Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.
Ganem, Joseph; Bowman, Steven R
2013-11-01
Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.
Zakeri, Khalil; Engelhardt, Tobias; Le Tacon, Matthieu; Wolf, Thomas
2018-06-01
Utilizing high-resolution electron energy-loss spectroscopy (HREELS) we measure the phonon frequencies of β-FeSe(001), cleaved under ultra-high vacuum conditions. At the zone center (Γ bar-point) three prominent loss features are observed at loss energies of about ≃ 20.5 and 25.6 and 40 meV. Based on the scattering selection rules we assign the observed loss features to the A1g, B1g, and A2u phonon modes of β-FeSe(001). The experimentally measured phonon frequencies do not agree with the results of density functional based calculations in which a nonmagnetic, a checkerboard or a strip antiferromagnetic order is assumed for β-FeSe(001). Our measurements suggest that, similar to the other Fe-based materials, magnetism has a profound impact on the lattice dynamics of β-FeSe(001).
Phonon Scattering and Confinement in Crystalline Films
Parrish, Kevin D.
The operating temperature of energy conversion and electronic devices affects their efficiency and efficacy. In many devices, however, the reference values of the thermal properties of the materials used are no longer applicable due to processing techniques performed. This leads to challenges in thermal management and thermal engineering that demand accurate predictive tools and high fidelity measurements. The thermal conductivity of strained, nanostructured, and ultra-thin dielectrics are predicted computationally using solutions to the Boltzmann transport equation. Experimental measurements of thermal diffusivity are performed using transient grating spectroscopy. The thermal conductivities of argon, modeled using the Lennard-Jones potential, and silicon, modeled using density functional theory, are predicted under compressive and tensile strain from lattice dynamics calculations. The thermal conductivity of silicon is found to be invariant with compression, a result that is in disagreement with previous computational efforts. This difference is attributed to the more accurate force constants calculated from density functional theory. The invariance is found to be a result of competing effects of increased phonon group velocities and decreased phonon lifetimes, demonstrating how the anharmonic contribution of the atomic potential can scale differently than the harmonic contribution. Using three Monte Carlo techniques, the phonon-boundary scattering and the subsequent thermal conductivity reduction are predicted for nanoporous silicon thin films. The Monte Carlo techniques used are free path sampling, isotropic ray-tracing, and a new technique, modal ray-tracing. The thermal conductivity predictions from all three techniques are observed to be comparable to previous experimental measurements on nanoporous silicon films. The phonon mean free paths predicted from isotropic ray-tracing, however, are unphysical as compared to those predicted by free path sampling
Photon-phonon laser on crystalline silicon: a feasibility study
International Nuclear Information System (INIS)
Zadernovsky, A A
2015-01-01
We discuss a feasibility of photon-phonon laser action in bulk silicon with electron population inversion. It is well known, that only direct gap semiconductors are used as an active medium in optical lasers. In indirect gap semiconductors, such as crystalline silicon, the near-to-gap radiative electron transitions must be assisted by emission or absorption of phonons to conserve the momentum. The rate of such two-quantum transitions is much less than in direct gap semiconductors, where the similar radiative transitions are single-quantum. As a result, the quantum efficiency of luminescence in silicon is too small to get it as a laser material. Numerous proposals to overcome this problem are aimed at increasing the rate of radiative recombination. We suggest enhancing the quantum efficiency of luminescence in silicon by stimulating the photon part of the two-quantum transitions by light from an appropriate external laser source. This allows us to obtain initially an external-source-assisted lasing in silicon and then a true photon-phonon lasing without any external source of radiation. Performed analysis revealed a number of requirements to the silicon laser medium (temperature, purity and perfection of crystals) and to the intensity of stimulating radiation. We discuss different mechanisms that may hinder the implementation of photon-phonon lasing in silicon
First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures
International Nuclear Information System (INIS)
Mazumder, Sandip; Li, Ju
2010-01-01
The inability to remove heat efficiently is currently one of the stumbling blocks toward further miniaturization and advancement of electronic, optoelectronic, and micro-electro-mechanical devices. In order to formulate better heat removal strategies and designs, it is first necessary to understand the fundamental mechanisms of heat transport in semiconductor thin films. Modeling techniques, based on first principles, can play the crucial role of filling gaps in our understanding by revealing information that experiments are incapable of. Heat conduction in crystalline semiconductor films occurs by lattice vibrations that result in the propagation of quanta of energy called phonons. If the mean free path of the traveling phonons is larger than the film thickness, thermodynamic equilibrium ceases to exist, and thus, the Fourier law of heat conduction is invalid. In this scenario, bulk thermal conductivity values, which are experimentally determined by inversion of the Fourier law itself, cannot be used for analysis. The Boltzmann Transport Equation (BTE) is a powerful tool to treat non-equilibrium heat transport in thin films. The BTE describes the evolution of the number density (or energy) distribution for phonons as a result of transport (or drift) and inter-phonon collisions. Drift causes the phonon energy distribution to deviate from equilibrium, while collisions tend to restore equilibrium. Prior to solution of the BTE, it is necessary to compute the lifetimes (or scattering rates) for phonons of all wave-vector and polarization. The lifetime of a phonon is the net result of its collisions with other phonons, which in turn is governed by the conservation of energy and momentum during the underlying collision processes. This research project contributed to the state-of-the-art in two ways: (1) by developing and demonstrating a calibration-free simple methodology to compute intrinsic phonon scattering (Normal and Umklapp processes) time scales with the inclusion
Creation of high-energy phonons by four-phonon processes in anisotropic phonon system of He II
International Nuclear Information System (INIS)
Adamenko, I.N.; Nemchenko, K.E.; Slipko, V.A.; Kitsenko, Yu.A.; Wyatt, A.F.G.
2007-01-01
The problem of the creation of high-energy phonons (h-phonons) by a pulse of low-energy phonons (I-phonons) moving from a heater to a detector in superfluid helium, is solved. The rate of h-phonon creation is obtained and it is shown that created h-phonons occupy a much smaller solid angle in momentum space, than the I-phonons. Analytical expression for the creation rate of h-phonon, along the symmetry axis of a pulse, are derived. It allows us to get useful approximate analytical expressions for creation rate of h-phonons. The time dependences of the parameters which describe the I-phonon pulse are obtained. This shows that half of the initial energy of I-phonon pulse can be transferred into h-phonons. The results of the calculations are compared with experimental data and we show that this theory explains a number of experimental results. The value of the momentum, which separates the I- and h-phonon subsystems, is found
The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films
Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.
2018-04-01
In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.
Phonons, defects and optical damage in crystalline acetanilide
Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.
1986-04-01
Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.
International Nuclear Information System (INIS)
Lee, A.T.; Cabrera, B.; Dougherty, B.L.; Penn, M.J.; Pronko, J.G.; Tamura, S.
1996-01-01
We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7 Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024 +0.041 -0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)
Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.
2000-01-01
The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.
Diffusion of phonons through (along and across) the ultrathin crystalline films
Šetrajčić, J. P.; Jaćimovski, S. K.; Vučenović, S. M.
2017-11-01
Instead of usual approach, applying displacement-displacement Green's functions, the momentum-momentum Green's functions will be used to calculate the diffusion tensor. With this type of Green's function we have calculated and analyzed dispersion law in film-structures. A small number of phonon energy levels along the direction of boundary surfaces joint of the film are discrete-ones and in this case standing waves could occur. This is consequence of quantum size effects. These Green's functions enter into Kubo's formula defining diffusion properties of the system and possible heat transfer direction through observed structures. Calculation of the diffusion tensor for phonons in film-structure requires solving of the system of difference equations. Boundary conditions are included into mentioned system through the Hamiltonian of the film-structure. It has been shown that the diagonal elements of the diffusion tensor express discrete behavior of the dispersion law of elementary excitations. More important result is-that they are temperature independent and that their values are much higher comparing with bulk structures. This result favors better heat conduction of the film, but in direction which is perpendicular to boundary film surface. In the same time this significantly favors appearance 2D superconducting surfaces inside the ultra-thin crystal structure, which are parallel to the boundary surface.
Phonon self-energy corrections to non-zero wavevector phonon modes in single-layer graphene
Araujo, Paulo; Mafra, Daniela; Sato, Kentaro; Saito, Richiiro; Kong, Jing; Dresselhaus, Mildred
2012-02-01
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G'-band features originating from a double-resonant Raman process with q 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.
Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene
Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.
2012-07-01
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.
Energy Guiding and Harvesting through Phonon-Engineered Graphene
2016-01-28
Graphene The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of the...ABSTRACT Final Report: Energy Guiding and Harvesting through Phonon-Engineered Graphene Report Title The work performed under this proposal was primarily...Justin Wu, Xinran Wang, Kristof Tahy, Debdeep Jena, Hongjie Dai, Eric Pop. Thermally Limited Current Carrying Ability of Graphene Nanoribbons
Generation and detection of high-energy phonons by superconducting junctions
International Nuclear Information System (INIS)
Singer, I.L.
1976-01-01
Superconducting tunnel junctions are used to investigate the dynamics of energy exchange that takes place in superconductors driven out of equilibrium. In a Sn junction biased at a voltage V much greater than 2Δ(Sn)/e, the tunneling current sustains a continual energy exchange amongst the quasiparticles, phonons, and Cooper pairs. Repeatedly, high-energy quasiparticles decay, emitting phonons; and phonons with energy greater than 2Δ(Sn) break pairs, producing quasiparticles. The phonon-induced component of the current is recovered by synchronously detecting the full tunneling current with respect to a small modulation current in the generator. Sharp onsets observed at intervals of the gap energies require that the escaping phonons are produced by the direct decay of the injected quasiparticles and are not merely the high-energy tail of the thermalized phonons. Both primary and secondary phonons can be abserved distinctly. Theoretical transconductance curves have been computed. The experimental and theoretical curves are in good qualitative agreement. A more detailed comparison suggests that the escape rate of high-energy phonons depends on the energy of the phonons. The dependence of the observed transconductance signal on the temperature and the total junction thickness suggests that the presence of quasiparticles plays a major role in the escape of high-energy phonons. The dependence on temperature can be fitted to exp(b/kT), 0.74 less than b less than 1.05 MeV. It is speculated that the excitation energy is first transported across the superconductor and then carried out of the film by the phonons. It is concluded that high-energy phonons are a sensitive probe of the very reabsorption effects that make their escape so unlikely, and analysis of the detected phonons rich details of the behavior of superconductors removed from equilibrium
International Nuclear Information System (INIS)
Russell, F.M.
1989-05-01
Energetic particles moving with a solid, either from nuclear reactions or externally injected, deposit energy by inelastic scattering processes which eventually appears as thermal energy. If the transfer of energy occurs in a crystalline solid then it is possible to couple some of the energy directly to the nuclei forming the lattice by generating phonons. In this paper the transfer of energy from a compound excited nucleus to the lattice is examined by introducing a virtual particle Π. It is shown that by including a Π in the nuclear reaction a substantial amount of energy can be coupled directly to the lattice. In the lattice this particle behaves as a spatially localized phonon of high energy, the so-called supra-ballistic phonon. By multiple inelastic scattering the supra-ballistic phonon eventually thermalizes. Because both the virtual particle Π and the equivalent supra-ballistic phonon have no charge or spin and can only exist within a lattice it is difficult to detect other than by its decay into thermal phonons. The possibility of a Π removing excess energy from a compound nucleus formed by the cold fusion of deuterium is examined. (Author)
Polar phonon anomalies in single-crystalline TbScO.sub.3./sub..
Czech Academy of Sciences Publication Activity Database
Kamba, Stanislav; Goian, Veronica; Nuzhnyy, Dmitry; Bovtun, Viktor; Kempa, Martin; Prokleška, J.; Bernhagen, M.; Uecker, R.; Schlom, D. G.
2013-01-01
Roč. 86, 2-3 (2013), s. 206-216 ISSN 0141-1594 R&D Projects: GA ČR GAP204/12/1163; GA MŠk LD12026 Institutional support: RVO:68378271 Keywords : antiferromagnetic phase transition * phonons * infrared and microwave spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.044, year: 2013
Liu, Yun; Chen, Sow-Hsin; Berti, Debora; Baglioni, Piero; Alatas, Ahmet; Sinn, Harald; Alp, Ercan; Said, Ayman
2005-12-01
The phonon propagation and damping along the axial direction of films of aligned 40wt% calf-thymus DNA rods are studied by inelastic x-ray scattering (IXS). The IXS spectra are analyzed with the generalized three effective eigenmode theory, from which we extract the dynamic structure factor S (Q,E) as a function of transferred energy E =ℏω, and the magnitude of the transferred wave vector Q. S (Q,E) of a DNA sample typically consists of three peaks, one central Rayleigh scattering peak, and two symmetric Stokes and anti-Stokes Brillouin side peaks. By analyzing the Brillouin peaks, the phonon excitation energy and damping can be extracted at different Q values from about 4 to 30nm-1. A high-frequency sound speed is obtained from the initial slope of the linear portion of the dispersion relation below Q =4nm-1. The high-frequency sound speed obtained in this Q range is 3100m /s, which is about twice faster than the ultrasound speed of 1800m/s, measured by Brillouin light scattering at Q ˜0.01nm-1 at the similar hydration level. Our observations provide further evidence of the strong coupling between the internal dynamics of a DNA molecule and the dynamics of the solvent. The effect on damping and propagation of phonons along the axial direction of DNA rods due to divalent and trivalent counterions has been studied. It is found that the added multivalent counterions introduce stronger phonon damping. The phonons at the range between ˜12.5 and ˜22.5nm-1 are overdamped by the added counterions according to our model analyses. The intermediate scattering function is extracted and it shows a clear two-step relaxation with the fast relaxation time ranging from 0.1 to 4ps.
Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration
Gordiz, Kiarash; Henry, Asegun
2016-01-01
We studied the modal contributions to heat conduction at crystalline Si and crystalline Ge interfaces and found that more than 15% of the interface conductance arises from less than 0.1% of the modes in the structure. Using the recently developed interface conductance modal analysis (ICMA) method along with a new complimentary methodology, we mapped the correlations between modes, which revealed that a small group of interfacial modes, which exist between 12–13 THz, exhibit extremely strong correlation with other modes in the system. It is found that these interfacial modes (e.g., modes with large eigen vectors for interfacial atoms) are enabled by the degree of anharmonicity near the interface, which is higher than in the bulk, and therefore allows this small group of modes to couple to all others. The analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization. PMID:26979787
Rigorous bounds on the free energy of electron-phonon models
Raedt, Hans De; Michielsen, Kristel
1997-01-01
We present a collection of rigorous upper and lower bounds to the free energy of electron-phonon models with linear electron-phonon interaction. These bounds are used to compare different variational approaches. It is shown rigorously that the ground states corresponding to the sharpest bounds do
Anharmonic vibrational properties in periodic systems: energy, electron-phonon coupling, and stress
Monserrat, Bartomeu; Drummond, N. D.; Needs, R. J.
2013-01-01
A unified approach is used to study vibrational properties of periodic systems with first-principles methods and including anharmonic effects. Our approach provides a theoretical basis for the determination of phonon-dependent quantities at finite temperatures. The low-energy portion of the Born-Oppenheimer energy surface is mapped and used to calculate the total vibrational energy including anharmonic effects, electron-phonon coupling, and the vibrational contribution to the stress tensor. W...
Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene.
Araujo, Paulo T; Mafra, Daniela L; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred S
2012-01-01
In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS₂, WSe₂, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications.
International Nuclear Information System (INIS)
Debnath, Radhaballabh; Bose, Saptasree
2015-01-01
The theory of phonon assisted energy transfer is being widely used to explain the Yb 3+ ion aided normal and upconversion emission of various rare earth ions in different Yb 3+ co-doped solids. The reported phonon dynamics in many of these studies are either incomplete or erroneous. Here we report Yb 3+ aided upconversion luminescence properties of Tm 3+ and Ho 3+ in (Yb 3+ /Tm 3+ ) and (Yb 3+ /Ho 3+ ) co-doped two BaO–tellurite glasses and explain their phononics in the light of Dexter's theory by proposing a comprehensive scheme. The approach is valid for other systems of different phonon structures. - Highlights: • Yb 3+ aided upconversion luminescence properties of Tm 3+ and Ho 3+ in (Yb 3+ /Tm 3+ ) and (Yb 3+ /Ho 3+ ) co-doped two BaO–tellurite glasses, are reported. • Phonon assisted energy transfer in these systems are explained in the light of Dexter's theory by proposing a comprehensive scheme of phononics. • The approach is valid for other systems of different phonon structures
Small Fermi energy, strong electron-phonon effects and anharmonicity in MgB2
International Nuclear Information System (INIS)
Cappelluti, E.; Pietronero, L.
2007-01-01
The investigation of the electron-phonon properties in MgB 2 has attracted a huge interest after the discovery of superconductivity with T c 39 K in this compound. Although superconductivity is often described in terms of the conventional Eliashberg theory, properly generalized in the multiband/multigap scenario, important features distinguish MgB 2 from other conventional strong-coupling superconductors. Most important it is the fact that a large part of the total electron-phonon strength seems to be concentrated here in only one phonon mode, the boron-boron E 2g stretching mode. Another interesting property is the small Fermi energy of the σ bands, which are strongly coupled with the E 2g mode. In this contribution, we discuss how the coexistence of both these features give rise to an unconventional phenomenology of the electron-phonon properties
Phonon-induced enhancement of the energy gap and critical current of superconducting aluminum films
International Nuclear Information System (INIS)
Seligson, D.; Clarke, J.
1983-01-01
Enhancements of the energy gap Δ and the critical current I/sub c/ have been induced in thin superconducting aluminum films near the transition temperature T/sub c/ by pulses of phonons at approximately 9 GHz. In terms of the change in temperature Vertical BardeltaT/T/sub c/Vertical Bar necessary to produce the same enhancement in equilibrium, the gap enhancement increased smoothly with phonon power at fixed temperature and decreasing temperature at fixed phonon power; however, very close to T/sub c/ the enhancement rolled off. At relatively low phonon powers, the data were in good agreement with the theory of Eckern, Schmid, Schmutz, and Schoen, but at higher power levels the data fell markedly below the predictions of the theory. The critical-current enhancements in terms of Vertical BardeltaT/T/sub c/Vertical Bar were always larger than the gap enhancements at the same temperature and phonon power. At fixed phonon power the critical-current enhancements were nearly independent of temperature, except very close to T/sub c/ where the enhancement became small. The inclusion of the nonequilibrium quasiparticle distribution and the kinetic energy of the supercurrent in the theory relating the critical-current enhancement to the gap enhancement did not resolve the discrepancies between the two enhancements. It appears likely that there is an additional mechanism for critical-current enhancement that has not yet been identified
Sensitivity Modulation of Upconverting Thermometry through Engineering Phonon Energy of a Matrix.
Suo, Hao; Guo, Chongfeng; Zheng, Jiming; Zhou, Bo; Ma, Chonggeng; Zhao, Xiaoqi; Li, Ting; Guo, Ping; Goldys, Ewa M
2016-11-09
Investigation of the unclear influential factors to thermal sensing capability is the only way to achieve highly sensitive thermometry, which is greatly needed to meet the growing demand for potential sensing applications. Here, the effect from the phonon energy of a matrix on the sensitivity of upconversion (UC) microthermometers is elaborately discussed using a controllable method. Uniform truncated octahedral YF 3 :Er 3+ /Yb 3+ microcrystals were prepared by a hydrothermal approach, and phase transformation from YF 3 to YOF and Y 2 O 3 with nearly unchanged morphology and size was successfully realized by controlling the annealing temperature. The phonon energies of blank matrixes were determined by FT-IR spectra and Raman scattering. Upon 980 nm excitation, phonon energy-dependent UC emitting color was finely tuned from green to yellow for three samples, and the mechanisms were proposed. Thermal sensing behaviors based on the TCLs ( 2 H 11/2 / 4 S 3/2 ) were evaluated, and the sensitivities gradually grew with the increase in the matrix's phonon energy. According to chemical bond theory and first-principle calculations, the most intrinsic factors associated with thermometric ability were qualitatively demonstrated through analyzing the inner relation between the phonon energy and bond covalency. The exciting results provide guiding insights into employing appropriate host materials with desired thermometric ability while offering the possibility of highly accurate measurement of temperature.
Ground-state energy of an exciton-(LO) phonon system in a parabolic quantum well
Gerlach, B.; Wüsthoff, J.; Smondyrev, M. A.
1999-12-01
This paper presents a variational study of the ground-state energy of an exciton-(LO) phonon system, which is spatially confined to a quantum well. The exciton-phonon interaction is of Fröhlich type, the confinement potentials are assumed to be parabolic functions of the coordinates. Making use of functional integral techniques, the phonon part of the problem can be eliminated exactly, leading us to an effective two-particle system, which has the same spectral properties as the original one. Subsequently, Jensen's inequality is applied to obtain an upper bound on the ground-state energy. The main intention of this paper is to analyze the influence of the quantum-well-induced localization of the exciton on its ground-state energy (or its binding energy, respectively). To do so, we neglect any mismatch of the masses or the dielectric constants, but admit an arbitrary strength of the confinement potentials. Our approach allows for a smooth interpolation of the ultimate limits of vanishing and infinite confinement, corresponding to the cases of a free three-dimensional and a free two-dimensional exciton-phonon system. The interpolation formula for the ground-state energy bound corresponds to similar formulas for the free polaron or the free exciton-phonon system. These bounds in turn are known to compare favorably with all previous ones, which we are aware of.
International Nuclear Information System (INIS)
Kosevich, Y A; Manevitch, L I; Savin, A V
2007-01-01
We consider, both analytically and numerically, the dynamics of stationary and slowly-moving breathers (localized short-wavelength excitations) in two weakly coupled nonlinear oscillator chains (nonlinear phononic waveguides). We show that there are two qualitatively different dynamical regimes of the coupled breathers: the oscillatory exchange of the low-amplitude breather between the phononic waveguides (wandering breather), and one-waveguide-localization (nonlinear self-trapping) of the high-amplitude breather. We also show that phase-coherent dynamics of the coupled breathers in two weakly linked nonlinear phononic waveguides has a profound analogy, and is described by a similar pair of equations, to the tunnelling quantum dynamics of two weakly linked Bose-Einstein condensates in a symmetric double-well potential (single bosonic Josephson junction). The exchange of phonon energy and excitations between the coupled phononic waveguides takes on the role which the exchange of atoms via quantum tunnelling plays in the case of the coupled condensates. On the basis of this analogy, we predict a new tunnelling mode of the coupled Bose-Einstein condensates in a single bosonic Josephson junction in which their relative phase oscillates around π/2. The dynamics of relative phase of two weakly linked Bose-Einstein condensates can be studied by means of interference, while the dynamics of the exchange of lattice excitations in coupled nonlinear phononic waveguides can be observed by means of light scattering
Study of phonon-induced energy transfer processes in crystals using heat pulses
International Nuclear Information System (INIS)
Burns, A.R.
1978-03-01
The artificial generation of acoustic lattice vibrations by a heat pulse technique is developed in order to probe phonon interactions in molecular crystals. Specifically, the phonon-assisted delocalization of ''trapped'' excited triplet state energy in the aromatic crystal 1,2,4,5-tetrachlorobenzene (TCB) is studied in a quantitative manner by monitoring the time-resolved decrease in trap phosphorescence intensity due to the propagation of a well-defined heat pulse. The excitation distribution in a single trap system, such as the X-trap in neat h 2 -TCB, is discussed in terms of the energy partition function relating the temperature dependence of the trap phosphorescence intensity to the trap depth, exciton bandwidth, and the number of exciton band states. In a multiple trap system, such as the hd and h 2 isotopic traps in d 2 -TCB, the excitation distribution is distinctly non-Boltzmann; yet it may be discussed in terms of a preferential energy transfer between the two trap states via the exciton band. For both trap systems, a previously developed kinetic model is presented which relates the efficiency of trap-band energy exchange to the density of band states and the trap-phonon coupling matrix elements. A bolometric technique for determining the thermal response time of the heater/crystal system is presented. The phonon mean free path in the crystal is size-limited, and the heater/crystal boundary conductance is reasonably close to previously reported values. The theory of heat pulse phonon spectroscopy is presented and discussed in terms of black-body phonon radiation
Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum
International Nuclear Information System (INIS)
Seligson, D.
1983-01-01
The enhancement of the energy gap, Δ, and critical current, i/sub c/, in superconducting aluminum thin films were under the influence of 8 to 10 GHz phonons. The phonons were generated by piezoelectric transduction of a 1 kW microwave pulse of about 1 μsec duration. By means of a quartz delay line, the phonons were allowed to enter the aluminum only after the microwaves had long since disappeared. The critical current was measured in long narrow Al strips, in which the current flow is 1-dimensional and well described by Ginsburg-Landau theory. To measure Δ the Al film was used as one electrode in a superconductor-insulator-superconductor tunnel junction whose current-voltage characteristic gave Δ directly. For the measurements of i/sub c/, the total critical current was measured in the presence of the phonon perturbation. For the measurements of Δ the change of Δ away from its equilibrium value was measured. In both cases the first measurements of enhancement of these macroscopic variables under phonon irradiation is reported. The gap-enhancement was found to be in good agreement with theory, but only for relatively and surprisingly low input power. The critical current measurements are predicted to be in rough agreement with the Δ measurements but this was not observed
Aly, Arafa H.; Nagaty, Ahmed; Khalifa, Zaki; Mehaney, Ahmed
2018-05-01
In this study, an acoustic energy harvester based on a two-dimensional phononic crystal has been constructed. The present structure consists of silicon cylinders in the air background with a polyvinylidene fluoride cylinder as a defect to confine the acoustic energy. The presented energy harvester depends on the piezoelectric effect (using the piezoelectric material polyvinylidene fluoride) that converts the confined acoustic energy to electric energy. The maximum output voltage obtained equals 170 mV. Moreover, the results revealed that the output voltage can be increased with increasing temperature. In addition, the effects of the load resistance and the geometry of the piezoelectric material on the output voltage have been studied theoretically. Based on these results, all previous studies about energy harvesting in phononic structures must take temperature effects into account.
Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.
2016-08-16
A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.
Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi
2018-03-01
We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).
Wette, Frederik
1991-01-01
In recent years substantial progress has been made in the detection of surface phonons owing to considerable improvements in inelastic rare gas scattering tech niques and electron energy loss spectroscopy. With these methods it has become possible to measure surface vibrations in a wide energy range for all wave vectors in the two-dimensional Brillouin zone and thus to deduce the complete surface phonon dispersion curves. Inelastic atomic beam scattering and electron energy loss spectroscopy have started to play a role in the study of surface phonons similar to the one played by inelastic neutron scattering in the investigation of bulk phonons in the last thirty years. Detailed comparison between experimen tal results and theoretical studies of inelastic surface scattering and of surface phonons has now become feasible. It is therefore possible to test and to improve the details of interaction models which have been worked out theoretically in the last few decades. At this point we felt that a concise, co...
Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L
2005-03-25
In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.
International Nuclear Information System (INIS)
Chen Zhongsheng; Yang Yongmin; Lu Zhimiao; Luo Yanting
2013-01-01
Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.
Energy Technology Data Exchange (ETDEWEB)
Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)
2013-02-01
Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.
In rich In{sub 1-x}Ga{sub x}N: Composition dependence of longitudinal optical phonon energy
Energy Technology Data Exchange (ETDEWEB)
Tiras, E. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, CO4 3SQ Colchester (United Kingdom); Faculty of Science, Department of Physics, Anadolu University, Yunus Emre Campus, 26470 Eskisehir (Turkey); Gunes, M.; Balkan, N. [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, CO4 3SQ Colchester (United Kingdom); Schaff, W.J. [Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853 (United States)
2010-01-15
The composition dependence of longitudinal optical (LO) phonon energies in undoped and Mg-doped In{sub 1-x}Ga{sub x}N samples are determined using Raman spectroscopy in the range of Ga fraction from x = 0 to x = 56%. The LO phonon energy varies from 73 meV for InN to 83 meV for In{sub 1-x}Ga{sub x}N with 56% Ga. Independent measurements of temperature dependent mobility at high temperatures where LO phonon scattering dominates the transport were also used to obtain the LO phonon energy for x = 0 and x = 20%. The results obtained from the two independent techniques compare extremely well. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Phonon dynamics and Urbach energy studies of MgZnO alloys
Energy Technology Data Exchange (ETDEWEB)
Huso, Jesse, E-mail: jhuso@vandals.uidaho.edu; Che, Hui; Thapa, Dinesh; Canul, Amrah; Bergman, Leah [Department of Physics, University of Idaho, Moscow, Idaho 83844-0903 (United States); McCluskey, M. D. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)
2015-03-28
The Mg{sub x}Zn{sub 1−x}O alloy system is emerging as an environmentally friendly choice in ultraviolet lighting and sensor technologies. Knowledge of defects which impact their optical and material properties is a key issue for utilization of these alloys in various technologies. The impact of phase segregation, structural imperfections, and alloy inhomogeneities on the phonon dynamics and electronic states of Mg{sub x}Zn{sub 1−x}O thin films were studied via selective resonant Raman scattering (SRRS) and Urbach analyses, respectively. A series of samples with Mg composition from 0–68% were grown using a sputtering technique, and the optical gaps were found to span a wide UV range of 3.2–5.8 eV. The extent of the inherent phase segregation was determined via SRRS using two UV-laser lines to achieve resonance with the differing optical gaps of the embedded cubic and wurtzite structural domains. The occurrence of Raman scattering from cubic structures is discussed in terms of relaxation of the selection rules due to symmetry breaking by atomic substitutions. The Raman linewidth and Urbach energy behavior indicate the phase segregation region occurs in the range of 47–66% Mg. Below the phase segregation, the longitudinal optical phonons are found to follow the model of one-mode behavior. The phonon decay model of Balkanski et al. indicates that the major contributor to Raman linewidth arises from the temperature-independent term attributed to structural defects and alloy inhomogeneity, while the contribution from anharmonic decay is relatively small. Moreover, a good correlation between Urbach energy and Raman linewidth was found, implying that the underlying crystal dynamics affecting the phonons also affect the electronic states. Furthermore, for alloys with low Mg composition structural defects are dominant in determining the alloy properties, while at higher compositions alloy inhomogeneity cannot be neglected.
Energy storage crystalline gel materials for 3D printing application
Mao, Yuchen; Miyazaki, Takuya; Gong, Jin; Zhu, Meifang
2017-04-01
Phase change materials (PCMs) are considered one of the most reliable latent heat storage and thermoregulation materials. In this paper, a vinyl monomer is used to provide energy storage capacity and synthesize gel with phase change property. The side chain of copolymer form crystal microcell to storage/release energy through phase change. The crosslinking structure of the copolymer can protect the crystalline micro-area maintaining the phase change stable in service and improving the mechanical strength. By selecting different monomers and adjusting their ratios, we design the chemical structure and the crystallinity of gels, which in further affect their properties, such as strength, flexibility, thermal absorb/release transition temperature, transparency and the water content. Using the light-induced polymerization 3D printing techniques, we synthesize the energy storage gel and shape it on a 3D printer at the same time. By optimizing the 3D printing conditions, including layer thickness, curing time and light source, etc., the 3D printing objects are obtained.
International Nuclear Information System (INIS)
Zhao, Feng-Qi; Guo, Zi-Zheng; Zhu, Jun
2014-01-01
An improved Lee-Low-Pines intermediate coupling method is used to study the energies and binding energies of bound polarons in a wurtzite ZnO/Mg x Zn 1−x O quantum well. The contributions from different branches of long-wave optical phonons, i.e., confined optical phonons, interface optical phonons, and half-space optical phonons are considered. In addition to electron-phonon interaction, the impurity-phonon interaction, and the anisotropy of material parameters, such as phonon frequency, electron effective mass, and dielectric constant, are also included in our computation. Ground-state energies, binding energies and detailed phonon contributions from various phonons as functions of well width, impurity position and composition are presented. Our result suggests that total phonon contribution to ground state and binding energies in the studied wurtzite ZnO/Mg 0.3 Zn 0.7 O quantum wells varies between 28–23 meV and 62–45 meV, respectively, which are much larger than the corresponding values (about 3.2–1.8 meV and 1.6–0.3 meV) in GaAs/Al 0.3 Ga 0.7 As quantum wells. For a narrower quantum well, the phonon contribution mainly comes from interface and half-space phonons, for a wider quantum well, most of phonon contribution originates from confined phonons. The contribution from all the phonon modes to binding energies increases slowly either when impurity moves far away from the well center in the z direction or with the increase in magnesium composition (x). It is found that different phonons have different influences on the binding energies of bound polarons. Furthermore, the phonon contributions to binding energies as functions of well width, impurity position, and composition are very different from one another. In general, the electron-optical phonon interaction and the impurity center-optical phonon interaction play an important role in electronic states of ZnO-based quantum wells and cannot be neglected.
Quasiparticle phonon model description of low-energy states in 152Pr
Alexa, P.; Ramdhane, M.; Thiamova, G.; Simpson, G. S.; Faust, H. R.; Genevey, J.; Köster, U.; Materna, T.; Orlandi, R.; Pinston, J. A.; Scherillo, A.; Hons, Z.
2018-03-01
Delayed γ -ray and conversion-electron spectroscopy is performed on A =152 fission fragments, at the Lohengrin spectrometer of the Institut Laue-Langevin, providing a new decay scheme for 152Pr. The quasiparticle phonon model, combined with the particle-rotor model, which allows octupole correlations and Coriolis mixing to be taken into account, is applied to analyze its low-energy structure. The main configurations are found to be (π 3 /2 [422 ] ⊗ν 5 /2 [642 ] ) 1+ for the isomer and (π 3 /2 [541 ] ⊗ν 3 /2 [521 ] ) 3+ for the ground state.
The configurational energy gap between amorphous and crystalline silicon
Energy Technology Data Exchange (ETDEWEB)
Kail, F. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Farjas, J.; Roura, P. [GRMT, Department of Physics, University of Girona, Montilivi Campus, 17071 Girona, Catalonia (Spain); Secouard, C. [Univ. Barcelona, Dept. Fisica Aplicada and Optica, 08028 Barcelona (Spain); Nos, O.; Bertomeu, J. [CEA Grenoble, LTS, 17 rue des Martyrs, 38054 Grenoble cedex (France); Roca i Cabarrocas, P. [LPICM, Ecole Polytechnique, 91128 Palaiseau (France)
2011-11-15
The crystallization enthalpy of pure amorphous silicon (a-Si) and hydrogenated a-Si was measured by differential scanning calorimetry (DSC) for a large set of materials deposited from the vapour phase by different techniques. Although the values cover a wide range (200-480 J/g), the minimum value is common to all the deposition techniques used and close to the predicted minimum strain energy of relaxed a-Si (240 {+-} 25 J/g). This result gives a reliable value for the configurational energy gap between a-Si and crystalline silicon. An excess of enthalpy above this minimum value can be ascribed to coordination defects. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Lundin, Johan
2013-01-01
Installed photovoltaic nameplate power have been growing rapidly around the worldin the last few years. But how much energy is returned to society (i.e. net energy) by this technology, and which factors contribute the most to the amount of energy returned? The objective of this thesis was to examine the importance of certain inputs and outputs along the solar panel production chain and their effect on the energy return on (energy) investment (EROI) for crystalline wafer-based photovoltaics. A...
Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang
2018-01-01
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Zhu, Hanyu
2018-02-01
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting
Tol, S.; Degertekin, F. L.; Erturk, A.
2016-08-01
We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.
``New'' energy states lead to phonon-less optoelectronic properties in nanostructured silicon
Singh, Vivek; Yu, Yixuan; Korgel, Brian; Nagpal, Prashant
2014-03-01
Silicon is arguably one of the most important technological material for electronic applications. However, indirect bandgap of silicon semiconductor has prevented optoelectronic applications due to phonon assistance required for photon light absorption/emission. Here we show, that previously unexplored surface states in nanostructured silicon can couple with quantum-confined energy levels, leading to phonon-less exciton-recombination and photoluminescence. We demonstrate size dependence (2.4 - 8.3 nm) of this coupling observed in small uniform silicon nanocrystallites, or quantum-dots, by direct measurements of their electronic density of states and low temperature measurements. To enhance the optical absorption of the these silicon quantum-dots, we utilize generation of resonant surface plasmon polariton waves, which leads to several fold increase in observed spectrally-resolved photocurrent near the quantum-confined bandedge states. Therefore, these enhanced light emission and absorption enhancement can have important implications for applications of nanostructured silicon for optoelectronic applications in photovoltaics and LEDs.
Phonon thermal transport through tilt grain boundaries in strontium titanate
Energy Technology Data Exchange (ETDEWEB)
Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Deng, Bowen; Chernatynskiy, Aleksandr [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2014-08-21
In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.
Phonon thermal transport through tilt grain boundaries in strontium titanate
International Nuclear Information System (INIS)
Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr
2014-01-01
In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO 3 . Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO 3 contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies
Energy Technology Data Exchange (ETDEWEB)
Debnath, Radhaballabh, E-mail: drdebnathr@gmail.com; Bose, Saptasree
2015-05-15
The theory of phonon assisted energy transfer is being widely used to explain the Yb{sup 3+} ion aided normal and upconversion emission of various rare earth ions in different Yb{sup 3+} co-doped solids. The reported phonon dynamics in many of these studies are either incomplete or erroneous. Here we report Yb{sup 3+} aided upconversion luminescence properties of Tm{sup 3+} and Ho{sup 3+} in (Yb{sup 3+}/Tm{sup 3+}) and (Yb{sup 3+}/Ho{sup 3+}) co-doped two BaO–tellurite glasses and explain their phononics in the light of Dexter's theory by proposing a comprehensive scheme. The approach is valid for other systems of different phonon structures. - Highlights: • Yb{sup 3+} aided upconversion luminescence properties of Tm{sup 3+} and Ho{sup 3+} in (Yb{sup 3+}/Tm{sup 3+}) and (Yb{sup 3+}/Ho{sup 3+}) co-doped two BaO–tellurite glasses, are reported. • Phonon assisted energy transfer in these systems are explained in the light of Dexter's theory by proposing a comprehensive scheme of phononics. • The approach is valid for other systems of different phonon structures.
Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes
Directory of Open Access Journals (Sweden)
Hugo Lourenço-Martins
2017-12-01
Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].
Phonon manipulation with phononic crystals.
Energy Technology Data Exchange (ETDEWEB)
Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III
2012-01-01
factor. In addition, the techniques and scientific understanding developed in the research can be applied to a wide range of materials, with the caveat that the thermal conductivity of such a material be dominated by phonon, rather than electron, transport. In particular, this includes several thermoelectric materials with attractive properties at elevated temperatures (i.e., greater than room temperature), such as silicon germanium and silicon carbide. It is reasonable that phononic crystal patterning could be used for high-temperature thermoelectric devices using such materials, with applications in energy scavenging via waste-heat recovery and thermoelectric cooling for high-performance microelectronic circuits. The only part of the ZT picture missing in this work was the experimental measurement of the Seebeck coefficient of our phononic crystal devices. While a first-order approximation indicates that the Seebeck coefficient should not change significantly from that of bulk silicon, we were not able to actually verify this assumption within the timeframe of the project. Additionally, with regards to future high-temperature applications of this technology, we plan to measure the thermal conductivity reduction factor of our phononic crystals as elevated temperatures to confirm that it does not diminish, given that the nominal thermal conductivity of most semiconductors, including silicon, decreases with temperature above room temperature. We hope to have the opportunity to address these concerns and further advance the state-of-the-art of thermoelectric materials in future projects.
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Bruch, Ludwig Walter
2007-01-01
Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...
Energy difference and energy of mixing for crystalline structures of Ni-Ti-Mo alloys
International Nuclear Information System (INIS)
Skorentsev, L.F.; Demidenko, V.S.
1995-01-01
Using the locator variant of the coherent potential method combined with the canonical d band approximation, we have obtained the energy characteristics of molybdenum-containing titanium nickelide alloys for real and virtual high-symmetry crystalline phases. We have analyzed the reasons implied by the calculation results for the difference in the properties of molybdenum- and iron-containing alloys
International Nuclear Information System (INIS)
Weger, M.; Barbiellini, B.; Jarlborg, T.; Peter, M.; Santi, G.
1995-01-01
We solve the Eliashberg equations for the case of an explicit vector k dependence of the interactions, and of the resulting self-energies Σ 1 ( vector k,ω), Σ 2 ( vector k,ω). We consider a strong energy-dependence of the electron-electron scattering-rate τ ee -1 , which is associated with a strong energy-dependence of the electron-phonon matrix element g(k,k'). We characterize this energy-dependence by a cutoff ξ 1 , which is of the order of the phonon frequency ω ph . We find that we can account for a large number of unexpected features of the superconductivity of the cuprates by the BCS electron-phonon theory, if we consider very large values of the McMillan coupling constant λ ph , and small values of the cutoff ξ 1 . Specifically, the Coulomb interaction is found not to depress T c ; the isotope effect is strongly reduced when ξ 1 ph . We find solutions in which the gap function Δ( vector k,ω) has extended s-wave symmetry but is very anisotropic. We suggest that the underlying cause of the strong energy-dependence is a very small electronic screening parameter at the Fermi surface; the electron-phonon matrix element g is abnormally large, and this accounts for the high transition temperatures of the cuprates. An order of magnitude estimate suggests that the electron-phonon mechanism can account for transition temperatures up to about 200 K. We thus propose a very-strong-coupling theory, in which the renormalization functions, in particular the energy-renormalization X, depend very strongly on the superconducting gap Δ, and thus display a very strong temperature-dependence between T c and T=0. An experimental manifestation of the very strong coupling with a small cutoff is a zero bias anomaly sometimes observed in tunneling experiments. (orig.)
The phonons brownian behaviour in NaI detectors of ionizing radiation
International Nuclear Information System (INIS)
Lima, Helcio Ramos de
1996-01-01
A theoretical study for the quadratic mean displacement of quanta of vibration waves of crystalline lattices of the cubic crystals is presented. The study is applied to the inactivated NaI detector with estimates according to the behaviour of the Einstein's equation applied to the Helium. Under the aspect of photon-phonon interaction, described by Blakemore, the chaotic behaviour of the phonons open discussion about the possibility of noises in measurements of energies near 100 KeV
Ab initio optimization of phonon drag effect for lower-temperature thermoelectric energy conversion
Zhou, Jiawei; Liao, Bolin; Qiu, Bo; Huberman, Samuel; Esfarjani, Keivan; Dresselhaus, Mildred S.; Chen, Gang
2015-01-01
Although the thermoelectric figure of merit zT above 300 K has seen significant improvement recently, the progress at lower temperatures has been slow, mainly limited by the relatively low Seebeck coefficient and high thermal conductivity. Here we report, for the first time to our knowledge, success in first-principles computation of the phonon drag effect—a coupling phenomenon between electrons and nonequilibrium phonons—in heavily doped region and its optimization to enhance the Seebeck coefficient while reducing the phonon thermal conductivity by nanostructuring. Our simulation quantitatively identifies the major phonons contributing to the phonon drag, which are spectrally distinct from those carrying heat, and further reveals that although the phonon drag is reduced in heavily doped samples, a significant contribution to Seebeck coefficient still exists. An ideal phonon filter is proposed to enhance zT of silicon at room temperature by a factor of 20 to ∼0.25, and the enhancement can reach 70 times at 100 K. This work opens up a new venue toward better thermoelectrics by harnessing nonequilibrium phonons. PMID:26627231
Flexural phonon limited phonon drag thermopower in bilayer graphene
Ansari, Mohd Meenhaz; Ashraf, SSZ
2018-05-01
We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.
Optimizing SuperCDMS phonon energy sensitivity by studying quasiparticle transport in Al films
Yen, Jeffrey; Shank, Benjamin; Cabrera, Blas; Moffatt, Robert; Redl, Peter; Brink, Paul; Tomada, Astrid; Cherry, Matt; Young, Betty; Tortorici, Teddy; Kreikebaum, John Mark
2014-03-01
In order to further improve the phonon energy sensitivity of Cryogenic Dark Matter Search (CDMS) detectors, we studied quasiparticle transport at ~ 40 mK in superconducting Al films similar in geometry to those used for CDMS detectors. Test structures of Al were deposited and photolithographically patterned on Si wafers using the same production-line equipment used to fabricate kg-scale CDMS detectors. Three Al film lengths and two film thicknesses were used in this study. In the test experiments described here, an 55Fe source was used to excite a NaCl reflector, producing 2.6 keV x-rays that hit our test devices after passing through a collimator. The impinging x-rays broke Cooper pairs in the Al films, producing quasiparticles that propagated into W transition edge sensors (TESs) coupled to the ends of the Al films. In this talk, we will give the motivation behind these studies, describe our experimental setup, and compare our data to results obtained using signal processing models constructed from basic physical parameters. We show that a non-linear, non-stationary optimal filter applied to the data allows us to precisely measure quasiparticle diffusion and other aspects of energy transport in our thin-film Al-W test devices. These results are being used to further optimize next-generation CDMS detectors.
Ansari, Meenhaz; Ashraf, S. S. Z.
2017-10-01
We investigate the energy dependent electron-phonon relaxation rate, energy loss rate, and phonon drag thermopower in single layer graphene (SLG) and bilayer graphene (BLG) under the Bloch-Gruneisen (BG) regime through coupling to acoustic phonons interacting via the Deformation potential in the Boltzmann transport equation approach. We find that the consideration of the chiral nature of electrons alters the temperature dependencies in two-dimensional structures of SLG and BLG from that shown by other conventional 2DEG system. Our investigations indicate that the BG analytical results are valid for temperatures far below the BG limit (˜TBG/4) which is in conformity with a recent experimental investigation for SLG [C. B. McKitterick et al., Phys. Rev. B 93, 075410 (2016)]. For temperatures above this renewed limit (˜TBG/4), there is observed a suppression in energy loss rate and thermo power in SLG, but enhancement is observed in relaxation rate and thermopower in BLG, while a suppression in the energy loss rate is observed in BLG. This strong nonmonotonic temperature dependence in SLG has also been experimentally observed within the BG limit [Q. Ma et al., Phys. Rev. Lett. 112, 247401 (2014)].
International Nuclear Information System (INIS)
Midday, S; Bhattacharya, D P
2011-01-01
The energy loss rate of an electron in a degenerate semiconductor because of inelastic interaction with deformation potential and piezoelectric acoustic phonons is calculated in the case when the lattice temperature is low, so that the approximations of the well-known traditional theory are not valid. Compared to the traditional results and those for non-degenerate semiconductors, the theory here reveals a more complex and altogether different dependence of the loss rate on the carrier energy and the lattice temperature. The numerical results obtained here for Si and GaAs show how significantly the degeneracy level, the true phonon distribution or the inelasticity of the interaction affects the loss characteristics at low temperatures.
Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection
International Nuclear Information System (INIS)
Cardani, L.; Colantoni, I.; Coppolecchia, A.; Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C.; Di Domizio, S.; Castellano, M. G.; Tomei, C.
2015-01-01
The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm 2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm 2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ E = 154 ± 7 eV and an (18 ± 2)% efficiency
Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection
Energy Technology Data Exchange (ETDEWEB)
Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey (United States); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Di Domizio, S. [Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma (Italy); Tomei, C. [INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy)
2015-08-31
The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.
On Positronium Formation in Crystalline and Amorphous Ice at Low Positron Energy
DEFF Research Database (Denmark)
Mogensen, O. E.
1986-01-01
The positronium (Ps) yield for ice, measured by Eldrup et al. using a low-energy positron beam, is discussed in terms of the spur model of Ps formation. The pronounced maxima in the Ps yield for crystalline ice at positron energies below 65 eV are well explained by effects due to energy conservat......The positronium (Ps) yield for ice, measured by Eldrup et al. using a low-energy positron beam, is discussed in terms of the spur model of Ps formation. The pronounced maxima in the Ps yield for crystalline ice at positron energies below 65 eV are well explained by effects due to energy...
Crystalline and amorphous carbon nitride films produced by high-energy shock plasma deposition
International Nuclear Information System (INIS)
Bursilll, L.A.; Peng, Julin; Gurarie, V.N.; Orlov, A.V.; Prawer, S.
1995-01-01
High-energy shock plasma deposition techniques are used to produce carbon-nitride films containing both crystalline and amorphous components. The structures are examined by high-resolution transmission electron microscopy, parallel-electron-energy loss spectroscopy and electron diffraction. The crystalline phase appears to be face-centered cubic with unit cell parameter approx. a=0.63nm and it may be stabilized by calcium and oxygen at about 1-2 at % levels. The carbon atoms appear to have both trigonal and tetrahedral bonding for the crystalline phase. There is PEELS evidence that a significant fraction of the nitrogen atoms have sp 2 trigonal bonds in the crystalline phase. The amorphous carbon-nitride film component varies from essentially graphite, containing virtually no nitrogen, to amorphous carbon-nitride containing up to 10 at % N, where the fraction of sp 3 bonds is significant. 15 refs., 5 figs
Phonon-induced optical superlattice.
de Lima, M M; Hey, R; Santos, P V; Cantarero, A
2005-04-01
We demonstrate the formation of a dynamic optical superlattice through the modulation of a semiconductor microcavity by stimulated acoustic phonons. The high coherent phonon population produces a folded optical dispersion relation with well-defined energy gaps and renormalized energy levels, which are accessed using reflection and diffraction experiments.
DEFF Research Database (Denmark)
Settnes, Mikkel; Saavedra, J. R. M.; Thygesen, Kristian Sommer
2017-01-01
splitting due to this coupling, resulting in a characteristic avoided crossing scheme. We base our results on a computationally efficient approach consisting in including many-body interactions through the electron self-energy. We specify this formalism for a description of plasmons based upon a tight...... nanotriangles with varied size, where we predict remarkable peak splittings and other radical modifications in the spectra due to plasmon interactions with intrinsic optical phonons. Our method is equally applicable to other 2D materials and provides a simple approach for investigating coupling of plasmons...
Unsupervised Calculation of Free Energy Barriers in Large Crystalline Systems
Swinburne, Thomas D.; Marinica, Mihai-Cosmin
2018-03-01
The calculation of free energy differences for thermally activated mechanisms in the solid state are routinely hindered by the inability to define a set of collective variable functions that accurately describe the mechanism under study. Even when possible, the requirement of descriptors for each mechanism under study prevents implementation of free energy calculations in the growing range of automated material simulation schemes. We provide a solution, deriving a path-based, exact expression for free energy differences in the solid state which does not require a converged reaction pathway, collective variable functions, Gram matrix evaluations, or probability flux-based estimators. The generality and efficiency of our method is demonstrated on a complex transformation of C 15 interstitial defects in iron and double kink nucleation on a screw dislocation in tungsten, the latter system consisting of more than 120 000 atoms. Both cases exhibit significant anharmonicity under experimentally relevant temperatures.
International Nuclear Information System (INIS)
Lin, H.; Tanabe, S.; Lin, L.; Yang, D.L.; Liu, K.; Wong, W.H.; Yu, J.Y.; Pun, E.Y.B.
2006-01-01
Eu 3+ doped alkali-barium-bismuth-tellurite (Eu 3+ :LKBBT) glasses were prepared by conventional melt quenching. Twelve emission bands including infrequent blue and green bands are observed and they almost cover whole visible spectral region under violet light radiation. The blue and green emissions of Eu 3+ rarely appeared in oxide glasses before, but they have been clearly recorded in Eu 3+ :LKBBT glasses even in the case of high concentration doping of Eu 3+ . The analysis based on spontaneous-radiative rate, energy gap and Raman scattering reveals that the obtaining of the abundant multichannel emissions of Eu 3+ is due to the higher refractive index and the lower phonon energy in LKBBT glass system
International Nuclear Information System (INIS)
Bullock, M.; Stassis, C.; Zarestky, J.; Goldman, A.; Canfield, P.
1997-01-01
The authors studied the low-energy phonon excitations for wavevectors close to the Fermi surface nesting vector rvec ξ m ≅ 0.55 rvec a. They find that above T c the frequencies of the Δ 4 [ζ00] lowest-lying optical and acoustic phonon modes decrease with decreasing temperature, for rvec ξ close to rvec ξ m , and there is a shift of intensity from the upper to the lower mode, an effect characteristic of coupled modes. From approximately 120K down to temperatures in the vicinity of T c , only a single unresolved peak is observed. Below T c the phonon spectra of the Y and Lu compounds change dramatically: they consist of a sharp peak at approximately 4.5 meV with a weak shoulder at the higher energy side. No such sharp peak was observed below T c in the Ho and Er compounds
Quasiparticle-phonon nuclear model
International Nuclear Information System (INIS)
Soloviev, V.G.
1977-01-01
The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strenght functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval
International Nuclear Information System (INIS)
Ivanov, A.S.; Rumiantsev, A.Yu.
1999-01-01
Complete text of publication follows. Phonon dispersion curves in Vanadium metal are investigated by neutron inelastic scattering using three-axis spectrometers. Due to extremely low coherent scattering amplitude of neutrons in natural isotope mixture of vanadium the phonon frequencies could be determined in the energy range below about 15 meV. Several phonon groups were measured with the polarised neutron scattering set-up. It is demonstrated that the intensity of coherent inelastic scattering observed in the non-spin-flip channel vanishes in the spin-flip channel. The phonon density of states is measured on a single crystal keeping the momentum transfer equal to a vector of reciprocal lattice where the coherent inelastic scattering is suppressed. Phonon dispersion curves in vanadium, as measured by neutron and earlier by X-ray scattering, are described in frames of a charge-fluctuation model involving monopolar and dipolar degrees of freedom. The model parameters are compared for different transition metals with body-centred cubic-structure. (author)
Energy Technology Data Exchange (ETDEWEB)
Ramstad, Randi Kalstad
2004-11-01
The use of improved equipment and methodology can result in considerable reductions in the drilling costs for medium- to large sized ground source heat pump system in crystalline bedrock. The main point has been to use special techniques within hydraulic fracturing to create a larger heat exchange area in the bedrock, and thus a greater energy extraction per borehole. The energy extraction is based on circulating groundwater. Stimulation with hydraulic fracturing is a well known technique in order to improve borehole yields for drinking water-, oil-, and geothermal purposes. A procedure for injection of propping agents in selected borehole sections, and custom-made equipment for hydraulic fracturing in crystalline bedrock, a double packer, have been developed in this study. The propping agents are likely to ensure a permanent improvement of the hydraulic conductivity in a long-run perspective. In addition to a pre-test, a comprehensive test programme has been performed at each of the two pilot plants at Bryn and at the former property of Energiselskapet Asker og Baerum (EAB) in Baerum municipality outside Oslo, Norway. A total of 125 stimulations with hydraulic fracturing using water-only and hydraulic fracturing with injection of sand have been performed in 9 boreholes. Test pumping and geophysical logging (temperature, electrical conductivity, gamma radiation, optical televiewer and flow measurements) have been carried out in order to document the effect of the hydraulic fracturing. The pilot plants at Bryn and EAB, where the ground source heat pump systems are based on circulating groundwater, have demonstrated the short-period energy extraction, limitations and opportunities of the concept for hydraulic fracturing and increased energy extraction in different geological and hydrogeological areas. The bedrock at Bryn and EAB is characterized as a low-metamorphic sandstone and a nodular limestone, respectively. At Bryn, the five boreholes were organised with a
Engineering dissipation with phononic spectral hole burning
Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.
2017-03-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Detecting the phonon spin in magnon-phonon conversion experiments
Holanda, J.; Maior, D. S.; Azevedo, A.; Rezende, S. M.
2018-05-01
Recent advances in the emerging field of magnon spintronics have stimulated renewed interest in phenomena involving the interaction between spin waves, the collective excitations of spins in magnetic materials that quantize as magnons, and the elastic waves that arise from excitations in the crystal lattice, which quantize as phonons. In magnetic insulators, owing to the magnetostrictive properties of materials, spin waves can become strongly coupled to elastic waves, forming magnetoelastic waves—a hybridized magnon-phonon excitation. While several aspects of this interaction have been subject to recent scrutiny, it remains unclear whether or not phonons can carry spin. Here we report experiments on a film of the ferrimagnetic insulator yttrium iron garnet under a non-uniform magnetic field demonstrating the conversion of coherent magnons generated by a microwave field into phonons that have spin. While it is well established that photons in circularly polarized light carry a spin, the spin of phonons has had little attention in the literature. By means of wavevector-resolved Brillouin light-scattering measurements, we show that the magnon-phonon conversion occurs with constant energy and varying linear momentum, and that the light scattered by the phonons is circularly polarized, thus demonstrating that the phonons have spin.
Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films
International Nuclear Information System (INIS)
Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Batentschuk, M.; Osvet, A.; Brabec, C.
2013-01-01
The paper is dedicated to the study of the optical properties of YAG:Yb,Er single-crystalline films (SCF) grown by liquid phase epitaxy. The absorption, cathodoluminescence and time-resolved photoluminescence spectra and photoluminescence decay curves were measured for the SCFs with different doping levels of Er 3+ (from 0.6 to 4.2 at.%) and Yb 3+ (from 0.1 to 0.6 at.%). The spectra, excited by synchrotron radiation in the fundamental absorption range of the YAG and in the intraionic absorption bands of both dopants, reveal energy transfer from the YAG host to the Er 3+ and Yb 3+ ions and between these ions. -- Highlights: •Growth of YAG:Yb,Er single crystalline films by LPE method. •Peculiarities of luminescence of YAG:Yb,Er films with different Er–Yb content. •Yb–Er energy transfer processes in YAG hosts
Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films
Energy Technology Data Exchange (ETDEWEB)
Chase, T. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Trigo, M.; Reid, A. H.; Dürr, H. A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Wang, X. J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Reis, D. A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)
2016-01-25
We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.
Phonon-induced enhancements of the energy gap and critical current in superconducting aluminum
International Nuclear Information System (INIS)
Seligson, D.
1983-05-01
8 to 10 GHz phonons were generated by piezoelectric transduction of a microwave and by means of a quartz delay line, were allowed to enter the aluminum only after the microwaves had long since disappeared. The maximum enhancements detected were [deltaT/T/sub c/] = -0.07, for i/sub c/ and [deltaT/T/sub c/] = -0.03 for Δ. The power- and temperature-dependence (0.82 less than or equal to T/T/sub c/ less than or equal to 0.994) of the enhancements were compared with the prediction of a theory given by Eliashberg. The gap-enhancement was in good agreement with the theory only for low input lower. The critical current measurements are predicted to be in rough agreement with the Δ measurements but this was not observed. The magnitude of the critical current enhancements was typically more than twice the observed gap enhancements. The measured critical current enhancement was relatively independent of temperature whereas the gap enhancement decreased rapidly as the temperature was lowered
Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells.
Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan
2015-09-02
Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).
Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao
2018-05-01
Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.
Coherent gigahertz phonons in Ge₂Sb₂Te₅ phase-change materials.
Hase, Muneaki; Fons, Paul; Kolobov, Alexander V; Tominaga, Junji
2015-12-09
Using ≈40 fs ultrashort laser pulses, we investigate the picosecond acoustic response from a prototypical phase change material, thin Ge2Sb2Te5 (GST) films with various thicknesses. After excitation with a 1.53 eV-energy pulse with a fluence of ≈5 mJ cm(-2), the time-resolved reflectivity change exhibits transient electronic response, followed by a combination of exponential-like strain and coherent acoustic phonons in the gigahertz (GHz) frequency range. The time-domain shape of the coherent acoustic pulse is well reproduced by the use of the strain model by Thomsen et al 1986 (Phys. Rev. B 34 4129). We found that the decay rate (the inverse of the relaxation time) of the acoustic phonon both in the amorphous and in the crystalline phases decreases as the film thickness increases. The thickness dependence of the acoustic phonon decay is well modeled based on both phonon-defect scattering and acoustic phonon attenuation at the GST/Si interface, and it is revealed that those scattering and attenuation are larger in crystalline GST films than those in amorphous GST films.
Energy Technology Data Exchange (ETDEWEB)
Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)
2012-12-13
There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.
Alberte, Lasma; Ammon, Martin; Jiménez-Alba, Amadeo; Baggioli, Matteo; Pujolàs, Oriol
2018-04-01
We present a class of holographic massive gravity models that realize a spontaneous breaking of translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application of the model, we compute the temperature dependence of the shear modulus and find that it features a glasslike melting transition.
Sol, Jeroen A H P; Dehm, Volker; Hecht, Reinhard; Würthner, Frank; Schenning, Albertus P H J; Debije, Michael G
2018-01-22
Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
A Monte Carlo Sampling Technique for Multi-phonon Processes
Energy Technology Data Exchange (ETDEWEB)
Hoegberg, Thure
1961-12-15
A sampling technique for selecting scattering angle and energy gain in Monte Carlo calculations of neutron thermalization is described. It is supposed that the scattering is separated into processes involving different numbers of phonons. The number of phonons involved is first determined. Scattering angle and energy gain are then chosen by using special properties of the multi-phonon term.
International Nuclear Information System (INIS)
Meevasana, Warawat
2010-01-01
Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO 3 . Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a λ(prime) ∼ 0.3 and an overall bandwidth renormalization suggesting an overall λ(prime) ∼ 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.
Theory of Raman scattering in coupled electron-phonon systems
Itai, K.
1992-01-01
The Raman spectrum is calculated for a coupled conduction-electron-phonon system in the zero-momentum-transfer limit. The Raman scattering is due to electron-hole excitations and phonons as well. The phonons of those branches that contribute to the electron self-energy and the correction of the electron-phonon vertex are assumed to have flat energy dispersion (the Einstein phonons). The effect of electron-impurity scattering is also incorporated. Both the electron-phonon interaction and the electron-impurity interaction cause the fluctuation of the electron distribution between different parts of the Fermi surface, which results in overdamped zero-sound modes of various symmetries. The scattering cross section is obtained by solving the Bethe-Salpeter equation. The spectrum shows a lower threshold at the smallest Einstein phonon energy when only the electron-phonon interaction is taken into consideration. When impurities are also taken into consideration, the threshold disappears.
Collective two-phonon states in deformed nuclei
International Nuclear Information System (INIS)
Solov'ev, V.G.; Shirikova, N.Y.
1982-01-01
The Pauli principle in the two-phonon components of the wave functions is taken into account within the framework of the quasiparticle-phonon model of the nucleus with phonon operators depending on the sign of the projection of the angular momentum. The centroid energies of collective two-phonon states in even-even deformed nuclei are calculated and it is shown that the inclusion of the Pauli principle shifts them by 1--3 MeV to higher energies. The shifts of the three-phonon poles due to the inclusion of the Pauli principle in the three-phonon components of the wave functions are calculated. Strong fragmentation of collective two-phonon states whose energy centroids are 3--5 MeV should be expected. It is concluded that collective two-phonon states need not exist in deformed nuclei. The situation with the 168 Er nucleus and the Th and U isotopes is analyzed
Situation with collective two-phonon states in deformed nuclei
International Nuclear Information System (INIS)
Soloviev, V.G.; Shirikova, N.Yu.
1982-01-01
Within the quasiparticle-phonon nuclear model with the operators of phonons depending on the sign of the angular momentum projection, the Pauli principle is taken into account in the two-phonon components of the wave functions. The centroid energies of the collective two-phonon states in even-even deformed nuclei are calculated. It is shown that the inclusion of the Pauli principle leads to their shift by 1-3 MeV towards high energies. The shifts of three-phonon poles due to the Pauli principle are calculated in the three-phonon components of the wave functions. The collective two-phonon states, the centroid energies of which are 3-5 MeV, are expected to be strongly fragmented. The conclusion is confirmed that the collective two-phonon states should not exist in deformed nuclei. The situation in 168 Er and in the 228 Th isotopes is analysed
Wu, Xufei; Liu, Zeyu; Luo, Tengfei
2018-02-01
In recent years, the fundamental physics of spin-lattice (e.g., magnon-phonon) interaction has attracted significant experimental and theoretical interests given its potential paradigm-shifting impacts in areas like spin-thermoelectrics, spin-caloritronics, and spintronics. Modelling studies of the transport of magnons and phonons in magnetic crystals are very rare. In this paper, we use spin-lattice dynamics (SLD) simulations to model ferromagnetic crystalline iron, where the spin and lattice systems are coupled through the atomic position-dependent exchange function, and thus the interaction between magnons and phonons is naturally considered. We then present a method combining SLD simulations with spectral energy analysis to calculate the magnon and phonon harmonic (e.g., dispersion, specific heat, and group velocity) and anharmonic (e.g., scattering rate) properties, based on which their thermal conductivity values are calculated. This work represents an example of using SLD simulations to understand the transport properties involving coupled magnon and phonon dynamics.
Manipulation of Phonons with Phononic Crystals
Energy Technology Data Exchange (ETDEWEB)
Leseman, Zayd Chad [Univ. of New Mexico, Albuquerque, NM (United States)
2015-07-09
There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.
Enhancing of optic phonon contribution in hydrodynamic phonon transport
de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.
2015-10-01
In the framework of the kinetic-collective model of phonon heat transport, we analyze how each range of the phonon frequency spectrum contributes to the total thermal conductivity both in the macro and the nanoscale. For this purpose, we use two case study samples: naturally occurring bulk silicon and a 115 nm of diameter silicon nanowire. We show that the contribution of high-energy phonons (optic branches) is non-negligible only when N-collisions are strongly present. This contribution increases when the effective size of the sample decreases, and it is found to be up to a 10% at room temperature for the 115 nm nanowire, corroborating preliminar ab-initio predictions.
Krishna, R.; van Baten, J.M.
2012-01-01
The primary objective of this article is to investigate the relative influences of molecular dimensions and adsorption binding energies on unary diffusivities of guest species inside nanoporous crystalline materials such as zeolites and metal-organic frameworks (MOFs). The investigations are based
Phonon emission in a degenerate semiconductor at low lattice temperatures
International Nuclear Information System (INIS)
Midday, S.; Nag, S.; Bhattacharya, D.P.
2015-01-01
The characteristics of phonon growth in a degenerate semiconductor at low lattice temperatures have been studied for inelastic interaction of non-equilibrium electrons with the intravalley acoustic phonons. The energy of the phonon and the full form of the phonon distribution are taken into account. The results reveal significant changes in the growth characteristics compared to the same for a non-degenerate material
Understanding photon sideband statistics and correlation for determining phonon coherence
Ding, Ding; Yin, Xiaobo; Li, Baowen
2018-01-01
Generating and detecting coherent high-frequency heat-carrying phonons have been topics of great interest in recent years. Although there have been successful attempts in generating and observing coherent phonons, rigorous techniques to characterize and detect phonon coherence in a crystalline material have been lagging compared to what has been achieved for photons. One main challenge is a lack of detailed understanding of how detection signals for phonons can be related to coherence. The quantum theory of photoelectric detection has greatly advanced the ability to characterize photon coherence in the past century, and a similar theory for phonon detection is necessary. Here, we reexamine the optical sideband fluorescence technique that has been used to detect high-frequency phonons in materials with optically active defects. We propose a quantum theory of phonon detection using the sideband technique and found that there are distinct differences in sideband counting statistics between thermal and coherent phonons. We further propose a second-order correlation function unique to sideband signals that allows for a rigorous distinction between thermal and coherent phonons. Our theory is relevant to a correlation measurement with nontrivial response functions at the quantum level and can potentially bridge the gap of experimentally determining phonon coherence to be on par with that of photons.
International Nuclear Information System (INIS)
Yan Hui; Chen Guanghua; Kwok, R.W.M.
1998-01-01
SiC buried layers were synthesized by a metal vapor vacuum arc ion source, with C + ions implanted into crystalline Si substrates. According to X-ray photoelectron spectroscopy, the characteristic electron energy loss spectra of the SiC buried layers were studied. It was found that the characteristic electron energy loss spectra depend on the profiles of the carbon content, and correlate well with the order of the buried layers
National Aeronautics and Space Administration — The overall objective is to demonstrate the concept of Yb:YAG crystalline fiber MOPA laser and investigation the technical feasibility toward 50 mJ single frequency...
International Nuclear Information System (INIS)
1986-12-01
The purpose of this report is to review activities of the Crystalline Rock Project in Massachusetts, the context in which it arose, and the implications and possibilities of future federal policy decisions on the siting of a high-level waste repository in a crystalline rock body. Although Massachusetts has been eliminated from consideration, there are still issues of concern to be resolved regarding the potential impacts upon Massachusetts if a site were ever to be chosen in New England
International Nuclear Information System (INIS)
Dukakis, M.S.; Johnston, P.W.; Walker, B. Jr.
1986-12-01
The purpose of this report is to review activities of the Crystalline Rock Project (CRP) in Massachusetts, the context in which it arose, and the implications and possibilities of future federal policy decisions on the siting of a HLW repository in a crystalline rock body. Although Massachusetts has been eliminated from consideration, there are still issues of concern to be resolved regarding the potential impacts upon Massachusetts if a site were ever to be chosen in New England
Phonons in a one-dimensional Yukawa chain: Dusty plasma experiment and model
International Nuclear Information System (INIS)
Liu Bin; Goree, J.
2005-01-01
Phonons in a one-dimensional chain of charged microspheres suspended in a plasma were studied in an experiment. The phonons correspond to random particle motion in the chain; no external manipulation was applied to excite the phonons. Two modes were observed, longitudinal and transverse. The velocity fluctuations in the experiment are analyzed using current autocorrelation functions and a phonon spectrum. The phonon energy was found to be unequally partitioned among phonon modes in the dusty plasma experiment. The experimental phonon spectrum was characterized by a dispersion relation that was found to differ from the dispersion relation for externally excited phonons. This difference is attributed to the presence of frictional damping due to gas, which affects the propagation of externally excited phonons differently from phonons that correspond to random particle motion. A model is developed and fit to the experiment to explain the features of the autocorrelation function, phonon spectrum, and the dispersion relation
International Nuclear Information System (INIS)
Ueno, N.; Sugita, K.; Seki, K.; Inokuchi, H.
1986-01-01
This paper describes the results of low-energy electron transmission and secondary-electron emission experiments on thin films of long-chain alkanes deposited on metal substrates. The spectral changes due to crystal-melt phase transition were measured in situ in both experiments. The ground-state energy V 0 of the quasifree electron in crystalline state was determined to be 0.5 +- 0.1 eV. The value of V 0 for the molten state was found to be negative. Further, in the crystalline state evidence is found for a direct correspondence between the transmission maxima and the high value of the density of states in the conduction bands
Electromagnetic decay of two-phonon states
International Nuclear Information System (INIS)
Catara, F.; Chomaz, Ph.; Van Giai, N.; Paris-11 Univ., 91 - Orsay
1991-01-01
The electromagnetic decay of two-phonon states corresponding to the multi-excitation of giant resonances is studied. The calculations are performed within a boson expansion approach and the elementary modes are constructed in random phase approximation (RPA). The rates for direct transition of two-phonon states to the ground state turn out to be not negligibly smaller than those from the (single) giant resonances. The former transitions are accompanied by a γ-ray whose energy is equal to the sum of the two phonon energies. Thus the detection of such high energy γ-rays could provide a signature of the excitation of two-phonon states. (author) 9 refs., 3 tabs
Optimizing phonon space in the phonon-coupling model
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.
2017-08-01
We present a new scheme to select the most relevant phonons in the phonon-coupling model, named here the time-blocking approximation (TBA). The new criterion, based on the phonon-nucleon coupling strengths rather than on B (E L ) values, is more selective and thus produces much smaller phonon spaces in the TBA. This is beneficial in two respects: first, it curbs the computational cost, and second, it reduces the danger of double counting in the expansion basis of the TBA. We use here the TBA in a form where the coupling strength is regularized to keep the given Hartree-Fock ground state stable. The scheme is implemented in a random-phase approximation and TBA code based on the Skyrme energy functional. We first explore carefully the cutoff dependence with the new criterion and can work out a natural (optimal) cutoff parameter. Then we use the freshly developed and tested scheme for a survey of giant resonances and low-lying collective states in six doubly magic nuclei looking also at the dependence of the results when varying the Skyrme parametrization.
Stern, Mark J.; René de Cotret, Laurent P.; Otto, Martin R.; Chatelain, Robert P.; Boisvert, Jean-Philippe; Sutton, Mark; Siwick, Bradley J.
2018-04-01
Despite their fundamental role in determining material properties, detailed momentum-dependent information on the strength of electron-phonon and phonon-phonon coupling (EPC and PPC, respectively) across the entire Brillouin zone has remained elusive. Here we demonstrate that ultrafast electron diffuse scattering (UEDS) directly provides such information. By exploiting symmetry-based selection rules and time resolution, scattering from different phonon branches can be distinguished even without energy resolution. Using graphite as a model system, we show that UEDS patterns map the relative EPC and PPC strength through their profound sensitivity to photoinduced changes in phonon populations. We measure strong EPC to the K -point TO phonon of A1' symmetry (K -A1' ) and along the entire TO branch between Γ -K , not only to the Γ -E2 g phonon. We also determine that the subsequent phonon relaxation of these strongly coupled optical phonons involve three stages: decay via several identifiable channels to TA and LA phonons (1 -2 ps), intraband thermalization of the non-equilibrium TA/LA phonon populations (30 -40 ps) and interband relaxation of the TA/LA modes (115 ps). Combining UEDS with ultrafast angle-resolved photoelectron spectroscopy will yield a complete picture of the dynamics within and between electron and phonon subsystems, helping to unravel complex phases in which the intertwined nature of these systems has a strong influence on emergent properties.
Energy Technology Data Exchange (ETDEWEB)
Khabibullin, R. A., E-mail: khabibullin@isvch.ru; Shchavruk, N. V.; Klochkov, A. N.; Glinskiy, I. A.; Zenchenko, N. V.; Ponomarev, D. S.; Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Zaycev, A. A. [National Research University of Electronic Technology (MIET) (Russian Federation); Zubov, F. I.; Zhukov, A. E.; Cirlin, G. E.; Alferov, Zh. I. [Russian Academy of Sciences, Saint Petersburg Academic University—Nanotechnology Research and Education Center (Russian Federation)
2017-04-15
The dependences of the electronic-level positions and transition oscillator strengths on an applied electric field are studied for a terahertz quantum-cascade laser (THz QCL) with the resonant-phonon depopulation scheme, based on a cascade consisting of three quantum wells. The electric-field strengths for two characteristic states of the THz QCL under study are calculated: (i) “parasitic” current flow in the structure when the lasing threshold has not yet been reached; (ii) the lasing threshold is reached. Heat-transfer processes in the THz QCL under study are simulated to determine the optimum supply and cooling conditions. The conditions of thermocompression bonding of the laser ridge stripe with an n{sup +}-GaAs conductive substrate based on Au–Au are selected to produce a mechanically stronger contact with a higher thermal conductivity.
Phonon excitations in multicomponent amorphous solids
International Nuclear Information System (INIS)
Vakarchuk, I.A.; Migal', V.M.; Tkachuk, V.M.
1988-01-01
The method of two-time temperature-dependent Green's functions is used to investigate phonon excitations in multicomponent amorphous solids. The equation obtained for the energy spectrum of the phonon excitations takes into account the damping associated with scattering of phonons by structure fluctuations. The quasicrystal approximation is considered, and as an example explicit expressions are obtained for the case of a two-component amorphous solid for the frequencies of the acoustical and optical modes and for the longitudinal and transverse velocities of sound. The damping is investigated
Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals
2017-01-01
We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652
Nonlinear electron-phonon heat exchange
International Nuclear Information System (INIS)
Woods, L.M.; Mahan, G.D.
1998-01-01
A calculation of the energy exchange between phonons and electrons is done for a metal at very low temperatures. We consider the energy exchange due to two-phonon processes. Second-order processes are expected to be important at temperatures less than 1 K. We include two different second-order processes: (i) the Compton-like scattering of phonons, and (ii) the electron-dual-phonon scattering from the second-order electron-phonon interaction. It is found that the Compton-like process contains a singular energy denominator. The singularity is removed by introducing quasiparticle damping. For pure metals we find that the energy exchange depends upon the lifetime of the electrons and it is proportional to the temperature of the lattice as T L 8 . The same calculation is performed for the electron-dual-phonon scattering and it is found that the temperature dependence is T L 9 . The results can be applied to quantum dot refrigerators. copyright 1998 The American Physical Society
Toward stimulated interaction of surface phonon polaritons
Energy Technology Data Exchange (ETDEWEB)
Kong, B. D.; Trew, R. J.; Kim, K. W., E-mail: kwk@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911 (United States)
2013-12-21
Thermal emission spectra mediated by surface phonon polariton are examined by using a theoretical model that accounts for generation processes. Specifically, the acoustic phonon fusion mechanism is introduced to remedy theoretical deficiencies of the near thermal equilibrium treatments. The model clarifies the thermal excitation mechanism of surface phonon polaritons and the energy transfer path under non-zero energy flow. When applied to GaAs and SiC semi-infinite surfaces, the nonequilibrium model predicts that the temperature dependence of the quasi-monochromatic peak can exhibit distinctly different characteristics of either sharp increase or slow saturation depending on the materials, which is in direct contrast with the estimate made by the near-equilibrium model. The proposed theoretical tool can accurately analyze the nonequilibrium steady states, potentially paving a pathway to demonstrate stimulated interaction/emission of thermally excited surface phonon polaritons.
Quasiparticle--phonon model of the nucleus. V. Odd spherical nuclei
International Nuclear Information System (INIS)
Vdovin, A.I.; Voronov, V.V.; Solov'ev, V.G.; Stoyanov, C.
1985-01-01
The formalism of the quasiparticle--phonon model of the nucleus for odd spherical nuclei is presented. The exact commutation relations of the quasiparticle and phonon operators together with the anharmonic corrections for the phonon excitations are taken into account in the derivation of equations for the energies and structure coefficients of the wave functions of excited states, which include quasiparticle--phonon and quasiparticle--two-phonon components. The influence of various physical effects and of the dimension of the phonon basis on the fragmentation of the single-quasiparticle and quasiparticle-phonon states is investigated
Marashdeh, A.; Frankcombe, T.J.
2008-01-01
The dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski’s direct method. The
International Nuclear Information System (INIS)
Dyuldya, S.V.; Bratchenko, M.I.
2012-01-01
Proposed is a direct method of Dark Matter crystalline scintillation detectors calibration by means of an atomistic molecular dynamics modeling of their responses to ∼10 keV recoil atoms. Simulations show that the recoils channeling exists in NaI lattice with probabilities of ∼5 - 15 %. It does not affect the mean values of quenching factors but gives rise to high visible energy spectral tails absent in disordered detectors. As a result, the lattice ordering manifests the ∼100 % effect on NaI(Tl) visible energy spectra at 2-6 keV window
Interface phonon effect on optical spectra of quantum nanostructures
International Nuclear Information System (INIS)
Maslov, Alexander Yu.; Proshina, Olga V.; Rusina, Anastasia N.
2009-01-01
This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.
Electron-phonon contribution to the phonon and excited electron (hole) linewidths in bulk Pd
International Nuclear Information System (INIS)
Sklyadneva, I Yu; Leonardo, A; Echenique, P M; Eremeev, S V; Chulkov, E V
2006-01-01
We present an ab initio study of the electron-phonon (e-ph) coupling and its contribution to the phonon linewidths and to the lifetime broadening of excited electron and hole states in bulk Pd. The calculations, based on density-functional theory, were carried out using a linear-response approach in the plane-wave pseudopotential representation. The obtained results for the Eliashberg spectral function α 2 F(ω), e-ph coupling constant λ, and the contribution to the lifetime broadening, Γ e-ph , show strong dependence on both the energy and momentum of an electron (hole) state. The calculation of phonon linewidths gives, in agreement with experimental observations, an anomalously large broadening for the transverse phonon mode T 1 in the Σ direction. In addition, this mode is found to contribute most strongly to the electron-phonon scattering processes on the Fermi surface
Phonon engineering for nanostructures.
Energy Technology Data Exchange (ETDEWEB)
Aubry, Sylvie (Stanford University); Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H. (Idaho National Laboratory); Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen
2010-01-01
Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.
A holographic perspective on phonons and pseudo-phonons
Energy Technology Data Exchange (ETDEWEB)
Amoretti, Andrea [Institute of Theoretical Physics and Astrophysics, University of Würzburg,97074 Würzburg (Germany); Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Areán, Daniel [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805, Munich (Germany); Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [Departamento de Física de Partículas, Universidade de Santiago de Compostelaand Instituto Galego de Física de Altas Enerxías (IGFAE),E-15782, Santiago de Compostela (Spain); Zayas, Leopoldo A. Pando [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,Ann Arbor, MI 48109 (United States)
2017-05-10
We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.
Energy Technology Data Exchange (ETDEWEB)
Benzigar, Mercy R.; Joseph, Stalin; Ilbeygi, Hamid [Future Industries Institute (FII), Division of Information Technology Energy and Environment (DivITEE), University of South Australia, Adelaide, SA (Australia); Park, Dae-Hwan; Talapaneni, Siddulu Naidu [Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW (Australia); Sarkar, Sujoy; Chandra, Goutam; Umapathy, Siva; Srinivasan, Sampath [Department of Inorganic and Physical Chemistry and Department of Instrumentation and Applied Physics, Indian Institute of Science (IISc), Bangalore (India); Vinu, Ajayan [Future Industries Institute (FII), Division of Information Technology Energy and Environment (DivITEE), University of South Australia, Adelaide, SA (Australia); Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW (Australia)
2018-01-08
Highly ordered mesoporous C{sub 60} with a well-ordered porous structure and a high crystallinity is prepared through the nanohard templating method using a saturated solution of C{sub 60} in 1-chloronaphthalene (51 mg mL{sup -1}) as a C{sub 60} precursor and SBA-15 as a hard template. The high solubility of C{sub 60} in 1-chloronaphthalene helps not only to encapsulate a huge amount of the C{sub 60} into the mesopores of the template but also supports the oligomerization of C{sub 60} and the formation of crystalline walls made of C{sub 60}. The obtained mesoporous C{sub 60} exhibits a rod-shaped morphology, a high specific surface area (680 m{sup 2} g{sup -1}), tuneable pores, and a highly crystalline wall structure. This exciting ordered mesoporous C{sub 60} offers high supercapacitive performance and a high selectivity to H{sub 2}O{sub 2} production and methanol tolerance for ORR. This simple strategy could be adopted to make a series of mesoporous fullerenes with different structures and carbon atoms as a new class of energy materials. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Doak, R.B.
1981-01-01
A crystal surface terminates abruptly one dimension of lattice periodicity, constituting a lattice defect with concomitant localized modes of vibration, termed surface phonons. Such surface phonons have previously been investigated in the long wavelength, non-dispersive regime. The present work reports the first observation of surface phonons in the short wavelength, dispersive range. The data allow for the first time a surface phonon dispersion curve to be plotted completely from origin to edge of the surface Brillouin zone. Measurements were made of phonons along the (anti GAMMA anti M) and (anti GAMMA anti X) azimuths of the LiF(001) surface and along the azimuth of NaF(001) and KC1(001) surfaces. The results are in substantial agreement with theoretical predictions, although for LiF the measured Rayleigh dispersion curve at M lies appreciably below the theoretical value, possibly reflecting the effects of surface relaxation. (orig.)
International Nuclear Information System (INIS)
Sharma, Amita; Rathore, R.P.S.
1992-01-01
Born-Mayer potential has been modified to account for the unpaired (three body) forces among the common nearest neighbours of the ordered binary fcc alloys i.e. Ni 3 Fe 7 , Ni 5 Fe 5 and Ni 75 Fe 25 . The three body potential is added to the two body form of Morse to formalize the total interaction potential. Measured inverse ionic compressibility, cohesive energy, lattice constant and one measured phonon frequency are used to evaluate the defining parameters of the potential. The potential seeks to bring about the binding among 140 and 132 atoms though pair wise (two body) and non-pair wise (three body) forces respectively. The phonon-dispersion relations obtained by solving the secular equation are compared with the experimental findings on the aforesaid alloys. (author). 19 refs., 3 figs
Gibbs free-energy difference between the glass and crystalline phases of a Ni-Zr alloy
Ohsaka, K.; Trinh, E. H.; Holzer, J. C.; Johnson, W. L.
1993-01-01
The heats of eutectic melting and devitrification, and the specific heats of the crystalline, glass, and liquid phases have been measured for a Ni24Zr76 alloy. The data are used to calculate the Gibbs free-energy difference, Delta G(AC), between the real glass and the crystal on an assumption that the liquid-glass transition is second order. The result shows that Delta G(AC) continuously increases as the temperature decreases in contrast to the ideal glass case where Delta G(AC) is assumed to be independent of temperature.
International Nuclear Information System (INIS)
1986-04-01
Foth and Van Dyke and Associates Inc. was retained by the Stockbridge-Munsee Community to evaluate the DOE's screening process for selection of candidate areas in crystalline rock terranes, and critically review the geologic and environmental factors utilized by the DOE in selecting the NC-3 area as a potentially acceptable site (PAS). We have reviewed the DOE's Draft Area Recommendation Report (ARR) issued in January 1986, and prepared our comments. In addition, geologic and environmental data pertaining to the Stockbridge-Munsee community and vicinity that was not included in the Draft ARR is presented. 24 refs., 7 figs., 4 tabs
Phonon-assisted tunneling and its dependence on pressure
International Nuclear Information System (INIS)
Roy, P.N.; Singh, A.P.; Thakur, B.N.
1999-01-01
First the mechanism of phonon-assisted tunneling has been investigated. The indirect tunnel current density has been computed after taking the amplitude of the time dependent perturbation as the energy of the lattice vibration. Later the pressure dependence of the phonon-assisted tunnel current has been computed using Payne's expression for the dependence of phonon frequency on pressure. Very good qualitative agreements are obtained between predicted and observed characteristics. (author)
Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K
2010-10-15
Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.
Application of a linear free energy relationship to crystalline solids of MO2 and M(OH)4
International Nuclear Information System (INIS)
Xu Huifang; Barton, L.L.
1999-01-01
In this letter, a linear free energy relationship developed by Sverjensky and Molling is used to predict the Gibbs free energies of formation of crystalline phases of M 4+ O 2 and M 4+ (OH) 4 from the known thermodynamic properties of aqueous tetravalent cations (M 4+ ). The modified Sverjensky and Molling equation for tetravalent cations is expressed as ΔG 0 f,M v X = a M v X ΔG 0 n,M 4+ + b M v X + β M v X r M 4+ , where the coefficients a M v X , b M v X and β M v X characterize a particular structural family of M v X, r M 4+ is the ionic radius of M 4+ cation, ΔG 0 f,M v X is the standard Gibbs free energy of formation of M v X, and ΔG 0 n,M 4+ is the standard non-solvation energy of cation M 4+ . By fitting the equation to the existing thermodynamic data, the coefficients in the equation for the MO 2 family minerals are estimated to be: a M v X = 0.670, β M v X = 32 (kcal/mol A), and b = -430.02 (kcal/mol). The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases (i.e., phases which are thermodynamically unstable and do not occur at standard conditions) within the isostructural families of M 4+ O 2 and M 4+ (OH) 4 if the standard Gibbs free energies of formation of the tetravalent cations are known. (orig.)
International Nuclear Information System (INIS)
Assadi, Abbas; Salehi, Manouchehr; Akhlaghi, Mehdi
2015-01-01
In this work, size dependent behavior of single crystalline normal and auxetic anisotropic nanoplates is discussed with consideration of material surface stresses via a generalized model. Bending of pressurized nanoplates and their fundamental resonant frequency are discussed for different crystallographic directions and anisotropy degrees. It is explained that the orientation effects are considerable when the nanoplates' edges are pinned but for clamped nanoplates, the anisotropy effect may be ignored. The size effects are the highest when the simply supported nanoplates are parallel to [110] direction but as the anisotropy gets higher, the size effects are reduced. The orientation effect is also discussed for possibility of self-instability occurrence in nanoplates. The results in simpler cases are compared with previous experiments for nanowires but with a correction factor. There are still some open questions for future studies. - Highlights: • Size effects in single crystalline anisotropic nanoplates are discussed. • A generalized model is established containing some physical assumptions. • Orientation dependent size effects due to material anisotropy are explained. • Bending, instability and frequencies are studied at normal/auxetic domain
Marashdeh, Ali; Frankcombe, Terry J
2008-06-21
The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized.
Energy Technology Data Exchange (ETDEWEB)
Marcon, J. [Laboratoire Electronique Microtechnologie et Instrumentation (LEMI), University of Rouen, 76821 Mont Saint Aignan (France)], E-mail: Jerome.Marcon@univ-rouen.fr; Merabet, A. [Laboratoire de Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, 19000 Setif (Algeria)
2008-12-05
We have investigated and modelled the diffusion of boron implanted into crystalline silicon in the form of boron difluoride BF{sub 2}{sup +}. We have used published data for BF{sub 2}{sup +} implanted with an energy of 2.2 keV in crystalline silicon. Fluorine effects are considered by using vacancy-fluorine pairs which are responsible for the suppression of boron diffusion in crystalline silicon. Following Uematsu's works, the simulations satisfactory reproduce the SIMS experimental profiles in the 800-1000 deg. C temperature range. The boron diffusion model in silicon of Uematsu has been improved taking into account the last experimental data.
Birefringent phononic structures
Directory of Open Access Journals (Sweden)
I. E. Psarobas
2014-12-01
Full Text Available Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.
International Nuclear Information System (INIS)
Emin, David
2016-01-01
Charge carriers that execute multi-phonon hopping generally interact strongly enough with phonons to form polarons. A polaron's sluggish motion is linked to slowly shifting atomic displacements that severely reduce the intrinsic width of its transport band. Here a means to estimate hopping polarons' bandwidths from Seebeck-coefficient measurements is described. The magnitudes of semiconductors' Seebeck coefficients are usually quite large (>k/|q| = 86 μV/K) near room temperature. However, in accord with the third law of thermodynamics, Seebeck coefficients must vanish at absolute zero. Here, the transition of the Seebeck coefficient of hopping polarons to its low-temperature regime is investigated. The temperature and sharpness of this transition depend on the concentration of carriers and on the width of their transport band. This feature provides a means of estimating the width of a polaron's transport band. Since the intrinsic broadening of polaron bands is very small, less than the characteristic phonon energy, the net widths of polaron transport bands in disordered semiconductors approach the energetic disorder experienced by their hopping carriers, their disorder energy
International Nuclear Information System (INIS)
Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing
2010-01-01
) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the Λ point are: C 11 = 35.3 ± 1.4 GPa, C 12 = 25.5 ± 1.5 GPa and C 44 = 30.53 ± 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure (delta)-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C(prime), a Kohn-like anomaly in the T 1 [011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for (delta)-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C(prime), a Kohn-like anomaly in the T 1 [011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which (delta)-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T 1 [011] branch, the energy maximum of the T[111] mode s
Phonon response of some heavy Fermion systems in dynamic limit
Sahoo, Jitendra; Shadangi, Namita; Nayak, Pratibindhya
2017-05-01
The phonon excitation spectrum of some Heavy Fermion (HF) systems in the presence of electron-phonon interaction is studied in the dynamic limit (ω≠0). The renormalized excitation phonon frequencies (ω˜ = ω/ω0) are evaluated through Periodic Anderson Model (PAM) in the presence of electron-phonon interaction using Zubarev-type double time temperature-dependent Green function. The calculated renormalized phonon energy is analyzed through the plots of (ω˜ = ω/ω0) against temperature for different system parameters like effective coupling strength ‘g’ and the position of f-level ‘d’. The observed behavior is analyzed and found to agree with the general features of HF systems found in experiments. Further, it is observed that in finite but small q-values the propagating phonons harden and change to localized peaks.
Quantum decoherence of phonons in Bose-Einstein condensates
Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette
2018-01-01
We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.
Lifetime of the phonons in the PLT ceramic
Energy Technology Data Exchange (ETDEWEB)
Barba-Ortega, J., E-mail: jjbarba@unal.edu.co; Joya, M. R., E-mail: mrinconj@unal.edu.co [Departamento de Física, Universidad Nacional de Colombia, carrera 30 # 45-03, Bogotá 1149 (Colombia); Londoño, F. A., E-mail: flondono@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, Calle 67 #53-108 Of.6-105, Medellin (Colombia)
2014-11-05
The lifetimes at higher temperatures on lanthanum-modified lead titanate (PLT) are mainly due to the anharmonic decay of optical phonons into low-energy phonons. The temperature-independent contributions from inherent crystal defects and from boundary scattering become comparable to the phonon scattering contribution at lower temperatures. The thermal interaction is large at higher temperatures which decreases the phonon mean free path, and so the decay lifetime decreases as the temperature of the system is increased. This leads to the increased line width at higher temperatures. We made an estimate of the lifetimes for different concentrations and temperatures in PLT.
Hot-phonon generation in THz quantum cascade lasers
Spagnolo, V.; Vitiello, M. S.; Scamarcio, G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
2007-12-01
Observation of non-equilibrium optical phonons population associated with electron transport in THz quantum cascade lasers is reported. The phonon occupation number was measured by using a combination of micro-probe photoluminescence and Stokes/Anti-Stokes Raman spectroscopy. Energy balance analysis allows us to estimate the phonon relaxation rate, that superlinearly increases with the electrical power in the range 1.5 W - 1.95 W, above laser threshold. This observation suggests the occurrence of stimulated emission of optical phonons.
Quasiparticles, phonons and beyond. Enlargement the basis of quasiparticle-phonon model
International Nuclear Information System (INIS)
Stoyanov, Ch.
2000-01-01
The version of Quasiparticle-Phonon Model (QPM) which accounts up to three-phonons is discussed. The new basis is used to study the low-lying isovector mode and the low-energy E1 transitions forbidden in the ideal boson picture. The coupling to the continuum is incorporated in the formalism of QPM. The phenomenon of trapping of states is studied in the case of high-lying states with large angular momentum. (author)
Ionizing particle detection based on phononic crystals
Energy Technology Data Exchange (ETDEWEB)
Aly, Arafa H., E-mail: arafa16@yahoo.com, E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)
2015-08-14
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Multiple topological phases in phononic crystals
Chen, Zeguo; Wu, Ying
2017-01-01
We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.
Multiple topological phases in phononic crystals
Chen, Zeguo
2017-11-20
We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases: quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C-6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases: quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.
Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori
2017-03-30
xLa 2 O 3 -(100 - x)Ga 2 O 3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å 3 , indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La 2 O 3 content. The maximum phonon energy was found to be approximately 650 cm -1 , being one of the lowest among oxide glasses. These results show that La 2 O 3 -Ga 2 O 3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.
Yoshimoto, Kohei; Masuno, Atsunobu; Ueda, Motoi; Inoue, Hiroyuki; Yamamoto, Hiroshi; Kawashima, Tastunori
2017-03-01
xLa2O3-(100 - x)Ga2O3 binary glasses were synthesized by an aerodynamic levitation technique. The glass-forming region was found to be 20 ≤ x ≤ 57. The refractive indices were greater than 1.92 and increased linearly with increasing x. The polarizabilities of oxide ions were estimated to be 2.16-2.41 Å3, indicating that the glasses were highly ionic. The glasses were transparent over a very wide range from the ultraviolet to the mid-infrared region. The widest transparent window among the oxide glasses was from 270 nm to 10 μm at x = 55. From the Raman scattering spectra, a decrease in bridging oxide ions and an increase in non-bridging oxide ions were confirmed to occur with increasing La2O3 content. The maximum phonon energy was found to be approximately 650 cm-1, being one of the lowest among oxide glasses. These results show that La2O3-Ga2O3 binary glasses should be promising host materials for optical applications such as lenses, windows, and filters over a very wide wavelength range.
Phonon-assisted decoherence and tunneling in quantum dot molecules
DEFF Research Database (Denmark)
Grodecka-Grad, Anna; Foerstner, Jens
2011-01-01
processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...
International Nuclear Information System (INIS)
Voronov, V.V.; Dang, N.D.
1984-01-01
the system of equations, enabling to calculate the energy and the structure of excited states, described by the wave function, containing one- and two-phon components was obtained in the framework of quasiparticlephonon model. The requirements of Pauli principle for two-phonon components and phonon correlation in the ground nucleus state are taken into account
Finite-size corrections to the free energies of crystalline solids
Polson, J.M.; Trizac, E.; Pronk, S.; Frenkel, D.
2000-01-01
We analyze the finite-size corrections to the free energy of crystals with a fixed center of mass. When we explicitly correct for the leading (ln N/N) corrections, the remaining free energy is found to depend linearly on 1/N. Extrapolating to the thermodynamic limit (N → ∞), we estimate the free
Thermal effects on the Raman phonon of few-layer phosphorene
International Nuclear Information System (INIS)
Ling, Zhi-Peng; Ang, Kah-Wee
2015-01-01
Two-dimensional phosphorene is a promising channel material for next generation transistor applications due to its superior carrier transport property. Here, we report the influence of thermal effects on the Raman phonon of few-layer phosphorene formed on hafnium-dioxide (HfO 2 ) high-k dielectric. When annealed at elevated temperatures (up to 200 °C), the phosphorene film was found to exhibit a blue shift in both the out-of-plane (A 1 g ) and in-plane (B 2g and A 2 g ) phonon modes as a result of compressive strain effect. This is attributed to the out-diffusion of hafnium (Hf) atoms from the underlying HfO 2 dielectric, which compresses the phosphorene in both the zigzag and armchair directions. With a further increase in thermal energy beyond 250 °C, strain relaxation within phosphorene eventually took place. When this happens, the phosphorene was unable to retain its intrinsic crystallinity prior to annealing, as evident from the broadening of full-width at half maximum of the Raman phonon. These results provide an important insight into the impact of thermal effects on the structural integrity of phosphorene when integrated with high-k gate dielectric
Thermal effects on the Raman phonon of few-layer phosphorene
Energy Technology Data Exchange (ETDEWEB)
Ling, Zhi-Peng; Ang, Kah-Wee, E-mail: eleakw@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore); Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546 (Singapore)
2015-12-01
Two-dimensional phosphorene is a promising channel material for next generation transistor applications due to its superior carrier transport property. Here, we report the influence of thermal effects on the Raman phonon of few-layer phosphorene formed on hafnium-dioxide (HfO{sub 2}) high-k dielectric. When annealed at elevated temperatures (up to 200 °C), the phosphorene film was found to exhibit a blue shift in both the out-of-plane (A{sup 1}{sub g}) and in-plane (B{sub 2g} and A{sup 2}{sub g}) phonon modes as a result of compressive strain effect. This is attributed to the out-diffusion of hafnium (Hf) atoms from the underlying HfO{sub 2} dielectric, which compresses the phosphorene in both the zigzag and armchair directions. With a further increase in thermal energy beyond 250 °C, strain relaxation within phosphorene eventually took place. When this happens, the phosphorene was unable to retain its intrinsic crystallinity prior to annealing, as evident from the broadening of full-width at half maximum of the Raman phonon. These results provide an important insight into the impact of thermal effects on the structural integrity of phosphorene when integrated with high-k gate dielectric.
Phonon optimized interatomic potential for aluminum
Directory of Open Access Journals (Sweden)
Murali Gopal Muraleedharan
2017-12-01
Full Text Available We address the problem of generating a phonon optimized interatomic potential (POP for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA to optimize the free parameters in an empirical interatomic potential (EIP. For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT calculations. Existing potentials for aluminum, such as the embedded atom method (EAM and charge-optimized many-body (COMB3 potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE, employing Fermi’s Golden Rule to predict the phonon-phonon relaxation times.
Phonon optimized interatomic potential for aluminum
Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun
2017-12-01
We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.
Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena
Jin, Yongmei M.; Wang, Yu U.; Ren, Yang
2015-12-01
Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.
International Nuclear Information System (INIS)
Bezuglyi, A.I.; Shklovskii, V.A.
1997-01-01
The theoretical analysis of experiments on pulsed laser irradiation of metallic films sputtered on insulating supports is usually based on semiphenomenological dynamical equations for the electron and phonon temperatures, an approach that ignores the nonuniformity and the nonthermal nature of the phonon distribution function. In this paper we discuss a microscopic model that describes the dynamics of the electron-phonon system in terms of kinetic equations for the electron and phonon distribution functions. Such a model provides a microscopic picture of the nonlinear energy relaxation of the electron-phonon system of a rapidly heated film. We find that in a relatively thick film the energy relaxation of electrons consists of three stages: the emission of nonequilibrium phonons by 'hot' electrons, the thermalization of electrons and phonons due to phonon reabsorption, and finally the cooling of the thermalized electron-phonon system as a result of phonon exchange between film and substrate. In thin films, where there is no reabsorption of nonequilibrium phonons, the energy relaxation consists of only one stage, the first. The relaxation dynamics of an experimentally observable quantity, the phonon contribution to the electrical conductivity of the cooling film, is directly related to the dynamics of the electron temperature, which makes it possible to use the data of experiments on the relaxation of voltage across films to establish the electron-phonon and phonon-electron collision times and the average time of phonon escape from film to substrate
Phonon superradiance and phonon laser effect in nanomagnets.
Chudnovsky, E M; Garanin, D A
2004-12-17
We show that the theory of spin-phonon processes in paramagnetic solids must take into account the coherent generation of phonons by the magnetic centers. This effect should drastically enhance spin-phonon rates in nanoscale paramagnets and in crystals of molecular nanomagnets.
Electron-phonon interaction on an Al(001) surface
International Nuclear Information System (INIS)
Sklyadneva, I Yu; Chulkov, E V; Echenique, P M
2008-01-01
We report an ab initio study of the electron-phonon (e-ph) interaction and its contribution to the lifetime broadening of excited hole (electron) surface states on Al(001). The calculations based on density-functional theory were carried out using a linear response approach in the plane-wave pseudopotential representation. The obtained results show that both the electron-phonon coupling and the linewidth experience a weak variation with the energy and momentum position of a hole (electron) surface state in the energy band. An analysis of different contributions to the e-ph coupling reveals that bulk phonon modes turn out to be more involved in the scattering processes of excited electrons and holes than surface phonon modes. It is also shown that the role of the e-ph coupling in the broadening of the Rayleigh surface phonon mode is insignificant compared to anharmonic effects
Perrin, Bernard
2007-06-01
logo.jpg" ALT="Conference logo"/> The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how phonons can help tracking dark matter. These 328
Effect of crystal habits on the surface energy and cohesion of crystalline powders.
Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Gamble, John F; Tobyn, Michael J; Heng, Jerry Y Y
2014-09-10
The role of surface properties, influenced by particle processing, in particle-particle interactions (powder cohesion) is investigated in this study. Wetting behaviour of mefenamic acid was found to be anisotropic by sessile drop contact angle measurements on macroscopic (>1cm) single crystals, with variations in contact angle of water from 56.3° to 92.0°. This is attributed to variations in surface chemical functionality at specific facets, and confirmed using X-ray photoelectron spectroscopy (XPS). Using a finite dilution inverse gas chromatography (FD-IGC) approach, the surface energy heterogeneity of powders was determined. The surface energy profile of different mefenamic acid crystal habits was directly related to the relative exposure of different crystal facets. Cohesion, determined by a uniaxial compression test, was also found to relate to surface energy of the powders. By employing a surface modification (silanisation) approach, the contribution from crystal shape from surface area and surface energy was decoupled. By "normalising" contribution from surface energy and surface area, needle shaped crystals were found to be ∼2.5× more cohesive compared to elongated plates or hexagonal cuboid shapes crystals. Copyright © 2014. Published by Elsevier B.V.
Phonon dynamics of graphene on metals
Taleb, Amjad Al; Farías, Daniel
2016-03-01
The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.
Evidence for second-phonon nuclear wobbling
International Nuclear Information System (INIS)
Jensen, D.R.; Hagemann, G.B.; Herskind, B.; Sletten, G.; Wilson, J.N.; Hamamoto, I.; Odegaard, S.W.; Spohr, K.; Huebel, H.; Bringel, P.; Neusser, A.; Schoenwasser, G.; Singh, A.K.; Ma, W.C.; Amro, H.; Bracco, A.; Leoni, S.; Benzoni, G.; Maj, A.; Petrache, C.M.
2002-01-01
The nucleus 163 Lu has been populated through the reaction 139 La( 29 Si,5n) with a beam energy of 157 MeV. Three triaxial, strongly deformed (TSD) bands have been observed with very similar rotational properties. The first excited TSD band has earlier been assigned as a one-phonon wobbling excitation built on the lowest-lying (yrast) TSD band. The large B(E2) out /B(E2) in value obtainable for one of four observed transitions between the second and first excited TSD bands is in good agreement with particle-rotor calculations for a two-phonon wobbling excitation
Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Departments of Physics and Astronomy, University College London, Thomas Young Center, London Centre for Nanotechnology, London WC1E 6BT (United Kingdom); Cohen, R. E. [Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015 (United States); Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333 (Germany); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)
2016-08-14
We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.
International Nuclear Information System (INIS)
Wagner, P.
1976-04-01
Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism
Directory of Open Access Journals (Sweden)
Georgios Gkantzounis
2017-11-01
Full Text Available We employ a recently introduced class of artificial structurally-disordered phononic structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding. Phononic crystals are periodic structures that prohibit the propagation of elastic waves through destructive interference and exhibit large band gaps and ballistic propagation of elastic waves in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band gaps and favour localization or diffusive propagation. Here, we use structures with correlated disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can smoothly vary from completely random to periodic (full order by adjusting a single parameter. Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones, both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes near the band edges. The presence of large elastic band gaps allows the creation of waveguides in hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100% transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct impact on integrated micro-electro-mechanical filters and modulators for wireless communications and acousto-optical sensing applications.
Search for the 3-phonon state of 40Ca
International Nuclear Information System (INIS)
Fallot, M.
2002-09-01
We study collective vibrational states of the nucleus: giant resonances and multiphonon states. It has been shown that multiphonon states, which are built with several superimposed giant resonances, can be excited in inelastic heavy ion scattering near the grazing angle. No three photon states have been observed until now. An experiment has been performed at GANIL, aiming at the observation of the 3-phonon state built with the giant quadrupole resonance (GQR) in 40 Ca, with the reaction 40 Ca + 40 Ca at 50 A.Me.V. The ejectile was identified in the SPEG spectrometer. Light charged particles were detected in 240 CsI scintillators of the INDRA 4π array. The analysis confirms the previous results about the GQR and the 2-phonon state in 40 Ca. For the first time, we have measured an important direct decay branch of the GQR by alpha particles. Applying the so-called 'missing energy method' to events containing three protons measured in coincidence with the ejectile, we observe a direct decay branch revealing the presence of a 3-phonon state in the excitation energy region expected for the triple GQR. Dynamical processes are also studied in the inelastic channel, emphasizing a recently discovered mechanism named towing-mode. We observe for the first time the towing-mode of alpha particles. The energies of multiphonon states in 40 Ca and 208 Pb have been computed microscopically including some anharmonicities via boson mapping methods. The basis of the calculation has been extended to the 3-phonon states. Our results show large anharmonicities (several MeV), due to the coupling of 3-phonon states to 2-phonon states. The extension of the basis to 4-phonon states has been performed for the first time. The inclusion of the 4 phonon states in the calculation did not affect the previous observations concerning the 2-phonon states. Preliminary results on the anharmonicities of the 3-phonon states are presented. (author)
Phonon properties of americium phosphide
Energy Technology Data Exchange (ETDEWEB)
Arya, B. S., E-mail: bsarya13@yahoo.com [Department of Physics, Govt. Narmada P G College, Hoshangabad -461001 (India); Aynyas, Mahendra [Department of Physics, C. S. A. Govt. P. G. College Sehore-46601 (India); Sanyal, S. P. [Department of Physics, Barkatullah University, Bhopal-462026 (India)
2016-05-23
Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.
Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering
International Nuclear Information System (INIS)
Tandon, Nandan; Albrecht, J. D.; Ram-Mohan, L. R.
2015-01-01
We report ab-initio results for electron-phonon (e-ph) coupling and display the existence of a large variation in the coupling parameter as a function of electron and phonon dispersion. This variation is observed for all phonon modes in Si and Ge, and we show this for representative cases where the initial electron states are at the band gap edges. Using these e-ph matrix elements, which include all possible phonon modes and electron bands within a relevant energy range, we evaluate the imaginary part of the electron self-energy in order to obtain the associated scattering rates. The temperature dependence is seen through calculations of the scattering rates at 0 K and 300 K. The results provide a basis for understanding the impacts of phonon scattering vs. orientation and geometry in the design of devices, and in analysis of transport phenomena. This provides an additional tool for engineering the transfer of energy from carriers to the lattice
Magnon and phonon thermometry with inelastic light scattering
Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin
2018-04-01
Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.
Phonon operators for deformed nuclei
International Nuclear Information System (INIS)
Solov'ev, V.G.
1982-01-01
The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator
Phononic crystals fundamentals and applications
Adibi, Ali
2016-01-01
This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.
The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy
International Nuclear Information System (INIS)
Lynch, D.W.
2004-01-01
With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals
Interplay between electron-phonon and electron-electron interactions
International Nuclear Information System (INIS)
Roesch, O.; Gunnarsson, O.; Han, J.E.; Crespi, V.H.
2005-01-01
We discuss the interplay between electron-electron and electron-phonon interactions for alkali-doped fullerides and high temperature superconductors. Due to the similarity of the electron and phonon energy scales, retardation effects are small for fullerides. This raises questions about the origin of superconductivity, since retardation effects are believed to be crucial for reducing effects of the Coulomb repulsion in conventional superconductors. We demonstrate that by treating the electron-electron and electron-phonon interactions on an equal footing, superconductivity can be understood in terms of a local pairing. The Jahn-Teller character of the important phonons in fullerides plays a crucial role for this result. To describe effects of phonons in cuprates, we derive a t-J model with phonons from the three-band model. Using exact diagonalization for small clusters, we find that the anomalous softening of the half-breathing phonon as well as its doping dependence can be explained. By comparing the solution of the t-J model with the Hartree-Fock approximation for the three-band model, we address results obtained in the local-density approximation for cuprates. We find that genuine many-body results, due to the interplay between the electron-electron and electron-phonon interactions, play an important role for the the results in the t-J model. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Effect of thermal phonons on the superconducting transition temperature
International Nuclear Information System (INIS)
Leavens, C.R.; Talbot, E.
1983-01-01
There is no consensus in the literature on whether or not thermal phonons depress the superconducting transition temperature T/sub c/. In this paper it is shown by accurate numerical solution of the real-frequency Eliashberg equations for the pairing self-energy phi and renormalization function Z that thermal phonons in the kernel for phi raise T/sub c/ but those in Z lower it by a larger amount so that the net effect is to depress T/sub c/. (A previous calculation which ignored the effect of thermal phonons in phi overestimated the suppression of T/sub c/ by at least a factor of 3.) It is shown how to switch off the thermal phonons in the imaginary-frequency Eliashberg equations, exactly for Z and approximately for phi. The real-frequency and approximate imaginary-frequency results for the depression of T/sub c/ by thermal phonons are in very satisfactory agreement. Thermal phonons are found to depress the transition temperature of Nb 3 Sn by only 2%. It is estimated that the suppression of T/sub c/ by thermal phonons saturates at about 50% in the limit of very strong electron-phonon coupling
Holmes, Jesse Curtis
Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be
Kohn anomaly in phonon driven superconductors
International Nuclear Information System (INIS)
Das, M P; Chaudhury, R
2014-01-01
Anomalies often occur in the physical world. Sometimes quite unexpectedly anomalies may give rise to new insight to an unrecognized phenomenon. In this paper we shall discuss about Kohn anomaly in a conventional phonon-driven superconductor by using a microscopic approach. Recently Aynajian et al.'s experiment showed a striking feature; the energy of phonon at a particular wave-vector is almost exactly equal to twice the energy of the superconducting gap. Although the phonon mechanism of superconductivity is well known for many conventional superconductors, as has been noted by Scalapino, the new experimental results reveal a genuine puzzle. In our recent work we have presented a detailed theoretical analysis with the help of microscopic calculations to unravel this mystery. We probe this aspect of phonon behaviour from the properties of electronic polarizability function in the superconducting phase of a Fermi liquid metal, leading to the appearance of a Kohn singularity. We show the crossover to the standard Kohn anomaly of the normal phase for temperatures above the transition temperature. Our analysis provides a nearly complete explanation of this new experimentally discovered phenomenon. This report is a shorter version of our recent work in JPCM.
Solar-light photocatalytic disinfection using crystalline/amorphous low energy bandgap reduced TiO2
Kim, Youngmin; Hwang, Hee Min; Wang, Luyang; Kim, Ikjoon; Yoon, Yeoheung; Lee, Hyoyoung
2016-01-01
A generation of reactive oxygen species (ROS) from TiO2 under solar light has been long sought since the ROS can disinfect organic pollutants. We found that newly developed crystalline/amorphous reduced TiO2 (rTiO2) that has low energy bandgap can effectively generate ROS under solar light and successfully remove a bloom of algae. The preparation of rTiO2 is a one-pot and mass productive solution-process reduction using lithium-ethylene diamine (Li-EDA) at room temperature. Interestingly only the rutile phase of TiO2 crystal was reduced, while the anatase phase even in case of both anatase/rutile phased TiO2 was not reduced. Only reduced TiO2 materials can generate ROS under solar light, which was confirmed by electron spin resonance. Among the three different types of Li-EDA treated TiO2 (anatase, rutile and both phased TiO2), the both phased rTiO2 showed the best performance to produce ROS. The generated ROS effectively removed the common green algae Chlamydomonas. This is the first report on algae degradation under solar light, proving the feasibility of commercially available products for disinfection. PMID:27121120
Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle
2011-03-01
Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.
Influence of the Pauli principle on the two-phonon states
International Nuclear Information System (INIS)
Djolos, R.V.; Molina, J.L.; Soloviev, V.G.
1979-01-01
It is shown that the commutation relations between quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The case of the even-even deformed nuclei is studied. Exact and approximate secular equations are obtained. The corrections arising due to the Pauli principle are shown to be large for the two-phonon components of the wave functions, when the phonons are identical. The influence of the Pauli principle on the energies of the two-phonon states and radiative strength functions requires further investigation [ru
Beryllium phonon spectrum from cold neutron measurements
International Nuclear Information System (INIS)
Bulat, I.A.
1979-01-01
The inelastic coherent scattering of neutrons with the initial energy E 0 =4.65 MeV on the spectrometer according to the time of flight is studied in polycrystalline beryllium. The measurements are made for the scattering angles THETA=15, 30, 45, 60, 75 and 90 deg at 293 K. The phonon spectrum of beryllium, i-e. g(w) is reestablished from the experimental data. The data obtained are compared with the data of model calculations. It is pointed out that the phonon spectrum of beryllium has a bit excessive state density in the energy range from 10 to 30 MeV. It is caused by the insufficient statistical accuracy of the experiment at low energy transfer
Phonon operators in deformed nuclei
International Nuclear Information System (INIS)
Soloviev, V.G.
1981-01-01
For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru
Path-integral Monte Carlo study of phonons in the bcc phase of Helium-3
Sorkin, V.; Polturak, E.; Adler, Joan
2006-01-01
Using Path Integral Monte Carlo and the Maximum Entropy method, we calculate the dynamic structure factor of solid He-3 in the bcc phase at a finite temperature of T = 1.6 K and a molar volume of 21.5 cm^3. From the single phonon dynamic structure factor, we obtain both the longitudinal and transverse phonon branches along the main crystalline directions, [001], [011] and [111]. Our results are compared with other theoretical predictions and available experimental data.
Confined and interface phonons in combined cylindrical nanoheterosystem
Directory of Open Access Journals (Sweden)
O.M.Makhanets
2006-01-01
Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.
Electron-phonon interactions in correlated systems
International Nuclear Information System (INIS)
Wysokinski, K.I.
1996-01-01
There exist attempts to describe the superconducting mechanism operating in HTS as based on antiferromagnetic fluctuations. It is not our intention to dwell on the superconducting mechanism, even though this is very a important issue. The main aim is to discuss the problem of interplay between electron-phonon and electron-electron interactions in correlated systems. We believe such analysis can be of importance for various materials and not only HTS'S. We shall however mainly refer to experiments on this last class of superconductors. Severe complications are to be expected by studying the problem. As is well known electron correlations are very important in narrow band systems, where the relevant electronic scale E F is quite small. In those circumstances, the phonon energy scale ω D is of comparable magnitude, with the ratio ω D /E F of order 1 signalling a possible break down of the Migdal - Eliashberg description of the electron-phonon interaction in metals. Here we shall assume the validity of the Migdal-Eliashberg approximation and concentrate on the mutual influence of electron and phonon subsystems. In the next section we shall discuss experimental motivation for and theoretical work related to the present problem. Section 3 contains a brief discussion of our theory. It is a self-consistent theory a la Migdal with strong correlations treated with an auxiliary boson technique. We conclude with results and their discussion. (orig.)
Phononic fluidics: acoustically activated droplet manipulations
Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.
2011-02-01
Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.
Phonon dispersion evolution in uniaxially strained aluminum crystal
Parthasarathy, Ranganathan; Misra, Anil; Aryal, Sitaram; Ouyang, Lizhi
2018-04-01
The influence of loading upon the phonon dispersion of crystalline materials could be highly nonlinear with certain particular trends that depend upon the loading path. In this paper, we have calculated the influence of [100] uniaxial strain on the phonon dispersion and group velocities in fcc aluminum using second moments of position obtained from molecular dynamics (MD) simulation at 300 K. In contrast to nonlinear monotonic variation of both longitudinal and transverse phonon frequencies along the Δ , Λ and Σ lines of the first Brillouin zone under tension, transverse phonon branches along the Λ line show inflection at specific wavevectors when the compressive strain exceeds 5%. Further, the longitudinal group velocities along the high-symmetry Δ line vary non-monotonically with strain, reaching a minimum at 5% compressive strain. Throughout the strain range studied, the equilibrium positions of atoms displace in an affine manner preserving certain static structural symmetry. We attribute the anomalies in the phonon dispersion to the non-affine evolution of second moments of atomic position, and the associated plateauing of force constants under the applied strain path.
Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100)
Novko, D.; Alducin, M.; Juaristi, J. I.
2018-04-01
We bring forth a consistent theory for the electron-mediated vibrational intermode coupling that clarifies the microscopic mechanism behind the vibrational relaxation of adsorbates on metal surfaces. Our analysis points out the inability of state-of-the-art nonadiabatic theories to quantitatively reproduce the experimental linewidth of the CO internal stretch mode on Cu(100) and it emphasizes the crucial role of the electron-mediated phonon-phonon coupling in this regard. The results demonstrate a strong electron-mediated coupling between the internal stretch and low-energy CO modes, but also a significant role of surface motion. Our nonadiabatic theory is also able to explain the temperature dependence of the internal stretch phonon linewidth, thus far considered a sign of the direct anharmonic coupling.
International Nuclear Information System (INIS)
Sirota, N.N.; Soshnina, T.M.; Sirota, I.M.; Sokolovskij, T.D.
2001-01-01
One calculated dependences of binding energy on spacing between the nearest atoms of Al and Cu elements with A 1 type structure, of V and Ti α elements with A 2 type structure, of Mg and Ti β elements with A 3 type structure, Si and Sn elements with A 4 type structure. To calculate one applied the methods based on the Thomas-Fermi statistic theory of atom. The derived dependences were approximated using the expression in the form of the Mie-Grueneisen potential. On the basis of the Born-von-Karman model of solid body one calculated the phonon spectra using which one determined temperature dependences of specific heat, free and internal energy of the investigated elements. The calculated values of energy of atomization, equilibrium closest interatomic spacing and temperature dependences of specific heat are in compliance with the experimental data [ru
Anomalous dispersion of optical phonons in La2-xSrxCuO4 at low temperatures
International Nuclear Information System (INIS)
Bishoyi, K.C.; Rout, G.C.; Behera, S.N.
2001-01-01
Inelastic neutron scattering measurements of cuprate system show that a discontinuity in dispersion develops in the middle of the highest energy of optical phonon at low temperatures. We present here a microscopic theory to explain the phonon anomaly in doped cuprate system in normal state. Anti-ferromagnetism due to copper moments is introduced in the electronic Hamiltonian. Phonon coupling to the hybridisation between conduction electrons of the system and the doped f-electrons is incorporated. The phonon self energy due to electron-phonon interaction, which involves the electronic density response function, is evaluated explicitly by Zubarev's Green's function technique in finite temperature and small wave vector limit. The temperature dependence of phonon frequency and the anomalous phonon dispersion are calculated numerically and studied by varying the position of the f-level (ε f ), the effective electron-phonon coupling strength (g), staggered field (h), and the hybridisation parameter (V). (author)
Electron-phonon coupling at metal surfaces
International Nuclear Information System (INIS)
Hellsing, B.; Eiguren, A.; Chulkov, E.V.
2002-01-01
Chemical reactions at metal surfaces are influenced by inherent dissipative processes which involve energy transfer between the conduction electrons and the nuclear motion. We shall discuss how it is possible to model this electron-phonon coupling in order to estimate its importance. A relevant quantity for this investigation is the lifetime of surface-localized electron states. A surface state, quantum well state or surface image state is located in a surface-projected bandgap and becomes relatively sharp in energy. This makes a comparison between calculations and experimental data most attractive, with a possibility of resolving the origin of the lifetime broadening of electron states. To achieve more than an order of magnitude estimate we point out the importance of taking into account the phonon spectrum, electron surface state wavefunctions and screening of the electron-ion potential. (author)
Quantum mode phonon forces between chainmolecules
DEFF Research Database (Denmark)
Bohr, Jakob
2001-01-01
bimolecular interaction is a truly many-body force that is temperature dependent and can be of the order of 1 eV. These phonon forces depend on molecular shape, composition, and density. They may therefore also be important for large molecular conformational changes, including the unfolding of chain molecules....... For the later case, a significant change in zero-point energy is found. This may be the underlying cause for cold denaturation of proteins. (C) 2001 John Wiley & Sons, Inc....
Comments on exciton-phonon coupling. II
International Nuclear Information System (INIS)
Allen, J.W.; Silbey, R.
1979-01-01
Two variational calculations of the energy and correlation functions for a simple exciton-phonon coupled system are presented and contrasted to the adiabatic solution and the exact solution. The simpler variational solution leads to two minima and abrupt changes in the properties of the system; an asymmetric variational wavefunction, motivated by the form of perturbation theory for this problem, leads to smooth behavior in agreement with the exact result. (Auth.)
Tunable Topological Phononic Crystals
Chen, Zeguo; Wu, Ying
2016-01-01
Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.
Tunable Topological Phononic Crystals
Chen, Zeguo
2016-05-27
Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.
Menzel, Dorothee; Mews, Mathias; Rech, Bernd; Korte, Lars
2018-01-01
The electronic structure of thermally co-evaporated indium-tungsten-oxide films is investigated. The stoichiometry is varied from pure tungsten oxide to pure indium oxide, and the band alignment at the indium-tungsten-oxide/crystalline silicon heterointerface is monitored. Using in-system photoelectron spectroscopy, optical spectroscopy, and surface photovoltage measurements, we show that the work function of indium-tungsten-oxide continuously decreases from 6.3 eV for tungsten oxide to 4.3 eV for indium oxide, with a concomitant decrease in the band bending at the hetero interface to crystalline silicon than indium oxide.
Davis, Timur D.
2011-12-01
In the development of new medicinal products, poor oral bioavailability, due to the low solubilities of many active pharmaceutical ingredients (APIs), is increasingly a barrier for treatments to be administered using tablet or capsule formulations and one of the main challenges facing the pharmaceutical industry. Non-crystalline phases such as the amorphous and nanostructured states can confer increased solubility to a drug, and therefore, have recently garnered a lot of interest from pharmaceutical researchers. However, little is known about local ordering in non-crystalline pharmaceuticals due to the lack of reliable experimental probes, hindering the clinical application of these compounds. The powerful tools of crystallography begin to lose their potency for structures on the nanoscale; conventional X-ray powder diffraction (XRPD) patterns become broad and featureless in these cases and are not useful for differentiating between different local molecular packing arrangements. In this thesis, we introduce the use of high energy X-rays coupled with total scattering pair distribution function (TSPDF) and fingerprinting analysis to investigate the local structures of non-crystalline pharmaceutical compounds. The high energy X-rays allow us to experimentally collect diffuse scattering intensities, which contain information about a sample's local ordering, in addition to the Bragg scattering available in conventional XRPD experiments, while the TSPDF allows us to view the intra- and inter-molecular correlations in real space. The goal of this study was to address some fundamental problems involving fingerprinting non-crystalline APIs using TSPDF in order to lay the groundwork for the proper use of the technique by the pharmaceutical community. We achieved this by developing the methodology as well as the exploring the scientific implications. On the methodology side, we introduced PDFGetX3, a new software program for calculating TSPDFs that simplifies the procedure
International Nuclear Information System (INIS)
Nguyen Dinh Dang; Voronov, V.V.
1983-01-01
A system of basic equations of the quasiparticle-phonon model is obtained for energies and a structure of excited states described by the wave functions containing one- and two-phonon components. The effects due to the Pauli principle for two-phonon components and the phonon ground state correlations of a spherical nucleus are taken here into account. The quantitative estimations of these effects are given by a simplified scheme. The relation between these equations with the results from other theoretical approaches is discussed
Electron and Phonon Transport in Molecular Junctions
DEFF Research Database (Denmark)
Li, Qian
Molecular electronics provide the possibility to investigate electron and phonon transport at the smallest imaginable scale, where quantum effects can be investigated and exploited directly in the design. In this thesis, we study both electron transport and phonon transport in molecular junctions....... The system we are interested in here are π-stacked molecules connected with two semi-infinite leads. π-stacked aromatic rings, connected via π-π electronic coupling, provides a rather soft mechanical bridge while maintaining high electronic conductivity. We investigate electron transport...... transmission at the Fermi energy. We propose and analyze a way of using π stacking to design molecular junctions to control heat transport. We develop a simple model system to identify optimal parameter regimes and then use density functional theory (DFT) to extract model parameters for a number of specific...
Magnon rainbows filtered through phonon clouds
Boona, Stephen R.
2016-06-01
The study of heat flow in magnetic insulators is a topic of significant interest in spin caloritronics, especially for understanding the nuanced origins of the spin Seebeck effect (SSE). Recent work by Diniz and Costa (2016 New J. Phys. 18 052002) provides insight into this subject by presenting a microscopic model for the spectral dependence of magnon-phonon interactions in magnetic insulators, which has been a challenging puzzle for decades. Their new paper shows that phonon-mediated magnon-magnon interactions affect the lifetime of magnons differently depending on the magnon wavelength. As a result, low energy magnons transport spin more efficiently, and are more sensitive to applied magnetic fields. These results help explain some unexpected behavior in the SSE recently reported in several experiments.
Thermodynamics of phonon-modulated tunneling centers
International Nuclear Information System (INIS)
Junker, W.; Wagner, M.
1989-01-01
In recent years tunneling centers have frequently been used to explain the unusual thermodynamic properties of disordered materials; in these approaches, however, the effect of the tunneling-phonon interaction is neglected. The present study considers the archetype model of phono-assisted tunneling, which is well known from other areas of tunneling physics (quantum diffusion, etc.). It is shown that the full thermodynamic information can be rigorously extracted from a single Green function. An extended factorization procedure beyond Hartree-Fock is introduced, which is checked by sum rules as well as by exact Goldberger-Adams expansions. The phonon-modulated internal energy and specific heat are calculated for different power-law coupling setups
Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus.
Ling, Xi; Huang, Shengxi; Hasdeo, Eddwi H; Liang, Liangbo; Parkin, William M; Tatsumi, Yuki; Nugraha, Ahmad R T; Puretzky, Alexander A; Das, Paul Masih; Sumpter, Bobby G; Geohegan, David B; Kong, Jing; Saito, Riichiro; Drndic, Marija; Meunier, Vincent; Dresselhaus, Mildred S
2016-04-13
Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.
Intense coherent longitudinal optical phonons in CuI thin films under exciton-excitation conditions
International Nuclear Information System (INIS)
Kojima, O.; Mizoguchi, K.; Nakayama, M..
2005-01-01
We have investigated the dynamical properties of the coherent longitudinal optical (LO) phonon in CuI thin films grown on a NaCl substrate by vacuum deposition. The intense coherent LO phonon in the CuI thin film is observed under the exciton-excitation conditions. Moreover, the pump-energy dependence of the amplitude of the coherent LO phonon shows peaks at the heavy-hole and light-hole exciton energies. The enhancement of the coherent LO phonon under the exciton-resonance condition is much larger than that in an ordinary semiconductor quantum well system such as a GaAs/AlAs one. These facts demonstrate that the intense coherent LO phonon is generated under the exciton-excitation condition in a material with a strong exciton-phonon interaction such as CuI
Spacetime representation of topological phononics
Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.
2018-05-01
Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.
Crystalline structure of metals
International Nuclear Information System (INIS)
Holas, A.
1972-01-01
An attempt is made to find the crystalline structure of metals on the basis of the existing theory of metals. The considerations are limited to the case of free crystals, that is, not subjected to any stresses and with T=0. The energy of the crystal lattice has been defined and the dependence of each term on structures and other properties of metals has been described. The energy has been used to find the values of crystalline structure parameters as the values at which the energy has an absolute minimum. The stability of the structure has been considered in cases of volume changes and shearing deformations. A semiqualitative description has been obtained which explains characteristic properties of one-electron metals. (S.B.)
Phonon shake-up satellites in x-ray absorption: an operator approach
International Nuclear Information System (INIS)
Bryant, G.W.
1980-01-01
The phonon shake-up that occurs when the linear and quadratic phonon potentials both change during x-ray absorption is considered. Full account of all quadratic terms and the competition between linear and quadratic shake-up effects is made. Many previous studies of quadratic phonon shake-up have used a wavefunction approach. The phonon matrix elements have been determined by explicit evaluation of the overlap integrals. However, an equations of motion approach is used to transform the time evolution operator to a form that allows an exact evaluation of the phonon matrix elements needed to describe the spectra. This theory is used to determine the strengths of the phonon shake-up satellites in x-ray absorption spectra at zero temperature. An exact expression is obtained for the strength of each satellite. During quadratic shake-up, two phonon transitions and phonon frequency shifts occur. Both effects significantly change the strength of a a satellite from that predicted for linear shake-up alone. Inclusion of the two phonon transitions enhances the high-energy satellites. Inclusion of the frequency shifts can either broaden the spectra or increase the strength of the zero phonon lines depending on the sign of the frequency shift. (author)
Theory of phonon properties in doped and undoped CuO nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Bahoosh, S.G. [Institute of Physics, Martin-Luther-University, D-06099 Halle (Germany); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5 J. Bouchier Blvd., 1164 Sofia (Bulgaria)
2012-07-02
We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin–phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects. -- Highlights: ► The phonon properties of CuO nanoparticles are studied using a miscroscopic model. ► The phonon energy decreases whereas the damping increases with decreasing of particle size. ► It is shown the importance of the anharmonic spin–phonon interaction. ► By doping with RE-ions the phonon energy is reduced, whereas with TM-ions it is enhanced. ► The phonon damping is always enhanced through the ion doping effects.
Dynamics of crystalline acetanilide: Analysis using neutron scattering and computer simulation
Hayward, R. L.; Middendorf, H. D.; Wanderlingh, U.; Smith, J. C.
1995-04-01
The unusual temperature dependence of several optical spectroscopic vibrational bands in crystalline acetanilide has been interpreted as providing evidence for dynamic localization. Here we examine the vibrational dynamics of crystalline acetanilide over a spectral range of ˜20-4000 cm-1 using incoherent neutron scattering experiments, phonon normal mode calculations and molecular dynamics simulations. A molecular mechanics energy function is parametrized and used to perform the normal mode analyses in the full configurational space of the crystal i.e., including the intramolecular and intermolecular degrees of freedom. One- and multiphonon incoherent inelastic neutron scattering intensities are calculated from harmonic analyses in the first Brillouin zone and compared with the experimental data presented here. Phonon dispersion relations and mean-square atomic displacements are derived from the harmonic model and compared with data derived from coherent inelastic neutron scattering and neutron and x-ray diffraction. To examine the temperature effects on the vibrations the full, anharmonic potential function is used in molecular dynamics simulations of the crystal at 80, 140, and 300 K. Several, but not all, of the spectral features calculated from the molecular dynamics simulations exhibit temperature-dependent behavior in agreement with experiment. The significance of the results for the interpretation of the optical spectroscopic results and possible improvements to the model are discussed.
Effects of the electron-phonon coupling activation in collision cascades
Energy Technology Data Exchange (ETDEWEB)
Zarkadoula, Eva, E-mail: zarkadoulae@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Samolyuk, German [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Weber, William J. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science & Engineering, University of Tennessee, Knoxville, TN 37996 (United States)
2017-07-15
Using the two-temperature (2T-MD) model in molecular dynamics simulations, we investigate the condition of switching the electronic stopping term off when the electron-phonon coupling is activated in the damage production due to 50 keV Ni ion cascades in Ni and equiatomic NiFe. Additionally, we investigate the effect of the electron-phonon coupling activation time in the damage production. We find that the switching condition has negligible effect in the produced damage, while the choice of the activation time of the electron-phonon coupling can affect the amount of surviving damage. - Highlights: •The electron-phonon interactions in irradiation affect the energy dissipation. •The resulting damage depends on the electron-phonon interaction activation time. •The electronic stopping acts on the ions before the electron-phonon interactions.
Phonon mechanism of mobility equilibrium fluctuation and properties of 1/f-noise
International Nuclear Information System (INIS)
Melkonyan, S.V.; Aroutiounian, V.M.; Gasparyan, F.V.; Asriyan, H.V.
2006-01-01
The main mechanisms of the generation of the equilibrium fluctuations of the electron mobility in homogeneous and non-degenerate semiconductors are studied. It is proven that the mobility fluctuations are related to energy fluctuations and are conditioned by random non-elastic scattering and generation-recombination processes. In particular, it is shown that the mobility fluctuations come into existence as a result of random electron-phonon and phonon-phonon scattering processes. The case of acoustic phonon-phonon scattering is considered in detail. The spectral density of the electron lattice mobility fluctuations is calculated on the base of a new phonon mechanism. It is shown that the noise spectrum over a broad frequency range has a 1/f form. The theoretical results for many samples agree with experimental data
Resonant exciton-phonon coupling in ZnO nanorods at room temperature
Directory of Open Access Journals (Sweden)
Soumee Chakraborty
2011-09-01
Full Text Available Vibronic and optoelectronic properties, along with detailed studies of exciton-phonon coupling at room temperature (RT for random and aligned ZnO nanorods are reported. Excitation energy dependent Raman studies are performed for detailed analysis of multi-phonon processes in the nanorods. We report here the origin of coupling between free exciton and its associated phonon replicas, including its higher order modes, in the photoluminescence spectra at RT. Resonance of excitonic electron and resonating first order zone center LO phonon, invoked strongly by Frolich interaction, are made responsible for the observed phenomenon.
Phonons and solitons in the "thermal" sine-Gordon system
DEFF Research Database (Denmark)
Salerno, Mario; Jørgensen, E.; Samuelsen, Mogens Rugholm
1984-01-01
Standard methods of stochastic processes are used to study the coupling of the sine-Gordon system with a heat reservoir. As a result we find thermal phonons with an average energy of kB T per mode. The translational mode (zero mode) is found to carry an average energy of 1 / 2kBT. This last value...
Energy Technology Data Exchange (ETDEWEB)
Szczesniak, R. [Institute of Physics, Czestochowa University of Technology (Poland); Institute of Physics, Jan Dlugosz University in Czestochowa (Poland); Durajski, A.P.; Duda, A.M. [Institute of Physics, Czestochowa University of Technology (Poland)
2017-04-15
The properties of the superconducting and the anomalous normal state were described by using the Eliashberg method. The pairing mechanism was reproduced with the help of the Hamiltonian, which models the electron-phonon and the electron-electron-phonon interaction (EEPh). The set of the Eliashberg equations, which determines the order parameter function (φ), the wave function renormalization factor (Z), and the energy shift function (χ), was derived. It was proven that for the sufficiently large values of the EEPh potential, the doping dependence of the order parameter (φ/Z) has the analogous course to that observed experimentally in cuprates. The energy gap in the electron density of states is induced by Z and χ - the contribution from φ is negligible. The electron density of states possesses the characteristic asymmetric form and the pseudogap is observed above the critical temperature. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Energy Technology Data Exchange (ETDEWEB)
Zelada, Griselda I. [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Lambri, Osvaldo Agustin [Laboratorio de Materiales, Escuela de Ingenieria Electrica, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avda. Pellegrini 250, 2000 Rosario (Argentina); Instituto de Fisica Rosario - CONICET, Member of the CONICET& #x27; s Research Staff, Avda. Pellegrini 250, 2000 Rosario (Argentina); Bozzano, Patricia B. [Laboratorio de Microscopia Electronica, Unidad de Actividad Materiales, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Avda. Gral. Paz 1499, 1650 San Martin (Argentina); Garcia, Jose Angel [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao, Pais Vasco (Spain)
2012-10-15
Mechanical spectroscopy (MS) and transmission electron microscopy (TEM) studies have been performed in plastically deformed and electron plus neutron irradiated high purity single crystalline molybdenum, oriented for single slip, in order to study the dislocation dynamics in the temperature range within one third of the melting temperature. A damping peak related to the interaction of dislocation lines with both prismatic loops and tangles of dislocations was found. The peak temperature ranges between 900 and 1050 K, for an oscillating frequency of about 1 Hz. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Effect of Holstein phonons on the electronic properties of graphene
International Nuclear Information System (INIS)
Stauber, T; Peres, N M R
2008-01-01
We obtain the self-energy of the electronic propagator due to the presence of Holstein polarons within the first Born approximation. This leads to a renormalization of the Fermi velocity of 1%. We further compute the optical conductivity of the system at the Dirac point and at finite doping within the Kubo formula. We argue that the effects due to Holstein phonons are negligible and that the Boltzmann approach, which does not include inter-band transitions and can thus not treat optical phonons due to their high energy of ℎω 0 ∼ 0.1-0.2 eV, remains valid
MacDougall, Colin J; Razul, M Shajahan; Papp-Szabo, Erzsebet; Peyronel, Fernanda; Hanna, Charles B; Marangoni, Alejandro G; Pink, David A
2012-01-01
Fats are elastoplastic materials with a defined yield stress and flow behavior and the plasticity of a fat is central to its functionality. This plasticity is given by a complex tribological interplay between a crystalline phase structured as crystalline nanoplatelets (CNPs) and nanoplatelet aggregates and the liquid oil phase. Oil can be trapped within microscopic pores within the fat crystal network by capillary action, but it is believed that a significant amount of oil can be trapped by adsorption onto crystalline surfaces. This, however, remains to be proven. Further, the structural basis for the solid-liquid interaction remains a mystery. In this work, we demonstrate that the triglyceride liquid structure plays a key role in oil binding and that this binding could potentially be modulated by judicious engineering of liquid triglyceride structure. The enhancement of oil binding is central to many current developments in this area since an improvement in the health characteristics of fat and fat-structured food products entails a reduction in the amount of crystalline triacylglycerols (TAGs) and a relative increase in the amount of liquid TAGs. Excessive amounts of unbound, free oil, will lead to losses in functionality of this important food component. Engineering fats for enhanced oil binding capacity is thus central to the design of more healthy food products. To begin to address this, we modelled the interaction of triacylglycerol oils, triolein (OOO), 1,2-olein elaidin (OOE) and 1,2-elaidin olein (EEO) with a model crystalline nanoplatelet composed of tristearin in an undefined polymorphic form. The surface of the CNP in contact with the oil was assumed to be planar. We considered pure OOO and mixtures of OOO + OOE and OOO + EEO with 80% OOO. The last two cases were taken as approximations to high oleic sunflower oil (HOSO). The intent was to investigate whether phase separation on a nanoscale took place. We defined an "oil binding capacity" parameter, B
Neutron transmission through crystalline Fe
International Nuclear Information System (INIS)
Adib, M.; Habib, N.; Kilany, M.; El-Mesiry, M.S.
2004-01-01
The neutron transmission through crystalline Fe has been calculated for neutron energies in the range 10 4 < E<10 eV using an additive formula. The formula permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-section as a function of temperature and crystalline form. The obtained agreement between the calculated values and available experimental ones justifies the applicability of the used formula. A feasibility study on using poly-crystalline Fe as a cold neutron filter and a large Fe single crystal as a thermal one is given
Phonon spectra, electronic, and thermodynamic properties of WS2 nanotubes.
Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V
2017-11-15
Hybrid density functional theory calculations are performed for the first time on the phonon dispersion and thermodynamic properties of WS 2 -based single-wall nanotubes. Symmetry analysis is presented for phonon modes in nanotubes using the standard (crystallographic) factorization for line groups. Symmetry and the number of infra-red and Raman active modes in achiral WS 2 nanotubes are given for armchair and zigzag chiralities. It is demonstrated that a number of infrared and Raman active modes is independent on the nanotube diameter. The zone-folding approach is applied to find out an impact of curvature on electron and phonon band structure of nanotubes rolled up from the monolayer. Phonon frequencies obtained both for layers and nanotubes are used to compute the thermal contributions to their thermodynamic functions. The temperature dependences of energy, entropy, and heat capacity of nanotubes are estimated with respect to those of the monolayer. The role of phonons in the stability estimation of nanotubes is discussed based on Helmholtz free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Wei, Jie; Li, Xiao-Ping
1993-01-01
In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing
Hybrid phonons in nanostructures
Ridley, Brian K
2017-01-01
Crystalline semiconductor nanostructures have special properties associated with electrons and lattice vibrations and their interaction, and this is the topic of the book. The result of spatial confinement of electrons is indicated in the nomenclature of nonostructures: quantum wells, quantum wires, and quantum dots. Confinement also has a profound effect on lattice vibrations and an account of this is the prime focus. The documentation of the confinement of acoustic modes goes back to Lord Rayleigh’s work in the late nineteenth century, but no such documentation exists for optical modes. Indeed, it is only comparatively recently that any theory of the elastic properties of optical modes exists, and the account given in the book is comprehensive. A model of the lattice dynamics of the diamond lattice is given that reveals the quantitative distinction between acoustic and optical modes and the difference of connection rules that must apply at an interface. The presence of interfaces in nanostructures forces ...
International Nuclear Information System (INIS)
Zorenko, Y.; Gorbenko, V.; Voznyak, T.; Batentschuk, M.; Osvet, A.; Winnacker, A.
2008-01-01
The paper is devoted to investigation of the processes of excitation energy transfer between the host cations (Tb 3+ ions) and the activators (Ce 3+ and Eu 3+ ions) in single-crystalline films of Tb 3 Al 5 O 12 :Ce,Eu (TbAG:Ce,Eu) garnet which is considered as a promising luminescent material for the conversion of LED's radiation. The cascade process of excitation energy transfer is shown to be realized in TbAG:Ce,Eu: (i) from Tb 3+ ions to Ce 3+ and Eu 3+ ions; (ii) from Ce 3+ ions to Eu 3+ ions by means of dipole-dipole interaction and through Tb 3+ ion sublattice
Scattering of phonons by dislocations
International Nuclear Information System (INIS)
Anderson, A.C.
1979-01-01
By 1950, an explicit effort had been launched to use lattice thermal conductivity measurements in the investigation of defect structures in solids. This technique has been highly successful, especially when combined with the measurements of other properties such as optical absorption. One exception has been the study of dislocations. Although dislocations have a profound effect on the phonon thermal conductivity, the mechanisms of the phonon-dislocation interaction are poorly understood. The most basic questions are still debated in the literature. It therefore is pointless to attempt a quantitative comparison between an extensive accumulation of experimental data on the one hand, and the numerous theoretical models on the other. Instead, this chapter will attempt to glean a few qualitative conclusions from the existing experimental data. These results will then be compared with two general models which incorporate, in a qualitative manner, most of the proposed theories of the phonon-dislocation interaction. Until very recently, measurement of thermal conductivity was the only means available to probe the interaction between phonons and defects at phonon frequencies above the standard ultrasonic range of approx. = 10 9 Hz. The introductory paragraphs provide a brief review of the thermal-conductivity technique and the problems which are encountered in practice. There is also a brief presentation of the theoretical models and the complications that may occur in more realistic situations
International Nuclear Information System (INIS)
Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P
2010-01-01
In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.
International Nuclear Information System (INIS)
Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.
2010-01-01
In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.
Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R
2010-08-06
In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.
Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids
Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin
2017-10-01
For decades, the three-phonon scattering process has been considered to govern thermal transport in solids, while the role of higher-order four-phonon scattering has been persistently unclear and so ignored. However, recent quantitative calculations of three-phonon scattering have often shown a significant overestimation of thermal conductivity as compared to experimental values. In this Rapid Communication we show that four-phonon scattering is generally important in solids and can remedy such discrepancies. For silicon and diamond, the predicted thermal conductivity is reduced by 30% at 1000 K after including four-phonon scattering, bringing predictions in excellent agreement with measurements. For the projected ultrahigh-thermal conductivity material, zinc-blende BAs, a competitor of diamond as a heat sink material, four-phonon scattering is found to be strikingly strong as three-phonon processes have an extremely limited phase space for scattering. The four-phonon scattering reduces the predicted thermal conductivity from 2200 to 1400 W/m K at room temperature. The reduction at 1000 K is 60%. We also find that optical phonon scattering rates are largely affected, being important in applications such as phonon bottlenecks in equilibrating electronic excitations. Recognizing that four-phonon scattering is expensive to calculate, in the end we provide some guidelines on how to quickly assess the significance of four-phonon scattering, based on energy surface anharmonicity and the scattering phase space. Our work clears the decades-long fundamental question of the significance of higher-order scattering, and points out ways to improve thermoelectrics, thermal barrier coatings, nuclear materials, and radiative heat transfer.
International Nuclear Information System (INIS)
Solov'ev, V.G.
1980-01-01
The general assumptions of the quasiparticle-phonon nuclear model are given. This model describes the few-quasiparticle components of the wave functions at low, intermediate and high excitation energies. The method of strength functions which plays a key role in describing complex nuclei is also presented. A further development of the quasiparticle-phonon nuclear model is outlined. The fragmentation of one-quasiparticle and one-phonon states over nuclear levels is studied. The results on the fragmentation of deep hole states in spherical nuclei are presented, which describe well the experimental data. The neutron strength functions and their spin dependence are calculated. A good agreement with experiment is obtained. The energies and widths of the giant resonances are calculated in spherical and deformed nuclei. The information on the many-quasiparticle components of excited state wave functions is shown to be very scarce. The necessity of studying the few-quasiparticle configurations is pointed out
Detecting phonon blockade with photons
International Nuclear Information System (INIS)
Didier, Nicolas; Pugnetti, Stefano; Fazio, Rosario; Blanter, Yaroslav M.
2011-01-01
Measuring the quantum dynamics of a mechanical system, when few phonons are involved, remains a challenge. We show that a superconducting microwave resonator linearly coupled to the mechanical mode constitutes a very powerful probe for this scope. This new coupling can be much stronger than the usual radiation pressure interaction by adjusting a gate voltage. We focus on the detection of phonon blockade, showing that it can be observed by measuring the statistics of the light in the cavity. The underlying reason is the formation of an entangled state between the two resonators. Our scheme realizes a phonotonic Josephson junction, giving rise to coherent oscillations between phonons and photons as well as a self-trapping regime for a coupling smaller than a critical value. The transition from the self-trapping to the oscillating regime is also induced dynamically by dissipation.
Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels
Energy Technology Data Exchange (ETDEWEB)
Todd R. Allen, Director
2011-04-01
The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.
Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels
International Nuclear Information System (INIS)
Allen, Todd R.
2011-01-01
The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center's investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center's research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.
First-principles study of intrinsic phononic thermal transport in monolayer C3N
Gao, Yan; Wang, Haifeng; Sun, Maozhu; Ding, Yingchun; Zhang, Lichun; Li, Qingfang
2018-05-01
Very recently, a new graphene-like crystalline, hole-free, 2D-single-layer carbon nitride C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on-off current ratio reaching 5. 5 ×1010 (Adv. Mater. 2017, 1605625). Heat dissipation plays a vital role in its practical applications, and therefore the thermal transport properties need to be explored urgently. In this paper, we perform first-principles calculations combined with phonon Boltzmann transport equation to investigate the phononic thermal transport properties of monolayer C3N, and meanwhile, a comparison with graphene is given. Our calculated intrinsic lattice thermal conductivity of C3N is 380 W/mK at room temperature, which is one order of magnitude lower than that of graphene (3550 W/mK at 300 K), but is greatly higher than many other typical 2D materials. The underlying mechanisms governing the thermal transport were thoroughly discussed and compared to graphene, including group velocities, phonon relax time, the contribution from phonon branches, phonon anharmonicity and size effect. The fundamental physics understood from this study may shed light on further studies of the newly fabricated 2D crystalline C3N sheets.
Perdana, B. M.; Manihuruk, R.; Ashyar, R.; Heriyanti; Sutrisno
2018-04-01
The effect of the roasting process has been evaluated to determine of the energy transition and the crystalline structure of three types of coffee, Arabica, Robusta, and Liberica coffee both green and roasted coffee with the roasted temperature at 200°C and 230°C. The crystalline structure of the coffee was evaluated with X-ray powder diffraction (XRD). The result exposes that the three types of green coffee showed that an amorphous structure whereas the roasted coffee denotes a crystal structure of sucrose. The varied temperature in the roasting process leads to changes in the crystal structure shown by the peak shift of 2θ for all types of coffee. The added cations, such as Fe2+, Ca2+, and Mg2+ ions on Liberica coffee induced of changes in the crystal structures, which are assigned by the peak shift, that imply of metal ions of the sucrose complexes happened in the solution, except for the addition of Mg2+ ion.
Reduction of thermal conductivity in phononic nanomesh structures
Yu, Jen-Kan
2010-07-25
Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications1,2 and in the cooling of integrated circuits3. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity. © 2010 Macmillan Publishers Limited. All rights reserved.
Reduction of thermal conductivity in phononic nanomesh structures.
Yu, Jen-Kan; Mitrovic, Slobodan; Tham, Douglas; Varghese, Joseph; Heath, James R
2010-10-01
Controlling the thermal conductivity of a material independently of its electrical conductivity continues to be a goal for researchers working on thermoelectric materials for use in energy applications and in the cooling of integrated circuits. In principle, the thermal conductivity κ and the electrical conductivity σ may be independently optimized in semiconducting nanostructures because different length scales are associated with phonons (which carry heat) and electric charges (which carry current). Phonons are scattered at surfaces and interfaces, so κ generally decreases as the surface-to-volume ratio increases. In contrast, σ is less sensitive to a decrease in nanostructure size, although at sufficiently small sizes it will degrade through the scattering of charge carriers at interfaces. Here, we demonstrate an approach to independently controlling κ based on altering the phonon band structure of a semiconductor thin film through the formation of a phononic nanomesh film. These films are patterned with periodic spacings that are comparable to, or shorter than, the phonon mean free path. The nanomesh structure exhibits a substantially lower thermal conductivity than an equivalently prepared array of silicon nanowires, even though this array has a significantly higher surface-to-volume ratio. Bulk-like electrical conductivity is preserved. We suggest that this development is a step towards a coherent mechanism for lowering thermal conductivity.
Radiography imaging by 64 and 128 micro-strips crystalline detectors at different X-ray energies
International Nuclear Information System (INIS)
Leyva, A.; Cabal, A.; Montano, L. M.; Fontaine, M.; Mora, R. de la; Padilla, F.
2006-01-01
This paper summarizes some results obtained in the evaluation of the performance of position sensitive detectors in track reconstruction in particle physics experiments. Crystalline silicon micro-strips detectors with 64 and 128 channels and 100 μm pitch were used to obtain radiographic digital images of different objects. The more relevant figures for spectrometry applications were measured and reported. Two-dimensional images were obtained by scanning the object with a collimated beam using different source-target-detector positioning and three sources of X-rays (8.04, 18.55 and 22.16 keV). The counts acquired by each strip correspond to a particular collimator position during the scan, thus serving to reconstruct the image of the exposed to X-ray object and to reveal its internal structure. The use of some techniques for image processing allow the further improvement of the radiography quality. The preliminary results obtained using in-house made and accreditation mammography phantoms allow to infer that such detectors can be successfully introduced in the digital mammography practice. (Author)
Acoustic phonon emission by two dimensional plasmons
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-06-01
Acoustic wave emission of the two dimensional plasmons in a semiconductor or superconductor microstructure is investigated by using the phenomenological deformation potential within the jellium model. The plasmons are excited by the external electromagnetic (e.m.) field. The power conversion coefficient of e.m. energy into acoustic wave energy is also estimated. It is shown, the coherent transformation has a sharp resonance at the plasmon frequency of the two dimensional electron gas (2DEG). The incoherent transformation of the e.m. energy is generated by ohmic dissipation of 2DEG. The method proposed for coherent phonon beam generation can be very effective for high mobility 2DEG and for thin superconducting layers if the plasmon frequency ω is smaller than the superconducting gap 2Δ. (author). 21 refs, 1 fig
Energy Technology Data Exchange (ETDEWEB)
Flach, B.
2000-01-01
This thesis has two topics: One is the investigation of an adsorbate induced phonon anomaly on W(110) and Mo{sub 1-x}Re{sub x}(110) (x = 5, 15, 25%) with inelastic helium atom scattering (HAS). The other one is the study of the growth, morphology and dynamics of ultra-thin lithium films deposited on W(110). In 1992 a giant phonon anomaly was found by J. Luedecke on the hydrogen saturated W(110) and Mo(110) surfaces. The anomaly consists of a deep and sharp indentation in the phonon dispersion curves in which the phonon energy nearly drops to zero ({omega}{sub 1}). In addition, a small and broad dip in the surface Rayleigh mode is observed ({omega}{sub 2}). The anomaly appears in the anti {gamma}-H- as well as in the anti {gamma}-S-direction of the surface Brillouin zone (SBZ). Since its first discovery, numerous other experimental and theoretical studies have followed. In the present work the effects is reinvestigated and experimental parameters, such as the crystal temperature and the incident energy, were changed in order to study their influence on the anomalous phonon behavior. In the case of H/Mo(110) the substrate was changed as well by alloying with small amounts of rhenium. In the present experiments a strong crystal temperature dependence of the {omega}{sub 2}-branch was found which leads to lower energies at the 'dip' for smaller temperatures, while the {omega}{sub 1}-anomaly remains unchanged. Such behavior agrees well with the picture that the {omega}{sub 2}-branch is due to a Kohn anomaly. (orig.)
Drift of charge carriers in crystalline organic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Dong, Jingjuan; Si, Wei [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Wu, Chang-Qin, E-mail: cqw@fudan.edu.cn [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China)
2016-04-14
We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ∼10{sup 5} V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.
Thermoelectric power of YBa2Cu3O7-δ: Phonon drag and multiband conduction
International Nuclear Information System (INIS)
Cohn, J.L.; Wolf, S.A.; Selvamanickam, V.; Salama, K.
1991-01-01
We report measurements of the a-b-plane thermopower (S) on crystalline YBa 2 Cu 3 O 7-δ (δ≤0.16) for temperatures below 310 K. Much sharper features in the T dependence of S are observed than have been previously reported. Both the temperature and oxygen-doping dependences of S, which have caused confusion, are consistently accounted for by conventional metallic theory for the first time. Strong phonon drag and two carrier species are indicated, with holes on the planes and electrons on the chains. An anomalous, positive component to S, observed for T 2 planes and optical-mode phonons
International Nuclear Information System (INIS)
Govorov, A.O.
1993-08-01
Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs
Wang, Zi-Wu; Li, Shu-Shen
2012-07-01
We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.
Sound and heat revolutions in phononics
Maldovan, Martin
2013-11-01
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.
Phonon Drag in Thin Films, Cases of Bi2Te3 and ZnTe
Chi, Hang; Uher, Ctirad
2014-03-01
At low temperatures, in (semi-)conductors subjected to a thermal gradient, charge carriers (electrons and holes) are swept (dragged) by out-of-equilibrium phonons due to strong electron-phonon interaction, giving rise to a large contribution to the Seebeck coefficient called the phonon-drag effect. Such phenomenon was surprisingly observed in our recent transport study of highly mismatched alloys as potential thermoelectric materials: a significant phonon-drag thermopower reaching 1.5-2.5 mV/K was recorded for the first time in nitrogen-doped ZnTe epitaxial layers on GaAs (100). In thin films of Bi2Te3, we demonstrate a spectacular influence of substrate phonons on charge carriers. We show that one can control and tune the position and magnitude of the phonon-drag peak over a wide range of temperatures by depositing thin films on substrates with vastly different Debye temperatures. Our experiments also provide a way to study the nature of the phonon spectrum in thin films, which is rarely probed but clearly important for a complete understanding of thin film properties and the interplay of the substrate and films. This work is supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000957.
Two-phonon giant resonances in 136Xe, 208Pb, and 238U
International Nuclear Information System (INIS)
Boretzky, K.; Gruenschloss, A.; Ilievski, S.; Adrich, P.; Aumann, T.; Bertulani, C.A.; Cub, J.; Dostal, W.; Eberlein, B.; Elze, T.W.; Emling, H.; Fallot, M.; Holeczek, J.; Holzmann, R.; Kozhuharov, C.; Kratz, J.V.; Kulessa, R.; Leifels, Y.; Leistenschneider, A.; Lubkiewicz, E.; Mordechai, S.; Ohtsuki, T.; Reiter, P.; Simon, H.; Stelzer, K.; Stroth, J.; Suemmerer, K.; Surowiec, A.; Wajda, E.; Walus, W.
2003-07-01
The excitation of the double-phonon giant dipole resonance was observed in heavy projectile nuclei impinging on targets of high nuclear charge with energies of 500-700 MeV/nucleon. New experimental data are presented for 136 Xe and 238 U together with further analysis of earlier data on 208 Pb. Differential cross sections dσ/dE * and dσ/dθ for electromagnetic excitations were deduced. Depending on the isotope, cross sections appear to be enhanced in comparison to those expected from a purely harmonic nuclear dipole response. The cumulative effect of excitations of two-phonon states composed of one dipole and one quadrupole phonon, of predicted anharmoniticies in the double-phonon dipole response, and of damping of the dipole resonance during the collision may account for the discrepancy. In addition, decay properties of two-phonon resonances were studied and compared to that of a statistical decay. (orig.)
Direct observation of magnon-phonon coupling in yttrium iron garnet
Man, Haoran; Shi, Zhong; Xu, Guangyong; Xu, Yadong; Chen, Xi; Sullivan, Sean; Zhou, Jianshi; Xia, Ke; Shi, Jing; Dai, Pengcheng
2017-09-01
The magnetic insulator yttrium iron garnet (YIG) with a ferrimagnetic transition temperature of ˜560 K has been widely used in microwave and spintronic devices. Anomalous features in spin Seeback effect (SSE) voltages have been observed in Pt/YIG and attributed to magnon-phonon coupling. Here, we use inelastic neutron scattering to map out low-energy spin waves and acoustic phonons of YIG at 100 K as a function of increasing magnetic field. By comparing the zero and 9.1 T data, we find that instead of splitting and opening up gaps at the spin wave and acoustic phonon dispersion intersecting points, magnon-phonon coupling in YIG enhances the hybridized scattering intensity. These results are different from expectations of conventional spin-lattice coupling, calling for different paradigms to understand the scattering process of magnon-phonon interactions and the resulting magnon polarons.
Phonon-based scalable platform for chip-scale quantum computing
Directory of Open Access Journals (Sweden)
Charles M. Reinke
2016-12-01
Full Text Available We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.
Quasiparticle properties of a coupled quantum-wire electron-phonon system
DEFF Research Database (Denmark)
Hwang, E. H.; Hu, Ben Yu-Kuang; Sarma, S. Das
1996-01-01
We study leading-order many-body effects of longitudinal-optical phonons on electronic properties of one-dimensional quantum-wire systems. We calculate the quasiparticle properties of a weakly polar one-dimensional electron gas in the presence of both electron-phonon and electron-electron interac......We study leading-order many-body effects of longitudinal-optical phonons on electronic properties of one-dimensional quantum-wire systems. We calculate the quasiparticle properties of a weakly polar one-dimensional electron gas in the presence of both electron-phonon and electron......-electron interactions, The leading-order dynamical screening approximation (GW approximation) is used to obtain the electron self-energy, the quasiparticle spectral function, and the quasiparticle damping rate in our calculation by treating electrons and phonons on an equal footing. Our theory includes effects (within...... theoretical results for quasiparticle properties....
International Nuclear Information System (INIS)
Schiffer, J.P.
1989-01-01
Ions in a storage ring are confined to a mean orbit by focusing elements. To a first approximation these may be described by a constant harmonic restoring force: F = -Kr. If the particles in the frame moving along with the beam have small random thermal energies, then they will occupy a cylindrical volume around the mean orbit and the focusing force will be balanced by that from the mutual repulsion of the particles. Inside the cylinder only residual two-particle interactions will play a significant role and some form of ordering might be expected to take place. The results of some of the first MD calculations showed a surprising result: not only were the particles arranged in the form of a tube, but they formed well-defined layers: concentric shells, with the particles in each shell arranged in a hexagonal lattice that is characteristic of two-dimensional Coulomb systems. This paper discusses the condense layer structure
Phonons in Solid Hydrogen and Deuterium Studied by Inelastic Coherent Neutron Scattering
DEFF Research Database (Denmark)
Nielsen, Mourits
1973-01-01
Phonon dispersion relations have been measured by coherent neutron scattering in solid para-hydrogen and ortho-deuterium. The phonon energies are found to be nearly equal in the two solids, the highest energy in each case lying close to 10 meV. The pressure and temperature dependence of the phonon...... energies have been measured in ortho-deuterium and the lattice change determined by neutron diffraction. When a pressure of 275 bar is applied, the phonon energies are increased by about 10%, and heating the crystal to near the melting point decreases them by about 7%. The densities of states, the specific...... heats, and the Debye temperatures have been deduced and found to be in agreement with the published experimental results. The Debye temperatures are 118 K for hydrogen and 114 K for deuterium. For hydrogen the Debye-Waller factor has been measured by incoherent neutron scattering and it corresponds...
Double Dirac cones in phononic crystals
Li, Yan
2014-07-07
A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.
Double Dirac cones in phononic crystals
Li, Yan; Wu, Ying; Mei, Jun
2014-01-01
A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.
Phonon bottleneck identification in disordered nanoporous materials
Romano, Giuseppe; Grossman, Jeffrey C.
2017-09-01
Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.
Phonon density of states and anharmonicity of UO2
Pang, Judy W. L.; Chernatynskiy, Aleksandr; Larson, Bennett C.; Buyers, William J. L.; Abernathy, Douglas L.; McClellan, Kenneth J.; Phillpot, Simon R.
2014-03-01
Phonon density of states (PDOS) measurements have been performed on polycrystalline UO2 at 295 and 1200 K using time-of-flight inelastic neutron scattering to investigate the impact of anharmonicity on the vibrational spectra and to benchmark ab initio PDOS simulations performed on this strongly correlated Mott insulator. Time-of-flight PDOS measurements include anharmonic linewidth broadening, inherently, and the factor of ˜7 enhancement of the oxygen spectrum relative to the uranium component by the increased neutron sensitivity to the oxygen-dominated optical phonon modes. The first-principles simulations of quasiharmonic PDOS spectra were neutron weighted and anharmonicity was introduced in an approximate way by convolution with wave-vector-weighted averages over our previously measured phonon linewidths for UO2, which are provided in numerical form. Comparisons between the PDOS measurements and the simulations show reasonable agreement overall, but they also reveal important areas of disagreement for both high and low temperatures. The discrepancies stem largely from a ˜10 meV compression in the overall bandwidth (energy range) of the oxygen-dominated optical phonons in the simulations. A similar linewidth-convoluted comparison performed with the PDOS spectrum of Dolling et al. obtained by shell-model fitting to their historical phonon dispersion measurements shows excellent agreement with the time-of-flight PDOS measurements reported here. In contrast, we show by comparisons of spectra in linewidth-convoluted form that recent first-principles simulations for UO2 fail to account for the PDOS spectrum determined from the measurements of Dolling et al. These results demonstrate PDOS measurements to be stringent tests for ab inito simulations of phonon physics in UO2 and they indicate further the need for advances in theory to address the lattice dynamics of UO2.
Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard
2018-04-01
Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.
International Nuclear Information System (INIS)
Wei, Jie; Li, Xiao-Ping; Sessler, A.M.
1993-01-01
In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing
International Nuclear Information System (INIS)
Wei, J.; Li, X.P.
1993-01-01
In order to employ the Molecular Dynamics method, commonly used in condensed matter physics, the authors have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. They include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing
Phonon dispersion models for MgB{sub 2} with application of pressure
Energy Technology Data Exchange (ETDEWEB)
Alarco, Jose A., E-mail: jose.alarco@qut.edu.au; Talbot, Peter C., E-mail: p.talbot@qut.edu.au; Mackinnon, Ian D.R., E-mail: ian.mackinnon@qut.edu.au
2017-05-15
Highlights: • Ab initio DFT MgB{sub 2} phonon dispersion for pressures up to 20 GPa are presented. • Extent of E{sub 2g} phonon anomaly and thermal energy, T{sub δ,} are pressure dependent. • Phonon anomaly thermal energy equivalent to experimental T{sub c} values for MgB{sub 2}. • Computational method to measure T{sub δ} is an effective predictor of T{sub c}. - Abstract: We evaluate, via the Local Density and the Generalised Gradient Approximations to the Density Functional Theory (DFT), the change in form and extent of the E{sub 2g} phonon anomaly of MgB{sub 2} with increase in applied pressure up to 20 GPa. Ab initio DFT calculations on the phonon dispersion (PD) for MgB{sub 2} show a phonon anomaly symmetrically displaced around Γ, the reciprocal lattice origin. This anomaly is related to nesting between diametrically opposite sides of tubular elements of Fermi surfaces, which correspond to sigma bonding and run approximately parallel to the Γ–A reciprocal space direction. The anomaly is parallel to Γ–A and along Γ–M and Γ–K. The extent of the E{sub 2g} phonon anomaly, δ, along Γ–M and Γ–K is a measure of the thermal energy, T{sub δ}, that matches within error the experimental onset superconducting transition temperature, T{sub c}. Ab initio DFT calculations with pressure for −5 GPa < P < 20 GPa show a linear reduction in T{sub δ} that closely matches experimental T{sub c} values for MgB{sub 2}. For phonon-mediated superconductors with AlB{sub 2}–type structures, the thermal energy of the phonon anomaly, T{sub δ}, is a reliable predictor of T{sub c}.
Crystalline and Crystalline International Disposal Activities
Energy Technology Data Exchange (ETDEWEB)
Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-12-21
This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.
Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2.
Ma, J; Delaire, O; May, A F; Carlton, C E; McGuire, M A; VanBebber, L H; Abernathy, D L; Ehlers, G; Hong, Tao; Huq, A; Tian, Wei; Keppens, V M; Shao-Horn, Y; Sales, B C
2013-06-01
Materials with very low thermal conductivity are of great interest for both thermoelectric and optical phase-change applications. Synthetic nanostructuring is most promising for suppressing thermal conductivity through phonon scattering, but challenges remain in producing bulk samples. In crystalline AgSbTe2 we show that a spontaneously forming nanostructure leads to a suppression of thermal conductivity to a glass-like level. Our mapping of the phonon mean free paths provides a novel bottom-up microscopic account of thermal conductivity and also reveals intrinsic anisotropies associated with the nanostructure. Ground-state degeneracy in AgSbTe2 leads to the natural formation of nanoscale domains with different orderings on the cation sublattice, and correlated atomic displacements, which efficiently scatter phonons. This mechanism is general and suggests a new avenue for the nanoscale engineering of materials to achieve low thermal conductivities for efficient thermoelectric converters and phase-change memory devices.
International Nuclear Information System (INIS)
Li, Huimin; Liu, Yingang; Li, Miaoquan; Liu, Hongjie
2015-01-01
Graphical abstract: - Highlights: • The gradient nanocrystalline structure was induced in treated layer of TC17. • The thickness of nanograin layer with an average grain size of 10.5 nm was 20 μm. • The composition of the treated layer of TC17 was discussed. • The gradient variation of the microhardness was obtained in treated layer of TC17. - Abstract: The gradient nanocrystalline structure from the topmost surface to the matrix of a bulk coarse-grained TC17 was attained by using high energy shot peening treatment at an air pressure of 0.35 MPa and a processing duration of 30 min. The thickness from the topmost surface with a grain size of about 10.5 nm to the matrix with a micrometer structure was about 120 μm, and the thickness in the nanocrystalline layer was about 20 μm. The microscopic and nanocrystalline structure characteristic in the treated layer were investigated via X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The nanograins layer, the nanometer-thick laminated structure layer, the refined grains layer and the low-strain matrix layer occurred in sequence from the topmost surface to the matrix, and therefore the gradient nanocrystalline structure in the treated layer was produced by using high energy shot peening. TEM investigation confirmed that the dislocation activity with very high stacking fault energy induced by surface severe plastic deformation mainly controlled the grain refinement. The microhardness (HV 0.02 ) from the topmost surface to the matrix gradually increased by 43% from 440 to 629 and the gradient variation of the microhardness with the depths from the topmost surface to the matrix of treated TC17 was obtained.
Energy Technology Data Exchange (ETDEWEB)
Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)
2000-05-01
The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.
Shahid, Muhammad
2013-05-01
We report the synthesis of MoV2O8 nanowires of high quality using spin coating followed by the thermal annealing process. Transmission electron microscopy (TEM) reveals the average diameter of synthesized nanowire about 100 nm, and average length ranges from 1 to 5 μm. The TEM analysis further confirms the <001> growth direction of MoV 2O8 nanowires. The electrochemical properties of synthesized nanowires using cyclic voltammetry show the specific capacitance 56 Fg-1 at the scan rate of 5 mV s-1 that remains 24 Fg -1 at 100 mV s-1. The electrochemical measurements suggest that the MoV2O8 nanowires can be used as a material for the future electrochemical capacitors (energy storage devices). © 2012 Published by Elsevier Inc. All rights reserved.
Shahid, Muhammad; Liu, Jingling; Ali, Zahid; Shakir, Imran; Warsi, Muhammad Farooq
2013-01-01
We report the synthesis of MoV2O8 nanowires of high quality using spin coating followed by the thermal annealing process. Transmission electron microscopy (TEM) reveals the average diameter of synthesized nanowire about 100 nm, and average length ranges from 1 to 5 μm. The TEM analysis further confirms the <001> growth direction of MoV 2O8 nanowires. The electrochemical properties of synthesized nanowires using cyclic voltammetry show the specific capacitance 56 Fg-1 at the scan rate of 5 mV s-1 that remains 24 Fg -1 at 100 mV s-1. The electrochemical measurements suggest that the MoV2O8 nanowires can be used as a material for the future electrochemical capacitors (energy storage devices). © 2012 Published by Elsevier Inc. All rights reserved.
Phonon lineshapes in atom-surface scattering
Energy Technology Data Exchange (ETDEWEB)
MartInez-Casado, R [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, E-28006 Madrid (Spain)
2010-08-04
Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.
High-pressure Raman study of vibrational spectra in crystalline acetanilide
Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro
1993-01-01
We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.
Prediction of phonon-mediated superconductivity in hole-doped black phosphorus.
Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong
2018-01-10
We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB 2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency [Formula: see text] optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.
Features of electron-phonon interactions in nanotubes with chiral symmetry in magnetic field
Kibis, O V
2001-01-01
Interaction of the electrons with acoustic phonons in the nanotube with chiral symmetry by availability of the magnetic field, parallel to the nanotube axis, is considered. It is shown that the electron energy spectrum is asymmetric relative to the electron wave vector inversion and for that reason the electron-phonon interaction appears to be different for similar phonons with mutually contrary directions of the wave vector. This phenomenon leads to origination of the electromotive force by the spatially uniform electron gas heating and to appearance of the quadrupole component in the nanotube volt-ampere characteristics
Dephasing times in quantum dots due to elastic LO phonon-carrier collisions
DEFF Research Database (Denmark)
Uskov, A. V.; Jauho, Antti-Pekka; Tromborg, Bjarne
2000-01-01
Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in Q......: second-order elastic interaction between quantum dot charge carriers and LO phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing....
Temperature dependence of phonons in pyrolitic graphite
International Nuclear Information System (INIS)
Brockhouse, B.N.; Shirane, G.
1977-01-01
Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes
Tunable infrared reflectance by phonon modulation
Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.
2018-03-06
The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.
Electron-phonon coupling in one dimension
International Nuclear Information System (INIS)
Apostol, M.; Baldea, I.
1981-08-01
The Ward identity is derived for the electron-phonon coupling in one dimension and the spectrum of elementary excitations is calculated by assuming that the Fermi distribution is not strongly distorted by interaction. The electron-phonon vertex is renormalized in the case of the forward scattering and Migdal's theorem is discussed. A model is proposed for the giant Kohn anomaly. The dip in the phonon spectrum is obtained and found to be in agreement with the experimental data for KCP. (author)
Tunable infrared reflectance by phonon modulation
Energy Technology Data Exchange (ETDEWEB)
Ihlefeld, Jon F.; Sinclair, Michael B.; Beechem, III, Thomas E.
2018-03-06
The present invention pertains to the use of mobile coherent interfaces in a ferroelectric material to interact with optical phonons and, ultimately, to affect the material's optical properties. In altering the optical phonon properties, the optical properties of the ferroelectric material in the spectral range near-to the phonon mode frequency can dramatically change. This can result in a facile means to change to the optical response of the ferroelectric material in the infrared.
The Electron-Phonon Interaction in Strongly Correlated Systems
International Nuclear Information System (INIS)
Castellani, C.; Grilli, M.
1995-01-01
We analyze the effect of strong electron-electron repulsion on the electron-phonon interaction from a Fermi-liquid point of view and show that the electron-electron interaction is responsible for vertex corrections, which generically lead to a strong suppression of the electron-phonon coupling in the v F q/ω >>1 region, while such effect is not present when v F q/ω F is the Fermi velocity and q and ω are the transferred momentum and frequency respectively. In particular the e-ph scattering is suppressed in transport properties which are dominated by low-energy-high-momentum processes. On the other hand, analyzing the stability criterion for the compressibility, which involves the effective interactions in the dynamical limit, we show that a sizable electron-phonon interaction can push the system towards a phase-separation instability. Finally a detailed analysis of these ideas is carried out using a slave-boson approach for the infinite-U three-band Hubbard model in the presence of a coupling between the local hole density and a dispersionless optical phonon. (author)
Phonon transport across nano-scale curved thin films
Energy Technology Data Exchange (ETDEWEB)
Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa
2016-12-15
Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.
Phonon transport across nano-scale curved thin films
International Nuclear Information System (INIS)
Mansoor, Saad B.; Yilbas, Bekir S.
2016-01-01
Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.
International Nuclear Information System (INIS)
Takada, Y.; Higuchi, T.
1995-01-01
The Green's-function techniques, especially the one developed in the preceding paper [Takada, Phys. Rev. B 52, 12 708 (1995)], are employed to calculate the electron-phonon vertex part as well as the electronic self-energy exactly on both real- and imaginary-frequency axes in the electron-phonon Holstein model with the on-site Coulomb repulsion in the limit in which the intramolecular phonon energy ω 0 is much larger than the electronic bandwidth. The rigorous vertex part is found to diverge at the frequencies at which an electron is locked by such local phonons with an infinitely strong effective coupling. Characteristic frequencies of this divergence, which are not equal to multiples of ω 0 , are calculated as a function of the electron-phonon bare coupling constant. Our results for the self-energy are checked successfully with the exact ones obtained by the Lang-Firsov canonical transformation
neutron transmission through crystalline materials
International Nuclear Information System (INIS)
El Mesiry, M.S.
2011-01-01
The aim of the present work is to study the neutron transmission through crystalline materials. Therefore a study of pyrolytic graphite (PG) as a highly efficient selective thermal neutron filter and Iron single crystal as a whole one, as well as the applicability of using their polycrystalline powders as a selective cold neutron filters is given. Moreover, the use of PG and iron single crystal as an efficient neutron monochromator is also investigated. An additive formula is given which allows calculating the contribution of the total neutron cross-section including the Bragg scattering from different )(hkl planes to the neutron transmission through crystalline iron and graphite. The formula takes into account their crystalline form. A computer CFe program was developed in order to provide the required calculations for both poly- and single-crystalline iron. The validity of the CFe program was approved from the comparison of the calculated iron cross-section data with the available experimental ones. The CFe program was also adapted to calculate the reflectivity from iron single crystal when it used as a neutron monochromator The computer package GRAPHITE, developed in Neutron Physics laboratory, Nuclear Research Center, has been used in order to provide the required calculations for crystalline graphite in the neutron energy range from 0.1 meV to 10 eV. A Mono-PG code was added to the computer package GRAPHITE in order to calculate the reflectivity from PG crystal when it used as a neutron monochromator.
Soliton structure in crystalline acetanilide
International Nuclear Information System (INIS)
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-01-01
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons
Ballistic phonon transport in holey silicon.
Lee, Jaeho; Lim, Jongwoo; Yang, Peidong
2015-05-13
When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.
Effect of magnon-phonon interaction on transverse acoustic phonon excitation at finite temperature
International Nuclear Information System (INIS)
Cheng Taimin; Li Lin; Xianyu Ze
2007-01-01
A magnon-phonon interaction model is developed on the basis of two-dimensional square Heisenberg ferromagnetic system. By using Matsubara Green function theory transverse acoustic phonon excitation is studied and transverse acoustic phonon excitation dispersion curves is calculated on the main symmetric point and line in the first Brillouin zone. On line Σ it is found that there is hardening for transverse acoustic phonon on small wave vector zone (nearby point Γ), there is softening for transverse acoustic phonon on the softening zone and there is hardening for transverse acoustic phonon near point M. On line Δ it is found there is no softening and hardening for transverse acoustic phonon. On line Z it is found that there is softening for transverse acoustic phonon on small wave vector zone (nearby point X) and there is hardening for transverse acoustic phonon nearby point M. The influences of various parameters on transverse acoustic phonon excitation are also explored and it is found that the coupling of the magnon-phonon and the spin wave stiffness constant play an important role for the softening of transverse acoustic phonon
Zhou, Yanguang; Gong, Xiaojing; Xu, Ben; Hu, Ming
2017-07-20
Thermoelectric (TE) materials manifest themselves to enable direct conversion of temperature differences to electric power and vice versa. Though remarkable advances have been achieved in the past decades for various TE systems, the energy conversion efficiency of TE devices, which is characterized by a dimensionless figure-of-merit (ZT = S 2 σT/(κ el + κ ph )), generally remains a poor factor that severely limits TE devices' competitiveness and range of employment. The bottleneck for substantially boosting the ZT coefficient lies in the strong interdependence of the physical parameters involved in electronic (S and σ, and κ el ) and phononic (κ ph ) transport. Herein, we propose a new strategy of incorporating nanotwinned structures to decouple electronic and phononic transport. Combining the new concept of nanotwinned structures with the previously widely used nanocrystalline approach, the power factor of the nanotwin-nanocrystalline Si heterostructures is enhanced by 120% compared to that of bulk crystalline Si, while the lattice thermal conductivity is reduced to a level well below the amorphous limit, yielding a theoretical limit of 0.52 and 0.9 for ZT coefficient at room temperature and 1100 K, respectively. This value is almost two orders of magnitude larger than that for bulk Si and twice that for polycrystalline Si. Even for the experimentally obtained nanotwin-nanocrystalline heterostructures (e.g. grain size of 5 nm), the ZT coefficient can be as high as 0.26 at room temperature and 0.7 at 1100 K, which is the highest ZT value among all Si-based bulk nanostructures found thus far. Such substantial improvement stems from two aspects: (1) the improvement in the power factor is caused due to an increase in the Seebeck coefficient (degeneracy of the band valley) and the enhancement of electrical conductivity (the reduction of the effective band mass) and (2) the significant reduction of the lattice thermal conductivity is mainly caused due to the
Phonon and thermodynamical properties of CuSc: A DFT study
Jain, Ekta; Pagare, Gitanjali; Dubey, Shubha; Sanyal, S. P.
2018-05-01
A detailed systematic theoretical investigation of phonon and thermodynamical behavior of CuSc intermetallic compound has been carried out by uing first-principles density functional theory in B2-type (CsCl) crystal structure. Phonon dispersion curve and phonon density of states (PhDOS) are studied which confirm the stability of CuSc intermetallic compound in B2 phase. It is found that PhDOS at high frequencies mostly composed of Sc states. We have also presented some temperature dependent properties such as entropy, free energy, heat capacity, internal energy and thermal displacement, which are computed under PHONON code. The various features of these quantities are discussed in detail. From these results we demonstrate that the particular intermetallic have better ductility and larger thermal expansion.
Experimental determination of the berilium phonon spectra using inelastic neutro scattering
International Nuclear Information System (INIS)
Sirota, N.N.; Bulat, I.A.
1976-01-01
A study has been made of in elastic scattering of cold neutrons with energies between 0.0022 and 0.00523 eV by polycrystalline beryllium and restoration of its phonon spectrum. The specimen studied is a block of polycrystalline beryllium. In the case of beryllium the averaging of coherent effects upon scattering on a thick specimen takes place as a result of multiple internal Bragg-type reflections of neutrons which undergo inelastic scattering with absorption of phonons. The thickness of the spheric averaging layer for Esub(6) = 0.00523 eV is almost equal to the maximum dimension of the Brillouin band. The phonon spectrum of beryllium for three mean energies used of incident neutrons has been demonstrated. The phonon spectrum of beryllium, measured for the first time, is of interest for quantitative calculations of a number of its physical properties
International Nuclear Information System (INIS)
Giri, Ashutosh; Hopkins, Patrick E.
2015-01-01
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states
Paudel, Tula R.
This thesis presents a study of the phonons and related properties in two sets of nitride compounds, whose properties are until now relatively poorly known. The Zn-IV-N2 group of compounds with the group IV elements Si, Ge and Sn, form a series analogous to the well known III-N nitride series with group III element Al, Ga, In. Structurally, they can be derived by doubling the period of III-V compounds in the plane in two directions and replacing the group-III elements with Zn and a group-IV element in a particular ordered pattern. Even though they are similar to the well-known III-V nitride compounds, the study of the properties of these materials is in its early stages. The phonons in these materials and their relation to the phonons in the corresponding group-III nitrides are of fundamental interest. They are also of practical interest because the phonon related spectra such as infrared absorption and Raman spectroscopy are sensitive to the structural quality of the material and can thus be used to quantify the degree of crystalline perfection of real samples. First-principles calculations of the phonons and related ground state properties of these compounds were carried out using Density Functional Perturbation Theory (DFPT) with the Local Density Approximation (LDA) for exchange and correlation and using a pseudopotential plane wave implementation which was developed by several authors over the last decades. The main focus of our study is on the phonons at the center of the Brillouin zone because the latter are most directly related to commonly used spectroscopies to probe the vibrations in a solid: infrared reflectivity and Raman spectroscopy. For a semiconducting or insulating compound, a splitting occurs between transverse and longitudinal phonons at the Gamma-point because of the long-range nature of electrostatic forces. The concepts required to handle this problem are reviewed. Our discussion emphasizes how the various quantities required are related to
Density of phonon states in the light-harvesting complex II of green plants
Pieper, J K; Irrgang, K D; Renger, G
2002-01-01
In photosynthetic antenna complexes, the coupling of electronic transitions to low-frequency vibrations of the protein matrix (phonons) plays an essential role in light absorption and ultra-fast excitation energy transfer (EET). The model calculations presented here indicate that inelastic neutron scattering experiments provide invaluable information on the phonon density of states for light-harvesting complex II, which may permit a consistent interpretation of contradictory results from high-resolution optical spectroscopy. (orig.)
International Nuclear Information System (INIS)
Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, M.; Mares, J.A.; Beitlerova, A.; Jary, V.
2013-01-01
Absorption, cathodoluminescence, excitation spectra of photoluminescence (PL) and PL decay kinetics were studied at 300 K for the double doped with Bi 3+ –Pr 3+ and separately doped with Bi 3+ and Pr 3+ Lu 3 Al 5 O 12 (LuAG) and Y 3 Al 5 O 12 (YAG) single crystalline film (SCF) phosphors grown by the liquid phase epitaxy method. The emission bands in the UV range arising from the intrinsic radiative transitions of Bi 3+ based centers, and emission bands in the visible range, related to the luminescence of excitons localized around Bi 3+ based centers, were identified both in Bi–Pr and Bi-doped LuAG and YAG SCFs. The energy transfer processes from the host lattice simultaneously to Bi 3+ and Pr 3+ ions and from Bi 3+ to Pr 3+ ions were investigated. Competition between Pr 3+ and Bi 3+ ions in the energy transfer processes from the LuAG and YAG hosts was evidenced. The strong decrease of the intensity of Pr 3+ luminescence both in LuAG:Pr and YAG:Pr SCFs phosphors, grown from Bi 2 O 3 flux, is observed due to the quenching influence of Bi 3+ flux related impurity. Due to overlap of the UV emission band of Bi 3+ centers with the f–d absorption bands of Pr 3+ ions in the UV range and the luminescence of excitons localized around Bi ions with the f–f absorption bands of Pr 3+ ions in the visible range, an effective energy transfer from Bi 3+ ions to Pr 3+ ions takes place in LuAG:Bi,Pr and YAG:Bi,Pr SCFs, resulting in the appearance of slower component in the decay kinetics of the Pr 3+ d–f luminescence. -- Highlights: • Bi and Pr doped film phosphor grown by liquid phase epitaxy method. • Energy transfer from Bi 3+ to Pr 3+ ions. • Strong quenching of the Pr 3+ luminescence by Bi 3+ co-dopant
Phonon-Mediated Quasiparticle Poisoning of Superconducting Microwave Resonators
Patel, U.; Pechenezhskiy, Ivan V.; Plourde, B. L. T.; Vavilov, M. G.; McDermott, R.
2016-01-01
Nonequilibrium quasiparticles represent a significant source of decoherence in superconducting quantum circuits. Here we investigate the mechanism of quasiparticle poisoning in devices subjected to local quasiparticle injection. We find that quasiparticle poisoning is dominated by the propagation of pair-breaking phonons across the chip. We characterize the energy dependence of the timescale for quasiparticle poisoning. Finally, we observe that incorporation of extensive normal metal quasipar...
Density of phonon states on NiO polycrystal
International Nuclear Information System (INIS)
Bulat, I.A.; Makovetskij, G.I.; Pashkovskij, Yu.L.; Semencheva, O.P.; Smolik, Ch.K.
1984-01-01
The density of phonon states g(epsilon) of nickel monoxide polycrystal was investigated by the method of inelastic scattering of cold neutrons with E 0 =4.43 MeV initial energy E 0 =4.43 MeV on the time-of-flight spectrometer at T=293 K. The obtained data are compared with existing results of calculations on the base of the simple shell model and the model, taking into account the deformation of bond angles
Search for the 3-phonon state of {sup 40}Ca; Recherche de l'etat a trois phonons dans le {sup 40}Ca
Energy Technology Data Exchange (ETDEWEB)
Fallot, M
2002-09-01
We study collective vibrational states of the nucleus: giant resonances and multiphonon states. It has been shown that multiphonon states, which are built with several superimposed giant resonances, can be excited in inelastic heavy ion scattering near the grazing angle. No three photon states have been observed until now. An experiment has been performed at GANIL, aiming at the observation of the 3-phonon state built with the giant quadrupole resonance (GQR) in {sup 40}Ca, with the reaction {sup 40}Ca + {sup 40}Ca at 50 A.Me.V. The ejectile was identified in the SPEG spectrometer. Light charged particles were detected in 240 CsI scintillators of the INDRA 4{pi} array. The analysis confirms the previous results about the GQR and the 2-phonon state in {sup 40}Ca. For the first time, we have measured an important direct decay branch of the GQR by alpha particles. Applying the so-called 'missing energy method' to events containing three protons measured in coincidence with the ejectile, we observe a direct decay branch revealing the presence of a 3-phonon state in the excitation energy region expected for the triple GQR. Dynamical processes are also studied in the inelastic channel, emphasizing a recently discovered mechanism named towing-mode. We observe for the first time the towing-mode of alpha particles. The energies of multiphonon states in {sup 40}Ca and {sup 208}Pb have been computed microscopically including some anharmonicities via boson mapping methods. The basis of the calculation has been extended to the 3-phonon states. Our results show large anharmonicities (several MeV), due to the coupling of 3-phonon states to 2-phonon states. The extension of the basis to 4-phonon states has been performed for the first time. The inclusion of the 4 phonon states in the calculation did not affect the previous observations concerning the 2-phonon states. Preliminary results on the anharmonicities of the 3-phonon states are presented. (author)
Splash, pop, sizzle: Information processing with phononic computing
Directory of Open Access Journals (Sweden)
Sophia R. Sklan
2015-05-01
Full Text Available Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic.
Resonant tunneling in a pulsed phonon field
DEFF Research Database (Denmark)
Kral, P.; Jauho, Antti-Pekka
1999-01-01
, The nonequilibrium spectral function for the resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by oscillations, whose time scale is set by the frequency...
Femtosecond study of self-trapped vibrational excitons in crystalline acetanilide
DEFF Research Database (Denmark)
Edler, J.; Hamm, Peter; Scott, Alwyn C.
2002-01-01
Femtosecond IR spectroscopy of delocalized NH excitations of crystalline acetanilide confirms that self-trapping in hydrogen-bonded peptide units exists and does stabilize the excitation. Two phonons with frequencies of 48 and 76 cm(-1) are identified as the major degrees of freedom that mediate...
Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide
Takeno, S.
1986-01-01
Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.
Phononic crystals and elastodynamics: Some relevant points
Directory of Open Access Journals (Sweden)
N. Aravantinos-Zafiris
2014-12-01
Full Text Available In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Crystalline and Crystalline International Disposal Activities
Energy Technology Data Exchange (ETDEWEB)
Viswanathan, Hari S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, Shaoping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffrey De' Haven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-06
This report presents the results of work conducted between September 2015 and July 2016 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program. Los Alamos focused on two main activities during this period: Discrete fracture network (DFN) modeling to describe flow and radionuclide transport in complex fracture networks that are typical of crystalline rock environments, and a comprehensive interpretation of three different colloid-facilitated radionuclide transport experiments conducted in a fractured granodiorite at the Grimsel Test Site in Switzerland between 2002 and 2013. Chapter 1 presents the results of the DFN work and is divided into three main sections: (1) we show results of our recent study on the correlation between fracture size and fracture transmissivity (2) we present an analysis and visualization prototype using the concept of a flow topology graph for characterization of discrete fracture networks, and (3) we describe the Crystalline International work in support of the Swedish Task Force. Chapter 2 presents interpretation of the colloidfacilitated radionuclide transport experiments in the crystalline rock at the Grimsel Test Site.
Lee, Y.; Bescond, M.; Logoteta, D.; Cavassilas, N.; Lannoo, M.; Luisier, M.
2018-05-01
We propose an efficient method to quantum mechanically treat anharmonic interactions in the atomistic nonequilibrium Green's function simulation of phonon transport. We demonstrate that the so-called lowest-order approximation, implemented through a rescaling technique and analytically continued by means of the Padé approximants, can be used to accurately model third-order anharmonic effects. Although the paper focuses on a specific self-energy, the method is applicable to a very wide class of physical interactions. We apply this approach to the simulation of anharmonic phonon transport in realistic Si and Ge nanowires with uniform or discontinuous cross sections. The effect of increasing the temperature above 300 K is also investigated. In all the considered cases, we are able to obtain a good agreement with the routinely adopted self-consistent Born approximation, at a remarkably lower computational cost. In the more complicated case of high temperatures (≫300 K), we find that the first-order Richardson extrapolation applied to the sequence of the Padé approximants N -1 /N results in a significant acceleration of the convergence.
The strength of crystalline color superconductors
International Nuclear Information System (INIS)
Mannarelli, Massimo; Rajagopal, Krishna; Sharma, Rishi
2007-01-01
We present a study of the shear modulus of the crystalline color superconducting phase of quark matter, showing that this phase of dense, but not asymptotically dense, quark matter responds to shear stress as a very rigid solid. This phase is characterized by a gap parameter Δ that is periodically modulated in space and therefore spontaneously breaks translational invariance. We derive the effective action for the phonon fields that describe space- and time-dependent fluctuations of the crystal structure formed by Δ, and obtain the shear modulus from the coefficients of the spatial derivative terms. Within a Ginzburg-Landau approximation, we find shear moduli which are 20 to 1000 times larger than those of neutron star crusts. This phase of matter is thus more rigid than any known material in the universe, but at the same time the crystalline color superconducting phase is also superfluid. These properties raise the possibility that the presence of this phase within neutron stars may have distinct implications for their phenomenology. For example (some) pulsar glitches may originate in crystalline superconducting neutron star cores
Longitudinal polar optical phonons in InN/GaN single and double het- erostructures
Energy Technology Data Exchange (ETDEWEB)
Ardali, Sukru; Tiras, Engin [Department of Physics, Faculty of Science, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey); Gunes, Mustafa; Balkan, Naci [School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ (United Kingdom); Ajagunna, Adebowale Olufunso; Iliopoulos, Eleftherios; Georgakilas, Alexandros [Microelectronics Research Group, IESL, FORTH and Physics Department, University of Crete, P.O. Box 1385, 71110 Heraklion-Crete (Greece)
2011-05-15
Longitudinal optical phonon energy in InN epi-layers has been determined independently from the Raman spectroscopy and temperature dependent Hall mobility measurements. Raman spectroscopy technique can be used to obtain directly the LO energy where LO phonon scattering dominates transport at high temperature. Moreover, the Hall mobility is determined by the scattering of electrons with LO phonons so the data for the temperature dependence of Hall mobility have been used to calculate the effective energy of longitudinal optical phonons.The samples investigated were (i) single heterojunction InN with thicknesses of 1.08, 2.07 and 4.7 {mu}m grown onto a 40 nm GaN buffer and (ii) GaN/InN/AlN double heterojunction samples with InN thicknesses of 0.4, 0.6 and 0.8 {mu}m. Hall Effect measurements were carried out as a function of temperature in the range between T = 1.7 and 275 K at fixed magnetic and electric fields. The Raman spectra were obtained at room temperature. In the experiments, the 532 nm line of a nitrogen laser was used as the excitation source and the light was incident onto the samples along of the growth direction (c-axis). The results, obtained from the two independent techniques suggest the following: (1) LO phonon energies obtained from momentum relaxation experiments are generally slightly higher than those obtained from the Raman spectra. (2) LO phonon energy for the single heterojunctions does not depend on the InN thickness. (3) In double heterostructures, with smaller InN thicknesses and hence with increased strain, LO phonon energy increases by 3% (experimental accuracy is < 1%) when the InN layer thickness increases from 400 to 800 nm (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
"Phonon" scattering beyond perturbation theory
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
,
1992-01-01
Crystalline silica is the scientific name for a group of minerals composed of silicon and oxygen. The term crystalline refers to the fact that the oxygen and silicon atoms are arranged in a threedimensional repeating pattern. This group of minerals has shaped human history since the beginning of civilization. From the sand used for making glass to the piezoelectric quartz crystals used in advanced communication systems, crystalline silica has been a part of our technological development. Crystalline silica's pervasiveness in our technology is matched only by its abundance in nature. It's found in samples from every geologic era and from every location around the globe. Scientists have known for decades that prolonged and excessive exposure to crystalline silica dust in mining environments can cause silicosis, a noncancerous lung disease. During the 1980's, studies were conducted that suggested that crystalline silica also was a carcinogen. As a result of these findings, crystalline silica has been regulated under the Occupational Safety and Health Administration's (OSHA) Hazard Communication Standard (HCS). Under HCS, OSHAregulated businesses that use materials containing 0.1% or more crystalline silica must follow Federal guidelines concerning hazard communication and worker training. Although the HCS does not require that samples be analyzed for crystalline silica, mineral suppliers or OSHAregulated
... and ceramic manufacturing and the tool and die, steel and foundry industries. Crystalline silica is used in manufacturing, household abrasives, adhesives, paints, soaps, and glass. Additionally, ...
Renormalization effects and phonon density of states in high temperature superconductors
Directory of Open Access Journals (Sweden)
Vinod Ashokan
2013-02-01
Full Text Available Using the versatile double time thermodynamic Green's function approach based on many body theory the renormalized frequencies, phonon energy line widths, shifts and phonon density of states (PDOS are investigated via a newly formulated Hamiltonian (does not include BCS type Hamiltonian that includes the effects of electron-phonon, anharmonicities and that of isotopic impurities. The automatic appearance of pairons, temperature, impurity and electron-phonon coupling of renormalized frequencies, widths, shifts and PDOS emerges as a characteristic feature of present theory. The numerical investigations on PDOS for the YBa2Cu3O7 − δ crystal predicts several new feature of high temperature superconductors (HTS and agreements with experimental observations.
From pair correlations to the quasi-particle-phonon nuclear model
International Nuclear Information System (INIS)
Solov'ev, V.G.
1986-01-01
Modern state of the nucleus theory is discussed. The main attention is paid to pair correlation theory of superconducting type and quasiparticle - phonon nucleus model. Pair correlation account allowed one to describe in detail a series of nucleus properties which did not fall within the framework of earlier known models as, for example, double-quasi-particle states in even-even deformed nuclei. To describe the wave function low-quasi-particle components at low, mean and high excitation energies, the nucleus quasi-particle-phonon model is formulated. The strength function method is used in the model and fragmentation of mono-quasi-particle, mono-phonon states and quasi-particle phonon state by many nuclear levels is calculated
Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model
International Nuclear Information System (INIS)
Aprea, G.; Di Castro, C.; Grilli, M. . E-mail marco.grilli@roma1.infn.it; Lorenzana, J.
2006-01-01
We investigate the interplay between the electron-electron and the electron-phonon interaction in the Hubbard-Holstein model. We implement the flow-equation method to investigate within this model the effect of correlation on the electron-phonon effective coupling and, conversely, the effect of phonons in the effective electron-electron interaction. Using this technique we obtain analytical momentum-dependent expressions for the effective couplings and we study their behavior for different physical regimes. In agreement with other works on this subject, we find that the electron-electron attraction mediated by phonons in the presence of Hubbard repulsion is peaked at low transferred momenta. The role of the characteristic energies involved is also analyzed
Dynamics of impurity modes and electron–phonon interaction in Heavy Fermion (HF) systems
International Nuclear Information System (INIS)
Shadangi, N.; Sahoo, J.; Mohanty, S.; Nayak, P.
2014-01-01
A theoretical explanation is provided to understand the effect of small concentration of impurities characterized by change in mass and nearest neighbor force constants on the phonon spectrum as well as on the electron–phonon interaction in some Heavy Fermion (HF) systems in the normal state within theoretical framework of the Periodic Anderson Model (PAM). Three different mechanisms of the electron–phonon interactions, namely, the usual interaction between the phonons with the electrons in the f-bands, electrons arising from that of hybridization term of PAM and the local electron–phonon coupling at the impurity sites are considered. Coherent Potential Approximation (CPA) is used to evaluate the configuration averaged self–energy and the total Green function. For simplicity of calculation the CPA self–energy is evaluated in Average t -matrix Approximation (ATA). The analytical analysis is carried out for finite T in the long wavelength limit. The influence of impurity mass parameter λ and other system parameters such as d, the position of f-level, the effective coupling strength g on the calculated re-normalized phonon frequency and the excitation spectrum through the spectral function is studied. The numerical analysis of the results does show the influence of impurities as evident from different plots in this paper.
Czech Academy of Sciences Publication Activity Database
Bartosiewicz, Karol; Babin, Vladimir; Mareš, Jiří A.; Beitlerová, Alena; Zorenko, Yu.; Iskaliyeva, A.; Gorbenko, V.; Bryknar, Z.; Nikl, Martin
2017-01-01
Roč. 188, Aug (2017), s. 60-66 ISSN 0022-2313 R&D Projects: GA ČR GA16-15569S; GA MŠk LO1409 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : gadolinium terbium aluminum garnets * Ce 3+ * energy transfer * luminescence * single crystalline flms Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.686, year: 2016
Czech Academy of Sciences Publication Activity Database
Bartosiewicz, Karol; Babin, Vladimir; Nikl, Martin; Mareš, Jiří A.; Zorenko, Yu.; Gorbenko, V.
2016-01-01
Roč. 173, May (2016), s. 141-148 ISSN 0022-2313 R&D Projects: GA ČR GA16-15569S; GA ČR GAP204/12/0805 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : lutetium terbium aluminum garnets * Ce 3+ * energy transfer * luminescence * single crystalline films Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.686, year: 2016
EELS from organic crystalline materials
International Nuclear Information System (INIS)
Brydson, R; Seabourne, C R; Hondow, N; Eddleston, M D; Jones, W
2014-01-01
We report the use of the electron energy loss spectroscopy (EELS) for providing light element chemical composition information from organic, crystalline pharmaceutical materials including theophylline and paracetamol and discuss how this type of data can complement transmission electron microscopy (TEM) imaging and electron diffraction when investigating polymorphism. We also discuss the potential for the extraction of bonding information using electron loss near-edge structure (ELNES)
Phonon scattering in metallic glasses
International Nuclear Information System (INIS)
Black, J.L.
1979-01-01
The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses
Mutual interactions of phonons, rotons, and gravity
Nicolis, Alberto; Penco, Riccardo
2018-04-01
We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.
Phonon characteristics of high Tc superconductors from neutron Doppler broadening measurements
International Nuclear Information System (INIS)
Trela, W.J.; Kwei, G.H.; Lynn, J.E.; Meggers, K.
1994-01-01
Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La 2-x Ba x CuO 4 . Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra
Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements
Energy Technology Data Exchange (ETDEWEB)
Trela, W.J.; Kwei, G.H.; Lynn, J.E. [Los Alamos National Lab., NM (United States); Meggers, K. [Univ. of Kiel (Germany)
1994-12-01
Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.
Electron-phonon coupling from finite differences
Monserrat, Bartomeu
2018-02-01
The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.
Park, No-Won; Ahn, Jay-Young; Park, Tae-Hyun; Lee, Jung-Hun; Lee, Won-Yong; Cho, Kwanghee; Yoon, Young-Gui; Choi, Chel-Jong; Park, Jin-Seong; Lee, Sang-Kwon
2017-06-01
Recently, significant progress has been made in increasing the figure-of-merit (ZT) of various nanostructured materials, including thin-film and quantum dot superlattice structures. Studies have focused on the size reduction and control of the surface or interface of nanostructured materials since these approaches enhance the thermopower and phonon scattering in quantum and superlattice structures. Currently, bismuth-tellurium-based semiconductor materials are widely employed for thermoelectric (TE) devices such as TE energy generators and coolers, in addition to other sensors, for use at temperatures under 400 K. However, new and promising TE materials with enhanced TE performance, including doped zinc oxide (ZnO) multilayer or superlattice thin films, are also required for designing solid-state TE power generating devices with the maximum output power density and for investigating the physics of in-plane TE generators. Herein, we report the growth of Al 2 O 3 /ZnO (AO/ZnO) superlattice thin films, which were prepared by atomic layer deposition (ALD), and the evaluation of their electrical and TE properties. All the in-plane TE properties, including the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ), of the AO/ZnO superlattice (with a 0.82 nm-thick AO layer) and AO/ZnO films (with a 0.13 nm-thick AO layer) were evaluated in the temperature range 40-300 K, and the measured S, σ, and κ were -62.4 and -17.5 μV K -1 , 113 and 847 (Ω cm) -1 , and 0.96 and 1.04 W m -1 K -1 , respectively, at 300 K. Consequently, the in-plane TE ZT factor of AO/ZnO superlattice films was found to be ∼0.014, which is approximately two times more than that of AO/ZnO films (ZT of ∼0.007) at 300 K. Furthermore, the electrical power generation efficiency of the TE energy generator consisting of four couples of n-AO/ZnO superlattice films and p-Bi 0.5 Sb 1.5 Te 3 (p-BST) thin-film legs on the substrate was demonstrated. Surprisingly, the output
Cavigli, Lucia; Gabrieli, Riccardo; Gurioli, Massimo; Bogani, Franco; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas; Vinattieri, Anna
2010-09-01
A detailed experimental investigation of the phonon-assisted emission in a high-quality c -plane GaN epilayer is presented up to 200 K. By performing photoluminescence and reflectivity measurements, we find important etaloning effects in the phonon-replica spectra, which have to be corrected before addressing the lineshape analysis. Direct experimental evidence for free exciton thermalization is found for the whole temperature range investigated. A close comparison with existing models for phonon replicas originating from a thermalized free exciton distribution shows that the simplified and commonly adopted description of the exciton-phonon interaction with a single excitonic band leads to a large discrepancy with experimental data. Only the consideration of the complex nature of the excitonic band in GaN, including A and B exciton contributions, allows accounting for the temperature dependence of the peak energy, intensity, and lineshape of the phonon replicas.
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.
Electron–phonon superconductivity in YIn3
International Nuclear Information System (INIS)
Billington, D; Llewellyn-Jones, T M; Maroso, G; Dugdale, S B
2013-01-01
First-principles calculations of the electron–phonon coupling were performed on the cubic intermetallic compound YIn 3 . The electron–phonon coupling constant was found to be λ ep = 0.42. Using the Allen–Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a T c of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron–phonon coupling is capable of producing the superconductivity in this compound. (paper)
Electron-phonon superconductivity in YIn3
Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.
2013-08-01
First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.
Interfacial phonon scattering and transmission loss in >1 μm thick silicon-on-insulator thin films
Jiang, Puqing; Lindsay, Lucas; Huang, Xi; Koh, Yee Kan
2018-05-01
Scattering of phonons at boundaries of a crystal (grains, surfaces, or solid/solid interfaces) is characterized by the phonon wavelength, the angle of incidence, and the interface roughness, as historically evaluated using a specularity parameter p formulated by Ziman [Electrons and Phonons (Clarendon Press, Oxford, 1960)]. This parameter was initially defined to determine the probability of a phonon specularly reflecting or diffusely scattering from the rough surface of a material. The validity of Ziman's theory as extended to solid/solid interfaces has not been previously validated. To better understand the interfacial scattering of phonons and to test the validity of Ziman's theory, we precisely measured the in-plane thermal conductivity of a series of Si films in silicon-on-insulator (SOI) wafers by time-domain thermoreflectance (TDTR) for a Si film thickness range of 1-10 μm and a temperature range of 100-300 K. The Si /SiO2 interface roughness was determined to be 0.11 ±0.04 nm using transmission electron microscopy (TEM). Furthermore, we compared our in-plane thermal conductivity measurements to theoretical calculations that combine first-principles phonon transport with Ziman's theory. Calculations using Ziman's specularity parameter significantly overestimate values from the TDTR measurements. We attribute this discrepancy to phonon transmission through the solid/solid interface into the substrate, which is not accounted for by Ziman's theory for surfaces. The phonons that are specularly transmitted into an amorphous layer will be sufficiently randomized by the time they come back to the crystalline Si layer, the effect of which is practically equivalent to a diffuse reflection at the interface. We derive a simple expression for the specularity parameter at solid/amorphous interfaces and achieve good agreement between calculations and measurement values.
Kuleev, I G
2001-01-01
The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees
Pressure-induced increase of exciton-LO-phonon coupling in a ZnCdSe/ZnSe quantum well
Guo, Z. Z.; Liang, X. X.; Ban, S. L.
2003-07-01
The possibility of pressure-induced increase of exciton-LO-phonon coupling in ZnCdSe/ZnSe quantum wells is studied. The ground state binding energies of the heavy hole excitons are calculated using a variational method with consideration of the electron-phonon interaction and the pressure dependence of the parameters. The results show that for quantum wells with intermediate well width, the exciton binding energy and the LO-phonon energy may coincide in the course of pressure increasing, resulting in the increase of exciton-LO-phonon coupling. It is also found that among the pressure-dependent parameters, the influence of the lattice constant is the most important one. The changes of both the effective masses and the dielectric constants have obvious effects on the exciton binding energy, but their influences are counterbalanced.
Influence of amorphous layers on the thermal conductivity of phononic crystals
Verdier, Maxime; Lacroix, David; Didenko, Stanislav; Robillard, Jean-François; Lampin, Evelyne; Bah, Thierno-Moussa; Termentzidis, Konstantinos
2018-03-01
The impact of amorphous phases around the holes and at the upper and lower free surfaces on thermal transport in silicon phononic membranes is studied. By means of molecular dynamics and Monte Carlo simulations, we explore the impact of the amorphous phase (oxidation and amorphous silicon), surfaces roughness, and a series of geometric parameters on thermal transport. We show that the crystalline phase drives the phenomena; the two main parameters are (i) the crystalline fraction between two holes and (ii) the crystalline thickness of the membranes. We reveal the hierarchical impact of nanostructurations on the thermal conductivity, namely, from the most resistive to the less resistive: the creation of holes, the amorphous phase around them, and the amorphization of the membranes edges. The surfaces or interfaces perpendicular to the heat flow hinder the thermal conductivity to a much greater extent than those parallel to the heat flow.
The quest for crystalline ion beams
Schramm, U; Bussmann, M; Habs, D
2002-01-01
The phase transition of an ion beam into its crystalline state has long been expected to dramatically influence beam dynamics beyond the limitations of standard accelerator physics. Yet, although considerable improvement in beam cooling techniques has been made, strong heating mechanisms inherent to existing high-energy storage rings have prohibited the formation of the crystalline state in these machines up to now. Only recently, laser cooling of low-energy beams in the table-top rf quadrupole storage ring PAaul Laser cooLing Acceleration System (PALLAS) has lead to the experimental realization of crystalline beams. In this article, the quest for crystalline beams as well as their unique properties as experienced in PALLAS will be reviewed.
Topological chiral phonons in center-stacked bilayer triangle lattices
Xu, Xifang; Zhang, Wei; Wang, Jiaojiao; Zhang, Lifa
2018-06-01
Since chiral phonons were found in an asymmetric two-dimensional hexagonal lattice, there has been growing interest in the study of phonon chirality, which were experimentally verified very recently in monolayer tungsten diselenide (2018 Science 359 579). In this work, we find chiral phonons with nontrivial topology in center-stacked bilayer triangle lattices. At the Brillouin-zone corners, (), circularly polarized phonons and nonzero phonon Berry curvature are observed. Moreover, we find that the phonon chirality remain robust with changing sublattice mass ratio and interlayer coupling. The chiral phonons at the valleys are demonstrated in doubler-layer sodium chloride along the [1 1 1] direction. We believe that the findings on topological chiral phonons in triangle lattices will give guidance in the study of chiral phonons in real materials and promote the phononic applications.
Czech Academy of Sciences Publication Activity Database
Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Martin, T.; Douissard, P.-A.; Nikl, Martin; Mareš, Jiří A.
2013-01-01
Roč. 56, Sept (2013), s. 415-419 ISSN 1350-4487 Institutional support: RVO:68378271 Keywords : single crystalline films * liquid phase epitaxy * perovskites * luminescence * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.140, year: 2013
The Importance of Phonons with Negative Phase Quotient in Disordered Solids.
Seyf, Hamid Reza; Lv, Wei; Rohskopf, Andrew; Henry, Asegun
2018-02-08
Current understanding of phonons is based on the phonon gas model (PGM), which is best rationalized for crystalline materials. However, most of the phonons/modes in disordered materials have a different character and thus may contribute to heat conduction in a fundamentally different way than is described by PGM. For the modes in crystals, which have sinusoidal character, one can separate the modes into two primary categories, namely acoustic and optical modes. However, for the modes in disordered materials, such designations may no longer rigorously apply. Nonetheless, the phase quotient (PQ) is a quantity that can be used to evaluate whether a mode more so shares a distinguishing property of acoustic vibrations manifested as a positive PQ, or a distinguishing property of an optical vibrations manifested as negative PQ. In thinking about this characteristic, there is essentially no intuition regarding the role of positive vs. negative PQ vibrational modes in disordered solids. Given this gap in understanding, herein we studied the respective contributions to thermal conductivity for several disordered solids as a function of PQ. The analysis sheds light on the importance of optical like/negative PQ modes in structurally/compositionally disordered solids, whereas in crystalline materials, the contributions of optical modes are usually small.
Politano, Antonio; de Juan, Fernando; Chiarello, Gennaro; Fertig, Herbert A
2015-08-14
In neutral graphene, two prominent cusps known as Kohn anomalies are found in the phonon dispersion of the highest optical phonon at q=Γ (LO branch) and q=K (TO branch), reflecting a significant electron-phonon coupling (EPC) to undoped Dirac electrons. In this work, high-resolution electron energy loss spectroscopy is used to measure the phonon dispersion around the Γ point in quasifreestanding graphene epitaxially grown on Pt(111). The Kohn anomaly for the LO phonon is observed at finite momentum q~2k_{F} from Γ, with a shape in excellent agreement with the theory and consistent with known values of the EPC and the Fermi level. More strikingly, we also observe a Kohn anomaly at the same momentum for the out-of-plane optical phonon (ZO) branch. This observation is the first direct evidence of the coupling of the ZO mode with Dirac electrons, which is forbidden for freestanding graphene but becomes allowed in the presence of a substrate. Moreover, we estimate the EPC to be even greater than that of the LO mode, making graphene on Pt(111) an optimal system to explore the effects of this new coupling in the electronic properties.
Hybrid functional calculation of electronic and phonon structure of BaSnO3
International Nuclear Information System (INIS)
Kim, Bog G.; Jo, J.Y.; Cheong, S.W.
2013-01-01
Barium stannate, BaSnO 3 (BSO), with a cubic perovskite structure, has been highlighted as a promising host material for the next generation transparent oxide electrodes. This study examined theoretically the electronic structure and phonon structure of BSO using hybrid density functional theory based on the HSE06 functional. The electronic structure results of BSO were corrected by extending the phonon calculations based on the hybrid density functional. The fundamental thermal properties were also predicted based on a hybrid functional calculation. Overall, a detailed understanding of the electronic structure, phonon modes and phonon dispersion of BSO will provide a theoretical starting-point for engineering applications of this material. - Graphical Abstract: (a) Crystal structure of BaSnO 3 . The center ball is Ba and small (red) ball on edge is oxygen and SnO 6 octahedrons are plotted as polyhedron. (b) Electronic band structure along the high symmetry point in the Brillouin zone using the HSE06 hybrid functional. (c) The phonon dispersion curve calculated using the HSE06 hybrid functional (d) Zone center lowest energy F 1u phonon mode. Highlights: ► We report the full hybrid functional calculation of not only the electronic structure but also the phonon structure for BaSnO 3 . ► The band gap calculation of HSE06 revealed an indirect gap with 2.48 eV. ► The effective mass at the conduction band minimum and valence band maximum was calculated. ► In addition, the phonon structure of BSO was calculated using the HSE06 functional. ► Finally, the heat capacity was calculated and compared with the recent experimental result.
Electrochemical synthesis of highly crystalline copper nanowires
International Nuclear Information System (INIS)
Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup
2015-01-01
Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits
Irradiation sterilization of semi-crystalline polymers
International Nuclear Information System (INIS)
Williams, J.; Dunn, T.; Stannett, V.
1978-01-01
A semi-crystalline polymer such as polypropylene, is sterilized by high energy irradiation, with the polymer containing a non-crystalline mobilizing additive which increases the free volume of the polymer, to prevent embrittlement of the polymer during and subsequent to the irradiation. The additive has a density of from 0.6 to 1.9 g/cm 3 and a molecular weight from 100 to 10,000 g/mole
Phonon limited electronic transport in Pb
Rittweger, F.; Hinsche, N. F.; Mertig, I.
2017-09-01
We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the \
Influence of phonons on semiconductor quantum emission
Energy Technology Data Exchange (ETDEWEB)
Feldtmann, Thomas
2009-07-06
A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)
Tri-component phononic crystals for underwater anechoic coatings
International Nuclear Information System (INIS)
Zhao, Honggang; Liu, Yaozong; Wen, Jihong; Yu, Dianlong; Wen, Xisen
2007-01-01
Localized resonance in phononic crystal, composed of three-dimensional arrays of composite units, has been discovered recently. The composite unit is a high-density sphere coated by soft silicon rubber. In this Letter, the absorptive properties induced by the localized resonance are systemically investigated. The mode conversions during the Mie scattering of a single coated lead sphere in unbounded epoxy are analyzed by referring the elements of the scattering matrix. Then the anechoic properties of a slab containing a plane of such composite scatterers are investigated with the multiple-scattering method by accounting the effects of the multiple scattering and the viscous dissipation. The results show that the longitudinal to transverse mode conversion nearby the locally resonant region is an effective way to enhance the anechoic performance of the finite slab of phononic crystal. Then, the influences of the viscoelasticity of the silicon rubber and the coating thickness on the acoustic properties of the finite slab are investigated for anechoic optimization. Finally, we synthetically consider the destructive scattering in the finite slab of phononic crystal and the backing, and design an anechoic slab composed of bi-layer coated spheres. The results show that the most of the incident energy is absorbed at the desired frequency band
Phonon broadening in high entropy alloys
Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.
2017-09-01
Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.
Waveguiding in supported phononic crystal plates
International Nuclear Information System (INIS)
Vasseur, J; Hladky-Hennion, A-C; Deymier, P; Djafari-Rouhani, B; Duval, F; Dubus, B; Pennec, Y
2007-01-01
We investigate, with the help of the finite element method, the existence of absolute band gaps in the band structure of a free-standing phononic crystal plate and of a phononic crystal slab deposited on a substrate. The two-dimensional phononic crystal is constituted by a square array of holes drilled in an active piezoelectric (PZT5A or AlN) matrix. For both matrix materials, an absolute band gap occurs in the band structure of the free-standing plate provided the thickness of the plate is on the order of magnitude of the lattice parameter. When the plate is deposited on a Si substrate, the absolute band gap still remains when the matrix of the phononic crystal is made of PZT5A. The AlN phononic crystal plate losses its gap when supported by the Si substrate. In the case of the PZT5A matrix, we also study the possibility of localized modes associated with a linear defect created by removing one row of air holes in the deposited phononic crystal plate
International Nuclear Information System (INIS)
Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.
2015-01-01
In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering
Nonlinear phononics and structural control of strongly correlated materials
Energy Technology Data Exchange (ETDEWEB)
Mankowsky, Roman
2016-01-20
Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal
Crystalline color superconductivity
International Nuclear Information System (INIS)
Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna
2001-01-01
In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena
Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.
Kennehan, Eric R; Doucette, Grayson S; Marshall, Ashley R; Grieco, Christopher; Munson, Kyle T; Beard, Matthew C; Asbury, John B
2018-05-31
Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.
First-principles study of crystalline and amorphous AlMgB14-based materials
International Nuclear Information System (INIS)
Ivashchenko, V. I.; Shevchenko, V. I.; Turchi, P. E. A.; Veprek, S.; Leszczynski, Jerzy; Gorb, Leonid; Hill, Frances
2016-01-01
We report first-principles investigations of crystalline and amorphous boron and M1 x M2 y X z B 14−z (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm −1 , whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm −1 . The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B 12 units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.
First-principles study of crystalline and amorphous AlMgB{sub 14}-based materials
Energy Technology Data Exchange (ETDEWEB)
Ivashchenko, V. I.; Shevchenko, V. I., E-mail: shev@materials.kiev.ua [Institute of Problems of Material Science, National Academy of Science of Ukraine, Krzhyzhanosky Str. 3, 03142 Kyiv (Ukraine); Turchi, P. E. A. [Lawrence Livermore National Laboratory (L-352), P.O. Box 808, Livermore, California 94551 (United States); Veprek, S. [Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4, D-85747 Garching (Germany); Leszczynski, Jerzy [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Gorb, Leonid [Department of Chemistry and Biochemistry, Interdisciplinary Center for Nanotoxicity, Jackson State University, Jackson, Mississippi 39217 (United States); Badger Technical Services, LLC, Vicksburg, Mississippi 39180 (United States); Hill, Frances [U.S. Army ERDC, Vicksburg, Mississippi 39180 (United States)
2016-05-28
We report first-principles investigations of crystalline and amorphous boron and M1{sub x}M2{sub y}X{sub z}B{sub 14−z} (M1, M2 = Al, Mg, Li, Na, Y; X = Ti, C, Si) phases (so-called “BAM” materials). Phase stability is analyzed in terms of formation energy and dynamical stability. The atomic configurations as well as the electronic and phonon density states of these phases are compared. Amorphous boron consists of distorted icosahedra, icosahedron fragments, and dioctahedra, connected by an amorphous network. The presence of metal atoms in amorphous BAM materials precludes the formation of icosahedra. For all the amorphous structures considered here, the Fermi level is located in the mobility gap independent of the number of valence electrons. The intra-icosahedral vibrations are localized in the range of 800 cm{sup −1}, whereas the inter-icosahedral vibrations appear at higher wavenumbers. The amorphization leads to an enhancement of the vibrations in the range of 1100–1250 cm{sup −1}. The mechanical properties of BAM materials are investigated at equilibrium and under shear and tensile strain. The anisotropy of the ideal shear and tensile strengths is explained in terms of a layered structure of the B{sub 12} units. The strength of amorphous BAM materials is lower than that of the crystalline counterparts because of the partial fragmentation of the boron icosahedra in amorphous structures. The strength enhancement found experimentally for amorphous boron-based films is very likely related to an increase in film density, and the presence of oxygen impurities. For crystalline BAM materials, the icosahedra are preserved during elongation upon tension as well as upon shear in the (010)[100] slip system.
Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment
Energy Technology Data Exchange (ETDEWEB)
Yen, Jeffrey [Stanford Univ., CA (United States)
2015-01-01
Understanding the quasiparticle diffusion process inside sputtered aluminum (Al thin films (~ 0.1-1 μm is critical for the Cryogenic Dark Matter Search (CDMS experiment to further optimize its detectors to directly search for dark matter. An initial study with Al films was undertaken by our group ~ 20 years ago, but some important questions were not answered at the time. This thesis can be considered a continuation of that critical study. The CDMS experiment utilizes high purity silicon and germanium crystals to simultaneously measure ionization and phonons created by particle interactions. In addition to describing some of the rich physics involved in simultaneously detecting ionization and phonons with a CDMS detector, this thesis focuses on the detailed physics of the phonon sensors themselves, which are patterned onto CDMS detector surfaces. CDMS detectors use thin sputtered Al films to collect phonon energy when it propagates to the surfaces of the detector crystals. The phonon energy breaks Cooper pairs and creates quasiparticles (qps). These qps diffuse until they get trapped in an proximitized “overlap” region where lower-Tc tungsten films connect to the Al film. These tungsten films are the transition edge sensors (W-TESs CDMS uses to readout phonon signals. We performed a wide range of experiments using several sets of test devices designed and fabricated specifically for this work. The devices were used mostly to study quasiparticle (qp transport in Al films and qp transmission through Al/W interfaces. The results of this work are being used to optimize the design of detectors for SuperCDMS SNOLAB. This thesis is intended for CDMS collaborators who are interested in knowing more about the detailed fundamentals of how our phonon sensors work so they can take full advantage of their benefits. However, this work can also be read by general readers who are interested in particle detection using TES technology. This thesis contains eight chapters. The
One-phonon states in deformed nuclei for isoscalar and isovector interactions
International Nuclear Information System (INIS)
Malov, L.A.; Nesterenko, V.O.; Solov'ev, V.G.
1977-01-01
Extension of the formulas describing the one-phonon states of compound even-even deformed nuclei to the case when the isoscalar and isovector multipole-multipole forces are taken into account, is given. The formalism presented makes it possible to obtain an unified description of the low-lying states and gigantic multipole resonances. Procedure is developed which makes it possible to write down the reduced probability and energetically weighted sum rule in the form of force functions averaged over certain interval of energies. The procedure simplifies the calculations significantly and makes it possible to avoid solving the secular equation for energies of one-phonon states
Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.
Hu, Xuedong; Nori, Franco
1997-03-01
We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.
International Nuclear Information System (INIS)
Kokkedee, J.J.J.
1963-01-01
As predicted by harmonic theory the coherent inelastic spectrums of neutrons, scattered by a single, non-conducting crystal, for a particular angle of scattering consists of a number of delta-function peaks superposed on a continuous background. The peaks correspond to one-phonon processes in which one phonon is absorbed or emitted by the neutron; the background arises from multi-phonon processes. When anharmonic forces (phonon-phonon interactions) are present, the delta-function peaks are broadened into finite peaks, while their central frequencies are shifted with respect to the harmonic values. In the case of a metal there is in addition to phonon-phonon interactions an interaction between phonons and conduction electrons, which also gives a contribution to the displacement and broadening oftheone-phononpeaks. Continuing earlier work of Van Hove (sho considered the relatively simple case of a non-conductin crystal in its ground state (T = 0 o K) ), we have studied the shifts and widths of the scattering peaks as a 'result of the above-mentioned interactions by means of many particle perturbation theory, making extensive use of diagram techniques. Prerequisite to the entire discussion is the assumption that, independent of the strength of the interactions, the width of each peak is small compared to the value of the frequency at its centre; only then the peaks can be considered as being well defined with respect to the background to higher order in the interactions. This condition is expected to be fulfilled for temperatures which are not too high and values of the phonon wave vector which are not too large. Our procedure yields closed formulae for the partial scattering function describing the peaks, which can be evaluated to arbitrarily high accuracy. In particular an expansion for calculating the line shift and line width in powers of u/d and in terms of simple connected diagrams is obtained (u is an average atomic or ionic displacement, d is the smallest
Thermal conductance of a surface phonon-polariton crystal made up of polar nanorods
Energy Technology Data Exchange (ETDEWEB)
Ordonez-Miranda, Jose; Joulain, Karl; Ezzahri, Younes [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS
2017-05-01
We demonstrate that the energy transport of surface phonon-polaritons can be large enough to be observable in a crystal made up of a three-dimensional assembly of nanorods of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure along with its high surface area-to-volume ratio allows the predominance of the polariton energy over that generated by phonons. The dispersion relation, propagation length, and thermal conductance of polaritons are numerically determined as functions of the radius and temperature of the nanorods. It is shown that the thermal conductance of a crystal with nanorods at 500 K and diameter (length) of 200 nm (20 μm) is 0.55 nW.K{sup -1}, which is comparable to the quantum of thermal conductance of polar nanowires.
Phonon dynamics of the Sn/Ge(111)-(3 x 3) surface
International Nuclear Information System (INIS)
Farias, D.; Kaminski, W.; Lobo, J.; Ortega, J.; Hulpke, E.; Perez, R.; Flores, F.; Michel, E.G.
2004-01-01
We present a theoretical and experimental study on the phonon dynamics of the low-temperature Sn/Ge(111)-(3 x 3) structure. High-resolution helium atom scattering (HAS) data show that, besides the Rayleigh wave, there are three surface phonon branches with low dispersion related to the (3 x 3) surface phase. Their energies are approximately 6.5, 4, and 3meV at the Γ-bar point. In addition, we detect phonon peaks in the Q range 0.4-0.5A -1 at ∼2meV, which correspond to (3 x 3) folding of the Rayleigh wave. Ab initio DFT-GGA total energy calculations have been performed to determine the frequencies associated with the vertical displacements of the three Sn atoms in the unit cell. The values obtained are in good agreement with the experiment
Defects in alpha and gamma crystalline nylon6: A computational study
Directory of Open Access Journals (Sweden)
Saeid Arabnejad
2015-10-01
Full Text Available We present a comparative Density Functional Tight Binding study of structures, energetics, and vibrational properties of α and γ crystalline phases of nylon6 with different types of defects: single and double chain vacancies and interstitials. The defect formation energies are: for a single vacancy 0.66 and 0.64 kcal/mol per monomer, and for an interstitial strand 1.35 and 2.45 kcal/mol per monomer in the α and γ phases, respectively. The presence of defects does not materially influence the relative stability of the two phases, within the accuracy of the method. The inclusion of phononic contributions has a negligible effect. The calculations show that even if it were possible to synthesize the pure phases of nylon6, the defects will be easily induced at room temperature, because vacancy formation energies in both phases are of the order of kT at room temperature. The formation of interstitial defects, on the contrary, requires the energy equivalent to multiple kT values and is much less likely; it is also much less probable in the γ phase than in α. The vibration spectra do not show significant sensitivity to the presence of these defects.
Evidence for phonon-mediated coupling in superconducting Ba0.6K0.4BiO3
International Nuclear Information System (INIS)
Hinks, D.G.; Dabrowski, B.; Richards, D.R.; Jorgensen, J.D.; Pei, S.; Zasadzinski, J.F.
1989-01-01
Superconducting Ba 0.6 K 0.4 BiO 3 , with a T c of 30 K, shows a large 18 O isotope effect which indicates that phonons are involved in the pairing mechanism. Infrared reflectivity measurements indicate a value for the superconducting gap consistent with moderate coupling (2Δ/k T c = 3.5 ± 0.5). A mediating energy for pairing of about 40 meV would be required to obtain a T c of 30 K. Strong coupling of electrons by optical phonons (which are present in this material with energies up to 80 meV) could account for the observed transition temperature. Recent tunneling spectroscopy shows the presence of strongly coupled optical phonons in the 40 to 70 meV region, indicating that superconductivity in this material may be phonon mediated
The phonon-coupling model for Skyrme forces
Energy Technology Data Exchange (ETDEWEB)
Lyutorovich, N.; Tselyaev, V. [St. Petersburg State University (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de; Krewald, S. [Forschungszentrum Jülich, Institut für Kernphysik (Germany); Reinhard, P.-G. [Universität Erlangen-Nürnberg, Institut für Theoretische Physik II (Germany)
2016-11-15
A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.
Effect of Holstein phonons on the electronic properties of graphene
Stauber, T.; Peres, N. M. R.
2007-01-01
We obtain the self-energy of the electronic propagator due to the presence of Holstein polarons within the first Born approximation. This leads to a renormalization of the Fermi velocity of one percent. We further compute the optical conductivity of the system at the Dirac point and at finite doping within the Kubo-formula. We argue that the effects due to Holstein phonons are negligible and that the Boltzmann approach which does not include inter-band transition and can thus not treat optica...
Dissolution of crystalline ceramics
International Nuclear Information System (INIS)
White, W.B.
1982-01-01
The present program objectives are to lay out the fundamentals of crystalline waste form dissolution. Nuclear waste ceramics are polycrystalline. An assumption of the work is that to the first order, the release rate of a particular radionuclide is the surface-weighted sum of the release rates of the radionuclide from each crystalline form that contains it. In the second order, of course, there will be synergistic effects. There will be also grain boundary and other microstructural influences. As a first approximation, we have selected crystalline phases one at a time. The sequence of investigations and measurements is: (i) Identification of the actual chemical reactions of dissolution including identification of the solid reaction products if such occur. (ii) The rates of these reactions are then determined empirically to give what may be called macroscopic kinetics. (iii) Determination of the rate-controlling mechanisms. (iv) If the rate is controlled by surface reactions, the final step would be to determine the atomic kinetics, that is the specific atomic reactions that occur at the dissolving interface. Our concern with the crystalline forms are in two areas: The crystalline components of the reference ceramic waste form and related ceramics and the alumino-silicate phases that appear in some experimental waste forms and as waste-rock interaction products. Specific compounds are: (1) Reference Ceramic Phases (zirconolite, magnetoplumbite, spinel, Tc-bearing spinel and perovskite); (2) Aluminosilicate phases (nepheline, pollucite, CsAlSi 5 O 12 , Sr-feldspar). 5 figures, 1 table
Roy, Chiranjeeb; John, Sajeev
2010-02-01
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
International Nuclear Information System (INIS)
Roy, Chiranjeeb; John, Sajeev
2010-01-01
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the ''colored'' electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
Electron mobility limited by optical phonons in wurtzite InGaN/GaN core-shell nanowires
Liu, W. H.; Qu, Y.; Ban, S. L.
2017-09-01
Based on the force-balance and energy-balance equations, the optical phonon-limited electron mobility in InxGa1-xN/GaN core-shell nanowires (CSNWs) is discussed. It is found that the electrons tend to distribute in the core of the CSNWs due to the strong quantum confinement. Thus, the scattering from first kind of the quasi-confined optical (CO) phonons is more important than that from the interface (IF) and propagating (PR) optical phonons. Ternary mixed crystal and size effects on the electron mobility are also investigated. The results show that the PR phonons exist while the IF phonons disappear when the indium composition x < 0.047, and vice versa. Accordingly, the total electron mobility μ first increases and then decreases with indium composition x, and reaches a peak value of approximately 3700 cm2/(V.s) when x = 0.047. The results also show that the mobility μ increases as increasing the core radius of CSNWs due to the weakened interaction between the electrons and CO phonons. The total electron mobility limited by the optical phonons exhibits an obvious enhancement as decreasing temperature or increasing line electron density. Our theoretical results are expected to be helpful to develop electronic devices based on CSNWs.
Used fuel disposition in crystalline rocks
Energy Technology Data Exchange (ETDEWEB)
Wang, Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jerden, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States); Cruse, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Ebert, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Buck, E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eittman, R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tinnacher, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tournassat, Christophe. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viswanathan, H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chu, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dittrich, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Makedonska, N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Joseph, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-09-01
The U.S. Department of Energy Office of Nuclear Energy, Office of Fuel Cycle Technology established the Used Fuel Disposition Campaign (UFDC) in fiscal year 2010 (FY10) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste. The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media.
Irradiation induced crystalline to amorphous transition
International Nuclear Information System (INIS)
Bourgoin, J.
1980-01-01
Irradiation of a crystalline solid with energetic heavy particles results in cascades of defects which, with increasing dose, overlap and form a continuous disordered layer. In semiconductors the physical properties of such disordered layers are found to be similar to those of amorphous layers produced by evaporation. It is shown in the case of silicon, that the transition from a disordered crystalline (X) layer to an amorphous (α) layer occurs when the Gibbs energy of the X phase and of the defects it contains becomes larger than the Gibbs energy of the α phase. (author)
Thermodynamics of Crystalline States
Fujimoto, Minoru
2010-01-01
Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattices, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. This book is divided into three parts. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. In the third part, the multi-electron system is discussed theoretically, as a quantum-mechanical example, for the superconducting state in metallic crystals. Throughout the book, the role played by the lattice is emphasized and examined in-depth. Thermodynamics of Crystalline States is an introductory treatise and textbook on meso...
Liquid crystalline dihydroazulene photoswitches
DEFF Research Database (Denmark)
Petersen, Anne Ugleholdt; Jevric, Martyn; Mandle, Richard J.
2015-01-01
A large selection of photochromic dihydroazulene (DHA) molecules incorporating various substituents at position 2 of the DHA core was prepared and investigated for their ability to form liquid crystalline phases. Incorporation of an octyloxy-substituted biphenyl substituent resulted in nematic...... phase behavior and it was possible to convert one such compound partly into its vinylheptafulvene (VHF) isomer upon irradiation with light when in the liquid crystalline phase. This conversion resulted in an increase in the molecular alignment of the phase. In time, the meta-stable VHF returns...... to the DHA where the alignment is maintained. The systematic structural variation has revealed that a biaryl spacer between the DHA and the alkyl chain is needed for liquid crystallinity and that the one aromatic ring in the spacer cannot be substituted by a triazole. This work presents an important step...
Electrons and Phonons in Semiconductor Multilayers
Ridley, B. K.
1996-11-01
This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.
Phonon tunneling through a double barrier system
International Nuclear Information System (INIS)
Villegas, Diosdado; León-Pérez, Fernando de; Pérez-Álvarez, R.; Arriaga, J.
2015-01-01
The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices
Single-photon indistinguishability: influence of phonons
DEFF Research Database (Denmark)
Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka
2012-01-01
of indistinguishability, absent in the approximate theories. The maximum arises due to virtual processes in the highly non-Markovian short-time regime, which dominate the decoherence for small QD-cavity coupling, and phonon-mediated real transitions between the upper and lower polariton branches in the long-time regime......Recent years have demonstrated that the interaction with phonons plays an important role in semiconductor based cavity QED systems [2], consisting of a quantum dot (QD) coupled to a single cavity mode [Fig. 1(a)], where the phonon interaction is the main decoherence mechanism. Avoiding decoherence...... as a function of the QD-cavity coupling strength for light emitted from the QD and the cavity, respectively, for all the employed methods. Both the Lindblad and TCL theories deviate significantly from our exact results, where, importantly, the exact results predict a pronounced maximum in the degree...
Phonon tunneling through a double barrier system
Energy Technology Data Exchange (ETDEWEB)
Villegas, Diosdado [Departamento de Física, Universidad Central “Marta Abreu” de Las Villas, CP 54830, Santa Clara, Villa Clara (Cuba); Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico); León-Pérez, Fernando de [Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca s/n, E-50090 Zaragoza (Spain); Pérez-Álvarez, R. [Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca (Mexico); Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico)
2015-04-15
The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices.
Mohammadpour, Raheleh
2017-12-01
Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.
Phonon dispersion curves for CsCN
International Nuclear Information System (INIS)
Gaur, N.K.; Singh, Preeti; Rini, E.G.; Galgale, Jyostna; Singh, R.K.
2004-01-01
The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the orientation of cyanide molecules for the description of phonon dispersion curves of CsCN between the temperatures 195 and 295 K. Our results on PDCs in symmetric direction are in good agreement with the experimental data measured with inelastic neutron scattering technique. (author)
Phonon structure in proximity tunnel junctions
International Nuclear Information System (INIS)
Zarate, H.G.; Carbotte, J.P.
1985-01-01
We have iterated to convergence, for the first time, a set of four coupled real axis Eliashberg equations for the superconducting gap and renormalization functions on each side of a proximity sandwich. We find that the phenomenological procedures developed to extract the size of the normal side electron-phonon interaction from tunneling data are often reasonable but may in some cases need modifications. In all the cases considered the superconducting phonon structure reflected on the normal side, as well as other structures, shows considerable agreement with experiment as to size, shape, and variation with barrier transmission coefficient. Finally, we study the effects of depairing on these structures
Self-consistency in the phonon space of the particle-phonon coupling model
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.
2018-04-01
In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.
Dangling bonds and crystalline inclusions in amorphous materials
Energy Technology Data Exchange (ETDEWEB)
Ferrari, L [Ferrara Univ. (Italy). Ist. di Matematica; Russo, G [Bologna Univ. (Italy). Ist. di Fisica
1981-02-07
It is suggested that on the surface of crystalline inclusions dangling bond formation is favoured due to unbalanced local stresses. The energy for bond tearings is probably originated from the exothermic process leading to the crystalline inclusion configuration which is more stable than the original amorphous one. A thermodynamical calculation is performed giving the ratio nsub(k) of crystalline inclusions having k dangling bonds on their surface.
United States Crystalline Repository Project - key research areas
International Nuclear Information System (INIS)
Patera, E.S.
1986-01-01
The Crystalline Repository Project is responsible for siting the second high-level nuclear waste repository in crystalline rock for the US Department of Energy. A methodology is being developed to define data and information needs and a way to evaluate that information. The areas of research the Crystalline Repository Project is involved in include fluid flow in a fractured network, coupled thermal, chemical and flow processes and cooperation in other nations and OECD research programs
The effect of n- and p-type doping on coherent phonons in GaN.
Ishioka, Kunie; Kato, Keiko; Ohashi, Naoki; Haneda, Hajime; Kitajima, Masahiro; Petek, Hrvoje
2013-05-22
The effect of doping on the carrier-phonon interaction in wurtzite GaN is investigated by pump-probe reflectivity measurements using 3.1 eV light in near resonance with the fundamental band gap of 3.39 eV. Coherent modulations of the reflectivity due to the E2 and A1(LO) modes, as well as the 2A1(LO) overtone are observed. Doping of acceptor and donor atoms enhances the dephasing of the polar A1(LO) phonon via coupling with plasmons, with the effect of donors being stronger. Doping also enhances the relative amplitude of the coherent A1(LO) phonon with respect to that of the high-frequency E2 phonon, though it does not affect the relative intensity in Raman spectroscopic measurements. We attribute this enhanced coherent amplitude to the transient depletion field screening (TDFS) excitation mechanism, which, in addition to impulsive stimulated Raman scattering (ISRS), contributes to the generation of coherent polar phonons even for sub-band gap excitation. Because the TDFS mechanism requires photoexcitation of carriers, we argue that the interband transition is made possible at a surface with photon energies below the bulk band gap through the Franz-Keldysh effect.
Phonon-assisted damping of plasmons in three- and two-dimensional metals
Caruso, Fabio; Novko, Dino; Draxl, Claudia
2018-05-01
We investigate the effects of crystal lattice vibrations on the dispersion of plasmons. The loss function of the homogeneous electron gas (HEG) in two and three dimensions is evaluated numerically in the presence of electronic coupling to an optical phonon mode. Our calculations are based on many-body perturbation theory for the dielectric function as formulated by the Hedin-Baym equations in the Fan-Migdal approximation. The coupling to phonons broadens the spectral signatures of plasmons in the electron-energy loss spectrum (EELS) and it induces the decay of plasmons on timescales shorter than 1 ps. Our results further reveal the formation of a kink in the plasmon dispersion of the two-dimensional HEG, which marks the onset of plasmon-phonon scattering. Overall, these features constitute a fingerprint of plasmon-phonon coupling in EELS of simple metals. It is shown that these effects may be accounted for by resorting to a simplified treatment of the electron-phonon interaction which is amenable to first-principles calculations.
Liquid-like thermal conduction in intercalated layered crystalline solids
Li, B.; Wang, H.; Kawakita, Y.; Zhang, Q.; Feygenson, M.; Yu, H. L.; Wu, D.; Ohara, K.; Kikuchi, T.; Shibata, K.; Yamada, T.; Ning, X. K.; Chen, Y.; He, J. Q.; Vaknin, D.; Wu, R. Q.; Nakajima, K.; Kanatzidis, M. G.
2018-03-01
As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.
Energy Technology Data Exchange (ETDEWEB)
Pipinys, P. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)], E-mail: pipiniai@takas.lt; Kiveris, A. [Department of Physics, Vilnius Pedagogical University, Studentu 39, LT-08106 Vilnius (Lithuania)], E-mail: studsk@vpu.lt
2008-10-01
Current-voltage (I-V) characteristics of single-wall carbon nanotubes (SWCNT), measured in the low temperatures by Tang et al. [Science 292 (2001) 2462] and transparent SWCNT networks presented by Jaiswal et al. [J. Phys.: Condens. Matter 19 (2007) 446006], are reinterpreted in the framework of phonon-assisted tunnelling theory as a free charge carriers generation mechanism in the strong electrical field. The good fit of the temperature-dependent I-V data in low temperature region (i.e., T<25 K) has been achieved using the phonons of energy <1 meV.
International Nuclear Information System (INIS)
Pipinys, P.; Kiveris, A.
2008-01-01
Current-voltage (I-V) characteristics of single-wall carbon nanotubes (SWCNT), measured in the low temperatures by Tang et al. [Science 292 (2001) 2462] and transparent SWCNT networks presented by Jaiswal et al. [J. Phys.: Condens. Matter 19 (2007) 446006], are reinterpreted in the framework of phonon-assisted tunnelling theory as a free charge carriers generation mechanism in the strong electrical field. The good fit of the temperature-dependent I-V data in low temperature region (i.e., T<25 K) has been achieved using the phonons of energy <1 meV
Energy Technology Data Exchange (ETDEWEB)
Ihlefeld, Jon F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Foley, Brian M. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering; Scrymgeour, David A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Michael, Joseph R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); McKenzie, Bonnie B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Medlin, Douglas L. [Sandia National Laboratories, Livermore, CA; Wallace, Margeaux [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Trolier-McKinstry, Susan [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Hopkins, Patrick E. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering
2015-02-19
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. Here, we demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr_{0.3}Ti_{0.7})O_{3} film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E
2015-03-11
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
The phonon-assisted tunneling mechanism of conduction in ZnO nanowires and films
International Nuclear Information System (INIS)
Pipinys, Povilas; Ohlckers, Per
2010-01-01
The phonon-assisted tunneling (PhAT) model is applied for an explanation of the conductivity dependence on temperature and temperature-dependent I-V characteristics measured by other investigators for zinc oxide (ZnO) nanowires and films. Our proposed model describes well not only conductivity dependence on temperature measured in a wide temperature range, but also temperature-dependent I-V data using the same set of parameters characterizing the material under investigation. The values of active phonons energy are estimated from a fit of the conductivity dependence to temperature data with the PhAT theory.
Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-09-02
A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.
Theoretical description of electron–phonon Fock space for gapless and gapped nanowires
International Nuclear Information System (INIS)
Shariati, Ashrafalsadat; Rabani, Hassan; Mardaani, Mohammad
2017-01-01
We study the effect of electron–phonon (e–ph) interaction on the elastic and inelastic electronic transport of a nanowire connected to two simple rigid leads within the tight-binding and harmonic approximations. The model is constructed using Green’s function and multi-channel techniques, taking into account the local and nonlocal e–ph interactions. Then, we examine the model for the gapless (simple chain) and gapped (PA-like nanowire) systems. The results show that the tunneling conductance is improved by the e–ph interaction in both local and nonlocal regimes, while for the resonance conductance, the coherent part mainly decreases and the incoherent part increases. At the corresponding energies which depend on the phonon frequency, two dips in the elastic and two peaks in the inelastic conductance spectra appear. The reason is the absorption of the phonon by the electron in transition into inelastic channels. (paper)
Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures
Directory of Open Access Journals (Sweden)
Vladimir M. Fomin
2015-10-01
Full Text Available We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatch between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.
International Nuclear Information System (INIS)
Gupta, M.J.; Freeman, A.B.
1976-01-01
The generalized susceptibility, chi(q), of both NbC and TaC determined from APW energy band calculations show large maxima to occur at precisely those q/sub max/ values at which soft phonon modes were observed by Smith. Maxima in chi(q) are predicted for other directions. The locus of these q/sub max/ values can be represented by a warped cube of dimension approximately 1.2(2π/a) in momentum space--in striking agreement with the soft mode surface proposed phenomenologically by Weber. In sharp contrast, the chi(q) calculated for both ZrC and HfC--for which no phonon anomalies have been observed--fall off in all symmetry directions away from the zone center. The phonon anomalies in the transition metal carbides are thus interpreted as due to an ''overscreening'' effect resulting from an anomalous increase of the response function of the conduction electrons
Renormalization of spin excitations in hexagonal HoMnO3 by magnon-phonon coupling
Kim, Taehun; Leiner, Jonathan C.; Park, Kisoo; Oh, Joosung; Sim, Hasung; Iida, Kazuki; Kamazawa, Kazuya; Park, Je-Geun
2018-05-01
Hexagonal HoMnO3, a two-dimensional Heisenberg antiferromagnet, has been studied via inelastic neutron scattering. A simple Heisenberg model with a single-ion anisotropy describes most features of the spin-wave dispersion curves. However, there is shown to be a renormalization of the magnon energies located at around 11 meV. Since both the magnon-magnon interaction and magnon-phonon coupling can affect the renormalization in a noncollinear magnet, we have accounted for both of these couplings by using a Heisenberg XXZ model with 1 /S expansions [1] and the Einstein site phonon model [13], respectively. This quantitative analysis leads to the conclusion that the renormalization effect primarily originates from the magnon-phonon coupling, while the spontaneous magnon decay due to the magnon-magnon interaction is suppressed by strong two-ion anisotropy.
Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.
2018-01-01
Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.
Prediction of phonon-mediated superconductivity in hole-doped black phosphorus
Feng, Yanqing; Sun, Hongyi; Sun, Junhui; Lu, Zhibin; You, Yong
2018-01-01
We study the conventional electron-phonon mediated superconducting properties of hole-doped black phosphorus by density functional calculations and get quite a large electron-phonon coupling (EPC) constant λ ~ 1.0 with transition temperature T C ~ 10 K, which is comparable to MgB2 when holes are doped into the degenerate and nearly flat energy bands around the Fermi level. We predict that the softening of low-frequency B3g1 optical mode and its phonon displacement, which breaks the lattice nonsymmorphic symmetry of gliding plane and lifts the band double degeneracy, lead to a large EPC. These factors are favorable for BCS superconductivity.
Comparison of electron and phonon transport in disordered semiconductor carbon nanotubes
DEFF Research Database (Denmark)
Sevincli, Haldun; Lehmann, T.; Ryndyk, D. A.
2013-01-01
as a function of length of the disordered device shows that both electrons and phonons with different energies display different transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the light of the results we discuss heating of the semiconductor device in electronic...
Optical pumping of hot phonons in GaAs
International Nuclear Information System (INIS)
Collins, C.L.; Yu, P.Y.
1982-01-01
Optical pumping of hot LO phonons in GaAs has been studied as a function of the excitation photon frequency. The experimental results are in good agreement with a model calculation which includes both inter- and intra-valley electron-phonon scatterings. The GAMMA-L and GAMMA-X intervalley electron-phonon interactions in GaAs have been estimated
Frictional drag between quantum wells mediated by phonon exchange
DEFF Research Database (Denmark)
Bønsager, M.C.; Flensberg, Karsten; Hu, Ben Yu-Kuang
1998-01-01
We use the Kubo formalism to evaluate the contribution of acoustic-phonon exchange to the frictional drag between nearby two-dimensional electron systems. In the case of free phonons, we find a divergent drag rate (tau(D)(-l)). However, tau(D)(-l) becomes finite when phonon scattering from either...
Goldstone-like phonon modes in a (111)-strained perovskite
Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.
2018-01-01
Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.
International Nuclear Information System (INIS)
Lindberg, P.A.P.; Shen, Z.; Dessau, D.S.; Wells, B.O.; Mitzi, D.B.; Lindau, I.; Spicer, W.E.; Kapitulnik, A.
1989-01-01
Angle-resolved photoemission studies of single-crystalline La-doped Bi-Sr-Ca-Cu- 90-K superconductors (Bi 2.0 Sr 1.8 Ca 0.8 La 0.3 Cu 2.1 O 8+δ ) were performed utilizing synchrotron radiation covering the photon energy range 10--40 eV. The data conclusively reveal a dispersionless character of the valence-band states as a function of the wave-vector component parallel to the c axis, in agreement with the predictions of band calculations. Band effects are evident from both intensity modulations of the spectral features in the valence band and from energy dispersions as a function of the wave vector component lying in the basal a-b plane
DEFF Research Database (Denmark)
Mah, Pei T.; Fraser, Sara J.; Reish, Matthew E.
2015-01-01
in stored amorphous samples earlier than the mid-frequency 785 nm Raman system. Overall, this study suggests that low-frequency Raman spectroscopy has at least equally good performance compared to mid-frequency Raman for quantitative analysis of crystallinity in the pharmaceutical setting. More generally......Low-frequency Raman spectroscopy, which directly probes phonon lattice modes of crystal structures, has much unexplored potential for sensitive qualitative and quantitative analysis of crystallinity in drugs and excipients. In this study, the level of crystallinity in tablets containing amorphous...
Electron-phonon interactions and the phonon anomaly in β-phase NiTi
International Nuclear Information System (INIS)
Zhao, G.L.; Harmon, B.N.
1993-01-01
The electronic structure of β-phase NiTi has been calculated using a first-principles linear-combination-of-atomic-orbitals method. The resulting band structure was fitted with a nonorthogonal tight-binding Hamiltonian from which electron-phonon matrix elements were evaluated. The soft phonon near Q 0 =(2/3, 2) / (3 ,0)π/a, which is responsible for the premartensitic phase transition in β-phase NiTi, is found to arise from the strong electron-phonon coupling of nested electronic states on the Fermi surface. Thermal vibrations and changes in electronic occupation cause a smearing of the nested features, which in turn cause a hardening of the phonon anomaly
Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals
International Nuclear Information System (INIS)
Xu, Zhenlong; Wu, Fugen; Guo, Zhongning
2012-01-01
The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.
Cryogenic phonon-mediated particle detectors for dark matter searches and neutrino physics
International Nuclear Information System (INIS)
Lee, A.T.J.
1993-01-01
This work describes the development of cryogenic phonon-mediated particle detectors for dark matter searches and neutrino detection. The detectors described in this work employ transition-edge sensors, which consist of a meander pattern of thin-film superconductor on a silicon substrate. When phonons from a particle interaction in the crystal impinge on the sensor in sufficient density, sections of the line are driven normal and provide a measurable resistance. A large fraction of the thesis describes work to fully characterize the phonon flux from particle interactions. In one set of experiments, ∼25% of the phonon energy from 59.54 keV gamma-ray events was found to propagate open-quotes ballisticallyclose quotes (i.e., with little or no scattering) across a 300 μm thick crystal of silicon. Gamma-rays produce electron recoils in silicon whereas with dark matter and neutrino experiments nuclear recoils are also of interest. Two experiments were done to measure the ballistic component that arises from neutron events, which interact via nuclear recoil. Measurements indicate that the fraction of energy that is ballistic is ∼50% greater for nuclear recoils than for electron recoils. Two novel detectors were fabricated and tested in an attempt to improve the sensitivity of the detectors. In the first detector, relatively large Al pads were linked by 2 μm wide Ti lines in a meander pattern. Phonons impinging on the Al pads create quasiparticles which diffuse in the Al pad until they are trapped in the lower gap Tl links. The sensitivity of the detector was found to be increased by this open-quotes funnelingclose quotes action. A second detector was built that incorporates 0.25 μm wide lines defined by direct electron-beam exposure of the photoresist. If the superconducting line is sufficiently narrow, single phonons are capable of driving sections normal which should improve the sensitivity and linearity of the detector
Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys
Energy Technology Data Exchange (ETDEWEB)
Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas
2017-10-17
We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations in InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.
Hydrodynamic states of phonons in insulators
Directory of Open Access Journals (Sweden)
S.A. Sokolovsky
2012-12-01
Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.
Phonon limited electronic transport in Pb
DEFF Research Database (Denmark)
Rittweger, Florian; Hinsche, Nicki Frank; Mertig, Ingrid
2017-01-01
We present a fully ab initio based scheme to compute electronic transport properties, i.e. the electrical conductivity σ and thermopower S, in the presence of electron-phonon interaction. We explicitly investigate the k-dependent structure of the Éliashberg spectral function, the coupling strength...
Phonon affected transport through molecular quantum
Czech Academy of Sciences Publication Activity Database
Loos, Jan; Koch, T.; Alvermann, A.; Bishop, A. R.; Fehske, H.
2009-01-01
Roč. 21, č. 39 (2009), 395601/1-395601/18 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * electron - phonon interaction * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009
Anomalous Doppler effects in bulk phononic crystal
International Nuclear Information System (INIS)
Cai Feiyan; He Zhaojian; Zhang Anqi; Ding Yiqun; Liu Zhengyou
2010-01-01
Doppler effects in simple cubic phononic crystal are studied theoretically and numerically. In addition to observing Doppler shifts from a moving source's frequencies inside the gap, we find that Doppler shifts can be multi-order, anisotropic, and the dominant order of shift depends on the band index that the source's frequency is in.
Phonon scattering in graphene over substrate steps
DEFF Research Database (Denmark)
Sevincli, Haldun; Brandbyge, Mads
2014-01-01
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance...
Phonon dispersion curves of fcc La
International Nuclear Information System (INIS)
Stassis, C.; Loong, C.; Zarestky, J.
1982-01-01
Large single crystals of fcc La were grown in situ and were used to study the lattice dynamics of this phase of La by coherent inelastic neutron scattering. The phonon dispersion curves have been measured along the [xi00], [xixi0], [xixixi], and [0xi1] symmetry directions at 660 and 1100 K. The T[xixixi] branch exhibits anomalous dispersion for xi>0.25 and, in addition, close to the zone boundary, the phonon frequencies of this branch decrease with decreasing temperature. This soft-mode behavior may be related to the #betta→α# transformation in La, an assumption supported by recent band-theoretical calculations of the generalized susceptibility of fcc La. At X the frequencies of the L[xi00] branch are considerably lower than those of the corresponding branch of #betta#-Ce; a similar but not as pronounced effect is observed for the frequencies of the L[xixixi] branch close to the point L. Since the calculated generalized susceptibility of fcc La exhibits strong peaks at X and L, these anomalies may be due to the renormalization of the phonon frequencies by virtual fbold-arrow-left-rightd transitions to the unoccupied 4f level in La. The data were used to evaluate the elastic constants, the phonon density of states, and the lattice specific heat at constant pressure C/sub P//sup
Phononic band gap structures as optimal designs
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this paper we use topology optimization to design phononic band gap structures. We consider 2D structures subjected to periodic loading and obtain the distribution of two materials with high contrast in material properties that gives the minimal vibrational response of the structure. Both in...
Nano-Like Effects in Crystalline Thermoelectric Materials at High Temperatures
Korzhuev, M. A.; Katin, I. V.
2013-05-01
The mechanisms of improving the figure of merit Z and power parameter W of thermoelectric materials (TEMs) in the transitions λph→a and λe→a are considered (Here λph and λe are the mean free path of the phonons and electrons in the sample, and a is the inter atomic distance). It is shown that the same mechanisms are responsible for the growth of Z and W crystalline TEMs at high temperatures.
The description of neutron and giant resonances within the quasiparticle-phonon nuclear model
International Nuclear Information System (INIS)
Soloviev, V.G.
1978-01-01
The general assumptions of the quasiparticle-phonon model of complex nuclei are given. The choice of the model Hamiltonian as an average field and residual forces is discussed. The phonon description and quasiparticle-phonon interaction are presented. The system of basic equations and their approximate solutions are obtained. The approximation is chosen so as to obtain the most correct description of few-quasiparticle components rather than of the whole wave function. The method of strength functions is presented, which plays a decisive role in practical realization of the quasiparticle-phonon model for the description of some properties of complex nuclei. The range of applicability of the quasiparticle-phonon nuclear model is determined as few-quasiparticle components of the wave functions at low, intermediate and high excitation energies averaged in a certain energy interval. The fragmentation of single-particle states in deformed nuclei is studied within this model. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reactions of the type (d,p) and (d,t). The s - ,p - , and d-wave neutron strength functions are calculated at the neutron binding energy Bsub(n). A satisfactory agreement with experiment is obtained. A correct description of the radiative strength functions in spherical nuclei is obtained. The influence of the tail of the giant dipole resonance on the E1-strength functions is studied. The energies and EΛ-strength functions for giant multipole resonances in spherical and deformed nuclei are calculated. A correct description of their widths is obtained. (author)
Phonon transport in a curved aluminum thin film due to laser short pulse irradiation
Mansoor, Saad Bin; Yilbas, Bekir Sami
2018-05-01
Laser short-pulse heating of a curved aluminum thin film is investigated. The Boltzmann transport equation is incorporated to formulate the heating situation. A Gaussian laser intensity distribution is considered along the film arc and time exponentially decaying of pulse intensity is incorporated in the analysis. The governing equations of energy transport in the electron and lattice sub-systems are coupled through the electron-phonon coupling parameter. To quantify the phonon intensity distribution in the thin film, equivalent equilibrium temperature is introduced, which is associated with the average energy of all phonons around a local point when the phonon energies are redistributed adiabatically to an equilibrium state. It is found the numerical simulations that electron temperature follows similar trend to the spatial distribution of the laser pulse intensity at the film edge. Temporal variation of electron temperature does not follow the laser pulse intensity distribution. The rise of temperature in the electron sub-system is fast while it remains slow in the lattice sub-system.
Energy Technology Data Exchange (ETDEWEB)
Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Ali, H.
2016-08-15
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
Yilbas, B. S.; Ali, H.
2016-08-01
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
International Nuclear Information System (INIS)
Yilbas, B.S.; Ali, H.
2016-01-01
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
Phononic band gap and mechanical anisotropy in spider silk
Papadopoulos, Periklis; Gomopoulos, Nikos; Kremer, Friedrich; Fytas, George
2010-03-01
Spider dragline silk is a semi-crystalline biopolymer exhibiting superior properties compared to synthetic polymers with similar chemical structure, such as polyamides. This is ascribed to the hierarchical nanostructure that is created in the spinning duct. During this process the aqueous solution of the two protein constituents of dragline silk is crystallized, while the macromolecules maintain their high orientation, leading to a high value of the Young's modulus (in the order of 10 GPa) along the fiber. We employed spontaneous Brillouin light scattering to measure the longitudinal modulus (M//,,M) along the two symmetry directions of the native fiber with increased (decreased) pre-strain created by stretching (supercontracting after hydration). A strong mechanical anisotropy is found; at about 18% strain M///M˜5. Most important, an unexpected finding is the first observation of a unidirectional hypersonic phononic band gap in biological structures. This relates to the existence of a strain-dependent correlation length of the mechanical modulus in the submicron range along the fiber axis.
Thermodynamics of Crystalline States
Fujimoto, Minoru
2013-01-01
Thermodynamics is a well-established discipline of physics for properties of matter in thermal equilibrium with the surroundings. Applying to crystals, however, the laws encounter undefined properties of crystal lattice, which therefore need to be determined for a clear and well-defined description of crystalline states. Thermodynamics of Crystalline States explores the roles played by order variables and dynamic lattices in crystals in a wholly new way. The book begins by clarifying basic concepts for stable crystals. Next, binary phase transitions are discussed to study collective motion of order variables, as described mostly as classical phenomena. New to this edition is the examination of magnetic crystals, where magnetic symmetry is essential for magnetic phase transitions. The multi-electron system is also discussed theoretically, as a quantum-mechanical example, for superconductivity in metallic crystals. Throughout the book, the role played by the lattice is emphasized and studied in-depth. Thermod...
Lattice instability and soft phonons in single-crystal La/sub 2-//sub x/Sr/sub x/CuO4
International Nuclear Information System (INIS)
Boeni, P.; Axe, J.D.; Shirane, G.
1988-01-01
The dispersion of the low-lying phonon branches of several doped and undoped single crystals of La/sub 2-//sub x/Sr/sub x/CuO 4 have been investigated by using inelastic-neutron-scattering techniques. The zone-center modes are in good agreement with Raman measurements. The reported peaks in the phonon density of states show up at energies that correspond to extrema in the dispersion curves of the transverse and longitudinal acoustic branches near the zone boundary. The tetragonal-to-orthorhombic phase transition is caused by a softening of transverse-optic-phonon mode at the X point. The rotational nature of the soft mode leads to moderate weak electron-phonon coupling and the mode is unlikely to enhance significantly conventional phonon mediated superconductivity. We did not observe any evidence for the predicted breathing-mode instability near the zone boundary
Magnon-Phonon-Hybridisation in FeCl2
DEFF Research Database (Denmark)
Ziebeck, K. R. A.; Houmann, Jens Christian Gylden
1976-01-01
without an applied magnetic field established the splitting at the nominal point of intersection Kx=0.17 to be 0.32 meV. The application of a 8.9 KG field parallel to the c axis raised the degeneracy of the magnons enabling both polarisations to be identified. From the observed magnon energy gap at Kx=0...... the gyromagnetic ratio g was estimated to be 4.01±0.2 in close agreement with the value 4.14 obtained by resonance experiments. Detailed measurements made in the |100| direction showed that the hybridisation takes place only between the magnons and the low energy TA⊥ (Σ2) phonon in agreement with theory....
The phase diagram of crystalline surfaces
International Nuclear Information System (INIS)
Anagnostopoulos, K.N.; Bowick, M.J.; Catterall, S.M.
1995-01-01
We report the status of a high-statistics Monte Carlo simulation of non-self-avoiding crystalline surfaces with extrinsic curvature on lattices of size up to 128 2 nodes. We impose free boundary conditions. The free energy is a gaussian spring tethering potential together with a normal-normal bending energy. Particular emphasis is given to the behavior of the model in the cold phase where we measure the decay of the normal-normal correlation function
Electron-phonon heat exchange in quasi-two-dimensional nanolayers
Anghel, Dragos-Victor; Cojocaru, Sergiu
2017-12-01
We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film's surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron-phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (Te for the electrons temperature and Tph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, Te) or (d, Tph), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find P ∝ Te3.5 - Tph3.5. From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.
Kang, Joon Sang; Wu, Huan; Hu, Yongjie
2017-12-13
Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of
Phonons and colossal thermal expansion behavior of Ag3Co(CN)6 and Ag3Fe(CN)6.
Mittal, R; Zbiri, M; Schober, H; Achary, S N; Tyagi, A K; Chaplot, S L
2012-12-19
Recently colossal volume thermal expansion has been observed in the framework compounds Ag(3)Co(CN)(6) and Ag(3)Fe(CN)(6). We have measured phonon spectra using neutron time-of-flight spectroscopy as a function of temperature and pressure. Ab initio calculations were carried out for the sake of analysis and interpretation. Bonding is found to be very similar in the two compounds. At ambient pressure, modes in the intermediate frequency part of the vibrational spectra in the Co compound are shifted slightly to higher energies as compared to the Fe compound. The temperature dependence of the phonon spectra gives evidence for a large explicit anharmonic contribution to the total anharmonicity for low-energy modes below 5 meV. We have found that modes are mainly affected by the change in size of the unit cell, which in turn changes the bond lengths and vibrational frequencies. Thermal expansion has been calculated via the volume dependence of phonon spectra. Our analysis indicates that Ag phonon modes within the energy range 2-5 meV are strongly anharmonic and major contributors to thermal expansion in both systems. The application of pressure hardens the low-energy part of the phonon spectra involving Ag vibrations and confirms the highly anharmonic nature of these modes.
Energy Technology Data Exchange (ETDEWEB)
Roychowdhury, Subhajit; Jana, Manoj K.; Pan, Jaysree; Guin, Satya N.; Waghmare, Umesh V.; Biswas, Kanishka [New Chemistry Unit and Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore (India); Sanyal, Dirtha [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata (India)
2018-04-03
Crystalline solids with intrinsically low lattice thermal conductivity (κ{sub L}) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ{sub L} of 0.35 Wm{sup -1} K{sup -1} in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ{sub L} in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Ni, Limeng; Huynh, Uyen; Cheminal, Alexandre; Thomas, Tudor H; Shivanna, Ravichandran; Hinrichsen, Ture F; Ahmad, Shahab; Sadhanala, Aditya; Rao, Akshay
2017-11-28
Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH 3 (CH 2 ) 3 NH 3 ) 2 PbI 4 and hexylammonium lead iodide (CH 3 (CH 2 ) 5 NH 3 ) 2 PbI 4 , both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm -1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm -1 . Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.
Kosevich, Yu. A.; Strelnikov, I. A.
2018-02-01
Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.
International Nuclear Information System (INIS)
Babin, V.; Gorbenko, V.; Makhov, A.; Mares, J.A.; Nikl, M.; Zazubovich, S.; Zorenko, Yu.
2007-01-01
At 4.2-350 K, the steady-state and time-resolved emission and excitation spectra and luminescence decay kinetics were studied under excitation in the 2.5-15 eV energy range for the undoped and Ce 3+ -doped Lu 3 Al 5 O 12 (LuAG) single-crystalline films grown by liquid phase epitaxy method from the PbO-based flux. The spectral bands arising from the single Pb 2+ -based centres were identified. The processes of energy transfer from the host lattice to Pb 2+ and Ce 3+ ions and from Pb 2+ to Ce 3+ ions were investigated. Competition between Pb 2+ and Ce 3+ ions in the processes of energy transfer from the LuAG crystal lattice was evidenced especially in the exciton absorption region. Due to overlap of the 3.61 eV emission band of Pb 2+ centres with the 3.6 eV absorption band of Ce 3+ centres, an effective nonradiative energy transfer from Pb 2+ ions to Ce 3+ ions takes place, resulting in the appearance of slower component in the luminescence decay kinetics of Ce 3+ centres and decrease of the Ce 3+ -related luminescence intensity
Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Wu, C.Y.; Cline, D. [Univ. of Rochester, NY (United States)
1996-12-31
Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.
Energy Technology Data Exchange (ETDEWEB)
Lü, Jing-Tao, E-mail: jtlu@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, 430074 Wuhan (China); Zhou, Hangbo [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117551 Singapore (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Singapore (Singapore); Jiang, Jin-Wu [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, 200072 Shanghai (China); Wang, Jian-Sheng [Department of Physics and Center for Computational Science and Engineering, National University of Singapore, 117551 Singapore (Singapore)
2015-05-15
The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons.
Rossani, A.
2017-12-01
If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures T_e and T_h greater than the lattice temperature, the electron-phonon interaction causes energy relaxation. In the non-uniform case a momentum relaxation occurs as well. In view of such an application, a new model, based on an asymptotic procedure for solving the kinetic equations of carriers, phonons, and photons, is proposed, which gives naturally the displaced Maxwellian at the leading order. Several generation-recombination (GR) events occur in bipolar semiconductors. In the presence of photons the most important ones are the radiative GR events, direct, indirect, and exciton-catalyzed. Phonons and photons are treated here as a participating species, with their own equation. All the phonon-photon interactions are accounted for. Moreover, carrier-photon (Compton) interactions are introduced, which make complete the model. After that, balance equations for the electron number, hole number, energy densities, and momentum densities are constructed, which constitute now a system of macroscopic equations for the chemical potentials (carriers), the temperatures (carriers and bosons), and the drift velocities (carriers and bosons). In the drift-diffusion approximation the constitutive laws are derived and the Onsager relations recovered, even in the presence of an external magnetic field.
Probing the interatomic potential of solids with strong-field nonlinear phononics
von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.
2018-03-01
Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.
International Nuclear Information System (INIS)
Lü, Jing-Tao; Zhou, Hangbo; Jiang, Jin-Wu; Wang, Jian-Sheng
2015-01-01
The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons
Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides
Mei, Antonio Rodolph Bighetti
the films are completely dense with smooth surfaces (roughness = 1.3 nm, consistent with atomic-force microscopy analyses). Based upon temperature-dependent electronic transport measurements, epitaxial ZrN/MgO(001) layers have a room-temperature resistivity rho 300K of 12.0 muO-cm, a temperature coefficient of resistivity between 100 and 300 K of 5.6x10-8 O-cm K -1, a residual resistivity rhoo below 30 K of 0.78 muO-cm (corresponding to a residual resistivity ratio rho300K/rho 15K = 15), and the layers exhibit a superconducting transition temperature Tc = 10.4 K. The relatively high residual resistivity ratio, combined with long in-plane and out-of-plane x-ray coherence lengths, xi|| = 18 nm and xi⊥ = 161 nm, indicates high crystalline quality with low mosaicity. The reflectance of ZrN(001), as determined by variable-angle spectroscopic ellipsometry, decreases slowly from 95% at 1 eV to 90% at 2 eV with a reflectance edge at 3.04 eV. Interband transitions dominate the dielectric response above 2 eV. The ZrN(001) nanoindentation hardness and modulus are 22.7+/-1.7 and 450+/-25 GPa. Transport electron/phonon coupling parameters and Eliashberg spectral functions alphatr2F(ho) are determined for Group-IV TM nitrides TiN, ZrN, and HfN, and the rare-earth (RE) nitride CeN using an inversion procedure based upon temperature-dependent (4 electron/phonon coupling parameters lambdatr vary from 1.11 for ZrN to 0.82 for HfN, 0.73 for TiN, and 0.44 for CeN. The small variation in lambda tr among the TM nitrides and the weak coupling in CeN are consistent with measured Tc values: 10.4 (ZrN), 9.18 (HfN), 5.35 (TiN), and electron/phonon coupling in conventional superconductors. Spectral peaks in alpha2F(ho), corresponding to regions in energy-space for which electrons couple to acoustic hoac and optical ho op phonon modes, are centered at ho ac = 33 and hoop = 57 meV for TiN, 25 and 60 meV for ZrN, 18 and 64 meV for HfN, and 21 and 39 meV for CeN. The acoustic modes soften with
Phonon forces and cold denaturatio
DEFF Research Database (Denmark)
Bohr, Jakob
2003-01-01
Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing the molec......Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing...... the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...... denaturing. This is consistent with the empirical observation that cold denaturation is exothermic anti hot denaturation endothermic....
Kroonblawd, Matthew P; Sewell, Thomas D; Maillet, Jean-Bernard
2016-02-14
In this report, we characterize the kinetics and dynamics of energy exchange between intramolecular and intermolecular degrees of freedom (DoF) in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). All-atom molecular dynamics (MD) simulations are used to obtain predictions for relaxation from certain limiting initial distributions of energy between the intra- and intermolecular DoF. The results are used to parameterize a coarse-grained Dissipative Particle Dynamics at constant Energy (DPDE) model for TATB. Each TATB molecule in the DPDE model is represented as an all-atom, rigid-molecule mesoparticle, with explicit external (molecular translational and rotational) DoF and coarse-grained implicit internal (vibrational) DoF. In addition to conserving linear and angular momentum, the DPDE equations of motion conserve the total system energy provided that particles can exchange energy between their external and internal DoF. The internal temperature of a TATB molecule is calculated using an internal equation of state, which we develop here, and the temperatures of the external and internal DoF are coupled using a fluctuation-dissipation relation. The DPDE force expression requires specification of the input parameter σ that determines the rate at which energy is exchanged between external and internal DoF. We adjusted σ based on the predictions for relaxation processes obtained from MD simulations. The parameterized DPDE model was employed in large-scale simulations of shock compression of TATB. We show that the rate of energy exchange governed by σ can significantly influence the transient behavior of the system behind the shock.
International Nuclear Information System (INIS)
Kroonblawd, Matthew P.; Sewell, Thomas D.; Maillet, Jean-Bernard
2016-01-01
In this report, we characterize the kinetics and dynamics of energy exchange between intramolecular and intermolecular degrees of freedom (DoF) in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). All-atom molecular dynamics (MD) simulations are used to obtain predictions for relaxation from certain limiting initial distributions of energy between the intra- and intermolecular DoF. The results are used to parameterize a coarse-grained Dissipative Particle Dynamics at constant Energy (DPDE) model for TATB. Each TATB molecule in the DPDE model is represented as an all-atom, rigid-molecule mesoparticle, with explicit external (molecular translational and rotational) DoF and coarse-grained implicit internal (vibrational) DoF. In addition to conserving linear and angular momentum, the DPDE equations of motion conserve the total system energy provided that particles can exchange energy between their external and internal DoF. The internal temperature of a TATB molecule is calculated using an internal equation of state, which we develop here, and the temperatures of the external and internal DoF are coupled using a fluctuation-dissipation relation. The DPDE force expression requires specification of the input parameter σ that determines the rate at which energy is exchanged between external and internal DoF. We adjusted σ based on the predictions for relaxation processes obtained from MD simulations. The parameterized DPDE model was employed in large-scale simulations of shock compression of TATB. We show that the rate of energy exchange governed by σ can significantly influence the transient behavior of the system behind the shock
Kroonblawd, Matthew P.; Sewell, Thomas D.; Maillet, Jean-Bernard
2016-02-01
In this report, we characterize the kinetics and dynamics of energy exchange between intramolecular and intermolecular degrees of freedom (DoF) in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). All-atom molecular dynamics (MD) simulations are used to obtain predictions for relaxation from certain limiting initial distributions of energy between the intra- and intermolecular DoF. The results are used to parameterize a coarse-grained Dissipative Particle Dynamics at constant Energy (DPDE) model for TATB. Each TATB molecule in the DPDE model is represented as an all-atom, rigid-molecule mesoparticle, with explicit external (molecular translational and rotational) DoF and coarse-grained implicit internal (vibrational) DoF. In addition to conserving linear and angular momentum, the DPDE equations of motion conserve the total system energy provided that particles can exchange energy between their external and internal DoF. The internal temperature of a TATB molecule is calculated using an internal equation of state, which we develop here, and the temperatures of the external and internal DoF are coupled using a fluctuation-dissipation relation. The DPDE force expression requires specification of the input parameter σ that determines the rate at which energy is exchanged between external and internal DoF. We adjusted σ based on the predictions for relaxation processes obtained from MD simulations. The parameterized DPDE model was employed in large-scale simulations of shock compression of TATB. We show that the rate of energy exchange governed by σ can significantly influence the transient behavior of the system behind the shock.
Electron-phonon relaxation and excited electron distribution in gallium nitride
Energy Technology Data Exchange (ETDEWEB)
Zhukov, V. P. [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Pervomayskaya st. 91, Yekaterinburg (Russian Federation); Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tyuterev, V. G., E-mail: valtyut00@mail.ru [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State Pedagogical University, Kievskaya st. 60, Tomsk (Russian Federation); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Chulkov, E. V. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain); Echenique, P. M. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain)
2016-08-28
We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.
Phonon spectroscopy with superconducting tunnel junctions
International Nuclear Information System (INIS)
Grimshaw, J.M.
1984-02-01
Superconducting tunnel junctions can be used as generators and detectors of monochromatic phonons of frequency larger than 80 GHz, as was first devised by Eisenmenger and Dayem (1967) and Kinder (1972a, 1973). In this report, we intend to give a general outline of this type of spectroscopy and to present the results obtained so far. The basic physics underlying phonon generation and detection are described in chapter I, a wider approach being given in the references therein. In chapter II, the different types of junctions are considered with respect to their use. Chapter III deals with the evaporation technique for the superconducting junctions. The last part of this report is devoted to the results that we have obtained on γ-irradiated LiF, pure Si and Phosphorous implanted Si. In these chapters, the limitations of the spectrometer are brought out and suggestions for further work are given [fr
From Planck's quanta to phonon in solids
International Nuclear Information System (INIS)
Martinez- Duart, J. M; Melo, O. de
2008-01-01
Planck's 1900 published results on the black body radiation had the first application in the quantification of radiation. This quantum hypothesis explained several noteworthy light- matter interaction effects in 1905. These were the electron emission, Stokes law and gas ionization. As soon as two years later, A. Einstein derived an expression for the specific heat of solids, applying the quantum hypothesis to the mechanical oscillation of the atoms. In the present work, the main ideas which led to the concept of phonon are discussed. From an historical point of view, the developments due to Einstein, Born, Debye, among others are analyzed and most important properties of the phonons are presented. Finally, the importance of this entity in the theory of solids is explained, in particular regarding the thermal and optical properties as well as the electrical conductivity
Phonon heat transport through periodically stubbed waveguides
International Nuclear Information System (INIS)
Li Wenxia; Chen Keqiu
2006-01-01
We investigate the acoustic phonon band structure, transmission spectrum and thermal conductance in a periodically stubbed waveguide structure by use of the transfer matrix method and the scattering matrix method. We find that the existence of stop-frequencies or dips in the transmission spectrum, which corresponds to the stop bands or gaps in the acoustic band structure. The dependence of the stop band width and the dip width on the stub height is also demonstrated. We also find that the universal quantum thermal conductance can be clearly observed and the thermal conductance increases monotonically with increasing temperature. Our results show that the acoustic phonon band structure, transmission spectrum and thermal conductance can be artificially controlled by adjusting the height of the stub
Photon-phonon interaction in photonic crystals
International Nuclear Information System (INIS)
Ueta, T
2010-01-01
Photon-phonon interaction on the analogy of electron-phonon interaction is considered in one-dimensional photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analysed and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers increases. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration.
Electron-optical phonon coupling in superconductors
International Nuclear Information System (INIS)
Rietschel, H.
1975-01-01
The role of the optical phonons in superconductivity is investigated in the case of compounds with different atomic masses Msub(k). It is shown that the electron mass enhancement factor lambda is independent of Msub(k) if the force constant matrix is mass independent. However, when using lambda to calculate Tsub(c), it must be decomposed into its acoustical and optical contributions, which depend separately on Msub(k). Interference scattering from a light and a heavy mass is studied and its contributions to lambda within the free electron approximation. Numerical results are presented for a rocksalt structure crystal with nearest and next nearest neighbour coupling. These results indicate that the optical phonon contributions to lambda may substantially increase Tsub(c). (orig.) [de
Phonons as building blocks in nuclear structure
International Nuclear Information System (INIS)
Silvestre-Brac, B.
1980-01-01
The structure of a nuclear system in terms of eigenmodes (phonons) of subsystems is investigated in three different approaches. In the frame of nuclear field theory the three identical particle system is analysed and the elimination of spurious states due to the violation of the Pauli principle is emphasized. In terms of weak coupling, a new approach of the shell model is proposed which is shown to be rapidly convergent with the number of basis vectors. Applications of three particle systems in the lead region are made. Lastly, a microscopic multiphonon theorie of collective K=0 states in deformed nuclei based on a Tamm Dancoff phonon is developed. The role of the Pauli principle as well as comparisons with boson expansion methods are deeply analysed [fr
Soft phonon anomalies in relaxor ferroelectrics
International Nuclear Information System (INIS)
Shirane, Gen; Gehring, Peter M.
2001-01-01
A review is given of the phonon anomalies, which have been termed waterfalls', that were recently discovered through a series of neutron inelastic scattering measurements on the lead-oxide relaxor systems PZN-xPT, PMN, and PZN. We discuss a simple coupled-mode model that has been used successfully to describe the basic features of the waterfall, and which relates this unusual feature to the presence of polar micro-regions. (author)
Soft phonon anomalies in relaxor ferroelectrics
Energy Technology Data Exchange (ETDEWEB)
Shirane, Gen [Department of Physics, Brookhaven National Laboratory, Upton, New York (United States); Gehring, Peter M. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland (United States)
2001-03-01
A review is given of the phonon anomalies, which have been termed waterfalls', that were recently discovered through a series of neutron inelastic scattering measurements on the lead-oxide relaxor systems PZN-xPT, PMN, and PZN. We discuss a simple coupled-mode model that has been used successfully to describe the basic features of the waterfall, and which relates this unusual feature to the presence of polar micro-regions. (author)
Phonon dispersion relations for caesium thiocyanate
International Nuclear Information System (INIS)
Irving, M.A.; Smith, T.F.; Elcombe, M.M.
1984-01-01
Room temperature phonon dispersion relations for frequencies below 2 THz have been measured, along the three orthorhombic axes and selected diagonal directions by neutron inelastic scattering, for caesium thiocyanate. These curves, which represent 13 acoustic modes and 11 optic modes of vibration, do not agree with the dispersion behaviour calculated from the rigid-ion model developed by Ti and Ra to describe their Raman scattering observations
Phonon studies of intercalated conductive polymers
Energy Technology Data Exchange (ETDEWEB)
Prassides, K; Bell, C J [School of Chemistry and Molecular Sciences, Univ. of Sussex, Brighton (United Kingdom); Dianoux, A J [Inst. Laue-Langevin, 38 - Grenoble (France); Chunguey, Wu; Kanatzidis, M G [Dept. of Chemistry, Michigan State Univ., East Lansing (United States)
1992-06-01
The phonon density-of-states of FeOCl, the conductive form of polyaniline and the intercalation compound (polyaniline)[sub 0.20]FeOCl(I) have been measured by the neutron time-of-flight technique. The results are discussed in the light of the conducting and structural properties of the materials. Compound I is oxidised by standing in air and the neutron measurements reveal substantial changes in the inorganic host skeleton. (orig.).
Nuclear wobbling-phonon excitations with alignments
International Nuclear Information System (INIS)
Hamamoto, I.
2003-01-01
Wobbling-phonon excitations, which are recently observed in 71 163 Lu 92 , are studied. The presence of alignments in nuclei makes it easier for wobbling excitations to appear at lower angular momenta of the yrast spectra. A family of rotational bands with wobbling excitations, which have nearly the same nuclear intrinsic structure, have been pinned down by observing specific electromagnetic decay properties between them. The triaxiality parameter γ = +20 deg. is obtained for the nuclear shape from measured E2 transition probabilities
International Nuclear Information System (INIS)
Anon.
1989-01-01
Following pioneer work by specialists at the Soviet Novosibirsk Laboratory some ten years ago, interest developed in the possibility of 'freezing' ion beams in storage rings by pushing cooling (to smooth out beam behaviour) to its limits, the final goal being to lock the ions into a neat crystal pattern. After advances by groups working on laser cooled ions in traps, and with several cooling rings now in operation, a workshop on crystalline ion beams was organized recently by the GSI (Darmstadt) Laboratory and held at Wertheim in Germany
Novel information theory techniques for phonon spectroscopy
International Nuclear Information System (INIS)
Hague, J P
2007-01-01
The maximum entropy method (MEM) and spectral reverse Monte Carlo (SRMC) techniques are applied to the determination of the phonon density of states (PDOS) from heat-capacity data. The approach presented here takes advantage of the standard integral transform relating the PDOS with the specific heat at constant volume. MEM and SRMC are highly successful numerical approaches for inverting integral transforms. The formalism and algorithms necessary to carry out the inversion of specific heat curves are introduced, and where possible, I have concentrated on algorithms and experimental details for practical usage. Simulated data are used to demonstrate the accuracy of the approach. The main strength of the techniques presented here is that the resulting spectra are always physical: Computed PDOS is always positive and properly applied information theory techniques only show statistically significant detail. The treatment set out here provides a simple, cost-effective and reliable method to determine phonon properties of new materials. In particular, the new technique is expected to be very useful for establishing where interesting phonon modes and properties can be found, before spending time at large scale facilities
Phonons: Theory and experiments II. Volume 2
International Nuclear Information System (INIS)
Bruesch, P.
1986-01-01
The present second volume titled as ''Phonons: Theory and Experiments II'', contains, a thorough study of experimental techniques and the interpretation of experimental results. This three-volume set tries to bridge the gap between theory and experiment, and is addressed to those working in both camps in the vast field of dynamical properties of solids. Topics presented in the second volume include; infrared-, Raman and Brillouin spectroscopy, interaction of X-rays with phonons, and inelastic neutron scattering. In addition an account is given of some other techniques, including ultrasonic methods, inelastic electron tunneling spectroscopy, point contact spectroscopy, and spectroscopy of surface phonons, thin films and adsorbates. Both experimental aspects and theoretical concepts necessary for the interpretation of experimental data are discussed. An attempt is made to present the descriptive as well as the analytical aspects of the topics. Simple models are often used to illustrate the basic concepts and more than 100 figures are included to illustrate both theoretical and experimental results. Many chapters contain a number of problems with hints and results giving additional information
Optimization of phononic filters via genetic algorithms
Energy Technology Data Exchange (ETDEWEB)
Hussein, M I [University of Colorado, Department of Aerospace Engineering Sciences, Boulder, Colorado 80309-0429 (United States); El-Beltagy, M A [Cairo University, Faculty of Computers and Information, 5 Dr. Ahmed Zewail Street, 12613 Giza (Egypt)
2007-12-15
A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering.
Optimization of phononic filters via genetic algorithms
International Nuclear Information System (INIS)
Hussein, M I; El-Beltagy, M A
2007-01-01
A phononic crystal is commonly characterized by its dispersive frequency spectrum. With appropriate spatial distribution of the constituent material phases, spectral stop bands could be generated. Moreover, it is possible to control the number, the width, and the location of these bands within a frequency range of interest. This study aims at exploring the relationship between unit cell configuration and frequency spectrum characteristics. Focusing on 1D layered phononic crystals, and longitudinal wave propagation in the direction normal to the layering, the unit cell features of interest are the number of layers and the material phase and relative thickness of each layer. An evolutionary search for binary- and ternary-phase cell designs exhibiting a series of stop bands at predetermined frequencies is conducted. A specially formulated representation and set of genetic operators that break the symmetries in the problem are developed for this purpose. An array of optimal designs for a range of ratios in Young's modulus and density are obtained and the corresponding objective values (the degrees to which the resulting bands match the predetermined targets) are examined as a function of these ratios. It is shown that a rather complex filtering objective could be met with a high degree of success. Structures composed of the designed phononic crystals are excellent candidates for use in a wide range of applications including sound and vibration filtering
A temperature dependent study of the Raman-active phonon modes in Ca and Zn doped YBa2Cu3O7-x
International Nuclear Information System (INIS)
Quilty, J. W.; Trodahl, H. J.; Simpson, A.; Flower, N.; Staines, M.; Downes, J.
1996-01-01
Full text: The temperature dependent behaviour of the phonon modes in YBa 2 Cu 3 O 7-x (Y-123) are of interest because the strong electron-phonon coupling within these materials yields information about the magnitude of the superconducting gap. The opening of a gap provides a new decay route for phonons, hence phonons near the gap energy show changes in their frequencies and widths as the temperature drops below T c . The magnitude of the superconducting gap may be estimated from these changes. We report our temperature-dependent measurements of the Raman-active phonon modes in ceramic and preferentially oriented polycrystalline samples of Y-123, under a variety of doping regimes. The samples were made underdoped, optimally doped and overdoped by manipulation of the hole concentration on the Cu-O planes, achieved by changing the oxygen stoichiometry, substitution of Zn for Cu, and substitution of Ca for Y. As observed by others, the 340cm -1 phonon, involving vibrations of the oxygen ions on the Cu-O planes, showed the greatest magnitude of change when the samples were cooled below T c , indicating that the superconducting gap energy is close to that of the 340cm -1 phonon
Energy Technology Data Exchange (ETDEWEB)
Kandemir, B S; Keskin, M [Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey)
2008-08-13
In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction.
International Nuclear Information System (INIS)
Kandemir, B S; Keskin, M
2008-01-01
In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction
One dimensional polaron effects and current inhomogeneities in sequential phonon emission
Energy Technology Data Exchange (ETDEWEB)
Hellman, E.S.; Harris, J.S.; Hanna, C.; Laughlin, R.B.
1985-07-01
We have constructed a physical model to explain the tunneling current oscillations reported by Hickmott et al., for GaAs/AlGaAs heterostructures in high magnetic fields. We propose that the periodic structure observed is due to space charge which builds up in the undepleted layer when electrons enter it with energy just below the phonon emission threshold. Such electrons interact with the lattice to form polarons whose energy is pinned to the phonon energy, and thus has a very small group velocity. The polaron effect is strongly enhanced by the confinement of the electrons by the strong magnetic field. We infer from the current-voltage data that most of the tunneling current flows through a small area of the sample. The combined model gives reasonable quantitative agreement with experiment. 6 refs., 6 figs.
One dimensional polaron effects and current inhomogeneities in sequential phonon emission
International Nuclear Information System (INIS)
Hellman, E.S.; Harris, J.S.; Hanna, C.; Laughlin, R.B.
1985-07-01
We have constructed a physical model to explain the tunneling current oscillations reported by Hickmott et al., for GaAs/AlGaAs heterostructures in high magnetic fields. We propose that the periodic structure observed is due to space charge which builds up in the undepleted layer when electrons enter it with energy just below the phonon emission threshold. Such electrons interact with the lattice to form polarons whose energy is pinned to the phonon energy, and thus has a very small group velocity. The polaron effect is strongly enhanced by the confinement of the electrons by the strong magnetic field. We infer from the current-voltage data that most of the tunneling current flows through a small area of the sample. The combined model gives reasonable quantitative agreement with experiment. 6 refs., 6 figs
Pump pulse duration dependence of coherent phonon amplitudes in antimony
Energy Technology Data Exchange (ETDEWEB)
Misochko, O. V., E-mail: misochko@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)
2016-08-15
Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.
NATO Advanced Study Institute on Nonequilibrium Phonon Dynamics
1985-01-01
Phonons are always present in the solid state even at an absolute temperature of 0 K where zero point vibrations still abound. Moreover, phonons interact with all other excitations of the solid state and, thereby, influence most of its properties. Historically experimental information on phonon transport came from measurements of thermal conductivity. Over the past two decades much more, and much more detailed, information on phonon transport and on many of the inherent phonon interaction processes have come to light from experiments which use nonequilibrium phonons to study their dynamics. The resultant research field has most recently blossomed with the development of ever more sophisticated experimental and theoretical methods which can be applied to it. In fact, the field is moving so rapidly that new members of the research community have difficulties in keeping up to date. This NATO Advanced Study Institute (ASI) was organized with the objective of overcoming the information barrier between those expert...
Phonon interactions with methyl radicals in single crystals
Directory of Open Access Journals (Sweden)
James W. Wells
2017-04-01
Full Text Available The high temperature ESR spectra’s anomalous appearance at very low temperatures for the methyl radical created in single crystals is explained by magnetic dipole interactions with neighboring protons. These protons acting via phonon vibrations induce resonant oscillations with the methyl group to establish a very temperature sensitive ‘‘relaxation’’ mode that allows the higher energy ‘‘E’’ state electrons with spin 12 to ‘‘decay’’ into ‘‘A’’ spin 12 states. Because of the amplitude amplification with temperature, the ‘‘E’’ state population is depleted and the ‘‘A’’ state population augmented to produce the high temperature ESR spectrum. This phenomenon is found to be valid for all but the very highest barriers to methyl group tunneling. In support, a time dependent spin population study shows this temperature evolution in the state populations under this perturbation.
Electromagnetic excitation of the two-phonon giant dipole resonance
International Nuclear Information System (INIS)
Emling, H.
1994-03-01
It is the aim of this article to summarize our present knowledge on the double isovector giant dipole resonance (DGDR) and our understanding of the electromagnetic excitation mechanism in heavy ion collisions in the relativistic energy regime. In the following chapter, a brief resume on the history of giant resonances is given and, based on their understanding, conclusions on the expected properties of multi-phonon resonances are drawn. In chapter 2, the essential features of electromagnetic heavy ion interactions at (near) relativistic velocities will be illuminated and the theoretical framework is presented, which describes such processes. New experimental methods were required for an appropriate study of Coulomb dissociation processes, which are discussed in chapter 3 together with the experimental results. Chapter 4 is dedicated to summarize the results from electromagnetic excitation studies, to compare with those from alternative methods and, in particular, to contrast experimental findings with theoretical predictions and to address open problems. (orig.)
Phonon-assisted two-photon exciton transitions in semiconductors
International Nuclear Information System (INIS)
Hassan, A.R.
1987-08-01
The theory of phonon-assisted two-photon transitions to excitonic states in semiconductors has been theoretically investigated. The effects of both the nonparabolicity of the band and the degeneracy of the valence band have been taken into account. Expressions for the absorption coefficient through different band models are calculated. The numerical applications to CdI 2 and GaP show that the 4-band model gives the dominant contribution which leads to a final s-exciton state. An exciton peak appears at an energy which is close to that recently observed in CdI 2 . The non-parabolic effect enhances the absorption coefficient by a two-order of magnitude. (author). 6 refs, 1 fig., 1 tab
Assili, Mohamed; Haddad, Sonia
2014-01-01
We derive the frequency shifts and the broadening of $\\Gamma$ point longitudinal optical (LO) and transverse optical (TO) phonon modes, due to electron-phonon interaction, in graphene under uniaxial strain as a function of the electron density and the disorder amount. We show that, in the absence of a shear strain component, such interaction gives rise to a lifting of the degeneracy of the LO and TO modes which contributes to the splitting of the G Raman band. The anisotropy of the electronic...
Kim, Hyun-Jung; King, Glen C.; Park, Yeonjoon; Lee, Kunik; Choi, Sang H.
2011-01-01
Direct conversion of thermal energy to electricity by thermoelectric (TE) devices may play a key role in future energy production and utilization. However, relatively poor performance of current TE materials has slowed development of new energy conversion applications. Recent reports have shown that the dimensionless Figure of Merit, ZT, for TE devices can be increased beyond the state-of-the-art level by nanoscale structuring of materials to reduce their thermal conductivity. New morphologically designed TE materials have been fabricated at the NASA Langley Research Center, and their characterization is underway. These newly designed materials are based on semiconductor crystal grains whose surfaces are surrounded by metallic nanoparticles. The nanoscale particles are used to tailor the thermal and electrical conduction properties for TE applications by altering the phonon and electron transport pathways. A sample of bismuth telluride decorated with metallic nanoparticles showed less thermal conductivity and twice the electrical conductivity at room temperature as compared to pure Bi2Te3. Apparently, electrons cross easily between semiconductor crystal grains via the intervening metallic nanoparticle bridges, but phonons are scattered at the interfacing gaps. Hence, if the interfacing gap is larger than the mean free path of the phonon, thermal energy transmission from one grain to others is reduced. Here we describe the design and analysis of these new materials that offer substantial improvements in thermoelectric performance.
Rippert, Edward D.; Ketterson, John B.; Chen, Jun; Song, Shenian; Lomatch, Susanne; Maglic, Stevan R.; Thomas, Christopher; Cheida, M. A.; Ulmer, Melville P.
1992-01-01
An engineered structure is proposed that can alleviate quasi-particle recombination losses via the existence of a phononic band gap that overlaps the 2-Delta energy of phonons produced during recombination of quasi-particles. Attention is given to a 1D Kronig-Penny model for phonons normally incident to the layers of a multilayered superconducting tunnel junction as an idealized example. A device with a high density of Bragg resonances is identified as desirable; both Nb/Si and NbN/SiN superlattices have been produced, with the latter having generally superior performance.
Acoustic phonon dispersion of CoSi2
International Nuclear Information System (INIS)
Weiss, L.; Rumyantsev, A.Yu.; Ivanov, A.S.
1985-01-01
The acoustical phonon dispersion curves of CoSi 2 are measured at room temperature along the main symmetry directions by means of coherent one-phonon scattering of thermal neutrons. The dispersion curves are compared with those of Ge, Si, and the fluorite structure types as CaF 2 and UO 2 . From the slope of the phonon dispersion curves at the GAMMA-point the elastic constants have been obtained
Computational modeling of geometry dependent phonon transport in silicon nanostructures
Cheney, Drew A.
Recent experiments have demonstrated that thermal properties of semiconductor nanostructures depend on nanostructure boundary geometry. Phonons are quantized mechanical vibrations that are the dominant carrier of heat in semiconductor materials and their aggregate behavior determine a nanostructure's thermal performance. Phonon-geometry scattering processes as well as waveguiding effects which result from coherent phonon interference are responsible for the shape dependence of thermal transport in these systems. Nanoscale phonon-geometry interactions provide a mechanism by which nanostructure geometry may be used to create materials with targeted thermal properties. However, the ability to manipulate material thermal properties via controlling nanostructure geometry is contingent upon first obtaining increased theoretical understanding of fundamental geometry induced phonon scattering processes and having robust analytical and computational models capable of exploring the nanostructure design space, simulating the phonon scattering events, and linking the behavior of individual phonon modes to overall thermal behavior. The overall goal of this research is to predict and analyze the effect of nanostructure geometry on thermal transport. To this end, a harmonic lattice-dynamics based atomistic computational modeling tool was created to calculate phonon spectra and modal phonon transmission coefficients in geometrically irregular nanostructures. The computational tool is used to evaluate the accuracy and regimes of applicability of alternative computational techniques based upon continuum elastic wave theory. The model is also used to investigate phonon transmission and thermal conductance in diameter modulated silicon nanowires. Motivated by the complexity of the transmission results, a simplified model based upon long wavelength beam theory was derived and helps explain geometry induced phonon scattering of low frequency nanowire phonon modes.
Investigation on maximum transition temperature of phonon mediated superconductivity
Energy Technology Data Exchange (ETDEWEB)
Fusui, L; Yi, S; Yinlong, S [Physics Department, Beijing University (CN)
1989-05-01
Three model effective phonon spectra are proposed to get plots of {ital T}{sub {ital c}}-{omega} adn {lambda}-{omega}. It can be concluded that there is no maximum limit of {ital T}{sub {ital c}} in phonon mediated superconductivity for reasonable values of {lambda}. The importance of high frequency LO phonon is also emphasized. Some discussions on high {ital T}{sub {ital c}} are given.
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Miao, K., E-mail: kmiao@purdue.edu; Charles, J.; Klimeck, G. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States); Sadasivam, S.; Fisher, T. S. [School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Kubis, T. [Network for Computational Nanotechnology, Purdue University, West Lafayette, Indiana 47907 (United States)
2016-03-14
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
The interacting quasiparticle–phonon picture and odd–even nuclei. Overview and perspectives
Energy Technology Data Exchange (ETDEWEB)
Mishev, S., E-mail: mishev@theor.jinr.ru; Voronov, V. V., E-mail: voronov@theor.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)
2016-11-15
The role of the nucleon correlations in the ground states of even–even nuclei on the properties of low-lying states in odd–even spherical and transitional nuclei is studied. We reason about this subject using the language of the quasiparticle–phonon model which we extend to take account of the existence of quasiparticle⊗phonon configurations in the wave functions of the ground states of the even–even cores. Of paramount importance to the structure of the low-lying states happens to be the quasiparticle–phonon interaction in the ground states which we evaluated using both the standard and the extended random phase approximations. Numerical calculations for nuclei in the barium and cadmium regions are performed using pairing and quadrupole–quadrupole interaction modes which have the dominant impact on the lowest-lying states’ structure. It is found that states with same angular momentum and parity become closer in energy as compared to the predictions of models disregarding the backward amplitudes, which turns out to be in accord with the experimental data. In addition we found that the interaction between the last quasiparticle and the ground-state phonon admixtures produces configurations which contribute significantly to the magnetic dipolemoment of odd-A nuclei. It also reveals a potential for reproducing their experimental values which proves impossible if this interaction is neglected.
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
International Nuclear Information System (INIS)
Miao, K.; Charles, J.; Klimeck, G.; Sadasivam, S.; Fisher, T. S.; Kubis, T.
2016-01-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.
2016-03-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
Directory of Open Access Journals (Sweden)
Xin Ran
2018-05-01
Full Text Available The knowledge of interfacial phonon transport accounting for detailed phonon spectral properties is desired because of its importance for design of nanoscale energy systems. In this work, we investigate the interfacial phonon transport through Si/Ge multilayer films using an efficient Monte Carlo scheme with spectral transmissivity, which is validated for cross-plane phonon transport through both Si/Ge single-layer and Si/Ge bi-layer thin films by comparing with the discrete-ordinates solution. Different thermal boundary conductances between even the same material pair are declared at different interfaces within the multilayer system. Furthermore, the thermal boundary conductances at different interfaces show different trends with varying total system size, with the variation slope, very different as well. The results are much different from those in the bi-layer thin film or periodic superlattice. These unusual behaviors can be attributed to the combined interfacial local non-equilibrium effect and constraint effect from other interfaces.
Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots
Directory of Open Access Journals (Sweden)
Giovanni M. Vanacore
2017-07-01
Full Text Available Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.
Phononic thermal resistance due to a finite periodic array of nano-scatterers
Energy Technology Data Exchange (ETDEWEB)
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier [Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne (France)
2016-07-28
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.
Numerical simulation of gas-phonon coupling in thermal transpiration flows.
Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A
2009-10-01
Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.
International Nuclear Information System (INIS)
Smirnova, N.A.; Van Isacker, P.; Smirnova, N.A; Pietralla, N.; Yale Univ., New Haven, CT; Mizusaki, T.
2000-01-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2 + 1 state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the γ-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei 142 Ce and 94 Mo. (authors)
Energy Technology Data Exchange (ETDEWEB)
Smirnova, N.A.; Van Isacker, P. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Smirnova, N.A [Paris-11 Univ., 91 - Orsay (France). Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse]|[Institute for Nuclear Physics, Moscow State University (Russian Federation); Pietralla, N. [Institut fur Kernphysik, Universitat zu Koln (Germany)]|[Yale Univ., New Haven, CT (United States). Wright Nuclear Structure Lab; Mizusaki, T. [Tokyo Univ. (Japan). Dept. of Physics
2000-07-01
The interrelation between the octupole phonon and the low-lying proton-neutron mixed-symmetry quadrupole in near-spherical nuclei is investigated. The one-phonon states decay by collective E3 and E2 transitions to the ground state and by relatively strong E1 and M1 transitions to the isoscalar 2{sup +}{sub 1} state. We apply the proton-neutron version of the Interacting Boson Model including quadrupole and octupole bosons (sdf-IBM-2). Two F-spin symmetric dynamical symmetry limits of the model, namely the vibrational and the {gamma}-unstable ones, are considered. We derived analytical formulae for excitation energies as well as B(E1), B(M1), B(E2), and B(E3) values for a number of transitions between low-lying states. The model well reproduces many known transition strengths in the near spherical nuclei {sup 142}Ce and {sup 94}Mo. (authors)
Liquid crystalline order in polymers
Blumstein, Alexandre
1978-01-01
Liquid Crystalline Order in Polymers examines the topic of liquid crystalline order in systems containing rigid synthetic macromolecular chains. Each chapter of the book provides a review of one important area of the field. Chapter 1 discusses scattering in polymer systems with liquid crystalline order. It also introduces the field of liquid crystals. Chapter 2 treats the origin of liquid crystalline order in macromolecules by describing the in-depth study of conformation of such macromolecules in their unassociated state. The chapters that follow describe successively the liquid crystalli
Two-phonon bound states in imperfect crystals
International Nuclear Information System (INIS)
Behera, S.N.; Samsur, Sk.
1980-01-01
The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)
Energy Technology Data Exchange (ETDEWEB)
Giorgetti, E., E-mail: emilia.giorgetti@fi.isc.cnr.it [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Muniz Miranda, M.; Caporali, S. [Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Canton, P. [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari, Via Torino, 30170 Venezia-Mestre (Italy); Marsili, P. [Istituto dei Sistemi Complessi (ISC) CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Vergari, C.; Giammanco, F. [Dipartimento di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy)
2015-09-15
Highlights: • Laser ablation of Ti in water at 1064 nm and comparison of ns and ps temporal regimes. • Structural and spectroscopic characterization of the colloids: TiO{sub 2} is the predominant phase. • Determination of an energy window where ps ablation produces more anatase than rutile. • Modelling of the experimental dependence of anatase/rutile yield on pulse length and energy. - Abstract: We fabricated Ti oxide nanoparticles by laser ablation of a Ti target in doubly deionized water with ps or ns pulses at a laser wavelength of 1064 nm. Electron microscopy, Raman, X-ray diffraction and X-ray photoelectron spectroscopy showed that, while with ns pulses the dominant oxide phase is rutile, with ps pulses anatase is the most abundant form in an intermediate energy window centered around 25 mJ per pulse. This experimental behavior can be described by a theoretical model which calculates the pressure and temperature evolution of the ablated material and, from this, the rutile and anatase yield.
Lattice parameters and Raman-active phonon modes of β-(AlxGa1−x)2O3
International Nuclear Information System (INIS)
Kranert, Christian; Jenderka, Marcus; Lenzner, Jörg; Lorenz, Michael; Wenckstern, Holger von; Schmidt-Grund, Rüdiger; Grundmann, Marius
2015-01-01
We present X-ray diffraction and Raman spectroscopy investigations of a (100)-oriented (Al x Ga 1–x ) 2 O 3 thin film on MgO (100) and bulk-like ceramics in dependence on their composition. The thin film grown by pulsed laser deposition has a continuous lateral composition spread allowing to determine precisely the dependence of the phonon mode properties and lattice parameters on the chemical composition. For x < 0.4, we observe the single-phase β-modification. Its lattice parameters and phonon energies depend linearly on the composition. We determined the slopes of these dependencies for the individual lattice parameters and for nine Raman lines, respectively. While the lattice parameters of the ceramics follow Vegard's rule, deviations are observed for the thin film. This deviation has only a small effect on the phonon energies, which show a reasonably good agreement between thin film and ceramics
Plasmonic Physics of 2D Crystalline Materials
Directory of Open Access Journals (Sweden)
Zahra Torbatian
2018-02-01
Full Text Available Collective modes of doped two-dimensional crystalline materials, namely graphene, MoS 2 and phosphorene, both monolayer and bilayer structures, are explored using the density functional theory simulations together with the random phase approximation. The many-body dielectric functions of the materials are calculated using an ab initio based model involving material-realistic physical properties. Having calculated the electron energy-loss, we calculate the collective modes of each material considering the in-phase and out-of-phase modes for bilayer structures. Furthermore, owing to many band structures and intreband transitions, we also find high-energy excitations in the systems. We explain that the material-specific dielectric function considering the polarizability of the crystalline material such as MoS 2 are needed to obtain realistic plasmon dispersions. For each material studied here, we find different collective modes and describe their physical origins.
Falvo, Cyril
2018-02-01
The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.
Crystalline lens radioprotectors
International Nuclear Information System (INIS)
Belkacemi, Y.; Pasquier, D.; Castelain, B.; Lartigau, E.; Warnet, J.M.
2003-01-01
During more than a half of century, numerous compounds have been tested in different models against radiation-induced cataract. In this report, we will review the radioprotectors that have been already tested for non-human crystalline lens protection. We will focus on the most important published studies in this topic and the mechanisms of cyto-protection reported in. vitro and in. vivo from animals. The most frequent mechanisms incriminated in the cyto-protective effect are: free radical scavenging, limitation of lipid peroxidation, modulation of cycle progression increase of intracellular reduced glutathione pool, reduction of DNA strand breaks and limitation of apoptotic cell death. Arnifostine (or Ethyol) and anethole dithiolethione (or Sulfarlem), already used clinically as chemo- and radio-protectants, could be further test?r for ocular radioprotection particularly for radiation-induced cataract. (author)
The 257 MeV 19/2/sup -/ two-phonon octupole state in /sup 147/Gd
Kleinheinz, P; Kortelahti, M; Piiparinen, M; Styczen, J
1981-01-01
The half-life of the (vf/sub 7/2/*3/sup -/*3/sup -/)/sub 19/2-/ two- phonon octupole states at 2.572 MeV in /sup 147/Gd was measured as T /sub 1/2/=0.37(8) ns, which gives a transition strength of 52(15) WU for the 1525 keV E3 transition to the 0.997 MeV (vf/sub 7/2/*3/sup -/) /sub 13/2+/ one transition to the 0.997 MeV ( nu f/sub 7/2/*3/sup -/) /sub 13/2+/ one phonon excitation. The nu i/sub 13/2/ admixture in the 13/2/sup +/ one-phonon state, as well as the dominant pi h/sub 11/2/d /sub 5//sup -1/2/ component of the /sup 146/Gd 3/sup -/ state give rise to large anharmonicities for the two-phonon excitation. An estimate of the energy shifts based on empirical coupling matrix elements gives 2.66 MeV excitation for the 19/2/sup -/ two-phonon state, in good agreement with the observed energy of that state. (9 refs).
Groundwater in crystalline bedrock
International Nuclear Information System (INIS)
Palmqvist, K.
1990-06-01
The aim of this project was to make detailed descriptions of the geological conditions and the different kinds of leakage in some tunnels in Sweden, to be able to describe the presence of ground water in crystalline bedrock. The studies were carried out in TBM tunnels as well as in conventionally drilled and blasted tunnels. Thanks to this, it has been possible to compare the pattern and appearance of ground water leakage in TBM tunnels and in blasted tunnels. On the basis of some experiments in a TBM tunnel, it has been confirmed that a detailed mapping of leakage gives a good picture of the flow paths and their aquiferous qualities in the bedrock. The same picture is found to apply even in cautious blasted tunnels. It is shown that the ground water flow paths in crystalline bedrock are usually restricted to small channels along only small parts of the fractures. This is also true for fracture zones. It has also been found that the number of flow paths generally increases with the degree of tectonisation, up to a given point. With further tectonisation the bedrock is more or less crushed which, along with mineral alteration, leaves only a little space left for the formation of water channels. The largest individual flow paths are usually found in fracture zones. The total amount of ground water leakage per m tunnel is also greater in fracture zones than in the bedrock between the fracture zones. In mapping visible leakage, five classes have been distinguished according to size. Where possible, the individual leak inflow has been measured during the mapping process. The quantification of the leakage classes made in different tunnels are compared, and some quantification standards suggested. A comparison of leakage in different rock types, tectonic zones, fractures etc is also presented. (author)
Attenuation of Thermal Neutrons by Crystalline Silicon
International Nuclear Information System (INIS)
Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.
2002-01-01
A simple formula is given which allows to calculate the contribution of the total neutron cross - section including the Bragg scattering from different (hkt) planes to the neutron * transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy .A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500μ eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given
University Crystalline Silicon Photovoltaics Research and Development
Energy Technology Data Exchange (ETDEWEB)
Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim
2008-08-18
The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.
Comparative study of the two-phonon Raman bands of silicene and graphene
International Nuclear Information System (INIS)
Popov, Valentin N; Lambin, Philippe
2016-01-01
We present a computational study of the two-phonon Raman spectra of silicene and graphene within a density-functional non-orthogonal tight-binding model. Due to the presence of linear bands close to the Fermi energy in the electronic structure of both structures, the Raman scattering by phonons is resonant. We find that the Raman spectra exhibit a crossover behavior for laser excitation close to the π-plasmon energy. This phenomenon is explained by the disappearance of certain paths for resonant Raman scattering and the appearance of other paths beyond this energy. Besides that, the electronic joint density of states (DOS) is divergent at this energy, which is reflected on the behavior of the Raman bands of the two structures in a qualitatively different way. Additionally, a number of Raman bands, originating from divergent phonon DOS at the M point and at points, inside the Brillouin zone, is also predicted. The calculated spectra for graphene are in excellent agreement with available experimental data. The obtained Raman bands can be used for structural characterization of silicene and graphene samples by Raman spectroscopy. (paper)
Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.
Shang, Jingzhi; Yu, Ting; Lin, Jianyi; Gurzadyan, Gagik G
2011-04-26
Ultrafast quasiparticle dynamics in graphene grown by chemical vapor deposition (CVD) has been studied by UV pump/white-light probe spectroscopy. Transient differential transmission spectra of monolayer graphene are observed in the visible probe range (400-650 nm). Kinetics of the quasiparticle (i.e., low-energy single-particle excitation with renormalized energy due to electron-electron Coulomb, electron-optical phonon (e-op), and optical phonon-acoustic phonon (op-ap) interactions) was monitored with 50 fs resolution. Extending the probe range to near-infrared, we find the evolution of quasiparticle relaxation channels from monoexponential e-op scattering to double exponential decay due to e-op and op-ap scattering. Moreover, quasiparticle lifetimes of mono- and randomly stacked graphene films are obtained for the probe photon energies continuously from 1.9 to 2.3 eV. Dependence of quasiparticle decay rate on the probe energy is linear for 10-layer stacked graphene films. This is due to the dominant e-op intervalley scattering and the linear density of states in the probed electronic band. A dimensionless coupling constant W is derived, which characterizes the scattering strength of quasiparticles by lattice points in graphene.
Coherent phonon optics in a chip with an electrically controlled active device.
Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J
2015-02-05
Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.
Parity-Time Synthetic Phononic Media
DEFF Research Database (Denmark)
Christensen, Johan; Willatzen, Morten; Velasco, V. R.
2016-01-01
media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....
Phonon scattering in graphene over substrate steps
International Nuclear Information System (INIS)
Sevinçli, H.; Brandbyge, M.
2014-01-01
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.
Semi-Dirac points in phononic crystals
Zhang, Xiujuan
2014-01-01
A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in
Large scale phononic metamaterials for seismic isolation
International Nuclear Information System (INIS)
Aravantinos-Zafiris, N.; Sigalas, M. M.
2015-01-01
In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials
Electron-longitudinal-acoustic-phonon scattering in double-quantum-dot based quantum gates
International Nuclear Information System (INIS)
Zhao Peiji; Woolard, Dwight L.
2008-01-01
We propose a nanostructure design which can significantly suppress longitudinal-acoustic-phonon-electron scattering in double-quantum-dot based quantum gates for quantum computing. The calculated relaxation rates vs. bias voltage exhibit a double-peak feature with a minimum approaching 10 5 s -1 . In this matter, the energy conservation law prohibits scattering contributions from phonons with large momenta; furthermore, increasing the barrier height between the double quantum dots reduces coupling strength between the dots. Hence, the joint action of the energy conservation law and the decoupling greatly reduces the scattering rates. The degrading effects of temperatures can be reduced simply by increasing the height of the barrier between the dots
Time and angle resolved phonon absorption in the fractional quantum hall regime
International Nuclear Information System (INIS)
Devitt, A.M.
2000-09-01
The work described in this thesis is a study of the phonon absorption by a two-dimensional electron system (2DES) in the fractional quantum Hall regime and also at ν = 1/2. The fractional quantum Hall effect arises in 2DES's in high magnetic fields and is characterised by the quantisation of the transverse or Hall resistance and the vanishing longitudinal conductivity. The filling factor denotes the number of filled Landau levels and the quantum Hall effect occurs when this ratio is at certain rational odd denominator filling factors. The phenomenology of the effect arises due to the existence of an energy gap between the ground state and the lowest excited state. This energy gap is characterised by a deep minimum, or minima, at finite in-plane wavevector. Acoustic phonon absorption is expected to probe the energy gap at wavevectors close to or at the minimum in the dispersion curve. The experiments reported here incorporate the use of a thin film heater to produce a pulse of phonons of which a fraction are absorbed by the 2DES. A fast amplifier and signal averaging board enable detection of small signals due to absorption of phonons. The technique used allows time resolution of the phonon signal which typically takes place over a period of 10 μs or so. The time resolution enables different phonon modes to be studied. By altering the position of the heater relative to the 2DES angular resolution is also possible. The phonon absorption at several different filling factors has been investigated and the energy gaps found are in reasonable agreement with theoretical predictions. The absorption at ν 1/2 has also been investigated. Here the composite fermions are expected to have a well defined Fermi wavevector. The absorption at ν = 1/2 and the fractional quantum Hall states is found to be qualitatively and quantitatively different. We see that the change in electron temperature atν = 1/2 is much less than at ν = 1/3 due to the larger heat capacity. At ν = 1
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
Energy Technology Data Exchange (ETDEWEB)
Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)
2011-09-21
In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
International Nuclear Information System (INIS)
Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin; Hsu, Jin-Chen
2011-01-01
In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.
Circularly polarized zero-phonon transitions of vacancies in diamond at high magnetic fields
Braukmann, D.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.
2018-05-01
We study the circularly polarized photoluminescence of negatively charged (NV-) and neutral (NV0) nitrogen-vacancy ensembles and neutral vacancies (V0) in diamond crystals exposed to magnetic fields of up to 10 T. We determine the orbital and spin Zeeman splitting as well as the energetic ordering of their ground and first-excited states. The spin-triplet and -singlet states of the NV- are described by an orbital Zeeman splitting of about 9 μ eV /T , which corresponds to a positive orbital g -factor of gL=0.164 under application of the magnetic field along the (001) and (111) crystallographic directions, respectively. The zero-phonon line (ZPL) of the NV- singlet is defined as a transition from the 1E' states, which are split by gLμBB , to the 1A1 state. The energies of the zero-phonon triplet transitions show a quadratic dependence on intermediate magnetic field strengths, which we attribute to a mixing of excited states with nonzero orbital angular momentum. Moreover, we identify slightly different spin Zeeman splittings in the ground (gs) and excited (es) triplet states, which can be expressed by a deviation between their spin g -factors: gS ,es=gS ,gs+Δ g with values of Δ g =0.014 and 0.029 in the (001) and (111) geometries, respectively. The degree of circular polarization of the NV- ZPLs depends significantly on the temperature, which is explained by an efficient spin-orbit coupling of the excited states mediated through acoustic phonons. We further demonstrate that the sign of the circular polarization degree is switched under rotation of the diamond crystal. A weak Zeeman splitting similar to Δ g μBB measured for the NV- ZPLs is also obtained for the NV0 zero-phonon lines, from which we conclude that the ground state is composed of two optically active states with compensated orbital contributions and opposite spin-1/2 momentum projections. The zero-phonon lines of the V0 show Zeeman splittings and degrees of the circular polarization with opposite
Crystalline Bioceramic Materials
Directory of Open Access Journals (Sweden)
de Aza, P. N.
2005-06-01
Full Text Available A strong interest in the use of ceramics for biomedical engineering applications developed in the late 1960´s. Used initially as alternatives to metallic materials in order to increase the biocompatibility of implants, bioceramics have become a diverse class of biomaterials, presently including three basic types: relatively bioinert ceramics; bioactive or surface reactive bioceramics and bioresorbable ceramics. This review will only refer to bioceramics “sensus stricto”, it is to say, those ceramic materials constituted for nonmetallic inorganic compounds, crystallines and consolidated by thermal treatments of powders to high temperatures. Leaving bioglasses, glass-ceramics and biocements apart, since, although all of them are obtained by thermal treatments to high temperatures, the first are amorphous, the second are obtained by desvitrification of a glass and in them vitreous phase normally prevails on the crystalline phases and the third are consolidated by means of a hydraulic or chemical reaction to room temperature. A review of the composition, physiochemical properties and biological behaviour of the principal types of crystalline bioceramics is given, based on the literature data and on the own experience of the authors.
A finales de los años sesenta se despertó un gran interés por el uso de los materiales cerámicos para aplicaciones biomédicas. Inicialmente utilizados como una alternativa a los materiales metálicos, con el propósito de incrementar la biocompatibilidad de los implantes, las biocerámicas se han convertido en una clase diversa de biomateriales, incluyendo actualmente tres tipos: cerámicas cuasi inertes; cerámicas bioactivas o reactivas superficialmente y cerámicas reabsorbibles o biodegradables. En la presente revisión se hace referencia a las biocerámicas en sentido estricto, es decir, a aquellos materiales constitutitos por compuestos inorgánicos no metálicos, cristalinos y consolidados
Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles
Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo
2018-01-01
At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric
Emergence of the bcc Phase and Phase Transition in Be through Phonon Quasiparticle Calculations
Zhang, D. B., Sr.; Wentzcovitch, R. M.
2016-12-01
Beryllium (Be) is an important material with applications in a number of areas ranging from aerospace components to X-ray equipment. Yet a precise understanding of the phase diagram of Be remains elusive. We have investigated the phase stability of Be using a recently developed hybrid free energy computation method that accounts for anharmonic effects by invoking phonon quasiparticle properties. We find that the hcp to bcc transition occurs near the melting curve at 0
Elastic wave surfaces and phonon focussing for the A-15 compounds
International Nuclear Information System (INIS)
Viswanathan, K.S.
1981-01-01
It is shown that the section of the energy surface corresponding to the longitudinal mode by the principal xy-plane for the A-15 compounds will degenerate into four points at the corners of a square at very low temperatures in the cubic phase. When the quasi-shear mode propagating along the (110) direction becomes soft, simultaneously the longitudinal mode will exhibit unusually high phonon focussing. (author)
Lu, Ping; Yuan, Renliang; Zuo, Jian Min
2017-02-01
Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.
Electron-phonon coupling in the rare-earth metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Mertig, I.
1990-01-01
-phonon parameters were calculated within the Gaspari-Gyorffy formulation. For the heavier rare earths Gd–Tm spin polarization was included both in the band-structure calculations and in the treatment of the electron-phonon coupling to take into account the spin splitting of the conduction electrons induced by the 4...
Quasiparticle-phonon coupling in inelastic proton scattering
International Nuclear Information System (INIS)
Weissbach, B.
1980-01-01
Multistep-processes in inelastic proton scattering from 89 Y are analyzed by using CCBA and DWBA on a quasiparticle phonon nuclear structure model. Indirect excitations caused by quasiparticle phonon coupling effects are found to be very important for the transition strengths and the shape of angular distributions. Core excitations are dominant for the higher order steps of the reaction. (author)
Multiple interruption of optically generated acoustic phonons in ruby
International Nuclear Information System (INIS)
Dijkhuis, J.I.
1979-01-01
This thesis clarifies the rate-determining processes which tend to equilibrate the bottlenecked 29 cm -1 phonons with the temperature bath in stationary experiments. In addition, the direct relaxation between the Zeeman components of E is measured, revealing at high pumping, both continuous and time-resolved, a strong phonon bottleneck. (Auth.)
Remarkable reduction of thermal conductivity in phosphorene phononic crystal
International Nuclear Information System (INIS)
Xu, Wen; Zhang, Gang
2016-01-01
Phosphorene has received much attention due to its interesting physical and chemical properties, and its potential applications such as thermoelectricity. In thermoelectric applications, low thermal conductivity is essential for achieving a high figure of merit. In this work, we propose to reduce the thermal conductivity of phosphorene by adopting the phononic crystal structure, phosphorene nanomesh. With equilibrium molecular dynamics simulations, we find that the thermal conductivity is remarkably reduced in the phononic crystal. Our analysis shows that the reduction is due to the depressed phonon group velocities induced by Brillouin zone folding, and the reduced phonon lifetimes in the phononic crystal. Interestingly, it is found that the anisotropy ratio of thermal conductivity could be tuned by the ‘non-square’ pores in the phononic crystal, as the phonon group velocities in the direction with larger projection of pores is more severely suppressed, leading to greater reduction of thermal conductivity in this direction. Our work provides deep insight into thermal transport in phononic crystals and proposes a new strategy to reduce the thermal conductivity of monolayer phosphorene. (paper)
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai; Qiu, Chunyin; Liu, Zhengyou; Wu, Ying
2014-01-01
waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic
Phonon and thermal properties of achiral single wall carbon ...
Indian Academy of Sciences (India)
A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats ...