid metabolites. Burkholderia cepacia MBf21, MBp1, MBp2, MBf22, MBp3, MBf20, MBf 15 and Pseudomonas fluorescens MPp4strains have presented the greatest production of these metabolites, showing that these strains could be used in promoting vegetal growth in economically important cultures. Key words: Pseudomonas fluorescens, Burkholderia cepacia, IAA, siderophore, salicylic acid.

  1. Boosting Alfalfa (Medicago sativa L. Production With Rhizobacteria From Various Plants in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ihsanullah Daur

    2018-04-01

    Full Text Available This study focused on rhizobacteria to promote sustainable crop production in arid regions of Saudi Arabia. The study isolated 17 tightly root-adhering rhizobacteria from various plants at Hada Al Sham in Saudi Arabia. All 17 rhizobacterial isolates were confirmed as plant growth promoting rhizobacteria by classical biochemical tests. Using 16S rDNA gene sequence analyses, the strains were identified as Bacillus, Acinetobacter and Enterobacter. Subsequently, the strains were assessed for their ability to improve the physiology, nutrient uptake, growth, and yield of alfalfa plants grown under desert agriculture conditions. The field trials were conducted in a randomized complete block design. Inoculation of alfalfa with any of these 17 strains improved the relative water content; chlorophyll a; chlorophyll b; carotenoid contents; nitrogen (N, phosphorus, and potassium contents; plant height; leaf-to-stem ratio; and fresh and dry weight. Acinetobacter pittii JD-14 was most effective to increase fresh and dry weight of alfalfa by 41 and 34%, respectively, when compared to non-inoculated control plants. Nevertheless, all strains enhanced crop traits when compared to controls plants, indicating that these desert rhizobacterial strains could be used to develop an eco-friendly biofertilizer for alfalfa and possibly other crop plants to enhance sustainable production in arid regions.

  2. Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards.

    Science.gov (United States)

    Aballay, E; Prodan, S; Zamorano, A; Castaneda-Alvarez, C

    2017-07-01

    The action of metabolites and exoenzymes from rhizobacteria on different plant-parasitic nematodes has an influence on the nematicidal efficacy of the microbe. Seven rhizobacteria, divided into two bacterial groups, were evaluated in vitro for nematicidal activity on Meloidogyne ethiopica and Xiphinema index. The direct effect of their filtrates on egg hatching and juveniles of M. ethiopica as well as mobile stages of X. index was evaluated during a 72-h period. The production of four exoenzymes and two metabolites associated with nematode mortality was investigated. Molecular characterization of three isolates was performed, and the physiological profiles and lipase activity of all isolates were obtained using the BIOLOG EcoPlate system. While chitinase and collagenase were measured using the BIOLOG MT2 plate system, protease, hydrogen cyanide and hydrogen sulphide were directly determined in Petri dishes. Nematode mobile stages exposure to the bacterial filtrate revealed a nematicidal effect up to 93.7% on X. Index and up to 83.3% on M. ethiopica. The control of egg hatching varied between 35 and 85%. A positive correlation was found between the mortality of both nematode mobile stages and the concerted activities of the bacterial enzymes as well as the level of the volatile metabolites. The nematicidal effect of rhizobacteria strains varies by nematode genera and among the developmental stages evaluated.

  3. Boosting Alfalfa (Medicago sativa L.) Production With Rhizobacteria From Various Plants in Saudi Arabia

    KAUST Repository

    Daur, Ihsanullah

    2018-04-04

    This study focused on rhizobacteria to promote sustainable crop production in arid regions of Saudi Arabia. The study isolated 17 tightly root-adhering rhizobacteria from various plants at Hada Al Sham in Saudi Arabia. All 17 rhizobacterial isolates were confirmed as plant growth promoting rhizobacteria by classical biochemical tests. Using 16S rDNA gene sequence analyses, the strains were identified as Bacillus, Acinetobacter and Enterobacter. Subsequently, the strains were assessed for their ability to improve the physiology, nutrient uptake, growth, and yield of alfalfa plants grown under desert agriculture conditions. The field trials were conducted in a randomized complete block design. Inoculation of alfalfa with any of these 17 strains improved the relative water content; chlorophyll a; chlorophyll b; carotenoid contents; nitrogen (N), phosphorus, and potassium contents; plant height; leaf-to-stem ratio; and fresh and dry weight. Acinetobacter pittii JD-14 was most effective to increase fresh and dry weight of alfalfa by 41 and 34%, respectively, when compared to non-inoculated control plants. Nevertheless, all strains enhanced crop traits when compared to controls plants, indicating that these desert rhizobacterial strains could be used to develop an eco-friendly biofertilizer for alfalfa and possibly other crop plants to enhance sustainable production in arid regions.

  4. Boosting Alfalfa (Medicago sativa L.) Production With Rhizobacteria From Various Plants in Saudi Arabia

    KAUST Repository

    Daur, Ihsanullah; Saad, Maged; Eida, Abdul Aziz; Ahmad, Shakeel; Shah, Zahid Hussain; Ihsan, Muhammad Z.; Muhammad, Yasir; Sohrab, Sayed S.; Hirt, Heribert

    2018-01-01

    This study focused on rhizobacteria to promote sustainable crop production in arid regions of Saudi Arabia. The study isolated 17 tightly root-adhering rhizobacteria from various plants at Hada Al Sham in Saudi Arabia. All 17 rhizobacterial isolates were confirmed as plant growth promoting rhizobacteria by classical biochemical tests. Using 16S rDNA gene sequence analyses, the strains were identified as Bacillus, Acinetobacter and Enterobacter. Subsequently, the strains were assessed for their ability to improve the physiology, nutrient uptake, growth, and yield of alfalfa plants grown under desert agriculture conditions. The field trials were conducted in a randomized complete block design. Inoculation of alfalfa with any of these 17 strains improved the relative water content; chlorophyll a; chlorophyll b; carotenoid contents; nitrogen (N), phosphorus, and potassium contents; plant height; leaf-to-stem ratio; and fresh and dry weight. Acinetobacter pittii JD-14 was most effective to increase fresh and dry weight of alfalfa by 41 and 34%, respectively, when compared to non-inoculated control plants. Nevertheless, all strains enhanced crop traits when compared to controls plants, indicating that these desert rhizobacterial strains could be used to develop an eco-friendly biofertilizer for alfalfa and possibly other crop plants to enhance sustainable production in arid regions.

  5. Boosting Alfalfa (Medicago sativa L.) Production With Rhizobacteria From Various Plants in Saudi Arabia.

    Science.gov (United States)

    Daur, Ihsanullah; Saad, Maged M; Eida, Abdul Aziz; Ahmad, Shakeel; Shah, Zahid Hussain; Ihsan, Muhammad Z; Muhammad, Yasir; Sohrab, Sayed S; Hirt, Heribert

    2018-01-01

    This study focused on rhizobacteria to promote sustainable crop production in arid regions of Saudi Arabia. The study isolated 17 tightly root-adhering rhizobacteria from various plants at Hada Al Sham in Saudi Arabia. All 17 rhizobacterial isolates were confirmed as plant growth promoting rhizobacteria by classical biochemical tests. Using 16S rDNA gene sequence analyses, the strains were identified as Bacillus, Acinetobacter and Enterobacter . Subsequently, the strains were assessed for their ability to improve the physiology, nutrient uptake, growth, and yield of alfalfa plants grown under desert agriculture conditions. The field trials were conducted in a randomized complete block design. Inoculation of alfalfa with any of these 17 strains improved the relative water content; chlorophyll a; chlorophyll b; carotenoid contents; nitrogen (N), phosphorus, and potassium contents; plant height; leaf-to-stem ratio; and fresh and dry weight. Acinetobacter pittii JD-14 was most effective to increase fresh and dry weight of alfalfa by 41 and 34%, respectively, when compared to non-inoculated control plants. Nevertheless, all strains enhanced crop traits when compared to controls plants, indicating that these desert rhizobacterial strains could be used to develop an eco-friendly biofertilizer for alfalfa and possibly other crop plants to enhance sustainable production in arid regions.

  6. Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.L.; Enebak, S.A.; Chappelka, A.H. [Auburn Univ., Auburn, AL (United States). School of Forestry and Wildlife Sciences

    2004-07-01

    The conifer tree species with the greatest economic importance in south eastern United States plantations is Loblolly pine. Plantations require intensive fertilization, pesticide application, and irrigation. In these cases growth-promoting rhizobacteria are useful in pest control. While it was once thought that ozone in the troposphere was limited to urban areas, it is now known that it is transported far from its place of origin. Ozone is known to impact plant growth negatively. There have been no previous studies on whether growth-promoting rhizobacteria can decrease the negative effects of ozone. In this study seedlings of Loblolly pine were inoculated with either Bacillus subtilis (Ehrenberg) Cohn or Paenibacillus macerans (Schardinger) Ash. These were exposed to controlled amounts of ozone for 8-12 weeks. All plants showed decreased biomass and increased foliar damage compared to plants that were not exposed to ozone. B. subtilis inoculated plants showed less foliar damage than un-inoculated ones and root dimensions were increased. The use of growth-promoting rhizobacteria is not ready for large-scale commercial application in forestry, but this demonstration of the possible beneficial effects on ozone exposure warrants further investigation. 44 refs., 3 tabs., 2 figs.

  7. Induced Systemic Tolerance to Multiple Stresses Including Biotic and Abiotic Factors by Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Sung-Je Yoo

    2017-06-01

    Full Text Available Recently, global warming and drastic climate change are the greatest threat to the world. The climate change can affect plant productivity by reducing plant adaptation to diverse environments including frequent high temperature; worsen drought condition and increased pathogen transmission and infection. Plants have to survive in this condition with a variety of biotic (pathogen/pest attack and abiotic stress (salt, high/low temperature, drought. Plants can interact with beneficial microbes including plant growth-promoting rhizobacteria, which help plant mitigate biotic and abiotic stress. This overview presents that rhizobacteria plays an important role in induced systemic resistance (ISR to biotic stress or induced systemic tolerance (IST to abiotic stress condition; bacterial determinants related to ISR and/or IST. In addition, we describe effects of rhizobacteria on defense/tolerance related signal pathway in plants. We also review recent information including plant resistance or tolerance against multiple stresses (bioticabiotic. We desire that this review contribute to expand understanding and knowledge on the microbial application in a constantly varying agroecosystem, and suggest beneficial microbes as one of alternative environment-friendly application to alleviate multiple stresses.

  8. The interactive effects of chelator, fertilizer, and rhizobacteria for enhancing phytoremediation of heavy metal contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Cutright, T.J. [Dept. of Civil Engineering, Univ. of Akron, Akron, OH (United States)

    2002-07-01

    The role of chelator, fertilizer, and enriched rhizobacteria in facilitating Cd, Cr, and Ni accumulation by Helianthus annuus was studied. It was found that by adding a synthetic chelator, EDTA, the shoot concentrations of Cd and Ni were significantly increased from 34.2 mg kg{sup -1} and 14.5 mg kg{sup -1} to 115 mg kg{sup -1} and 117 mg kg{sup -1}, respectively. However, the total biomass of plants was drastically decreased by 50 to 60%. Compared with this treatment, inoculating enriched rhizobacteria to plants grown under similar conditions maintained the surged shoot concentrations of Cd and Ni while increasing the plants biomass by more than 1.6-fold. It was also found that introducing a commercial fertilizer, Hydro-Gro trademark, to plants significantly increased the Ni accumulation by 3-fold and the plant biomass by 1.43-fold. These results suggest that combing fertilizers, chelators and/or rhizobacteria might provide a more effective approach for enhancing phytoremediation. (orig.)

  9. Frost hardiness of mycorrhizal and non-mycorrhizal Scots pine under two fertilization treatments.

    Science.gov (United States)

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2015-07-01

    Survival and functioning of mycorrhizal associations at low temperatures are not known well. In an earlier study, ectomycorrhizas did not affect the frost hardiness of Scots pine (Pinus sylvestris L.) roots, but here we studied whether differential nutrient availability would change the result and additionally, alter frost hardiness aboveground. The aim in this experiment was to compare the frost hardiness of roots and needles of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine seedlings raised using two fertilization treatments and two cold-hardening regimes. The fertilization treatments were low (LF) and high (HF) application of a complete nutrient solution. Three hundred mycorrhizal and non-mycorrhizal seedlings were cultivated in growth chambers in four blocks for 16 weeks. For the first 9 weeks, the seedlings grew in long-day and high-temperature (LDHT) with low fertilization and then they were raised for 3 weeks in LDHT with either low or high fertilization. After this, half of the plants in each treatment combination remained in LDHT, and half were transferred to short-day and low-temperature (SDLT) conditions to cold acclimatize. The frost hardiness of the roots and needles was assessed using controlled freezing tests followed by electrolyte leakage tests (REL). Mycorrhizal roots were slightly more frost hardy than non-mycorrhizal roots, but only in the growing-season conditions (LDHT) in low-nutrient treatment. In LDHT and LF, the frost hardiness of the non-mycorrhizal roots was about -9 °C, and that of the non-mycorrhizal HF roots and the mycorrhizal roots in both fertilization levels was about -11 °C. However, no difference was found in the roots within the SDLT regime, and in needles, there was no difference between mycorrhizal and fertilization treatments. The frost hardiness of needles increased by SDLT treatment, being -8.5 and -14.1 °C in LDHT and SDLT, respectively. The dry mass of roots, stems, and needles was lower in LF than in

  10. Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings.

    Science.gov (United States)

    Yang, Shou-Jun; Zhang, Zhong-Lan; Xue, Yuan-Xia; Zhang, Zhi-Fen; Shi, Shu-Yi

    2014-12-01

    Apple trees are often subject to severe salt stress in China as well as in the world that results in significant loss of apple production. Therefore this study was carried out to evaluate the response of apple seedlings inoculated with abuscular mycorrhizal fungi under 0, 2‰, 4‰ and 6‰ salinity stress levels and further to conclude the upper threshold of mycorrhizal salinity tolerance. The results shows that abuscular mycorrhizal fungi significantly increased the root length colonization of mycorrhizal apple plants with exposure time period to 0, 2‰ and 4‰ salinity levels as compared to non-mycorrhizal plants, however, percent root colonization reduced as saline stress increased. Salinity levels were found to negatively correlate with leaf relative turgidity, osmotic potential irrespective of non-mycorrhizal and mycorrhizal apple plants, but the decreased mycorrhizal leaf turgidity maintained relative normal values at 2‰ and 4‰ salt concentrations. Under salt stress condition, Cl - and Na + concentrations clearly increased and K + contents obviously decreased in non-mycorrhizal roots in comparison to mycorrhizal plants, this caused mycorrhizal plants had a relatively higher K + /Na + ratio in root. In contrast to zero salinity level, although ascorbate peroxidase and catalase activities in non-inoculated and inoculated leaf improved under all saline levels, the extent of which these enzymes increased was greater in mycorrhizal than in non-mycorrhizal plants. The numbers of survived tree with non-mycorrhization were 40, 20 and 0 (i.e., 66.7%, 33.3% and 0) on the days of 30, 60 and 90 under 4‰ salinity, similarly in mycorrhization under 6‰ salinity 40, 30 and 0 (i.e., 66.7%, 50% and 0) respectively. These results suggest that 2‰ and 4‰ salt concentrations may be the upper thresholds of salinity tolerance in non-mycorrhizal and mycorrhizal apple plants, respectively.

  11. Frost hardiness of mycorrhizal (Hebeloma sp.) and non-mycorrhizal Scots pine roots.

    Science.gov (United States)

    Korhonen, Anna; Lehto, Tarja; Repo, Tapani

    2013-10-01

    The frost hardiness (FH) of mycorrhizal [ectomycorrhizal (ECM)] and non-mycorrhizal (NM) Scots pine (Pinus sylvestris) seedlings was studied to assess whether mycorrhizal symbiosis affected the roots' tolerance of below-zero temperatures. ECM (Hebeloma sp.) and NM seedlings were cultivated in a growth chamber for 18 weeks. After 13 weeks' growth in long-day and high-temperature (LDHT) conditions, a half of the ECM and NM seedlings were moved into a chamber with short-day and low-temperature (SDLT) conditions to cold acclimate. After exposures to a range of below-zero temperatures, the FH of the roots was assessed by means of the relative electrolyte leakage test. The FH was determined as the inflection point of the temperature-response curve. No significant difference was found between the FH of mycorrhizal and non-mycorrhizal roots in LDHT (-8.9 and -9.8 °C) or SDLT (-7.5 and -6.8 °C). The mycorrhizal treatment had no significant effect on the total dry mass, the allocation of dry mass among the roots and needles or nutrient accumulation. The mycorrhizal treatment with Hebeloma sp. did not affect the FH of Scots pine in this experimental setup. More information is needed on the extent to which mycorrhizas tolerate low temperatures, especially with different nutrient contents and different mycorrhiza fungi.

  12. Characterization of Effective Rhizobacteria Isolated from Velvet Bean (Mucuna Pruriens) to Enhance Plant Growth

    International Nuclear Information System (INIS)

    Saleem, A. R.; Mahmood, T.; Batool, A.; Khalid, A.

    2016-01-01

    Rhizobacteria with plant growth promoting ability exist in association with plant roots and ameliorate over all plant development and yield. Numerous species of rhizobacteria have been identified with plant growth promoting ability, which can be attributed to multiple microbial characteristics. In the current study rhizobacterial isolates with best plant growth promotion traits were subjected to screening for plant growth promotion under axenic condition. The results of lab assays revealed that out of five rhizobacterial isolates three of bacterial isolate were Gram -ve and two of them were Gram +ve bacterial group. All isolates found positive for the auxin production and ACC-demainase activity. The isolate HS9 showed highest ACC activity (331 ketobutyrate nmol mg-1 biomass hr-1) and auxin production (3.85 without L-TRP). PGPR increase plant growth by reducing the ethylene release and its inhibitory effects, the role of isolates to decrease ethylene effects was affirmed via classical triple response assay on velvet bean. Furthermore, isolate were assessed for resistance test, three efficient strains (G9, HS9 and H38) exhibited antibiotic resistance for streptomycin, kanamycin and rifampicin at 100 mg L-1in TSB medium. For the purpose of co-inoculation, all three isolates showed positive relation to grow together. The results concluded that rhizobacteria selected from rain fed areas were found effective to improve plant growth with their multiple growth enhancing traits. Therefore, PGPR with various characteristics could be a better option for inoculation and co-inoculation to improve plant growth in well watered and water stressed environment. (author)

  13. Isolation, Characterization, Screening, Formulation and Evaluation of Plant Growth Promoting Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Puja Kumari

    2017-10-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are bioresources which may be viewed as a novel and potential tool for providing substantial benefits to the agriculture. Soil is the dynamic living matrix and the major source of food security providing various resources of plant growth and maintaining life processes. PGPR are originally defined as root- colonizing bacteria that cause either plant growth promotion or biological control of plant diseases. Chemical fertilizers are used for killing pathogens, increase crop yield but long term use of chemical fertilizers lead to adverse effect to the soil profile and is the reason for decrease in soil productivity, on the other hand PGPR promote plant growth directly by either facilitating resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. PGPR is the indispensable part of rhizosphere biota that when grown in association with the host plants can stimulate the growth of the host. PGPR seemed as successful rhizobacteria in getting established in soil ecosystem due to their high adaptability in a wide variety of environments, faster growth rate and biochemical versatility to metabolize a wide range of natural and xenobiotic compounds. Isolated PGPRs from selective crop rizosphere soil were used for further growth promotion and biocontrol studies in the green house and field. Different studies have been carrying out to develop some new bioformulations and evaluate their efficacy in promoting crop seedlings growth characteristics. Field trials were performed to evaluate selective crops with formulations of several plants PGPR in a production system. The present review highlights the Plant growth promoting rhizobacteria as an alternative of chemical fertilizer for sustainable, environment friendly agriculture.

  14. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria--as revealed by different combinations

    Energy Technology Data Exchange (ETDEWEB)

    Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf; Jansson, Janet K.

    2008-05-15

    The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.

  15. Interaction of arbuscular mycorrhizal fungus ( Glomus intraradices ...

    African Journals Online (AJOL)

    In this research, the effect of two arbuscular mycorrhizal fungal (AMF) inoculation (Glomus intraradices and Glomus etunicatum) on tomato plants growing in nutrient solution with high concentrations of copper were studied. Copper (Cu) is an essential micronutrient for plant growth. In the present study, the effect of copper ...

  16. Response of Arbuscular mycorrhizal fungi and Rhizobium ...

    African Journals Online (AJOL)

    The aim of the present study was to investigate the effect ofRhizobium and Arbuscular mycorrhizal fungi inoculation, both individually and in combination on growth and chlorophyll content of economically important plant Vigna unguiculata L. A significant (p < 0.05) increase over control in root length (45.6 cm), shoot height ...

  17. Isolation of plant growth promoting rhizobacteria of guava plants (Psidium guajava

    Directory of Open Access Journals (Sweden)

    Blanca Estela Gómez Luna

    2012-09-01

    Full Text Available Guava production for 2008 in the state of Guanajuato was 177 ha in area planted and the same number of area harvested, production in 1,130.80 Ton. In traditional farming practices have made excessive use of mineral fertilizers, which, if it is true, ensure a good production are expensive and come to cause imbalances in agroecosystems by contamination of soil, water, and food. In this work we evaluated the effect of Bacillus subtilis strains as plant growth promoter rhizobacteria in guava plants under greenhouse conditions. We used three strains were inoculated potted plant with guava. We measured the height, number of branches and leaves. Guava orchards of 2 then display of soil were taken for the isolation andcharacterization of rhizobacteria. Selective medium was used with 1 - carboxylic acid, -1 - aminocyclopropane and selecting bacteria with ACC desaminase activity. For the isolates were determined antibiotic resistance, confrontation with fungal pathogens, plant growth tests in vitro and BIOLOG metabolic profiles. We found 30 isolates with ACC activities, 7 have the effect of biological control and 5 had effect on root development in vitro. The use of growth promotingrhizobacteria are an excellent alternative for improving the production of guavas, growing very little is known of themicroflora associated with the rhizosphere and the ecological role they have in the ground.

  18. Characterization of Rhizobacteria from field grown Genetically Modified (GM and non-GM maizes

    Directory of Open Access Journals (Sweden)

    Emmanuel Wihkochombom Bumunang

    2014-02-01

    Full Text Available This study was done to examine the rhizobacteria from field grown Genetically Modified (GM maize and its non-GM counterpart. Rhizospheric soil samples were collected at 30 days after sowing (DAS and at post-harvest from two experimental fields in Gauteng, South Africa. Total rhizobacteria (cfu/g in GM and non-GM soil samples was not significantly different across the different media 30 DAS and at post-harvest. Rhizobacterial isolates obtained were biochemically characterized using the analytical profile index. Species of Pseudomonas, Aeromonas, Sphingomonas, Burkholderia, Stenotrophomonas, Achromobacter, Ewingella and Bacillus were screened in vitro for plant growth promoting traits such as, ammonia production, catalase activity, indole acetic acid production, phosphate solubilisation, hydrogen cyanide production and antifungal activity. All the 32 rhizobacterial strains tested in this study were positive for catalase activity, ammonia production and IAA production; 90.6% were positive for phosphate solubilisation, 34.3% for indicate antifungal activity but none for hydrogen cyanide production. These findings contributed to the quest for potential biofertilizers and biocontrol agents for sustainable agriculture.

  19. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Gayathri Ilangumaran

    2017-10-01

    Full Text Available Salinity affects plant growth and is a major abiotic stress that limits crop productivity. It is well-understood that environmental adaptations and genetic traits regulate salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Harnessing the potential of beneficial microorganisms present in the rhizosphere is an alternative strategy for improving plant stress tolerance. This review intends to elucidate the understanding of salinity tolerance mechanisms attributed by plant growth promoting rhizobacteria (PGPR. Recent advances in molecular studies have yielded insights into the signaling networks of plant–microbe interactions that contribute to salt tolerance. The beneficial effects of PGPR involve boosting key physiological processes, including water and nutrient uptake, photosynthesis, and source-sink relationships that promote growth and development. The regulation of osmotic balance and ion homeostasis by PGPR are conducted through modulation of phytohormone status, gene expression, protein function, and metabolite synthesis in plants. As a result, improved antioxidant activity, osmolyte accumulation, proton transport machinery, salt compartmentalization, and nutrient status reduce osmotic stress and ion toxicity. Furthermore, in addition to indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid deaminase biosynthesis, other extracellular secretions of the rhizobacteria function as signaling molecules and elicit stress responsive pathways. Application of PGPR inoculants is a promising measure to combat salinity in agricultural fields, thereby increasing global food production.

  20. Metabolites change in Jatropha plants due to seed treatment with rhizobacteria and Rhizoctonia bataticola

    Directory of Open Access Journals (Sweden)

    Surender Kumar

    2013-11-01

    Full Text Available An experiment on the metabolite [salicylic acid (SA, jasmonicacid (JA, hydrocyanic acid (HCN and chitinase activity] changes owing to seed treatment with pathogen, plant growth promoting rhizobacteria (PGPRs - (P. maltophilia, P. fluorescens and Bacillus subtilis alone and in combination was conducted at Chaudhary Charan Singh, Haryana Agricultural University, Regional Research Station, Bawal. Jatropha curcas plants raised from root rot pathogen (Rhizoctonia bataticola treated seeds showed an initial increase in SA and hydrocyanic acid HCN content and an opposite trend was observed for JA level and chitinase activity. Though, PGPRs inoculation resulted in higher increase in SA level, JA level and chitinaseactivity in both the cases alone as well as in integration with pathogen, however, maximum increase in JA content was explicited in plants raised after seed treatment with P. fluorescens, the most effective rhizobacteria amongst PGPRs studied. Highest increase in HCN content (45 μg g-1 over control (24 μg g-1 was noticed for P. fluorescens followed by co-seed inoculation with P. fluorescens + pathogen (43 μg g-1 at 10 DPI. The co-seed inoculation elicited 68 units at 10 DPI whereas the pathogen challenged plants showed lower chitinase activity with 42 units. All the metabolites declinedslightly or sharply with age of the plant irrespective of inoculations.

  1. SCREENING OF FLUORESCENT RHIZOBACTERIA FOR THE BIOCONTROL OF SOILBORNE PLANT PATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    ANELISE DIAS

    2014-01-01

    Full Text Available The biocontrol of soilborne plant pathogens represents a promising approach from the environ- mental and practical points of view. Fluorescent pseudomonad rhizobacteria are well known by their antagonis- tic capacity towards several plant pathogens due to a diversity of antimicrobial metabolites they produce. This study was conceived to select and characterize rhizobacteria having antagonistic potential towards the patho- genic fungi Rhizoctonia solani and Sclerotium rolfsii. A total of 94 bacterial strains isolated from the rhizospheres of four vegetable species under organic cultivation were evaluated. Twenty-two strains which predominate in lettuce and rudbeckia rhizospheres showed identical biochemical profiles to Pseudomonas fluo- rescens, while in kale and parsley rhizospheres identical profiles to Pseudomonas putida (subgroups A and B strains prevailed. Two types of antagonism were verified in vitro and defined as competition and inhibition of mycelial growth. Sixty percent of the evaluated strains showed antagonistic potential and, among those, 24 strains expressed antagonism to both target fungi, with P. fluorescens being the most representative bacterial species. This work clearly identified a number of strains with potential for use as plant growth-promoting and biocontrol of the two soilborne fungal pathogens in vegetable crops production systems.

  2. Effects of rhizobacteria on the respiration and growth of Cerasus sachalinensis Kom. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Qin, S.; Zhou, W.; Li, Z.; Lyu, D.

    2016-11-01

    In this study, we investigated the influence of rhizosphere microorganisms on seed germination and root metabolism in Cerasus sachalinensis Kom. We inoculated C. sachalinensis plants with suspensions of dominant bacterial strains isolated from their rhizosphere. Four bacterial strains each with significant growth-promoting or growth-inhibiting effects were screened from the efficient root-colonizing microorganisms. The number of actinomycetes increased and that of fungi decreased significantly in the seedling rhizospheres after rhizobacteria treatment. The growth-promoting bacteria slightly affected the respiration rates and respiratory pathway enzymes, but significantly improved root viability, root carbohydrate concentration and seedling growth. Bacillus cereus, Staphylococcus sp. and Pseudomonas fluorescens were identified as the growth-promoting rhizobacteria; one strain could not be identified. After inoculation with the growth-inhibiting bacteria, the number of fungal colonies in the seedling rhizospheres increased and root viability and respiration rate as well as starch and sucrose accumulation in the roots significantly decreased. The glycolysis, pentose phosphate and alternative oxidase pathways became the major pathways of respiratory metabolism after inoculation with the growth-inhibiting bacteria. The height, leaf number, growth and dry weight of the seedlings decreased significantly in plants inoculated with the growth-inhibiting bacteria. Inoculation of C. sachalinensis rhizosphere with growth-promoting and growth-inhibiting bacteria affected the soil environmental factors such as microbial group composition, nutrient concentration and seedling biomass. (Author)

  3. Metabolites change in Jatropha plants due to seed treatment with rhizobacteria and Rhizoctonia bataticola

    Directory of Open Access Journals (Sweden)

    Surender Kumar

    2013-12-01

    Full Text Available An experiment on the metabolite [salicylic acid (SA, jasmonic acid (JA, hydrocyanic acid (HCN and chitinase activity] changes owing to seed treatn1ent with pathogen, plant growth pron1oting rhizobacteria (PGPRs - (P. maltophilia, P. fluorescens and Bacillus subtilis alone and in combination was conducted at Chaudhary Charan Singh, Haryana Agricultural University, Regional Research Station, Bawal. Jatropha curcas plants raised from root rot pathogen (Rhizoctonia bataticola treated seeds showed an initial increase in SA and hydrocyanic acid HCN content and an opposite trend was observed for JA level and chitinase activity. Though, PGPRs inoculation resulted in higher increase in SA level, JA level and chitinase activity in both the cases alone as well as in integration with pathogen, however, maximun1 increase in JA content was explicited in plants raised after seed treatment with P. fluorescens, the most effective rhizobacteria amongst PGPRs studied. Highest increase in HCN content (45 micrograms g-1 over control (24 micrograms g-1 was noticed for P. fluorescens followed by co-seed inoculation with P. fluorescens + pathogen (43 micrograms g-1 at 10 DPL. The co-seed inoculation elicited 68 units at 10 DPI, whereas the pathogen challenged plants showed lower chitinase activity with 42 units. All the metabolites declined slightly or sharply with age of the plant irrespective of inoculations.

  4. Characterization of Potential Plant Growth Promoting Rhizobacteria Isolated from Maize (Zea mays L. in Central and Northern Benin (West Africa

    Directory of Open Access Journals (Sweden)

    Nadège A. Agbodjato

    2015-01-01

    Full Text Available Our study aims to characterize Plant Growth Promoting Rhizobacteria (PGPR isolated from maize roots in five agroecological zones of central and northern Benin. Sixty samples were collected at the rate of four samples per village and three villages per agroecological zone. Rhizobacteria strains were isolated from these samples and biochemically characterized. These strains were analyzed for some of their PGPR traits like ammonia production and hydrogen cyanide following conventional methods. Microbiological investigation of these samples has shown that maize rhizospheres in central and northern Benin contain a high diversity of microorganisms. A total of nine species of maize Plant Growth Promoting Rhizobacteria were identified. Those PGPR include five Bacillus species (B. polymyxa, B. pantothenticus, B. anthracis, B. thuringiensis, and B. circulans, three Pseudomonas species (P. cichorii, P. putida, and P. syringae, and Serratia marcescens. The microbial diversity does not depend on the soil types. The microbial density, generally high, varies according to both soil types and agroecological zones. All Serratia strains (100% have produced ammonia, whereas 80% of Bacillus and 77.77% of Pseudomonas produced this metabolite. The hydrogen cyanide was produced by all isolates (100% independent of their genus. These results suggest the possibility to use these rhizobacteria as biological fertilizers to increase maize production.

  5. Phytoremediation of mercury in pristine and crude oil contaminated soils: Contributions of rhizobacteria and their host plants to mercury removal.

    Science.gov (United States)

    Sorkhoh, N A; Ali, N; Al-Awadhi, H; Dashti, N; Al-Mailem, D M; Eliyas, M; Radwan, S S

    2010-11-01

    The rhizospheric soils of three tested legume crops: broad beans (Vicia faba), beans (Phaseolus vulgaris) and pea (Pisum sativum), and two nonlegume crops: cucumber (Cucumis sativus) and tomato, (Lycopersicon esculentum) contained considerable numbers (the magnitude of 10(5)g(-1) soil) of bacteria with the combined potential for hydrocarbon-utilization and mercury-resistance. Sequencing of the 16S rRNA coding genes of rhizobacteria associated with broad beans revealed that they were affiliated to Citrobacter freundii, Enterobacter aerogenes, Exiquobacterium aurantiacum, Pseudomonas veronii, Micrococcus luteus, Brevibacillus brevis, Arthrobacter sp. and Flavobacterium psychrophilum. These rhizobacteria were also diazotrophic, i.e. capable of N(2) fixation, which makes them self-sufficient regarding their nitrogen nutrition and thus suitable remediation agents in nitrogen-poor soils, such as the oily desert soil. The crude oil attenuation potential of the individual rhizobacteria was inhibited by HgCl(2), but about 50% or more of this potential was still maintained in the presence of up to 40 mgl(-1) HgCl(2). Rhizobacteria-free plants removed amounts of mercury from the surrounding media almost equivalent to those removed by the rhizospheric bacterial consortia in the absence of the plants. It was concluded that both the collector plants and their rhizospheric bacterial consortia contributed equivalently to mercury removal from soil. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Structural and functional diversity of rhizobacteria associated with Rauwolfia spp. across the Western Ghat regions of Karnataka, India.

    Science.gov (United States)

    Prasanna Kumar, S P; Hariprasad, P; Brijesh Singh, S; Gowtham, H G; Niranjana, S R

    2014-01-01

    The present study carried out with denaturing gradient gel electrophoresis of DNA extracted from rhizosphere soils of Rauwolfia spp. collected from Western Ghat (WG) regions of Karnataka indicated that Pseudomonas sp. was prevalently found followed by Methylobacterium sp., Bacillus sp. and uncultured bacteria. A total of 200 rhizobacteria were isolated from 58 rhizosphere soil samples comprising of 15 different bacterial genera. The Shannon Weaver diversity index (H') and Simpson's diversity index (D) were found to be 2.57 and 0.91 for cultivable bacteria, respectively. The total species richness of cultivable rhizobacteria was high in Coorg district comprising 15 bacterial genera while in Mysore district, four bacterial genera were recorded. Rarefaction curve analysis also indicated the presence of higher species richness in samples of Shimoga and Coorg. All the rhizobacteria were screened for their multiple plant growth promotion and disease suppression traits. The results revealed that 70% of the isolates colonized tomato roots, 42% produced indole acetic acid, 55% solubilized phosphorus, while 43, 22, 27, 19, 40, 15 and 44% produced siderophore, salicylic acid, hydrogen cyanide, chitinase, phytase, cellulase and protease, respectively. Rhizobacterial isolates showing antagonistic activity against Fusarium oxysporum and Aspergillus flavus were 53 and 33%, respectively. Plant growth promotion studies revealed that most of the isolates increased percent germination with significantly higher vigour index as compared to untreated control. Most predominant rhizobacteria found in the rhizospheres of Rauwolfia spp. of WG regions are potential PGPR which can serve as biofertilizers and biopesticides.

  7. Growth Response and Tolerance to Heavy Metals of two Swamp Species inoculated with a Plant Growth-Promoting Rhizobacteria

    International Nuclear Information System (INIS)

    Rodriguez-Dorantes, A.; Labra-Cardon, D.; Guerrero-Zuniga, A.; Montes-Villafan, S.

    2009-01-01

    Due to the sensitivity and the sequestration ability of the microbial communities to heavy metals, microbes have been used for bioremediation. Recently the application of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of this kind of contaminants has been done. This study evaluated the growth response and the tolerance to heavy metals of two swamp species. (Author)

  8. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Vályi, Kriszta; Mardhiah, Ulfah; Rillig, Matthias C; Hempel, Stefan

    2016-10-01

    Arbuscular mycorrhizal fungi are asexual, obligately symbiotic fungi with unique morphology and genomic structure, which occupy a dual niche, that is, the soil and the host root. Consequently, the direct adoption of models for community assembly developed for other organism groups is not evident. In this paper we adapted modern coexistence and assembly theory to arbuscular mycorrhizal fungi. We review research on the elements of community assembly and coexistence of arbuscular mycorrhizal fungi, highlighting recent studies using molecular methods. By addressing several points from the individual to the community level where the application of modern community ecology terms runs into problems when arbuscular mycorrhizal fungi are concerned, we aim to account for these special circumstances from a mycocentric point of view. We suggest that hierarchical spatial structure of arbuscular mycorrhizal fungal communities should be explicitly taken into account in future studies. The conceptual framework we develop here for arbuscular mycorrhizal fungi is also adaptable for other host-associated microbial communities.

  9. Importance of mycorrhizal symbiosis for local adaptations of Aster amellus

    OpenAIRE

    Plachá, Hana

    2006-01-01

    3 Abstract The importance of arbuscular mycorrhizal (AM) symbiosis for survival and growth of many plant species is generally recognized. It has been repeatedly shown that symbiosis with mycorrhizal fungi can increase the fitness of many plant species. This increasing fitness is caused by increased uptake of phosphorus and other nutrients or pathogen protection. Most studies on mycorrhizal associations explore these types of relationship using single plant population and single fungal species...

  10. IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass.

    Science.gov (United States)

    Fierro-Coronado, Rosario Alicia; Quiroz-Figueroa, Francisco Roberto; García-Pérez, Luz María; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Maldonado-Mendoza, Ignacio Eduardo

    2014-10-01

    Rhizobacteria promote and have beneficial effects on plant growth, making them useful to agriculture. Nevertheless, the rhizosphere of the chickpea plant has not been extensively examined. The aim of the present study was to select indole-3-acetic acid (IAA) producing rhizobacteria from the rhizosphere of chickpea plants for their potential use as biofertilizers. After obtaining a collection of 864 bacterial isolates, we performed a screen using the Salkowski reaction for the presence of auxin compounds (such as IAA) in bacterial Luria-Bertani supernatant (BLBS). Our results demonstrate that the Salkowski reaction has a greater specificity for detecting IAA than other tested auxins. Ten bacterial isolates displaying a wide range of auxin accumulation were selected, producing IAA levels of 5 to 90 μmol/L (according to the Salkowski reaction). Bacterial isolates were identified on the basis of 16S rDNA partial sequences: 9 isolates belonged to Enterobacter, and 1 isolate was classified as Serratia. The effect of BLBS on root morphology was evaluated in Arabidopsis thaliana. IAA production by rhizobacteria was confirmed by means of a DR5::GFP construct that is responsive to IAA, and also by HPLC-GC/MS. Finally, we observed that IAA secreted by rhizobacteria (i) modified the root architecture of A. thaliana, (ii) caused an increase in chickpea root biomass, and (iii) activated the green fluorescent protein (GFP) reporter gene driven by the DR5 promoter. These findings provide evidence that these novel bacterial isolates may be considered as putative plant-growth-promoting rhizobacteria modifying root architecture and increasing root biomass.

  11. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  12. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-08-01

    Full Text Available Introduction Moisture limitation is considered as one of the important limiting factors in soybean growth. Drought stress affects different aspects of soybean growth through making anatomical, physiological and biochemical changes (Tarumingkeng & Coto, 2003. Under dry tension condition, there will be a disturbance in transmitting nutrients, but some useful soil fungi such as mycorrhiza improve production of crops under stress through forming colonies in the root and boosting water and nutrient absorption (Al-Karaki et al., 2004. Using vermicompost in sustainable agriculture strengthens support and activities of beneficial soil microorganisms (such as mycorrhizal fungi and phosphate solubilizing microorganisms in order to provide nutrients required by plants like nitrogen, phosphorus and soluble potassium as well as improving the growth and performance of the crops (Arancon et al., 2004. Materials and methods In order to investigate the effects of vermicompost and mycorrhiza fertilizers on grain yield and some physiological characteristics of soybean under water stress condition an experiment was conducted at Agricultural Research Center of Khorramabad during 2013. The field experiment was carried out based on a randomized complete blocks design arranged in split-plot with four replications. The experiment treatments including irrigation in three levels (after 60, 120 and 180 mm evaporation from pan class A pan, nutrient management in six levels (non-use of vermicompost and mycorhiza fertilizer, inoculated with mycorrhiza fertilizer, consumption of 5 and 10 t.ha-1 vermicompost, consumption of 5 and 10 t.ha-1 vermicompost with mycorrhiza were respectively as the main plots and sub. In current study, RWC, LAI, SPAD were measured during 59 days after planting at the beginning of podding of the control treatment. The temperature of plant leaves were measured by the thermometer (model TM-958 LUTRON infrared Thermometers. To analyze the growth of

  13. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil

    OpenAIRE

    El-Sayed, Wael S.; Akhkha, Abdellah; El-Naggar, Moustafa Y.; Elbadry, Medhat

    2014-01-01

    The role of plant growth-promoting rhizobacteria (PGPR) in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with 11 wild plant species from the arid soil of Alm...

  14. Phosphatase activity in sandy soil influenced by mycorrhizal and non-mycorrhizal cover crops

    Directory of Open Access Journals (Sweden)

    Alceu Kunze

    2011-06-01

    Full Text Available Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg and corn spurry (Spergula arvensis L.. The control treatment consisted of resident vegetation (fallow in the winter season. In the summer, a mixture of pearl millet (Pennisetum americanum L. with sunnhemp (Crotalaria juncea L. or with soybean (Glycine max L. was sown in all plots. Soil cores (0-10 cm and root samples were collected in six growing seasons (winter and summer of each year. Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

  15. ARBUSCULAR MYCORRHIZAL ASSOCIATION IN Coccothrinax readii Quero

    Directory of Open Access Journals (Sweden)

    Gerardo Emmanuel Polanco Hernández

    2013-08-01

    Full Text Available Coccothrinax readii, is a palm endemic to the Yucatan coast, its successful establishment in stressful environments suggests that factors such as mycorrhizal association may determine its success, the question arose in this work, assess environmental conditions which states and to describe their particular characteristics related to the anatomy of their roots and mycorrhizal colonization in three different seasons over a year. The study site was the coastal dune scrub of San Benito, Yucatan, where he placed a data logger that measurements performed ambient temperature (T, relative humidity (HR and photosynthethic photon flux (PPF for five days in dry, rainy and windy, also determined  the total phosphorus and extractable of the soil. The results indicate significant fluctuations of environmental variables throughout the year, on the other hand, the presence of the velamen on the roots of C. readii not restrict arbuscular mycorrhizal colonization. This association is affected by microenvironmental conditions, as during the dry season, when environmental conditions are unfavorable, the colonization percentage is higher than in the windy season, when microenvironmental conditions are more favorable.

  16. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    Directory of Open Access Journals (Sweden)

    Sheikh Hasna Habib

    2016-01-01

    Full Text Available Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR containing 1-aminocyclopropane-1-carboxylate (ACC deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzyme activities (SOD, APX, and CAT and upregulation of ROS pathway genes (CAT, APX, GR, and DHAR were observed in PGPR inoculated okra plants under salinity stress. With some exceptions, inoculation with Enterobacter sp. UPMR18 had a significant influence on all tested parameters under salt stress, as compared to other treatments. Thus, the ACC deaminase-containing PGPR isolate Enterobacter sp. UPMR18 could be an effective bioresource for enhancing salt tolerance and growth of okra plants under salinity stress.

  17. Influence of mycorrhizal developmental stages and plant age on rhizosphere mycoflora of Pinus kesiya (Royle

    Directory of Open Access Journals (Sweden)

    G. D. Sharma

    2014-08-01

    Full Text Available Quantitatively the population was recorded to be high around thc mycorrhizal roots. Some fungi were specific to different stages of mycorrhizal development. Rhizopus nigricans and Cunninghamella elegans were recorded at 5% mycorrhizal association stage. Fusarium sp. was found at 20% mycorrhizal association, while Mucor spp. were obtained at 60% stage. Verticillium sp. had the highest frequency of occurrence in the beginning of mycorrhizal association but later on Penicilium spp. were found to be the most common. Sugar content of mycorrhizal and nonmycorrhizal roots were determined to assess their effect on the mycorrhizospheric micropopulation. The mannitol and trehalose were present only in mycorrhizal roots.

  18. Rizobactérias no crescimento e na produtividade da cebola Rhizobacteria on the production and yield of onion

    Directory of Open Access Journals (Sweden)

    Oscar Emilio Ludtke Harthmann

    2010-02-01

    Full Text Available A associação de plantas com rizobactérias pode promover o crescimento vegetal, reduzindo custos de produção. As rizobactérias benéficas podem ser uma alternativa para a produção de cebola. Neste trabalho, foi avaliado o efeito da aplicação de rizobactérias no crescimento e na produtividade da cebola da cultivar 'Bola Precoce'. A aplicação foi realizada na Estação Experimental da Epagri, em Ituporanga, Santa Catarina (SC, no ano de 2008. O delineamento experimental foi em blocos ao acaso, com cinco repetições, sendo utilizadas as rizobactérias Pseudomonas spp. W6, Bacillus megaterium W19 e Bacillus cereus UFV40, microbiolizadas isoladamente nas sementes ou em mistura, juntamente com uma testemunha não tratada. Os tratamentos com aplicação de rizobactérias proporcionaram maior altura, diâmetro de pseudocaule e número de folhas nas plantas avaliadas aos 90 dias após o transplante. Plantas que receberam os tratamentos com rizobactérias apresentaram maior rendimento de bulbos em relação à testemunha. A massa dos bulbos foi afetada positivamente pelos tratamentos, com destaque para Bacillus megaterium W19.The association of plants with rhizobacteria can enhance plant growth, reducing production costs. Benefic rhizobacteria can stimulate plant growth being an alternative for production of onions. This research assesses the impact of applying rhizobacteria in the growth and productivity of cv. Bola Precoce onions. The study was conducted in the Experimental Station of Epagri, Ituporanga, SC, Brazil in 2008. The experimental design was in random blocks with five repetitions using Pseudomonas spp. W6, B Bacillus megaterium W19 e Bacillus cereus UFV40 rhizobacteria, microbiolized singly in seeds or in a formula together with non-treated control. The treatments involving rhizobacteria application yielded higher heights, diameter of pseudo-trunk and number of leaves in the plants assessed at 90 days after transplant. All the

  19. Colonization of new land by arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Nielsen, Knud Nor; Kjøller, Rasmus; Bruun, Hans Henrik

    2016-01-01

    The study describes the primary assembly of arbuscular mycorrhizal communities on a newly constructed island Peberholm between Denmark and Sweden. The AM fungal community on Peberholm was compared with the neighboring natural island Saltholm. The structure of arbuscular mycorrhizal communities wa...

  20. Molecular characterisation of a mycorrhizal inoculant that enhances ...

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... lum used as biological models originated from the same desert area. In order to identify this mycorrhizal fungal inoculum, a molecular approach developed by Helgason et al. (1999) was adapted. The small subunit 18S from the roots of mycorrhizal T. alexandrium was amplified using primers NS31 and ...

  1. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    Science.gov (United States)

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  2. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Mycorrhizal colonization of different agroforestry tree species in two social forestry nurseries was investigated. Percentage of Arbuscular mycorrhizal (AM) infection, number of resting spores and AM fungi species varies both in tree species as well as in two different nurseries. This variation is attributed to various factors such ...

  3. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    Science.gov (United States)

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis.

  4. In vitro DISSOLUTION OF ACIDULATED ROCK PHOSPHATE BY PHOSPHATE SOLUBILIZING MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Ángela Patricia Moreno Quevedo

    2015-05-01

    Full Text Available The low availability of phosphorus (P in the soil and the high cost of P fertilization are factors that limit agricultural productivity. A biotechnological alternative for to handle this problem is to use soil microorganisms capable of dissolving rock phosphate (RP, thus improving its effectiveness as a P fertilizer. This study was carried out with the objective of determining the effectiveness of Aspergillus niger –As-, Penicillium sp. –Pn-, Bacillus sp –B-. and an unidentified actinomycete –At- in the in vitro dissolution of two partially acidulated rock phosphates. The treatments consisted of 2x16 factorial arrangement [2 levels of RP: either Boyaca RP or Norte de Santander RP; 16 levels of inoculum: an uninoculated control, individual inoculations (with As, Pn, B, At, dual inoculations (AsPn, AsB, AsAt, PnB, PnAt, BAt, triple inoculations (AsPnB, AsPnAt, AsBAt, PnBAt, and quadruple inoculation (AsPnBAt]. Each treatment was replicated three times. Each treatment was replicated three times. It was found that the microbial effectiveness in the in vitro dissolution of RP depended on the type of RP, the composition of the inoculum used and the interaction of both factors. The best results were obtained with the Norte de Santander RP and A. niger used alone. When this fungus combined with the other microorganisms, its capacity to dissolve RP was significantly reduced. RESUMEN La baja disponibilidad de fósforo (P en el suelo y el costo de la fertilización fosfórica son limitantes para la productividad agrícola. Una alternativa biotecnológica para manejar este problema es mediante el uso de microorganismos del suelo capaces de disolver rocas fosfóricas (RP y así mejorar su efectividad como fertilizante fosfórico. Con este fin se realizó un ensayo para determinar la efectividad microbial en la disolución in vitro de dos RP (Norte de Santander y Boyacá parcialmente aciduladas. Los tratamientos consistieron en un arreglo factorial 2x16 [2 niveles de RP: Boyacá o Norte de Santander; 16 niveles de inóculo: Un control no inoculado, inóculos individuales (Aspergillus niger –As-, Penicillium sp. –Pn-, Bacillus sp. –B-, y un actinomiceto no identificado –At-, inóculos dobles (AsPn, AsB, AsAt, PnB, PnAt, BAt, inóculos triples (AsPnB, AsPnAt, AsBAt, PnBAt, e inóculos cuadruples (AsPnBAt]. Cada tratamiento tuvo tres replicas. La efectividad en la disolución in vitro de RP fue dependiente del tipo de RP, tipo de inóculo y la interacción de ambos factores, teniendo mejores resultados con la RP del Norte de Santander y A. niger sólo. Cuando este hongo se combinó con otros microorganismos su capacidad para disolver RP se redujo significativamente.

  5. Effect of phosphate solubilizing bacteria on the development of coffee seedlings.

    Directory of Open Access Journals (Sweden)

    Carlos Adolfo Cisneros-Rojas

    2016-12-01

    Full Text Available The aim of this study was to evaluate the effect of solubilizing phosphate bacterias (BSF, Kocuria sp. and Bacillus subtilis, on the development of coffee seedlings Castillo variety. The experiment was conducted in a greenhouse condition, in Palmira, Colombia during 2013-2014 years. The experimental design was completely random, with nine treatments and ten repetitions. The treatments were established under three types of substrates for the seedlings: natural soil (Typic Melanudand + decomposed coffee pulp (1:1 lacking or presenting BSF (treatments 1-4, natural soil + decomposed coffee pulp (1:1 + phosphate rock (RF with or without microorganisms (treatments 5-8, and natural soil without BSF subjected to fertilization with diammonium phosphate (DAP (treatment 9. The application of decomposed coffee pulp with and without RF and BSF favored the availability of phosphorus that helped to the development of coffee seedlings, the above was re ected in the chemical analysis of the substrate and the response of variables, root and total dry aerial weight. Length and volume root, foliar P and recovery phosphorus ef ciency (ERF, did not present signi cant differences.

  6. Screening and characterization of phosphate solubilizing bacteria from isolate of thermophilic bacteria

    Science.gov (United States)

    Yulianti, Evy; Rakhmawati, Anna

    2017-08-01

    The aims of this study were to select bacteria that has the ability to dissolve phosphate from thermophilic bacteria isolates after the Merapi eruption. Five isolates of selected bacteria was characterized and continued with identification. Selection was done by using a pikovskaya selective medium. Bacterial isolates were grown in selective medium and incubated for 48 hours at temperature of 55 ° C. Characterization was done by looking at the cell and colony morphology, physiological and biochemical properties. Identification was done with the Profile Matching method based on the reference genus Oscillospira traced through Bergey's Manual of Determinative Bacteriology. Dendogram was created based on similarity index SSM. The results showed there were 14 isolates of bacteria that were able to dissolve phosphate indicated by a clear zone surrounding the bacterial colony on selective media. Five isolates were selected with the largest clear zone. Isolates D79, D92, D110a, D135 and D75 have different characters. The result of phenotypic characters identification with Genus Oscillospira profile has a percentage of 100% similarity to isolate D92 and D110a; 92.31% for isolates D79, and 84.6% for isolates D75 and D135. Dendogram generated from average linkage algorithm / UPGMA using the Simple Matching Coefficient (SSM) algorithms showed, isolate thermophilic bacteria D75 and D135 are combined together to form cluster 1. D110a and D92 form a sub cluster A. Sub cluster A and D79 form cluster 2

  7. GENETIC VARIABILITY OF SUGARCANE-ASSOCIATED DIAZOTROPHIC BACTERIA CAPABLE OF INORGANIC PHOSPHATE SOLUBILIZING

    OpenAIRE

    Lira-Cadete, Luana; Barbosa de Farias, Andreza Raquel; de Souza Ramos, Andresa Priscila; da Costa, Diogo Paes; Freire, Fernando Jose; Kuklinsky-Sobral, Julia

    2013-01-01

    The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these b...

  8. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.

    Science.gov (United States)

    Ogbo, Frank C

    2010-06-01

    Two fungi characterized as Aspergillus fumigatus and Aspergillus niger, isolated from decaying cassava peels were used to convert cassava wastes by the semi-solid fermentation technique to phosphate biofertilizer. The isolates solubilized Ca(3)(PO(4))(2), AlPO(4) and FePO(4) in liquid Pikovskaya medium, a process that was accompanied by acid production. Medium for the SSF fermentation was composed of 1% raw cassava starch and 3% poultry droppings as nutrients and 96% ground (0.5-1.5mm) dried cassava peels as carrier material. During the 14days fermentation, both test organisms increased in biomass in this medium as indicated by increases in phosphatase activity and drop in pH. Ground cassava peels satisfied many properties required of carrier material particularly in respect of the organisms under study. Biofertilizer produced using A. niger significantly (p<.05) improved the growth of pigeon pea [Cajanus cajan (L.) Millsp.] in pot experiments but product made with A. fumigatus did not. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils

    Institute of Scientific and Technical Information of China (English)

    TAO Guang-Can; TIAN Shu-Jun; CAI Miao-Ying; XIE Guang-Hui

    2008-01-01

    Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavailability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophylli,Pseudomonas ciehorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-sohibilizing abilities ranging between 25.4-41.7 μg P mL-1 and organic P-mineralizing abilities between 8.2-17.8 μg P mL-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL-1 and from 13.8 to 62.8 μg P mL-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P < 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.

  10. Characterization and bioremediation potential of phosphate solubilizing bacteria isolated from tunisian phosphogypsum

    International Nuclear Information System (INIS)

    Trifi, Houda

    2011-01-01

    Phosphorus bioavailability is often limited in agricultural soils. In this work, two bacteria were isolated from Tunisian phosphogypsum (PG). These ones have the capacity to dissolve inorganic phosphate (CaHPO 4 and Ca 3 (PO 4 ) 2 ). This capacity is determined by the clear halo formation around colonies in NBRIP agar medium. To confirm the solubilization phenotype, the concentration of solubilized phosphate by isolates cultivated in NBRIP broth containing PG was measured. These two bacteria noted BRM17 and BRM18 are identified as Pantoea sp. and Pseudomonas sp, respectively. The results show that BRM17 solubilizes about 2 times more phosphate in broth NBRIP medium after 48 hours of incubation than BRM18. Tunisian phosphogypsum contains 1100 ppm of strontium (Sr). Sr toxicity on bacteria was determined by concentration that gives half-maximal inhibition of bacteria (IC 50 ). Compared with Cupriavidus metallidurans (bacteria tolerant to most of heavy metals), BRM17 and BRM18 cultivated in broth medium containing increasing concentrations of Sr were found tolerant to Sr. The potential of bioremediation is tested by the rate evaluation of Sr adsorption by these bacteria. The results show the high ability of BRM18 to adsorb Sr. The resistance of isolates to ionizing radiation is also determined by the exposure of bacterial cultures to various doses of gamma radiation. BRM17 is considered radioresistant while BRM18 is radiosensitive. The effect on seed germination of wheat and pea inoculated with bacteria was tested. No positive effect was detected. This study is considered with the use of BRM17 and BRM18 in a bioremediation process and the improvement of phosphate uptake by plants cultivated in polluted environments.

  11. Impact of fertilizer, corn residue, and cover crops on mycorrhizal inoculum potential and arbuscular mycorrhizal fungi associations

    Science.gov (United States)

    Arbuscular Mycorrhizal Fungi (AMF) increase nutrient and water acquisition for mycorrhizal-susceptible plants, which may lead to higher yields. However, intensive agricultural practices such as tilling, fallow treatments, and inorganic nutrient application reduce soil AMF. The purpose of the three e...

  12. Plant-fed versus chemicals-fed rhizobacteria of Lucerne: Plant-only teabags culture media not only increase culturability of rhizobacteria but also recover a previously uncultured Lysobacter sp., Novosphingobium sp. and Pedobacter sp.

    Science.gov (United States)

    Hegazi, Nabil A; Sarhan, Mohamed S; Fayez, Mohamed; Patz, Sascha; Murphy, Brian R; Ruppel, Silke

    2017-01-01

    In an effort to axenically culture the previously uncultivable populations of the rhizobacteria of Lucerne (Medicago sativa L.), we propose plant-only teabags culture media to mimic the nutritional matrix available in the rhizosphere. Here, we show that culture media prepared from Lucerne powder teabags substantially increased the cultivability of Lucerne rhizobacteria compared with a standard nutrient agar, where we found that the cultivable populations significantly increased by up to 60% of the total bacterial numbers as estimated by Quantitative Real-time Polymerase Chain Reaction (qRT-PCR). Cluster analysis of 16S rDNA Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) of cultivable Colony-Forming Units (CFUs) revealed a more distinct composition and separation of bacterial populations recovered on the plant-only teabags culture media than those developed on a standard nutrient agar. Further, the new plant medium gave preference to the micro-symbiont Sinorhizobium meliloti, and succeeded in isolating a number of not-yet-cultured bacteria, most closely matched to Novosphingobium sp., Lysobacter sp. and Pedobacter sp. The present study may encourage other researchers to consider moving from the well-established standard culture media to the challenging new plant-only culture media. Such a move may reveal previously hidden members of rhizobacteria, and help to further explore their potential environmental impacts.

  13. Beneficial rhizobacteria

    DEFF Research Database (Denmark)

    Michelsen, Charlotte Frydenlund

    Potatoes are cultivated in Southwest Greenland without the use of pesticides and with limited crop rotation. However, despite the fact that plant-pathogenic fungi are present in the Greenlandic potato soils, no severe disease outbreaks, such as late blight, have been observed. In this PhD project...

  14. Differential access to phosphorus pools of an Oxisol by mycorrhizal and non-mycorrhizal maize

    NARCIS (Netherlands)

    Cardoso, I.M.; Boddington, C.L.; Janssen, B.H.; Oenema, O.; Kuyper, T.W.

    2006-01-01

    This study investigated whether arbuscular mycorrhizal fungi (AMF) could take up phosphorus (P) from pools that are normally considered unavailable to plants. An aluminum (Al) resistant maize variety, inoculated with three species of Glomus or uninoculated, supplied with nutrient solution without P,

  15. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity.

    Science.gov (United States)

    Youssef, Hanan H; Hamza, Mervat A; Fayez, Mohamed; Mourad, Elhussein F; Saleh, Mohamed Y; Sarhan, Mohamed S; Suker, Ragab M; Eltahlawy, Asmaa A; Nemr, Rahma A; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A

    2016-03-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >10(6)-10(8) cfu g(-1) were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium.

  16. Impacts of Plant Growth-Promoting Rhizobacteria-based Biostimulants on Wheat Growth under Greenhouse and Field Conditions

    OpenAIRE

    Nguyen, Minh; Ongena, Marc; Colinet, Gilles; Vandenbol, Micheline; Spaepen, Stijn; Bodson, Bernard; Jijakli, Haissam; du Jardin, Patrick; Delaplace, Pierre

    2015-01-01

    Plant Growth-Promoting Rhizobacteria (PGPR) are one of the main biostimulant classes due to their capacity of stimulating root growth and enhancing soil mineral availability, hence increasing nutrient use efficiency in crops. The aim of this study is to screen commercially PGPR-containing products to enhance wheat growth and yield in combination with an optimized nitrogen (N) fertilizer application scheme. This could lead to a significant reduction of N fertilizer application without affectin...

  17. Spore communities of arbuscular mycorrhizal fungi and mycorrhizal associations in different ecosystems, south Australia

    Directory of Open Access Journals (Sweden)

    Z. I. Antoniolli

    2002-09-01

    Full Text Available Communities of arbuscular mycorrhizal fungi (AMF were surveyed in different South Australian ecosystems. The soil was wet-sieved for spore extraction, followed by the determination of presence and abundance of AMF species as well as the percentage of root colonization. Mycorrhizal associations were common and there was substantial fungal diversity in different ecosystems. Spores were most abundant in the permanent pasture system and less abundant under continuous wheat. The incidence of mycorrhizal associations in different plant species and the occurrence of Arum and Paris type colonization generally conformed with previous information. Spores of seventeen AMF were verified throughout seasonal changes in 1996 and 1997 in the permanent pasture and on four host species (Lolium perenne, Plantago lanceolata, Sorghum sp. and Trifolium subterraneum , set up with the same soils under greenhouse conditions. Glomus mosseae was the dominant spore type at all sampling times and in all trap cultures. Mycorrhizal diversity was significantly affected by different sampling times in trap cultures but not in field-collected soil. P. lanceolata, Sorghum sp. and T. subterraneum as hosts for trap cultures showed no differences in richness and diversity of AMF spores that developed in association with their roots. Abundance and diversity were lowest, however, in association with L. perenne , particularly in December 1996. Results show that the combination of spore identification from field-collected soil and trap cultures is essential to study population and diversity of AMF. The study provides baseline data for ongoing monitoring of mycorrhizal populations using conventional methods and material for the determination of the symbiotic effectiveness of AMF key members.

  18. Effect of arbuscular mycorrhizal fungal inoculation on growth, and ...

    African Journals Online (AJOL)

    FAMA

    2015-09-30

    Sep 30, 2015 ... AMF on root colonization, biomass production, mycorrhizal dependency (MD) and shoot mineral ... four months of growth in a sterilized soil and greenhouse conditions, grasses inoculated with AMF ..... Quetta, Pakistan.

  19. Role of arbuscular mycorrhizal fungi in phytoremediation of heavy ...

    African Journals Online (AJOL)

    sadia

    2016-05-18

    May 18, 2016 ... Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Received 19 ... weeks of pot experiment, roots colonization, shoot and root biomass, growth, heavy metals contents ... using arbuscular mycorrhizal fungi (AMF) in soil.

  20. Composition of arbuscular mycorrhizal fungi associated with cassava

    African Journals Online (AJOL)

    SARAH

    2016-02-29

    Feb 29, 2016 ... Objectives: Arbuscular mycorrhizal fungi (AMF) form root symbiotic relationships with higher plants, but .... including growth habit of stem, stem colour, outer and inner root ..... of AM fungi to colonize roots, breaking down their.

  1. Mycorrhizal responses to biochar in soil-concepts and mechanisms.

    NARCIS (Netherlands)

    Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C.

    2007-01-01

    Experiments suggest that biomass-derived black carbon (biochar) affects microbial populations and soil biogeochemistry. Both biochar and mycorrhizal associations, ubiquitous symbioses in terrestrial ecosystems, are potentially important in various ecosystem services provided by soils, contributing

  2. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal ...

    African Journals Online (AJOL)

    Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal fungi mixture improves seedling establishment under greenhouse conditions. Ouahmane Lahcen, Ndoye Ibrahima, Morino Abdessadek, Ferradous Abderrahim, Sfairi Youssef, Al Faddy Mohamed Najib, Abourouh Mohamed ...

  3. Host plant quality mediates competition between arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Knegt, B.; Jansa, J.; Franken, O.; Engelmoer, D.J.P.; Werner, G.D.A.; Bücking, H.; Kiers, E.T.

    2016-01-01

    Arbuscular mycorrhizal fungi exchange soil nutrients for carbon from plant hosts. Empirical works suggests that hosts may selectively provide resources to different fungal species, ultimately affecting fungal competition. However, fungal competition may also be mediated by colonization strategies of

  4. Molecular trait indicators: Moving beyond phylogeny in arbuscular mycorrhizal ecology

    NARCIS (Netherlands)

    Gamper, H.A.; van der Heijden, M.; Kowalchuk, G.A.

    2010-01-01

    Arbuscular mycorrhizal (AM) fungi form symbiotic associations with the roots of most plants, thereby mediating nutrient and carbon fluxes, plant performance, and ecosystem dynamics. Although considerable effort has been expended to understand the keystone ecological position of AM symbioses, most

  5. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils

    Czech Academy of Sciences Publication Activity Database

    Oehl, F.; Laczko, E.; Oberholzer, H.-R.; Jansa, Jan; Egli, S.

    2017-01-01

    Roč. 53, č. 7 (2017), s. 777-797 ISSN 0178-2762 Institutional support: RVO:61388971 Keywords : Arbuscular mycorrhizal * Agriculture * Biodiversity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.683, year: 2016

  6. Effect of vesicular arbuscular mycorrhizal fungus on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-06

    Oct 6, 2008 ... ... association between certain plants and microorganisms plays an important role in soil ..... an Agrostis capillaris population on a copper contaminated soil. Plant ... vesicular-arbuscular mycorrhizal fungi in Amazonian Peru.

  7. Plant hormones as signals in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Miransari, Mohammad; Abrishamchi, A; Khoshbakht, K; Niknam, V

    2014-06-01

    Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.

  8. Mycorrhizal symbiosis: ancient signalling mechanisms co-opted

    NARCIS (Netherlands)

    Geurts, R.; Vleeshouwers, V.G.A.A.

    2012-01-01

    Mycorrhizal root endosymbiosis is an ancient property of land plants. Two parallel studies now provide novel insight into the mechanism driving this interaction and how it is used by other filamentous microbes like pathogenic oomycetes.

  9. Effect of rhizobacteria inoculation and humic acid application on canola (Brassica napus L.) crop

    International Nuclear Information System (INIS)

    Ahmad, S.; Duar, I.; Solaimani, S.G.A.; Mahmood, S.

    2016-01-01

    This study investigated eco-friendly approach of utilizing plant growth promoting rhizobacteria (PGPR) and humic acid (HA) as bio-stimulants to improve the growth, yield and nutrition of canola (Brassica napus L.). In this study, we isolated 20 indigenous rhizobacterial strains that were subsequently screened and characterized for their plant growth promoting traits. After that one promising PGPR strain identified as Acinetobacter pittii by 16S rRNA gene sequencing was selected for field trial. The field experiment was conducted using RCB design with split-plot arrangement that was replicated four times. Three levels of humic acid (0, 10 and 20 kg ha-1) as main plot factor and two treatments of PGPR (with and without PGPR) as sub-plot factor were used. Data was recorded on plant height (cm), root dry matter plant-1, number of lateral root plant-1, number of pods plant-1, number of seeds pod-1, 1000 seed weight (g), seed yield(kg ha-1), oil content (%), nitrogen (N), phosphorus (P) and potassium (K) contents and uptake. For most of the above mentioned parameters, significant enhancement was observed with the increment of humic acid, and also PGPR treatments were better than their respective control treatments. Maximum values of these parameters were recorded for the interaction of 20 kg HA ha-1 with the PGPR strain. It can be concluded that integrated application of HA and PGPR is a better strategy to improve nutrition and yield of canola. (author)

  10. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review

    Directory of Open Access Journals (Sweden)

    Pravin Vejan

    2016-04-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism of the PGPR for plant growth and the role of the PGPR as biofertilizer—thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  11. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid; Daur, Ihsanullah; Al-Solaimani, Samir G.; Ahmad, Shakeel; Madkour, Mohamed H.; Yasir, Muhammad; Hirt, Heribert; Ali, Shawkat; Ali, Zahir

    2016-01-01

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  12. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid

    2016-06-17

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  13. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana.

    Science.gov (United States)

    Park, Yong-Soon; Park, Kyungseok; Kloepper, Joseph W; Ryu, Choong-Min

    2015-09-01

    Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR) stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  14. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    Directory of Open Access Journals (Sweden)

    Yong-Soon Park

    2015-09-01

    Full Text Available Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  15. Drought response of Mucuna pruriens (L. DC. inoculated with ACC deaminase and IAA producing rhizobacteria.

    Directory of Open Access Journals (Sweden)

    Aansa Rukya Saleem

    Full Text Available Drought is one of the major constraints limiting agricultural production worldwide and is expected to increase in the future. Limited water availability causes significant effects to plant growth and physiology. Plants have evolved different traits to mitigate the stress imposed by drought. The presence of plant growth-promoting rhizobacteria (PGPR could play an important role in improving plant performances and productivity under drought. These beneficial microorganisms colonize the rhizosphere of plants and increase drought tolerance by lowering ethylene formation. In the present study, we demonstrate the potential to improve the growth of velvet bean under water deficit conditions of two different strains of PGPR with ACCd (1-Aminocyclopropane-1-Carboxylate deaminase activity isolated from rainfed farming system. We compared uninoculated and inoculated plants with PGPR to assess: a photosynthetic performance and biomass; b ACC content and ethylene emission from leaves and roots; c leaf isoprene emission. Our results provided evidence that under drought conditions inoculation with PGPR containing the ACCd enzyme could improve plant growth compared to untreated plants. Ethylene emission from roots and leaves of inoculated velvet bean plants was significantly lower than uninoculated plants. Moreover, isoprene emission increased with drought stress progression and was higher in inoculated plants compared to uninoculated counterparts. These findings clearly illustrate that selected PGPR strains isolated from rainfed areas could be highly effective in promoting plant growth under drought conditions by decreasing ACC and ethylene levels in plants.

  16. Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria.

    Science.gov (United States)

    Saleem, Aansa Rukya; Brunetti, Cecilia; Khalid, Azeem; Della Rocca, Gianni; Raio, Aida; Emiliani, Giovanni; De Carlo, Anna; Mahmood, Tariq; Centritto, Mauro

    2018-01-01

    Drought is one of the major constraints limiting agricultural production worldwide and is expected to increase in the future. Limited water availability causes significant effects to plant growth and physiology. Plants have evolved different traits to mitigate the stress imposed by drought. The presence of plant growth-promoting rhizobacteria (PGPR) could play an important role in improving plant performances and productivity under drought. These beneficial microorganisms colonize the rhizosphere of plants and increase drought tolerance by lowering ethylene formation. In the present study, we demonstrate the potential to improve the growth of velvet bean under water deficit conditions of two different strains of PGPR with ACCd (1-Aminocyclopropane-1-Carboxylate deaminase) activity isolated from rainfed farming system. We compared uninoculated and inoculated plants with PGPR to assess: a) photosynthetic performance and biomass; b) ACC content and ethylene emission from leaves and roots; c) leaf isoprene emission. Our results provided evidence that under drought conditions inoculation with PGPR containing the ACCd enzyme could improve plant growth compared to untreated plants. Ethylene emission from roots and leaves of inoculated velvet bean plants was significantly lower than uninoculated plants. Moreover, isoprene emission increased with drought stress progression and was higher in inoculated plants compared to uninoculated counterparts. These findings clearly illustrate that selected PGPR strains isolated from rainfed areas could be highly effective in promoting plant growth under drought conditions by decreasing ACC and ethylene levels in plants.

  17. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.

    Science.gov (United States)

    do Amaral, Fernanda P; Pankievicz, Vânia C S; Arisi, Ana Carolina M; de Souza, Emanuel M; Pedrosa, Fabio; Stacey, Gary

    2016-04-01

    Plant growth promoting rhizobacteria (PGPR) can associate and enhance the growth of important crop grasses. However, in most cases, the molecular mechanisms responsible for growth promotion are not known. Such research could benefit by the adoption of a grass model species that showed a positive response to bacterial inoculation and was amenable to genetic and molecular research methods. In this work we inoculated different genotypes of the model grass Brachypodium distachyon with two, well-characterized PGPR bacteria, Azospirillum brasilense and Herbaspirillum seropedicae, and evaluated the growth response. Plants were grown in soil under no nitrogen or with low nitrogen (i.e., 0.5 mM KNO3). A variety of growth parameters (e.g., shoot height, root length, number of lateral roots, fresh and dry weight) were measured 35 days after inoculation. The data indicate that plant genotype plays a very important role in determining the plant response to PGPR inoculation. A positive growth response was observed with only four genotypes grown under no nitrogen and three genotypes tested under low nitrogen. However, in contrast, relatively good root colonization was seen with most genotypes, as measured by drop plate counting and direct, microscopic examination of roots. In particular, the endophytic bacteria H. seropedicae showed strong epiphytic and endophytic colonization of roots.

  18. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    Science.gov (United States)

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  19. Colonization of Plant Growth Promoting Rhizobacteria (PGPR) on Two Different Root Systems

    International Nuclear Information System (INIS)

    Chaudhry, M. Z.; Naz, A. U.; Nawaz, A.; Nawaz, A.; Mukhtar, H.

    2016-01-01

    Phytohormones producing bacteria enhance the plants growth by positively affecting growth of the root. Plant growth promoting bacteria (PGPR) must colonize the plant roots to contribute to the plant's endogenous pool of phytohormones. Colonization of these plant growth promoting rhizobacteria isolated from rhizosplane and soil of different crops was evaluated on different root types to establish if the mechanism of host specificity exist. The bacteria were isolated from maize, wheat, rice, canola and cotton and phytohormone production was detected and quantified by HPLC. Bacteria were inoculated on surface sterilized seeds of different crops and seeds were germinated. After 7 days the bacteria were re-isolated from the roots and the effect of these bacteria was observed by measuring increase in root length. Bacteria isolated from one plant family (monocots) having fibrous root performed well on similar root system and failed to give significant results on other roots (tap root) of dicots. Some aggressive strains were able to colonize both root systems. The plant growth promoting activities of the bacteria were optimum on the same plant from whom roots they were isolated. The results suggest that bacteria adapt to the root they naturally inhabit and colonize the same plant root systems preferably. Although the observe trend indicate host specificity but some bacteria were aggressive colonizers which grew on all the plants used in experiment. (author)

  20. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat.

    Science.gov (United States)

    Naeem, Muhammad; Aslam, Zubair; Khaliq, Abdul; Ahmed, Jam Nazir; Nawaz, Ahmad; Hussain, Mubshar

    2018-04-24

    Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1tiller -1 ), and highest plant height (85.8cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320m -2 ), straw yield (8.6Mgha -1 ), and grain yield (4.8Mgha -1 ) were achieved when seeds were inoculated with Bacillus sp. strain 6+Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6+Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Di Salvo, Luciana P; Silva, Esdras; Teixeira, Kátia R S; Cote, Rosalba Esquivel; Pereyra, M Alejandra; García de Salamone, Inés E

    2014-12-01

    Azospirillum is a plant growth-promoting rhizobacteria (PGPR) genus vastly studied and utilized as agriculture inoculants. Isolation of new strains under different environmental conditions allows the access to the genetic diversity and improves the success of inoculation procedures. Historically, the isolation of this genus has been performed by the use of some traditional culture media. In this work we characterized the physiology and biochemistry of five different A. brasilense strains, commonly used as cereal inoculants. The aim of this work is to contribute to pose into revision some concepts concerning the most used protocols to isolate and characterize this bacterium. We characterized their growth in different traditional and non-traditional culture media, evaluated some PGPR mechanisms and characterized their profiles of fatty acid methyl esters and carbon-source utilization. This work shows, for the first time, differences in both profiles, and ACC deaminase activity of A. brasilense strains. Also, we show unexpected results obtained in some of the evaluated culture media. Results obtained here and an exhaustive knowledge revision revealed that it is not appropriate to conclude about bacterial species without analyzing several strains. Also, it is necessary to continue developing studies and laboratory techniques to improve the isolation and characterization protocols. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optical properties of arbuscular mycorrhizal fungal structures

    International Nuclear Information System (INIS)

    Perez, Adverdi; V-Hernandez, Alejandra; Rudamas, Carlos; Dreyer, Beatriz

    2008-01-01

    It was already reported by B. Dreyer at al. [1] that all fungal structures, both intra- and extra-radical fluoresced under blue light excitation regardless of their state (dead or alive). The source of the so called autofluorescence appears to be localized in the fungal cell wall. This supports the use of photoluminescence for the evaluation of AM colonization. However, the interpretation of these results is still in discussion [1-4]. In this work, arbuscular mycorrhizal spores were isolated from the rhizosphere of mango (Mangifera indica L.) plants by the method of wet sieving and decanting of Gerdemann and Nicolson [5] and studied by photoluminescence spectroscopy. Our experimental setup consists of an epifluorescence microscope (EM) coupled to a CCD-spectrometer through an arrangement of a home-made-telescope + fiber optic. This experimental setup allows the capture of images of the mycorrhizal structures (as usual in a standard epifluorescence microscope) combined with measurements of their corresponding emission bands. The preliminary results based on images obtained by standard EM do not clearly show that the emission is originated in the fungal cell walls as reported in Ref. 1. On the other hand, a very broad emission band in the visible part of the electromagnetic spectrum was observed in these spores by exciting at 450-490 nm and 300- 380 nm. We obtain a Full Width at Half Maximum (FWHM) of around 200 nm for this emission band whichis centered at 515 nm. This broad band seems to be composed of two narrower bands peaked around 494 and 547 nm and with FWHM of 50 nm and 150 nm, respectively. The profile of the observed emission band is in good agreement with the bands reported in Ref. 1 for vesicles, arbuscules and spores measured using the λ-Scan of a confocal laser scanning microscope. However, our results for spores show that the maxima of the narrower bands are shifted to higher energies in comparison to the corresponding bands observed in Ref. 1

  3. Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest.

    Science.gov (United States)

    Nina Wurzburger; Ronald L. Hendrick

    2009-01-01

    1. Relationships between mycorrhizal plants and soil nitrogen (N) have led to the speculation that the chemistry of plant litter and the saprotrophy of mycorrhizal symbionts can function together to...

  4. Variability in colonization of arbuscular mycorrhizal fungi and its effect on mycorrhizal dependency of improved and unimproved soybean cultivars.

    Science.gov (United States)

    Salloum, M S; Guzzo, M C; Velazquez, M S; Sagadin, M B; Luna, C M

    2016-12-01

    Breeding selection of germplasm under fertilized conditions may reduce the frequency of genes that promote mycorrhizal associations. This study was developed to compare variability in mycorrhizal colonization and its effect on mycorrhizal dependency (MD) in improved soybean genotypes (I-1 and I-2) with differential tolerance to drought stress, and in unimproved soybean genotypes (UI-3 and UI-4). As inoculum, a mixed native arbuscular mycorrhizal fungi (AMF) was isolated from soybean roots, showing spores mostly of the species Funneliformis mosseae. At 20 days, unimproved genotypes followed by I-2, showed an increase in arbuscule formation, but not in I-1. At 40 days, mycorrhizal plants showed an increase in nodulation, this effect being more evident in unimproved genotypes. Mycorrhizal dependency, evaluated as growth and biochemical parameters from oxidative stress was increased in unimproved and I-2 since 20 days, whereas in I-1, MD increased at 40 days. We cannot distinguish significant differences in AMF colonization and MD between unimproved and I-2. However, variability among improved genotypes was observed. Our results suggest that selection for improved soybean genotypes with good and rapid AMF colonization, particularly high arbuscule/hyphae ratio could be a useful strategy for the development of genotypes that optimize AMF contribution to cropping systems.

  5. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    Science.gov (United States)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P stocks within root-associated AM structures increased significantly with nitrogen fertilization across all sites (P = 0.001), as did root

  6. Mycorrhizal symbiosis produces changes in specific flavonoids in leaves of pepper plant (Capsicum annum L.)

    Science.gov (United States)

    In this study, experiments were performed to investigate if mycorrhizal plants grown under optimal growth conditions would improve crop quality compared to the non-mycorrhizal control. The results clearly showed that while mycorrhizal plants grown under an optimal nutrient supply did not increase t...

  7. Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico

    Science.gov (United States)

    Ligia Lebrón; Jean D. Lodge; Paul. Bayman

    2012-01-01

    Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbon, at three farms in...

  8. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis

    NARCIS (Netherlands)

    Gerz, Maret; Guillermo Bueno, C.; Ozinga, Wim A.; Zobel, Martin; Moora, Mari

    2018-01-01

    Mycorrhizal symbiosis is a widespread association between plant roots and mycorrhizal fungi, which is thought to contribute to plant niche differentiation and expansion. However, this has so far not been explicitly tested. To address the effect of mycorrhizal symbiosis on plants’ realized niches, we

  9. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus.

    Science.gov (United States)

    Song, Yuanyuan; Chen, Dongmei; Lu, Kai; Sun, Zhongxiang; Zeng, Rensen

    2015-01-01

    Roots of most terrestrial plants form symbiotic associations (mycorrhiza) with soil- borne arbuscular mycorrhizal fungi (AMF). Many studies show that mycorrhizal colonization enhances plant resistance against pathogenic fungi. However, the mechanism of mycorrhiza-induced disease resistance remains equivocal. In this study, we found that mycorrhizal inoculation with AMF Funneliformis mosseae significantly alleviated tomato (Solanum lycopersicum Mill.) early blight disease caused by Alternaria solani Sorauer. AMF pre-inoculation led to significant increases in activities of β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase (PAL) and lipoxygenase (LOX) in tomato leaves upon pathogen inoculation. Mycorrhizal inoculation alone did not influence the transcripts of most genes tested. However, pathogen attack on AMF-inoculated plants provoked strong defense responses of three genes encoding pathogenesis-related proteins, PR1, PR2, and PR3, as well as defense-related genes LOX, AOC, and PAL, in tomato leaves. The induction of defense responses in AMF pre-inoculated plants was much higher and more rapid than that in un-inoculated plants in present of pathogen infection. Three tomato genotypes: a Castlemart wild-type (WT) plant, a jasmonate (JA) biosynthesis mutant (spr2), and a prosystemin-overexpressing 35S::PS plant were used to examine the role of the JA signaling pathway in AMF-primed disease defense. Pathogen infection on mycorrhizal 35S::PS plants led to higher induction of defense-related genes and enzymes relative to WT plants. However, pathogen infection did not induce these genes and enzymes in mycorrhizal spr2 mutant plants. Bioassays showed that 35S::PS plants were more resistant and spr2 plants were more susceptible to early blight compared with WT plants. Our finding indicates that mycorrhizal colonization enhances tomato resistance to early blight by priming systemic defense response, and the JA signaling pathway is essential for mycorrhiza

  10. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.

    Science.gov (United States)

    Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar

    2018-01-01

    The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation.

    Science.gov (United States)

    Sobariu, Dana Luminița; Fertu, Daniela Ionela Tudorache; Diaconu, Mariana; Pavel, Lucian Vasile; Hlihor, Raluca-Maria; Drăgoi, Elena Niculina; Curteanu, Silvia; Lenz, Markus; Corvini, Philippe François-Xavier; Gavrilescu, Maria

    2017-10-25

    Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and atmospheric nitrogen fixators contributes considerably to the intensification of the phytoremediation process. In this paper, we have built a system consisting of rhizospheric Azotobacter microbial populations and Lepidium sativum plants, growing in solutions containing heavy metals in various concentrations. We examined the ability of the organisms to grow in symbiosis so as to stimulate the plant growth and enhance its tolerance to Cr(VI) and Cd(II), to ultimately provide a reliable phytoremediation system. The study was developed at the laboratory level and, at this stage, does not assess the inherent interactions under real conditions occurring in contaminated fields with autochthonous microflora and under different pedoclimatic conditions and environmental stresses. Azotobacter sp. bacteria could indeed stimulate the average germination efficiency of Lepidium sativum by almost 7%, average root length by 22%, average stem length by 34% and dry biomass by 53%. The growth of L. sativum has been affected to a greater extent in Cd(II) solutions due its higher toxicity compared to that of Cr(VI). The reduced tolerance index (TI, %) indicated that plant growth in symbiosis with PGPR was however affected by heavy metal toxicity, while the tolerance of the plant to heavy metals was enhanced in the bacteria-plant system. A methodology based on artificial neural networks (ANNs) and differential evolution (DE), specifically a neuro-evolutionary approach, was applied to model germination rates, dry biomass and root/stem length and proving the robustness of the experimental data. The errors associated with all four variables are small and the correlation coefficients higher than 0

  12. Potential of plant growth promoting rhizobacteria and chemical fertilizers on soil enzymes and plant growth

    International Nuclear Information System (INIS)

    Nosheen, A.; Bano, A.

    2014-01-01

    The present investigation deals with the role of Plant Growth Promoting Rhizobacteria and chemical fertilizers alone or in combination on urease, invertase and phosphatase activities of rhizospheric soil and also on general impact on growth of safflower cvv. Thori and Saif-32. The PGPR (Azospirillum brasilense and Azotobacter vinelandii) were applied at 10/sup 6/ cells/mL as seed inoculation prior to sowing. Chemical fertilizers were applied at full (Urea 60 Kg ha/sup -1/ and Diammonium phosphate (DAP) 30 Kg ha/sup -1/), half (Urea 30 Kg ha/sup -1/ and DAP 15 Kg ha/sup -1/) and quarter doses (Urea 15 Kg ha-1 and DAP 7.5 Kg ha/sup -1/) during sowing. The chemical fertilizers and PGPR enhanced urease and invertase activities of soil. Presence of PGPR in combination with quarter and half doses of chemical fertilizers further augmented their effect on soil enzymes activities. The soil phosphatase activity was greater in Azospirillum and Azotobacter in combination with half dose of chemical fertilizers. Maximum increase in leaf melondialdehyde content was recorded in full dose of chemical fertilizers whereas coinoculation treatment exhibited significant reduction in cv. Thori. Half and quarter dose of chemical fertilizers increased the shoot length of safflower whereas maximum increase in leaf protein was recorded in Azotobacter in combination with full dose of chemical fertilizers. Root length was improved by Azospirillum and Azotobacter in combination with quarter dose of chemical fertilizers. Leaf area and chlorophyll contents were significantly improved by Azotobacter in combination with half dose of chemical fertilizers. It is inferred that PGPR can supplement 50 % chemical fertilizers for better plant growth and soil health. (author)

  13. Effect of immobilized rhizobacteria and organic amendment in bulk and rhizospheric soil of Cistus albidus L.

    Science.gov (United States)

    Mengual, Carmen Maria; del Mar Alguacil, Maria; Roldan, Antonio; Schoebitz, Mauricio

    2013-04-01

    A field experiment was carried out to assess the effectiveness of the immobilized microbial inoculant and the addition of organic olive residue. The microbial inoculant contained two rhizobacterial species identified as Azospirillum brasilense and Pantoea dispersa immobilized in a natural inert support. Bacterial population densities were 3.5×109 and 4.1×109 CFU g-1 of A. brasilense M3 and P. dispersa C3, respectively. The amendment used was the organic fraction extracted with KOH from composted "alperujo". The raw material was collected from an olive-mill and mixed with fresh cow bedding as bulking agent for composting. The inoculation of rhizobacteria and the addition of organic residue were employed for plant growth promotion of Cistus albidus L. and enhancement of soil physicochemical, biochemical and biological properties in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus and potassium content in the amended soils was about 100 and 70% respectively higher than in the non-amended soil. Microbial inoculant and their interaction with organic residue increased the aggregate stability of the rhizosphere soil of C. albidus (by 12% with respect to control soil) while the organic residue alone not increased the aggregate stability of the rhizosphere of C. albidus. Microbial biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA and alkaline phosphatase) of the rhizosphere of C. albidus were increased by microbial inoculant and organic residue interaction but not by microbial inoculation alone. The microbial inoculant and organic residue interaction were the most effective treatment for stimulating the roots dry weight of C. albidus (by 133% with respect to control plants) and microbial inoculant was the most effective treatment for increase the shoot dry weigh of plants (by 106% with respect to control plants). The combined treatment, involving microbial inoculant and addition of the organic residue

  14. Mycorrhizal inoculation affects the phytochemical content in strawberry fruits

    Directory of Open Access Journals (Sweden)

    Ana Paula Cecatto

    2016-04-01

    Full Text Available The aim of this research was to evaluate the effect of the inoculation date of arbuscular mycorrhizal fungi on the fruit quality and the content of phytochemicals in a strawberry soilless growing system. The experiment was performed in Huelva (Spain and was conducted in a greenhouse on the La Rábida Campus of Huelva University under natural light and temperature from October 2013 to June 2014. Three short-day strawberry cultivars (‘Splendor’, ‘Sabrina’ and ‘Fortuna’ were grown in polyethylene bags filled with coconut fibres. Randomized block design, with 3 repetitions and factorial arrangement (3 cultivars x 3 treatments, was established. Each replicate consisted of one bag with 12 plants supporting structures at 40 cm height. The treatments were: T1 = mycorrhizal inoculation in the transplantation; T2 = mycorrhizal inoculation 30 days after transplantation (DAT; and T0 = control treatment, without inoculation. Arbuscular mycorrhizal fungi inoculation significantly affected the contents of anthocyanin and phenolics. When the inoculation is performed in the transplantation, the fruits showed a high content of anthocyanin and total phenolics. The mycorrhizal inoculation influences decreasing the acidity in fruit throughout the growing season and increase firmness only during the early stage of production.

  15. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  16. Dynamic of arbuscular mycorrhizal population on Amazon forest from the south Colombia

    International Nuclear Information System (INIS)

    Pena Vanegas, Clara P

    2001-01-01

    This work compared changes occurred on the number of arbuscular mycorrhizal spores at three mature forests and three regenerative forests, before and after clear-cutting. Results suggest that it is possible to predict the quantity of arbuscular mycorrhizal inocule after clear-cutting if initial number and type of forests is known before. A model to explain these changes shows that arbuscular mycorrhizal depletion on mature forests is about 70% after clear-cutting. Survival mycorrhizal populations colonize regenerative forests. Then, if a clear-cutting occurs on regenerative forests, arbuscular mycorrhizal populations will decrease on 35%, being less drastic that it occurred on mature forests

  17. Mycorrhizal associations as Salix repens L. communities in succession of dune ecosystems II Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vosatka, M.

    2000-01-01

    Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats

  18. The potential of arbuscular mycorrhizal fungi application on aggregrate stability in alfisol soil

    Science.gov (United States)

    Syamsiyah, J.; Herawati, A.; Mujiyo

    2018-03-01

    The aim of this study was to determine the soil aggregate stability and its relationship with another variable in alfisol. The research used completely randomized design with four treatments: two sterilization levels (no sterilization and with sterilization) and two levels of mycorrhizal inoculation (no mycorrhizal and with mycorrhizal). Mycorrhizal (5 grams/pot) was inoculated before planting rice seeds. The soil aggregate stability was measured by wet-sieving and turbidimetric measurements. The results showed that soil aggregate stability was higher in mycorrhizal inoculated than non-mycorrhizal inoculated treatment, by 5% in sterilization soil and 3.2% in non-sterilization soil. The correlation analysis indicated that soil aggregate stability has a tight relationship with spore population, total glomalin, available glomalin, dry weight, tiller number of plant, and soil organic C. Inoculation of mycorrhizal contributed to stabilize soil aggregates in alfisol

  19. P depletion and activity of phosphatases in the rhizosphere of mycorrhizal and non-mycorrhizal cucumber (Cucumis Sativus L.)

    DEFF Research Database (Denmark)

    Joner, E.J.; Magid, J.; Gahoonia, T.S.

    1995-01-01

    An experiment was set up to test the ability of arbuscular mycorrhizal (AM) roots and hyphae to produce extracellular phosphatases and to study the relationship between phosphatase activity and soil organic P (P-o). Non-mycorrhizal cucumber and cucumber in symbiosis with either of two mycorrhizal...... fungi were grown in a sandy loam-sand mixture in three-compartment pots. Plant roots were separated from two consecutively adjoining compartments, first by a 37 m mesh excluding roots and subsequently by a 0.45 m membrane excluding mycorrhizal hyphae. Soil from the two root-free compartments...... was sectioned in a freezing microtome and analyzed for extracellular acid (pH 5.2) and alkaline (pH 8.5) phosphatase activity as well as depletion of NaHCO-3-extractable inorganic P (P-i) and P-o. Roots and mycorrhizal hyphae depleted the soil of P-i but did not influence the concentration of P-o in spite...

  20. Arbuscular mycorrhizal fungi and mycorrhizal stimulant affect dry matter and nutrient accumulation in bean and soybean plants

    Directory of Open Access Journals (Sweden)

    Fabrício Henrique Moreira Salgado

    2016-12-01

    Full Text Available The adoption of biological resources in agriculture may allow less dependence and better use of finite resources. This study aimed at evaluating the effects of inoculation with arbuscular mycorrhizal fungi native to the Brazilian Savannah associated with the application of mycorrhizal stimulant (7-hydroxy, 4'-methoxy-isoflavone, in the early growth of common bean and soybean. The experiment was carried out in a greenhouse, in a completely randomized design, with a 7 x 2 factorial arrangement, consisting of five arbuscular mycorrhizal fungi species, joint inoculation (junction of all species in equal proportions and native fungi (without inoculation, in the presence and absence of stimulant. The following traits were evaluated: shoot dry matter, root dry matter, mycorrhizal colonization, nodules dry matter and accumulation of calcium, zinc and phosphorus in the shoot dry matter. The increase provided by the arbuscular mycorrhizal fungi and the use of stimulant reached over 200 % in bean and over 80 % in soybean plants. The fungi Acaulospora scrobiculata, Dentiscutata heterogama, Gigaspora margarita and Rhizophagus clarus, for bean, and Claroideoglomus etunicatum, Dentiscutata heterogama, Rhizophagus clarus and the joint inoculation, for soybean, increased the dry matter and nutrients accumulation.

  1. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).

    Science.gov (United States)

    Lehnert, Heike; Serfling, Albrecht; Enders, Matthias; Friedt, Wolfgang; Ordon, Frank

    2017-07-01

    Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. DNA extraction method for PCR in mycorrhizal fungi.

    Science.gov (United States)

    Manian, S; Sreenivasaprasad, S; Mills, P R

    2001-10-01

    To develop a simple and rapid DNA extraction protocol for PCR in mycorrhizal fungi. The protocol combines the application of rapid freezing and boiling cycles and passage of the extracts through DNA purification columns. PCR amplifiable DNA was obtained from a number of endo- and ecto-mycorrhizal fungi using minute quantities of spores and mycelium, respectively. DNA extracted following the method, was used to successfully amplify regions of interest from high as well as low copy number genes. The amplicons were suitable for further downstream applications such as sequencing and PCR-RFLPs. The protocol described is simple, short and facilitates rapid isolation of PCR amplifiable genomic DNA from a large number of fungal isolates in a single day. The method requires only minute quantities of starting material and is suitable for mycorrhizal fungi as well as a range of other fungi.

  3. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    International Nuclear Information System (INIS)

    Gyuricza, Veronika; Declerck, Stephane; Dupre de Boulois, Herve

    2010-01-01

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  4. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    Science.gov (United States)

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula

    Energy Technology Data Exchange (ETDEWEB)

    Gyuricza, Veronika; Declerck, Stephane [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Dupre de Boulois, Herve, E-mail: herve.dupre@uclouvain.b [Universite catholique de Louvain, Earth and Life Institute (ELI), Laboratoire de Mycologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)

    2010-08-15

    The role of arbuscular mycorrhizal fungi (AMF) in plant radiocesium uptake and accumulation remains ambiguous. This is probably due to the presence of other soil microorganisms, the variability of soil characteristics and plant nutritional status or the availability of its chemical analogue, potassium (K). Here, we used an in vitro culture system to study the impact of increased concentration of K on radiocesium accumulation in non K-starved mycorrhizal and non-mycorrhizal Medicago truncatula plants. In the presence of AMF radiocesium uptake decreased regardless of the concentration of K, and its translocation from root to shoot was also significantly lower. Potassium also reduced the accumulation of radiocesium in plants but to a lesser extent than mycorrhization, and without any effect on translocation. These results suggest that AMF in combination with K can play a key role in reducing radiocesium uptake and its subsequent translocation to plant shoots, thereby representing good potential for improved phytomanagement of contaminated areas.

  6. Communities, populations and individuals of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Rosendahl, Søren

    2008-01-01

    Arbuscular mycorrhizal fungi in the phylum Glomeromycota are found globally in most vegetation types, where they form a mutualistic symbiosis with plant roots. Despite their wide distribution, only relatively few species are described. The taxonomy is based on morphological characters...... of the asexual resting spores, but molecular approaches to community ecology have revealed a considerable unknown diversity from colonized roots. Although the lack of genetic recombination is not unique in the fungal kingdom, arbuscular mycorrhizal fungi are probably ancient asexuals. The long asexual evolution...... of the fungi has resulted in considerable genetic diversity within morphologically recognizable species, and challenges our concepts of individuals and populations. This review critically examines the concepts of species, communities, populations and individuals of arbuscular mycorrhizal fungi....

  7. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas

    Science.gov (United States)

    2013-01-01

    Background Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. Results The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome

  8. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Science.gov (United States)

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  9. Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models?

    Energy Technology Data Exchange (ETDEWEB)

    Hofmockel, Kirsten; Hobbie, Erik

    2017-07-31

    Our funded research focused on soil organic matter dynamics and plant-microbe interactions by examining the role of belowground processes and mechanisms across scales, including decomposition of organic molecules, microbial interactions, and plant-microbe interactions associated with a changing climate. Research foci included mycorrhizal mediated priming of soil carbon turnover, organic N use and depolymerization by free-living microbes and mycorrhizal fungi, and the use of isotopes as additional constraints for improved modeling of belowground processes. This work complemented the DOE’s mandate to understand both the consequences of atmospheric and climatic change for key ecosystems and the feedbacks on C cycling.

  10. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Bücking, Heike; Mensah, Jerry A; Fellbaum, Carl R

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis.

  11. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    Energy Technology Data Exchange (ETDEWEB)

    Wu Naiying [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Department of Chemistry, Shangqiu Normal College, Shangqiu 476000 (China); Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhang Shuzhen, E-mail: szzhang@rcees.ac.c [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085 (China); Christie, Peter [Agri-Environment Branch, Agriculture Food and Environmental Science Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom); Zhang Yong [State Key Laboratory of Marine Environmental Science, Environmental Science Research Centre, Xiamen University, Xiamen 361005 (China)

    2009-05-15

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state {sup 13}C nuclear magnetic resonance spectroscopy ({sup 13}C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  12. Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus

    International Nuclear Information System (INIS)

    Wu Naiying; Huang Honglin; Zhang Shuzhen; Zhu Yongguan; Christie, Peter; Zhang Yong

    2009-01-01

    Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13 C nuclear magnetic resonance spectroscopy ( 13 C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants. - Colonization by an arbuscular mycorrhizal fungus promoted root uptake and decreased shoot uptake of phenanthrene by Medicago sativa L.

  13. Plant mycorrhizal traits in Europe in relation to climatic and edaphic gradients

    Science.gov (United States)

    Guillermo Bueno, C.; Gerz, Maret; Zobel, Martin; Moora, Mari

    2017-04-01

    Around 90% of plant species associate with mycorrhizal fungi. The symbiosis is known to provide plants with soil N, P and water, and fungi with plant photosynthesized carbohydrates. However, not all mycorrhizal symbioses are identical. The identity of associated plant and fungal species differs, as does the effect of the symbiosis on nutrient cycling and ecosystems more generally. In this study, we analysed the European distribution of two plant mycorrhizal traits in relation to climatic and edaphic drivers. We used the European distribution of the frequency of mycorrhizal colonization (plant mycorrhizal status); whether mycorrhizal fungi either always (obligately mycorrhizal, OM), or sometimes (facultatively mycorrhizal, FM) colonize plant roots, and the four main plant mycorrhizal types; arbuscular (AM), ecto-(ECM), ericoid (ERM), and non-mycorrhizal (NM) plants. We expected AM species to predominate in ecosystems where most soil nutrients occur in inorganic forms (lower latitudes) and those with higher soil pH. By contrast, due to the saprophytic abilities of ECM and ERM fungi, we expected ECM and ERM plants to predominate in ecosystems where nutrients are bound to organic compounds (higher latitudes) and those with lower soil pH. NM plant species are known to be common in disturbed habitats or in extremely phosphorus poor ecosystems, such as the Arctic tundra. Our results showed that the distribution of mycorrhizal types was driven by temperature and soil pH, with increases of NM, ECM and ERM, and decreases of AM, with latitude. FM predominated over OM species and this difference increased with latitude and was dependent on temperature drivers only. These results represent the first evidence at a European scale of plant mycorrhizal distribution patterns linked with climatic and edaphic gradients, supporting the idea of a tight relationship between the mycorrhizal symbiosis and nutrient cycling.

  14. Effects of plant growth promoting rhizobacteria (PGPR on rooting and root growth of kiwifruit (Actinidia deliciosa stem cuttings

    Directory of Open Access Journals (Sweden)

    YASAR ERTURK

    2010-01-01

    Full Text Available The effects of plant growth promoting rhizobacteria (PGPR on the rooting and root growth of semi-hardwood and hardwood kiwifruit stem cuttings were investigated. The PGPR used were Bacillus RC23, Paenibacillus polymyxa RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas acidovorans RC41, Bacillus megaterium RC01 and Bacillus simplex RC19. All the bacteria showed indole-3-acetic acid (IAA producing capacity. Among the PGPR used, the highest rooting ratios were obtained at 47.50% for semi-hardwood stem cuttings from Bacillus RC03 and Bacillus simplex RC19 treatments and 42.50% for hardwood stem cuttings from Bacillus RC03. As well, Comamonas acidovorans RC41 inoculations indicated higher value than control treatments. The results suggest that these PGPR can be used in organic nursery material production and point to the feasibility of synthetic auxin (IBA replacement by organic management based on PGPR.

  15. In vitro culture of arbuscular mycorrhizal fungi: advances and future ...

    African Journals Online (AJOL)

    Arbuscular mycorrhizal (AM) fungi are ecologically important for most vascular plants for their growth and survival. AM fungi are obligate symbionts. In recent years, there have been many attempts to cultivate in vitro. Some relevant results indicate efforts are not far from successful growth of AM fungi independent of a plant ...

  16. Mycorrhizal fungi of aspen forests: Natural occurrence and potential applications

    Science.gov (United States)

    Cathy L. Cripps

    2001-01-01

    Native mycorrhizal fungi associated with aspen were surveyed on three soil types in the north-central Rocky Mountains. Selected isolates were tested for the ability to enhance aspen seedling growth in vitro. Over 50 species of ectomycorrhizal fungi occur with Populus tremuloides in this region, primarily basidiomycete fungi in the Agaricales. Almost one-third (30%)...

  17. Cropping enhances mycorrhizal benefits to maize in a tropical soil

    Czech Academy of Sciences Publication Activity Database

    Jemo, M.; Souleymanou, A.; Frossard, E.; Jansa, Jan

    2014-01-01

    Roč. 79, č. 2014 (2014), s. 117-124 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) LK11224; GA ČR GAP504/12/1665 Institutional support: RVO:61388971 Keywords : tropical soil * mycorrhizal benefits * southern Cameroon Subject RIV: EE - Microbiology, Virology Impact factor: 3.932, year: 2014

  18. Inoculation of Ceratonia siliqua L. with native arbuscular mycorrhizal ...

    African Journals Online (AJOL)

    Ouhmane

    tree Ceratonia siliqua, a Mediterranean legume in Morocco. ... After 6 months of culturing in nursery conditions, height, shoot and root ... distributed around the world and the Mediterranean ... more resistant to water stress compared to other ... individual trees. ... mycorrhizal maize roots were used for the control treatment.

  19. Mycorrhizal specificity in the fully mycoheterotrophic Hexalectris Raf. (Orchidaceae: Epidendroideae)

    Science.gov (United States)

    Aaron H. Kennedy; D. Lee Taylor; Linda E. Watson

    2011-01-01

    Mycoheterotrophic species have abandoned an autotrophic lifestyle and obtain carbon exclusively from mycorrhizal fungi. Although these species have evolved independently in many plant families, such events have occurred most often in the Orchidaceae, resulting in the highest concentration of these species in the tracheophytes. Studies of mycoheterotrophic species...

  20. Arsenic uptake and phytoremediation potential by arbuscular mycorrhizal fungi

    Science.gov (United States)

    Xinhua He; Erik Lilleskov

    2014-01-01

    Arsenic (As) contamination of soils and water is a global problem because of its impacts on ecosystems and human health. Various approaches have been attempted for As remediation, with limited success. Arbuscular mycorrhizal (AM) fungi play vital roles in the uptake of water and essential nutrients, especially phosphorus (P), and hence enhance plant performance and...

  1. Effect of mycorrhizal inoculum and urea fertilizer on diseases ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... Ambang Zachée*, Ndongo Bekolo, Bime, Ngoh Dooh, Maho Yalen and .... and 29°C. The soil is classified as the ferruginous tropical soil. According to the description of the physical properties of the soil by ... mycorrhizal inoculation, showed different variations of .... Cahiers ORSTOM, Paris, France.

  2. Arbuscular-mycorrhizal fungi (Glomales) in Egypt. III: Distribution ...

    African Journals Online (AJOL)

    Roots and rhizospheric soils of 26 plant species belonging to 18 families representing five different habitats at El-Omayed Biosphere Reserve were collected and examined for arbuscular-mycorrhizal fungal (AMF) associations. Plant species recorded in the habitat of coastal sand dunes had the highest percentage of ...

  3. Mycorrhizal inoculation of pecan seedlings with some marketable truffles

    Directory of Open Access Journals (Sweden)

    Gian M. Benucci

    2013-12-01

    Full Text Available Pecan is the common name of Carya illinoinensis (Wangenh. K. Koch, an ectomycorrhizal tree native to North America, also frequently known as hickory. Mycorrhizal inoculations of pecan seedlings with: Tuber aestivum Vittad., T. borchii Vittad., T. indicum Cooke & Massee, and T. lyonii Butters are described and discussed.

  4. Solanum cultivar responses to arbuscular mycorrhizal fungi: growth ...

    African Journals Online (AJOL)

    A greenhouse experiment was carried out in a sandy soil with a low available phosphorus to evaluate responsiveness of four Solanum aethiopicum cultivars to indigenous arbuscular mycorrhizal fungi. Results showed clear interaction between genetic variability of cultivars and fungal isolates on shoot biomass and on ...

  5. Effect of arbuscular mycorrhizal fungal inoculation on growth, and ...

    African Journals Online (AJOL)

    The aim of our work was to assess the effect of inoculation with three arbuscular mycorrhizal fungi (AMF) (Rhizoglomus aggregatum (N.C. Schenck and G.S. Sm.) Sieverd., G.A. Silva and Oeh., Funneliformis mosseae (T.H. Nicolson and Gerd.) C. Walker and A. Schüssler. and Rhizoglomus intraradices (N.C. Schenck and ...

  6. Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm

    NARCIS (Netherlands)

    Boon, E.; Halary, S.; Bapteste, E.; Hijri, M.

    2015-01-01

    Although heterokaryons have been reported in nature, multicellular organisms are generally assumed genetically homogeneous. Here, we investigate the case of arbuscular mycorrhizal fungi (AMF) that form symbiosis with plant roots. The growth advantages they confer to their hosts are of great

  7. Arbuscular mycorrhizal fungi species associated with rhizosphere of ...

    African Journals Online (AJOL)

    A survey of arbuscular mycorrhizal fungi (AMF) diversity and date palm (Phoenix dactylifera L.) tree root colonization in arid areas was undertaken in ten palm groves located along the Ziz valley (Tafilalet, south-west Morocco). The frequency and the mean intensity of root colonization reached 72 and 43% respectively and ...

  8. Cover cropping impacts on arbuscular mycorrhizal fungi and soil aggregation

    Science.gov (United States)

    Cover crops are a management tool which can extend the period of time that a living plant is growing and conducting photosynthesis. This is critical for soil health, because most of the soil organisms, particularly the arbuscular mycorrhizal fungi, are limited by carbon. Research, on-farm, and demon...

  9. Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi. PMID:24608923

  10. Arbuscular mycorrhizal fungi improve the growth of olive trees and ...

    African Journals Online (AJOL)

    Two native Algerian mycorrhizal fungi (Glomus mosseae and Glomus intraradices) were tested for their effect on the growth of micropropagated olive tree (Olea europaea L.). The effect of inoculation of plantlets with G. mosseae was also compared with chemical fertilization using osmocote. Specific molecular techniques ...

  11. Influence of mycorrhizal inoculation on alley cropped farms in a ...

    African Journals Online (AJOL)

    The use of Arbuscular mycorrhizal (AM) fungi under farmers' conditions was tried at Ajibode Village, a humid tropical environment on maize/cassava intercropped farms in an alley cropping system. Four species of AM fungi (Glomus clarum, Glomus mosseae Glomus etunicatum and Acaulospora dilatata) were used in ...

  12. Mycorrhizal association in soybean and weeds in competition

    Directory of Open Access Journals (Sweden)

    Cíntia Maria Teixeira Fialho

    2016-04-01

    Full Text Available The purpose of this study was to evaluate the effects of mycorrhizal association on the interference of Bidens pilosa, Urochloa decumbens and Eleusine indica on soybean culture in two conditions: a plants competing without contact with roots of another species; b with contact between roots. At 60 days after planting, growth, nutrient accumulation and mycorrhizal colonization of soybean and weeds were evaluated. The contact between roots of soybean plant and weed species increased the negative interference effects for both species, with less growth and nutrient accumulation. With the individualization of roots, higher competition occurred for soil resources up to 60 days of coexistence between species. In competition with soybean, Bidens pilosa and Urochloa decumbens stood out in accumulation of most nutrients without differing from when cultivated in monocultivation. The increase of the soybean mycorrhizal colonization was 53, 40 and 33% when in competition with Urochloa decumbens, Eleusine indica and Bidens pilosa species, respectively. A positive interaction occurred for soybean mycorrhizal colonization and competing plants irrespective of weed species or root contact.

  13. The distribution of vesicular-arbuscular mycorrhizal fungi in India.

    Science.gov (United States)

    Rani, R; Mukerji, K G

    1990-01-01

    Vesicular-arbuscular mycorrhizal fungi are widely distributed throughout the area studied including different altitudes ranging from sea level to 2500 ft above sea level. VAM fungi were recorded from 88% of the sites examined with Glomus fasciculatum and Glomus macrocarpum being the most commonly recorded. Mean species diversity was found to be maximum in the areas thickly vegetated and undisturbed.

  14. Arbuscular mycorrhizal fungi improve the growth of olive trees and ...

    African Journals Online (AJOL)

    STORAGESEVER

    quality olive plants. To study the potential of the mycorrhizal fungi Glomus mosseae and Glomus intraradices to stimulate the growth of micropropagated olive plants and to compare their ... phosphate, 15% potassium oxide, 2% magnesium oxide, 4.5% sulphur, 0.02% ..... Our results indicate the feasibility of G. mosseae and.

  15. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.

    Science.gov (United States)

    Nouri, Eva; Breuillin-Sessoms, Florence; Feller, Urs; Reinhardt, Didier

    2014-01-01

    Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.

  16. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Administrator

    2011-05-05

    May 5, 2011 ... Key words: Arbuscular mycorrhizal fungi, agroforestry tree species. INTRODUCTION ... plant growth hormones, protection of host roots from pathogens .... interactions between fungal strains and soil than between the fungus ... phosphorus and drought stress on the growth of Acacic nilotica and. Leucaena ...

  17. Mycorrhizal symbioses of Salix repens : diversity and functional significance

    NARCIS (Netherlands)

    Heijden, van der E.W.

    2000-01-01

    This thesis investigates the significance of different mycorrhizal fungi, belonging to different functional types (arbuscular mycorrhiza-AM and ectomycorrhiza-EcM), in Salix repens . A comparison between above-ground and below-ground observations on ectomycorrhizal

  18. Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition

    Directory of Open Access Journals (Sweden)

    N. Aliasgharzad

    2009-05-01

    Full Text Available It has widely been accepted that mycorrhizal symbiosis improves micronutrients uptake by most of the plants. In this study, sorghum (Sorghum bicolor L. plants were grown in sterile perlite and were inoculated with either Glomus etunicatum (GE or G.intraradices (GI, while the control set was left un-inoculated. Rorison's nutrient solution with three levels of 0, half and full strength (C0, C0.5 and C1, respectively of Fe, Cu, Zn and Mn was applied to the pots during 85 days of growth period. Chrome azurol-S assay was used for determination of siderophores in root leachates on 45, 65 and 85 days after sowing (DAS. Siderophore production per unit volume of root was higher in mycorrhizal than non-mycorrhizal plants. Both GE and GI were efficient fungi in this respect. Siderophore production was significantly induced at C0 level of the micronutrients. Amount of siderophores produced on 45 and 85 DAS was more than 65 DAS. Mycorrhizal root colonization by GE or GI was not significantly affected by micronutrient levels.

  19. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.

    2016-01-01

    The arbuscular mycorrhizal (AM) symbiosis is functionally important for the nutrition and growth of most terrestrial plants. Nearly all phytohormones are employed by plants to regulate the symbiosis with AM fungi, but the regulatory role of cytokinin (CK) is not well understood. Here, we used

  20. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis

    NARCIS (Netherlands)

    Kiers, E.T.; Duhamel, M.; Beesetty, Y.; Mensah, J.A.; Franken, O.; Verbruggen, E.; Fellbaum, C.R.; Kowalchuk, G.A.; Hart, M.M.; Bago, A.; Palmer, T.M.; West, S.A.; Vandenkoornhuyse, P.; Jansa, J.; Bücking, H.

    2011-01-01

    Plants and their arbuscular mycorrhizal fungal symbionts interact in complex underground networks involving multiple partners. This increases the potential for exploitation and defection by individuals, raising the question of how partners maintain a fair, two-way transfer of resources. We

  1. Effect of some plant growth promoting rhizobacteria and nitrogen fertilizer on morphological characteristics of german chamomile (Matricaria chamomilla L.

    Directory of Open Access Journals (Sweden)

    S. Dastborhan

    2016-04-01

    Full Text Available .In order to investigate the effects of plant growth promoting rhizobacteria and nitrogen fertilizer on morphological traits of german chamomile (Matricaria chamomilla L., a field experiment was carried out as factorial based on randomized complete block design with three replications in Research Farm of the Faculty of Agriculture, University of Tabriz, Iran, during 2007-2008. Factors were inoculation with plant growth promoting rhizobacteria (B0: no-inoculation, B1: inoculation with Azotobacter chroocuccum, B2: inoculation with Azospirillum lipoferum and B3: inoculation with a mixture of two bacteria and nitrogen fertilizer (N0:0, N1:50, N2:100 and N3:150 kgN.ha-1. Results showed that inoculation with bacteria significantly improved plant height, stem diameter, number of lateral branches, number of flowers per plant, dry weight of flowers, stems, leaves and total dry weight per plant. These traits were significantly similar for inoculation with Azotobacter, inoculation with Azospirillum and inoculation with a mixture of two bacteria. Effect of nitrogen fertilizer on all traits (except number of lateral branches was positive, but there were no significant differences among 50, 100 and 150 kg.ha-1 nitrogen. The highest and the lowest number and weight of flowers per plant were recorded for inoculation + 50 kg.ha-1 nitrogen application and no-inoculation + no-fertilizer, respectively. In general, application of biofertilizers had positive and significant effects on morphological traits of german chamomile. In addition, with adding 50 kg N.ha-1 the performance of bacteria increased and the highest flower yield were produced.

  2. Differences in Arbuscular Mycorrhizal Fungi among Three Coffee Cultivars in Puerto Rico

    OpenAIRE

    Lebrón, Ligia; Lodge, D. Jean; Bayman, Paul

    2012-01-01

    Mycorrhizal symbiosis is important for growth of coffee (Coffea arabica), but differences among coffee cultivars in response to mycorrhizal interactions have not been studied. We compared arbuscular mycorrhizal (AM) extraradical hyphae in the soil and diversity of AM fungi among three coffee cultivars, Caturra, Pacas, and Borbón, at three farms in Puerto Rico. Caturra had significantly lower total extraradical AM hyphal length than Pacas and Borbón at all locations. P content did not differ a...

  3. On the perils of mycorrhizal status lists: the case of Buddleja davidii.

    Science.gov (United States)

    Dickie, I A; Thomas, M M; Bellingham, P J

    2007-11-01

    One observation in a mycorrhizal check-list that Buddleja davidii is nonmycorrhizal has been perpetuated in subsequent citations and used in a number of analyses of mycorrhizal ecology and evolution. Direct observation of B. davidii from New Zealand and the UK shows extensive arbuscular mycorrhizal fungal structures inside B. davidii roots. The suggestion that B. davidii is nonmycorrhizal is therefore not supported. The use of mycorrhizal checklists for analysis of plant traits and evolution needs to be undertaken with care to ensure the validity of underlying data.

  4. Mycorrhizal symbiosis increases growth, reproduction and recruitment of Abutilon theophrasti Medic. in the field.

    Science.gov (United States)

    Stanley, Margot R; Koide, Roger T; Shumway, Durland L

    1993-05-01

    We examined in the field the effect of the vesicular-arbuscular (VA) mycorhizal symbiosis on the reproductive success of Abutilon theophrasti Medic., an early successional annual member of the Malvaceae. Mycorrhizal infection greatly enhanced vegetative growth, and flower, fruit and seed production, resulting in significantly greater recruitment the following year. In addition, the seeds produced by mycorrhizal plants were significantly larger and contained significantly more phosphorus than seeds from non-mycorrhizal plants, an effect which may improve offspring vigor. Infection by mycorrhizal fungi may thus contribute to the overall fitness of a host plant and strongly influence long-term plant population dynamics.

  5. Influence of arbuscular mycorrhizal fungus Glomus intraradices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dubchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intraradices in 134 Cs isotope by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phyto remediation of radioactively contaminated areas is analyzed. It is found that colonization pf plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  6. Influence of arbuscular mycorrhizal fungus Glomus intra-radices on accumulation of radiocaesium by plant species

    International Nuclear Information System (INIS)

    Dudchak, S.V.

    2012-01-01

    The role of arbuscular mycorrhizal fungus Glomus intra-radices in 134 Cs isotope uptake by different plant species is studied. The impact of radiocaesium on mycorrhizal development and functioning of plant photosynthetic apparatus is considered. The possibility of mycorrhizal symbiosis application in phytoremediation of radioactively contaminated areas is analyzed.It is found that colonization of plants with arbuscular mycorrhizal fungus resulted in significant decrease of radiocaesium concentration in their aboveground parts, while it did not have considerable impact on the radionuclide uptake by plant root system

  7. Leaf elemental analysis in mycorrhizal post oak seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Boling, B.C. [Department of Biology, University of North Texas, P.O. Box 305220, Denton, TX 76203-5220 (United States); Naab, F.U. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States)]. E-mail: fun001@unt.edu; Smith, D. [Department of Biology, University of North Texas, P.O. Box 305220, Denton, TX 76203-5220 (United States); Duggan, J.L. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States); McDaniel, F.D. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, P.O. Box 311427, Denton, TX 76203-1427 (United States)

    2006-09-15

    Growth and element assimilation was investigated in the leaves of post oak seedlings exposed to four different treatment combinations of fertilization and ectomycorrhizal inoculation. Element concentration was analyzed via particle-induced X-ray emission spectrometry (PIXE). PIXE detected 10 of the 13 essential macro and micronutrients: P, S, Mg, Ca, K, Cu, Zn, Mn, Fe and Cl. Mean growth and dry weight was significantly different across the treatment groups as well as the mean concentration of Mg, Al, S, K, Ca, Fe, Cu and Zn. The data suggest that fertilization rather than mycorrhizal inoculation had a stronger influence on nutrient uptake. This study is the first to analyze element concentration in post oak and to investigate the potential benefits of mycorrhizal symbiosis in post oak seedlings in terms of nutrient uptake.

  8. The Role of Mycorrhizal Fungi in Ecosystem Energetics.

    Science.gov (United States)

    1982-03-01

    do not pene- trate the stele . They are the main organ of exchange between the plant and the mycorrhizal fungus. Intercellular hyphae are in direct...processes. Energy flow through the grazing and detritus pathways involves bio - chemical transformation of photosynthate to cellular biomass within...seedlings. 3. Measurement of Annual Production of Aboveground Plant Production and Partitioning Between Stems, Needles, and Branches. Volumes of bio - mass

  9. Arbuscular Mycorrhizal Symbiosis Alleviates Diesel Toxicity on Melilotus albus

    International Nuclear Information System (INIS)

    Hernandez-Ortega, H. A.; Alarcon, A.; Ferrera-Cerrato, R.; Zavaleta-Mancera, H. A.

    2009-01-01

    Petroleum hydrocarbons (PH) affect plant growth and development by limiting water absorption and nutrient availability. Arbuscular mycorrhizal fungi (AMF) have been demonstrated to increase plant tolerance of grass species to PH, but the performance of AMF on legume species during phytorremediation of PH-contaminated soils has been scarcely understood. Thus, this research evaluated the effects of AMF on tolerance and growth of Melilotus albus in a diesel-contaminated soil. (Author)

  10. Arbuscular Mycorrhizal Symbiosis Alleviates Diesel Toxicity on Melilotus albus

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Ortega, H. A.; Alarcon, A.; Ferrera-Cerrato, R.; Zavaleta-Mancera, H. A.

    2009-07-01

    Petroleum hydrocarbons (PH) affect plant growth and development by limiting water absorption and nutrient availability. Arbuscular mycorrhizal fungi (AMF) have been demonstrated to increase plant tolerance of grass species to PH, but the performance of AMF on legume species during phytorremediation of PH-contaminated soils has been scarcely understood. Thus, this research evaluated the effects of AMF on tolerance and growth of Melilotus albus in a diesel-contaminated soil. (Author)

  11. Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11

    NARCIS (Netherlands)

    Shahid, Muhammad; Hameed, Sohail; Imran, Asma; Ali, Saira; van Elsas, Jan Dirk

    An Enterobacter sp. Fs-11 was isolated from sunflower rhizosphere, identified on the basis of 16S rRNA gene sequence analysis (GeneBank accession no. GQ179978) and studied for its root colonization and growth promotion ability in sunflower. Morphologically, it was rod shaped Gram-negative, motile

  12. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil

    DEFF Research Database (Denmark)

    Zheng, Bang-Xiao; Hao, Xiuli; Ding, Kai

    2017-01-01

    to Arthrobacter, Bacillus, Brevibacterium and Streptomyces. Long-term P fertilization had no significant effect on the abundance of iPSB communities. Rather than P and potassium (K) additions, long-term nitrogen (N) fertilization decreased the iPSB abundance, which was validated by reduced relative abundance...

  13. Complete genome sequence of Pseudomonas rhizosphaerae IH5T (=DSM 16299T), a phosphate-solubilizing rhizobacterium for bacterial biofertilizer.

    Science.gov (United States)

    Kwak, Yunyoung; Jung, Byung Kwon; Shin, Jae-Ho

    2015-01-10

    Pseudomonas rhizosphaerae IH5(T) (=DSM 16299(T)), isolated from the rhizospheric soil of grass growing in Spain, has been reported as a novel species of the genus Pseudomonas harboring insoluble phosphorus solubilizing activity. To understanding the multifunctional biofertilizer better, we report the complete genome sequence of P. rhizosphaerae IH5(T). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism.

    Science.gov (United States)

    Balestrini, Raffaella; Bonfante, Paola

    2014-01-01

    Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches.

  15. Biodegradation of polycyclic aromatic hydrocarbons by arbuscular mycorrhizal leek plants

    International Nuclear Information System (INIS)

    Liu, A.; Dalpe, Y.

    2005-01-01

    A study was conducted to examine the response of arbuscular mycorrhizal fungi (AMF) on the degradation of polycyclic aromatic hydrocarbon (PAH), nutrient uptake, and leek growth under greenhouse conditions. This experiment included 3 mycorrhizal treatments, 2 microorganism treatments, 2 PAH chemicals, and 4 concentrations of PAHs. Plant growth was greatly reduced by the addition of anthracene or phenanthrene in soil, whereas mycorrhizal inoculation not only increased plant growth, but also enhanced uptake of nitrogen and phosphorus. PAH concentrations in soil was lowered through the inoculation of two different strains of the species G. intraradices and G. versiforme. In 12 weeks of pot cultures, anthracene and phenanthrene concentrations decreased for all 3 PAH levels tested. However, the reduced amount of phenanthrene in soil was greater than that of anthracene. The addition of a soil microorganism extract into pot cultures accelerated the PAH degradation. The inoculation of AMF in a hydrocarbon contaminated soil was shown to enhance PAHs soil decontamination. It was concluded that a soil colonized with AMF can not only improve plant growth but can also stimulate soil microflora abundance and diversity. AMF may therefore directly influence PAH soil decontamination through plant growth enhancement

  16. A phosphate transporter from the mycorrhizal fungus Glomus versiforme.

    Science.gov (United States)

    Harrison, M J; van Buuren, M L

    1995-12-07

    Vesicular-arbuscular (VA) mycorrhizal fungi form symbiotic associations with the roots of most terrestrial plants, including many agriculturally important crop species. The fungi colonize the cortex of the root to obtain carbon from their plant host, while assisting the plant with the uptake of phosphate and other mineral nutrients from the soil. This association is beneficial to the plant, because phosphate is essential for plant growth and development, especially during growth under nutrient-limiting conditions. Molecular genetic studies of these fungi and their interaction with plants have been limited owing to the obligate symbiotic nature of the VA fungi, so the molecular mechanisms underlying fungal-mediated uptake and translocation of phosphate from the soil to the plant remain unknown. Here we begin to investigate this process by identifying a complementary DNA that encodes a transmembrane phosphate transporter (GvPT) from Glomus versiforme, a VA mycorrhizal fungus. The function of the protein encoded by GvPT was confirmed by complementation of a yeast phosphate transport mutant. Expression of GvPT was localized to the external hyphae of G. versiforme during mycorrhizal associations, these being the initial site of phosphate uptake from the soil.

  17. Interplant communication of tomato plants through underground common mycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Zeng, Ren Sen; Xu, Jian Feng; Li, Jun; Shen, Xiang; Yihdego, Woldemariam Gebrehiwot

    2010-10-13

    Plants can defend themselves to pathogen and herbivore attack by responding to chemical signals that are emitted by attacked plants. It is well established that such signals can be transferred through the air. In theory, plants can also communicate with each other through underground common mycorrhizal networks (CMNs) that interconnect roots of multiple plants. However, until now research focused on plant-to-plant carbon nutrient movement and there is no evidence that defense signals can be exchanged through such mycorrhizal hyphal networks. Here, we show that CMNs mediate plant-plant communication between healthy plants and pathogen-infected tomato plants (Lycopersicon esculentum Mill.). After establishment of CMNs with the arbuscular mycorrhizal fungus Glomus mosseae between tomato plants, inoculation of 'donor' plants with the pathogen Alternaria solani led to increases in disease resistance and activities of the putative defensive enzymes, peroxidase, polyphenol oxidase, chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase in healthy neighbouring 'receiver' plants. The uninfected 'receiver' plants also activated six defence-related genes when CMNs connected 'donor' plants challenged with A. solani. This finding indicates that CMNs may function as a plant-plant underground communication conduit whereby disease resistance and induced defence signals can be transferred between the healthy and pathogen-infected neighbouring plants, suggesting that plants can 'eavesdrop' on defence signals from the pathogen-challenged neighbours through CMNs to activate defences before being attacked themselves.

  18. arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    PROF EKWUEME

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross. River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  19. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of ...

    African Journals Online (AJOL)

    Most researchers showed that inoculation of plants with mycorrhizal fungi and using salicylic acid increase tolerance of plants due to salinity. In this study, the effect of mycorrhizal fungi, including Glomus mosseae, Glomus intraradices, and salicylic acid (0.2 mM) on tolerance of green basil (Ocimum basilicum L.) to salinity ...

  20. Mycorrhizal diversity of stevia (Stevia rebaudiana Bertoni) rhizosphere in Tawangmangu, Indonesia

    Science.gov (United States)

    Astuti, D. Y.; Parjanto; Cahyani, V. R.

    2018-03-01

    Mycorrhizal fungi is a group of soil fungi with mutualistic symbiosis between fungi and plant roots. The diversity on mycorrhiza contributes the maintenance of plant biodiversity, ecosystem function, and plant productivity. Climate change may affects the distribution and diversity of mycorrhizal fungi, and thus the study on mycorrhizal diversity is important to develop the information about mycorrhizal function and utilization. The present study investigated mycorrhizal diversity in the rhizosphere of stevia at four locations in different altitudes and soil types. The samples taken from Tlogodlingo (Andisols 1), Kalisoro (Andisols 2), Nglurah (Alfisols 1) and Ledoksari (Alfisols 2) in Tawangmangu, Karanganyar, Central Java, Indonesia. The result showed that Glomus sp. and Acaulospora sp. were the common genus found at all locations, whereas Gigaspora sp. was the only species found in the acidic Alfisol soil. Statistical analysis indicated that altitude, soil pH, and P availability significantly positively correlated with mycorrhizal spore density. The increase of altitude, soil pH and P availability, also increase the mycorrhizal spore density. Mycorrhizal infectivity negatively correlated with C/N ratio.

  1. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2018-04-01

    Full Text Available Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD, catalase (CAT, and ascorbate peroxidase (APX in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  2. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus angustifolia Seedlings.

    Science.gov (United States)

    Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang

    2018-01-01

    Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.

  3. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  4. Increasing diveristy of arbuscular mycorrhizal fungi in agroecosystems using specific cover crops

    Science.gov (United States)

    Fall-planted cover crops provide a plant host for obligate symbiotic arbuscular mycorrhizal fungi (AMF) during otherwise fallow periods and thus may increase AMF numbers in agroecosystems. Increased AMF numbers should increase mycorrhizal colonization of the subsequent cash crops, which has been li...

  5. Meta-analysis of crop and weed growth responses to arbuscular-mycorrhizal fungi

    Science.gov (United States)

    Arbuscular mycorrhizal fungi (AMF) have long been regarded as beneficial soil microorganisms, but have been reported to have detrimental effects on several non-mycorrhizal agricultural weed species. If AMF have negative effects on weeds but neutral or positive effects on crops under certain cropping...

  6. Arbuscular mycorrhizal fungi status of some crops in the cross river ...

    African Journals Online (AJOL)

    The incidence of arbuscular mycorrhizal fungi (AMF) colonization and rhizospheric spore prevalence of ten crops was studied in relation to their foliar concentration of nitrogen, phosphorus and potassium in the Calabar area of the Cross River Basin of Nigeria in order to determine their mycorrhizal status. All crops studied ...

  7. Resilience of arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs

    Science.gov (United States)

    Rebecca E. Hewitt; Elizabeth Bent; Teresa N. Hollingsworth; F. Stuart Chapin; D. Lee Taylor

    2013-01-01

    Climate-induced changes in the tundra fire regime are expected to alter shrub abundance and distribution across the Arctic. However, little is known about how fire may indirectly impact shrub performance by altering mycorrhizal symbionts. We used molecular tools, including ARISA and ITS sequencing, to characterize the mycorrhizal communities on resprouting ...

  8. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica

    OpenAIRE

    Jacquemyn, Hans; Waud, Michael; Lievens, Bart; Brys, Rein

    2016-01-01

    Background and Aims In orchid species that have populations occurring in strongly contrasting habitats, mycorrhizal divergence and other habitat-specific adaptations may lead to the formation of reproductively isolated taxa and ultimately to species formation. However, little is known about the mycorrhizal communities associated with recently diverged sister taxa that occupy different habitats.

  9. Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize

    NARCIS (Netherlands)

    Wang, Xinxin; Hoffland, Ellis; Feng, Gu; Kuijper, Thomas

    2017-01-01

    Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We

  10. 65Zn transfer in maize – Mycorrhizal system: mechanism to alleviate Zn deficiency

    International Nuclear Information System (INIS)

    Subramanian, K.S.; Tenshia, J.S. Virgine; Meena, S.

    2017-01-01

    Mycorrhizal symbiosis improves the host plant Zn nutrition as a consequence of hyphal transport, enhanced availability in soil as measured using isotopic dilution techniques besides preferential mobilization and transport of Zn. Overall, the data suggest that mycorrhizal symbiosis can improve the host plant nutrition and quality of grains through the mobilization and transport of slowly diffusing ions such as Zn

  11. Mycorrhizal symbionts of Pisonia grandis and P. sechellarum in Seychelles: identification of mycorrhizal fungi and description of new Tomentella species.

    Science.gov (United States)

    Suvi, Triin; Tedersoo, Leho; Abarenkov, Kessy; Beaver, Katy; Gerlach, Justin; Kõljalg, Urmas

    2010-01-01

    Nyctaginaceae includes species that are predominantly non-mycorrhizal or form arbuscular or ectomycorrhiza. Root-associated fungi were studied from P. grandis and P. sechellarum roots collected respectively on the islands of Cousin and Silhouette in Seychelles. In addition fungal sporocarps were collected from the sampling area. Fungal symbionts were identified from the roots by anatomotyping and rDNA sequencing; sporocarps collected were examined microscopically and sequenced. Three distantly related ectomycorrhizal fungal species belonging to Thelephoraceae were identified from the roots of P. grandis. Sporocarps also were found for two symbionts and described as new Tomentella species. In addition Tomentella species collected from other Seychelles islands were studied and described as new species if there was no close resemblance to previously established species. P. sechellarum was determined to be an arbuscular mycorrhizal plant; three arbuscular mycorrhizal fungal species were detected from the roots. P. grandis is probably associated only with species of Thelephoraceae throughout its area. Only five Tomentella species are known to form ectomycorrhiza with P. grandis and they never have been found to be associated with another host, suggesting adaptation of these fungi to extreme environmental conditions in host's habitat.

  12. Responses of mycorrhizal fungi and other rootassociated fungi to climate change

    DEFF Research Database (Denmark)

    Merrild, Marie Porret

    Climate change is expected to affect many terrestrial ecosystem processes. Mycorrhizal fungi are important to soil carbon (C) and nutrient cycling thus changes in abundance of mycorrhizal fungi could alter ecosystem functioning. The aim of the present thesis was therefore to investigate responses...... of mycorrhizal fungi to climate change in a seasonal and long-term perspective. Effects of elevated CO2 (510 ppm), night-time warming and extended summer drought were investigated in the long-term field experiment CLIMAITE located in a Danish semi-natural heathland. Mycorrhizal colonization was investigated...... levels. Colonization by arbuscular mycorrhizal (AM) fungi increased under elevated CO2 and warming in spring while ericoid mycorrhiza (ErM) colonisation decreased in response to drought and warming. Increased AM colonization correlated with higher phosphorus and nitrogen root pools. Dark septate...

  13. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants

    International Nuclear Information System (INIS)

    Dupre de Boulois, H.; Joner, E.J.; Leyval, C.; Jakobsen, I.; Chen, B.D.; Roos, P.; Thiry, Y.; Rufyikiri, G.; Delvaux, B.; Declerck, S.

    2008-01-01

    This review summarizes current knowledge on the contribution of mycorrhizal fungi to radiocesium immobilization and plant accumulation. These root symbionts develop extended hyphae in soils and readily contribute to the soil-to-plant transfer of some nutrients. Available data show that ecto-mycorrhizal (ECM) fungi can accumulate high concentration of radiocesium in their extraradical phase while radiocesium uptake and accumulation by arbuscular mycorrhizal (AM) fungi is limited. Yet, both ECM and AM fungi can transport radiocesium to their host plants, but this transport is low. In addition, mycorrhizal fungi could thus either store radiocesium in their intraradical phase or limit its root-to-shoot translocation. The review discusses the impact of soil characteristics, and fungal and plant transporters on radiocesium uptake and accumulation in plants, as well as the potential role of mycorrhizal fungi in phytoremediation strategies

  14. [Discussion on appraisal methods and key technologies of arbuscular mycorrhizal fungi and medicinal plant symbiosis system].

    Science.gov (United States)

    Chen, Meilan; Guo, Lanping; Yang, Guang; Chen, Min; Yang, Li; Huang, Luqi

    2011-11-01

    Applications of arbuscular mycorrhizal fungi in research of medicinal plant cultivation are increased in recent years. Medicinal plants habitat is complicated and many inclusions are in root, however crop habitat is simple and few inclusions in root. So appraisal methods and key technologies about the symbiotic system of crop and arbuscular mycorrhizal fungi can't completely suitable for the symbiotic system of medicinal plants and arbuscular mycorrhizal fungi. This article discuss the appraisal methods and key technologies about the symbiotic system of medicinal plant and arbuscular mycorrhizal fungi from the isolation and identification of arbuscular mycorrhiza, and the appraisal of colonization intensity. This article provides guidance for application research of arbuscular mycorrhizal fungi in cultivation of medicinal plants.

  15. Role and influence of mycorrhizal fungi on radiocesium accumulation by plants

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, H. [Universite catholique de Louvain, Unite de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Joner, E.J. [Bioforsk Soil and Environment, FredrikA Dahls vei 20, N-1432 As (Norway); Leyval, C. [LIMOS, Nancy University, CNRS, Faculte des Sciences, BP239, 54506 Vandoeuvre-les-Nancy, Cedex (France); Jakobsen, I. [Biosystems Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Chen, B.D. [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Roos, P. [Radiation Research Department, Riso National Laboratory, Technical University of Denmark, DK-4000 Roskilde (Denmark); Thiry, Y.; Rufyikiri, G. [Biosphere Impact Assessment, SCK.CEN, Foundation of Public Utility, 200 Boeretang, 2400 Mol (Belgium); Delvaux, B. [Universite catholique de Louvain, Unite des Sciences du Sol, Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, S. [Universite catholique de Louvain, Unite de Microbiologie, Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)], E-mail: declerck@mbla.ucl.ac.be

    2008-05-15

    This review summarizes current knowledge on the contribution of mycorrhizal fungi to radiocesium immobilization and plant accumulation. These root symbionts develop extended hyphae in soils and readily contribute to the soil-to-plant transfer of some nutrients. Available data show that ecto-mycorrhizal (ECM) fungi can accumulate high concentration of radiocesium in their extraradical phase while radiocesium uptake and accumulation by arbuscular mycorrhizal (AM) fungi is limited. Yet, both ECM and AM fungi can transport radiocesium to their host plants, but this transport is low. In addition, mycorrhizal fungi could thus either store radiocesium in their intraradical phase or limit its root-to-shoot translocation. The review discusses the impact of soil characteristics, and fungal and plant transporters on radiocesium uptake and accumulation in plants, as well as the potential role of mycorrhizal fungi in phytoremediation strategies.

  16. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Moreira, Helena; Marques, Ana P G C; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2014-01-01

    Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg(-1) was evaluated. Bacterial inoculation increased plant biomass up to 63% and led to a decrease of up to 81% in Cd shoot levels (4-88 mg Cd kg(-1)) and to an increase of up to 186% in accumulation in the roots (52-134 mg Cd kg(-1)). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.

  17. Screen, Identification and Analysis on the Growth-Promoting Ability for the Rice Growth-Promoting Rhizobacteria

    Directory of Open Access Journals (Sweden)

    LIU Ze-ping

    2018-02-01

    Full Text Available Plant growth-promoting rhizobacteria(PGPRcan secrete the growth hormone and promote soil nutrient cycling, thus, is an important germplasm resource of bio -fertilizer. In this study, the PGPR was isolated from the rice rhizosphere. According to 16S rDNA sequences, 10 strains were identifed, including 4 organic phosphorus bacteria (Bacillus pumilus LZP02, Bacillus aryabhattai LZP08, Staphylococcus epidermidis LZP10, Bacillus ginsengisoli LZP05, 3 inorganic phosphorus bacteria(Bacillus megaterium LZP03, Bacillus oryzaecorticis LZP04, Bacillus ginsengisoli LZP07and 3 potassium bacteria(Bacillus aryabhattai LZP01, Bacillus subtilis LZP06, Bacillus licheniformis LZP09. The results from nutrient conversion analysis showed that Bacillus aryabhattai LZP01 and Bacillus subtilis LZP06 performed better on the potassium releasing ability. Bacillus pumilus LZP02 and Bacillus huizhouensis LZP05 performed better on the function of organic phosphorus. Bacillus megaterium LZP03 and Bacillus ginsengisoli LZP07 performed better on the function of inorganic phosphorus. Further, the hormone secretion capacity was measured for these 6 strains. The results showed that all 6 strains could produce auxin and gibberellin, and had the ability to synthesize iron carrier. Moreover, the results showed that Bacillus megaterium LZP03, Bacillus huizhouensis LZP05 and Bacillus subtilis LZP06 had stronger ability to promote the nutrient conversion and hormone secretion. Systematically, we believe that these three strains have great potential application on microbial fertilizer.

  18. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Hsu, Chiun-Kang; Micallef, Shirley A

    2017-10-16

    Reducing Salmonella enterica association with plants during crop production could reduce risks of fresh produce-borne salmonellosis. Plant growth-promoting rhizobacteria (PGPR) colonizing plant roots are capable of promoting plant growth and boosting resistance to disease, but the effects of PGPR on human pathogen-plant associations are not known. Two root-colonizing Pseudomonas strains S2 and S4 were investigated in spinach, lettuce and tomato for their plant growth-promoting properties and their influence on leaf populations of S. enterica serovar Newport. Plant roots were inoculated with Pseudomonas in the seedling stage. At four (tomato) and six (spinach and lettuce) weeks post-germination, plant growth promotion was assessed by shoot dry weight (SDW) and leaf chlorophyll content measurements. Leaf populations of S. Newport were measured after 24h of leaf inoculation with this pathogen by direct plate counts on Tryptic Soy Agar. Root inoculation of spinach cv. 'Tyee', with Pseudomonas strain S2 or S4 resulted in a 69% and 63% increase in SDW compared to non-inoculated controls (pgrowth by over 40% compared to controls (pgrowth promotion was detected in tomato cv. 'BHN602', but S2-inoculated plants had elevated leaf chlorophyll content (13%, pgrowth, but also reduce the fitness of epiphytic S. enterica in the phyllosphere. Plant-mediated effects induced by PGPR may be an effective strategy to minimize contamination of crops with S. enterica during cultivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Protein quantity and quality of safflower seed improved by NP fertilizer and rhizobacteria (Azospirillum and Azotobacter spp.

    Directory of Open Access Journals (Sweden)

    Asia eNosheen

    2016-02-01

    Full Text Available Protein is an essential part of human diet. The aim of present study was to improve the protein quality of safflower seed by the application of plant growth promoting rhizobacteria (PGPR in combination with conventional nitrogen and phosphate (NP fertilizers. The seeds of two safflower cultivar Thori and Saif-32, were inoculated with Azospirillum and Azotobacter and grown under field conditions. Protein content and quality was assessed by crude protein, amino acid analysis and SDS-PAGE. Seed crude protein and amino acids (metheonine, phenylanine and glutamic acid showed significant improvement (55%–1250% by Azotobacter supplemented with quarter dose of fertilizers (BTQ at P≤0.05. Additional protein bands were induced in Thori and Saif-32 by BTQ and BTH (Azotobacter supplemented with half dose of fertilizers respectively. The Azospirillum in combination with half dose of fertilizers (SPH and BTQ enhanced the indole acetic acid (90% and gibberellic acid (23%–27% contents in safflower leaf. Taken together, these data suggest that Azospirillum and Azotobacter along with significantly reduced (up to 75% use of NP fertilizers improved the quality and quantity of safflower seed protein.

  20. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    Science.gov (United States)

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Effect of four growth-promoting rhizobacteria on crown blight caused by Phytophthora capsici in sweet pepper (Capsicum annuum

    Directory of Open Access Journals (Sweden)

    Carlos Ramírez

    2015-11-01

    Full Text Available Crown blight, caused by Phytophthora capsici, is the most important disease of pepper (Capsicum annuum in the world and causes great economic losses in Costa Rica. Alternatives to chemical control against this disease are crucial to prevent damage to human health and the environment. The antagonism of Plant-Growth-Promoting Rhizobacteria (PGPR on P. capsici, and its ability to reduce wilt in pepper plants were evaluated. PGPR strains previously isolated from sugarcane and rice were identified, using 16S RNA gene sequence, as Pseudomonas fluorescens PC4, Stenotrophomonas rhizophila PC9, Pseudomonas fragi PC11 and Azospirillum lipoferum PCJ2. The inhibition of P. capcisi growth was evaluated in vitro, in the presence of the PGPR. The effect of the four bacterial strains on pepper plants inoculated with P. capsici (100 zoospores.plant-1 was evaluated in the greenhouse. P. fluorescens PC4, S. rhizophila PC9 and A. lipoferum PCJ2, inhibited in vitro growth of the oomycete by 54%, 30% and 50 % respectively, while S. rhizophila PC9 increased by 14% shoot fresh weight of pepper plants at the greenhouse. Furthermore, PCJ2 and PC9 strains reduced the shoot and root severity of the disease, and PCJ2-inoculated plants showed no symptoms at all, indicating that PC9 and PCJ2 are promising rizobacteria for the control of crown blight in pepper.

  2. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere.

    Science.gov (United States)

    Kalam, Sadaf; Das, Subha Narayan; Basu, Anirban; Podile, Appa Rao

    2017-05-01

    Rhizosphere microbial community has diverse metabolic capabilities and plays a crucial role in maintaining plant health. Oligotrophic plant growth promoting rhizobacteria (PGPR), along with difficult-to-culture microbial fractions, might be involved synergistically in microbe-microbe and plant-microbe interactions in the rhizosphere. Among the difficult-to-culture microbial fractions, Acidobacteria constitutes the most dominant phylum thriving in rhizospheric soils. We selected effective PGPR for tomato and black gram and studied their effect on population densities of acidobacterial members. Three facultatively oligotrophic PGPR were identified through 16S rRNA gene sequencing as Sphingobacterium sp. (P3), Variovorax sp. (P4), and Roseomonas sp. (A2); the latter being a new report of PGPR. In presence of selected PGPR strains, the changes in population densities of Acidobacteria were monitored in metagenomic DNA extracted from bulk and rhizospheric soils of tomato and black gram using real time qPCR. A gradual increase in equivalent cell numbers of Acidobacteria members was observed over time along with a simultaneous increase in plant growth promotion by test PGPR. We report characterization of three effective PGPR strains and their effects on indigenous, underexplored difficult-to-culture phylum-Acidobacteria. We suggest that putative interactions between these two bacterial groups thriving in rhizospheric soils could be beneficial for plant growth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    Science.gov (United States)

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.

    Science.gov (United States)

    Becklin, Katie M; Mullinix, George W R; Ward, Joy K

    2016-10-01

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO 2 ] gradient (180-1,000 µL L -1 ). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO 2 ] and arbuscular mycorrhizal fungi. To evaluate [CO 2 ] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (M Bio ) and nonmycorrhizal (NM Bio ) plants (R Bio = [M Bio - NM Bio ]/NM Bio ). We then assessed linkages between R Bio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, R Bio increased with rising [CO 2 ], shifting from negative to positive values at 700 µL L -1 [CO 2 ] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in R Bio in this species. For T. ceratophorum, R Bio increased from 180 to 390 µL L -1 and further increases in [CO 2 ] caused R Bio to shift from positive to negative values. [CO 2 ] and fungal effects on plant growth and carbon sink strength were correlated with shifts in R Bio in this species. Overall, we show that rising [CO 2 ] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO 2 ], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO 2 ]. The magnitude and mechanisms driving mycorrhizal-CO 2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Reaction of mycorrhizal and non-mycorrhizal Scots pine fine roots along a deposition gradient of air pollutants in eastern Germany

    International Nuclear Information System (INIS)

    Muenzenberger, B.; Schminke, B.; Strubelt, F.; Huettl, R.F.

    1995-01-01

    Based on an ecosystematic approach within the comprehensive SANA (regeneration of the atmosphere above the new federal states) project the influence of industrial air pollutants (SO 2 , NO x ) (alkaline fly ashes) on the vitality of mycorrhizal, mycorrhizal frequency, and on parameters of root growth such as root biomass and necromass and distribution of different root classes in the soil horizons was investigated. The studies were conducted in three comparable Scots pine ecosystems in eastern Germany which were exposed to different deposition loads of air pollutants during the time of the former German Democratic Republic. Site specific differences were obtained for all parameters investigated. The reference plot Neuglobsow (background deposition) revealed the highest number of vital mycorrhizal, highest mycorrhizal frequency, and largest biomass of finest roots in the humus layer. At the impact-site Roesa and Taura (heavy and moderate deposition) located near Halle/Bitterfeld and Leipzig, the number of vital mycorrhizae was reduced and the life-span of mycorrhizae of reduced vitality was elongated. Finest root biomass and necromass of the humus layer were also lower at these plots as compared to Neuglobsow. At Neuglobsow a higher turnover of mycorrhizae and finest roots of the humus layer is assumed. The reduced growth of mycorrhizal and non-mycorrhizal finest roots at the two pollution impacted sites Roesa and Taura is seen as an adaptation mechanism of the root system to high nutrient inputs. 14 refs., 4 figs

  6. Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard.

    Science.gov (United States)

    Baumgartner, Kendra; Smith, Richard F; Bettiga, Larry

    2005-03-01

    Arbuscular mycorrhizal (AM) fungi naturally colonize grapevines in California vineyards. Weed control and cover cropping may affect AM fungi directly, through destruction of extraradical hyphae by soil disruption, or indirectly, through effects on populations of mycorrhizal weeds and cover crops. We examined the effects of weed control (cultivation, post-emergence herbicides, pre-emergence herbicides) and cover crops (Secale cereale cv. Merced rye, x Triticosecale cv.Trios 102) on AM fungi in a Central Coast vineyard. Seasonal changes in grapevine mycorrhizal colonization differed among weed control treatments, but did not correspond with seasonal changes in total weed frequency. Differences in grapevine colonization among weed control treatments may be due to differences in mycorrhizal status and/or AM fungal species composition among dominant weed species. Cover crops had no effect on grapevine mycorrhizal colonization, despite higher spring spore populations in cover cropped middles compared to bare middles. Cover crops were mycorrhizal and shared four AM fungal species (Glomus aggregatum, G. etunicatum, G. mosseae, G. scintillans) in common with grapevines. Lack of contact between grapevine roots and cover crop roots may have prevented grapevines from accessing higher spore populations in the middles.

  7. In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil.

    Science.gov (United States)

    El-Sayed, Wael S; Akhkha, Abdellah; El-Naggar, Moustafa Y; Elbadry, Medhat

    2014-01-01

    The role of plant growth-promoting rhizobacteria (PGPR) in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with 11 wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA) were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA), siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita) to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA) and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the 10 genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant growth in arid soils.

  8. In vitro Antagonistic Activity, Plant Growth Promoting Traits and Phylogenetic Affiliation of Rhizobacteria Associated with Wild Plants Grown in Arid Soil

    Directory of Open Access Journals (Sweden)

    Wael Samir El-Sayed

    2014-12-01

    Full Text Available The role of plant growth-promoting rhizobacteria (PGPR in adaptation of plants in extreme environments is not yet completely understood. For this study native bacteria were isolated from rhizospeheric arid soils and evaluated for both growth-promoting abilities and antagonistic potential against phytopathogenic fungi and nematodes. The phylogentic affiliation of these representative isolates was also characterized. Rhizobacteria associated with eleven wild plant species from the arid soil of Almadinah Almunawarah, Kingdom of Saudi Arabia (KSA were investigated. From a total of 531 isolates, only 66 bacterial isolates were selected based on their ability to inhibit Fusarium oxysporum, and Sclerotinia sclerotiorum. The selected isolates were screened in vitro for activities related to plant nutrition and plant growth regulation as well as for antifungal and nematicidal traits. Isolated bacteria were found to exhibit capabilities in fix atmospheric nitrogen, produce ammonia, indoleacetic acid (IAA, siderophores, solubilize phosphate and zinc, and showed an antagonistic potential against some phytopathogenic fungi and one nematode species (Meloidogyne incognita to various extent. Isolates were ranked by their potential ability to function as PGPR. The 66 isolates were genotyped using amplified rDNA restriction analysis (ARDRA and 16S rRNA gene sequence analysis. The taxonomic composition of the representative genotypes from both rhizosphere and rhizoplane comprised Bacillus, Enterobacter and Pseudomonas. Out of the ten genotypes, three strains designated as PHP03, CCP05, and TAP02 might be regarded as novel strains based on their low similarity percentages and high bootstrap values. The present study clearly identified specific traits in the isolated rhizobacteria, which make them good candidates as PGPR and might contribute to plant adaption to arid environments. Application of such results in agricultural fields may improve and enhance plant

  9. Incidence of root rot diseases of soybean in Multan Pakistan and its management by the use of plant growth promoting rhizobacteria

    International Nuclear Information System (INIS)

    Haq, M.I.; Tahir, M.I.; Mahmood, S.

    2012-01-01

    Eight villages in Multan district were surveyed to record incidence of disease and losses of soybean (Glycine max L.) caused by root rot fungi. The root incidence ranged 10-17% and losses ranged 6.75-15.5%. The evaluation of four PGPR isolates was used in combination with organic amendment for the management of root-rot disease incidence and to reduce the population of root pathogenic fungi and to increase the yield in field. This study demonstrated effective biological control by the PGPR isolates tested, thereby indicating the possibility of application of rhizobacteria for control of soil bor ne diseases of soybean in Pakistan and other countries. (author)

  10. [Physiological responses of mycorrhizal Pinus massoniana seedlings to drought stress and drought resistance evaluation].

    Science.gov (United States)

    Wang, Yi; Ding, Gui-jie

    2013-03-01

    A greenhouse pot experiment was conducted to study the effects of inoculating Pisolithus tinctorius, Cenococcum geophilum, Cantharellus cibarius, and Suillus luteus on the physiological characteristics of Pinus massoniana seedlings under the conditions of drought stress and re-watering, with the drought resistance of the mycorrhizal seedlings evaluated. Under drought stress, the MDA content and membrane' s relative permeability of P. massoniana seedlings increased, but these two indices in the inoculated (mycorrhizal) seedlings were significantly lower than these in the un-inoculated (control) seedlings. After re-watering, the MDA content and membrane's relative permeability of mycorrhizal seedlings had a rapid decrease, as compared with the control. In the first 21 days of drought stress, the production rate of superoxide radical of the seedlings increased, and the SOD, POD and NR activities of mycorrhizal seedlings increased significantly. With the extending of drought stress, the seedlings after re-watering had different recovery ability. Under the re-watering after 14 days drought stress, the SOD, POD and NR activities recovered. The drought resistance of the mycorrhizal seedlings was in the order of Suillus luteus 1 > Suillus luteus 7 > Cantharellus cibarius > Cenococcum geophilum > Pisolithus tinctorius. The SOD and MDA activities had a greater correlation with the mycorrhizal seedlings drought resistance, being able to be used as the indicators to evaluate the drought resistance of mycorrhizal seedlings.

  11. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Directory of Open Access Journals (Sweden)

    Cinta Calvet

    2015-09-01

    Full Text Available Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72 and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5 media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment.

  12. Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation.

    Science.gov (United States)

    Lopes Leal, Patrícia; Varón-López, Maryeimy; Gonçalves de Oliveira Prado, Isabelle; Valentim Dos Santos, Jessé; Fonsêca Sousa Soares, Cláudio Roberto; Siqueira, José Oswaldo; de Souza Moreira, Fatima Maria

    Spore counts, species composition and richness of arbuscular mycorrhizal fungi, and soil glomalin contents were evaluated in a soil contaminated with Zn, Cu, Cd and Pb after rehabilitation by partial replacement of the contaminated soil with non-contaminated soil, and by Eucalyptus camaldulensis planting with and without Brachiaria decumbens sowing. These rehabilitation procedures were compared with soils from contaminated non-rehabilitated area and non-contaminated adjacent soils. Arbuscular mycorrhizal fungi communities attributes were assessed by direct field sampling, trap culture technique, and by glomalin contents estimate. Arbuscular mycorrhizal fungi was markedly favored by rehabilitation, and a total of 15 arbuscular mycorrhizal fungi morphotypes were detected in the studied area. Species from the Glomus and Acaulospora genera were the most common mycorrhizal fungi. Number of spores was increased by as much as 300-fold, and species richness almost doubled in areas rehabilitated by planting Eucalyptus in rows and sowing B. decumbens in inter-rows. Contents of heavy metals in the soil were negatively correlated with both species richness and glomalin contents. Introduction of B. decumbens together with Eucalyptus causes enrichment of arbuscular mycorrhizal fungi species and a more balanced community of arbuscular mycorrhizal fungi spores in contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Nitrogen isotope fractionation during N uptake via arbuscular mycorrhizal and ectomycorrhizal fungi into grey alder.

    Science.gov (United States)

    Schweiger, Peter F

    2016-10-20

    Arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi affect plant nitrogen (N) dynamics. Plant N isotope patterns have been used to characterise the contribution of ECM fungi to plant N uptake. By quantifying and comparing the effects of an AM and an ECM fungus on growth, N uptake and isotopic composition of one host plant grown at different relative N supply levels, the aim of this study was to improve the mechanistic understanding of natural 15 N abundance patterns in mycorrhizal plants and their underlying causes. Grey alders were inoculated with one ECM fungus or one AM fungus or left non-mycorrhizal. Plants were grown under semi-hydroponic conditions and were supplied with three rates of relative N supply ranging from deficient to luxurious. Neither mycorrhizal fungus increased plant growth or N uptake. AM root colonisation had no effect on whole plant δ 15 N and decreased foliar δ 15 N only under N deficiency. The roots of these plants were 15 N-enriched. ECM root colonisation consistently decreased foliar and whole plant δ 15 N. It is concluded, that both mycorrhizal fungi contributed to plant N uptake into the shoot. Nitrogen isotope fractionation during N assimilation and transformations in fungal mycelia is suggested to have resulted in plants receiving 15 N-depleted N via the mycorrhizal uptake pathways. Negative mycorrhizal growth effects are explained by symbiotic resource trade on carbon and N and decreased direct plant N uptake. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  15. [Effect of five fungicides on growth of Glycyrrhiza uralensis and efficiency of mycorrhizal symbiosis].

    Science.gov (United States)

    Li, Peng-ying; Yang, Guang; Zhou, Xiu-teng; Zhou, Liane-yun; Shao, Ai-juan; Chen, Mei-lan

    2015-12-01

    In order to obtain the fungicides with minimal impact on efficiency of mycorrhizal symbiosis, the effect of five fungicides including polyoxins, jinggangmycins, thiophanate methylate, chlorothalonil and carbendazim on the growth of medicinal plant and efficiency of mycorrhizal symbiosis were studied. Pot cultured Glycyrrhiza uralensis was treated with different fungicides with the concentration that commonly used in the field. 60 d after treated with fungicides, infection rate, infection density, biomass indexes, photosyn- thetic index and the content of active component were measured. Experimental results showed that carbendazim had the strongest inhibition on mycorrhizal symbiosis effect. Carbendazim significantly inhibited the mycorrhizal infection rate, significantly suppressed the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. Polyoxins showed the lowest inhibiting affection. Polyoxins had no significant effect on mycorrhizal infection rate, the actual photosynthetic efficiency of G. uralensis and the most indicators of biomass. The other three fungicides also had an inhibitory effect on efficiency of mycorrhizal symbiosis, and the inhibition degrees were all between polyoxins's and carbendazim's. The author considered that fungicide's inhibition degree on mycorrhizal effect might be related with the species of fungicides, so the author suggested that the farmer should try to choose bio-fungicides like polyoxins.

  16. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    Directory of Open Access Journals (Sweden)

    Peter E Larsen

    2016-01-01

    Full Text Available In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree and Laccaria bicolor (mycorrhizal fungi interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.

  17. Some Root Traits of Barley (Hordeum vulgare L. as Affected by Mycorrhizal Symbiosis under Drought Stress

    Directory of Open Access Journals (Sweden)

    R. Bayani

    2016-05-01

    Full Text Available The effect of drought stress and mycorrhizal symbiosis on the colonization, root and leaf phosphorous content, root and leaf phosphatase activity, root volume and area as well as shoot dry weight of a variety of hulless barley were evaluated using a completely randomized experimental design (CRD with 3 replications. Treatments were three levels of drought stress of 30, 60 and 90% field capacity and two levels of mycorrhizal with and without inoculation. According to the results, the highest value of leaf phosphorous (1.54 mg/g was observed at mycorrhizal symbiosis against severe drought treatment. Root phosphatase activity was highest (297.9 OD min -1 FW-1 at severe drought stress with mycorrhizal symbiosis which in comparison with mild stress in the presence of mycorrhiza showed 16.6 fold increasing. The control and non-mycorrhizal symbiosis treatments had highest root dry weight (0.091 g. The lowest root volume (0.016 cm2 observed at mycorrhizal symbiosis × severe drought treatment. Generally, Inoculation of barley seed with mycorrhiza at severe water stress could transport more phosphorous to shoot, especially leaf via inducing of leaf and root phosphatase activity. Also, in addition to supply of nutrient sources especially phosphorous for plant, mycorrhizal symbiosis could play an important role in withstanding water stress in plant via increasing of root dry weight and area.

  18. Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, C.; Garcia-Figueres, F.; Lovato, P.; Camprubi, A.

    2015-07-01

    Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr) P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72) and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5) media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment. (Author)

  19. Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds?

    Science.gov (United States)

    Veiga, Rita S. L.; Jansa, Jan; Frossard, Emmanuel; van der Heijden, Marcel G. A.

    2011-01-01

    Background Arbuscular mycorrhizal fungi (AMF) are known for their beneficial effects on plants. However, there is increasing evidence that some ruderal plants, including several agricultural weeds, respond negatively to AMF colonization. Here, we investigated the effect of AMF on the growth of individual weed species and on weed-crop interactions. Methodology/Principal Findings First, under controlled glasshouse conditions, we screened growth responses of nine weed species and three crops to a widespread AMF, Glomus intraradices. None of the weeds screened showed a significant positive mycorrhizal growth response and four weed species were significantly reduced by the AMF (growth responses between −22 and −35%). In a subsequent experiment, we selected three of the negatively responding weed species – Echinochloa crus-galli, Setaria viridis and Solanum nigrum – and analyzed their responses to a combination of three AMF (Glomus intraradices, Glomus mosseae and Glomus claroideum). Finally, we tested whether the presence of a crop (maize) enhanced the suppressive effect of AMF on weeds. We found that the growth of the three selected weed species was also reduced by a combination of AMF and that the presence of maize amplified the negative effect of AMF on the growth of E. crus-galli. Conclusions/Significance Our results show that AMF can negatively influence the growth of some weed species indicating that AMF have the potential to act as determinants of weed community structure. Furthermore, mycorrhizal weed growth reductions can be amplified in the presence of a crop. Previous studies have shown that AMF provide a number of beneficial ecosystem services. Taken together with our current results, the maintenance and promotion of AMF activity may thereby contribute to sustainable management of agroecosystems. However, in order to further the practical and ecological relevance of our findings, additional experiments should be performed under field conditions. PMID

  20. Arbuscular mycorrhizal fungi make a complex contribution to soil aggregation

    Science.gov (United States)

    McGee, Peter; Daynes, Cathal; Damien, Field

    2013-04-01

    Soil aggregates contain solid and fluid components. Aggregates develop as a consequence of the organic materials, plants and hyphae of arbuscular mycorrhizal (AM) fungi acting on the solid phase. Various correlative studies indicate hyphae of AM fungi enmesh soil particles, but their impact on the pore space is poorly understood. Hyphae may penetrate between particles, remove water from interstitial spaces, and otherwise re-arrange the solid phase. Thus we might predict that AM fungi also change the pore architecture of aggregates. Direct observations of pore architecture of soil, such as by computer-aided tomography (CT), is difficult. The refractive natures of solid and biological material are similar. The plant-available water in various treatments allows us to infer changes in pore architecture. Our experimental studies indicate AM fungi have a complex role in the formation and development of aggregates. Soils formed from compost and coarse subsoil materials were planted with mycorrhizal or non-mycorrhizal seedlings and the resultant soils compared after 6 or 14 months in separate experiments. As well as enmeshing particles, AM fungi were associated with the development of a complex pore space and greater pore volume. Even though AM fungi add organic matter to soil, the modification of pore space is not correlated with organic carbon. In a separate study, we visualised hyphae of AM fungi in a coarse material using CT. In this study, hyphae appeared to grow close to the surfaces of particles with limited ramification across the pore spaces. Hyphae of AM fungi appear to utilise soil moisture for their growth and development of mycelium. The strong correlation between moisture and hyphae has profound implications for soil aggregation, plant utilisation of soil water, and the distribution of water as water availability declines.

  1. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

    2007-08-10

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are

  2. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

    Science.gov (United States)

    Perotto, Silvia; Rodda, Marco; Benetti, Alex; Sillo, Fabiano; Ercole, Enrico; Rodda, Michele; Girlanda, Mariangela; Murat, Claude; Balestrini, Raffaella

    2014-06-01

    Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.

  3. Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan

    2017-01-01

    Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.

  4. Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants

    Energy Technology Data Exchange (ETDEWEB)

    Ning, J.C.; Cumming, J.R.

    2001-07-01

    Broomsedge (Andropogon virginicus L.) is a dominant grass revegetating many abandoned coal-mined lands in West Virginia, USA. Residual soils on such sites are often characterized by low pH, low nutrients, and high aluminium. Experiments were conducted to assess the resistance of broomsedge to limited phosphorus (Pi) availability and to investigate the role that arbuscular mycorrhizal (AM) fungi play in aiding plant growth under low Pi conditions. Pregerminated mycorrhizal and non-mycorrhizal seedlings were grown in a sand-culture system with nutrient solutions containing Pi concentrations ranging from 10 to 100 {mu}M for 8 weeks. Non-mycorrhizal plants exhibited severe inhibition of growth under Pi limitation ({lt}60 {mu}M). Colonization by AM fungi greatly enhanced host plant growth at low Pi concentrations, but did not benefit growth when Pi was readily available (100 {mu}M). In comparison to non-mycorrhizal plants, mycorrhizal plants had higher phosphorus use efficiency at low Pi concentrations and maintained nearly constant tissue nutrient concentrations across the gradient of Pi concentrations investigated. Manganese (Mn) and sodium (Na) accumulated in shoots of nonmycorrhizal plants under Pi limitation. Mycorrhizal plants exhibited lower instantaneous Pi uptake rates and significantly lower C-min values compared to non-mycorrhizal plants. These patterns suggest that the symbiotic association between broomsedge roots and AM fungi effectively maintains nutrient homeostasis through changes in physiological properties, including nutrient uptake, allocation and use. The mycorrhizal association is thus a major adaptation that allows broomsedge to become established on infertile mined lands.

  5. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  6. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  7. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings.

    Science.gov (United States)

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-10-01

    One of the proposed mechanisms through which plant growth-promoting rhizobacteria (PGPR) enhance plant growth is the production of plant growth regulators, especially cytokinin. However, little information is available regarding cytokinin-producing PGPR inoculation on growth and water stress consistence of forest container seedlings under drought condition. This study determined the effects of Bacillus subtilis on hormone concentration, drought resistance, and plant growth under water-stressed conditions. Although no significant difference was observed under well-watered conditions, leaves of inoculated Platycladus orientalis (oriental thuja) seedlings under drought stress had higher relative water content and leaf water potential compared with those of noninoculated ones. Regardless of water supply levels, the root exudates, namely sugars, amino acids and organic acids, significantly increased because of B. subtilis inoculation. Water stress reduced shoot cytokinins by 39.14 %. However, inoculation decreased this deficit to only 10.22 %. The elevated levels of cytokinins in P. orientalis shoot were associated with higher concentration of abscisic acid (ABA). Stomatal conductance was significantly increased by B. subtilis inoculation in well-watered seedlings. However, the promoting effect of cytokinins on stomatal conductance was hampered, possibly by the combined action of elevated cytokinins and ABA. B. subtilis inoculation increased the shoot dry weight of well-watered and drought seedlings by 34.85 and 19.23 %, as well as the root by 15.445 and 13.99 %, respectively. Consequently, the root/shoot ratio significantly decreased, indicative of the greater benefits of PGPR on shoot growth than root. Thus, inoculation of cytokinin-producing PGPR in container seedlings can alleviate the drought stress and interfere with the suppression of shoot growth, showing a real potential to perform as a drought stress inhibitor in arid environments.

  8. Changes of mycorrhizal colonization along moist gradient in a vineyard of Eger (Hungary

    Directory of Open Access Journals (Sweden)

    Donkó Ádám

    2014-11-01

    Full Text Available The role of mycorrhizal fungi has special importance in the case of low soil moisture because the colonization of vine roots by mycorrhiza increases water and nutrient uptake and thus aids the avoidance of biotic and abiotic stresses of grape. Our aim was to investigate in the Eger wine region the changes of mycorrhizal colonization, water potential, and yield quality and quantity of grape roots at three altitudes, along a changing soil moist gradient. Our results show that the degree of mycorrhizal colonization is higher in drier areas, which supports the water and nutrient uptake of the host plant.

  9. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species.

    Science.gov (United States)

    Allsopp, N; Stock, W D

    1992-08-01

    The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.

  10. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew.

    Science.gov (United States)

    Mustafa, G; Randoux, B; Tisserant, B; Fontaine, J; Magnin-Robert, M; Lounès-Hadj Sahraoui, A; Reignault, Ph

    2016-10-01

    A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered

  11. A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1

    Science.gov (United States)

    Guether, Mike; Neuhäuser, Benjamin; Balestrini, Raffaella; Dynowski, Marek; Ludewig, Uwe; Bonfante, Paola

    2009-01-01

    In mycorrhizal associations, the fungal partner assists its plant host by providing nitrogen (N) in addition to phosphate. Arbuscular mycorrhizal (AM) fungi have access to inorganic or organic forms of N and translocate them via arginine from the extra- to the intraradical mycelium, where the N is transferred to the plant without any carbon skeleton. However, the molecular form in which N is transferred, as well as the involved mechanisms, is still under debate. NH4+ seems to be the preferential transferred molecule, but no plant ammonium transporter (AMT) has been identified so far. Here, we offer evidence of a plant AMT that is involved in N uptake during mycorrhiza symbiosis. The gene LjAMT2;2, which has been shown to be the highest up-regulated gene in a transcriptomic analysis of Lotus japonicus roots upon colonization with Gigaspora margarita, has been characterized as a high-affinity AMT belonging to the AMT2 subfamily. It is exclusively expressed in the mycorrhizal roots, but not in the nodules, and transcripts have preferentially been located in the arbusculated cells. Yeast (Saccharomyces cerevisiae) mutant complementation has confirmed its functionality and revealed its dependency on acidic pH. The transport experiments using Xenopus laevis oocytes indicated that, unlike other plant AMTs, LjAMT2;2 transports NH3 instead of NH4+. Our results suggest that the transporter binds charged ammonium in the apoplastic interfacial compartment and releases the uncharged NH3 into the plant cytoplasm. The implications of such a finding are discussed in the context of AM functioning and plant phosphorus uptake. PMID:19329566

  12. Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions.

    Science.gov (United States)

    Saia, Sergio; Ruisi, Paolo; Fileccia, Veronica; Di Miceli, Giuseppe; Amato, Gaetano; Martinelli, Federico

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against pathogens, a plant's reaction to stressful environments, soil fertility, and a plant's relationship with other microorganisms. Such effects imply a broad reprogramming of the plant's metabolic activity. However, little information is available regarding the role of AMF and their relation to other soil plant growth-promoting microorganisms in the plant metabolome, especially under realistic field conditions. In the present experiment, we evaluated the effects of inoculation with AMF, either alone or in combination with plant growth-promoting rhizobacteria (PGPR), on the metabolome and changes in metabolic pathways in the roots of durum wheat (Triticum durum Desf.) grown under N-limited agronomic conditions in a P-rich environment. These two treatments were compared to infection by the natural AMF population (NAT). Soil inoculation with AMF almost doubled wheat root colonization by AMF and decreased the root concentrations of most compounds in all metabolic pathways, especially amino acids (AA) and saturated fatty acids, whereas inoculation with AMF+PGPR increased the concentrations of such compounds compared to inoculation with AMF alone. Enrichment metabolomics analyses showed that AA metabolic pathways were mostly changed by the treatments, with reduced amination activity in roots most likely due to a shift from the biosynthesis of common AA to γ-amino butyric acid. The root metabolome differed between AMF and NAT but not AMF+PGPR and AMF or NAT. Because the PGPR used were potent mineralisers, and AMF can retain most nitrogen (N) taken as organic compounds for their own growth, it is likely that this result was due to an increased concentration of mineral N in soil inoculated with AMF+PGPR compared to AMF alone.

  13. Mycorrhizal synthesis between Lactarius deliciosus and Arbutus unedo L.

    Science.gov (United States)

    Gomes, Filomena; Suárez, Diego; Santos, Rita; Silva, Márcia; Gaspar, Daniel; Machado, Helena

    2016-04-01

    Arbutoid mycorrhizae were synthesized in vitro between Arbutus unedo L. and two isolates of Lactarius deliciosus. The fungal isolates were obtained from sporocarps collected under Pinus sylvestris and in a mixed forest stand of Quercus suber and Pinus pinea. Synthesis tubes filled with a mixture of sterilized peat, vermiculite, and perlite imbibed with nutrient solution were used. Two inoculation methods using solid and liquid media were tested. Shoots from an adult selected clone of A. unedo were used after in vitro rooting by auxin dipping. After 3 months of shoots transfer to the substrate, the root systems were examined for arbutoid mycorrhizae formation and later on ex vitro conditions, 9 months after acclimatization. The inoculum treatment with liquid medium improved the mycorrhizal development for both isolates, in vitro. Sterilized substrate for plant acclimatization increased the mycorrhizal development. The arbutoid mycorrhizae were observed in vitro as well as 9 months after acclimatization. Standard arbutoid mycorrhiza features were observed: pale yellow mantle, typical cruciform appearance, Hartig net (HN), and intracellular hyphal complexes, both confined to the epidermis. L. deliciosus mycorrhizae synthetized in vitro persisted 9 months after plant acclimatization. Morphological observations were confirmed by molecular techniques.

  14. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.

    Science.gov (United States)

    Fernández-Fuego, D; Bertrand, A; González, A

    2017-12-01

    Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals. Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  16. Phylogenetic constrains on mycorrhizal specificity in eight Dendrobium (Orchidaceae) species.

    Science.gov (United States)

    Xing, Xiaoke; Ma, Xueting; Men, Jinxin; Chen, Yanhong; Guo, Shunxing

    2017-05-01

    Plant phylogeny constrains orchid mycorrhizal (OrM) fungal community composition in some orchids. Here, we investigated the structures of the OrM fungal communities of eight Dendrobium species in one niche to determine whether similarities in the OrM fungal communities correlated with the phylogeny of the host plants and whether the Dendrobium-OrM fungal interactions are phylogenetically conserved. A phylogeny based on DNA data was constructed for the eight coexisting Dendrobium species, and the OrM fungal communities were characterized by their roots. There were 31 different fungal lineages associated with the eight Dendrobium species. In total, 82.98% of the identified associations belonging to Tulasnellaceae, and a smaller proportion involved members of the unknown Basidiomycota (9.67%). Community analyses revealed that phylogenetically related Dendrobium tended to interact with a similar set of Tulasnellaceae fungi. The interactions between Dendrobium and Tulasnellaceae fungi were significantly influenced by the phylogenetic relationships among the Dendrobium species. Our results provide evidence that the mycorrhizal specificity in the eight coexisting Dendrobium species was phylogenetically conserved.

  17. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Floss, Daniela S; Levy, Julien G; Lévesque-Tremblay, Véronique; Pumplin, Nathan; Harrison, Maria J

    2013-12-17

    Most flowering plants are able to form endosymbioses with arbuscular mycorrhizal fungi. In this mutualistic association, the fungus colonizes the root cortex and establishes elaborately branched hyphae, called arbuscules, within the cortical cells. Arbuscule development requires the cellular reorganization of both symbionts, and the resulting symbiotic interface functions in nutrient exchange. A plant symbiosis signaling pathway controls the development of the symbiosis. Several components of the pathway have been identified, but transcriptional regulators that control downstream pathways for arbuscule formation are still unknown. Here we show that DELLA proteins, which are repressors of gibberellic acid (GA) signaling and function at the nexus of several signaling pathways, are required for arbuscule formation. Arbuscule formation is severely impaired in a Medicago truncatula Mtdella1/Mtdella2 double mutant; GA treatment of wild-type roots phenocopies the della double mutant, and a dominant DELLA protein (della1-Δ18) enables arbuscule formation in the presence of GA. Ectopic expression of della1-Δ18 suggests that DELLA activity in the vascular tissue and endodermis is sufficient to enable arbuscule formation in the inner cortical cells. In addition, expression of della1-Δ18 restores arbuscule formation in the symbiosis signaling pathway mutant cyclops/ipd3, indicating an intersection between DELLA and symbiosis signaling for arbuscule formation. GA signaling also influences arbuscule formation in monocots, and a Green Revolution wheat variety carrying dominant DELLA alleles shows enhanced colonization but a limited growth response to arbuscular mycorrhizal symbiosis.

  18. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    Mostafa Heidari

    2012-01-01

    Full Text Available Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR on antioxidant activity and photosynthetic pigments were studied in basil plants. A field experiment was conducted at the University of Zabol in Iran during 2010 growing season. The experiment laid out as split plot based on randomized complete block design with three replications. Three levels of water stress W1 = 80 (control, W2 = 60 and W3 = 40% of the field capacity (FC as main plots and four levels of bacterial species consisting of S1 = Pseudomonades sp., S2 = Bacillus lentus, S3 = Azospirillum brasilens, S4 = combination of three bacterial species and S5 = control (without use of bacterial as sub plots. The results revealed that water stress caused a significant change in the antioxidant activity. The highest concentration CAT and GPX activity were in W3 treatments. By increasing water stress from control to W3, chlorophyll content in leaves was increased but Fv/Fm and APX activity decreased. Application of rhizobacteria under water stress improved the antioxidant and photosynthetic pigments in basil plants. S1 = Pseudomonades sp. under water stress, significantly increased the CAT enzyme activity, but the highest GPX and APX activity and chlorophyll content in leaves under water stress were in S4 = combination of three bacterial species.

  19. TEKNIK PENGATURAN AIR PADA INTENSIFIKASI PADI AEROB TERKENDALI-BERBASIS ORGANIK (IPAT-BO UNTUK MENINGKATKAN POPULASI RHIZOBACTERIA, EFISIENSI PENGGUNAAN AIR, PERAKARAN TANAMAN, DAN HASIL TANAMAN PADI

    Directory of Open Access Journals (Sweden)

    Hingdri -

    2013-03-01

    Full Text Available Teknik pengaturan air pada budidaya tanaman padi melalui Intensifikasi Padi Aerob Terkendali-Berbasis Organik (IPAT-BO perlu dilakukan untuk meningkatkan efisiensi penggunaan air. Penelitian ini bertujuan untuk mengtahui aktivitas rhizobacteria, tingkat efisiensi penggunaan air, perkaran tanaman, dan hasil tanaman pada berbagai teknik pengaturan air.Penelitian dilaksanakan di lahan percobaan Fakultas Pertanian Universitas Winaya Mukti, Tanjungsari pada inceptisol pada skala pot plastik. Rancangan percobaan yang digunakan adalah Rancangan Acak Kelompok (RAK faktor tunggal dengan 16 perlakuan dan diulang tiga kali, yaitu terdiri dari kombinasi antara perlakuan air dan empat varietas. Perlakuan air: tinggi muka air + 5cm, 0 cm, – 5 cm dan  – 10 cm. Empat varietas: Ciherang, Sintanur, Inpari 13 dan Fatmawati..Hasil penelitian menunjukkan terdapat pengaruhnyata terhadap populasi Rhizobacteria, perkembangan akar, dan hasil tanaman. Perlakuan tinggi muka air – 10 cm varietas Fatmawati memberikan hasil tertinggi pada volume akar 186,67 ml, populasi bakteri Azotobacter sp. (1,43 x 1010 CFU g-1, bakteri pelarut fosfat (6,07 x 108 CFU g-1, hasil tanaman tertinggi 95,9 g rumpun-1 setara dengan 9,14 ton ha-1 serta meningkatkan efisiensi penggunaan air 47,1 % dibandingkan dengan pengenangan 5 cm.Kata kunci:  Teknik pengaturan air, efisiensi penggunaan air, IPAT-BO, populasi rhizobakteria

  20. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field.

    Science.gov (United States)

    Hassan, Tamoor Ul; Bano, Asghari; Naz, Irum

    2017-06-03

    The aim of the study was to determine tolerance of plant growth promoting rhizobacteria (PGPR) in different concentrations of Cu, Cr, Co, Cd, Ni, Mn, and Pb and to evaluate the PGPR-modulated bioavailability of different heavy metals in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in the Khewra salt range. Seven-day-old cultures of PGPR were applied on wheat as single inoculum, co-inoculation and carrier-based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, the survival rates of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% of Co, Ni, Cr and Mn concentrations in the rhizosphere soil. Co-inoculation of PGPR and biofertilizer treatment further augmented the decreases by 15% in Co, Ni, Cr and Mn over single inoculation except Pb and Co where decreases were 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) was observed for Cd, Co, Cr, and Mn. P. moraviensis inoculation decreases the biological accumulation coefficient (BAC) as well as translocation factor (TF) for Cd, Cr, Cu Mn, and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals, and the addition of carriers further assisted the PGPR.

  1. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    NARCIS (Netherlands)

    Reidinger, S.; Eschen, R.; Gange, A.C.; Finch, P.; Bezemer, T.M.

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF

  2. Mycorrhizal fungi associated with Taiwanese Pyrola morrisonensis (Ericaceae in a naturally regenerated forest

    Directory of Open Access Journals (Sweden)

    Yosuke MATSUDA

    2017-11-01

    Full Text Available Pyrola morrisonensis, an evergreen herb in the family Ericaceae, is endemic to Taiwan. We examined mycorrhizal development and the associated fungi in this species. Nine plants were collected in a naturally regenerated forest in central Taiwan. The plants were genetically identical in their internal transcribed spacer (ITS region, and their sequences matched the known sequence for P. morrisonensis. Fine roots of each plant were colonized by mycorrhizal fungi that formed mycorrhizas either with or without fungal mantles. DNA sequences of the ITS region of these fungi suggested that they belonged to mycorrhizal taxa that are common tree symbionts. Among them, members of Thelephoraceae were the dominant taxon in the host plants. These results indicate that P. morrisonensis is intimately associated with mycorrhizal fungi that might also connect with neighboring trees.

  3. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism

    Czech Academy of Sciences Publication Activity Database

    Davison, J.; Moora, M.; Öpik, M.; Adholeya, A.; Ainsaar, L.; Bâ, A.; Burla, S.; Diedhiou, A. G.; Hiiesalu, Inga; Jairus, T.; Johnson, N. C.; Kane, A.; Koorem, K.; Kochar, M.; Ndiaye, C.; Pärtel, M.; Reier, Ü.; Saks, Ü.; Singh, R.; Vasar, M.; Zobel, M.

    2015-01-01

    Roč. 349, č. 6251 (2015), 970-973 ISSN 0036-8075 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * 454 sequencing * diversity Subject RIV: EH - Ecology, Behaviour Impact factor: 34.661, year: 2015

  4. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula

    Czech Academy of Sciences Publication Activity Database

    Konvalinková, T.; Püschel, David; Janoušková, Martina; Gryndler, M.; Jansa, J.

    2015-01-01

    Roč. 6, FEB 13 (2015), s. 1-11 ISSN 1664-462X Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal symbiosis * light intensity * shading duration Subject RIV: EE - Microbiology, Virology Impact factor: 4.495, year: 2015

  5. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens

    NARCIS (Netherlands)

    Liang, Minxia; Liu, Xubing; Etienne, Rampal S; Huang, Fengmin; Wang, Yongfan; Yu, Shixiao

    Soilborne pathogens can contribute to diversity maintenance in tree communities through the Janzen-Connell effect, whereby the pathogenic reduction of seedling performance attenuates with distance from conspecifics. By contrast, arbuscular mycorrhizal fungi (AMF) have been reported to promote

  6. A phenotypic plasticity framework for assessing intraspecific variation in arbuscular mycorrhizal fungal traits

    NARCIS (Netherlands)

    Behm, J.E.; Kiers, E.T.

    2014-01-01

    Statistical models of ecosystem functioning based on species traits are valuable tools for predicting how nutrient cycling will respond to global change. However, species such as arbuscular mycorrhizal fungi (AMF) have evolved high intraspecific trait variation, making trait characterization and

  7. Effects of Microbiotic Soil Crust Organisms and Mycorrhizal Fungi on Seedling Growth of Blackbrush (Coleogyne ramosissima)

    National Research Council Canada - National Science Library

    Pendleton, Rosemary

    1999-01-01

    .... A series of experiments conducted from 1993 to 1997 tested the effect of inoculation with arbuscular mycorrhizal fungi on the growth of young blackbrush seedlings under a variety of soil nutrient conditions...

  8. Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.)

    DEFF Research Database (Denmark)

    Christensen, H.; Jakobsen, I.

    1993-01-01

    Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments...... and top of tubes, and of cocci with a diameter of 0.55-0.78 mum in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1-7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil...... biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [H-3]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal...

  9. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    International Nuclear Information System (INIS)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-01-01

    The influence of arbuscular mycorrhizal fungus on 1 34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more 1 34Cs (up to 250,000 Bq kg - 1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased 1 34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg - 1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  10. Influence of silver and titanium nanoparticles on arbuscular mycorrhizal colonization and accumulation of radiocaesium in Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, S.; Ogar, A.; Mietelski, J. W.; Turnau, K.

    2010-07-01

    The influence of albacore's mycorrhizal fungus on {sup 1}34Cs uptake by Helianthus annuus was studied in a pilot study under growth chamber conditions. Mycorrhizal plants took up five times more {sup 1}34Cs (up to 250,000 Bq kg{sup -}1 dry weight) than non mycorrhizal plants. Silver and titanium nanoparticles, supplied into the surface soil layer decreased both the mycorrhizal colonization and Cs uptake by mycorrhizal plants. The application of activated carbon attenuated the effect of nanoparticles and increased {sup 1}34Cs uptake in the presence of mycorrhizal fungi (up to 400,000 Bq kg{sup -}1 dry weight). The results underline the possible application of phyto remediation techniques based on mycorrhizas assisted plants in decontamination of both radionuclides and nanoparticles. (Author) 27 refs.

  11. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    Energy Technology Data Exchange (ETDEWEB)

    Noori, Azam [State University of New York, College of Environmental Science and Forestry (United States); White, Jason C. [Connecticut Agricultural Experiment Station (United States); Newman, Lee A., E-mail: lanewman@esf.edu [State University of New York, College of Environmental Science and Forestry (United States)

    2017-02-15

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  12. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure

    International Nuclear Information System (INIS)

    Noori, Azam; White, Jason C.; Newman, Lee A.

    2017-01-01

    The rapid growth of nanotechnology and the high demand for nanomaterial use have greatly increased the risk of particle release into the environment. Understanding nanomaterial interactions with crop species and their associated microorganisms is critical to food safety and security. In the current study, tomato was inoculated with mycorrhizal fungi and subsequently exposed to 12, 24, or 36 mg/kg of 2- or 15-nm silver nanoparticles (Ag-NPs). Mycorrhizal (M) and non-mycorrhizal (NM) tomatoes exposed to 36 mg/kg of 2-nm Ag-NPs accumulated 1300 and 1600 μg/g silver in their tissues, respectively. Mycorrhizal plants accumulated 14% less silver compared to non-mycorrhizal plants. To begin to understand the mechanisms by which plants accumulate NPs, the expression of two aquaporin channel genes, the plasma membrane intrinsic protein (PIP) and the tonoplast membrane intrinsic protein (TIP), and one potassium channel (KC) gene were studied. In non-mycorrhizal plants, the expression of KC, PIP, and TIP was eight, five, and nine times higher than the control, respectively. These expressions for mycorrhizal plants were 5.8, 3.5, and 2 times higher than controls, respectively. The expression of KC and PIP, which are located on the plasma membrane, was 3.5 and 2.5, respectively, times higher than TIP, which is located on the tonoplast. PIP expression was significantly higher in NM tomatoes exposed to 12 mg/kg of 2-nm Ag-NPs compared to M plants. These results show that mycorrhizal colonization decreases Ag accumulation in NP-exposed plants and also moderates changes in expression level of membrane transport proteins.

  13. Does responsiveness to arbuscular mycorrhizal fungi depend on plant invasive status?

    Science.gov (United States)

    Reinhart, Kurt O; Lekberg, Ylva; Klironomos, John; Maherali, Hafiz

    2017-08-01

    Differences in the direction and degree to which invasive alien and native plants are influenced by mycorrhizal associations could indicate a general mechanism of plant invasion, but whether or not such differences exist is unclear. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for phylogenetic relatedness among plants with two large grassland datasets. Mycorrhizal responsiveness was measured for 68 taxa from the Northern Plains, and data for 95 taxa from the Central Plains were included. Nineteen percent of taxa from the Northern Plains had greater total biomass with mycorrhizas while 61% of taxa from the Central Plains responded positively. For the Northern Plains taxa, measurable effects often depended on the response variable (i.e., total biomass, shoot biomass, and root mass ratio) suggesting varied resource allocation strategies when roots are colonized by arbuscular mycorrhizal fungi. In both datasets, invasive status was nonrandomly distributed on the phylogeny. Invasive taxa were mainly from two clades, that is, Poaceae and Asteraceae families. In contrast, mycorrhizal responsiveness was randomly distributed over the phylogeny for taxa from the Northern Plains, but nonrandomly distributed for taxa from the Central Plains. After controlling for phylogenetic similarity, we found no evidence that invasive taxa responded differently to mycorrhizas than other taxa. Although it is possible that mycorrhizal responsiveness contributes to invasiveness in particular species, we find no evidence that invasiveness in general is associated with the degree of mycorrhizal responsiveness. However, mycorrhizal responsiveness among species grown under common conditions was highly variable, and more work is needed to determine the causes of this variation.

  14. Resistance to high level of Cu (Copper) by arbuscular mycorrhizal, saprobe Fungi and Eucalyptus globules

    Energy Technology Data Exchange (ETDEWEB)

    Arriagada, C.; Pereira, G.; Machuca, A.; Alvear, M.; Martin, J.; Ocampo, J.

    2009-07-01

    The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chorophyll, root length colonization and succinate dehydrogenase (SDH) activity was measured in Eucalyptus globulus Labill., plants growing in soil with high level of Cu were investigated. The application of Cu inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseaae and G. deserticola in vitro. (Author)

  15. Resistance to high level of Cu (Copper) by arbuscular mycorrhizal, saprobe Fungi and Eucalyptus globules

    International Nuclear Information System (INIS)

    Arriagada, C.; Pereira, G.; Machuca, A.; Alvear, M.; Martin, J.; Ocampo, J.

    2009-01-01

    The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chorophyll, root length colonization and succinate dehydrogenase (SDH) activity was measured in Eucalyptus globulus Labill., plants growing in soil with high level of Cu were investigated. The application of Cu inhibited the development of mycelia of the saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi (AM) Glomus mosseae and G. deserticola in vitro. (Author)

  16. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica.

    Science.gov (United States)

    Jacquemyn, Hans; Waud, Michael; Lievens, Bart; Brys, Rein

    2016-07-01

    In orchid species that have populations occurring in strongly contrasting habitats, mycorrhizal divergence and other habitat-specific adaptations may lead to the formation of reproductively isolated taxa and ultimately to species formation. However, little is known about the mycorrhizal communities associated with recently diverged sister taxa that occupy different habitats. In this study, 454 amplicon pyrosequencing was used to investigate mycorrhizal communities associating with Epipactis helleborine in its typical forest habitat and with its presumed sister species E. neerlandica that almost exclusively occurs in coastal dune habitats. Samples of the phylogenetically more distant E. palustris, which co-occurred with E. neerlandica, were also included to investigate the role of habitat-specific conditions on mycorrhizal communities. A total of 105 operational taxonomic units (OTUs) of putative orchid mycorrhizal fungi were observed in the three studied species. The majority of these fungi were endophytic fungi of Helotiales and ectomycorrhizal fungi belonging to Thelephoraceae, Sebacinaceae and Inocybaceae. In addition, a large number of other ectomycorrhizal taxa were detected, including Cortinarius, Cenococcum, Tuber, Geopora, Wilcoxina, Meliniomyces, Hebeloma, Tricholoma, Russula and Peziza Mycorrhizal communities differed significantly between the three species, but differences were most pronounced between the forest species (E. helleborine) and the two dune slack species (E. neerlandica and E. palustris). The results clearly showed that recently diverged orchid species that occupy different habitats were characterized by significantly different mycorrhizal communities and call for more detailed experiments that aim at elucidating the contribution of habitat-specific adaptations in general and mycorrhizal divergence in particular to the process of speciation in orchids. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany

  17. DNA pyrosequencing evidence for large diversity differences between natural and managed coffee mycorrhizal fungal communities

    OpenAIRE

    De Beenhouwer , Matthias; Muleta , Diriba; Peeters , Bram; Van Geel , Maarten; Lievens , Bart; Honnay , Olivier

    2015-01-01

    International audience; Arabica coffee is a major agricultural commodity worldwide, representing 60 % of the world’s coffee production. Arabica coffee is cultivated in more than 36 countries and is a key cash crop for many developing countries. Despite the coffee’s huge economic importance, there is very limited knowledge on the association of arbuscular mycorrhizal fungi with coffee roots. Therefore, we assessed the mycorrhizal diversity and community composition in Arabica coffee (Coffea ar...

  18. Identification of a Vesicular-Arbuscular Mycorrhizal Fungus by Using Monoclonal Antibodies in an Enzyme-Linked Immunosorbent Assay †

    OpenAIRE

    Wright, Sara F.; Morton, Joseph B.; Sworobuk, Janis E.

    1987-01-01

    Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were no...

  19. Metagenomic Analyses of the Viruses Detected in Mycorrhizal Fungi and Their Host Orchid.

    Science.gov (United States)

    Shimura, Hanako; Masuta, Chikara; Koda, Yasunori

    2018-01-01

    In nature, mycorrhizal association with soilborne fungi is indispensable for orchid families. Fungal structures from compatible endo-mycorrhizal fungi in orchid cells are digested in cells to be supplied to orchids as nutrition. Because orchid seeds lack the reserves for germination, they keep receiving nutrition through mycorrhizal formation from seed germination until shoots develop (leaves) and become photoautotrophic. Seeds of all orchid species surely geminate with the help of their own fungal partners, and this specific partnership has been acquired for a long evolutional history between orchids and fungi.We have studied the interactions between orchids and mycorrhizal fungi and recently conducted transcriptome analyses (RNAseq) by a next-generation sequencing (NGS) approach. It is possible that orchid RNA isolated form naturally grown plants is contaminated with RNAs derived from mycorrhizal fungi in the orchid cells. To avoid such contamination, we here prepared aseptically germinated orchid plants (i.e., fungus-free plants) together with a pure-cultured fungal isolate and field-growing orchid samples. In the cDNA library prepared from orchid and fungal tissues, we found that partitivirus-like sequences were common in an orchid and its mycorrhizal fungus. These partitivirus-like sequences were closely related by a phylogenetic analysis, suggesting that transmission of an ancestor virus between the two organisms occurred through the specific relation of the orchid and its associated fungus.

  20. Arbuscular mycorrhizal colonization in soil fertilized by organic and mineral fertilizers

    Science.gov (United States)

    Dvořáčková, Helena; Záhora, Jaroslav; Mikajlo, Irina; Elbl, Jakub; Kynický, Jindřich; Hladký, Jan; Brtnický, Martin

    2017-04-01

    The level of arbuscular mycorrhizal colonization of roots represents one of the best parameters for assessing soil quality. This special type of symbiosis helps plants to obtain nutrients of the distant area which are unavailable without cooperation with arbuscular mycorrhizal fungi. For example the plant available form of phosphorus is of the most important elements in plant nutrition. This element can't move (significantly) throw the soil and it could be unachievable for root system of plant. The same situation also applies to other important nutrients and water. Colonization of individual roots by arbuscular mycorrhizal fungi has a direct effect on the enlargement of the root system but plant needs to invest sugar substance for development of fungi. It's very difficult to understand when fungi colonization represents indicator of good soil condition. And when it provides us with information "about plant stress". The main goal of our work was to compare the effect of different fertilizers application on development of arbuscular mycorrhizal colonization. We worked with organic fertilizers such as biochar from residual biomass, biochar from sewage sludge and ageing biochar and with mineral fertilizer DAM 390 (mixture of ammonium 25 %, nitrate 25 % and urea nitrogen 50 %). Effect of different types of the above fertilizers on development of arbuscular mycorrhizal colonization was tested by pot experiment with indicator plant Lactuca sativa L. The highest (P arbuscular mycorrhizal colonization of roots.

  1. Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress.

    Science.gov (United States)

    Wang, Yanhong; Wang, Minqiang; Li, Yan; Wu, Aiping; Huang, Juying

    2018-01-01

    Soil salinity is a common and serious environmental problem worldwide. Arbuscular mycorrhizal fungi (AMF) are considered as bio-ameliorators of soil salinity tolerance in plants. However, few studies have addressed the possible benefits of AMF inoculation for medicinal plants under saline conditions. In this study, we examined the effects of colonization with two AMF, Funneliformis mosseae and Diversispora versiformis, alone and in combination, on the growth and nutrient uptake of the medicinal plant Chrysanthemum morifolium (Hangbaiju) in a greenhouse salt stress experiment. After 6 weeks of a non-saline pretreatment, Hangbaiju plants with and without AMF were grown for five months under salinity levels that were achieved using 0, 50 and 200 mM NaCl. Root length, shoot and root dry weight, total dry weight, and root N concentration were higher in the mycorrhizal plants than in the non-mycorrhizal plants under conditions of moderate salinity, especially with D. versiformis colonization. As salinity increased, mycorrhizal colonization and mycorrhizal dependence decreased. The enhancement of root N uptake is probably the main mechanism underlying salt tolerance in mycorrhizal plants. These results suggest that the symbiotic associations between the fungus D. versiformis and C. morifolium plants may be useful in biotechnological practice.

  2. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    Science.gov (United States)

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L

    International Nuclear Information System (INIS)

    Orłowska, Elżbieta; Godzik, Barbara; Turnau, Katarzyna

    2012-01-01

    The role of indigenous and non-indigenous arbuscular mycorrhizal fungi (AMF) on As uptake by Plantago lanceolata L. growing on substrate originating from mine waste rich in As was assessed in a pot experiment. P. lanceolata inoculated with AMF had higher shoot and root biomass and lower concentrations of As in roots than the non-inoculated plants. There were significant differences in As concentration and uptake between different AMF isolates. Inoculation with the indigenous isolate resulted in increased transfer of As from roots to shoots; AMF from non-polluted area apparently restricted plants from absorbing As to the tissue; and plants inoculated with an AMF isolate from Zn–Pb waste showed strong As retainment within the roots. Staining with dithizone indicated that AMF might be actively involved in As accumulation. The mycorrhizal colonization affected also the concentration of Cd and Zn in roots and Pb concentration, both in shoots and roots. - Highlights: ► The role of arbuscular mycorrhizal fungi (AMF) in As uptake was studied. ► Growth of Plantago lanceolata was significantly enhanced by mycorrhizal inoculation. ► Arsenic concentration and uptake significantly depended on the AMF isolate. ► Arbuscular mycorrhizal fungi may be useful for bioremediation of As contaminated wastes. - Effect of arbuscular mycorrhizal fungi on As uptake by Plantago lanceolata strongly depends on the origin of fungal isolates.

  4. MycoDB, a global database of plant response to mycorrhizal fungi

    Science.gov (United States)

    Chaudhary, V. Bala; Rúa, Megan A.; Antoninka, Anita; Bever, James D.; Cannon, Jeffery; Craig, Ashley; Duchicela, Jessica; Frame, Alicia; Gardes, Monique; Gehring, Catherine; Ha, Michelle; Hart, Miranda; Hopkins, Jacob; Ji, Baoming; Johnson, Nancy Collins; Kaonongbua, Wittaya; Karst, Justine; Koide, Roger T.; Lamit, Louis J.; Meadow, James; Milligan, Brook G.; Moore, John C.; Pendergast, Thomas H., IV; Piculell, Bridget; Ramsby, Blake; Simard, Suzanne; Shrestha, Shubha; Umbanhowar, James; Viechtbauer, Wolfgang; Walters, Lawrence; Wilson, Gail W. T.; Zee, Peter C.; Hoeksema, Jason D.

    2016-05-01

    Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems.

  5. EVALUATION OF PHYTOTOXIC EFFECT OF DELETERIOUS RHIZOBACTERIA ON THE ROOT GROWTH OF AXONOPUS AFFINIS (CHASE AND LENS ESCULENTA (MOENCH

    Directory of Open Access Journals (Sweden)

    X.J Pacheco-Hernández

    2015-11-01

    Full Text Available Las malezas ocasionan una gran pérdida en las tierras agrícolas y comúnmente, las medidas de manejo y contención de estas especies se dan con la aplicación de herbicidas, sin embargo; en años recientes se ha presentado un interés en establecer mecanismos de biocontrol seguros, con el empleo de bacterias inhibidoras del crecimiento conocidas como rizobacterias deletéreas (Deleterious rhizobacteria: DRBque se consideran generalmente como no parasíticas, y causan, de manera sutil, efectos deletéreos a través de la producción de metabolitos dañinos a las plantas. El presente trabajo tuvo como objetivo caracterizar la producción de ácido cianhídrico de pseudomonas rizobacterianas de malezas de un cultivo de alfalfa (Medicago sativa L. y evaluar el efecto fitotóxico de éstas sobre el crecimiento radical de plántulas de Axonopus affinis (Chase y Lens esculenta (Moench. De acuerdo con los resultados obtenidos con relación a la evidencia de que los aislados de pseudomonadas son rizobacterias cianogénicas y de su efecto fitotóxico medido sobre las especies vegetales bajo estudio; se sugieren a éstas como posibles agentes de biocontrol con pastos que sean considerados malezas; ya que en general se observó que inhiben su crecimiento radical; sin embargo, un enfoque particular lo tiene la rizobacteria Pseudomonas sp. A52, la cual presentó no solamente actividad como una DRB sino también como una rizobacteria promotora del crecimiento vegetal; lo que la hace más importante de analizar en cuanto a su potencial y espectro de acción; tanto para malezas monocotiledóneas como para dicotiledóneas, recomendable como un posible agente de biocontrol con actividad múltiple.

  6. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China)]. E-mail: szzhang@mail.rcees.ac.cn; Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Chen Baodong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Bell, J. Nigel B. [Center for Environmental Policy, Imperial College, London (United Kingdom)

    2007-03-15

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize.

  7. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    International Nuclear Information System (INIS)

    Huang Honglin; Zhang Shuzhen; Shan Xiaoquan; Chen Baodong; Zhu Yongguan; Bell, J. Nigel B.

    2007-01-01

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize

  8. Uptake of pulse injected nitrogen by soil microbes and mycorrhizal and non-mycorrhizal plants in a species-diverse subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Andresen, Louise Christoffersen; Jonasson, Sven; Strom, Lena

    2008-01-01

    15N labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of 15N label in mycorrhizal and non-mycorrhiza......15N labeled ammonium, glycine or glutamic acid was injected into subarctic heath soil in situ, with the purpose of investigating how the nitrogen added in these pulses was subsequently utilized and cycled in the ecosystem. We analyzed the acquisition of 15N label in mycorrhizal and non...

  9. Arbuscular mycorrhizal fungi and tolerance of temperature stress in plants

    DEFF Research Database (Denmark)

    Zhu, Xiancan; Song, Fengbin; Liu, Fulai

    2017-01-01

    Temperature is one of the most important environmental factors that determine the growth and productivity of plants across the globe. Many physiological and biochemical processes and functions are affected by low and high temperature stresses. Arbuscular mycorrhizal (AM) symbiosis has been shown...... to improve tolerance to temperature stress in plants. This chapter addresses the effect of AM symbiosis on plant growth and biomass production, water relations (water potential, stomatal conductance, and aquaporins), photosynthesis (photosynthetic rate, chlorophyll, and chlorophyll fluorescence), plasma...... tolerance of the host plants via enhancing water and nutrient uptake, improving photosynthetic capacity and efficiency, protecting plant against oxidative damage, and increasing accumulation of osmolytes are discussed. This chapter also provides some future perspectives for better understanding...

  10. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants

    International Nuclear Information System (INIS)

    Dupre de Boulois, H.; Joner, E.J.; Leyval, C.; Jakobsen, I.; Chen, B.D.; Roos, P.; Thiry, Y.; Rufyikiri, G.; Delvaux, B.; Declerck, S.

    2008-01-01

    Contamination by uranium (U) occurs principally at U mining and processing sites. Uranium can have tremendous environmental consequences, as it is highly toxic to a broad range of organisms and can be dispersed in both terrestrial and aquatic environments. Remediation strategies of U-contaminated soils have included physical and chemical procedures, which may be beneficial, but are costly and can lead to further environmental damage. Phytoremediation has been proposed as a promising alternative, which relies on the capacity of plants and their associated microorganisms to stabilize or extract contaminants from soils. In this paper, we review the role of a group of plant symbiotic fungi, i.e. arbuscular mycorrhizal fungi, which constitute an essential link between the soil and the roots. These fungi participate in U immobilization in soils and within plant roots and they can reduce root-to-shoot translocation of U. However, there is a need to evaluate these observations in terms of their importance for phytostabilization strategies

  11. Underground resource allocation between individual networks of mycorrhizal fungi

    DEFF Research Database (Denmark)

    Mikkelsen, Bolette Lind; Rosendahl, Søren; Jakobsen, Iver

    2008-01-01

    * Fusions between individual mycelia of arbuscular mycorrhizal (AM) fungi have been observed in two-dimensional systems but never in soil systems. Here, phosphorus ((32)P) labelling was used to demonstrate nutrient transfer between individual mycelia and to investigate the possible role...... of G. mosseae overlapped. The transfer probably occurred via anastomoses between the mycelia as no transfer of (32)P was detected between the mycelia of different fungi at the second harvest. * The indicated ability of AM fungal mycelia to anastomose in soil has implications for the formation of large...... of anastomosis. * Trifolium subterraneum colonized by Glomus mosseae were grown in root-retaining mesh bags, which were placed 20 cm apart. The mycelium of one plant, the donor, had access to (32)P-labelled soil placed adjacent to the mesh bag. Transfer of (32)P from the donor mycelium to the receiver plant...

  12. [Proteome analysis on interaction between Anoectochilus roxburghii and Mycorrhizal fungus].

    Science.gov (United States)

    Gao, Chuan; Guo, Shun-Xing; Zhang, Jing; Chen, Juan; Zhang, Li-Chun

    2012-12-01

    To study the mechanism of plant growing promoted by Mycorrhizal fungus through the difference of proteomes. The differential proteomes between uninoculated and inoculated endophytic fungi, Epulorhiza sp. on Anoectochilus roxburghii were analyzed by two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrum. Twenty-seven protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Twenty-two candidate proteins were identified by database comparisons. The function of these proteins mostly involved in signal transduction, metabolic regulation, as well as photosynthesis and substance metabolism. The results indicate that the regulator control system of plant is influenced by fungi action, and the positive regulation improves substance metabolism and photosynthesis, which results in strong plant and higher resistance. It is also deduced that silent genes may exist in endosymbiosis plants.

  13. Vesicular-arbuscular mycorrhizal populations in stored topsoil

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.A.; Hunter, D.; Birch, P.; Short, K.C. (North East London Polytechnic, London (UK). Environment and Industry Research Unit, Dept. of Biology and Biochemistry)

    1987-01-01

    Two soil stores of different ages were sampled to investigate their vesicular-arbuscular mycorrhizal (VAM) populations. The soils collected were assessed for pH, moisture content, loss on ignition, spore numbers, number and size of root fragments present and percentage of these roots infected with VAM. A corn-root bioassay was used to determine soil infectivity. Root fragment number, size, % root infection and soil infectivity were negatively correlated with soil depth. VAM spore number was not significantly correlated with depth in either store. It appears that infected root fragments and fresh roots were the source of inoculum although there may have been a contribution from spores in the younger store. The infectivity of the older store soil was less than that of the younger store. 12 refs., 5 tabs.

  14. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao

    2017-09-12

    Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    Science.gov (United States)

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Selection of Infective Arbuscular Mycorrhizal Fungal Isolates for Field Inoculation

    Directory of Open Access Journals (Sweden)

    Elisa Pellegrino

    2010-09-01

    Full Text Available Arbuscular mycorrhizal (AM fungi play a key role in host plant growth and health, nutrient and water uptake, plant community diversity and dynamics. AM fungi differ in their symbiotic performance, which is the result of the interaction of two fungal characters, infectivity and efficiency. Infectivity is the ability of a fungal isolate to establish rapidly an extensive mycorrhizal symbiosis and is correlated with pre-symbiotic steps of fungal life cycle, such as spore germination and hyphal growth. Here, different AM fungal isolates were tested, with the aim of selecting infective endophytes for field inoculation. Greenhouse and microcosm experiments were performed in order to assess the ability of 12 AM fungal isolates to produce spores, colonize host roots and to perform initial steps of symbiosis establishment, such as spore germination and hyphal growth. AM fungal spore production and root colonization were significantly different among AM fungal isolates. Spore and sporocarp densities ranged from 0.8 to 7.4 and from 0.6 to 2.0 per gram of soil, respectively, whereas root colonization ranged from 2.9 to 72.2%. Percentage of spore or sporocarp germination ranged from 5.8 to 53.3% and hyphal length from 4.7 to 79.8 mm. The ordination analysis (Redundancy Analysis, RDA showed that environmental factors explained about 60% of the whole variance and their effect on fungal infectivity variables was significant (P = 0.002. The biplot clearly showed that variables which might be used to detect infective AM fungal isolates were hyphal length and root colonization. Such analysis may allow the detection of the best parameters to select efficient AM fungal isolates to be used in agriculture.

  17. Selenite resistant rhizobacteria stimulate SeO(3) (2-) phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds.

    Science.gov (United States)

    Lampis, Silvia; Ferrari, Anita; Cunha-Queda, A Cristina F; Alvarenga, Paula; Di Gregorio, Simona; Vallini, Giovanni

    2009-09-01

    Selenium is a trace metalloid of global environmental concern. The boundary among its essentiality, deficiency, and toxicity is narrow and mainly depends on the chemical forms and concentrations in which this element occurs. Different plant species-including Brassica juncea-have been shown to play a significant role in Se removal from soil as well as water bodies. Furthermore, the interactions between such plants, showing natural capabilities of metal uptake and their rhizospheric microbial communities, might be exploited to increase both Se scavenging and vegetable biomass production in order to improve the whole phytoextraction efficiency. The aim of the present study was to evaluate the capability of selenite removal of B. juncea grown in hydroponic conditions on artificially spiked effluents. To optimize phytoextraction efficiency, interactions between B. juncea and rhizobacteria were designedly elicited. Firstly, B. juncea was grown on water-filtering agriperlite beds in the presence of three different selenite concentrations, namely, 0.2, 1.0, and 2.0 mM. Plant growth was measured after 3 and 6 weeks of incubation in order to establish the selenite concentration at which the best plant biomass production could be obtained. Afterwards, water-filtering agriperlite beds were inoculated either with a selenium-acclimated microbial community deriving from the rhizosphere of B. juncea grown, erstwhile, in a selenite-amended soil or with axenic cultures of two bacterial strains, vicelike Bacillus mycoides SeITE01 and Stenotrophomonas maltophilia SeITE02, previously isolated and described for their high resistance to selenite. These latter were seeded separately or as a dual consortium. Selenite was amended at a final concentration of 1.0 mM. Total Se content in plant tissues (both shoots and roots), plant biomass production, and persistence of bioaugmented microbial inocula during the experimental time were monitored. Moreover, parameters such as bioconcentration

  18. Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants.

    Science.gov (United States)

    Navarro García, Alejandra; Del Pilar Bañón Árias, Sebastián; Morte, Asunción; Sánchez-Blanco, María Jesús

    2011-01-01

    The influence of a water deficit treatment and mycorrhizal inoculation with Pisolithus tinctorius (Pers.) Coker and Couch on the water relations, gas exchange, and plant growth in Arbutus unedo L. plants was studied in order to evaluate the hardening process during the nursery period. The ability to withstand the adverse conditions after transplantation was also studied. Mycorrhizal and non-mycorrhizal seedlings of A. unedo were pot-grown for 4 months in a greenhouse (nursery period), during which time two irrigation treatments, well watered (100% water holding capacity, leaching 20% of the applied water) and deficit irrigation (50% of the well watered), were applied. Subsequently, the plants were transplanted to the field and well irrigated (transplanting period), after which and until the end of the experiment they received no water (establishment period). At the end of the nursery period, both water deficit and mycorrhizae were seen to have altered the plant morphology. Mycorrhizal plants had lower leaf area and improved leaf color parameters, while the water deficit increased root dry weight and the root/shoot ratio. Mycorrhizal plants had higher leaf water potential values than non-inoculated plants. Mycorrhizae increased stomatal conductance and photosynthesis values, especially in stressed plants. Drought led to an osmotic adjustment and a decrease in the leaf water potential values at turgor loss point in the mycorrhizal plants. Cell wall rigidity, measured as increased bulk modulus of elasticity, was decreased by the mycorrhizae effect. After transplanting, no differences were found in the water relations or gas exchange values between treatments. During the establishment period, the plants that had been exposed to both drought and mycorrhizae showed a better water status (higher leaf water and turgor potential values) and higher gas exchange values. In conclusion, water deficit and mycorrhizal inoculation of A. unedo plants in nursery produced changes in

  19. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  20. Arbuscular mycorrhizal fungi (AMF) as bio protector agents against wilt induced by Verticillium spp. in pepper

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, N.; Garmendia, I.; Sanchez-Diaz, M.; Aguirreolea, J.

    2010-07-01

    Verticillium dahliae Kleb. is a vascular pathogen that alters water status and growth of pepper plants and causes drastic reductions in yield. Its control is difficult because it can survive in field soil for several years. The application of arbuscular mycorrhizal fungi (AMF) as bio protector agents against V. dahliae is an alternative to the use of chemicals which, in addition, is more respectful with the environment. The establishment of the mutualistic association of plant roots and AMF involves a continuous cellular and molecular dialogue between both symbionts that includes the pre activation of plant defense responses that may enhance the resistance or tolerance of mycorrhizal plants to soil-borne pathogens. Some AMF can improve the resistance of Capsicum annuum L. against V. dahliae. This is especially relevant for pepper cultivars (i.e. cv. Piquillo) that exhibit high susceptibility to this pathogen. Compared with non-mycorrhizal plants, mycorrhizal pepper can exhibit more balanced antioxidant metabolism in leaves along the first month after pathogen inoculation, which may contribute to delay both the development of disease symptoms and the decrease of photosynthesis in Verticillium-inoculated plants with the subsequent benefit for yield. In stems, mycorrhizal pepper show earlier and higher deposition of lignin in xylem vessels than non mycorrhizal plants, even in absence of the pathogen. Moreover, AMF can induce new isoforms of acidic chitinases and superoxide dismutase in roots. Mycorrhizal-specific induction of these enzymatic activities together with enhanced peroxidase and phenylalanine ammonia-lyase in roots may also be involved in the bio protection of Verticillium-induced wilt in pepper by AMF. (Author) 81 refs.

  1. Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR for inducing salinity tolerance in mung bean under field condition of semi arid climate

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2013-04-01

    Full Text Available Salinity stress severely affects the growth, nodulation and yield of mung bean (Vigna radiata L.. However, its growth can be improved under salinity stress by inoculation/co-inoculation with rhizobia and plant growth promoting rhizobacteria (PGPR containing 1-Aminocyclopropane-1-carboxylic acid (ACC deaminase enzyme. ACC-deaminase containing bacteria regulate the stress induced ethylene production by hydrolyzing the ACC (immediate precursor of ethylene into ammonia and ketobutyric acid, thus improve plant growth by lowering the ethylene level. A study was conducted under salt affected field conditions where pre-isolated strains of Rhizobium and PGPR were used alone as well as in combination for mitigating the salinity stress on growth, nodulation and yield of mung bean by following the randomized complete block design (RCBD. The data were recorded and analyzed statistically to see the difference among treatments.

  2. Effect of Plant Growth Promoting Rhizobacteria (PGPR on Phenological Traits, Grain Yield and Yield Components of Three Maize (Zea mays L. Cultivars

    Directory of Open Access Journals (Sweden)

    A Soleimani Fard

    2013-11-01

    Full Text Available To evaluate the effect of bio-fertilize on yield and its components in maize cultivars, an split plot experiment based on randomized complete bock design with three replications in was conducted in Payam-noor University of Ilam, Iran, in 2009-2010. Treatments were cultivar (SC604, SC704 and SC807 assigned to main plots and bio-fertilizer (non- inoculation, inoculation with Azetobacter, Azospirillum and dual inoculation ofAzotobacterand Azospirillum to subplots. The effect of cultivar on days to maturity, plant height, dry matter, ear length, stem diameter, number of grain per ear row, 1000-grain weight, grain yield, biological yield and protein content was significant cultivar. SC 704 had the highest dry matter (259.5 g.m-2, plant height (201.1 cm, number of grain per ear row (42.8 grain, grain yield (10850 kg.m-2, and biological yield (22040 kg.m-2. The effect of plant growth promoting rhizobacteria on all traits expect harvest index was significant. Dual inoculation ofAzotobacterand Azospirillum had the longest days to ear initiation (71.2 days, days to maturity (115.4 day, number of leaves above ear (5.6 ear, dry matter (240.4 g.m-2, ear length (24.3 cm, plant height (212.4 cm, seed number of rows per ear (14.5 row, number of grains per row (44.2 grain, grain yield (10190 kg.m-2, biological yield (21320 kg.m-2 and protein content (10.7%. Interaction effect of cultivar× plant growth promoting rhizobacteria on grain yield was significant. The highest and lowest grain yield was obtained from SC 704 and application of dual inoculation ofAzotobacterand Azospirillum (12320 kg.ha-1 and lowest from SC 604 when inoculation treatments were not used 7570 kg.ha-1 respectively.

  3. Aspen-associated mycorrhizal fungal production and respiration as a function of changing CO2, O3 and climatic variables

    Science.gov (United States)

    Carrie J. Andrew; Linda T.A. van Diepen; R. Michael Miller; Erik A. Lilleskov

    2014-01-01

    The relationships of mycorrhizal fungal respiration and productivity to climate and atmospheric chemistry remain under characterized. We quantified mycorrhizal sporocarp and hyphal respiration, as well as growing season net hyphal production, under ambient and elevated carbon dioxide (CO2) and ozone (O3) in relation to...

  4. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply

    Czech Academy of Sciences Publication Activity Database

    Püschel, David; Janoušková, Martina; Hujslová, M.; Slavíková, R.; Gryndlerová, H.; Jansa, J.

    2016-01-01

    Roč. 6, č. 13 (2016), s. 4332-4346 ISSN 2045-7758 Institutional support: RVO:67985939 Keywords : arbuscular mycorrhizal fungi * nutrient uptake response * mycorrhizal benefits and costs Subject RIV: EF - Botanics Impact factor: 2.440, year: 2016

  5. Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review

    Science.gov (United States)

    Jamiołkowska, Agnieszka; Księżniak, Andrzej; Gałązka, Anna; Hetman, Beata; Kopacki, Marek; Skwaryło-Bednarz, Barbara

    2018-01-01

    Arbuscular mycorrhizal fungi inhabiting soil play an important role for vascular plants. Interaction between arbuscular mycorrhizal fungi, plants and soil microorganisms leads to many mutual advantages. However, the effectiveness of mycorrhizal fungi depends not only on biotic, but also abiotic factors such as physico-chemical properties of the soil, availability of water and biogenic elements, agricultural practices, and climatic conditions. First of all, it is important to adapt the arbuscular mycorrhizal fungi species to changing environmental conditions. The compactness of the soil and its structure have a huge impact on its biological activity. Soil pH reaction has a substantial impact on the mobility of ions in soil dilutions and their uptake by plants and soil microflora. Water excess can be a factor negatively affecting arbuscular mycorrhizal fungi because these microorganisms are sensitive to a lower availability of oxygen. Mechanical cultivation of the soil has a marginal impact on the arbuscular mycorrhizal fungi spores. However, soil translocation can cause changes to the population of the arbuscular mycorrhizal fungi abundance in the soil profile. The geographical location and topographic differentiation of cultivated soils, as well as the variability of climatic factors affect the population of the arbuscular mycorrhizal fungi in the soils and their symbiotic activity.

  6. The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance.

    Science.gov (United States)

    Merlos, Miguel A; Zitka, Ondrej; Vojtech, Adam; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2016-12-01

    Arbuscular mycorrhiza can increase plant tolerance to heavy metals. The effects of arbuscular mycorrhiza on plant metal tolerance vary depending on the fungal and plant species involved. Here, we report the effect of the arbuscular mycorrhizal fungus Rhizophagus irregularis on the physiological and biochemical responses to Cu of two maize genotypes differing in Cu tolerance, the Cu-sensitive cv. Orense and the Cu-tolerant cv. Oropesa. Development of the symbiosis confers an increased Cu tolerance to cv. Orense. Root and shoot Cu concentrations were lower in mycorrhizal than in non-mycorrhizal plants of both cultivars. Shoot lipid peroxidation increased with soil Cu content only in non-mycorrhizal plants of the Cu-sensitive cultivar. Root lipid peroxidation increased with soil Cu content, except in mycorrhizal plants grown at 250mg Cu kg -1 soil. In shoots of mycorrhizal plants of both cultivars, superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities were not affected by soil Cu content. In Cu-supplemented soils, total phytochelatin content increased in shoots of mycorrhizal cv. Orense but decreased in cv. Oropesa. Overall, these data suggest that the increased Cu tolerance of mycorrhizal plants of cv. Orense could be due to an increased induction of shoot phytochelatin biosynthesis by the symbiosis in this cultivar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Diversity and dynamics of mycorrhizal associations in tropical rain forests with different disturbance regimes in South Cameroon

    NARCIS (Netherlands)

    Onguene, N.A.

    2000-01-01

    The present study documents the occurrence of mycorrhizal associations in the rain forests of south Cameroon. All species investigated are mycorrhizal. Most timber species form arbuscular mycorrhiza, but some timber species, which usually occur in clumps, form ectomycorrhiza. Species

  8. Effects of tree species, water and nitrogen on mycorrhizal C flux

    Science.gov (United States)

    Menyailo, O.; Matvienko, A.

    2012-12-01

    Mycorrhiza plays an important role in global carbon cycle, especially, in forest soils, yet the effect of tree species on the amount and timing of C transfer through roots to myccorhiza is largely unknown. We studied the C transport to mycorrhiza under 6 most commonly dominant in boreal forests tree species using the mesh collars installed at the Siberian afforestation experiment. The CO2 flux from mycorrhizal and non-mycorrhizal mesh collars indicated the mycorrhizal C flux. Tree species strongly differed in C flux to mycorrhiza: more C was transferred by deciduous species than by conifers. The mycorrhizal CO2 flux was not linked to soil temperature but rather to trees phenology and to photosynthetic activity. All tree species transfered more carbon to mycorrhiza during the second half of summer and in September, this is because all the carbon photosynthesized earlier is used for building the tree biomass. Seasonal variation in C transfer to mycorrhiza was much larger than hourly variation (within a day). Nitrogen application (50 kg/ha) increased mycorrhizal C flux only under Scots pine, but not under larch, thus the effect of N application is tree species dependent. We found under most tree species that more C was transferred by trees to mycorrhiza in root-free collars, where the soil moisture was higher than in collars with roots. This suggests that trees preferentially support those parts of mycorrhiza, which can gain extra-resources.

  9. EFFECT OF DIESEL AND BIODIESEL ON THE GROWTH OF Brachiaria decumbens INOCULATED WITH ARBUSCULAR MYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    Dora Trejo

    2013-12-01

    Full Text Available Arbuscular mycorrhizal fungi have been found to be associated with plants useful in soil phytoremediation. The aim of this study was to compare the effects of diesel and biodiesel in soil and sand on the growth of Brachiaria decumbens inoculated with mycorrhizae. Two experiments were carried out: one experiment in soil and another in sand. A two-level- factorial design with three factors was used (one on sterile and another on non-sterile soil, with and without mycorrhizae; and one with diesel and another with biodiesel. In sand, a two-factor design with two levels was used (with and without mycorrhizae and with diesel and biodiesel, both with three replications. NOVADIESEL, biodiesel and PEMEX diesel were use as contaminants, both at 7%. The fresh and dry weight of the plants and percentage of mycorrhizal colonization, were assessed 30 days after planting. In soil, biodiesel was more toxic and reduced the fresh and dry weights of plants, especially in non-sterile soil. Biodiesel yielded greater mycorrhizal colonization values that doubled those of the control. In sand, diesel was found to reduce three times the fresh and dry weights of plants, compared to the biodiesel. In sand diesel presented high values of mycorrhizal colonization in comparison with biodiesel.  Plants inoculated with mycorrhizal fungi exhibited better development than non-inoculated plants, even in the presence of contaminants.

  10. Total fatty acid composition in the characterization and identification of orchid mycorrhizal fungi Epulorhiza spp.

    Directory of Open Access Journals (Sweden)

    Marlon Corrêa Pereira

    2011-08-01

    Full Text Available Rhizoctonia-like fungi are the main mycorrhizal fungi in orchid roots. Morphological characterization and analysis of conserved sequences of genomic DNA are frequently employed in the identification and study of fungi diversity. However, phytopathogenic Rhizoctonia-like fungi have been reliably and accurately characterized and identified through the examination of the fatty acid composition. To evaluate the efficacy of fatty acid composition in characterizing and identifying Rhizoctonia-like mycorrhizal fungi in orchids, three Epulorhiza spp. mycorrhizal fungi from Epidendrum secundum, two unidentified fungi isolated from Epidendrum denticulatum, and a phytopathogenic fungus, Ceratorhiza sp. AGC, were grouped based on the profile of their fatty acids, which was assessed by the Euclidian and Mahalanobis distances and the UPGMA method. Dendrograms distinguished the phytopathogenical isolate of Ceratorhiza sp. AGC from the mycorrhizal fungi studied. The symbionts of E. secundum were grouped into two clades, one containing Epulorhiza sp.1 isolates and the other the Epulorhiza sp.2 isolate. The similarity between the symbionts of E. denticulatum and Epulorhiza spp. fungi suggests that symbionts found in E. denticulatum may be identified as Epulorhiza. These results were corroborated by the analysis of the rDNA ITS region. The dendrogram constructed based on the Mahalanobis distance differentiated the clades most clearly. Fatty acid composition analysis proved to be a useful tool for characterizing and identifying Rhizoctonia-like mycorrhizal fungi.

  11. Occurrence of arbuscular mycorrhizal fungi on King George Island, South Shetland Islands, Antarctica.

    Science.gov (United States)

    Barbosa, Marisângela V; Pereira, Elismara A; Cury, Juliano C; Carneiro, Marco A C

    2017-01-01

    Arbuscular mycorrhizal fungi make up an important ecological niche in ecosystems, and knowledge of their diversity in extreme environments is still incipient. The objective of this work was to evaluate the density and diversity of arbuscular mycorrhizal fungi in the soil of King George Island in the South Shetland Islands archipelago, Antarctica. For that, soil and roots of Deschampsia antarctica were collected at the brazilian research station in Antarctica. The spore density, species diversity and mycorrhizal colonization in the roots were evaluated. There was a low density of spores (27.4 ± 17.7) and root mycorrhizal colonization (6 ± 5.1%), which did not present statistical difference. Four species of arbuscular mycorrhizal fungi were identified, distributed in two genera: three species of the genus Glomus (Glomus sp1, Glomus sp2 and Glomus sp3) and one of the genus Acaulospora, which was identified at species level (Acaulospora mellea). Greater soil diversity was verified with pH 5.9 and phosphorus concentration of 111 mg dm-3, occurring two species of genus Glomus and A. mellea. Based on literature data, this may be the first record of this species of Acaulospora mellea in Antarctic soils, colonizing D. antarctica plants.

  12. Uptake of 15 trace elements in arbuscular mycorrhizal marigold measured by the multitracer technique

    International Nuclear Information System (INIS)

    Suzuki, H.; Kumagai, H.; Oohashi, K.; Sakamoto, K.; Inubushi, K.; Enomoto, S.; Ambe, F.

    2000-01-01

    The effect of arbuscular mycorrhizal (AM) colonization on the uptake of trace elements in marigold (Tagetes patula L.) was studied using a multitracer consisting of radionuclides of 7 Be, 22 Na, 46 Sc, 51 Cr, 54 Mn, 59 Fe, 56 Co, 65 Zn, 74 As, 75 Se, 83 Rb, 85 Sr, 88 Y, 88 Zr, and 95m Tc. Marigold plants were grown under controlled environmental conditions in sand culture either without mycorrhizas or in association with an AM fungus, Glomus etunicatum. The multitracer was applied to the pot, and plants were harvested at 7 and 21 d after tracer application. We found that the uptake of 7 Be, 22 Na, 51 Cr, 59 Fe, 65 Zn, and 95m Tc was higher in the mycorrhizal marigolds than in the non-mycorrhizal ones, while that of 46 Sc, 56 Co, 83 Rb, and 85 Sr was lower in the mycorrhizal marigolds than in the non-mycorrhizal ones. Thus, the multitracer technique enabled to analyze the uptake of various elements by plant simultaneously. It is suggested that this technique could be used to analyze the effects of AM colonization on the uptake of trace elements by plant. (author)

  13. Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment.

    Science.gov (United States)

    Varga, Sandra

    2015-03-01

    • Arbuscular mycorrhizal fungi usually enhance overall plant performance, yet their effects on seed germination and early plant establishment, crucial steps in plant cycles, are generally overlooked. In gynodioecious species, sexual dimorphism in these traits has been reported, with females producing seeds that germinate at a faster rate than seeds from hermaphrodites.• Using the gynodioecious plant Geranium sylvaticum, I investigated in a greenhouse experiment whether the presence of arbuscular mycorrhizal spores affects seed germination and early plant establishment, examining at the same time whether the sex of the mother producing the seeds also influences these parameters and whether sex-specific interactions between these two factors exist.• The presence of arbuscular mycorrhizal spores in the soil decreased seed germination, did not affect plant survival, but did increase plant growth. Moreover, no significant differences in seed traits were detected between the sexes of the plants producing the seeds.• This study demonstrates that arbuscular mycorrhizal fungi may have contrasting effects for plants during early life stages and that mycorrhizal effects can take place even at the precolonization stage. © 2015 Botanical Society of America, Inc.

  14. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    Science.gov (United States)

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  15. Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning.

    Science.gov (United States)

    Li, Jinglong; Sun, Yuqing; Jiang, Xuelian; Chen, Baodong; Zhang, Xin

    2018-08-15

    In a pot experiment, Medicago sativa inoculated with/without arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were grown in four levels (0, 10, 25, and 75 mg/kg) of arsenic (As)-polluted soil to investigate the influences of AM symbiosis on plant As tolerance. The results showed that mycorrhizal inoculation significantly increased plant biomass, while As addition decreased mycorrhizal colonization and hyphal length density. Mycorrhizal inoculation dramatically improved plant phosphorus (P) nutrition, restricted As uptake and retained more As in roots by upregulating the expression of the AM-induced P transporter gene MsPT4 and the metallothionein gene MsMT2. High soil As content downregulated MsPT4 expression. Dimethylarsenic acid (DMA) was detected only in the shoots of mycorrhizal plants, indicating that AM fungi likely play an essential role in As detoxification by biological methylation. The present investigation allowed deeper insights into the As detoxification mechanisms of AM associations and demonstrated the important role of AM fungi in plant resistance under As-contaminated conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    Science.gov (United States)

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  17. Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize.

    Science.gov (United States)

    Wang, Xin-Xin; Hoffland, Ellis; Feng, Gu; Kuyper, Thomas W

    2017-01-01

    Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We investigated the effect of mycorrhizal hyphae-mediated phytase activity on P uptake by maize. Two maize ( Zea mays L.) cultivars, non-inoculated or inoculated with the arbuscular mycorrhizal fungi Funneliformis mosseae or Claroideoglomus etunicatum , were grown for 45 days in two-compartment rhizoboxes, containing a root compartment and a hyphal compartment. The soil in the hyphal compartment was supplemented with 20, 100, and 200 mg P kg -1 soil as calcium phytate. We measured activity of phytase and acid phosphatase in the hyphal compartment, hyphal length density, P uptake, and plant biomass. Our results showed: (1) phytate addition increased phytase and acid phosphatase activity, and resulted in larger P uptake and plant biomass; (2) increases in P uptake and biomass were correlated with phytase activity but not with acid phosphatase activity; (3) lower phytate addition rate increased, but higher addition rate decreased hyphal length density. We conclude that P from phytate can be taken up by arbuscular mycorrhizal plants and that phytase plays a more important role in mineralizing phytate than acid phosphatase.

  18. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses.

    Science.gov (United States)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun; Chen, Baodong

    2016-10-05

    Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?

    Science.gov (United States)

    Duhamel, Marie; Pel, Roel; Ooms, Astra; Bücking, Heike; Jansa, Jan; Ellers, Jacintha; van Straalen, Nico M; Wouda, Tjalf; Vandenkoornhuyse, Philippe; Kiers, E Toby

    2013-09-01

    A key objective in ecology is to understand how cooperative strategies evolve and are maintained in species networks. Here, we focus on the tri-trophic relationship between arbuscular mycorrhizal (AM) fungi, host plants, and fungivores to ask if host plants are able to protect their mutualistic mycorrhizal partners from being grazed. Specifically, we test whether secondary metabolites are transferred from hosts to fungal partners to increase their defense against fungivores. We grew Plantago lanceolata hosts with and without mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then measured fungivore effects on host biomass and mycorrhizal abundance (using quantitative PCR) in roots and soil. We used high-performance liquid chromatography to measure host metabolites in roots, shoots, and hyphae, focusing on catalpol, aucubin, and verbascoside. Our most striking result was that the metabolite catalpol was consistently found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-mediated protection of the mycorrhizal hyphal network.

  20. Lead tolerance of Populus nigra in symbiosis with arbuscular mycorrhizal fungi in relation to physiological parameters

    International Nuclear Information System (INIS)

    Salehi, A.; Tabari, M.; Mohammadi Goltapeh, E.; Shirvani, A.

    2016-01-01

    With the aim to examine lead tolerance of Populus nigra (clone 62/154) in symbiosis witharbuscular mycorrhizal fungi, a greenhouse experiment was carried out in a factorial randomized complete scheme with two factors 1) fungal inoculation in 4 levels (control, inoculation with Glomus mosseae, inoculation with G. intraradices and inoculation with G. mosseae+G. intraradices) and 2) lead in 4 levels (0, 100, 500 and 1000 mg kg-1 soil). Mycorrhizal colonization and physiological parameters of plants were measured at the end of growth season. Results showed that at all Pb levels, the percentage of root mycorrhizal colonization in fungal treatments was significantly higher than that in control treatment (without fungal inoculation), however without significant differences between 3 fungal treatments. Pb treatments had no significant effect on root mycorrhizal colonization of P. nigra plants. Also, photosynthesis, stomatal conductance, transpiration, intercellular CO2 concentration and water use efficiency of P. nigra plants had no significant inhibitory effects versus the control found under Pb and fungal treatments or their interaction.The results of present study demonstrated that fungal treatments had no significant effects on physiological parameters and Pb tolerance of P. nigraplants. While, in relation to mycorrhizal colonization and physiological parameters, P. nigra clone 62/154 showeda good tolerance to Pb stress. So, in further investigations of phytoremediation of lead-contaminated soils, this clone can be considered as a proposed species.

  1. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    Science.gov (United States)

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  2. Initial vesicular-arbuscular mycorrhizal development of slender wheatgrass on two amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Zak, J.C.; Parkinson, D. (University of Calgary, Calgary, AB (Canada). Dept. of Biology)

    1982-01-01

    The initial vesicular-arbuscular (VA) mycorrhizal development of slender wheatgrass on extracted oil-sands and subalpine coal-mine spoils, amended with either fertilizer, peat, or liquid sewage sludge, was examined. Plants were sampled at 2,6 and 10 weeks after plant emergence and the level of infection was expressed as length of mycorrhizal root per plant and length of root which contained arbuscules, vesicles, or only hyphae. Mycorrhizal infection of slender wheatgrass on the oil sands was limited to plants on the peat-amended spoil. Infection of plants on the peat-amended oil-sands spoil was detected by 2 weeks. Plants on the subalpine spoil were infected at 2 weeks only on the peat-amended spoil. While slender wheatgrass on the control and fertilizer-amended spoil developed mycorrhizae by 6 weeks, infection was not observed in plants on the sewage-amended spoil until 10 weeks. At 10 weeks, there were no significant differences in lengths of mycorrhizal root per plant among the amendments. Increased P levels in the fertilizer- and sewage-amended subalpine spoil did not suppress VA mycorrhizal development. 43 refs., 6 tabs.

  3. Correlation of arbuscular mycorrhizal colonization with plant growth, nodulation, and shoot npk in legumes

    International Nuclear Information System (INIS)

    Javaid, A.; Anjum, T.; Shah, M.H.M.

    2007-01-01

    Correlation of arbuscular mycorrhizal colonization with different root and shoot growth, nodulation and shoot NPK parameters was studied in three legumes viz. Trifolium alexandrianum, Medicago polymorpha and Melilotus parviflora. The three test legume species showed different patterns of root and shoot growth, nodulation, mycorrhizal colonization and shoot N, P and K content. Different mycorrhizal structures viz. mycelium, arbuscules and vesicles showed different patters of correlation with different studied parameters. Mycelial infection showed an insignificantly positive correlation with root and shoot dry biomass and total root length. Maximum root length was however, negatively associated with mycelial infection. Both arbuscular and vesicular infections were negatively correlated with shoot dry biomass and different parameters of root growth. The association between arbuscular infection and maximum root length was significant. All the three mycorrhizal structures showed a positive correlation with number and biomass of nodules. The association between arbuscular infection and nodule number was significant. Mycelial infection was positively correlated with percentage and total shoot N and P. Similarly percentage N was also positively correlated with arbuscular and vesicular infections. By contrast, total shoot N showed a negative association with arbuscular as well as vesicular infections. Similarly both percentage and total shoot P were negatively correlated with arbuscular and vesicular infections. All the associations between mycorrhizal parameters and shoot K were negative except between vesicular infection and shoot %K. (author)

  4. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    Science.gov (United States)

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-08-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.

  5. An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Gerlach, Nina; Schmitz, Jessica; Polatajko, Aleksandra; Schlüter, Urte; Fahnenstich, Holger; Witt, Sandra; Fernie, Alisdair R; Uroic, Kalle; Scholz, Uwe; Sonnewald, Uwe; Bucher, Marcel

    2015-08-01

    Most terrestrial plants benefit from the symbiosis with arbuscular mycorrhizal fungi (AMF) mainly under nutrient-limited conditions. Here the crop plant Zea mays was grown with and without AMF in a bi-compartmented system separating plant and phosphate (Pi) source by a hyphae-permeable membrane. Thus, Pi was preferentially taken up via the mycorrhizal Pi uptake pathway while other nutrients were ubiquitously available. To study systemic effects of mycorrhizal Pi uptake on leaf status, leaves of these plants that display an increased biomass in the presence of AMF were subjected to simultaneous ionomic, transcriptomic and metabolomic analyses. We observed robust changes of the leaf elemental composition, that is, increase of P, S and Zn and decrease of Mn, Co and Li concentration in mycorrhizal plants. Although changes in anthocyanin and lipid metabolism point to an improved P status, a global increase in C versus N metabolism highlights the redistribution of metabolic pools including carbohydrates and amino acids. Strikingly, an induction of systemic defence gene expression and concomitant accumulation of secondary metabolites such as the terpenoids alpha- and beta-amyrin suggest priming of mycorrhizal maize leaves as a mycorrhiza-specific response. This work emphasizes the importance of AM symbiosis for the physiological status of plant leaves and could lead to strategies for optimized breeding of crop species with high growth potential. © 2015 John Wiley & Sons Ltd.

  6. The interplay between P uptake pathways in mycorrhizal peas: a combined physiological and gene‐silencing approach

    DEFF Research Database (Denmark)

    Grønlund, Mette; Albrechtsen, Merete Tryde; Johansen, Ida Elisabeth

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) have a key role in plant phosphate (Pi) uptake by their efficient capture of soil phosphorus (P) that is transferred to the plant via Pi transporters in the root cortical cells. The activity of this mycorrhizal Pi uptake pathway is often associated with downregu......Arbuscular mycorrhizal fungi (AMF) have a key role in plant phosphate (Pi) uptake by their efficient capture of soil phosphorus (P) that is transferred to the plant via Pi transporters in the root cortical cells. The activity of this mycorrhizal Pi uptake pathway is often associated...... with downregulation of Pi transporter genes in the direct Pi uptake pathway. As the total Pi taken up by the plant is determined by the combined activity of mycorrhizal and direct pathways, it is important to understand the interplay between these, in particular the actual activity of the pathways. To study...

  7. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient1[OPEN

    Science.gov (United States)

    Mullinix, George W.R.; Ward, Joy K.

    2016-01-01

    Rising atmospheric carbon dioxide concentration ([CO2]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO2] gradient (180–1,000 µL L−1). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO2] and arbuscular mycorrhizal fungi. To evaluate [CO2] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (MBio) and nonmycorrhizal (NMBio) plants (RBio = [MBio − NMBio]/NMBio). We then assessed linkages between RBio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, RBio increased with rising [CO2], shifting from negative to positive values at 700 µL L−1. [CO2] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in RBio in this species. For T. ceratophorum, RBio increased from 180 to 390 µL L−1 and further increases in [CO2] caused RBio to shift from positive to negative values. [CO2] and fungal effects on plant growth and carbon sink strength were correlated with shifts in RBio in this species. Overall, we show that rising [CO2] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO2], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO2]. The magnitude and mechanisms driving mycorrhizal-CO2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. PMID:27573369

  8. Plant Growth Promoting Rhizobacteria

    Indian Academy of Sciences (India)

    IAS Admin

    known to improve plant growth in many ways when compared to ... roles in agricultural productivity. ... Sustainable agriculture: Sustainable agriculture involves the successful management of agricultural re- ... For the first time Kloepper et al.

  9. Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant

    International Nuclear Information System (INIS)

    Renker, C.; Blanke, V.; Buscot, F.

    2005-01-01

    Mycorrhizal colonization and diversity of arbuscular mycorrhizal fungi (AMF) were analyzed in a calcareous grassland with residual phosphate contamination 10 years after the closure of a pollutant fertilizer plant in Thuringia (Germany). AMF were detected in 21 of 22 plant species analyzed. Mean mycorrhization levels reached up to 74.5% root length colonized. AMF diversity was analyzed based on 104 sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Phylogenetic analyses revealed a total of 6 species all belonging to the genus Glomus. There was no overlap between species detected as active mycorrhizas on roots (2 taxa) or as spores (4 taxa). Compared to the regional context, the diversity of AMF at our field site was reduced, which may reflect a residual disturbance effect. However, none of the detected species was exclusive to the polluted site as they are commonly found in the region. - Almost all plant species were mycorrhizal

  10. Water management, rice varieties and mycorrhizal inoculation influence arsenic concentration and speciation in rice grains.

    Science.gov (United States)

    Zhang, Xin; Wu, Songlin; Ren, Baihui; Chen, Baodong

    2016-05-01

    A pot experiment was carried out to investigate the effects of water management and mycorrhizal inoculation on arsenic (As) uptake by two rice varieties, the As-resistant BRRI dhan 47 (B47) and As-sensitive BRRI dhan 29 (B29). Grain As concentration of B47 plants was significantly lower than that of B29, and grain As concentration of B47 was higher under flooding conditions than that under aerobic conditions. In general, mycorrhizal inoculation (Rhizophagus irregularis) had no significant effect on grain As concentrations, but decreased the proportion of inorganic arsenic (iAs) in grains of B47. The proportion of dimethylarsinic acid (DMA) in the total grain As was dramatically higher under flooding conditions. Results demonstrate that rice variety selection and appropriate water management along with mycorrhizal inoculation could be practical countermeasures to As accumulation and toxicity in rice grains, thus reducing health risks of As exposure in rice diets.

  11. Effect of arbuscular mycorrhizal fungi and pesticides on Cynara cardunculus growth

    Directory of Open Access Journals (Sweden)

    M. MARIN

    2008-12-01

    Full Text Available Wild cardoon (Cynara cardunculus L. is a promising crop for biomass production. A nursery trial was conducted to investigate the effectiveness of mycorrhizal inoculation on the biomass yield of wild cardoon seedlings and the effect of the pesticides fosetyl-Al, folpet and propamocarb, as fungicides, and isofenphos, phoxim and oxamyl, as insecticides, on cardoon plant growth and the mycorrhization. The arbuscular mycorrhizal (AM fungi inocula were: commercial inoculum with Glomus mosseae spores, and an inoculum of a Glomus sp. strain (AMF-i isolated locally. Mycorrhizal inoculation with either inoculum increased cardoon shoot biomass compared to non-inoculated control plants. The pesticide applications had a neutral or positive effect on cardoon seedling growth. However, the AM fungi colonisation did not decrease except for plants colonised by G. mosseae and treated with the insecticides isofenphos and oxamyl. Thus, the mycorrhiza can survive to pesticide concentrations employed in commercial nursery, and enhance cardoon plant productivity.

  12. How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses.

    Science.gov (United States)

    Mayer, Zoltán; Duc, Nguyen Hong; Sasvári, Zita; Posta, Katalin

    2017-12-01

    The association between terrestrial plants and arbuscular mycorrhizal (AM) fungi is one of the most common and widespread mutualistic plant-fungi interaction. AM fungi are of beneficial effects on the water and nutrient uptake of plants and increase plant defense mechanisms to alleviate different stresses. The aim of this study was to determine the level of polyphenol oxidase (PPO), guaiacol peroxidase (POX) and glutathione S-transferase (GST) enzyme activities and to track the expression of glutathione S-transferase (GST) gene in plant-arbuscular mycorrhizal system under temperature- and mechanical stress conditions. Our results suggest that induced tolerance of mycorrhizal sunflower to high temperature may be attributed to the induction of GST, POX and PPO enzyme activities as well as to the elevated expression of GST. However, the degree of tolerance of the plant is significantly influenced by the age which is probably justified by the energy considerations.

  13. Mycorrhizal colonisation of highbush blueberry and its native relatives in central Finland

    Directory of Open Access Journals (Sweden)

    A. KASURINEN

    2008-12-01

    Full Text Available Transmission electromicroscopy, trypan blue staining in combination with stereomicroscope analysis and biochemical ergosterol assay were used to study the mycorrhizal symbionts in wild bilberry (Vaccinium myrtillus, bog whortleberry (Vaccinium uliginosum and highbush blueberry (Vaccinium corymbosum roots. TEM-analysis showed that in all species ericoid mycorrhizas formed hyphae coil inside the epidermal root cells. In stereomicroscopic viewing the highest mycorrhizal colonisation was observed in the roots of wild bilberries (51%, whereas according to the ergosterol assay the highest total fungal biomass of roots was found in bog whortleberries (209 mg g-1 of root d. wt. Both ergosterol and microscopical method showed that the mycorrhizal associations in blueberry cultivars and their wild relatives growing on natural soil medium are frequent, although ericoid mycorrhiza formation of highbush blueberries was somewhat weaker than that of wild bilberries and bog whortleberries.

  14. Effects of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species.

    Science.gov (United States)

    Caglar, S; Akgun, A

    2006-07-01

    The experiment was undertaken to test the efficiency of inoculation of vesicular-arbuscular mycorrhizal (VAM) fungi on the seedling growth of three Pistacia species used as rootstocks. The stratified Pistacia seeds were inoculated with VAM fungi. The highest rate of inoculated roots was 96.7% in P. khinjuck seedlings with G. clarum and G. etunicatum, 83.3% in P. vera seedlings with G. caledonium and 73.3% in P. terebinthus seedlings with G. caledonium. Mycorrhizal inoculations improved seedling height only in P. terebinthus. Certain mycorrhizal inoculations increased the leaf N, but not P and K contents. Seedlings inoculated with G. caledonium had higher reducing sugar contents. It was concluded that pre-inoculated Pistacia seedlings could have a better growth in the harsh field conditions.

  15. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    Science.gov (United States)

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-05-15

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses

    International Nuclear Information System (INIS)

    Wu, Songlin; Zhang, Xin; Sun, Yuqing; Wu, Zhaoxiang; Li, Tao; Hu, Yajun; Lv, Jitao; Li, Gang; Zhang, Zhensong; Zhang, Jing; Zheng, Lirong; Zhen, Xiangjun

    2016-01-01

    Highlights: • Cr immobilization in AM symbioses revealed by SEM-EDS, STXM and XAFS. • EPS like particles formed on fungal surface upon Cr(VI) stress. • Cr(VI) was reduced to mainly Cr(III)-phosphate analogues on fungal surface. • Cr can be retained by the intraradical fungal structures in mycorrhizal roots. - Abstract: Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  17. Chromium immobilization by extra- and intraradical fungal structures of arbuscular mycorrhizal symbioses

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Songlin [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycká 129, Prague 6−Suchdol 165 21 (Czech Republic); Zhang, Xin [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Sun, Yuqing; Wu, Zhaoxiang [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Li, Tao [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Hu, Yajun [State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 (China); Lv, Jitao; Li, Gang; Zhang, Zhensong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhang, Jing; Zheng, Lirong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhen, Xiangjun [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); and others

    2016-10-05

    Highlights: • Cr immobilization in AM symbioses revealed by SEM-EDS, STXM and XAFS. • EPS like particles formed on fungal surface upon Cr(VI) stress. • Cr(VI) was reduced to mainly Cr(III)-phosphate analogues on fungal surface. • Cr can be retained by the intraradical fungal structures in mycorrhizal roots. - Abstract: Arbuscular mycorrhizal (AM) fungi can enhance plant Cr tolerance through immobilizing Cr in mycorrhizal roots. However, the detailed processes and mechanisms are unclear. The present study focused on cellular distribution and speciation of Cr in both extraradical mycelium (ERM) and mycorrhizal roots exposed to Cr(VI) by using field emission scanning electron microscopy equipped with energy dispersive X-ray spectrometer (FE-SEM-EDS), scanning transmission soft X-ray microscopy (STXM) and X-ray absorption fine structure (XAFS) spectroscopy techniques. We found that amounts of particles (possibly extracellular polymeric substances, EPS) were produced on the AM fungal surface upon Cr(VI) stress, which contributed greatly to Cr(VI) reduction and immobilization. With EDS of the surface of AM fungi exposed to various Cr(VI) levels, a positive correlation between Cr and P was revealed, suggesting that phosphate groups might act as counter ions of Cr(III), which was also confirmed by the XAFS analysis. Besides, STXM and XAFS analyses showed that Cr(VI) was reduced to Cr(III) in AM fungal structures (arbuscules, intraradical mycelium, etc.) and cell walls in mycorrhizal roots, and complexed possibly with carboxyl groups or histidine analogues. The present work provided evidence of Cr immobilization on fungal surface and in fungal structures in mycorrhizal roots at a cellular level, and thus unraveled the underlying mechanisms by which AM symbiosis immobilize Cr.

  18. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis.

    Science.gov (United States)

    Aloui, Achref; Recorbet, Ghislaine; Lemaître-Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; Wipf, Daniel; Dumas-Gaudot, Eliane

    2018-01-01

    In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.

  19. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Science.gov (United States)

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over

  20. Conditions Promoting Mycorrhizal Parasitism are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Directory of Open Access Journals (Sweden)

    Martina Friede

    2016-09-01

    Full Text Available Interactions of plants with arbuscular mycorrhizal fungi (AMF may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD of a plant and in consequence may play an important role in plant-plant interactions.In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic.Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant