WorldWideScience

Sample records for phoenix missile hypersonic

  1. Lateral control strategy for a hypersonic cruise missile

    Directory of Open Access Journals (Sweden)

    Yonghua Fan

    2017-04-01

    Full Text Available Hypersonic cruise missile always adopts the configuration of waverider body with the restraint of scramjet. As a result, the lateral motion exhibits serious coupling, and the controller design of the lateral lateral system cannot be conducted separately for yaw channel and roll channel. A multiple input and multiple output optimal control method with integrators is presented to design the lateral combined control system for hypersonic cruise missile. A hypersonic cruise missile lateral model is linearized as a multiple input and multiple output plant, which is coupled by kinematics and fin deflection between yaw and roll. In lateral combined controller, the integrators are augmented, respectively, into the loop of roll angle and lateral overload to ensure that the commands are tracked with zero steady-state error. Through simulation, the proposed controller demonstrates good performance in tracking the command of roll angle and lateral overload.

  2. Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Directory of Open Access Journals (Sweden)

    Wenxing Fu

    2016-01-01

    Full Text Available Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty.

  3. Hyperheat: a thermal signature model for super- and hypersonic missiles

    Science.gov (United States)

    van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.

    2017-10-01

    In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.

  4. Conventional Prompt Global Strike and Long Range Ballistic Missiles: Background and Issues

    Science.gov (United States)

    2017-02-03

    These include bombers, cruise missiles, ballistic missiles, and boost-glide technologies that would mate a rocket booster with a hypersonic glide...the early stages of development. They are envisioned to launch from air bases, like aircraft, but to travel at speeds that far exceed those of U.S...prototype rocket engine in 2005. 39 According to the Defense Science Board Task Force, this missile might have delivered a 2,000- pound payload over a

  5. Hyper Velocity Missiles For Defence

    Directory of Open Access Journals (Sweden)

    Faqir Minhas

    2005-10-01

    Full Text Available The paper reviews the history of technical development in the field of hypervelocity missiles. It highlights the fact that the development of anti-ballistic systems in USA, Russia, France, UK, Sweden, and Israel is moving toward the final deployment stage; that USA and Israel are trying to sell PAC 2 and Arrow 2 to India; and that India’s Agni and Prithvi missiles have improved their accuracy, with assistance from Russia. Consequently, the paper proposes enhanced effort for development in Pakistan of a basic hypersonic tactical missile, with 300 KM range, 500 KG payload, and multi-rolecapability. The author argues that a system, developed within the country, at the existing or upgraded facilities, will not violate MTCR restrictions, and would greatly enhance the country’s defense capability. Furthermore, it would provide high technology jobs toPakistani citizens. The paper reinforces the idea by suggesting that evolution in the field of aviation and electronics favors the development of ballistic, cruise and guided missile technologies; and that flight time of short and intermediate range missiles is so short that its interception is virtually impossible.

  6. RDHWT/MARIAH II Hypersonic Wind Tunnel Research Program

    Science.gov (United States)

    2008-09-01

    Summary of Baseline Design Concepts SSTO : Single Stage to Orbit TSTO: Two Stage to Orbit RBCC: Rocket-Based Combined Cycle ODWE: Oblique Detonation...for most other hypersonic air-breathing propulsion applications. Required test times for the Mach 8 Cruise and SSTO type vehicles are shown in Table 3...Air-BreathingMach Range Length, m (ft) Propulsion Mach 8 Cruise Missile 4 to 8 4.3 (14) Hydrocarbon Scramjet SSTO Space Access with RBCC 0 to 14 62.8

  7. Hyperheat: A thermal signature model for super-and hypersonic missiles

    NARCIS (Netherlands)

    Binsbergen, S.A. van; Zelderen, B. van; Veraar, R.G.; Bouquet, F.; Halswijk, W.H.C.; Schleijpen, H.M.A.

    2017-01-01

    In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures

  8. Employment of hypersonic glide vehicles: Proposed criteria for use

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Abel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Hypersonic Glide Vehicles (HGVs) are a type of reentry vehicle that couples the high speed of ballistic missiles with the maneuverability of aircraft. The HGV has been in development since the 1970s, and its technology falls under the category of Conventional Prompt Global Strike (CPGS) weapons. As noted by James M. Acton, a senior associate in the Nuclear Policy Program at the Carnegie Endowment, CPGS is a “missile in search of a mission.” With the introduction of any significant new military capability, a doctrine for use—including specifics regarding how, when and where it would be used, as well as tactics, training and procedures—must be clearly defined and understood by policy makers, military commanders, and planners. In this paper, benefits and limitations of the HGV are presented. Proposed criteria and four scenarios illustrate a possible method for assessing when to use an HGV.

  9. Phoenix Production

    Data.gov (United States)

    US Agency for International Development — Phoenix is a commercial off-the-shelf, web-based financial management system configured for USAID. Phoenix provides information about commitments, obligations, and...

  10. Test Methods for Short-Range Lethality Evaluation of Full-Scale Hypersonic Kinetic-Energy Missiles

    National Research Council Canada - National Science Library

    Johnson, G. L; Brooks, L. M; Morton, J. L

    2004-01-01

    .... Variables such as terminal dive angle, impact velocity, missile orientation at impact, hit-point on the target, and shot-line through the target all must be carefully controlled and documented...

  11. City of Phoenix - Energize Phoenix Program

    Energy Technology Data Exchange (ETDEWEB)

    Laloudakis, Dimitrios J.

    2014-09-29

    Energize Phoenix (EPHX) was designed as an ambitious, large-scale, three-year pilot program to provide energy efficiency upgrades in buildings, along Phoenix’s new Light Rail Corridor – part of a federal effort to reduce energy consumption and stimulate job growth, while simultaneously reducing the country’s carbon footprint and promoting a shift towards a green economy. The program was created through a 2010 competitive grant awarded to the City of Phoenix who managed the program in partnership with Arizona State University (ASU), the state’s largest university, and Arizona Public Service (APS), the state’s largest electricity provider. The U.S. Department of Energy (DOE) Better Buildings Neighborhood Program (BBNP) and the American Recovery and Reinvestment Act (ARRA) of 2009 provided $25M in funding for the EPHX program. The Light Rail Corridor runs through the heart of downtown Phoenix, making most high-rise and smaller commercial buildings eligible to participate in the EPHX program, along with a diverse mix of single and multi-family residential buildings. To ensure maximum impact and deeper market penetration, Energize Phoenix was subdivided into three unique parts: i. commercial rebate program, ii. commercial financing program, and iii. residential program Each component was managed by the City of Phoenix in partnership with APS. Phoenix was fortunate to partner with APS, which already operated robust commercial and residential rebate programs within its service territory. Phoenix tapped into the existing utility contractor network, provided specific training to over 100 contracting firms, and leveraged the APS rebate program structure (energy efficiency funding) to launch the EPHX commercial and residential rebate programs. The commercial finance program was coordinated and managed through a contract with National Bank of Arizona, NBAZ, which also provided project capital leveraging EPHX finance funds. Working in unison, approved contractors

  12. Missile Aerodynamics (Aerodynamique des Missiles)

    Science.gov (United States)

    1998-11-01

    of missiles, and therefore, less money for new developments. New types of international conflicts demand new kinds of missiles and a higher flexibility...us a lower production rate of missiles and, ods, while visualization helps in the development of therefore, less money for new developments. New...du mod~le de turbulence. Plusieurs Lauder [1 ~ 3].maillages distincts ont 6t 6tudi6s. Ils different essentiellement par le nombre de points dans la

  13. Missile proliferation and missile defense

    International Nuclear Information System (INIS)

    Zarif, M. Javad

    2002-01-01

    The global security environment is becoming increasingly volatile and dangerous. A new arms race is looming in the horizon ... [Missiles have] become the strong weapon of the poor and the discriminated against who find themselves vulnerable to outside threat. They believe missiles may prove instrumental in deterring the enemy from beginning a full scale war ... the engagement of all states at the United Nations in the issue of missiles, through the panel of governmental experts, and the new idea of exploring the subject in the Conference on Disarmament do provide a dim light at the end of the tunnel. ... Efforts at non-proliferation of missiles are more likely to succeed when viewed as an integral part of a global and comprehensive negotiation and progress in other areas of disarmament. (author)

  14. Tactical missile aerodynamics

    Science.gov (United States)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  15. Phoenix's Wet Chemistry Laboratory Units

    Science.gov (United States)

    2008-01-01

    This image shows four Wet Chemistry Laboratory units, part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument on board NASA's Phoenix Mars Lander. This image was taken before Phoenix's launch on August 4, 2007. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Martian Surface as Seen by Phoenix

    Science.gov (United States)

    2008-01-01

    This anaglyph, acquired by NASA's Phoenix Lander's Surface Stereo Imager on Sol 36, the 36th Martian day of the mission (July 1, 2008), shows a stereoscopic 3D view of a trench informally called 'Snow White' dug by Phoenix's Robotic Arm. Phoenix's solar panel is seen in the bottom right corner of the image. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Phoenix v. 1.0-SNAPSHOT

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-21

    Phoenix is a Java Virtual Machine (JVM) based library for performing mathematical and astrodynamics calculations. It consists of two primary sub-modules, phoenix-math and phoenix-astrodynamics. The mathematics package has a variety of mathematical classes for performing 3D transformations, geometric reasoning, and numerical analysis. The astrodynamics package has various classes and methods for computing locations, attitudes, accesses, and other values useful for general satellite modeling and simulation. Methods for computing celestial locations, such as the location of the Sun and Moon, are also included. Phoenix is meant to be used as a library within the context of a larger application. For example, it could be used for a web service, desktop client, or to compute simple values in a scripting environment.

  18. Hypersonic phononic crystals.

    Science.gov (United States)

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  19. Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities

    Science.gov (United States)

    2016-04-28

    Page 1 GAO-16-339R Ballistic Missile Defense 441 G St. N.W. Washington, DC 20548 April 28, 2016 Congressional Committees Missile Defense... Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century, the Department of Defense (DOD) has been...funding efforts to develop a system to detect, track, and defeat enemy ballistic missiles. The current system—the Ballistic Missile Defense System

  20. Phoenix's Workplace Map

    Science.gov (United States)

    2008-01-01

    This image from NASA's Phoenix Mars Lander shows the spacecraft's recent activity site as of the 23rd Martian day of the mission, or Sol 22 (June 16, 2008), after the spacecraft touched down on the Red Planet's northern polar plains. The mosaic was taken by the lander's Surface Stereo Imager (SSI). Phoenix's solar panels are seen in the foreground. The trench informally called 'Snow White' was dug by Phoenix's Robotic Arm in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, and has been dubbed 'Croquet Ground.' The digging site has been nicknamed 'Wonderland.' Snow White, seen here in an SSI image from Sol 22 (June 16, 2008) is about 2 centimeters (.8 inches) deep and 30 centimeters (12 inches) long. As of Sol 24 (June 18, 2008), the trench is 5 centimeters (2 inches deep) and the trench has been renamed 'Snow White 1,' as a second trench has been dug to its right and nicknamed 'Snow White 2.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Global strike hypersonic weapons

    Science.gov (United States)

    Lewis, Mark J.

    2017-11-01

    Beginning in the 1940's, the United States has pursued the development of hypersonic technologies, enabling atmospheric flight in excess of five times the speed of sound. Hypersonic flight has application to a range of military and civilian applications, including commercial transport, space access, and various weapons and sensing platforms. A number of flight tests of hypersonic vehicles have been conducted by countries around the world, including the United States, Russia, and China, that could lead the way to future hypersonic global strike weapon systems. These weapons would be especially effective at penetrating conventional defenses, and could pose a significant risk to national security.

  2. Phoenix's Lay of the Land

    Science.gov (United States)

    2008-01-01

    This image from NASA's Phoenix Mars Lander shows the spacecraft's recent activity site as of the 23rd Martian day of the mission, or Sol 22 (June 16, 2008), after the spacecraft touched down on the Red Planet's northern polar plains. The mosaic was taken by the lander's Surface Stereo Imager (SSI). Parts of Phoenix can be seen in the foreground. The first two trenches dug by the lander's Robotic Arm, called 'Dodo' and 'Goldilocks,' were enlarged on the 19th Martian day of the mission, or Sol 18 (June 12, 2008), to form one trench, dubbed 'Dodo-Goldilocks.' Scoops of material taken from those trenches are informally called 'Baby Bear' and 'Mama Bear.' Baby Bear was carried to Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA, instrument for analysis, while Mama Bear was delivered to Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA, for a closer look. The color inset picture of the Dodo-Goldilocks trench, also taken with Phoenix's SSI, reveals white material thought to be ice. More recently, on Sol 22 (June 16, 2008), Phoenix's Robotic Arm began digging a trench, dubbed 'Snow White,' in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, and has been dubbed 'Croquet Ground.' The digging site has been nicknamed 'Wonderland.' The Snow White trench, seen here in an SSI image from Sol 22 (June 16, 2008) is about 2 centimeters (.8 inches) deep and 30 centimeters (12 inches) long. As of Sol 25 (June 19, 2008), the trench is 5 centimeters (2 inches deep) and the trench has been renamed 'Snow White 1,' as a second trench has been dug to its right and nicknamed 'Snow White 2.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Phoenix Study

    Data.gov (United States)

    U.S. Environmental Protection Agency — Phoenix Traffic and Mobile Data. This dataset is associated with the following publication: Baldauf , R., V. Isakov , P. Deshmukh, and A. Venkatram. Influence of...

  4. Missile proliferation and missile defence

    International Nuclear Information System (INIS)

    Marin-Bosch, Miguel

    2002-01-01

    Nothing should serve to justify the acquisition and development of ballistic missiles. The solution to this problem is similar to that of all weapons of mass destruction, including nuclear weapons, i.e., a total ban of their use, testing, manufacture and development. Unfortunately, given the present international climate, ballistic missiles will continue to be an important component of the arsenals of several countries for years to come. ...what you invent today to enhance your security has a tendency to reappear later elsewhere as a threat. (author)

  5. Phoenix Trenches

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Annotated Version [figure removed for brevity, see original site] Left-eye view of a stereo pair [figure removed for brevity, see original site] Right-eye view of a stereo pair This image is a stereo, panoramic view of various trenches dug by NASA's Phoenix Mars Lander. The images that make up this panorama were taken by Phoenix's Surface Stereo Imager at about 4 p.m., local solar time at the landing site, on the 131st, Martian day, or sol, of the mission (Oct. 7, 2008). In figure 1, the trenches are labeled in orange and other features are labeled in blue. Figures 2 and 3 are the left- and right-eye members of a stereo pair. For scale, the 'Pet Donkey' trench just to the right of center is approximately 38 centimeters (15 inches) long and 31 to 34 centimeters (12 to 13 inches) wide. In addition, the rock in front of it, 'Headless,' is about 11.5 by 8.5 centimeters (4.5 by 3.3 inches), and about 5 centimeters (2 inches) tall. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. The 1 × 1 m hypersonic wind tunnel Kochel/Tullahoma 1940-1960

    Science.gov (United States)

    Eckardt, Dietrich

    2015-03-01

    Peenemünde and Cape Canaveral mark cornerstones of space history. Kochel in Southern Germany and Tullahoma in Tennessee, USA also belong in this category. The technically unique Kochel wind tunnel was part of the German long-distance missile development strategy, planned and prepared in secret before the beginning of World War II. A 57 MW closed-circuit wind tunnel facility with 1 × 1 m measuring section was planned for continuous-flow simulation at high Mach numbers Ma 7-10. In the early 1940 s a site beside the Walchensee Power Station at Kochel am See in Upper Bavaria, Germany was chosen to provide the required altitude difference of 200 m for the hydraulic turbine drives. The preparatory activities for the erection of this impressive hypersonic wind tunnel facility were pushed ahead until an enforced temporary pause in September 1944. In early May 1945 US troops occupied the area and, in due course, scientists of General Arnold's Scientific Advisory Group, the `von Kármán team', ordered the transfer to the USA of available equipment, design materials and other paperwork. Here, at the Arnold Engineering Development Center (AEDC) Tullahoma, TN this `Tunnel A' was built to begin operation around 1957. The testing was conducted on the Mach 7 experimental aircraft X-15, space shuttle developments and still secret investigations on unmanned hypersonic vehicles.

  7. CFD for hypersonic airbreathing aircraft

    Science.gov (United States)

    Kumar, Ajay

    1989-01-01

    A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.

  8. Curved electromagnetic missiles

    International Nuclear Information System (INIS)

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  9. Pegasus hypersonic flight research

    Science.gov (United States)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  10. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov (United States)

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  11. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2005-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  12. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2004-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  13. Characteristics of tornado generated missiles

    International Nuclear Information System (INIS)

    Bhattacharyya, A.K.; Boritz, R.C.; Niyogi, P.K.

    1975-10-01

    The development of techniques designed to calculate tornado missile velocities is traced. It is shown that there is a need for a consistent method for obtaining missile velocities for a variety of tornado parameters. A consistent method for determination of trajectories and velocities of missiles generated by a tornado is described. The effects of plant layout upon missile impact velocity at a given building are discussed from the point of view of determining the necessary missile barrier characteristics. 19 references

  14. X-43 Hypersonic Vehicle Technology Development

    Science.gov (United States)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  15. Nanotechnology for missiles

    Science.gov (United States)

    Ruffin, Paul B.

    2004-07-01

    Nanotechnology development is progressing very rapidly. Several billions of dollars have been invested in nanoscience research since 2000. Pioneering nanotechnology research efforts have been primarily conducted at research institutions and centers. This paper identifies developments in nanoscience and technology that could provide significant advances in missile systems applications. Nanotechnology offers opportunities in the areas of advanced materials for coatings, including thin-film optical coatings, light-weight, strong armor and missile structural components, embedded computing, and "smart" structures; nano-particles for explosives, warheads, turbine engine systems, and propellants to enhance missile propulsion; nano-sensors for autonomous chemical detection; and nano-tube arrays for fuel storage and power generation. The Aviation and Missile Research, Development, and Engineering Center (AMRDEC) is actively collaborating with academia, industry, and other Government agencies to accelerate the development and transition of nanotechnology to favorably impact Army Transformation. Currently, we are identifying near-term applications and quantifying requirements for nanotechnology use in Army missile systems, as well as monitoring and screening research and developmental efforts in the industrial community for military applications. Combining MicroElectroMechanical Systems (MEMS) and nanotechnology is the next step toward providing technical solutions for the Army"s transformation. Several research and development projects that are currently underway at AMRDEC in this technology area are discussed. A top-level roadmap of MEMS/nanotechnology development projects for aviation and missile applications is presented at the end.

  16. Ballistic missile defense effectiveness

    Science.gov (United States)

    Lewis, George N.

    2017-11-01

    The potential effectiveness of ballistic missile defenses today remains a subject of debate. After a brief discussion of terminal and boost phase defenses, this chapter will focus on long-range midcourse defenses. The problems posed by potential countermeasures to such midcourse defenses are discussed as are the sensor capabilities a defense might have available to attempt to discriminate the actual missile warhead in a countermeasures environment. The role of flight testing in assessing ballistic missile defense effectiveness is discussed. Arguments made about effectiveness by missile defense supporters and critics are summarized.

  17. Embedded Systems - Missile Detection/Interception

    Directory of Open Access Journals (Sweden)

    Luis Cintron

    2010-01-01

    Full Text Available Missile defense systems are often related to major military resources aimed at shielding a specific region from incoming attacks. They are intended to detect, track, intercept, and destruct incoming enemy missiles. These systems vary in cost, efficiency, dependability, and technology. In present times, the possession of these types of systems is associated with large capacity military countries. Demonstrated here are the mathematical techniques behind missile systems which calculate trajectories of incoming missiles and potential intercept positions after initial missile detection. This procedure involved the use of vector-valued functions, systems of equations, and knowledge of projectile motion concepts.

  18. Trajectory optimization using indirect methods and parametric scramjet cycle analysis

    OpenAIRE

    Williams, Joseph

    2016-01-01

    This study investigates the solution of time sensitive regional strike trajectories for hypersonic missiles. This minimum time trajectory is suspected to be best performed by scramjet powered hypersonic missiles which creates strong coupled interaction between the flight dynamics and the performance of the engine. Comprehensive engine models are necessary to gain better insight into scramjet propulsion. Separately, robust and comprehensive trajectory analysis provides references for vehicles ...

  19. New Hypersonic Shock Tunnel at the Laboratory of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu

    International Nuclear Information System (INIS)

    Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B. Jr; Oliveira, A. C.; Gomes, F. A. A.; Myrabo, L. N.; Nagamatsu, Henry T.

    2008-01-01

    The new 0.60-m. nozzle exit diameter hypersonic shock tunnel was designed to study advanced air-breathing propulsion system such as supersonic combustion and/or laser technologies. In addition, it may be used for hypersonic flow studies and investigations of the electromagnetic (laser) energy addition for flow control. This new hypersonic shock tunnel was designed and installed at the Laboratory for of Aerothermodynamics and Hypersonics Prof. Henry T. Nagamatsu, IEAv-CTA, Brazil. The design of the tunnel enables relatively long test times, 2-10 milliseconds, suitable for the experiments performed at the laboratory. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures up to 360 atm. and up to 9,000 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization

  20. Tornado-borne missile speeds. Final report

    International Nuclear Information System (INIS)

    Simiu, E.; Cordes, M.

    1976-04-01

    An investigation of the question of tornado-borne missile speeds was carried out, with a view to identify pertinent areas of uncertainty and to estimate credible tornado-borne missile speeds - within the limitations inherent in the present state of the art. The investigation consists of two parts: (1) a study in which a rational model for the missile motion is proposed, and numerical experiments are carried out corresponding to various assumptions on the initial conditions of the missile motion, the structure of the tornado flow, and the aerodynamic properties of the missile; (2) a theoretical and experimental study of tornado-borne missile aerodynamics, conducted by Colorado State Univ. (CSU) to be covered in a separate report by CSU. In the present report, the factors affecting missile motion and their influence upon such motion are examined

  1. Strategic Missile Defense & Nuclear Deterrence

    Science.gov (United States)

    Grego, Laura

    The United States has pursued defenses against nuclear-armed long-range ballistic missiles since at least the 1950s. At the same time, concerns that missile defenses could undermine nuclear deterrence and potentially spark an arms race led the United States and Soviet Union to negotiate limits on these systems. The 1972 Anti-Ballistic Missile Treaty constrained strategic missile defenses for thirty years. After abandoning the treaty in 2002, President George W. Bush began fielding the Ground-based Midcourse Defense (GMD) homeland missile defense system on an extremely aggressive schedule, nominally to respond to threats from North Korea and Iran. Today, nearly fifteen years after its initial deployment, the potential and the limits of this homeland missile defense are apparent. Its test record is poor and it has no demonstrated ability to stop an incoming missile under real-world conditions. No credible strategy is in place to solve the issue of discriminating countermeasures. Insufficient oversight has not only exacerbated the GMD system's problems, but has obscured their full extent, which could encourage politicians and military leaders to make decisions that actually increase the risk of a missile attack against the United States. These are not the only costs. Both Russia and China have repeatedly expressed concerns that U.S. missile defenses adversely affect their own strategic capabilities and interests, particularly taken in light of the substantial US nuclear forces. This in turn affects these countries' nuclear modernization priorities. This talk will provide a technical overview of the US strategic missile defense system, and how it relates to deterrence against non-peer adversaries as well as how it affects deterrence with Russia and China and the long-term prospects for nuclear reductions

  2. Missile rolling tail brake torque system. [simulating bearing friction on canard controlled missiles

    Science.gov (United States)

    Davis, W. T. (Inventor)

    1984-01-01

    Apparatus for simulating varying levels of friction in the bearings of a free rolling tail afterbody on a canard-controlled missile to determine friction effects on aerodynamic control characteristics is described. A ring located between the missile body and the afterbody is utilized in a servo system to create varying levels of friction between the missile body and the afterbody to simulate bearing friction.

  3. 15 CFR 742.5 - Missile technology.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Missile technology. 742.5 Section 742... BASED CONTROLS § 742.5 Missile technology. (a) License requirements. (1) In support of U.S. foreign... establish the existence of a contract. (d) Missile Technology Control Regime. Missile Technology Control...

  4. Hypersonic Materials and Structures

    Science.gov (United States)

    Glass, David E.

    2016-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this presentation is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components.

  5. Advanced Missile Signature Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  6. Comparison of some Phoenix and gusev soil types

    DEFF Research Database (Denmark)

    Walter..[], Goetz; Hviid, S.F.; Madsen, Morten Bo

    2010-01-01

    The comparison of soil particles at the Phoenix landing site and in Gusev Crater provides clues on their origin and global distribution. Some unusual Phoenix particles are possibly of (more) local origin, as they appear to be absent in Gusev dunes....

  7. TBCC Discipline Overview. Hypersonics Project

    Science.gov (United States)

    Thomas, Scott R.

    2011-01-01

    The "National Aeronautics Research and Development Policy" document, issued by the National Science and Technology Council in December 2006, stated that one (among several) of the guiding objectives of the federal aeronautics research and development endeavors shall be stable and long-term foundational research efforts. Nearly concurrently, the National Academies issued a more technically focused aeronautics blueprint, entitled: the "Decadal Survey of Civil Aeronautics - Foundations for the Future." Taken together these documents outline the principles of an aeronautics maturation plan. Thus, in response to these overarching inputs (and others), the National Aeronautics and Space Administration (NASA) organized the Fundamental Aeronautics Program (FAP), a program within the NASA Aeronautics Research Mission Directorate (ARMD). The FAP initiated foundational research and technology development tasks to enable the capability of future vehicles that operate across a broad range of Mach numbers, inclusive of the subsonic, supersonic, and hypersonic flight regimes. The FAP Hypersonics Project concentrates on two hypersonic missions: (1) Air-breathing Access to Space (AAS) and (2) the (Planetary Atmospheric) Entry, Decent, and Landing (EDL). The AAS mission focuses on Two-Stage-To-Orbit (TSTO) systems using air-breathing combined-cycle-engine propulsion; whereas, the EDL mission focuses on the challenges associated with delivering large payloads to (and from) Mars. So, the FAP Hypersonic Project investments are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime, which ultimately will be required for practical systems with highly integrated aerodynamic/vehicle and propulsion/engine technologies. Within the FAP Hypersonics, the technology management is further divided into disciplines including one targeting Turbine-Based Combine-Cycle (TBCC) propulsion. Additionally, to obtain expertise and support from outside

  8. Hypersonic sliding target tracking in near space

    Directory of Open Access Journals (Sweden)

    Xiang-yu Zhang

    2015-12-01

    Full Text Available To improve the tracking accuracy of hypersonic sliding target in near space, the influence of target hypersonic movement on radar detection and tracking is analyzed, and an IMM tracking algorithm is proposed based on radial velocity compensating and cancellation processing of high dynamic biases under the earth centered earth fixed (ECEF coordinate. Based on the analysis of effect of target hypersonic movement, a measurement model is constructed to reduce the filter divergence which is caused by the model mismatch. The high dynamic biases due to the target hypersonic movement are approximately compensated through radial velocity estimation to achieve the hypersonic target tracking at low systematic biases in near space. The high dynamic biases are further eliminated by the cancellation processing of different radars, in which the track association problem can be solved when the dynamic biases are low. An IMM algorithm based on constant acceleration (CA, constant turning (CT and Singer models is used to achieve the hypersonic sliding target tracking in near space. Simulation results show that the target tracking in near space can be achieved more effectively by using the proposed algorithm.

  9. 'Rosy Red' Soil in Phoenix's Scoop

    Science.gov (United States)

    2008-01-01

    This image shows fine-grained material inside the Robotic Arm scoop as seen by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander on June 25, 2008, the 30th Martian day, or sol, of the mission. The image shows fine, fluffy, red soil particles collected in a sample called 'Rosy Red.' The sample was dug from the trench named 'Snow White' in the area called 'Wonderland.' Some of the Rosy Red sample was delivered to Phoenix's Optical Microscope and Wet Chemistry Laboratory for analysis. The RAC provides its own illumination, so the color seen in RAC images is color as seen on Earth, not color as it would appear on Mars. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. GMAP Phoenix 2013 data

    Data.gov (United States)

    U.S. Environmental Protection Agency — mobile monitoring data from the 2013 Phoenix study. This dataset is associated with the following publication: Venkatram, A., V. Isakov , P. Deshmukh, and R....

  11. Numerical simulation of hypersonic flight experiment vehicle

    OpenAIRE

    Yamamoto, Yukimitsu; Yoshioka, Minako; 山本 行光; 吉岡 美菜子

    1994-01-01

    Hypersonic aerodynamic characteristics of Hypersonic FLight EXperiment (HYFLEX vehicle were investigated by numerical simulations using Navier-Stokes CFD (Computational Fluid Dynamics) code of NAL. Numerical results were compared with experimental data obtained at Hypersonic Wind Tunnel at NAL. In order to investigate real flight aerodynamic characteristics. numerical calculations corresponding to the flight conditions suffering from maximum aero thermodynamic heating were also made and the d...

  12. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    Science.gov (United States)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  13. Missile defense in the United States

    OpenAIRE

    Heurlin, Bertil

    2004-01-01

    The basic arguments of this paper are, first, that the current US-missile defense, being operative from fall 2004, is based upon the former experiences with missile defense, second, that missile defense closely associated with weapons of mass destruction has gained the highest priority in American national security policy due to the 9.11 attacks, and third, that the superior argument for establishing an American missile defense is to maintain global, long term political-strategic superiority....

  14. Missile non-proliferation: an alternative approach

    International Nuclear Information System (INIS)

    Delory, Stephane

    2011-01-01

    In this report, the author first proposes an overview of the notion of missile prohibition. He notices that the association between weapons of mass destruction and missiles is a prelude to the legitimacy of missile control, notably within the framework of the Missile Technology Control Regime or MTCR. He also comments the notion of total ban. In a second part, the author analyses and discusses the limitations of the control of technology diffusion. He discusses the role of the MTCR, comments the evolution of this regime with the taking of China and Russia into consideration, the impacts of national implementations of export regimes on the MTCR, and economic aspects of control implementation. In the next part, the author addresses other kinds of limitations, i.e. those related with capacity evolutions of proliferating States. The last part addresses the evolution towards a new definition of approach to missile non-proliferation, notably in terms of perception of missile roles and of technology transfer controls

  15. Japan and Ballistic Missile Defense

    National Research Council Canada - National Science Library

    Swaine, Michael

    2001-01-01

    Spurred by a perceived growing ballistic missile threat from within the Asia-Pacific region and requests from the United States to support research and development on components of a missile defense...

  16. 'Dodo-Goldilocks' Trench Dug by Phoenix

    Science.gov (United States)

    2008-01-01

    This color image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 19th day of the mission, or Sol 19 (June 13, 2008), after the May 25, 2008, landing. This image shows one trench informally called 'Dodo-Goldilocks' after two digs (dug on Sol 18, or June 12, 2008) by Phoenix's Robotic Arm. The trench is 22 centimeters (8.7 inches) wide and 35 centimeters (13.8 inches) long. At its deepest point, the trench is 7 to 8 centimeters (2.7 to 3 inches) deep. White material, possibly ice, is located only at the upper portion of the trench, indicating that it is not continuous throughout the excavated site. According to scientists, the trench might be exposing a ledge, or only a portion of a slab, of the white material. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. A Potent Vector: Assessing Chinese Cruise Missile Developments

    Science.gov (United States)

    2014-01-01

    likelihood that they will successfully penetrate defenses.1 Employed in salvos, perhaps in tandem with ballistic missiles, cruise missiles could...series cruise missiles for export.4 Finally, for three decades China has marketed a wide range of indig- enously produced cruise missiles (and other...distances and thus more vulnerable to at- tacks from advanced air defense systems, such as Aegis. Both missiles execute sea- skimming attacks at an

  18. Ballistic Missile Defense in Europe

    OpenAIRE

    Sarihan, Ali; Bush, Amy; Summers, Lawrence; Thompson, Brent; Tomasszewski, Steven

    2009-01-01

    This paper will build on ballistic missile defense in Europe. In the first part, a brief historical overview will place the current public management issue into light. This is followed by a discussion of the main actors in the international debate, the problems that arise and the available options and recommendations to address missile defense. In the second part, differences between George W. Bush and Barack H. Obama will analyze under the title “Ballistic Missile Defense in Europe: Evolving...

  19. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  20. Historical development of world wide guided missiles

    Science.gov (United States)

    Spearman, M. L.

    1978-01-01

    This paper attempts to put in perspective the development of missiles from early history to present time. The influence of World War II in accelerating the development of guided missiles, particularly through German scientists, is discussed. The dispersion of German scientists to other countries and the coupling of their work with native talent to develop guided missiles is traced. Particular emphasis is placed on the evolution of the missile in the U.S. and the U.S.S.R. Since the Soviets possess what is probably the world's most complete array of dedicated missile system types, their known inventory is reviewed in some detail.

  1. CFD applications in hypersonic flight

    Science.gov (United States)

    Edwards, T. A.

    1992-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, CFD is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are solved with robust upwind differencing schemes. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but various strategies are being exploited to reduce the time required for complete vehicle simulations.

  2. Increased Range/Mini-Cruise Missile

    National Research Council Canada - National Science Library

    2006-01-01

    Technical Directions Inc. (TDI), Ortonville, Michigan, was asked by the U.S. Army and the U.S. Air Force to improve the efficiency of their J-45 missile engine for the NLOS-LS LAM Loitering Attack Missile...

  3. Cost of space-based laser ballistic missile defense.

    Science.gov (United States)

    Field, G; Spergel, D

    1986-03-21

    Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to be used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ratio. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems.

  4. Cost Effective Regional Ballistic Missile Defense

    Science.gov (United States)

    2016-02-16

    deploying advanced air defense systems18, such as the Russian S-300 and S-500, and concealing them in hardened, camouflaged sites, such as extensive... Russian objections to the European Phased Adaptive Approach (EPAA) and fund homeland defense priorities.39 Furthermore, the PTSS system was also... Theatre Ballistic Missile Defence Capability Becomes Operational,” Jane’s Missiles & Rockets, 1 February 2011. 55 Joseph W. Kirschbaum, REGIONAL MISSILE

  5. Ballistic Missile Defense

    OpenAIRE

    Mayer, Michael

    2011-01-01

    At the 2010 NATO summit in Lisbon, the alliance decided to move forward on the development of a territorial ballistic missile defense (BMD) system and explore avenues for cooperation with Russia in this endeavor. Substantial progress on BMD has been made over the past decade, but some questions remain regarding the ultimate strategic utility of such a system and whether its benefi ts outweigh the possible opportunity costs. Missile defense has been a point of contention between the US and its...

  6. System analysis of high speed, long range weapon systems

    NARCIS (Netherlands)

    Moerel, J.L.P.A.; Halswijk, W.H.C.

    2005-01-01

    Many countries are developing technologies for future hypersonic air breathing cruise missiles. These missiles are foreseen to be employed against, amongst others, deeply buried targets. The main technological challenges are related to severe aerodynamic heating and complex physical processes of

  7. Efficacy of Phoenix dactylifera L. (Date Palm Creams on Healthy Skin

    Directory of Open Access Journals (Sweden)

    Sidra Meer

    2017-05-01

    Full Text Available The date palm fruit (Phoenix dactylifera L. Arecaceae is used in most of the countries of the world and is an essential part of the diet, especially in many Arabian countries. Phoenix dactylifera L. fruits are a rich source of sugars (glucose and fructose, vitamins (A, C, and B complex, fibers, minerals, and phenolic compounds having antioxidant and anti-inflammatory properties. This study is designed to explore the Phoenix dactylifera L. fruit for skin care. A single-blinded, placebo control trial was conducted, including 11 healthy female volunteers after their informed consent. The efficacy of the Phoenix dactylifera L. extract (4% was evaluated in cream form after one, two, three, four, six, and eight weeks of treatment compared with the baseline. Prior to the study, the composition of the extract was analyzed to understand the underlying mechanisms by which the extract affects skin. Treating facial skin with the Phoenix dactylifera L. extract significantly improved all parameters investigated, such as skin elasticity, pigmentation, redness, brightness, and hydration and led to the improvement of the facial skin. There were no adverse reactions noted during the course of the patch test, demonstrating that the extract could be safe to apply on the skin. The Phoenix dactylifera L. fruit extract serves as a skin care ingredient that significantly improves characteristics important for perception of skin ageing and health. The efficacy of the treatment is possibly due to a combination of numerous active substances found in the Phoenix dactylifera L. extract.

  8. Phoenix I energy extraction experiment

    International Nuclear Information System (INIS)

    Hoffman, J.M.; Patterson, E.L.; Tisone, G.C.; Moreno, J.B.

    1980-07-01

    Energy extraction experiments are reported for the Phoenix I amplifier driven by a discharge-initiated oscillator-preamplifier system operating on mixtures of either SF 6 -HI or SF 6 -C 2 H 6 and an electron-beam-initiated intermediate amplifer (lambda-3) fueled with H 2 and F 2 mixtures. When the oscillator-preamplifier system operated with mixtures of SF 6 -HI the input spectrum to the Phoenix I amplifier contained approx. 28 P-branch vibrational-rotational lines which were almost identical to the input spectrum from the H 2 -F 2 fueled oscillator. In this case the energy extraction measurements were essentially the same as the results obtained with the spectrum produced using H 2 and F 2 mixtures. For an input intensity of 10 7 W/cm 2 , 170 J were extracted from the amplifier. With the SF 6 -C 2 H 6 spectrum, extraction was only obtained from the first three excited vibrational levels. This result indicates that most of the energy in the amplifier could be extracted on the first three excited vibrational levels. It is shown that the extraction results can be fit with a simple two level model. The radius of curvature of the beam was estimated using a lateral shearing interferometer. It was found that the Phoenix I amplifier altered the radius of curvature

  9. Probability and containment of turbine missiles

    International Nuclear Information System (INIS)

    Yeh, G.C.K.

    1976-01-01

    With the trend toward ever larger power generating plants with large high-speed turbines, an important plant design consideration is the potential for and consequences of mechanical failure of turbine rotors. Such rotor failure could result in high-velocity disc fragments (turbine missiles) perforating the turbine casing and jeopardizing vital plant systems. The designer must first estimate the probability of any turbine missile damaging any safety-related plant component for his turbine and his plant arrangement. If the probability is not low enough to be acceptable to the regulatory agency, he must design a shield to contain the postulated turbine missiles. Alternatively, the shield could be designed to retard (to reduce the velocity of) the missiles such that they would not damage any vital plant system. In this paper, some of the presently available references that can be used to evaluate the probability, containment and retardation of turbine missiles are reviewed; various alternative methods are compared; and subjects for future research are recommended. (Auth.)

  10. Influence of Missile Fusillade Engagement Mode on Operation Efficiency

    Institute of Scientific and Technical Information of China (English)

    BU Xian-jin; REN Yi-guang; SHA Ji-chang

    2008-01-01

    Shoot efficiency is one of the most important evaluation indexes of the operation efficiency of weapon system. In this paper, based on definitions of the probability and the expected number of missed attacking missiles, the expected numbers of anti-missiles and attacking missiles hit by single anti-missile, fusillade mechanism of multi-missile is analyzed systematically. The weapon operation efficiency in various engagement patterns is also studied. The results show that double missiles fusillade is the most feasible manner for increasing the weapon operation efficiency.

  11. Tornado missile simulation and risk analysis

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Chu, J.

    1978-01-01

    Mathematical models of the contributing events to the tornado missile hazard at nuclear power plants have been developed in which the major sources of uncertainty have been considered in a probabilistic framework. These models have been structured into a sequential event formalism which permits the treatment of both single and multiple missile generation events. A simulation computer code utilizing these models has been developed to obtain estimates of tornado missile event likelihoods. Two case studies have been analyzed; the results indicate that the probability of a single missile from the sampling population impacting any of the plant's targets is less then about 10 -7 per reactor-year. Additional work is needed for verification and sensitivity study

  12. Tornado missile impact study

    International Nuclear Information System (INIS)

    McDonald, J.R.

    1991-01-01

    UCRL-15910 specifies wind and tornado missiles for moderate- and high-hazard DOE facilities. Wall-barrier specimens have been tested at the Tornado Missile Impact Facility at Texas Tech University. The facility has an air-activated tornado missile cannon capable of firing 2x4 timber planks weighing 12 lb at speeds up to 150 mph and 3-in-diameter steel pipes weighing 75 lb at speeds to 7 5 mph. Wall barriers tested to date include reinforced concrete walls from 4-in. to 10-in. thick; 8-in. and 12-in. walls of reinforced concrete masonry units (CMU); two other masonry wall configurations consisting of an 8-in. CMU with a 4-in. clay-brick veneer and a 10-in. composite wall with two wythes of 4-in. clay brick. The impact test series is designed to determine the impact speed that will produce backface spall of each wall barrier. A set of 15 wall sections has been constructed and tested at this time. Preliminary finding suggest that all cells of CMU walls must be grouted to prevent missile penetration. Walls recommended in the workshop on UCRL-15910 provide acceptable protection if cracking can be accepted

  13. Detection technique of targets for missile defense system

    Science.gov (United States)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  14. Digibaro pressure instrument onboard the Phoenix Lander

    Science.gov (United States)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  15. HOMA: Israel's National Missile Defense Strategy (Abridged Version)

    National Research Council Canada - National Science Library

    Lailari, Guermantes

    2002-01-01

    ... (Hebrew for Fortress Wall), Chapter 1 discusses the fundamentals of missile defense and the reason why Israel's missile defense system affects US national security interests, Chapter 2 describes Israel's missile defense...

  16. Ship Anti Ballistic Missile Response (SABR)

    OpenAIRE

    Johnson, Allen P.; Breeden, Bryan; Duff, Willard Earl; Fishcer, Paul F.; Hornback, Nathan; Leiker, David C.; Carlisle, Parker; Diersing, Michael; Devlin, Ryan; Glenn, Christopher; Hoffmeister, Chris; Chong, Tay Boon; Sing, Phang Nyit; Meng, Low Wee; Meng, Fann Chee

    2006-01-01

    Includes supplementary material. Based on public law and Presidential mandate, ballistic missile defense development is a front-burner issue for homeland defense and the defense of U.S. and coalition forces abroad. Spearheaded by the Missile Defense Agency, an integrated ballistic missile defense system was initiated to create a layered defense composed of land-, air-, sea-, and space-based assets. The Ship Anti-Ballistic Response (SABR) Project is a systems engineering approach t...

  17. Overview of hypersonic CFD code calibration studies

    Science.gov (United States)

    Miller, Charles G.

    1987-01-01

    The topics are presented in viewgraph form and include the following: definitions of computational fluid dynamics (CFD) code validation; climate in hypersonics and LaRC when first 'designed' CFD code calibration studied was initiated; methodology from the experimentalist's perspective; hypersonic facilities; measurement techniques; and CFD code calibration studies.

  18. Power lines Phoenix and the making of the modern southwest

    CERN Document Server

    Needham, Andrew

    2014-01-01

    In 1940, Phoenix was a small, agricultural city of sixty-five thousand, and the Navajo Reservation was an open landscape of scattered sheepherders. Forty years later, Phoenix had blossomed into a metropolis of 1.5 million people and the territory of the Navajo Nation was home to two of the largest strip mines in the world. Five coal-burning power plants surrounded the reservation, generating electricity for export to Phoenix, Los Angeles, and other cities. Exploring the postwar developments of these two very different landscapes, Power Lines tells the story of the far-reaching environmental a

  19. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  20. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  1. Aerodynamic Performance Predictions of a SA- 2 Missile Using Missile DATCOM

    Science.gov (United States)

    2009-09-01

    transformation that is given by Eqs. (4) and (5). Eqs. (8)–(10) show the formulation in the body and wind axis terminology. 2,0D AC C kC   L (8) 10 cos...by Teo (2008) using Missile LAB code. However, the missile geometry then was set up from a rudimentary drawing and not one that represented a high...provided by MSIC. These particular cases were run forcing turbulent flow with a surface roughness of 0.001016 cm, which was found by Teo (2008) to

  2. A review of electromagnetic missiles

    International Nuclear Information System (INIS)

    Wu, T.T.; Shen, H.M.; Myers, J.M.

    1988-01-01

    Theoretical results are reviewed pertaining to the behavior of transient electromagnetic fields in the limit of great distances from their sources. In 1985 it was shown that pulses of finite total radiated energy could propagate to a distant receiver, delivering energy that decreases much more slowly than the usual r - 2 . Such pulses have been referred to as electromagnetic (EM) missiles. The types first discovered propagate along a straight line with a monotonically (though slowly) decreasing time-integrated flux. Other types are now known. One type can be made to rise and fall with increasing distance; another is the curved EM missile. Early efforts to classify EM missiles are reviewed

  3. Missile sizing for ascent-phase intercept

    Energy Technology Data Exchange (ETDEWEB)

    Hull, D.G. [Univ. of Texas, Austin, TX (United States). Dept. of Aerospace Engineering and Engineering Mechanics; Salguero, D.E. [Sandia National Labs., Albuquerque, NM (United States)

    1994-11-01

    A computer code has been developed to determine the size of a ground-launched, multistage missile which can intercept a theater ballistic missile before it leaves the atmosphere. Typical final conditions for the inteceptor are 450 km range, 60 km altitude, and 80 sec flight time. Given the payload mass (35 kg), which includes a kinetic kill vehicle, and achievable values for the stage mass fractions (0.85), the stage specific impulses (290 sec), and the vehicle density (60 lb/ft{sup 3}), the launch mass is minimized with respect to the stage payload mass ratios, the stage burn times, and the missile angle of attack history subject to limits on the angle of attack (10 deg), the dynamic pressure (60,000 psf), and the maneuver load (200,000 psf deg). For a conical body, the minimum launch mass is approximately 1900 kg. The missile has three stages, and the payload coasts for 57 sec. A trade study has been performed by varying the flight time, the range, and the dynamic pressure Emits. With the results of a sizing study for a 70 lb payload and q{sub max} = 35,000 psf, a more detailed design has been carried out to determine heat shield mass, tabular aerodynamics, and altitude dependent thrust. The resulting missile has approximately 100 km less range than the sizing program predicted primarily because of the additional mass required for heat protection. On the other hand, launching the same missile from an aircraft increases its range by approximately 100 km. Sizing the interceptor for air launch with the same final conditions as the ground-launched missile reduces its launch mass to approximately 1000 kg.

  4. Turbine-missile casing exit tests

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Sliter, G.E.

    1978-01-01

    Nuclear power plant designers are required to provide safety-related components with adequate protection against hypothetical turbine-missile impacts. In plants with a ''peninsula'' arrangement, protection is provided by installing the turbine axis radially from the reactor building, so that potential missile trajectories are not in line with the plant. In plants with a ''non-peninsula'' arrangement (turbine axis perpendicular to a radius), designers rely on the low probability of a missile strike and on the protection provided by reinforced concrete walls in order to demonstrate an adequate level of protection USNRC Regulatory Guide 1.115). One of the critical first steps in demonstrating adequacy is the determination of the energy and spin of the turbine segments as they exit the turbine casing. The spin increases the probability that a subsequent impact with a protective barrier will be off-normal and therefore less severe than the normal impact assumed in plant designs. Two full-scale turbine-missile casing exit tests which were conducted by Sandia Laboratories at their rocket-sled facility in Albuquerque, New Mexico, are described. Because of wide variations in turbine design details, postulated failure conditions, and missile exit scenarios, the conditions for the two tests were carefully selected to be as prototypical as possible, while still maintaining the well-controlled and well-characterized test conditions needed for generating benchmark data

  5. Laser Options for National Missile Defense

    National Research Council Canada - National Science Library

    Leonard, Steven

    1998-01-01

    The Cold War threat that was characterized by a USSR launch of a large number of ballistic missiles towards the United States has been replaced today by an even less stable ballistic missile security environment...

  6. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.

    2016-01-01

    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  7. Retooling CFD for hypersonic aircraft

    Science.gov (United States)

    Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1987-01-01

    The CFD facility requirements of hypersonic aircraft configuration design development are different from those thus far employed for reentry vehicle design, because (1) the airframe and the propulsion system must be fully integrated to achieve the desired performance; (2) the vehicle must be reusable, with minimum refurbishment requirements between flights; and (3) vehicle performance must be optimized for a wide range of Mach numbers. An evaluation is presently made of flow resolution within shock waves, transition and turbulence phenomenon tractability, chemical reaction modeling, and hypersonic boundary layer transition, with state-of-the-art CFD.

  8. Aerothermodynamic shape optimization of hypersonic blunt bodies

    Science.gov (United States)

    Eyi, Sinan; Yumuşak, Mine

    2015-07-01

    The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a hypersonic blunt geometry that produces the minimum drag with low aerodynamic heating. Bezier curves are used for geometry parameterization. The performances of the design optimization method are demonstrated for different hypersonic flow conditions.

  9. Assessing Habitability: Lessons from the Phoenix Mission

    Science.gov (United States)

    Stoker, Carol R.

    2013-01-01

    The Phoenix mission's key objective was to search for a habitable zone. The Phoenix lander carried a robotic arm with digging scoop to collect soil and icy material for analysis with an instrument payload that included volatile mineral and organic analysis(3) and soil ionic chemistry analysis (4). Results from Phoenix along with theoretical modeling and other previous mission results were used to evaluate the habitability of the landing site by considering four factors that characterize the environments ability to support life as we know it: the presence of liquid water, the presence of an energy source to support metabolism, the presence of nutrients containing the fundamental building blocks of life, and the absence of environmental conditions that are toxic to or preclude life. Phoenix observational evidence for the presence of liquid water (past or present) includes clean segregated ice, chemical etching of soil grains, calcite minerals in the soil and variable concentrations of soluble salts5. The maximum surface temperature measured was 260K so unfrozen water can form only in adsorbed films or saline brines but warmer climates occur cyclically on geologically short time scales due to variations in orbital parameters. During high obliquity periods, temperatures allowing metabolism extend nearly a meter into the subsurface. Phoenix discovered 1%w/w perchlorate salt in the soil, a chemical energy source utilized by a wide range of microbes. Nutrient sources including C, H, N, O, P and S compounds are supplied by known atmospheric sources or global dust. Environmental conditions are within growth tolerance for terrestrial microbes. Summer daytime temperatures are sufficient for metabolic activity, the pH is 7.8 and is well buffered and the projected water activity of a wet soil will allow growth. In summary, martian permafrost in the north polar region is a viable location for modern life. Stoker et al. presented a formalism for comparing the habitability of

  10. DNS Studies of Transitional Hypersonic Reacting Flows Over 3-D Hypersonic Vehicles

    National Research Council Canada - National Science Library

    Zhong, Xiaolin

    2003-01-01

    The objectives of this research project are to develop CFD techniques and to conduct DNS studies of fundamental flow physics leading to boundary-layer instability and transition in hypersonic flows...

  11. Probabilistic assessment of tornado-borne missile speeds. Final report

    International Nuclear Information System (INIS)

    Simiu, E.; Cordes, M.R.

    1980-09-01

    A procedure was developed for estimating speeds with which postulated missiles hit any given set of targets in a nuclear power plant or similar installation. Hit speeds corresponding to probabilities of occurrence of .0000001 were calculated for a given nuclear power plant under various assumptions concerning the magnitude of the force opposing missile take-off, direction of tornado axis of translation, number and location of missiles, and size of target area. The results of the calculations are shown to depend upon the parameters: CDA/m, where CD = drag coefficient, A = projected area, m = mass of missiles, and the ratio, k, between the minimum aerodynamic force required to cause missile take-off, and the weight of the missile

  12. Probabilistic methodology for turbine missile risk analysis

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Frank, R.A.

    1984-01-01

    A methodology has been developed for estimation of the probabilities of turbine-generated missile damage to nuclear power plant structures and systems. Mathematical models of the missile generation, transport, and impact events have been developed and sequenced to form an integrated turbine missile simulation methodology. Probabilistic Monte Carlo techniques are used to estimate the plant impact and damage probabilities. The methodology has been coded in the TURMIS computer code to facilitate numerical analysis and plant-specific turbine missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and probabilities have been estimated for a hypothetical nuclear power plant case study. (orig.)

  13. Civilian casualties of Iraqi ballistic missile attack to

    Directory of Open Access Journals (Sweden)

    Khaji Ali

    2012-06-01

    Full Text Available 【Abstract】Objective: To determine the pattern of causalities of Iraqi ballistic missile attacks on Tehran, the capital of Iran, during Iraq-Iran war. Methods: Data were extracted from the Army Staff Headquarters based on daily reports of Iranian army units during the war. Results: During 52 days, Tehran was stroked by 118 Al-Hussein missiles (a modified version of Scud missile. Eighty-six missiles landed in populated areas. During Iraqi missile attacks, 422 civilians died and 1 579 injured (4.9 deaths and 18.3 injuries per missile. During 52 days, 8.1 of the civilians died and 30.4 injured daily. Of the cases that died, 101 persons (24% were excluded due to the lack of information. Among the remainders, 179 (55.8% were male and 142 (44.2% were female. The mean age of the victims was 25.3 years±19.9 years. Our results show that the high accuracy of modified Scud missiles landed in crowded ar-eas is the major cause of high mortality in Tehran. The pres-ence of suitable warning system and shelters could reduce civilian casualties. Conclusion: The awareness and readiness of civilian defense forces, rescue services and all medical facilities for dealing with mass casualties caused by ballistic missile at-tacks are necessary. Key words: Mortality; War; Mass casualty incidents; Wounds and injuries

  14. Experimental Investigation of Brazilian 14-X B Hypersonic Scramjet Aerospace Vehicle

    OpenAIRE

    de Araujo Martos, João Felipe; da Silveira Rêgo, Israel; Pachon Laiton, Sergio Nicholas; Lima, Bruno Coelho; Costa, Felipe Jean; de Paula Toro, Paulo Gilberto

    2017-01-01

    The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet) to be tested in flight into the Earth’s atmosphere at an altitude of 30 km and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, Institute for Advanced Studies (IEAv), Brazil. The IEAv T3 Hypersonic Shock Tunnel is a ground-test facility...

  15. IR sensor design insight from missile-plume prediction models

    Science.gov (United States)

    Rapanotti, John L.; Gilbert, Bruno; Richer, Guy; Stowe, Robert

    2002-08-01

    Modern anti-tank missiles and the requirement of rapid deployment have significantly reduced the use of passive armour in protecting land vehicles. Vehicle survivability is becoming more dependent on sensors, computers and countermeasures to detect and avoid threats. An analysis of missile propellants suggests that missile detection based on plume characteristics alone may be more difficult than anticipated. Currently, the passive detection of missiles depends on signatures with a significant ultraviolet component. This approach is effective in detecting anti-aircraft missiles that rely on powerful motors to pursue high-speed aircraft. The high temperature exhaust from these missiles contains significant levels of carbon dioxide, water and, often, metal oxides such as alumina. The plumes emits strongest in the infrared, 1 to 5micrometers , regions with a significant component of the signature extending into the ultraviolet domain. Many anti-tank missiles do not need the same level of propulsion and radiate significantly less. These low velocity missiles, relying on the destructive force of shaped-charge warhead, are more difficult to detect. There is virtually no ultraviolet component and detection based on UV sensors is impractical. The transition in missile detection from UV to IR is reasonable, based on trends in imaging technology, but from the analysis presented in this paper even IR imagers may have difficulty in detecting missile plumes. This suggests that the emphasis should be placed in the detection of the missile hard body in the longer wavelengths of 8 to 12micrometers . The analysis described in this paper is based on solution of the governing equations of plume physics and chemistry. These models will be used to develop better sensors and threat detection algorithms.

  16. Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Yu Yonggui; Jie Junhun

    2013-01-01

    For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field

  17. Improved Dutch Roll Approximation for Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Liang-Liang Yin

    2014-06-01

    Full Text Available An improved dutch roll approximation for hypersonic vehicle is presented. From the new approximations, the dutch roll frequency is shown to be a function of the stability axis yaw stability and the dutch roll damping is mainly effected by the roll damping ratio. In additional, an important parameter called roll-to-yaw ratio is obtained to describe the dutch roll mode. Solution shows that large-roll-to-yaw ratio is the generate character of hypersonic vehicle, which results the large error for the practical approximation. Predictions from the literal approximations derived in this paper are compared with actual numerical values for s example hypersonic vehicle, results show the approximations work well and the error is below 10 %.

  18. The Cooperative Ballistic Missile Defence Game

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.

    2013-01-01

    The increasing proliferation of ballistic missiles and weapons of mass destruction poses new risks worldwide. For a threatened nation and given the characteristics of this threat a layered ballistic missile defence system strategy appears to be the preferred solution. However, such a strategy

  19. Digging Movie from Phoenix's Sol 18

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander recorded the images combined into this movie of the lander's Robotic Arm enlarging and combining the two trenches informally named 'Dodo' (left) and 'Goldilocks.' The 21 images in this sequence were taken over a period of about 2 hours during Phoenix's Sol 18 (June 13, 2008), or the 18th Martian day since landing. The main purpose of the Sol 18 dig was to dig deeper for learning the depth of a hard underlying layer. A bright layer, possibly ice, was increasingly exposed as the digging progressed. Further digging and scraping in the combined Dodo-Goldilocks trench was planned for subsequent sols. The combined trench is about 20 centimeters (about 8 inches) wide. The depth at the end of the Sol 18 digging is 5 to 6 centimeters (about 2 inches). The Goldilocks trench was the source of soil samples 'Baby Bear' and 'Mama Bear,' which were collected on earlier sols and delivered to instruments on the lander deck. The Dodo trench was originally dug for practice in collecting and depositing soil samples. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Hypersonic drone design: A multidisciplinary experience

    Science.gov (United States)

    1988-01-01

    Efforts were focused on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necessary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: to fulfill a need for experimental data in the hypersonic regime, and to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. Three areas of great concern to NASP design were examined: propulsion, thermal management, and flight systems. Problem solving in these areas was directed towards design of the drone with the idea that the same design techniques could be applied to the NASP. A seventy degree swept double delta wing configuration, developed in the 70's at NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air-launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based upon the flight requirements give the drone a gross launch weight of 134,000 lb. and an overall length of 85 feet.

  1. Prevention of heavy missiles during severe PWR accidents

    International Nuclear Information System (INIS)

    Krieg, R.

    1994-01-01

    For future pressurized water reactors, which should be designed against core melt down accidents, missiles generated inside the containment present a severe problem for its integrity. The masses and geometries of the missiles as well as their velocities may vary to a great extend. Therefore, a reliable proof of the containment integrity is very difficult. To overcome this problem the potential sources of missiles are discussed. In section 5 it is concluded that the generation of heavy missiles must be prevented. Steam explosions must not damage the reactor vessel head. Thus fragments of the head cannot become missiles endangering the containment shell. Furthermore, during a melt-through failure of the reactor vessel under high pressure the resulting forces must not catapult the whole vessel against the containment shell. Only missiles caused by hydrogen explosions might be tolerable, but shielding structures which protect the containment shell might be required. Here further investigations are necessary. Finally, measures are described showing that the generation of heavy missiles can indeed be prevented. In section 6 investigations are explained which will confirm the strength of the reactor vessel head. In section 7 a device is discussed keeping the fragments of a failing reactor vessel at its place. (author). 12 refs., 8 figs

  2. Barrier design for tornado-generated missiles

    International Nuclear Information System (INIS)

    Kar, A.K.

    1977-01-01

    Nuclear power plant facilities and many other structures need protection against missiles generated by tornados and explosions. The missile impacts result in both local and overall effects on barriers or targets. The local effects are characterized by penetration, perforation and backface spalling or scabbing of the target material. The overall effects of missile impact on structural stability are commonly evaluated in terms of the flexural and shear behaviour of the target. Empirical formulas are presented to determine the local effects on concrete and steel barriers. Procedures are given for determining the design loads for overall effects. Design methods are described. (Auth.)

  3. Barrier design for tornado-generated missiles

    International Nuclear Information System (INIS)

    Kar, A.K.

    1977-01-01

    Nuclear powerplant facilities and many other structures need protection against missiles generated by tornadoes and explosions. The missile impacts result in both local and overall effects on barriers or targets. The local effects are characterized by penetration, perforation, and backface spalling or scabbing of the target material. The overall effects of missile impact on structural stability are commonly evaluated in terms of the flexural and shear behavior of the target. Empirical formulas are presented to determine the local effects on concrete and steel barriers. Procedures are given for determining the design loads for overall effects. Design methods are described

  4. Pipe missile impact experiments on concrete models

    International Nuclear Information System (INIS)

    McHugh, S.; Gupta, Y.; Seaman, L.

    1981-06-01

    The experiments described in this study are a part of SRI studies for EPRI on the local response of reinforced concrete panels to missile impacts. The objectives of this task were to determine the feasibility of using scale model tests to reproduce the impact response of reinforced concrete panels observed in full-scale tests with pipe missiles and to evaluate the effect of concrete strength on the impact response. The experimental approach consisted of replica scaling: the missile and target materials were similar to those used in the full-scale tests, with all dimensions scaled by 5/32. Four criteria were selected for comparing the scaled and full-scale test results: frontface penetration, backface scabbing threshold, internal cracking in the panel, and missile deformation

  5. Time-to-impact estimation in passive missile warning systems

    Science.gov (United States)

    Şahıngıl, Mehmet Cihan

    2017-05-01

    A missile warning system can detect the incoming missile threat(s) and automatically cue the other Electronic Attack (EA) systems in the suit, such as Directed Infrared Counter Measure (DIRCM) system and/or Counter Measure Dispensing System (CMDS). Most missile warning systems are currently based on passive sensor technology operating in either Solar Blind Ultraviolet (SBUV) or Midwave Infrared (MWIR) bands on which there is an intensive emission from the exhaust plume of the threatening missile. Although passive missile warning systems have some clear advantages over pulse-Doppler radar (PDR) based active missile warning systems, they show poorer performance in terms of time-to-impact (TTI) estimation which is critical for optimizing the countermeasures and also "passive kill assessment". In this paper, we consider this problem, namely, TTI estimation from passive measurements and present a TTI estimation scheme which can be used in passive missile warning systems. Our problem formulation is based on Extended Kalman Filter (EKF). The algorithm uses the area parameter of the threat plume which is derived from the used image frame.

  6. Conjugate Heat Transfer Study in Hypersonic Flows

    Science.gov (United States)

    Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar

    2018-04-01

    Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.

  7. CFD on hypersonic flow geometries with aeroheating

    Science.gov (United States)

    Sohail, Muhammad Amjad; Chao, Yan; Hui, Zhang Hui; Ullah, Rizwan

    2012-11-01

    The hypersonic flowfield around a blunted cone and cone-flare exhibits some of the major features of the flows around space vehicles, e.g. a detached bow shock in the stagnation region and the oblique shock wave/boundary layer interaction at the cone-flare junction. The shock wave/boundary layer interaction can produce a region of separated flow. This phenomenon may occur, for example, at the upstream-facing corner formed by a deflected control surface on a hypersonic entry vehicle, where the length of separation has implications for control effectiveness. Computational fluid-dynamics results are presented to show the flowfield around a blunted cone and cone-flare configurations in hypersonic flow with separation. This problem is of particular interest since it features most of the aspects of the hypersonic flow around planetary entry vehicles. The region between the cone and the flare is particularly critical with respect to the evaluation of the surface pressure and heat flux with aeroheating. Indeed, flow separation is induced by the shock wave boundary layer interaction, with subsequent flow reattachment, that can dramatically enhance the surface heat transfer. The exact determination of the extension of the recirculation zone is a particularly delicate task for numerical codes. Laminar flow and turbulent computations have been carried out using a full Navier-Stokes solver, with freestream conditions provided by the experimental data obtained at Mach 6, 8, and 16.34 wind tunnel. The numerical results are compared with the measured pressure and surface heat flux distributions in the wind tunnel and a good agreement is found, especially on the length of the recirculation region and location of shock waves. The critical physics of entropy layer, boundary layers, boundary layers and shock wave interaction and flow behind shock are properly captured and elaborated.. Hypersonic flows are characterized by high Mach number and high total enthalpy. An elevated

  8. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  9. Animated Optical Microscope Zoom in from Phoenix Launch to Martian Surface

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This animated camera view zooms in from NASA's Phoenix Mars Lander launch site all the way to Phoenix's Microscopy and Electrochemistry and C Eonductivity Analyzer (MECA) aboard the spacecraft on the Martian surface. The final frame shows the soil sample delivered to MECA as viewed through the Optical Microscope (OM) on Sol 17 (June 11, 2008), or the 17th Martian day. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. EnviroAtlas - Phoenix, AZ - Block Groups

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset is the base layer for the Phoenix, AZ EnviroAtlas area. The block groups are from the US Census Bureau and are included/excluded based on...

  11. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  12. Experimental Investigation of Brazilian 14-X B Hypersonic Scramjet Aerospace Vehicle

    Directory of Open Access Journals (Sweden)

    João Felipe de Araujo Martos

    2017-01-01

    Full Text Available The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet to be tested in flight into the Earth’s atmosphere at an altitude of 30 km and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, Institute for Advanced Studies (IEAv, Brazil. The IEAv T3 Hypersonic Shock Tunnel is a ground-test facility able to produce high Mach number and high enthalpy flows in the test section close to those encountered during the flight of the 14-X B into the Earth’s atmosphere at hypersonic flight speeds. A 1 m long stainless steel 14-X B model was experimentally investigated at T3 Hypersonic Shock Tunnel, for freestream Mach numbers ranging from 7 to 8. Static pressure measurements along the lower surface of the 14-X B, as well as high-speed Schlieren photographs taken from the 5.5° leading edge and the 14.5° deflection compression ramp, provided experimental data. Experimental data was compared to the analytical theoretical solutions and the computational fluid dynamics (CFD simulations, showing good qualitative agreement and in consequence demonstrating the importance of these methods in the project of the 14-X B hypersonic scramjet aerospace vehicle.

  13. The science, technology, and politics of ballistic missile defense

    Science.gov (United States)

    Coyle, Philip E.

    2014-05-01

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about 10 billion per year, and proposes to add about 5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  14. The science, technology, and politics of ballistic missile defense

    International Nuclear Information System (INIS)

    Coyle, Philip E.

    2014-01-01

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billion per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles

  15. The science, technology, and politics of ballistic missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Philip E. [Center for Arms Control and Non-Proliferation, Washington, DC (United States)

    2014-05-09

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billion per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  16. Numerical simulation of tornado-borne missile impact

    International Nuclear Information System (INIS)

    Tu, D.K.; Murray, R.C.

    1977-01-01

    The feasibility of using a finite element procedure to examine the impact phenomenon of a tornado-borne missile impinging on a reinforced concrete barrier was assessed. The major emphasis of this study was to simulate the impact of a nondeformable missile. Several series of simulations were run, using an 8-in.-dia steel slug as the impacting missile. The numerical results were then compared with experimental field tests and empirical formulas. The work is in support of tornado design practices for fuel reprocessing and fuel fabrication plants

  17. 75 FR 17692 - Foreign-Trade Zone 75 -- Phoenix, Arizona, Application for Reorganization under Alternative Site...

    Science.gov (United States)

    2010-04-07

    ...'' in the context of the Board's standard 2,000-acre activation limit for a general-purpose zone project... terminal at the Phoenix Sky Harbor International Airport, Phoenix; Site 2 (18 acres) CC&F South Valley..., 4747 West Buckeye Road, Phoenix; Site 4 (18 acres) - Santa Fe Business Park, 47th Avenue and Campbell...

  18. Geologie study off gravels of the Agua Fria River, Phoenix, AZ

    Science.gov (United States)

    Langer, W.H.; Dewitt, E.; Adams, D.T.; O'Briens, T.

    2010-01-01

    The annual consumption of sand and gravel aggregate in 2006 in the Phoenix, AZ metropolitan area was about 76 Mt (84 million st) (USGS, 2009), or about 18 t (20 st) per capita. Quaternary alluvial deposits in the modern stream channel of the Agua Fria River west of Phoenix are mined and processed to provide some of this aggregate to the greater Phoenix area. The Agua Fria drainage basin (Fig. 1) is characterized by rugged mountains with high elevations and steep stream gradients in the north, and by broad alluvial filled basins separated by elongated faultblock mountain ranges in the south. The Agua Fria River, the basin’s main drainage, flows south from Prescott, AZ and west of Phoenix to the Gila River. The Waddel Dam impounds Lake Pleasant and greatly limits the flow of the Agua Fria River south of the lake. The southern portion of the watershed, south of Lake Pleasant, opens out into a broad valley where the river flows through urban and agricultural lands to its confluence with the Gila River, a tributary of the Colorado River.

  19. Development of an aerodynamic measurement system for hypersonic rarefied flows.

    Science.gov (United States)

    Ozawa, T; Fujita, K; Suzuki, T

    2015-01-01

    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  20. MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    Directory of Open Access Journals (Sweden)

    I. V. Filipchenko

    2018-01-01

    Full Text Available The article gives the basic approaches to updating the systems of combat operations modeling in the part of enemy missile attack simulation taking into account the possibility of tactical ballistic missile maneuvering during the flight. The results of simulation of combat tactical missile defense operations are given. 

  1. The Threat from European Missile Defence System to Russian National Security

    Directory of Open Access Journals (Sweden)

    Alexey I. Podberezkin

    2014-01-01

    Full Text Available The article analyses the political and military aspects of progress in the dialogue between Russia and the U.S./NATO on cooperation in missile defense; investigates the past experiences and current state of cooperation between Russia and the Alliance on missile defense issues; examines the technical features of American missile defence systems today; finds a solution to question whether or not the European Missile Defence Program actually threatens Russia's nuclear deterrent and strategic stability in general; identifies both potential benefits and possible losses for Russia stemming from the development of cooperation with the United States and NATO in countering ballistic missile threats, or from refusal to have such cooperation. Evidently, the initiative of creation of a missile defense in Europe surely belongs to the USA. Washington has enormous technological, financial, economic, military and institutional capabilities in the field of a missile defense, exceeding by far other NATO member-states. In February 2010, the President of the United States B. Obama adopted a project "European Phased Adaptive Approach" (EPAA as an alternative to G. Bush's global strategic missile defense plan. The first two stages of the Phased Adaptive Approach are focused on creating a system capable of intercepting small, medium and intermediate-range ballistic missiles. The possibility of intercepting long-range missiles is postponed to the third (2018 and forth phases (2020. Moscow finds especially troublesome the third and the fourth phases of Washington's project of creating a European segment of the global antiballistic missile system, considering prospective capabilities of the U.S. interceptor missiles 61 and the envisioned areas of their deployment. The U.S. counter-evidence is that phase four interceptors do not exist yet. Russia insists on getting the political and legal guarantees from the U.S. and NATO that their missile defense systems will not slash

  2. Design of adaptive switching control for hypersonic aircraft

    Directory of Open Access Journals (Sweden)

    Xin Jiao

    2015-10-01

    Full Text Available This article proposes a novel adaptive switching control of hypersonic aircraft based on type-2 Takagi–Sugeno–Kang fuzzy sliding mode control and focuses on the problem of stability and smoothness in the switching process. This method uses full-state feedback to linearize the nonlinear model of hypersonic aircraft. Combining the interval type-2 Takagi–Sugeno–Kang fuzzy approach with sliding mode control keeps the adaptive switching process stable and smooth. For rapid stabilization of the system, the adaptive laws use a direct constructive Lyapunov analysis together with an established type-2 Takagi–Sugeno–Kang fuzzy logic system. Simulation results indicate that the proposed control scheme can maintain the stability and smoothness of switching process for the hypersonic aircraft.

  3. Design and Manufacturing Process for a Ballistic Missile

    Directory of Open Access Journals (Sweden)

    Zaharia Sebastian Marian

    2016-12-01

    Full Text Available Designing a ballistic missile flight depends on the mission and the stress to which the missile is subject. Missile’s requests are determined by: the organization of components; flight regime type, engine configuration and aerodynamic performance of the rocket flight. In this paper has been developed a ballistic missile with a smooth fuselage type, 10 control surfaces, 8 directional surfaces for cornering execution, 2 for maneuvers of execution to change the angle of incidence and 4 stabilizers direction. Through the technology of gluing and clamping of the shell and the use of titanium components, mass of ballistic missile presented a significant decrease in weight and a structure with high strength.

  4. Update of PHOENIX-P 42 group library from CENDL-2

    International Nuclear Information System (INIS)

    Zhang Baocheng

    1998-01-01

    PHOENIX-P is a lattice physics code system, developed by the Westinghouse Electric Corporation (WEC), which was transplanted and used at Dayabay Nuclear Power Plant (DNPJVC). The associated multi-group (42-group) library was derived from the evaluated nuclear data of ENDF/B-5. Since the original library is from the old evaluated nuclear data, it can not meet all the requirements of reactor physics calculations of the nuclear power plant. So it is necessary to update the library with the latest version of evaluated nuclear data. To do so, based on the investigation of the old library and the information about the library, some programs were developed at China Nuclear Data Center (CNDC) to produce PHOENIX-P format data sets mainly from CENDL-2 and the new data were used to supersede the old ones of the PHOENIX-P library

  5. Animation of Panorama of Phoenix's Solar Panel and Robotic Arm

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation This is an animation of panorama images of NASA's Phoenix Mars Lander's solar panel and the lander's Robotic Arm with a sample in the scoop. The image was taken just before the sample was delivered to the Optical Microscope. The images making up this animation were taken by the lander's Surface Stereo Imager looking west during Phoenix's Sol 16 (June 10, 2008), or the 16th Martian day after landing. This view is a part of the 'mission success' panorama that will show the whole landing site in color. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Issues Associated with a Hypersonic Maglev Sled

    Science.gov (United States)

    Haney, Joseph W.; Lenzo, J.

    1996-01-01

    Magnetic levitation has been explored for application from motors to transportation. All of these applications have been at velocities where the physics of the air or operating fluids are fairly well known. Application of Maglev to hypersonic velocities (Mach greater than 5) presents many opportunities, but also issues that require understanding and resolution. Use of Maglev to upgrade the High Speed Test Track at Holloman Air Force Base in Alamogordo New Mexico is an actual hypersonic application that provides the opportunity to improve test capabilities. However, there are several design issues that require investigation. This paper presents an overview of the application of Maglev to the test track and the issues associated with developing a hypersonic Maglev sled. The focus of this paper is to address the issues with the Maglev sled design, rather than the issues with the development of superconducting magnets of the sled system.

  7. How to optimize joint theater ballistic missile defense

    OpenAIRE

    Diehl, Douglas D.

    2004-01-01

    Approved for public release, distribution is unlimited Many potential adversaries seek, or already have theater ballistic missiles capable of threatening targets of interest to the United States. The U.S. Missile Defense Agency and armed forces are developing and fielding missile interceptors carried by many different platforms, including ships, aircraft, and ground units. Given some exigent threat, the U.S. must decide where to position defensive platforms and how they should engage poten...

  8. Hypersonic Inflatable Aerodynamic Decelerator (HIAD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an entry and descent technology to enhance and enable robotic and scientific missions to destinations with atmospheres.The Hypersonic Inflatable Aerodynamic...

  9. Pyrolysis Characteristics and Kinetics of Phoenix Tree Residues as a Potential Energy

    Directory of Open Access Journals (Sweden)

    H. Li

    2015-09-01

    Full Text Available By using a thermogravimetric analyser under argon atmosphere, the pyrolysis process and the kinetic model of phoenix tree residues (the little stem, middle stem, and leaf at a 30 °C min−1 heating rate and the phoenix tree mix at three different heating rates (10 °C min−1, 30 °C min−1, and 50 °C min−1 were examined. The catalyst and the co-pyrolysis samples were at a 30 °C min−1 heating rate. The catalysts were Na2CO3, ZnCl2 and CaO in a mass fraction of 5 %. The experimental results revealed that the phoenix tree residues pyrolysis process consisted of three stages: dehydration stage, main pyrolysis stage, and the slow decomposition of residues. As the heating rate increased, the pyrolysis characteristic temperature of the phoenix tree grew, there was a backward-shift of the pyrolysis rate curve, and the mass loss rate gradually increased. The phoenix tree residues’ activation energy changed throughout the whole pyrolysis process, and the pyrolysis temperature ranges of the three main components (cellulose, hemicellulose, and lignin existed in overlapping phenomenon. As compared to the little stem, middle stem, and leaf, the phoenix tree mix was more likely to be pyrolysed under the same heating rate. Different catalysts had a different impact on the pyrolysis: ZnCl2 moved the start point of the reaction to the lower temperatures, but did not speed up the reaction; Na2CO3 speeded up the reaction without changing the start point of the reaction; CaO speeded up the reaction, moved the start point of the reaction to higher temperatures.

  10. The probability of a tornado missile hitting a target

    International Nuclear Information System (INIS)

    Goodman, J.; Koch, J.E.

    1983-01-01

    It is shown that tornado missile transportation is a diffusion Markovian process. Therefore, the Green's function method is applied for the estimation of the probability of hitting a unit target area. This propability is expressed through a joint density of tornado intensity and path area, a probability of tornado missile injection and a tornado missile height distribution. (orig.)

  11. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2016-04-01

    Director, Operational Test and Evaluation 2015 Assessment of the Ballistic Missile Defense System (BMDS...Evaluation (DOT&E) as they pertain to the Ballistic Missile Defense System (BMDS). Congress specified these requirements in the fiscal year 2002 (FY02...systems are the Ground-based Midcourse Defense (GMD), Aegis Ballistic Missile Defense (Aegis BMD), Terminal High-Altitude Area Defense (THAAD), and

  12. Impact load time histories for viscoelastic missiles

    International Nuclear Information System (INIS)

    Stoykovich, M.

    1977-01-01

    Generation of the impact load time history at the contact point between a viscoelastic missile and its targets is presented. In the past, in the case of aircraft striking containment shell structure, the impact load history was determined on the basis of actual measurements by subjecting a rigid wall to aircraft crash. The effects of elastic deformation of the target upon the impact load time history is formulated in this paper. The missile is idealized by a linear mass-spring-dashpot combination using viscoelastic models. These models can readily be processed taking into account the elastic as well as inelastic deformations of the missiles. The target is assumed to be either linearly elastic or rigid. In the case of the linearly elastic target, the normal mode theory is used to express the time-dependent displacements of the target which is simulated by lumped masses, elastic properties and dashpots in discrete parts. In the case of Maxwell viscoelastic model, the time-dependent displacements of the missile and the target are given in terms of the unknown impact load time history. This leads to an integral equation which may be solved by Laplace transformation. The normal mode theory is provided. Examples are given for bricks with viscoelastic materials as missiles against a rigid target. (Auth.)

  13. Progress in modeling hypersonic turbulent boundary layers

    Science.gov (United States)

    Zeman, Otto

    1993-01-01

    A good knowledge of the turbulence structure, wall heat transfer, and friction in turbulent boundary layers (TBL) at high speeds is required for the design of hypersonic air breathing airplanes and reentry space vehicles. This work reports on recent progress in the modeling of high speed TBL flows. The specific research goal described here is the development of a second order closure model for zero pressure gradient TBL's for the range of Mach numbers up to hypersonic speeds with arbitrary wall cooling requirements.

  14. Manufacturing and Design Engineering Students St. Mary's Hospital, Phoenix Park.

    OpenAIRE

    Mitchell, Leah

    2012-01-01

    Poster with details of project to improve ease of movement for Kirton Stirling chairs in St. Mary's Hospital, Phoenix Park, Dublin. Third year students in the B Eng (Honours) Manufacturing and Design Engineering course at Bolton St. completed a project in conjunction with St. Mary‟s Hospital, Phoenix Park. The staff in St Mary‟s were experiencing difficulty in moving the Kirton Stirling chairs (pictured above). These chairs are used to transport elderly patients from one location to another. ...

  15. Dinosaur or Phoenix: Nuclear Bombers in the 21st Century

    Science.gov (United States)

    2010-04-12

    REPORT DATE 02-04-10 2. REPORT TYPE Master’s Thesis 3. DATES COVERED 31-07-09 to 16-06-10 4. TITLE AND SUBTITLE Dinosaur or Phoenix: Nuclear...WARFIGHTING SCHOOL DINOSAUR OR PHOENIX: NUCLEAR BOMBERS IN THE 21ST CENTURY by John W. Morehead Colonel, United States Air Force A paper...can argue Secretary Gates’ decision to halt development of a follow-on bomber indicates the DOD views nuclear bombers as dinosaurs no longer needed as

  16. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    Science.gov (United States)

    McNamara, Jack J.; Friedmann, Peretz P.; Powell, Kenneth G.; Thuruthimattam, Biju J.; Bartels, Robert E.

    2005-01-01

    The aeroelastic and aerothermoelastic behavior of three-dimensional configurations in hypersonic flow regime are studied. The aeroelastic behavior of a low aspect ratio wing, representative of a fin or control surface on a generic hypersonic vehicle, is examined using third order piston theory, Euler and Navier-Stokes aerodynamics. The sensitivity of the aeroelastic behavior generated using Euler and Navier-Stokes aerodynamics to parameters governing temporal accuracy is also examined. Also, a refined aerothermoelastic model, which incorporates the heat transfer between the fluid and structure using CFD generated aerodynamic heating, is used to examine the aerothermoelastic behavior of the low aspect ratio wing in the hypersonic regime. Finally, the hypersonic aeroelastic behavior of a generic hypersonic vehicle with a lifting-body type fuselage and canted fins is studied using piston theory and Euler aerodynamics for the range of 2.5 less than or equal to M less than or equal to 28, at altitudes ranging from 10,000 feet to 80,000 feet. This analysis includes a study on optimal mesh selection for use with Euler aerodynamics. In addition to the aeroelastic and aerothermoelastic results presented, three time domain flutter identification techniques are compared, namely the moving block approach, the least squares curve fitting method, and a system identification technique using an Auto-Regressive model of the aeroelastic system. In general, the three methods agree well. The system identification technique, however, provided quick damping and frequency estimations with minimal response record length, and therefore o ers significant reductions in computational cost. In the present case, the computational cost was reduced by 75%. The aeroelastic and aerothermoelastic results presented illustrate the applicability of the CFL3D code for the hypersonic flight regime.

  17. The chloroplast DNA locus psbZ-trnfM as a potential barcode marker in Phoenix L. (Arecaceae

    Directory of Open Access Journals (Sweden)

    Marco Ballardini

    2013-12-01

    Full Text Available The genus Phoenix (Arecaceae comprises 14 species distributed from Cape Verde Islands to SE Asia. It includes the economically important species Phoenix dactylifera. The paucity of differential morphological and anatomical useful characters, and interspecific hybridization, make identification of Phoenix species difficult. In this context, the development of reliable DNA markers for species and hybrid identification would be of great utility. Previous studies identified a 12 bp polymorphic chloroplast minisatellite in the trnG(GCC-trnfM(CAU spacer, and showed its potential for species identification in Phoenix. In this work, in order to develop an efficient DNA barcode marker for Phoenix, a longer cpDNA region (700 bp comprising the mentioned minisatellite, and located between the psbZ and trnfM(CAU genes, was sequenced. One hundred and thirty-six individuals, representing all Phoenix species except P. andamanensis, were analysed. The minisatellite showed 2-7 repetitions of the 12 bp motif, with 1-3 out of seven haplotypes per species. Phoenix reclinata and P. canariensis had species-specific haplotypes. Additional polymorphisms were found in the flanking regions of the minisatellite, including substitutions, indels and homopolymers. All this information allowed us to identify unambiguously eight out of the 13 species, and overall 80% of the individuals sampled. Phoenix rupicola and P. theophrasti had the same haplotype, and so had P. atlantica, P. dactylifera, and P. sylvestris (the “date palm complex” sensu Pintaud et al. 2013. For these species, additional molecular markers will be required for their unambiguous identification. The psbZ-trnfM(CAU region therefore could be considered as a good basis for the establishment of a DNA barcoding system in Phoenix, and is potentially useful for the identification of the female parent in Phoenix hybrids.

  18. China Sanctions for Missile Proliferation: A Bureaucratic Compromise

    National Research Council Canada - National Science Library

    St. Amand, Gerard A

    1994-01-01

    On 12 August 26, 1993, the State Department announced that the United States would impose sanctions against China for transferring missile technology to Pakistan in violation of the Missile Technology Control Regime (MTCR...

  19. Winds at the Phoenix landing site

    DEFF Research Database (Denmark)

    Holstein-Rathlou, C.; Gunnlaugsson, H.P.; Merrison, J.P.

    2010-01-01

    Wind speeds and directions were measured on the Phoenix Lander by a mechanical anemometer, the so-called Telltale wind indicator. Analysis of images of the instrument taken with the onboard imager allowed for evaluation of wind speeds and directions. Daily characteristics of the wind data are hig...

  20. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  1. The proliferation of ballistic missiles: an aggravating factor of crises

    International Nuclear Information System (INIS)

    Rousset, Valery

    2015-01-01

    After a brief recall of the history of the development of ballistic missiles from World War II, the author discusses the various uses of these missiles, on the one hand by major powers, and on the other hand by other countries like Israel, Pakistan and India, and also Egypt and Iraq. He recalls the uses of these missiles during regional conflicts (Scuds by Iraq) and then discusses the issue of proliferation of ballistic missiles. He notices that most of these weapons are present in the arsenal of major powers under the form of intercontinental missiles, intermediate range weapons or theatre weapons. On the Third World side, proliferation concerns short- and medium-range missiles produced from technology transfers or national programmes. Mobile systems are now present in all conflicts (notably Libya, Syria) and are now based on more advanced technologies for propellers as well as for control and guidance systems. In the last part, the author discusses the perspectives associated with these missiles which are a strong offensive weapon, and are also modernised to carry nuclear warheads or multiple warheads. These evolutions could put the western superiority into question again

  2. Controlling ballistic missiles: How important? How to do it?

    International Nuclear Information System (INIS)

    Harvey, J.R.; Rubin, U.

    1992-01-01

    Missiles themselves are not weapons of mass destruction; they do not give states the ability to wreak unimaginable destruction, or to radically shift the balance of power, as nuclear weapons do. Hence, the primary focus of nonproliferation efforts should remain on weapons of mass destruction, particularly nuclear weapons, rather than on one of the many possible means of delivering them. Moreover, as discussed in more detail below, advanced strike aircraft can also be effective in delivering nuclear weapons, and are generally more effective than ballistic missiles for delivering conventional or chemical ordnance. Ultimately, if the industrialized nations seriously desire to control the spread of delivery means for weapons of mass destruction, they need to consider bringing controls over ballistic missiles and advanced strike aircraft more into balance. At the same time, while efforts to control ballistic missile proliferation - centered on the Missile Technology Control Regime (MTCR) - have had some successes and could be strengthened, US policy will be most effective if it recognizes two key realities: the spread of ballistic missiles cannot be as comprehensively controlled as the spread of nuclear weapons, nor need it be as comprehensively controlled

  3. 75 FR 43156 - Federal Advisory Committee; Missile Defense Advisory Committee

    Science.gov (United States)

    2010-07-23

    ... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; Missile Defense Advisory Committee AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice of closed meeting. SUMMARY: Under the... Defense announces that the Missile Defense Advisory Committee will meet on August 4 and 5, 2010, in...

  4. Multi-Mode Electric Actuator Dynamic Modelling for Missile Fin Control

    Directory of Open Access Journals (Sweden)

    Bhimashankar Gurav

    2017-06-01

    Full Text Available Linear first/second order fin direct current (DC actuator model approximations for missile applications are currently limited to angular position and angular velocity state variables. Furthermore, existing literature with detailed DC motor models is decoupled from the application of interest: tail controller missile lateral acceleration (LATAX performance. This paper aims to integrate a generic DC fin actuator model with dual-mode feedforward and feedback control for tail-controlled missiles in conjunction with the autopilot system design. Moreover, the characteristics of the actuator torque information in relation to the aerodynamic fin loading for given missile trim velocities are also provided. The novelty of this paper is the integration of the missile LATAX autopilot states and actuator states including the motor torque, position and angular velocity. The advantage of such an approach is the parametric analysis and suitability of the fin actuator in relation to the missile lateral acceleration dynamic behaviour.

  5. Pitot pressure analyses in CO2 condensing rarefied hypersonic flows

    Science.gov (United States)

    Ozawa, T.; Suzuki, T.; Fujita, K.

    2016-11-01

    In order to improve the accuracy of rarefied aerodynamic prediction, a hypersonic rarefied wind tunnel (HRWT) was developed at Japan Aerospace Exploration Agency. While this wind tunnel has been limited to inert gases, such as nitrogen or argon, we recently extended the capability of HRWT to CO2 hypersonic flows for several Mars missions. Compared to our previous N2 cases, the condensation effect may not be negligible for CO2 rarefied aerodynamic measurements. Thus, in this work, we have utilized both experimental and numerical approaches to investigate the condensation and rarefaction effects in CO2 hypersonic nozzle flows.

  6. Hypersonic drift-tearing magnetic islands in tokamak plasmas

    International Nuclear Information System (INIS)

    Fitzpatrick, R.; Waelbroeck, F. L.

    2007-01-01

    A two-fluid theory of long wavelength, hypersonic, drift-tearing magnetic islands in low-collisionality, low-β plasmas possessing relatively weak magnetic shear is developed. The model assumes both slab geometry and cold ions, and neglects electron temperature and equilibrium current gradient effects. The problem is solved in three asymptotically matched regions. The 'inner region' contains the island. However, the island emits electrostatic drift-acoustic waves that propagate into the surrounding 'intermediate region', where they are absorbed by the plasma. Since the waves carry momentum, the inner region exerts a net force on the intermediate region, and vice versa, giving rise to strong velocity shear in the region immediately surrounding the island. The intermediate region is matched to the surrounding 'outer region', in which ideal magnetohydrodynamic holds. Isolated hypersonic islands propagate with a velocity that lies between those of the unperturbed local ion and electron fluids, but is much closer to the latter. The ion polarization current is stabilizing, and increases with increasing island width. Finally, the hypersonic branch of isolated island solutions ceases to exist above a certain critical island width. Hypersonic islands whose widths exceed the critical width are hypothesized to bifurcate to the so-called 'sonic' solution branch

  7. Heating Augmentation for Short Hypersonic Protuberances

    Science.gov (United States)

    Mazaheri, Ali R.; Wood, William A.

    2008-01-01

    Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9.5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hypersonic protuberances (k/delta less than 0.3) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation.

  8. NPS Faculty, Students Develop Strategic Missile Defense Tool

    OpenAIRE

    Dionne, Patrick

    2017-01-01

    News Stories Archive In May 2017, the United States successfully intercepted an intercontinental ballistic missile in the first-ever test of the U.S.'s long-range, anti-missile capabilities. While impactful, it is just th...

  9. Hypersonic drone vehicle design: A multidisciplinary experience

    Science.gov (United States)

    1988-01-01

    UCLA's Advanced Aeronautic Design group focussed their efforts on design problems of an unmanned hypersonic vehicle. It is felt that a scaled hypersonic drone is necesary to bridge the gap between present theory on hypersonics and the future reality of the National Aerospace Plane (NASP) for two reasons: (1) to fulfill a need for experimental data in the hypersonic regime, and (2) to provide a testbed for the scramjet engine which is to be the primary mode of propulsion for the NASP. The group concentrated on three areas of great concern to NASP design: propulsion, thermal management, and flight systems. Problem solving in these areas was directed toward design of the drone with the idea that the same design techniques could be applied to the NASP. A 70 deg swept double-delta wing configuration, developed in the 70's at the NASA Langley, was chosen as the aerodynamic and geometric model for the drone. This vehicle would be air launched from a B-1 at Mach 0.8 and 48,000 feet, rocket boosted by two internal engines to Mach 10 and 100,000 feet, and allowed to cruise under power of the scramjet engine until burnout. It would then return to base for an unpowered landing. Preliminary energy calculations based on flight requirements give the drone a gross launch weight of 134,000 pounds and an overall length of 85 feet.

  10. Patient deaths blamed on long waits at the Phoenix VA

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2014-04-01

    Full Text Available No abstract available. Article truncated at 150 words. This morning the lead article in the Arizona Republic was a report blaming as many as 40 deaths at the Phoenix VA on long waits (1. Yesterday, Rep. Jeff Miller, the chairman of the House Committee on Veterans Affairs, held a hearing titled “A Continued Assessment of Delays in VA Medical Care and Preventable Veteran Deaths.” “It appears as though there could be as many as 40 veterans whose deaths could be related to delays in care,” Miller announced to a stunned audience. The committee has spent months investigating patient-care scandals and allegations at VA facilities in Pittsburgh, Atlanta, Miami and other cities. said that dozens of VA hospital patients in Phoenix may have died while awaiting medical care. He went on to say that staff investigators have evidence that the Phoenix VA Health Care System keeps two sets of records to conceal prolonged waits that patients must endure for ...

  11. Defense Strategy of Aircraft Confronted with IR Guided Missile

    Directory of Open Access Journals (Sweden)

    Hesong Huang

    2017-01-01

    Full Text Available Surface-type infrared (IR decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhaust system radiation in the state of different heights and different speeds are established. Secondly, the most effective avoidance maneuver is simulated when the missile comes from the front of the target aircraft. Lastly, combining maneuver with decoys, the best defense strategy is analysed when the missile comes from the front of aircraft. The result of simulation, which is authentic, is propitious to avoid the missile and improve the survivability of aircraft.

  12. CFD for hypersonic propulsion

    Science.gov (United States)

    Povinelli, Louis A.

    1991-01-01

    An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.

  13. Uncertainty Propagation in Hypersonic Vehicle Aerothermoelastic Analysis

    Science.gov (United States)

    Lamorte, Nicolas Etienne

    Hypersonic vehicles face a challenging flight environment. The aerothermoelastic analysis of its components requires numerous simplifying approximations. Identifying and quantifying the effect of uncertainties pushes the limits of the existing deterministic models, and is pursued in this work. An uncertainty quantification framework is used to propagate the effects of identified uncertainties on the stability margins and performance of the different systems considered. First, the aeroelastic stability of a typical section representative of a control surface on a hypersonic vehicle is examined. Variability in the uncoupled natural frequencies of the system is modeled to mimic the effect of aerodynamic heating. Next, the stability of an aerodynamically heated panel representing a component of the skin of a generic hypersonic vehicle is considered. Uncertainty in the location of transition from laminar to turbulent flow and the heat flux prediction is quantified using CFD. In both cases significant reductions of the stability margins are observed. A loosely coupled airframe--integrated scramjet engine is considered next. The elongated body and cowl of the engine flow path are subject to harsh aerothermodynamic loading which causes it to deform. Uncertainty associated with deformation prediction is propagated to the engine performance analysis. The cowl deformation is the main contributor to the sensitivity of the propulsion system performance. Finally, a framework for aerothermoelastic stability boundary calculation for hypersonic vehicles using CFD is developed. The usage of CFD enables one to consider different turbulence conditions, laminar or turbulent, and different models of the air mixture, in particular real gas model which accounts for dissociation of molecules at high temperature. The system is found to be sensitive to turbulence modeling as well as the location of the transition from laminar to turbulent flow. Real gas effects play a minor role in the

  14. Hypersonic Control Modeling and Simulation Tool for Lifting Towed Ballutes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Aerospace Corporation proposes to develop a hypersonic control modeling and simulation tool for hypersonic aeroassist vehicles. Our control and simulation...

  15. CFD analysis of hypersonic, chemically reacting flow fields

    Science.gov (United States)

    Edwards, T. A.

    1993-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.

  16. Solar Panel Buffeted by Wind at Phoenix Site

    Science.gov (United States)

    2008-01-01

    Winds were strong enough to cause about a half a centimeter (.19 inch) of motion of a solar panel on NASA's Phoenix Mars lander when the lander's Surface Stereo Imager took this picture on Aug. 31, 2008, during the 96th Martian day since landing. The lander's telltale wind gauge has been indicating wind speeds of about 4 meters per second (9 miles per hour) during late mornings at the site. These conditions were anticipated and the wind is not expected to do any harm to the lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Hypersonic expansion of the Fokker--Planck equation

    International Nuclear Information System (INIS)

    Fernandez-Feria, R.

    1989-01-01

    A systematic study of the hypersonic limit of a heavy species diluted in a much lighter gas is made via the Fokker--Planck equation governing its velocity distribution function. In particular, two different hypersonic expansions of the Fokker--Planck equation are considered, differing from each other in the momentum equation of the heavy gas used as the basis of the expansion: in the first of them, the pressure tensor is neglected in that equation while, in the second expansion, the pressure tensor term is retained. The expansions are valid when the light gas Mach number is O(1) or larger and the difference between the mean velocities of light and heavy components is small compared to the light gas thermal speed. They can be applied away from regions where the spatial gradient of the distribution function is very large, but it is not restricted with respect to the temporal derivative of the distribution function. The hydrodynamic equations corresponding to the lowest order of both expansions constitute two different hypersonic closures of the moment equations. For the subsequent orders in the expansions, closed sets of moment equations (hydrodynamic equations) are given. Special emphasis is made on the order of magnitude of the errors of the lowest-order hydrodynamic quantities. It is shown that if the heat flux vanishes initially, these errors are smaller than one might have expected from the ordinary scaling of the hypersonic closure. Also it is found that the normal solution of both expansions is a Gaussian distribution at the lowest order

  18. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    Science.gov (United States)

    2014-10-28

    results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators

  19. 77 FR 34357 - Missile Defense Advisory Committee; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-11

    ... DEPARTMENT OF DEFENSE Office of the Secretary Missile Defense Advisory Committee; Notice of Closed Meeting AGENCY: Missile Defense Agency (MDA), Department of Defense. ACTION: Notice of closed meeting... Missile Defense Advisory Committee will take place. DATES: Tuesday, June 12, 2012 through Wednesday, June...

  20. 75 FR 77849 - Closed Meeting of the Missile Defense Advisory Committee

    Science.gov (United States)

    2010-12-14

    ... DEPARTMENT OF DEFENSE Office of the Secretary Closed Meeting of the Missile Defense Advisory Committee AGENCY: Department of Defense; Missile Defense Agency (MDA). ACTION: Notice. SUMMARY: Under the... Defense announces that the following Federal advisory committee meeting of the Missile Defense Advisory...

  1. 75 FR 77848 - Closed Meeting of the Missile Defense Advisory Committee

    Science.gov (United States)

    2010-12-14

    ... DEPARTMENT OF DEFENSE Office of the Secretary Closed Meeting of the Missile Defense Advisory Committee AGENCY: Department of Defense; Missile Defense Agency (MDA). ACTION: Notice. SUMMARY: Under the... Defense announces that the following Federal advisory committee meeting of the Missile Defense Advisory...

  2. 76 FR 71556 - Missile Defense Advisory Committee; Notice of Closed Meeting

    Science.gov (United States)

    2011-11-18

    ... DEPARTMENT OF DEFENSE Office of the Secretary Missile Defense Advisory Committee; Notice of Closed Meeting AGENCY: Missile Defense Agency (MDA), Department of Defense. ACTION: Notice of closed meeting... Missile Defense Advisory Committee will take place. DATES: Tuesday, December 13, 2011 through Wednesday...

  3. 76 FR 45783 - Missile Defense Advisory Committee; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-01

    ... DEPARTMENT OF DEFENSE Office of the Secretary Missile Defense Advisory Committee; Notice of Closed Meeting AGENCY: Department of Defense; Missile Defense Agency (MDA). ACTION: Notice of closed meeting... Missile Defense Advisory Committee will take place. DATES: Tuesday, August 16, 2011 through Thursday...

  4. Design trade-offs for homing missiles

    Science.gov (United States)

    Spencer, Allen; Moore, William

    1992-05-01

    Major design considerations, trade-offs and technology issues for future hypervelocity, anti-missile interceptors are presented in an overview format. Two classes of interceptors are considered: a low altitude interceptor using an active radar seeker for defense against tactical ballistic missiles (TBMs) and a higher altitude interceptor using a passive infra-red seeker for defense against ICBMs. Considerations are presented in the areas of mission requirements, seeker selection, aerodynamic and aerothermal environments, control systems, and guidance performance.

  5. Conditional probability of the tornado missile impact given a tornado occurrence

    International Nuclear Information System (INIS)

    Goodman, J.; Koch, J.E.

    1982-01-01

    Using an approach based on statistical mechanics, an expression for the probability of the first missile strike is developed. The expression depends on two generic parameters (injection probability eta(F) and height distribution psi(Z,F)), which are developed in this study, and one plant specific parameter (number of potential missiles N/sub p/). The expression for the joint probability of simultaneous impact of muitiple targets is also developed. This espression is applicable to calculation of the probability of common cause failure due to tornado missiles. It is shown that the probability of the first missile strike can be determined using a uniform missile distribution model. It is also shown that the conditional probability of the second strike, given the first, is underestimated by the uniform model. The probability of the second strike is greatly increased if the missiles are in clusters large enough to cover both targets

  6. First plasma of the A-PHOENIX electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Thuillier, T.; Lamy, T.; Latrasse, L.; Angot, J.

    2008-01-01

    A-PHOENIX is a new compact hybrid electron cyclotron resonance ion source using a large permanent magnet hexapole (1.92 T at the magnet surface) and high temperature superconducting Solenoids (3 T) to make min-vertical bar B vertical bar structure suitable for 28 GHz cw operation. The final assembly of the source was achieved at the end of June 2007. The first plasma of A-PHOENIX at 18 GHz was done on the 16th of August, 2007. The technological specificities of A-PHOENIX are presented. The large hexapole built is presented and experimental magnetic measurements show that it is nominal with respect to simulation. A fake plasma chamber prototype including thin iron inserts showed that the predicted radial magnetic confinement can be fulfilled up to 2.15 T at the plasma chamber wall. Scheduled planning of experiments until the end of 2008 is presented

  7. Phoenix Robotic Arm's Workspace After 90 Sols

    Science.gov (United States)

    2008-01-01

    During the first 90 Martian days, or sols, after its May 25, 2008, landing on an arctic plain of Mars, NASA's Phoenix Mars Lander dug several trenches in the workspace reachable with the lander's robotic arm. The lander's Surface Stereo Imager camera recorded this view of the workspace on Sol 90, early afternoon local Mars time (overnight Aug. 25 to Aug. 26, 2008). The shadow of the the camera itself, atop its mast, is just left of the center of the image and roughly a third of a meter (one foot) wide. The workspace is on the north side of the lander. The trench just to the right of center is called 'Neverland.' The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. DDG-1000 Missile Integration: A Case Study

    Science.gov (United States)

    2014-03-01

    Systems. 14. SUBJECT TERMS Systems Engineering, Integration 15. NUMBER OF PAGES 137 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...military tasks. These range from detection and engagement of sea- skimming anti-ship cruise missiles to discrimination of a ballistic missile warhead...is affordable, funding is available, market research was conducted, an 32 analysis of alternatives was completed, the JROC is in agreement

  9. The Phoenix Mars Lander Robotic Arm

    Science.gov (United States)

    Bonitz, Robert; Shiraishi, Lori; Robinson, Matthew; Carsten, Joseph; Volpe, Richard; Trebi-Ollennu, Ashitey; Arvidson, Raymond E.; Chu, P. C.; Wilson, J. J.; Davis, K. R.

    2009-01-01

    The Phoenix Mars Lander Robotic Arm (RA) has operated for over 150 sols since the Lander touched down on the north polar region of Mars on May 25, 2008. During its mission it has dug numerous trenches in the Martian regolith, acquired samples of Martian dry and icy soil, and delivered them to the Thermal Evolved Gas Analyzer (TEGA) and the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The RA inserted the Thermal and Electrical Conductivity Probe (TECP) into the Martian regolith and positioned it at various heights above the surface for relative humidity measurements. The RA was used to point the Robotic Arm Camera to take images of the surface, trenches, samples within the scoop, and other objects of scientific interest within its workspace. Data from the RA sensors during trenching, scraping, and trench cave-in experiments have been used to infer mechanical properties of the Martian soil. This paper describes the design and operations of the RA as a critical component of the Phoenix Mars Lander necessary to achieve the scientific goals of the mission.

  10. Full-scale Tornado-missile impact tests

    International Nuclear Information System (INIS)

    1976-04-01

    Initial tests with four types of hypothetical tornado-borne missiles impacting reinforced concrete panels have been completed. Panel thicknesses are typical of walls in nuclear power facilities. In the seven tests, the missiles were rocket propelled to velocities currently postulated as being attainable by debris in tornadoes. The objective of the 18-test program is to ascertain the vulnerability of test panels to penetration and backface scabbing. The four missile types being tested are: a 1500-pound 35-foot long utility pole, an 8-pound 1-inch Grade 60 reinforcing bar, a 78-pound 3-inch Schedule 40 pipe, and a 743-pound 12-inch Schedule 40 pipe. The test panels are 12, 18, and 24 inches thick with 15 by 15 foot free spans. They were constructed to current minimum ACI standards: 3000 psi design strength (actual strength about 3600 psi) and 0.2 percent reinforcing steel area each way, each face (actual area is about 0.27 percent with bars on 12-inch centers). The 12-inch pipe has been identified as the critical missile for design of nuclear facility walls under currently specified impact conditions. The utility poles splintered upon impact causing virtually no impact damage, and the 3-inch pipe and 1-inch rebar were comparatively ineffectual because of their light weight

  11. Exposure assessment of JAVELIN missile combustion products

    Science.gov (United States)

    Lundy, Donald O.; Langford, Roland E.

    1994-02-01

    Characterization and analysis of combustion products resulting from firing the JAVELIN missile were performed. Of those combustion products analyzed, it was determined that airborne lead concentrations exceeded the OSHA PEL of 50 micrograms each time the missile was fired while in the enclosure. Since the OSHA PEL standard is based upon a continuous rather than a short-term exposures blood lead concentrations were sought to ascertain the relationship between a short duration airborne exposure and its physiological effect on the body. Blood lead levels were taken on 49 test subjects prior to various JAVELIN missile test firings. Of those 49, 21 were outfitted With personal sampling equipment to determine airborne concentrations at the Assistant Gunner and Gunner positions. Periodic blood sampling after a single exposure showed an average increase of 2.27 micrograms/dL for all test subjects. Recommendations were made to consider changes in the positioning of the enclosure inhabitants to minimize airborne lead concentrations, to limit the number of missiles fired (situation dependent), and replacement of the lead B-resorcyolate with a non-lead containing burn rate modifier for the launch motor.

  12. A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer

    International Nuclear Information System (INIS)

    Poyser, C L; Akimov, A V; Campion, R P; Kent, A J; Balanov, A G

    2015-01-01

    We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current–voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices. (paper)

  13. Guidance Optimization for Tactical Homing Missiles and Air Defense Systems

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-03-01

    Full Text Available The aim of this paper is to develop a functional approach to optimize the engagement effectiveness of the tactical homing missiles and air defense systems by utilizing the differential geometric concepts. In this paper the engagement geometry of the interceptor and the target is developed and expressed in differential geometric terms in order to demonstrate the possibilities of the impact triangles and specify the earliest interception based on the direct intercept geometry. Optimizing the missile heading angle and suitable missile velocity against the target velocity is then examined to achieve minimum missile latax, minimum time-to-go (time-to-hit and minimum appropriate missile velocity that is guaranteed a quick and precise interception for the given target. The study terminates with different scenarios of engagement optimization with two-dimensional simulation to demonstrate the applicability of the DG approach and to show its properties.

  14. Evaluating missile fuels

    Energy Technology Data Exchange (ETDEWEB)

    Osmont, Antoine; Goekalp, Iskender [Laboratoire de Combustion et Systemes Reactifs (LCSR), CNRS, 1C, Orleans (France); Catoire, Laurent [University of Orleans, BP6749, 45067 Orleans (France); Laboratoire de Combustion et Systemes Reactifs (LCSR), CNRS, 1C, Orleans (France)

    2006-10-15

    This paper presents simple and relatively efficient methods to estimate some physical and chemical properties of polycyclic alkanes. These properties are melting point, normal boiling point, standard enthalpy of vaporization at 298 K, standard enthalpy of formation at 298 K, standard enthalpy of combustion at 298 K, density (specific gravity) and flash point. These methods are validated, despite the scarcity of experimental data, with several tens of polycyclic alkanes. Then the methods are used to estimate properties of some polycyclic alkanes, which are currently in use as missile fuels: JP-10, RJ-4 and RJ-5. Estimates and experimental data are found in good agreement for these fuels. This methodology is then used to evaluate missile fuel candidates to be used pure or as additive to JP-10 or to blends such as RJ-6. Several compounds are probably of interest for this task and their advantages and drawbacks are discussed. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  15. A Statistical Approach for Gain Bandwidth Prediction of Phoenix-Cell Based Reflect arrays

    Directory of Open Access Journals (Sweden)

    Hassan Salti

    2018-01-01

    Full Text Available A new statistical approach to predict the gain bandwidth of Phoenix-cell based reflectarrays is proposed. It combines the effects of both main factors that limit the bandwidth of reflectarrays: spatial phase delays and intrinsic bandwidth of radiating cells. As an illustration, the proposed approach is successfully applied to two reflectarrays based on new Phoenix cells.

  16. (Ca,Mg)-Carbonate and Mg-Carbonate at the Phoenix Landing Site: Evaluation of the Phoenix Lander's Thermal Evolved Gas Analyzer (TEGA) Data Using Laboratory Simulations

    Science.gov (United States)

    Sutter, B.; Ming, D. W.; Boynton, W. V.; Niles, P. B.; Morris, R. V.

    2011-01-01

    Calcium carbonate (4.5 wt. %) was detected in the soil at the Phoenix Landing site by the Phoenix Lander s The Thermal and Evolved Gas Analyzer [1]. TEGA operated at 12 mbar pressure, yet the detection of calcium carbonate is based on interpretations derived from thermal analysis literature of carbonates measured under ambient (1000 mbar) and vacuum (10(exp -3) mbar) conditions [2,3] as well as at 100 and 30 mbar [4,5] and one analysis at 12 mbar by the TEGA engineering qualification model (TEGA-EQM). Thermodynamics (Te = H/ S) dictate that pressure affects entropy ( S) which causes the temperature (Te) of mineral decomposition at one pressure to differ from Te obtained at another pressure. Thermal decomposition analyses of Fe-, Mg-, and Ca-bearing carbonates at 12 mbar is required to enhance the understanding of the TEGA results at TEGA operating pressures. The objectives of this work are to (1) evaluate the thermal and evolved gas behavior of a suite of Fe-, Mg-, Ca-carbonate minerals at 1000 and 12 mbar and (2) discuss possible emplacement mechanisms for the Phoenix carbonate.

  17. Hypersonic evanescent waves generated with a planar spiral coil.

    Science.gov (United States)

    Stevenson, A C; Araya-Kleinsteuber, B; Sethi, R S; Mehta, H M; Lowe, C R

    2003-09-01

    A planar spiral coil has been used to induce hypersonic evanescent waves in a quartz substrate with the unique ability to focus the acoustic wave down onto the chemical recognition layer. These special sensing conditions were achieved by investigating the application of a radio frequency current to a coaxial waveguide and spiral coil, so that wideband repeating electrical resonance conditions could be established over the MHz to GHz frequency range. At a selected operating frequency of 1.09 GHz, the evanescent wave depth of a quartz crystal hypersonic resonance is reduced to 17 nm, minimising unwanted coupling to the bulk fluid. Verification of the validity of the hypersonic resonance was carried out by characterising the system electrically and acoustically: Impedance calculations of the combined coil and coaxial waveguide demonstrated an excellent fit to the measured data, although above 400 MHz a transition zone was identified where unwanted impedance is parasitic of the coil influence efficiency, so the signal-to-noise ratio is reduced from 3000 to 300. Acoustic quartz crystal resonances at intervals of precisely 13.2138 MHz spacing, from the 6.6 MHz ultrasonic range and onto the desired hypersonic range above 1 GHz, were incrementally detected. Q factor measurements demonstrated that reductions in energy lost from the resonator to the fluid interface were consistent with the anticipated shrinkage of the evanescent wave with increasing operating frequency. Amplitude and frequency reduction in contact with a glucose solution was demonstrated at 1.09 GHz. The complex physical conditions arising at the solid-liquid interface under hypersonic entrainment are discussed with respect to acceleration induced slippage, rupture, longitudinal and shear radiation and multiphase relaxation affects.

  18. PHOENIX MARS MECA NON-IMAGING EDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) experiment on the Mars Phoenix Lander consists of four instrument components plus command...

  19. ALPHA/PHOENIX-P/ANC system validation for Angra-1 neutronic calculations

    International Nuclear Information System (INIS)

    Ponzoni Filho, Pedro; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso; Fernandes, Vanderlei Borba; Fetterman, R.J.

    1995-01-01

    The ALPHA/PHOENIX-P/ANC (APA) code package is an advanced neutronic calculation system for pressurized water reactor (PWR). PHOENIX-P generates the required cross sections for the fuel, burnable absorbers, control rods and baffle/reflector region. The ALPHA code is used to automate the generation of these cross-sections as well as process the PHOENIX-P results to generate the ANC model input. ANC is a three dimensional advanced nodal code used for the modeling of the, depletion of the fuel in the core, and for the calculation of power distributions, rod worths and other reactivity parameters. This paper provides brief overview of the APA methodology for reload core design of Angra Unit 1 Cycles 1 and 2. Results included are predicted power distributions, control rod worths and other reactivity parameters compared to plant measurements. These results demonstrate that the APA system can be used for the reload core design. (author). 7 refs, 9 figs

  20. ALPHA/PHOENIX-P/ANC system validation for Angra-1 neutronic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni Filho, Pedro; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso; Fernandes, Vanderlei Borba [FURNAS, Rio de Janeiro, RJ (Brazil); Fetterman, R.J. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-12-31

    The ALPHA/PHOENIX-P/ANC (APA) code package is an advanced neutronic calculation system for pressurized water reactor (PWR). PHOENIX-P generates the required cross sections for the fuel, burnable absorbers, control rods and baffle/reflector region. The ALPHA code is used to automate the generation of these cross-sections as well as process the PHOENIX-P results to generate the ANC model input. ANC is a three dimensional advanced nodal code used for the modeling of the, depletion of the fuel in the core, and for the calculation of power distributions, rod worths and other reactivity parameters. This paper provides brief overview of the APA methodology for reload core design of Angra Unit 1 Cycles 1 and 2. Results included are predicted power distributions, control rod worths and other reactivity parameters compared to plant measurements. These results demonstrate that the APA system can be used for the reload core design. (author). 7 refs, 9 figs.

  1. How Neoliberal Imperialism is Expressed by Programming Strategies of Phoenix TV: A Critical Case Study

    Directory of Open Access Journals (Sweden)

    Shuang Xie

    2013-05-01

    Full Text Available This project is a case study of Phoenix Television, which is a Hong Kong-based satellite TV network broadcasting to the global Chinese-speaking community, primarily to the mainland of China. In the theoretical framework of media imperialism and neoliberal imperialism, this study focuses on the programming strategies of Phoenix TV and examines how the global trend of neoliberalism, the Chinese government’s tight control of the media, and the sophisticated ownership of Phoenix TV intertwined to influence on its programming. The analysis of the format, content, naming, and scheduling reveals that US-inspired neoliberalism is expressed in the network’s programming strategies. This expression, in fact, is the balance that Phoenix found between the tension of global and Chinese interests, the tension between revenue making and public service, and the tension between Party-control and profit seeking.

  2. Acquisition: Acquisition of Targets at the Missile Defense Agency

    National Research Council Canada - National Science Library

    Ugone, Mary L; Meling, John E; James, Harold C; Haynes, Christine L; Heller, Brad M; Pomietto, Kenneth M; Bobbio, Jaime; Chang, Bill; Pugh, Jacqueline

    2005-01-01

    Who Should Read This Report and Why? Missile Defense Agency program managers who are responsible for the acquisition and management of targets used to test the Ballistic Missile Defense System should be interested in this report...

  3. Space-based ballistic-missile defense

    International Nuclear Information System (INIS)

    Bethe, H.A.; Garwin, R.L.; Gottfried, K.; Kendall, H.W.

    1984-01-01

    This article, based on a forthcoming book by the Union for Concerned Scientists, focuses on the technical aspects of the issue of space-based ballistic-missile defense. After analysis, the authors conclude that the questionable performance of the proposed defense, the ease with which it could be overwhelmed or circumvented, and its potential as an antisatellite system would cause grievous damage to the security of the US if the Strategic Defense Initiative were to be pursued. The path toward greater security lies in quite another direction, they feel. Although research on ballistic-missile defense should continue at the traditional level of expenditure and within the constraints of the ABM Treaty, every effort should be made to negotiate a bilateral ban on the testing and use of space weapons. The authors think it is essential that such an agreement cover all altitudes, because a ban on high-altitude antisatellite weapons alone would not viable if directed energy weapons were developed for ballistic-missile defense. Further, the Star Wars program, unlikely ever to protect the entire nation against a nuclear attack, would nonetheless trigger a major expansion of the arms race

  4. 76 FR 16736 - Closed Meeting of the Missile Defense Advisory Committee

    Science.gov (United States)

    2011-03-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary Closed Meeting of the Missile Defense Advisory Committee AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice of closed meeting. SUMMARY: Under the...: Missile Defense Advisory Committee. Dates of Meeting: Thursday, March 24, 2011. Times: 8 a.m. to 5:30 p.m...

  5. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.

    Science.gov (United States)

    Liu, Rui; Xiao, Nan; Wei, Shuhe; Zhao, Lixing; An, Jing

    2014-03-01

    The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    Science.gov (United States)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  7. Internal Shear Forging Processes for Missile Primary Structures.

    Science.gov (United States)

    1981-07-20

    Growth in Shear Forming," Trans. ASME, J. Eng. ind., Vol. 90, 1968, pp. 63-70. 1 28. H. J. Dreikandt, "Untersuchung Uber das DrUckwalzen zylindrisher...10 US Army Missile Command ATTN: DRSMI-RLM Redstone Arsenal, AL 35809 Comma nder 12 US Army Missile Command + camera-ready master ATTN: DRDMI- EAT

  8. Hypersonic flow past slender bodies in dispersive hydrodynamics

    International Nuclear Information System (INIS)

    El, G.A.; Khodorovskii, V.V.; Tyurina, A.V.

    2004-01-01

    The problem of two-dimensional steady hypersonic flow past a slender body is formulated for dispersive media. It is shown that for the hypersonic flow, the original 2+0 boundary-value problem is asymptotically equivalent to the 1+1 piston problem for the fully nonlinear flow in the same physical system, which allows one to take advantage of the analytic methods developed for one-dimensional systems. This type of equivalence, well known in ideal Euler gas dynamics, has not been established for dispersive hydrodynamics so far. Two examples pertaining to collisionless plasma dynamics are considered

  9. Application of Pontryagin’s Minimum Principle in Optimum Time of Missile Manoeuvring

    Directory of Open Access Journals (Sweden)

    Sari Cahyaningtias

    2016-11-01

    Full Text Available Missile is a guided weapon and designed to protect outermost island from a thread of other country. It, commonly, is used as self defense. This research presented surface-to-surface missile in final dive manoeuvre for fixed target. Furthermore, it was proposed manoeuvring based on unmanned aerial vehicle (UAV, autopilot system, which needs accuration and minimum both time and thrust of missile while attacking object. This paper introduced pontryagin’s Minimum Principle, which is useable to solve the problem. The numerical solution showed that trajectory of the missile is split it up in three sub-intervals; flight, climbing, and diving. The numerical simulation showed that the missile must climb in order to satisfy the final dive condition and the optimum time of a missile depend on initial condition of the altitude and the terminal velocity

  10. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  11. Discovery Learning: Zombie, Phoenix, or Elephant?

    Science.gov (United States)

    Bakker, Arthur

    2018-01-01

    Discovery learning continues to be a topic of heated debate. It has been called a zombie, and this special issue raises the question whether it may be a phoenix arising from the ashes to which the topic was burnt. However, in this commentary I propose it is more like an elephant--a huge topic approached by many people who address different…

  12. Information Management Principles Applied to the Ballistic Missile Defense System

    National Research Council Canada - National Science Library

    Koehler, John M

    2007-01-01

    .... Similarly several military systems with the single mission of missile defense have evolved in service stovepipes, and are now being integrated into a national and global missile defense architecture...

  13. EnviroAtlas - Phoenix, AZ - Ecosystem Services by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset presents environmental benefits of the urban forest in 2,434 block groups in Phoenix, Arizona. Carbon attributes, pollution removal and value, and...

  14. Vertical Distribution of Water at Phoenix

    Science.gov (United States)

    Tamppari, L. K.; Lemmon, M. T.

    2011-01-01

    Phoenix results, combined with coordinated observations from the Mars Reconnaissance Orbiter of the Phoenix lander site, indicate that the water vapor is nonuniform (i.e., not well mixed) up to a calculated cloud condensation level. It is important to understand the mixing profile of water vapor because (a) the assumption of a well-mixed atmosphere up to a cloud condensation level is common in retrievals of column water abundances which are in turn used to understand the seasonal and interannual behavior of water, (b) there is a long history of observations and modeling that conclude both that water vapor is and is not well-mixed, and some studies indicate that the water vapor vertical mixing profile may, in fact, change with season and location, (c) the water vapor in the lowest part of the atmosphere is the reservoir that can exchange with the regolith and higher amounts may have an impact on the surface chemistry, and (d) greater water vapor abundances close to the surface may enhance surface exchange thereby reducing regional transport, which in turn has implications to the net transport of water vapor over seasonal and annual timescales.

  15. Classifier utility modeling and analysis of hypersonic inlet start/unstart considering training data costs

    Science.gov (United States)

    Chang, Juntao; Hu, Qinghua; Yu, Daren; Bao, Wen

    2011-11-01

    Start/unstart detection is one of the most important issues of hypersonic inlets and is also the foundation of protection control of scramjet. The inlet start/unstart detection can be attributed to a standard pattern classification problem, and the training sample costs have to be considered for the classifier modeling as the CFD numerical simulations and wind tunnel experiments of hypersonic inlets both cost time and money. To solve this problem, the CFD simulation of inlet is studied at first step, and the simulation results could provide the training data for pattern classification of hypersonic inlet start/unstart. Then the classifier modeling technology and maximum classifier utility theories are introduced to analyze the effect of training data cost on classifier utility. In conclusion, it is useful to introduce support vector machine algorithms to acquire the classifier model of hypersonic inlet start/unstart, and the minimum total cost of hypersonic inlet start/unstart classifier can be obtained by the maximum classifier utility theories.

  16. Development process of muzzle flows including a gun-launched missile

    Directory of Open Access Journals (Sweden)

    Zhuo Changfei

    2015-04-01

    Full Text Available Numerical investigations on the launch process of a gun-launched missile from the muzzle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW+ and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of muzzle flows including a gun-launched missile are discussed in detail. This present numerical study confirms that complicated transient phenomena exist in the shortly launching stages when the gun-launched missile moves from the muzzle of a cannon to the free-flight stage. The propellant gas flows, the initial environmental ambient air flows and the moving missile mutually couple and interact. A complete structure of flow field is formed at the launching stages, including the blast wave, base shock, reflected shock, incident shock, shear layer, primary vortex ring and triple point.

  17. A computational study of inviscid hypersonic flows using energy relaxation method

    International Nuclear Information System (INIS)

    Nagdewe, Suryakant; Kim, H. D.; Shevare, G. R.

    2008-01-01

    Reasonable analysis of hypersonic flows requires a thermodynamic non-equilibrium model to properly simulate strong shock waves or high pressure and temperature states in the flow field. The energy relaxation method (ERM) has been used to model such a non-equilibrium effect which is generally expressed as a hyperbolic system of equations with a stiff relaxation source term. Relaxation time that is multiplied with source terms is responsible for nonequilibrium in the system. In the present study, a numerical analysis has been carried out with varying values of relaxation time for several hypersonic flows with AUSM (advection upstream splitting method) as a numerical scheme. Vibration modes of thermodynamic nonequilibrium effects are considered. The results obtained showed that, as the relaxation time reduces to zero, the solution marches toward equilibrium, while it shows non-equilibrium effects, as the relaxation time increases. The present computations predicted the experiment results of hypersonic flows with good accuracy. The work carried out suggests that the present energy relaxation method can be robust for analysis of hypersonic flows

  18. Modeling and conduct of turbine missile concrete impact experiments

    International Nuclear Information System (INIS)

    Woodfin, R.L.

    1981-01-01

    The overall objective of the subject experiments was to provide full scale data on the response of reinforced concrete containment walls to impact and penetration by postulated turbine-produced missiles. These data can be used to validate analytical or scale modeling methods and to assess the applicability of current design formulas to penetration by large, irregularly shaped missiles. These data and results will be used in providing more realistic estimates of turbine missile damage probability in nuclear power plants with a non-peninsula arrangement. This paper describes the derivation of the test matrix and the method of conducting the experiments. (orig./HP)

  19. The behavior of reinforced concrete barriers subjected to the impact of tornado generated deformable missiles

    International Nuclear Information System (INIS)

    McMahon, P.M.; Meyers, B.L.; Buchert, K.P.

    1977-01-01

    The paper presents a general model for the evaluation of local effects damage including, penetration and backface spalling, of reinforced concrete barriers subjected to the impact of deformable tornado generated missiles. The model is based on an approximte force time history which assumes: 1) the initial penetration of the missile occurs without significant deformation of the missile if the strength of the missile is greater than that of the barrier. This portion of the time history is represented by a linear and finite rise time; 2) wrinkling or collapse of the missile occurs when the critical stress of the missile is exceeded. This portion of the time histroy is represented by a constant force-time relationship, although a decreaseing force might be more accurate; 3) while the missile is penetrating and wrinkling both elastic and plastic stress waves are developed in the missile, and compressive and shear stress waves are generated in he target. When the shear waves reach the backface of the slab, doagonal cracks initiating at the end of the penetrating missile are formed. These cracks propagate to the backface reinforcing where splitting cracks are formed. Finally, yield hinge lines form in the plane of reinforcing; 4) repenetration of the missile occurs after the wrinkling has caused a change in missile cross section. This repenetration results from moving the failure cone described in three above, and is also represented by the costant force time history. Using the assumptions, relationships for the penetration depth of the missile the wrinkling length of the missile, the critical missile stress, the time history of the impact and the spalling of the target are developed. (Auth.)

  20. Cooperative Monitoring Center Occasional Paper/9: De-Alerting Strategic Ballistic Missiles

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Leonard W.; Edenburn, Michael W.; Fraley, Stanley K.; Trost, Lawrence C.

    1999-03-01

    This paper presents a framework for evaluating the technical merits of strategic ballistic missile de-alerting measures, and it uses the framework to evaluate a variety of possible measures for silo-based, land-mobile, and submarine-based missiles. De-alerting measures are defined for the purpose of this paper as reversible actions taken to increase the time or effort required to launch a strategic ballistic missile. The paper does not assess the desirability of pursuing a de-alerting program. Such an assessment is highly context dependent. The paper postulates that if de-alerting is desirable and is used as an arms control mechanism, de-alerting measures should satisfy specific cirteria relating to force security, practicality, effectiveness, significant delay, and verifiability. Silo-launched missiles lend themselves most readily to de-alerting verification, because communications necessary for monitoring do not increase the vulnerabilty of the weapons by a significant amount. Land-mobile missile de-alerting measures would be more challenging to verify, because monitoring measures that disclose the launcher's location would potentially increase their vulnerability. Submarine-launched missile de-alerting measures would be extremely challlenging if not impossible to monitor without increasing the submarine's vulnerability.

  1. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    International Nuclear Information System (INIS)

    GREGORY, DANNY LYNN; CAP, JEROME S.; TOGAMI, THOMAS C.; NUSSER, MICHAEL A.; HOLLINGSHEAD, JAMES RONALD

    1999-01-01

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented

  2. Design of DOE facilities for wind-generated missiles

    International Nuclear Information System (INIS)

    Kuilanoff, G.; Drake, R.M.

    1991-01-01

    This paper presents criteria and procedures for the design of structures and components for wind-generated missiles. Methods for determining missile-induced loading, calculated structural response, performance requirements, and design considerations are covered. The presented criteria is applicable to Safety-Related concrete buildings as a whole and to all their exposed external components including walls, roofs, and supporting structural systems and elements

  3. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  4. Transparent Yttria for IR Windows and Domes - Past and Present

    National Research Council Canada - National Science Library

    Hogan, Patrick; Stefanik, Todd; Willingham, Charles; Gentilman, Richard

    2004-01-01

    ... (sapphire, ALON, spinel), its thermal shock performance is similar. In fact, 7 out of 7 flat yttria windows were successfully wind-tunnel tested under hypersonic conditions simulating representative surface-to-air interceptor missile flights...

  5. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Directory of Open Access Journals (Sweden)

    Ariko Fukushima

    Full Text Available The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs above the human audible range (max. 20 kHz activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz to observe changes in the alpha2 frequency component (10-13 Hz of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG, which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC. When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect, while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect. These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  6. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    Science.gov (United States)

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  7. Application of a Complex Lead Compensator for a Laser Guided Missile

    Science.gov (United States)

    Akhila, M. R.; Gopika, S.; Abraham, R. J.

    2013-01-01

    This paper discusses the application of a lead compensator with complex pole and complex zero for a missile. It is compared with a lead compensator with real pole and real zero. A typical laser guided missile control system is considered for the performance comparison of both the compensators. Simulation studies carried out with MATLAB brings out the scope of using complex compensator in missile guided systems.

  8. The Apache Longbow-Hellfire Missile Test at Yuma Proving Ground: Ecological Risk Assessment for Missile Firing

    International Nuclear Information System (INIS)

    Jones, Daniel Steven; Efroymson, Rebecca Ann; Hargrove, William Walter; Suter, Glenn; Pater, Larry

    2008-01-01

    A multiple stressor risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework. The focus was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, M60-A1 tanks. This paper describes the ecological risk assessment for the missile launch and detonation. The primary stressor associated with this activity was sound. Other minor stressors included the detonation impact, shrapnel, and fire. Exposure to desert mule deer (Odocoileus hemionus crooki) was quantified using the Army sound contour program BNOISE2, as well as distances from the explosion to deer. Few effects data were available from related studies. Exposure-response models for the characterization of effects consisted of human 'disturbance' and hearing damage thresholds in units of C-weighted decibels (sound exposure level) and a distance-based No Observed Adverse Effects Level for moose and cannonfire. The risk characterization used a weight-of-evidence approach and concluded that risk to mule deer behavior from the missile firing was likely for a negligible number of deer, but that no risk to mule deer abundance and reproduction is expected

  9. Optimization of the Upper Surface of Hypersonic Vehicle Based on CFD Analysis

    Science.gov (United States)

    Gao, T. Y.; Cui, K.; Hu, S. C.; Wang, X. P.; Yang, G. W.

    2011-09-01

    For the hypersonic vehicle, the aerodynamic performance becomes more intensive. Therefore, it is a significant event to optimize the shape of the hypersonic vehicle to achieve the project demands. It is a key technology to promote the performance of the hypersonic vehicle with the method of shape optimization. Based on the existing vehicle, the optimization to the upper surface of the Simplified hypersonic vehicle was done to obtain a shape which suits the project demand. At the cruising condition, the upper surface was parameterized with the B-Spline curve method. The incremental parametric method and the reconstruction technology of the local mesh were applied here. The whole flow field was been calculated and the aerodynamic performance of the craft were obtained by the computational fluid dynamic (CFD) technology. Then the vehicle shape was optimized to achieve the maximum lift-drag ratio at attack angle 3°, 4° and 5°. The results will provide the reference for the practical design.

  10. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    Science.gov (United States)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  11. In aftermath of financial investigation Phoenix VA employee demoted after her testimony

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2013-03-01

    Full Text Available No abstract available. Article truncated after 150 words. A previous Southwest Journal of Pulmonary and Critical Care Journal editorial commented on fiscal mismanagement at the Department of Veterans Affairs (VA Medical Center in Phoenix (1. Now Paula Pedene, the former Phoenix VA public affairs officer, claims she was demoted for testimony she gave to the VA Inspector General’s Office (OIG regarding that investigation (2. In 2011, the OIG investigated the Phoenix VA for excess spending on private care of patients (3. The report blamed systemic failures for controls so weak that $56 million in medical fees were paid during 2010 without adequate review. The report particularly focused on one clinician assigned by the Chief of Staff to review hundreds of requests per week and the intensive care unit physicians for transferring patients to chronic ventilator units (1,3. After the investigation, the director and one of the associate directors left the VA and the chief of staff was promoted …

  12. Phoenix : Complex Adaptive System of Systems (CASoS) engineering version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Thomas W.; Quach, Tu-Thach; Detry, Richard Joseph; Conrad, Stephen Hamilton; Kelic, Andjelka; Starks, Shirley J.; Beyeler, Walter Eugene; Brodsky, Nancy S.; Verzi, Stephen J.; Brown, Theresa Jean; Glass, Robert John, Jr.; Sunderland, Daniel J.; Mitchell, Michael David; Ames, Arlo Leroy; Maffitt, S. Louise; Finley, Patrick D.; Russell, Eric Dean; Zagonel, Aldo A.; Reedy, Geoffrey E.; Mitchell, Roger A.; Corbet, Thomas Frank, Jr.; Linebarger, John Michael

    2011-08-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which we must understand to design a secure future for the nation and the world. Perturbations/disruptions in CASoS have the potential for far-reaching effects due to pervasive interdependencies and attendant vulnerabilities to cascades in associated systems. Phoenix was initiated to address this high-impact problem space as engineers. Our overarching goals are maximizing security, maximizing health, and minimizing risk. We design interventions, or problem solutions, that influence CASoS to achieve specific aspirations. Through application to real-world problems, Phoenix is evolving the principles and discipline of CASoS Engineering while growing a community of practice and the CASoS engineers to populate it. Both grounded in reality and working to extend our understanding and control of that reality, Phoenix is at the same time a solution within a CASoS and a CASoS itself.

  13. Modeling and Analysis of an Air-Breathing Flexible Hypersonic Vehicle

    Directory of Open Access Journals (Sweden)

    Xi-bin Zhang

    2014-01-01

    Full Text Available By using light-weighted material in hypersonic vehicle, the vehicle body can be easily deformed. The mutual couplings in aerodynamics, flexible structure, and propulsion system will bring great challenges for vehicle modeling. In this work, engineering estimated method is used to calculate the aerodynamic forces, moments, and flexible modes to get the physics-based model of an air-breathing flexible hypersonic vehicle. The model, which contains flexible effects and viscous effects, can capture the physical characteristics of high-speed flight. To overcome the analytical intractability of the model, a simplified control-oriented model of the hypersonic vehicle is presented with curve fitting approximations. The control-oriented model can not only reduce the complexity of the model, but also retain aero-flexible structure-propulsion interactions of the physics-based model and can be applied for nonlinear control.

  14. Toward a CFD nose-to-tail capability - Hypersonic unsteady Navier-Stokes code validation

    Science.gov (United States)

    Edwards, Thomas A.; Flores, Jolen

    1989-01-01

    Computational fluid dynamics (CFD) research for hypersonic flows presents new problems in code validation because of the added complexity of the physical models. This paper surveys code validation procedures applicable to hypersonic flow models that include real gas effects. The current status of hypersonic CFD flow analysis is assessed with the Compressible Navier-Stokes (CNS) code as a case study. The methods of code validation discussed to beyond comparison with experimental data to include comparisons with other codes and formulations, component analyses, and estimation of numerical errors. Current results indicate that predicting hypersonic flows of perfect gases and equilibrium air are well in hand. Pressure, shock location, and integrated quantities are relatively easy to predict accurately, while surface quantities such as heat transfer are more sensitive to the solution procedure. Modeling transition to turbulence needs refinement, though preliminary results are promising.

  15. PHOENIX MARS MECA OPTICAL MICROSCOPE 2 EDR VERSION 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) experiment on the Mars Phoenix Lander consists of four instrument components plus command...

  16. Multi Laser Pulse Investigation of the DEAS Concept in Hypersonic Flow

    International Nuclear Information System (INIS)

    Minucci, M.A.S.; Toro, P.G.P.; Oliveira, A.C.; Chanes, J.B. Jr.; Ramos, A.G.; Nagamatsu, H.T.; Myrabo, L.N.

    2004-01-01

    The present paper presents recent experimental results on the Laser-Supported Directed Energy 'Air Spike' - DEAS in hypersonic flow achieved by the Laboratory of Aerothermodynamics and Hypersonics - LAH, Brazil. Two CO2 TEA lasers, sharing the same optical cavity, have been used in conjunction with the IEAv 0.3m Hypersonic Shock Tunnel - HST to demonstrate the Laser-Supported DEAS concept. A single and double laser pulse, generated during the tunnel useful test time, were focused through a NaCl lens upstream of a Double Apollo Disc model fitted with seven piezoelectric pressure transducers and six platinum thin film heat transfer gauges. The objective being to corroborate previous results as well as to obtain additional pressure and heat flux distributions information when two laser pulses are used

  17. Development of a Multi-Disciplinary Aerothermostructural Model Applicable to Hypersonic Flight

    Science.gov (United States)

    Kostyk, Chris; Risch, Tim

    2013-01-01

    The harsh and complex hypersonic flight environment has driven design and analysis improvements for many years. One of the defining characteristics of hypersonic flight is the coupled, multi-disciplinary nature of the dominant physics. In an effect to examine some of the multi-disciplinary problems associated with hypersonic flight engineers at the NASA Dryden Flight Research Center developed a non-linear 6 degrees-of-freedom, full vehicle simulation that includes the necessary model capabilities: aerothermal heating, ablation, and thermal stress solutions. Development of the tool and results for some investigations will be presented. Requirements and improvements for future work will also be reviewed. The results of the work emphasize the need for a coupled, multi-disciplinary analysis to provide accurate

  18. Numerical analysis of a hypersonic turbulent and laminar flow using a commercial CFD solver

    OpenAIRE

    Pajčin Miroslav P.; Simonović Aleksandar M.; Ivanov Toni D.; Komarov Dragan M.; Stupar Slobodan N.

    2017-01-01

    Computational fluid dynamics computations for two hypersonic flow cases using the commercial ANSYS FLUENT 16.2 CFD software were done. In this paper, an internal and external hypersonic flow cases were considered and analysis of the hypersonic flow using different turbulence viscosity models available in ANSYS FLUENT 16.2 as well as the laminar viscosity model were done. The obtained results were after compared and commented upon. [Project of the Serbian Ministry of Education, Science and Tec...

  19. Full-scale tornado-missile impact tests. Interim report

    International Nuclear Information System (INIS)

    Stephenson, A.E.

    1976-04-01

    Seven completed initial tests are described with 4 types of hypothetical tornado-borne missiles (impacting reinforced concrete panels that are typical of walls in nuclear power facilities). The missiles were rocket propelled to velocities currently postulated as being attainable by debris in tornadoes. (1500-pound 35-foot long utility pole; 8-pound 1-inch Grade 60 reinforcing bar; 78-pound 3-inch Schedule 40 pipe; and 743-pound 12-inch Schedule 40 pipe;) The results show that a minimum thickness of 24 inches is sufficient to prevent backface scabbing from normal impacts of currently postulated tornado missiles and that existing power plant walls are adequate for the most severe conditions currently postulated by regulatory agencies. This report gives selected detailed data on the tests completed thus far, including strain, panel velocity, and reaction histories

  20. Hypersonic Vehicle Propulsion System Simplified Model Development

    Science.gov (United States)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  1. The Development of the US National Missile Defense and its Impact on the International Security

    Directory of Open Access Journals (Sweden)

    J. Yu. Parshkova

    2015-01-01

    Full Text Available The article reflects the US officials' point of view on the development of its national missile defense. The major threat to international security is the proliferation of ballistic missiles and weapons of mass destruction. The United States and the former Soviet Union made huge efforts to reduce and limit offensive arms. However, presently the proliferation of ballistic missiles spreads all over the world, especially in the Middle East, because of the ballistic missile technology falling into the hands of hostile non-state groups. Missile defenses can provide a permanent presence in a region and discourage adversaries from believing they can use ballistic missiles to coerce or intimidate the U.S. or its allies. With the possible attack regional missile defense systems will be promptly mobilized to enhance an effective deterrent. The ultimate goal of such large-scale missile defense deployment is to convince the adversaries that the use of ballistic missiles is useless in military terms and that any attack on the United States and its allies is doomed to failure. The United States has missile defense cooperative programs with a number of allies, including United Kingdom, Japan, Australia, Israel, Denmark, Germany, Netherlands, Czech Republic, Poland, Italy and many others. The Missile Defense Agency also actively participates in NATO activities to maximize opportunities to develop an integrated NATO ballistic missile defense capability. The initiative of the development of US BMD naturally belongs to the United States. That country has enormous technological, financial, economic, military and institutional capabilities, exceeding by far those of the other NATO members combined.

  2. 75 FR 52732 - Renewal of Department of Defense Federal Advisory Committee; Missile Defense Advisory Committee

    Science.gov (United States)

    2010-08-27

    ... Committee; Missile Defense Advisory Committee AGENCY: Department of Defense (DoD). ACTION: Renewal of..., the Department of Defense gives notice that it is renewing the charter for the Missile Defense... Director, Missile Defense Agency, independent advice and recommendations on all matters relating to missile...

  3. Hypersonic Air Flow with Finite Rate Chemistry

    National Research Council Canada - National Science Library

    Boyd, Ian

    1997-01-01

    ... describe the effects of non-equilibrium flow chemistry, shock interaction, and turbulent mixing and combustion on the performance of vehicles and air breathing engines designed to fly in the hypersonic flow...

  4. Key considerations in infrared simulations of the missile-aircraft engagement

    CSIR Research Space (South Africa)

    Willers, MS

    2012-09-01

    Full Text Available is required to steer the missile towards the target, using the seeker-provided target sight-line for missile guidance.These requirements are satisfied by detailed models for aerodynamics, flight control servos, the auto-pilot and guidance and navigation...

  5. NATO Advanced Study Institute on Molecular Physics and Hypersonic Flows

    CERN Document Server

    1996-01-01

    Molecular Physics and Hypersonic Flows bridges the gap between the fluid dynamics and molecular physics communities, emphasizing the role played by elementary processes in hypersonic flows. In particular, the work is primarily dedicated to filling the gap between microscopic and macroscopic treatments of the source terms to be inserted in the fluid dynamics codes. The first part of the book describes the molecular dynamics of elementary processes both in the gas phase and in the interaction with surfaces by using quantum mechanical and phenomenological approaches. A second group of contributions describes thermodynamics and transport properties of air components, with special attention to the transport of internal energy. A series of papers is devoted to the experimental and theoretical study of the flow of partially ionized gases. Subsequent contributions treat modern computational techniques for 3-D hypersonic flow. Non-equilibrium vibrational kinetics are then described, together with the coupling of vibra...

  6. EKF-based fault detection for guided missiles flight control system

    Science.gov (United States)

    Feng, Gang; Yang, Zhiyong; Liu, Yongjin

    2017-03-01

    The guided missiles flight control system is essential for guidance accuracy and kill probability. It is complicated and fragile. Since actuator faults and sensor faults could seriously affect the security and reliability of the system, fault detection for missiles flight control system is of great significance. This paper deals with the problem of fault detection for the closed-loop nonlinear model of the guided missiles flight control system in the presence of disturbance. First, set up the fault model of flight control system, and then design the residual generation based on the extended Kalman filter (EKF) for the Eulerian-discrete fault model. After that, the Chi-square test was selected for the residual evaluation and the fault detention task for guided missiles closed-loop system was accomplished. Finally, simulation results are provided to illustrate the effectiveness of the approach proposed in the case of elevator fault separately.

  7. Telltale wind indicator for the Mars Phoenix lander

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Honstein-Rathlou, C.; Merrison, J.P.

    2008-01-01

    The Telltale wind indicator is a mechanical anemometer designed to operate on the Martian surface as part of the meteorological package on the NASA Phoenix lander. It consists of a lightweight cylinder suspended by Kevlar fibers and is deflected under the action of wind. Imaging of the Telltale...

  8. The Intercontinental Ballistic Missile and Post Cold War Deterrence

    Science.gov (United States)

    2010-02-17

    Bonnetain, Hugues and Philippe Mazzoni. " Histoire De Missiles...Le 1er GMS Du Plateau D’Albion." http://www.capcomespace.net/dossiers/espace_europeen...Mazzoni, " Histoire De Missiles...Le 1er GMS Du Plateau D’Albion," http://www.capcomespace.net/dossiers/espace_europeen/albion/; Ministère de la Défense

  9. Hypersonic wind-tunnel free-flying experiments with onboard instrumentation

    KAUST Repository

    Mudford, Neil R.; O'Byrne, Sean B.; Neely, Andrew J.; Buttsworth, David R.; Balage, Sudantha

    2015-01-01

    Hypersonic wind-tunnel testing with "free-flight" models unconnected to a sting ensures that sting/wake flow interactions do not compromise aerodynamic coefficient measurements. The development of miniaturized electronics has allowed the demonstration of a variant of a new method for the acquisition of hypersonic model motion data using onboard accelerometers, gyroscopes, and a microcontroller. This method is demonstrated in a Mach 6 wind-tunnel flow, whose duration and pitot pressure are sufficient for the model to move a body length or more and turn through a significant angle. The results are compared with those obtained from video analysis of the model motion, the existing method favored for obtaining aerodynamic coefficients in similar hypersonic wind-tunnel facilities. The results from the two methods are in good agreement. The new method shows considerable promise for reliable measurement of aerodynamic coefficients, particularly because the data obtained are in more directly applicable forms of accelerations and rates of turn, rather than the model position and attitude obtained from the earlier visualization method. The ideal may be to have both methods operating together.

  10. On air-chemistry reduction for hypersonic external flow applications

    International Nuclear Information System (INIS)

    Ibrahim, Ashraf; Suman, Sawan; Girimaji, Sharath S.

    2015-01-01

    Highlights: • The existence of the slow manifold for the air-mixture system is shown. • The QSSA estimate of the slow manifold is fairly accurate. • For mid-temperature range the reduction mechanisms could be useful. - Abstract: In external hypersonic flows, viscous and compressibility effects generate very high temperatures leading to significant chemical reactions among air constituents. Therefore, hypersonic flow computations require coupled calculations of flow and chemistry. Accurate and efficient computations of air-chemistry kinetics are of much importance for many practical applications but calculations accounting for detailed chemical kinetics can be prohibitively expensive. In this paper, we investigate the possibility of applying chemical kinetics reduction schemes for hypersonic air-chemistry. We consider two chemical kinetics sets appropriate for three different temperature ranges: 2500 K to 4500 K; 4500 K to 9000 K; and above 9000 K. By demonstrating the existence of the so-called the slow manifold in each of the chemistry sets, we show that judicious chemical kinetics reduction leading to significant computational savings is possible without much loss in accuracy

  11. The Secret of Guided Missile Re-Entry,

    Science.gov (United States)

    1986-06-25

    I RD-PAI169 598 THE SECRET OF GUIDED MISSILE RE-ENTRY(U) FOREIGN / I TECHNOLOGY DIV NRIGHT-PATTERSON RFB OH J CHEN ET AL. I 25 JUN 96 FTD-ID(RS)T...TECHNOLOGY DIVISION THE SECRET OF GUIDED MISSILE RE-ENTRY by Chen Jingzhong, An Sehua J L 0 7 ’:;85’ ’ 0 *Approved for public release; Distribution...unlimite t d. :. 86 7 034.. FTD- ID(RS)T-0459-86 HUMAN TRANSLATION FTD-ID(RS)T-0459-86 25 June 1986 MICROFICHE NR: F - - 0Q 9? THE SECRET OF GUIDED

  12. Numerical analysis of a hypersonic turbulent and laminar flow using a commercial CFD solver

    Directory of Open Access Journals (Sweden)

    Pajčin Miroslav P.

    2017-01-01

    Full Text Available Computational fluid dynamics computations for two hypersonic flow cases using the commercial ANSYS FLUENT 16.2 CFD software were done. In this paper, an internal and external hypersonic flow cases were considered and analysis of the hypersonic flow using different turbulence viscosity models available in ANSYS FLUENT 16.2 as well as the laminar viscosity model were done. The obtained results were after compared and commented upon. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 35035

  13. Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies

    Directory of Open Access Journals (Sweden)

    Qilun ZHAO

    2017-08-01

    Full Text Available This study investigates cooperative guidance problems for multiple missiles with fixed and switching directed communication topologies. A two-step guidance strategy is proposed to realize the simultaneous attack. In the first step, a distributed cooperative guidance law is designed using local neighboring information for multiple missiles to achieve consensus on range-to-go and leading angle. The second step begins when the consensus of multiple missiles is realized. During the second step, multiple missiles disconnect from each other and hit the target using the proportional navigation guidance law. First, based on the local neighboring communications, a sufficient condition for multiple missiles to realize simultaneous attack with a fixed communication topology is presented, where the topology is only required to have a directed spanning tree. Then, the results are extended to the case of switching communication topologies. Finally, numerical simulations are provided to validate the theoretical results.

  14. Feasibility of missile guidance using MEMS-based active flow control

    International Nuclear Information System (INIS)

    DeChamplain, A.; Hamel, N.; Rainville, P.-A.; Gosselin, P.; Wong, F.

    2002-01-01

    The aim of this study was to evaluate the feasibility to control a missile or rocket by mean of an active flow control device such as MEMS (Micro Electro Mechanical Systems) in the form of a microbubble. For this simple aerodynamic form coupled to the geometry of a generic missile, different microbubble arrangements can have a very significant impact in steady operation. Using CFD, combinations of different microbubble configurations (ratio between the apparent diameter and apparent height) and positions on the surface of the missile were evaluated for their impact on overall system performance for a missile flying at Mach 2.5 at an altitude of 6 km at a zero angle of attack. From a validation study with the generic missile geometry tested experimentally, the Fluent commercial code gave an excellent accuracy of 2% for the drag coefficient. With the appropriate numerical parameters from the validation, different configurations of microbubble(s) were simulated to give only marginal changes to the coefficient of moment as compared to experimental values at an angle of attack of 14 degrees. Considering the major advantages in weight and space savings, this would certainly be a technology to implement for small changes in guidance parameters. (author)

  15. Commissioning of Theratron phoenix telecobalt machine and its performance assessment

    International Nuclear Information System (INIS)

    Rajendran, M.; Reddy, K.D.; Reddy, R.M.; Reddy, J.M.; Reddy, B.V.N.; Kumar, K.; Gopi, S.; Rajan, Dharani; Janardhanan

    2002-01-01

    Teletherapy machines like cobalt-60 unit and linear accelerator are extensively used for radiotherapy. Theratron phoenix machines have been installed. A brief report on the performance of this machine is presented

  16. Potential hazard to secondary containment from HCDA-generated missiles and sodium fires

    International Nuclear Information System (INIS)

    Romander, C.M.

    1979-02-01

    The potential hazard of HCDA-generated missiles is analyzed, and the current status of the potential hazards of sodium fires is summarized. Simple analyses are performed to determine lower bounds on the HCDA energetics required to generate missiles that could reach the secondary containment structure of a 1000-MWe LMFBR. The potential missiles considered include the vessel head, components mounted on the head, and conrol rods

  17. 77 FR 74457 - Foreign-Trade Zone 75-Phoenix, Arizona Application for Expansion (New Magnet Site) Under...

    Science.gov (United States)

    2012-12-14

    ..., Arizona Application for Expansion (New Magnet Site) Under Alternative Site Framework An application has...) adopted by the Board (15 CFR 400.2(c)) to include a new magnet site in Phoenix, Arizona. The application... zone project includes the following magnet sites: Site 1 (338 acres)--within the 550-acre Phoenix Sky...

  18. Numerical simulation of tornado-borne missile impact on reinforced concrete targets

    International Nuclear Information System (INIS)

    Tu, D.K.; Larder, R.

    1979-02-01

    This study is a continuation of the Lawrence Livermore Laboratory (LLL) effort to evaluate the applicability of using the finite element procedure to numerically simulate the impact of tornado-borne missiles on reinforced concrete targets. The objective of this study is to assess the back-face scab threshold of a reinforced concrete target impacted by deformable and nondeformable missiles. Several simulations were run using slug and pipe-type impacting missiles. The numerical results were compared with full-scale experimental field tests

  19. Missile defence : An overview

    NARCIS (Netherlands)

    Weimar, P.W.L.

    2012-01-01

    At the present day, an unparalleled number of international actors, be it national governments or non-state groups, have acquired or are seeking to acquire both weapons of mass destruction and the means to deliver them. Those means of delivery can be Ballistic Missiles that can bridge vast – even

  20. Full-scale impact test data for tornado-missile design of nuclear plants

    International Nuclear Information System (INIS)

    Stephenson, A.E.; Sliter, G.E.

    1977-01-01

    It is standard practice to consider the effects of low-probability impacts of tornado-borne debris (''tornado missiles'' such as utility poles and steel pipes) in the structural design of nuclear power plants in the United States. To provide data that can be used directly in the design procedure, a series of full-scale tornado-missile impact tests was performed. This paper is a brief summary of the results and conclusions from these tests. The tests consisted of reinforced concrete panels impacted by poles, pipes, and rods propelled by a rocket sled. The panels were constructed to current minimum standards and had thicknesses typical of auxiliary buildings of nuclear power plants. A specific objective was the determination of the impact velocities below which the panels do not experience backface scabbing. Another objective was to assess the adequacy of (1) conventional design formulae for penetration and scabbing and (2) conventional design methods for overall structural response. Test missiles and velocities represented those in current design standards. Missiles included utility poles, steel pipes, and steel bars. It is important to interpret the data in this paper in recognition that the test conditions represent conservative assumptions regarding maximum wind speeds, injection of the missile into the wind stream, aerodynamic trajectory, and orientation of missile at impact. Even with the severe assumptions made, the full-scale tests described demonstrate the ability of prototypical nuclear plant walls and roofs to provide adequate protection against postulated tornado-missile impact

  1. EnviroAtlas - Phoenix, AZ - BenMAP Results by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 2,434 block groups in Phoenix, AZ. The US EPA's...

  2. Flow visualization of a low density hypersonic flow field

    International Nuclear Information System (INIS)

    Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

    1989-01-01

    Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

  3. Hypersonic - Model Analysis as a Service

    DEFF Research Database (Denmark)

    Acretoaie, Vlad; Störrle, Harald

    2014-01-01

    Hypersonic is a Cloud-based tool that proposes a new approach to the deployment of model analysis facilities. It is implemented as a RESTful Web service API o_ering analysis features such as model clone detection. This approach allows the migration of resource intensive analysis algorithms from...

  4. Missile Electro-Optical Countermeasures Simulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory comprises several hardware-in-the-loop missile flight simulations designed specifically to evaluate the effectiveness of electro-optical air defense...

  5. McMurdo Dry Valleys, Antarctica - A Mars Phoenix Mission Analog

    Science.gov (United States)

    Tamppari, L. K.; Anderson, R. M.; Archer, D.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Ming, Douglas W.; Moore, Q.; Quinn, J. E.; Smith, P. H.; hide

    2010-01-01

    The Phoenix mission (PHX; May 25 - Nov. 2, 2008) studied the north polar region of Mars (68deg N) to understand the history of water and potential for habitability. Phoenix carried with it a wet chemistry lab (WCL) capable of determining the basic solution chemistry of the soil and the pH value, a thermal and evolved-gas analyzer capable of determining the mineralogy of the soil and detecting ice, microscopes capable of seeing soil particle shapes, sizes and colors at very high resolution, and a soil probe (TECP) capable of detecting unfrozen water in the soil. PHX coincided with an international effort to study the Earth s polar regions named the International Polar Year (IPY; 2007-2008). The best known Earth analog to the Martian high-northern plains, where Phoenix landed, are the McMurdo Dry Valleys (MDV), Antarctica (Fig. 1). Thus, the IPY afforded a unique opportunity to study the MDV with the same foci - history of water and habitability - as PHX. In austral summer 2007, our team took engineering models of WCL and TECP into the MDV and performed analgous measurements. We also collected sterile samples and analyzed them in our home laboratories using state-of-the-art tools. While PHX was not designed to perform biologic analyses, we were able to do so with the MDV analog samples collected.

  6. Soviet debate on missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Parrott, B.

    1987-04-01

    Although the Strategic Defense Initiative (SDI) is meant to cope with the danger of a Soviet nuclear attack, the recent US debate over SDI has paid surprisingly little attention to Soviet views of ballistic missile defense. Despite the existence of a substantial body of pertinent scholarship, the debate has failed to take adequate account of major changes in Soviet ballistic missile defense policy since the mid-1960s. It has also neglected the links between current Soviet military policy and broader Soviet political and economic choices. The Soviets regard SDI not as a novel undertaking to reduce the risks of nuclear war but as an extension of the geopolitical competition between the superpowers. This competition has been dominated in the 1980s, in the Soviet view, by sharply increased US assertiveness and the decline of detente. Viewing SDI as a manifestation of these general trends, Soviet decision makers find the prospect of an unregulated race in ballistic missile defenses and military space technologies deeply unsettling. The deterioration of superpower relations has raised serious doubts in Moscow about the wisdom of Soviet external policy during the 1970s and has provoked sharp internal differences over policy toward the US. Already highly suspicious of the Reagan administration, the elite is united by a general conviction that SDI is an American gambit that may ultimately undercut past Soviet strategic gains and pose a grave new threat to Soviet security. 14 references.

  7. Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths

    Science.gov (United States)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.

    2012-01-01

    This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.

  8. A Low-Visibility Force Multiplier: Assessing China’s Cruise Missile Ambitions

    Science.gov (United States)

    2014-04-01

    small radar signature, and very low altitude flight profile of cruise missiles stress air defense systems and airborne surveillance and tracking radars...for engines powering longer-range or large payload cruise missiles and requires a range of disciplines in metallurgy, air flow dynamics, heat ...Beijing-Mos- cow fallout, the Chinese persevered and conducted their first successful missile test in November 1960.3 The Soviets provided China with the

  9. Real-Time Target Motion Animation for Missile Warning System Testing

    Science.gov (United States)

    2006-04-01

    T. Perkins, R. Sundberg, J. Cordell, Z. Tun , and M. Owen, Real-time Target Motion Animation for Missile Warning System Testing, Proc. SPIE Vol 6208...Z39-18 Real-time target motion animation for missile warning system testing Timothy Perkins*a, Robert Sundberga, John Cordellb, Zaw Tunb, Mark

  10. N-S/DSMC hybrid simulation of hypersonic flow over blunt body including wakes

    Science.gov (United States)

    Li, Zhonghua; Li, Zhihui; Li, Haiyan; Yang, Yanguang; Jiang, Xinyu

    2014-12-01

    A hybrid N-S/DSMC method is presented and applied to solve the three-dimensional hypersonic transitional flows by employing the MPC (modular Particle-Continuum) technique based on the N-S and the DSMC method. A sub-relax technique is adopted to deal with information transfer between the N-S and the DSMC. The hypersonic flows over a 70-deg spherically blunted cone under different Kn numbers are simulated using the CFD, DSMC and hybrid N-S/DSMC method. The present computations are found in good agreement with DSMC and experimental results. The present method provides an efficient way to predict the hypersonic aerodynamics in near-continuum transitional flow regime.

  11. Assessment of CFD capability for prediction of hypersonic shock interactions

    Science.gov (United States)

    Knight, Doyle; Longo, José; Drikakis, Dimitris; Gaitonde, Datta; Lani, Andrea; Nompelis, Ioannis; Reimann, Bodo; Walpot, Louis

    2012-01-01

    The aerothermodynamic loadings associated with shock wave boundary layer interactions (shock interactions) must be carefully considered in the design of hypersonic air vehicles. The capability of Computational Fluid Dynamics (CFD) software to accurately predict hypersonic shock wave laminar boundary layer interactions is examined. A series of independent computations performed by researchers in the US and Europe are presented for two generic configurations (double cone and cylinder) and compared with experimental data. The results illustrate the current capabilities and limitations of modern CFD methods for these flows.

  12. 76 FR 14589 - Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...

    Science.gov (United States)

    2011-03-17

    ...-AH18 Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...). Section 222 repeals the restriction on purchase of Ballistic Missile Defense research, development, test... Ballistic Missile Defense research, development, test, and evaluation that was required by section 222 of...

  13. PHOENIX MARS MECA OPTICAL MICROSCOPE 3 RADIOMETRIC SCI V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) experiment on the Mars Phoenix Lander consists of four instrument components plus command...

  14. Detached Eddy Simulations of Hypersonic Transition

    Science.gov (United States)

    Yoon, S.; Barnhardt, M.; Candler, G.

    2010-01-01

    This slide presentation reviews the use of Detached Eddy Simulation (DES) of hypersonic transistion. The objective of the study was to investigate the feasibility of using CFD in general, DES in particular, for prediction of roughness-induced boundary layer transition to turbulence and the resulting increase in heat transfer.

  15. Probabilistic analysis of turbine missile damage to nuclear power plant structures

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.; Frank, R.A.

    1983-01-01

    This paper summarizes the results of the EPRI project that focused on the development of the overall probabilistic methodology to assess the risks of turbine missile induced damage to nuclear power plant structures and components. The project was structured to use the results of other EPRI projects that provided information on turbine failure and missile generation frequencies, models to predict the characteristics and exit conditions of the missiles, and experimental data for use in updating empirical impact formulas for reinforced concrete barriers. The research effort included: (1) adaptation and implementation of the missile generation probability and turbine casing impact models developed in Ref. [2]; (2) development of a methodology for the prediction of the motion of the postulated missile fragments that perforate the turbine casing; (3) development of a model using the experimental impact data to predict the effects of fragment impact on nuclear power plant barriers and components; (4) construction of a probabilistic damage assessment methodology using Monte Carlo simulation methodology; and (5) implementation of the methodology into an independent computer program (TURMIS), demonstration of its application to an example case study problem, and assessment of prediction sensitivity. (orig./RW)

  16. Liquid Missile Fuels as Means of Chemical Terrorist Attack

    International Nuclear Information System (INIS)

    Superina, V.; Orehovec, Z.

    2007-01-01

    Modern world is faced with numerous terrorist attacks whose goals, methods and means of the conduct are various. It seems that we have entered the era when terrorism, one's own little terrorism, is the easiest and the most painless way of achieving a goal. That is why that such a situation has contributed to the necessity for strengthening individual and collective protection and safety, import and export control, control of the production and illegal sale of the potential means for delivering terrorist act. It has also contributed to the necessity for devising means of the delivery. For more than 10 years, a series of congresses on CB MTS Industry has pointed at chemicals and chemical industry as potential means and targets of terrorism. The specialization and experience of different authors in the field of the missile technology and missile fuels, especially those of Eastern origin, and the threat that was the reality of the war conflicts in 1990s was the reason for making a scientific and expert analysis of the liquid missile fuels as means of terrorism. There are not many experts in the field of NBC protection who are familiar with the toxicity and reaction of liquid missile fuels still lying discarded and unprotected in abandoned barracks all over Europe and Asia. The purpose of this paper is to draw public attention to possible different abuses of liquid missile fuels for a terrorist purpose, as well as to possible consequences and prevention measures against such abuses. (author)

  17. Experimental Studies on Hypersonic Stagnation Point Chemical Environment

    National Research Council Canada - National Science Library

    Chazot, O

    2006-01-01

    Development of space transportation is a very challenging task. Hypersonic flight should be investigated in details to allow designing spacecraft according to the severe environment of their flight conditions...

  18. The role of strategic missile defence in the global architecture de ballistic non proliferation

    International Nuclear Information System (INIS)

    Hautecouverture, Benjamin

    2007-01-01

    Whereas some think that missile defence is a proliferation agent by nature and therefore undermines the already fragile regime of ballistic non proliferation, some others think that missile defence could underpin the non proliferation regime. The author thus discusses these issues and both points of view by commenting the ambiguous discursive relationships between missile defence and arms control, and by highlighting the various roles and missions given to missile defence, notably in treaties (like the ABM treaty) and postures adopted by concerned countries

  19. Study on combat effectiveness of air defense missile weapon system based on queuing theory

    Science.gov (United States)

    Zhao, Z. Q.; Hao, J. X.; Li, L. J.

    2017-01-01

    Queuing Theory is a method to analyze the combat effectiveness of air defense missile weapon system. The model of service probability based on the queuing theory was constructed, and applied to analyzing the combat effectiveness of "Sidewinder" and "Tor-M1" air defense missile weapon system. Finally aimed at different targets densities, the combat effectiveness of different combat units of two types' defense missile weapon system is calculated. This method can be used to analyze the usefulness of air defense missile weapon system.

  20. The National Research Council study: "Making sense of ballistic missile defense"

    Science.gov (United States)

    Wilkening, Dean A.

    2014-05-01

    This chapter explains and summarizes the main findings of a recent National Research Council study entitled Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives.

  1. Replica scaling studies of hard missile impacts on reinforced concrete

    International Nuclear Information System (INIS)

    Barr, P.; Carter, P.G.; Howe, W.D.; Neilson, A.J.

    1982-01-01

    Missile and target combinations at three different liners scales have been used in an experimental assessment of the applicability of replica scaling to the dynamic behaviour of reinforced concrete structures impacted by rigid missiles. Experimental results are presented for models with relative linear scales of 1, 0.37 and 0.12. (orig.) [de

  2. Elevator Sizing, Placement, and Control-Relevant Tradeoffs for Hypersonic Vehicles

    Science.gov (United States)

    Dickeson, Jeffrey J.; Rodriguez, Armando A.; Sridharan, Srikanth; Korad, Akshay

    2010-01-01

    Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. The impact of elevator size and placement on control-relevant static properties (e.g. level-flight trimmable region, trim controls, Angle of Attack (AOA), thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Elevator usage has been examine for a class of typical hypersonic trajectories.

  3. Computation of hypersonic flows with finite rate condensation and evaporation of water

    Science.gov (United States)

    Perrell, Eric R.; Candler, Graham V.; Erickson, Wayne D.; Wieting, Alan R.

    1993-01-01

    A computer program for modelling 2D hypersonic flows of gases containing water vapor and liquid water droplets is presented. The effects of interphase mass, momentum and energy transfer are studied. Computations are compared with existing quasi-1D calculations on the nozzle of the NASA Langley Eight Foot High Temperature Tunnel, a hypersonic wind tunnel driven by combustion of natural gas in oxygen enriched air.

  4. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles

    Science.gov (United States)

    Glass, David E.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are required for a range of hypersonic vehicles ranging from ballistic reentry to hypersonic cruise vehicles, both within Earth's atmosphere and non-Earth atmospheres. The focus of this paper is on air breathing hypersonic vehicles in the Earth's atmosphere. This includes single-stage to orbit (SSTO), two-stage to orbit (TSTO) accelerators, access to space vehicles, and hypersonic cruise vehicles. This paper will start out with a brief discussion of aerodynamic heating and thermal management techniques to address the high heating, followed by an overview of TPS for rocket-launched and air-breathing vehicles. The argument is presented that as we move from rocket-based vehicles to air-breathing vehicles, we need to move away from the insulated airplane approach used on the Space Shuttle Orbiter to a wide range of TPS and hot structure approaches. The primary portion of the paper will discuss issues and design options for CMC TPS and hot structure components, including leading edges, acreage TPS, and control surfaces. The current state-of-the-art will be briefly discussed for some of the components. The two primary technical challenges impacting the use of CMC TPS and hot structures for hypersonic vehicles are environmental durability and fabrication, and will be discussed briefly.

  5. CRED REA Coral Population Parameters at Baker, Phoenix Islands, 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Belt transects along 2 consecutively-placed, 25m transect lines were surveyed as part of Rapid Ecological Assessments conducted at 3 sites at Baker in the Phoenix...

  6. Portable Fluorescence Imaging System for Hypersonic Flow Facilities

    Science.gov (United States)

    Wilkes, J. A.; Alderfer, D. W.; Jones, S. B.; Danehy, P. M.

    2003-01-01

    A portable fluorescence imaging system has been developed for use in NASA Langley s hypersonic wind tunnels. The system has been applied to a small-scale free jet flow. Two-dimensional images were taken of the flow out of a nozzle into a low-pressure test section using the portable planar laser-induced fluorescence system. Images were taken from the center of the jet at various test section pressures, showing the formation of a barrel shock at low pressures, transitioning to a turbulent jet at high pressures. A spanwise scan through the jet at constant pressure reveals the three-dimensional structure of the flow. Future capabilities of the system for making measurements in large-scale hypersonic wind tunnel facilities are discussed.

  7. An Overview of the NASA FAP Hypersonics Project Airbreathing Propulsion Research

    Science.gov (United States)

    Auslender, A. H.; Suder, Kenneth L.; Thomas, Scott R.

    2009-01-01

    The propulsion research portfolio of the National Aeronautics and Space Administration Fundamental Aeronautics Program Hypersonics Project encompasses a significant number of technical tasks that are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime. An overall coordinated programmatic and technical effort has been structured to advance the state-of-the-art, via both experimental and analytical efforts. A subset of the entire hypersonics propulsion research portfolio is presented in this overview paper. To this end, two programmatic research disciplines are discussed; namely, (1) the Propulsion Discipline, including three associated research elements: the X-51A partnership, the HIFiRE-2 partnership, and the Durable Combustor Rig, and (2) the Turbine-Based Combine Cycle Discipline, including three associated research elements: the Combined Cycle Engine Large Scale Inlet Mode Transition Experiment, the small-scale Inlet Mode Transition Experiment, and the High-Mach Fan Rig.

  8. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    Science.gov (United States)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  9. Surface Heat Flux and Pressure Distribution on a Hypersonic Blunt Body With DEAS

    Science.gov (United States)

    Salvador, I. I.; Minucci, M. A. S.; Toro, P. G. P.; Oliveira, A. C.; Channes, J. B.

    2008-04-01

    With the currently growing interest for advanced technologies to enable hypersonic flight comes the Direct Energy Air Spike concept, where pulsed beamed laser energy is focused upstream of a blunt flight vehicle to disrupt the flow structure creating a virtual, slender body geometry. This allies in the vehicle both advantages of a blunt body (lower thermal stresses) to that of a slender geometry (lower wave drag). The research conducted at the Henry T. Nagamatsu Laboratory for Aerodynamics and Hypersonics focused on the measurement of the surface pressure and heat transfer rates on a blunt model. The hypersonic flight conditions were simulated at the HTN Laboratory's 0.3 m T2 Hypersonic Shock Tunnel. During the tests, the laser energy was focused upstream the model by an infrared telescope to create the DEAS effect, which was supplied by a TEA CO2 laser. Piezoelectric pressure transducers were used for the pressure measurements and fast response coaxial thermocouples were used for the measurement of surface temperature, which was later used for the estimation of the wall heat transfer using the inverse heat conduction theory.

  10. Acceleration effects on missile aerodynamics

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2010-09-01

    Full Text Available Practical requirements are now arising in which significant acceleration takes place during flight; 5th generation missiles, such as A-Darter, execute turns at 100 g, where g is the acceleration due to gravity, and thrust from propulsion systems may...

  11. MPD model for radar echo signal of hypersonic targets

    Directory of Open Access Journals (Sweden)

    Xu Xuefei

    2014-08-01

    Full Text Available The stop-and-go (SAG model is typically used for echo signal received by the radar using linear frequency modulation pulse compression. In this study, the authors demonstrate that this model is not applicable to hypersonic targets. Instead of SAG model, they present a more realistic echo signal model (moving-in-pulse duration (MPD for hypersonic targets. Following that, they evaluate the performances of pulse compression under the SAG and MPD models by theoretical analysis and simulations. They found that the pulse compression gain has an increase of 3 dB by using the MPD model compared with the SAG model in typical cases.

  12. Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.

    Science.gov (United States)

    Beltramo, Peter J; Schneider, Dirk; Fytas, George; Furst, Eric M

    2014-11-14

    A material with anisotropic elastic mechanical properties and a direction-dependent hypersonic band gap is fabricated using ac electric field-directed convective self-assembly of colloidal ellipsoids. The frequency of the gap, which is detected in the direction perpendicular to particle alignment and entirely absent parallel to alignment, and the effective sound velocities can be tuned by the particle aspect ratio. We hypothesize that the band gap originates from the primary eigenmode peak, the m-splitted (s,1,2) mode, of the particle resonating with the effective medium. These results reveal the potential for powerful control of the hypersonic phononic band diagram by combining anisotropic particles and self-assembly.

  13. Multiradar tracking for theater missile defense

    Science.gov (United States)

    Sviestins, Egils

    1995-09-01

    A prototype system for tracking tactical ballistic missiles using multiple radars has been developed. The tracking is based on measurement level fusion (`true' multi-radar) tracking. Strobes from passive sensors can also be used. We describe various features of the system with some emphasis on the filtering technique. This is based on the Interacting Multiple Model framework where the states are Free Flight, Drag, Boost, and Auxiliary. Measurement error modeling includes the signal to noise ratio dependence; outliers and miscorrelations are handled in the same way. The launch point is calculated within one minute from the detection of the missile. The impact point, and its uncertainty region, is calculated continually by extrapolating the track state vector using the equations of planetary motion.

  14. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    Science.gov (United States)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  15. The Phoenix galaxy as seen by NuSTAR

    DEFF Research Database (Denmark)

    Masini, A.; Comastri, A.; Puccetti, S.

    2017-01-01

    Aims. We study the long-term variability of the well-known Seyfert 2 galaxy Mrk 1210 (also known as UGC 4203, or the Phoenix galaxy). Methods. The source was observed by many X-ray facilities in the last 20 yr. Here we present a NuSTAR observation and put the results in the context of previously ...

  16. The Anti-Ballistic Missile Treaty

    International Nuclear Information System (INIS)

    Platt, A.

    1991-01-01

    This paper reports that in late May 1972 former President Richard M. Nixon went to Moscow and signed, among other documents, a Treaty to Limit Anti-Ballistic Missile (ABM) Systems. Under this agreement, both the United States and the Soviet Union made a commitment not to build nationwide ABM defenses against the other's intercontinental and submarine-launched ballistic missiles. They agreed to limit ABM deployments to a maximum of two sites, with no more than 100 launchers per site. Thirteen of the treaty's sixteen articles are intended to prevent any deviation from this. In addition, a joint Standing Consultative Commission to monitor compliance was created. National technical means --- sophisticated monitoring devices on land, sea, and in space --- were to be the primary instruments used to monitor compliance with the treaty. The ABM Treaty was signed in conjunction with an Interim Agreement to Limit Strategic Offensive Arms

  17. An Efficient Missile Loadout Planning Tool for Operational Planners

    Science.gov (United States)

    2017-06-01

    dictionaries to access values for penalties and feasibility checks. VBA user-defined types are created to identify the base set of missions and base...Missile Defense TLAM Tomahawk Land Attack Missiles TSC Tomahawk Strike Coordinator USN United States Navy VBA Visual Basic for Applications VLP... accessible and usable form, we can start basing our loadouts on actual operational plans (OPLAN) and concept plans (CONPLAN). This will give fleet

  18. Analysis of Hypersonic Vehicle Wakes

    Science.gov (United States)

    2015-09-17

    Fraction of Cyanide throughout the Flowfield ................................... 131 Figure 122. Mass Fraction of Cyanide at the Nose...hypersonic flow is that as M increases the conservation equations cannot be linearized. The flow properties must be modeled in a complex fashion and can no...ablation present to react with as well. These products of ablation, along with the dissociation and ionization of the gas, gives rise to complex

  19. Hypersonic Threats to the Homeland

    Science.gov (United States)

    2017-03-28

    ADAM) system . This ground based system protects 7 soldiers against rocket threats and utilizes a 10 kW laser with an effective range out to...early warning systems for response to hypersonic threats . The integration of directed energy defensive systems with Space Based Infrared Sensors (SBIRS...and early warning radars already in operation will save costs. By capitalizing on Terminal High Altitude Area Defense (THAAD) system capabilities

  20. Impact load time histories for viscoelastic missiles

    International Nuclear Information System (INIS)

    Stoykovich, M.

    1977-01-01

    Generation of the impact load time history at the contact point between a viscoelastic missile and its targets is presented. In the past, in the case of aircraft striking containment shell structure, the impact load time history was determined on the basis of actual measurements by subjecting a rigid wall to aircraft crash. The effects of elastic deformation of the target upon the impact load time history is formulated in this paper. The missile is idealized by a linear mass-spring-dashpot combination using viscoelastic models. These models can readily be processed taking into account the elastic as well as inelastic deformations of the missiles. The target is assumed to be either linearly elastic or rigid. In the case of the linearly elastic target, the normal mode theory is used to express the time-dependent displacements of the target which is simulated by lumped masses, elastic properties and dashpots in discrete parts. In the case of Maxwell viscoelastic model, the time-dependent displacements of the missile and the target are given in terms of the unknown impact load time history. This leads to an integral equation which may be solved by Laplace transformation. The normal mode theory is provided. The target structure may be composed of different materials with different components. Concrete and steel structural components have inherently different viscous friction damping properties. Hence, the equivalent modal damping depends on the degree of participation of these components in the modal response. An approximate rule for determining damping in any vibration mode by weighting the damping of each component according to the modal energy stored in each component is considered

  1. Deploying Missile Defense: Major Operational Challenges

    National Research Council Canada - National Science Library

    Bunn, M

    2004-01-01

    By October 2004, the United States will have begun initial deployment of a missile defense capability albeit a modest, limited, and not completely proven one to defend the homeland against a limited...

  2. Optimal Fixed-Interval Integrated Guidance-Control Laws for Hit-to-Kill Missiles

    National Research Council Canada - National Science Library

    Menon, P. K; Sweriduk, G. D; Ohlmeyer, E. J

    2003-01-01

    Due to their potential for reducing the weapon size and efficiency, design methods for realizing hit-to- kill capabilities in missile systems are of significant research interest in the missile flight control community...

  3. Generation of missiles by tornadoes

    International Nuclear Information System (INIS)

    1974-11-01

    Available data on tornado wind velocities and wind distribution are incorporated into a mathematical model of the tornado wind field. The mathematical model is then used to predict the time-history of motion of a potential missile in a tornado wind field. (U.S.)

  4. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  5. On two special values of temperature factor in hypersonic flow stagnation point

    Science.gov (United States)

    Bilchenko, G. G.; Bilchenko, N. G.

    2018-03-01

    The hypersonic aircraft permeable cylindrical and spherical surfaces laminar boundary layer heat and mass transfer control mathematical model properties are investigated. The nonlinear algebraic equations systems are obtained for two special values of temperature factor in the hypersonic flow stagnation point. The mappings bijectivity between heat and mass transfer local parameters and controls is established. The computation experiments results are presented: the domains of allowed values “heat-friction” are obtained.

  6. Efficient multigrid computation of steady hypersonic flows

    NARCIS (Netherlands)

    Koren, B.; Hemker, P.W.; Murthy, T.K.S.

    1991-01-01

    In steady hypersonic flow computations, Newton iteration as a local relaxation procedure and nonlinear multigrid iteration as an acceleration procedure may both easily fail. In the present chapter, same remedies are presented for overcoming these problems. The equations considered are the steady,

  7. Dynamics Evolution Investigation of Mack Mode Instability in a Hypersonic Boundary Layer by Bicoherence Spectrum Analysis

    Science.gov (United States)

    Han, Jian; Jiang, Nan

    2012-07-01

    The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth.

  8. Dynamics Evolution Investigation of Mack Mode Instability in a Hypersonic Boundary Layer by Bicoherence Spectrum Analysis

    International Nuclear Information System (INIS)

    Han Jian; Jiang Nan

    2012-01-01

    The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth. (fundamental areas of phenomenology(including applications))

  9. Local impact effects on concrete target due to missile: An empirical and numerical approach

    International Nuclear Information System (INIS)

    Ranjan, Rajiv; Banerjee, Sauvik; Singh, R.K.; Banerji, Pradipta

    2014-01-01

    Highlights: • Local impact effect of hard missile on reinforced concrete targets has been studied. • Review of empirical formulation for predicting local response carried out. • Numerical simulation of experimental test of Kojima (1991) carried out. • Divergence of FE results with those obtained using emperical formulations. • Close match of numerical simulation results with experimental data. - Abstract: Concrete containment walls and internal concrete barrier walls of a Nuclear Power Plant safety related structures are often required to be designed for externally and internally generated missiles. Potential missiles include external extreme wind generated missiles, aircraft crash and internal accident generated missiles such as impact due to turbine blade failure and steel pipe missiles resulting from pipe break. The objective of the present paper is to compare local missile impact effects on reinforced concrete target using available empirical formulations with those obtained using LS-DYNA numerical simulation. The use of numerical simulations for capturing the transient structural response has become increasingly used for structural design against impact loads. They overcome the limits of applicability of the empirical formulae and also provide information on stress and deformation fields, which may be used to improve the resistance of the concrete. Finite element (FE) analyses of an experimental impact problem reported by Kojima (1991) are carried out that are able to capture the missile impact effects; in terms of local and global damage. The continuous surface cap model has been used for modelling concrete behaviour. A range of missile velocity has been considered to simulate local missile impact phenomenon and modes of failure and to capture the concrete response from elastic to plastic fracture. A comparison is then made between the empirical formulations, numerical simulation results, and available experimental results of slab impact tests

  10. NATO and U.S. Ballistic Missile Defense Programs: Divergent or Convergent Paths?

    National Research Council Canada - National Science Library

    Toms, Kevin E

    2008-01-01

    ...) information network to support the Theater Missile Defense (TMD) capabilities of specific Allies for the protection of forward deployed troops, and studies of the feasibility and political-military implications of Ballistic Missile Defense (BMD...

  11. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer

    International Nuclear Information System (INIS)

    Jian, Han; Nan, Jiang

    2008-01-01

    Experimental measurement of hypersonic boundary layer stability and transition on a sharp cone with a half angle of 5° is carried out at free-coming stream Mach number 6 in a hypersonic wind tunnel. Mean and fluctuation surface-thermal-flux characteristics of the hypersonic boundary layer flow are measured by Pt-thin-film thermocouple temperature sensors installed at 28 stations on the cone surface along longitudinal direction. At hypersonic speeds, the dominant flow instabilities demonstrate that the growth rate of the second mode tends to exceed that of the low-frequency mode. Wavelet-based cross-spectrum technique is introduced to obtain the multi-scale cross-spectral characteristics of the fluctuating signals in the frequency range of the second mode. Nonlinear interactions both of the second mode disturbance and the first mode disturbance are demonstrated to be dominant instabilities in the initial stage of laminar-turbulence transition for hypersonic shear flow. (fundamental areas of phenomenology (including applications))

  12. A laws of war review of contemporary land-based missile defence ...

    African Journals Online (AJOL)

    Automated precise guided missile defence has been around for some years, and is a modern-day mechanism used frequently since 2011 to defend against rocket attacks penetrating national airspace. Israel's automated Iron Dome Missile Defence System has intercepted over 1 000 rockets during two recent military ...

  13. Robust Switching Control for Hypersonic Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight in the hypersonic regime is critical to NASA's goals because access to earth orbit and re-entry from orbit to earth or to other planets with atmospheres...

  14. Aeroelasticity, Aerothermoelasticity and Aeroelastic Scaling of Hypersonic Vehicles

    National Research Council Canada - National Science Library

    Freidmann, Peretz P; Powell, Kenneth G

    2004-01-01

    ...) the behavior of a complete generic hypersonic vehicle. For problems (a) the unsteady airloads were computed using third order piston theory, as well a CFD based Euler and Navier-Stokes loads. For case (b...

  15. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    Science.gov (United States)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R workers at DLR-Göttingen.

  16. Progress with multigrid schemes for hypersonic flow problems

    International Nuclear Information System (INIS)

    Radespiel, R.; Swanson, R.C.

    1995-01-01

    Several multigrid schemes are considered for the numerical computation of viscous hypersonic flows. For each scheme, the basic solution algorithm employs upwind spatial discretization with explicit multistage time stepping. Two-level versions of the various multigrid algorithms are applied to the two-dimensional advection equation, and Fourier analysis is used to determine their damping properties. The capabilities of the multigrid methods are assessed by solving three different hypersonic flow problems. Some new multigrid schemes based on semicoarsening strategies are shown to be quite effective in relieving the stiffness caused by the high-aspect-ratio cells required to resolve high Reynolds number flows. These schemes exhibit good convergence rates for Reynolds numbers up to 200 X 10 6 and Mach numbers up to 25. 32 refs., 31 figs., 1 tab

  17. A modular ducted rocket missile model for threat and performance assessment

    NARCIS (Netherlands)

    Mayer, A.E.H.J.; Halswijk, W.H.C.; Komduur, H.J.; Lauzon, M.; Stowe, R.A.

    2005-01-01

    A model was developed to predict the thrust of throttled ramjet propelled missiles. The model is called DRCORE and fulfils the growing need to predict the performance of air breathing missiles. Each subsystem of the propulsion unit of this model is coded by using engineering formulae and enables the

  18. Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements

    Science.gov (United States)

    Spaid, Frank W.; Keener, Earl R.

    1993-01-01

    This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.

  19. By Land or By Sea: An Analysis of National Missile Defense Options

    National Research Council Canada - National Science Library

    Altman, Bern J

    2000-01-01

    In conformance with the National Missile Defense (NMD) Act of 1999, the United States is pursuing the path to fielding a system capable of providing protection for all of the United States against a limited ballistic missile attack...

  20. Flexible missile autopilot design studies with PC-MATLAB/386

    Science.gov (United States)

    Ruth, Michael J.

    1989-01-01

    Development of a responsive, high-bandwidth missile autopilot for airframes which have structural modes of unusually low frequency presents a challenging design task. Such systems are viable candidates for modern, state-space control design methods. The PC-MATLAB interactive software package provides an environment well-suited to the development of candidate linear control laws for flexible missile autopilots. The strengths of MATLAB include: (1) exceptionally high speed (MATLAB's version for 80386-based PC's offers benchmarks approaching minicomputer and mainframe performance); (2) ability to handle large design models of several hundred degrees of freedom, if necessary; and (3) broad extensibility through user-defined functions. To characterize MATLAB capabilities, a simplified design example is presented. This involves interactive definition of an observer-based state-space compensator for a flexible missile autopilot design task. MATLAB capabilities and limitations, in the context of this design task, are then summarized.

  1. Thermophysical Properties of the Phoenix Mars Landing Site Study Regions

    Science.gov (United States)

    Putzig, N. E.; Mellon, M. T.; Golombek, M. P.; Arvidson, R. E.

    2006-03-01

    Analysis of Phoenix Mars study regions places 4 of 5 in a previously-identified duricrust-dominated thermophysical unit which also contains the Viking and Spirit landing sites. Extrapolation of lander-observed properties to the study regions may be complicated by surface heterogeneity.

  2. An evaluation method for tornado missile strike probability with stochastic correction

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Yuzuru; Murakami, Takahiro; Hirakuchi, Hiromaru; Sugimoto, Soichiro; Hattori, Yasuo [Nuclear Risk Research Center (External Natural Event Research Team), Central Research Institute of Electric Power Industry, Abiko (Japan)

    2017-03-15

    An efficient evaluation method for the probability of a tornado missile strike without using the Monte Carlo method is proposed in this paper. A major part of the proposed probability evaluation is based on numerical results computed using an in-house code, Tornado-borne missile analysis code, which enables us to evaluate the liftoff and flight behaviors of unconstrained objects on the ground driven by a tornado. Using the Tornado-borne missile analysis code, we can obtain a stochastic correlation between local wind speed and flight distance of each object, and this stochastic correlation is used to evaluate the conditional strike probability, QV(r), of a missile located at position r, where the local wind speed is V. In contrast, the annual exceedance probability of local wind speed, which can be computed using a tornado hazard analysis code, is used to derive the probability density function, p(V). Then, we finally obtain the annual probability of tornado missile strike on a structure with the convolutional integration of product of QV(r) and p(V) over V. The evaluation method is applied to a simple problem to qualitatively confirm the validity, and to quantitatively verify the results for two extreme cases in which an object is located just in the vicinity of or far away from the structure.

  3. An evaluation method for tornado missile strike probability with stochastic correction

    International Nuclear Information System (INIS)

    Eguchi, Yuzuru; Murakami, Takahiro; Hirakuchi, Hiromaru; Sugimoto, Soichiro; Hattori, Yasuo

    2017-01-01

    An efficient evaluation method for the probability of a tornado missile strike without using the Monte Carlo method is proposed in this paper. A major part of the proposed probability evaluation is based on numerical results computed using an in-house code, Tornado-borne missile analysis code, which enables us to evaluate the liftoff and flight behaviors of unconstrained objects on the ground driven by a tornado. Using the Tornado-borne missile analysis code, we can obtain a stochastic correlation between local wind speed and flight distance of each object, and this stochastic correlation is used to evaluate the conditional strike probability, QV(r), of a missile located at position r, where the local wind speed is V. In contrast, the annual exceedance probability of local wind speed, which can be computed using a tornado hazard analysis code, is used to derive the probability density function, p(V). Then, we finally obtain the annual probability of tornado missile strike on a structure with the convolutional integration of product of QV(r) and p(V) over V. The evaluation method is applied to a simple problem to qualitatively confirm the validity, and to quantitatively verify the results for two extreme cases in which an object is located just in the vicinity of or far away from the structure

  4. The PHOENIX Concept

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Takahashi, H.; Todosow, M.; Aronson, A.L.; Slovik, G.C.; Horak, W.C.

    1991-01-01

    A proposed means of transmuting key long-lived radioactive isotopes, primarily the so-called minor actinides (Np, Am, Cm), using a hybrid proton-accelerator-sub-critical lattice, is described. It is argued that by partitioning the components of the light water reactor (LWR) spent fuel and by transmuting key elements, such as the plutonium, the minor actinides, and a few of the long-lived fission products, that some of the most significant challenges in building a waste repository can be substantially reduced. If spent fuel partitioning and transmutation were fully implemented, the time required to reduce the waste stream toxicity below that of uranium ore would be reduced from more than 10,000 years to approximately 30 years. The proposed machine, based on the described PHOENIX Concept, would transmute the minor actinides and much of the iodine produced by 75 LWRs, and would generate usable electricity (beyond that required to run the large accelerator) of 850 MW e . 14 refs., 29 figs

  5. Ballistic Missile Defense: New Plans, Old Challenges

    Directory of Open Access Journals (Sweden)

    Elizabeth Zolotukhina

    2010-01-01

    Full Text Available On September 17, 2009—the 70th anniversary of the Soviet invasion of Poland in 1939 that marked the beginning of World War II—the Obama Administration announced its intention to shelve plans for the U.S. Ballistic Missile Defense (BMD that had been developed under former President George W. Bush. Pointing to a new intelligence assessment, President Obama argued that his predecessor's plan to deploy an X-band radar station outside of Prague, Czech Republic, and 10 two-stage interceptor missiles in Poland would not adequately protect America and its European allies from the Iranian threat and reiterated his opposition to utilizing unproven technology in any European BMD architecture.

  6. A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD

    Directory of Open Access Journals (Sweden)

    Chen Xin

    2015-10-01

    Full Text Available Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, computation fluid dynamics (CFD and experimental investigation, a reduced order modeling (ROM framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermodynamic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD-Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.

  7. Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues

    Science.gov (United States)

    2016-02-24

    FY2008, Congress rejected the requested funding for this program, but the Navy has continued to consider the possibility of deploying intermediate ...10 Submarine-Launched Intermediate -Range Global Strike .................................................. 11 Air Force Programs...Missiles............................................................................ 36 Submarine-Launched Intermediate -Range Ballistic Missiles

  8. Whither Ballistic Missile Defense?

    Science.gov (United States)

    1992-11-30

    important that technology today is placing enormous power in the many camps-not only information that enables timely decision-making, but also the...WHITHER BALLISTIC MISSILE DEFENSE? BY AMBASSADOR HENRY F. COOPER NOVEMBER 30,1992 TECHNICAL MARKETING SOCIETY OF AMERICA WASHINGTON, DC...Conference on Technical Marketing 2000: Opportunities and Strategies for a Changing World) I intend to discuss the prospects for SDI in a changing

  9. European Missile Defense and Russia

    Science.gov (United States)

    2014-07-01

    Moskovskiy Komsomolets, September 18, 2009. 27. U.S. Department of State website, available from www. state.gov/t/ avc /rls/162447.htm. 28. BBC Monitoring (BBCM...see www.state.gov/t/ avc /c52028.htm and www. slideshare.net/rusemblon/russian-mod-views-on-nato-missile-defence- in-europe, respectively. 67

  10. Range Reference Atmosphere 0-70 Km Altitude. Kwajalein Missile Range, Kwajalein, Marshall Islands

    Science.gov (United States)

    1982-01-01

    DOCUMENT 360-82 KWAJALEIN MISSILE RANGE KWAJALEIN, MARSHALL ISLANDS RANGE REFERENCE ATMOSPHERE 0-70 KM ALTITUDE, C00 L’’I METEOROLOGY GROUP .RANGE...34Reference Atmosphere (Part 1), Kwajale 4n Missile Range, Kwajalein, Marshall Islands ," ADA002664. * 19. KEY WORDS (Continue on revorsae d. If necoeewy...CLASSIFICATION OF TIlS PAGE (Whe~n Data EnterecD -v DOCUMENT 360-82 Vo- KWAJALEIN MISSILE RANGE KWAJALEIN, MARSHALL ISLANDS RANGE REFERENCE ATMOSPHERE 0-70 km

  11. Advanced Control System Design for Hypersonic Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Guidance and control system design for hypersonic vehicles is more challenging than their subsonic and supersonic counterparts. Some of these challenges are (i)...

  12. Parametric Analysis of a Hypersonic Inlet using Computational Fluid Dynamics

    Science.gov (United States)

    Oliden, Daniel

    For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be

  13. Evaluation of CFD Turbulent Heating Prediction Techniques and Comparison With Hypersonic Experimental Data

    Science.gov (United States)

    Dilley, Arthur D.; McClinton, Charles R. (Technical Monitor)

    2001-01-01

    Results from a study to assess the accuracy of turbulent heating and skin friction prediction techniques for hypersonic applications are presented. The study uses the original and a modified Baldwin-Lomax turbulence model with a space marching code. Grid converged turbulent predictions using the wall damping formulation (original model) and local damping formulation (modified model) are compared with experimental data for several flat plates. The wall damping and local damping results are similar for hot wall conditions, but differ significantly for cold walls, i.e., T(sub w) / T(sub t) hypersonic vehicles. Based on the results of this study, it is recommended that the local damping formulation be used with the Baldwin-Lomax and Cebeci-Smith turbulence models in design and analysis of Hyper-X and future hypersonic vehicles.

  14. Systems Challenges for Hypersonic Vehicles

    Science.gov (United States)

    Hunt, James L.; Laruelle, Gerard; Wagner, Alain

    1997-01-01

    This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.

  15. Tornado missile simulation and design methodology. Volume 2: model verification and data base updates. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments

  16. Hypersonic Navier Stokes Comparisons to Orbiter Flight Data

    Science.gov (United States)

    Campbell, Charles H.; Nompelis, Ioannis; Candler, Graham; Barnhart, Michael; Yoon, Seokkwan

    2009-01-01

    Hypersonic chemical nonequilibrium simulations of low earth orbit entry flow fields are becoming increasingly commonplace as software and computational capabilities become more capable. However, development of robust and accurate software to model these environments will always encounter a significant barrier in developing a suite of high quality calibration cases. The US3D hypersonic nonequilibrium Navier Stokes analysis capability has been favorably compared to a number of wind tunnel test cases. Extension of the calibration basis for this software to Orbiter flight conditions will provide an incremental increase in confidence. As part of the Orbiter Boundary Layer Transition Flight Experiment and the Hypersonic Thermodynamic Infrared Measurements project, NASA is performing entry flight testing on the Orbiter to provide valuable aerothermodynamic heating data. An increase in interest related to orbiter entry environments is resulting from this activity. With the advent of this new data, comparisons of the US3D software to the new flight testing data is warranted. This paper will provide information regarding the framework of analyses that will be applied with the US3D analysis tool. In addition, comparisons will be made to entry flight testing data provided by the Orbiter BLT Flight Experiment and HYTHIRM projects. If data from digital scans of the Orbiter windward surface become available, simulations will also be performed to characterize the difference in surface heating between the CAD reference OML and the digitized surface provided by the surface scans.

  17. 77 FR 64564 - Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles

    Science.gov (United States)

    2012-10-22

    ...-Basis Hurricane and Hurricane Missiles AGENCY: Nuclear Regulatory Commission. ACTION: Proposed interim...-ISG-024, ``Implementation of Regulatory Guide 1.221 on Design-Basis Hurricane and Hurricane Missiles....221, ``Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants.'' DATES: Submit...

  18. Gender Roles in Chika Unigwe's The Phoenix | Akani | African ...

    African Journals Online (AJOL)

    This paper examines gender roles in Chika Unigwe's The Phoenix (2007). In examining these gender roles, the paper focuses on the roles of both female and male genders in the novel in order to tease out issues that border on the marriage institution and gender complementarity in a multicultural setting. As we have ...

  19. Standard Missile-6 (SM-6)

    Science.gov (United States)

    2016-12-01

    attack or Anti-Ship Cruise Missiles in flight. The SM-6 ERAM program is an evolutionary, capabilities based acquisition program that will use spiral ...Prior SAR Total O&S Estimates - Dec 2014 SAR 460.3 Programmatic/Planning Factors 0.0 Cost Estimating Methodology 0.0 Cost Data Update 0.0 Labor Rate

  20. The assessment of tornado missile hazard to nuclear power plants

    International Nuclear Information System (INIS)

    Goodman, J.; Koch, J.E.

    1983-01-01

    Numerical methods and computer codes for assessing tornado missile hazards to nuclear power plants are developed. Due to the uncertainty and randomness of tornado and tornado-generated missiles' characteristics, the damage probability of targets has a highly spread distribution. The proposed method is useful for assessing the risk of not providing protection to some nonsafety-related targets whose failure can create a hazard to the safe operation of nuclear power plants

  1. An overview of the political-military implications of missile proliferation

    International Nuclear Information System (INIS)

    Mahnken, T.

    1990-01-01

    The proliferation of advanced military technology, and of ballistic missiles in particular, should be viewed as a phenomenon with potential strategic ramifications for both the U.S. and its allies. This paper examines these ramifications on three levels: military, politico-military, and geostratigic. Four broad policy approaches can be taken singly or in combination to deal with the ballistic missile threat. They are: arms control, deterrence, preemption, and defense

  2. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  3. Molecular Diagnostics for the Study of Hypersonic Flows

    Science.gov (United States)

    2000-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10744 TITLE: Molecular Diagnostics for the Study of Hypersonic Flows...following component part numbers comprise the compilation report: ADP010736 thru ADPO10751 UNCLASSIFIED 5-1 Molecular Diagnostics for the Study of

  4. Physics Simulations of fluids - a brief overview of Phoenix FD

    CERN Multimedia

    CERN. Geneva; Nikolov, Svetlin

    2014-01-01

    The presentation will briefly describe the simulation and rendering of fluids with Phoenix FD, and then proceed into implementation details. We will present our methods of parallelizing the core simulation algorithms and our utilization of the GPU. We will also show how we take advantage of computational fluid dynamics specifics in order to speed up the preview and final rendering, thus achieving a quick pipeline for the creation of various visual effects. About the speakers Ivaylo Iliev is a Senior Software developer at Chaos Group and is the creator of the Phoenix FD simulator for fluid effects. He has a strong interest in physics and has worked on military simulators before focusing on visual effects. He has a Master?s degree from the Varna Technical University. Svetlin Nikolov is a Senior Software developer at Chaos Group with keen interest in physics and artificial intelligence and 7 years of experience in the software industry. He comes from a game development background with a focu...

  5. Applications of an implicit HLLC-based Godunov solver for steady state hypersonic problems

    International Nuclear Information System (INIS)

    Link, R.A.; Sharman, B.

    2005-01-01

    Over the past few years, there has been considerable activity developing research vehicles for studying hypersonic propulsion. Successful launches of the Australian Hyshot and the US Hyper-X vehicles have added a significant amount of flight test data to a field that had previously been limited to numerical simulation. A number of approaches have been proposed for hypersonics propulsion, including attached detonation wave, supersonics combustion, and shock induced combustion. Due to the high cost of developing flight hardware, CFD simulations will continue to be a key tool for investigating the feasibility of these concepts. Capturing the interactions of the vehicle body with the boundary layer and chemical reactions pushes the limits of available modelling tools and computer hardware. Explicit formulations are extremely slow in converging to a steady state; therefore, the use of implicit methods are warranted. An implicit LLC-based Godunov solver has been developed at Martec in collaboration with DRDC Valcartier to solve hypersonic problems with a minimum of CPU time and RAM storage. The solver, Chinook Implicit, is based upon the implicit formulation adopted by Batten et. al. The solver is based on a point implicit Gauss-Seidel method for unstructured grids, and includes fully implicit boundary conditions. Preliminary results for small and large scale inviscid hypersonics problems will be presented. (author)

  6. Six-degree-of-freedom missile simulation using the ADI AD 100 digital computer and ADSIM simulation language

    Science.gov (United States)

    Zwaanenburg, Koos

    1989-01-01

    The use of an AD 100 computer and the ADSIM language in the six-degree-of-freedom digital simulation of an air-to-ground missile is illustrated. The missile is launched from a moving platform, typically a helicopter, and is capable of striking a mobile target up to 10 kilometers away. The missile could be any tactical missile. The performance numbers of the AD 100 show that it is possible to implement a high performance missile model in a real-time simulation without the problems associated with an implementation on a general purpose computer using FORTRAN.

  7. On Challenges for Hypersonic Turbulent Simulations

    International Nuclear Information System (INIS)

    Yee, H.C.; Sjogreen, B.

    2009-01-01

    This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme

  8. A low cost maritime control aircraft-ship-weapons system. [antiship missile defense

    Science.gov (United States)

    Fluk, H.

    1981-01-01

    It is pointed out that the long-range antiship standoff missile is emerging as the foremost threat on the seas. Delivered by high speed bombers, surface ships, and submarines, a missile attack can be mounted against selected targets from any point on the compass. An investigation is conducted regarding the configuration of a system which could most efficiently identify and destroy standoff threats before they launch their weapons. It is found that by using ships for carrying and launching missiles, and employing aircraft with a powerful radar only for search and missile directing operations, aircraft cost and weight can be greatly reduced. The employment of V/STOL aircraft in preference to other types of aircraft makes it possible to use ships of smaller size for carrying the aircraft. However, in order to obtain an all-weather operational capability for the system, ships are selected which are still big enough to display the required stability in heavy seas.

  9. A matching approach to communicate through the plasma sheath surrounding a hypersonic vehicle

    International Nuclear Information System (INIS)

    Gao, Xiaotian; Jiang, Binhao

    2015-01-01

    In order to overcome the communication blackout problem suffered by hypersonic vehicles, a matching approach has been proposed for the first time in this paper. It utilizes a double-positive (DPS) material layer surrounding a hypersonic vehicle antenna to match with the plasma sheath enclosing the vehicle. Analytical analysis and numerical results indicate a resonance between the matched layer and the plasma sheath will be formed to mitigate the blackout problem in some conditions. The calculated results present a perfect radiated performance of the antenna, when the match is exactly built between these two layers. The effects of the parameters of the plasma sheath have been researched by numerical methods. Based on these results, the proposed approach is easier to realize and more flexible to the varying radiated conditions in hypersonic flight comparing with other methods

  10. AIAA Applied Aerodynamics Conference, 8th, Portland, OR, Aug. 20-22, 1990, Technical Papers. Parts 1 ampersand 2

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations

  11. AIAA Applied Aerodynamics Conference, 10th, Palo Alto, CA, June 22-24, 1992, Technical Papers. Pts. 1 AND 2

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows

  12. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012

    Science.gov (United States)

    Kakinami, Yoshihiro; Yamamoto, Masayuki; Chen, Chia-Hung; Watanabe, Shigeto; Lin, Charles; Liu, Jenn-Yanq; Habu, Hiroto

    2013-08-01

    disturbances caused by a missile launched from North Korea on 12 December 2012 were investigated by using the GPS total electron content (TEC). The spatial characteristic of the front edge of V-shaped disturbances produced by missiles and rockets was first determined. Considering the launch direction and the height of estimated ionospheric points at which GPS radio signal pierces the ionosphere, the missile passed through the ionosphere at heights of 391, 425, and 435 km at 0056:30, 0057:00, and 0057:30 UT, respectively. The observed velocities of the missile were 2.8 and 3.2 km/s at that time, which was estimated from the traveling speed of the front edge of V-shaped disturbances. Westward and eastward V-shaped disturbances propagated at 1.8-2.6 km/s. The phase velocities of the westward and eastward V-shaped disturbances were much faster than the speed of acoustic waves reported in previous studies, suggesting that sources other than acoustic waves may have played an important role. Furthermore, the plasma density depletion that is often observed following missile and rocket launches was not found. This suggests that the depletion resulting from the missile's exhaust was not strong enough to be observed in the TEC distribution in the topside ionosphere.

  13. Bodies with noncircular cross sections and bank-to-turn missiles

    Science.gov (United States)

    Jackson, C. M., Jr.; Sawyer, W. C.

    1992-01-01

    A development status evaluation is presented for the aerodynamics of missile configurations with noncircular cross-sections and bank-to-turn maneuvering systems, giving attention to cases with elliptical and square cross-sections, as well as bodies with variable cross-sections. The assessment of bank-to-turn missile performance notes inherent stability/control problems. A summary and index are provided for aerodynamic data on monoplanar configurations, including those which incorporate airbreathing propulsion systems.

  14. Precession feature extraction of ballistic missile warhead with high velocity

    Science.gov (United States)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  15. Information Management Principles Applied to the Ballistic Missile Defense System

    Science.gov (United States)

    2007-03-01

    of a BMDS. From this, the Army produced the Nike -Zeus system comprised of four radars, the Zeus missile, and a computer fire control system (General...made the Nike -Zeus our first National Missile Defense (NMD) system named Sentinel. The architecture was to cover 14 locations, 10 of which were...1999). Additionally, there are cultural impacts (Gordon & Gordon, 1999). A company choosing an Apple OS may have to wage a big fight against the

  16. Assessment of genetic diversity for some Iraqi date palms ( Phoenix ...

    African Journals Online (AJOL)

    Amplified fragment length polymorphisms (AFLP) were used to evaluate the genetic diversity between 18 date palm (Phoenix dactylifera L.) varieties (11 females and 7 males) collected from the center of Iraq. Six primer pairs were applied to detect polymorphism between varieties. A total of 83 polymorphic AFLP fragments ...

  17. Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide

    Science.gov (United States)

    Danehy, P. M.; OByrne, S.; Houwing, A. F. P.

    2001-01-01

    We investigate a new type of flow-tagging velocimetry technique for hypersonic flows. The technique involves exciting a thin line of nitric oxide molecules with a laser beam and then, after some delay, acquiring an image of the displaced line. One component of velocity is determined from the time of flight. This method is applied to measure the velocity profile in a Mach 8.5 laminar, hypersonic boundary layer in the Australian National Universities T2 free-piston shock tunnel. The velocity is measured with an uncertainty of approximately 2%. Comparison with a CFD simulation of the flow shows reasonable agreement.

  18. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    Science.gov (United States)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  19. EnviroAtlas - Phoenix, AZ - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Phoenix, AZ Meter-Scale Urban Land Cover (MULC) data and map were generated from USDA NAIP (National Agricultural Imagery Program) four band (red,...

  20. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  1. Extending U.S. Theater Missile Defense to Northeast Asia: Ramifications for Regional Security

    National Research Council Canada - National Science Library

    Attenweiler, Steven

    2001-01-01

    The absence of a formidable U.S. and allied Theater Missile Defense (TMD) capability in the East Asian region has encouraged a build-up in offensive missile capability on the part of the People's Republic of China (PRC...

  2. 76 FR 4322 - Availability of the Fiscal Year 2009 Missile Defense Agency Services Contracts Inventory Pursuant...

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary Availability of the Fiscal Year 2009 Missile Defense... Act AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice of availability. SUMMARY: In accordance... for Fiscal Year 2008 (NDAA 08) Section 807, the Director of the Missile Defense Agency and the Office...

  3. Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2015-12-01

    Deliveries: 1 JBMD BLK 04 Computer Program, Peripherals, and SM-3 BLK IA Missiles. Japan 8/13/2004 0 21.3 FMS Case JA-P-BGQ: Proof of Principle (PoP...Estimate Econ Qty Sch Eng Est Oth Spt Total 0.000 -- -- -- -- -- -- -- -- 0.000 An APUC Unit Cost History is not available, since no Initial APUC Estimate

  4. A reduced order aerothermodynamic modeling framework for hypersonic vehicles based on surrogate and POD

    OpenAIRE

    Chen Xin; Liu Li; Long Teng; Yue Zhenjiang

    2015-01-01

    Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, computation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design ...

  5. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow

    Science.gov (United States)

    Knight, Doyle; Chazot, Olivier; Austin, Joanna; Badr, Mohammad Ali; Candler, Graham; Celik, Bayram; Rosa, Donato de; Donelli, Raffaele; Komives, Jeffrey; Lani, Andrea; Levin, Deborah; Nompelis, Ioannis; Panesi, Marco; Pezzella, Giuseppe; Reimann, Bodo; Tumuklu, Ozgur; Yuceil, Kemal

    2017-04-01

    The capability for CFD prediction of hypersonic shock wave laminar boundary layer interaction was assessed for a double wedge model at Mach 7.1 in air and nitrogen at 2.1 MJ/kg and 8 MJ/kg. Simulations were performed by seven research organizations encompassing both Navier-Stokes and Direct Simulation Monte Carlo (DSMC) methods as part of the NATO STO AVT Task Group 205 activity. Comparison of the CFD simulations with experimental heat transfer and schlieren visualization suggest the need for accurate modeling of the tunnel startup process in short-duration hypersonic test facilities, and the importance of fully 3-D simulations of nominally 2-D (i.e., non-axisymmmetric) experimental geometries.

  6. Disturbance observer-based L1 robust tracking control for hypersonic vehicles with T-S disturbance modeling

    Directory of Open Access Journals (Sweden)

    Yang Yi

    2016-11-01

    Full Text Available This article concerns a disturbance observer-based L1 robust anti-disturbance tracking algorithm for the longitudinal models of hypersonic flight vehicles with different kinds of unknown disturbances. On one hand, by applying T-S fuzzy models to represent those modeled disturbances, a disturbance observer relying on T-S disturbance models can be constructed to track the dynamics of exogenous disturbances. On the other hand, L1 index is introduced to analyze the attenuation performance of disturbance for those unmodeled disturbances. By utilizing the existing convex optimization algorithm, a disturbance observer-based proportional-integral-controlled input is proposed such that the stability of hypersonic flight vehicles can be ensured and the tracking error for velocity and altitude in hypersonic flight vehicle models can converge to equilibrium point. Furthermore, the satisfactory disturbance rejection and attenuation with L1 index can be obtained simultaneously. Simulation results on hypersonic flight vehicle models can reflect the feasibility and effectiveness of the proposed control algorithm.

  7. Full-scale turbine-missile concrete impact experiments. Final report

    International Nuclear Information System (INIS)

    Woodfin, R.L.

    1983-02-01

    Four full-scale experiments were conducted at Sandia National Laboratories' rocket sled facility to provide data on the response of reinforced concrete containment walls to impact and penetration by postulated turbine-produced missiles. The missiles' mass, velocity, and attitude, and the steel liner thickness, were varied. A 1476-kg, 120 0 segment cut from a shrunk-on turbine disc was used for three experiments, and a 2100-kg, 137 0 segment of another disc was used for one experiment. The targets were concrete panels fabricated of commercial ready-mix concrete of strength 24 to 28 MPa at 28 days and heavily reinforced (approx. = 5% by volume) with No. 18 (57-mm-dai) bars. Impacts were perpendicular to the targets at their centers. Three impacts were with the sharp corner of the missile forward (piercing) and one was with the rounded side forward (blunt). Rebar strains, liner strains, and rear face kinematic quantities were recorded for each test. Internal pressure pulses generated by the impacts were recorded on two tests. High-speed camera coverage was extensive. Depth of penetration was the primary measure diameter. Penetration depths into the 1.37-m-thick panels ranged from 33 cm for the blunt impact of the 1476-kg missile at 92 m/s to 65 cm for the piercing impact of the 2100-kg missile at 115m/s. Impact at the piercing attitude caused significantly more severe rear face cracking than did impact at the blunt attitude, but since rear face panel displacements in excess of 6 cm and velocities greater than 7 m/s were measured, results suggested that impact at a blunt attitude might cause scabbing at lower velocities than impact at a piercing attidude. In these tests, the presence of a 9.5-mm-thick steel liner on the rear face of the panel in the latter two tests precluded scabbing. Results also indicated that design formulas in common use give conservative results

  8. Ballistic Missile Defense and ABM Treaty Limitations

    National Research Council Canada - National Science Library

    Robinson, Brian

    1998-01-01

    The U.S. must critically evaluate our current ballistic missile defense (BMD) strategy. In today's geostrategic context, is it sound strategy to continue to impose 1972 ABM Treaty restrictions on BMD systems development...

  9. Hypersonic CFD applications for the National Aero-Space Plane

    Science.gov (United States)

    Richardson, Pamela F.; Mcclinton, Charles R.; Bittner, Robert D.; Dilley, A. Douglas; Edwards, Kelvin W.

    1989-01-01

    Design and analysis of the NASP depends heavily upon developing the critical technology areas that cover the entire engineering design of the vehicle. These areas include materials, structures, propulsion systems, propellants, integration of airframe and propulsion systems, controls, subsystems, and aerodynamics areas. Currently, verification of many of the classical engineering tools relies heavily on computational fluid dynamics. Advances are being made in the development of CFD codes to accomplish nose-to-tail analyses for hypersonic aircraft. Additional details involving the partial development, analysis, verification, and application of the CFL3D code and the SPARK combustor code are discussed. A nonequilibrium version of CFL3D that is presently being developed and tested is also described. Examples are given of portion calculations for research hypersonic aircraft geometries and comparisons with experiment data show good agreement.

  10. Phoenix type concepts for transmutation of LWR waste minor actinides

    International Nuclear Information System (INIS)

    Segev, M.

    1994-01-01

    A number of variations on the original Phoenix theme were studied. The basic rationale of the Phoenix incinerator is making oxide fuel of the LWR waste minor actinides, loading it in an FFTF-like subcritical core, then bombarding the core with the high current beam accelerated protons to generate considerable energy through spallation and fission reactions. As originally assessed, if the machine is fed with 1600 MeV protons in a 102 mA current, then 8 core modules are driven to transmute the yearly minor actinides waste of 75 1000 MW LWRs into Pu 238 and fission products; in a 2 years cycle the energy extracted is 100000 MW d/T. This performance cannot be substantiated in a rigorous analysis. A calculational consistent methodology, based on a combined execution of the Hermes, NCNP, and Korigen codes, shows, nonetheless that changes in the original Phoenix parameters can upgrade its performance.The original Phoenix contains 26 tons minor actinides in 8 core modules; 1.15 m 3 module is shaped for 40% neutron leakage; with a beam of 102 mA the 8 modules are driven to 100000 MW/T in 10.5 years, burning out the yearly minor actinide waste of 15 LWRs; the operation must be assisted by grid electricity. If the 1.15 m 3 module is shaped to allow only 28% leakage, then a beam of 102 mA will drive the 8 modules to 100000 MW/T in 3.5 years, burning out the yearly minor actinides waste of 45 LWRs. Some net grid electricity will be generated. If 25 tons minor actinides are loaded into 5 modules, each 1.72 m 3 in volume and of 24% leakage, then a 97 mA beam will drive the module to 100000 MW/T in 2.5 years, burning out the yearly minor actinides waste of 70 LWRs. A considerable amount of net grid electricity will be generated. If the lattice is made of metal fuel, and 26 tons minor actinides are loaded into 32 small modules, 0.17 m 3 each, then a 102 mA beam will drive the modules to 100000 MW/T in 2 years, burning out the yearly minor actinides waste of 72 LWRs. A considerable

  11. Ethnobotanical survey of Phoenix dactylifera L. Pollen used for the ...

    African Journals Online (AJOL)

    Background: The Phoenix dactylifera L. (date palm) is known for its traditional medicinal properties across the history of native population in Algerian Sahara. There is a large trend of consumption of date palm pollen preparations in many human infertility cases in our country. However, the validity has not been scientifically ...

  12. A Limited Study of a Hypothetical Winged Anti-ICBM Point-Defense Missile

    Science.gov (United States)

    Brown, Clarence A., Jr.; Edwards, Frederick G.

    1959-01-01

    A preliminary investigation was conducted to determine whether a warhead stage of an antimissile missile could be placed within an arbitrary 2-nautical-mile-radius maneuver cylinder around an intercontinental-ballistic-missile (ICBM) flight path above an altitude of 140,000 feet, a horizontal range of 40 nautical miles, at a flight-path angle of approximately 20 deg, and within 50 seconds after take-off using only aerodynamic forces to turn the antimissile missile. The preliminary investigation indicated that an antimissile missile using aerodynamic forces for turning was capable of intercepting the ICBM for the stated conditions of this study although the turning must be completed below an altitude of approximately 70,000 feet to insure that the antimissile missile will be at the desired flight-path angle. Trim lift coefficients on the order of 2 to 3 and a maximum normal-acceleration force of from 25g to 35g were necessary to place the warhead stage in intercept position. The preliminary investigation indicated that for the two boosters investigated the booster having a burning time of 10 seconds gave greater range up the ICBM flight path than did the booster having a burning time of 15 seconds for the same trim lift coefficient and required the least trim lift coefficient for the same range.

  13. Shipborne Laser Beam Weapon System for Defence against Cruise Missiles

    OpenAIRE

    J.P. Dudeja; G.S. Kalsey

    2000-01-01

    Sea-skim~ing cruise missiles pose the greatest threat to a surface ship in the present-day war scenario. The convenitional close-in-weapon-systems (CIWSs) are becoming less reliable against these new challenges requiring extremely fast reaction time. Naval Forces see a high energy laser as a feasible andjeffective directed energy weapon against sea-skimming antiship cruise missiles becauseof its .ability to deliver destructive energy at the speed of light on to a distant target. The paper com...

  14. Integrated CLOS and PN Guidance for Increased Effectiveness of Surface to Air Missiles

    Directory of Open Access Journals (Sweden)

    Binte Fatima Tuz ZAHRA

    2017-06-01

    Full Text Available In this paper, a novel approach has been presented to integrate command to line-of-sight (CLOS guidance and proportional navigation (PN guidance in order to reduce miss distance and to increase the effectiveness of surface to air missiles. Initially a comparison of command to line-of-sight guidance and proportional navigation has been presented. Miss distance, variation of angle-of-attack, normal and lateral accelerations and error of missile flight path from direct line-of-sight have been used as noteworthy criteria for comparison of the two guidance laws. Following this comparison a new approach has been proposed for determining the most suitable guidance gains in order to minimize miss distance and improve accuracy of the missile in delivering the warhead, while using CLOS guidance. This proposed technique is based on constrained nonlinear minimization to optimize the guidance gains. CLOS guidance has a further limitation of significant increase in normal and lateral acceleration demands during the terminal phase of missile flight. Furthermore, at large elevation angles, the required angle-of-attack during the terminal phase increases beyond design specifications. Subsequently, a missile with optical sensors only and following just the CLOS guidance has less likelihood to hit high speed targets beyond 45º in elevation plane. A novel approach has thus been proposed to overcome such limitations of CLOS-only guidance for surface to air missiles. In this approach, an integrated guidance algorithm has been proposed whereby the initial guidance law during rocket motor burnout phase remains CLOS, whereas immediately after this phase, the guidance law is automatically switched to PN guidance. This integrated approach has not only resulted in slight increase in range of the missile but also has significantly improved its likelihood to hit targets beyond 30 degrees in elevation plane, thus successfully overcoming various limitations of CLOS

  15. Elimination of the Roll Bias Caused by Wrap Around Fins for the FMTI Missile

    National Research Council Canada - National Science Library

    McKerley, C

    1998-01-01

    The Future Missile Technology Integration (FMTI) Missile System is an attempt to design an Army tactical weapon that can effectively attack both fixed and rotary wing aircraft and armor of all types...

  16. De Nederlandse missile defence capaciteit: Strategisch onmisbaar

    NARCIS (Netherlands)

    Weimar, P.W.L.

    2013-01-01

    Surface based air & missile defence behelst enerzijds de verdediging tegen conventionele luchtdreigingen, zoals vliegtuigen, helikopters en onbemande vliegtuigen (luchtverdediging). Aan de andere kant houdt het de verdediging tegen ballistische raketten en kruisraketten in (raketverdediging). De

  17. The Flight of the Phoenix: Interpersonal Aspects of Project Management

    Science.gov (United States)

    Huffman, Brian J.; Kilian, Claire McCarty

    2012-01-01

    Although many classroom exercises use movies to focus on management and organizational behavior issues, none of those do so in the context of project management. This article presents such an exercise using "The Flight of the Phoenix", an incredibly rich story for any management class, which provides clear examples of organizational behavior…

  18. Veiled Normalization: The Implications of Japanese Missile Defense

    National Research Council Canada - National Science Library

    Clarke, Timothy L

    2008-01-01

    Japan's development of a missile defense system has been accompanied by the acquisition of potentially offensive military assets, an increased command and control capability, significant restructuring...

  19. Development process of muzzle flows including a gun-launched missile

    OpenAIRE

    Zhuo Changfei; Feng Feng; Wu Xiaosong

    2015-01-01

    Numerical investigations on the launch process of a gun-launched missile from the muzzle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW+) and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of m...

  20. A Simplified Procedure for Reliability Estimation of Underground Concrete Barriers against Normal Missile Impact

    Directory of Open Access Journals (Sweden)

    N. A. Siddiqui

    2011-06-01

    Full Text Available Underground concrete barriers are frequently used to protect strategic structures like Nuclear power plants (NPP, deep under the soil against any possible high velocity missile impact. For a given range and type of missile (or projectile it is of paramount importance to examine the reliability of underground concrete barriers under expected uncertainties involved in the missile, concrete, and soil parameters. In this paper, a simple procedure for the reliability assessment of underground concrete barriers against normal missile impact has been presented using the First Order Reliability Method (FORM. The presented procedure is illustrated by applying it to a concrete barrier that lies at a certain depth in the soil. Some parametric studies are also conducted to obtain the design values which make the barrier as reliable as desired.

  1. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    Science.gov (United States)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  2. A Combined CFD/Characteristic Method for Prediction and Design of Hypersonic Inlet with Nose Bluntness

    Science.gov (United States)

    Gao, Wenzhi; Li, Zhufei; Yang, Jiming

    Leading edge bluntness is widely used in hypersonic inlet design for thermal protection[1]. Detailed research of leading edge bluntness on hypersonic inlet has been concentrated on shock shape correlation[2], boundary layer flow[3], inlet performance[4], etc. It is well known that blunted noses cause detached bow shocks which generate subsonic regions around the noses and entropy layers in the flowfield.

  3. Department of the Army Justification of Estimates for Fiscal Year 1983 Submitted to Congress February 1982. Part 2 (Missiles).

    Science.gov (United States)

    1982-02-01

    is req’uested to procure 376 missiles and 12 fire units (or the PATRIOT missile system. PATRIOT Is an improved system which will replace NIKE -HERCULES...tifl UPrOveflts will be retofittd by Utetil work orders to be apple olwd yAm eo em 2-4S yebrary � MISSILE MODIFVICATION propriation: Missile

  4. What Should Be the United States Policy towards Ballistic Missile Defense for Northeast Asia?

    National Research Council Canada - National Science Library

    Delgado, Roberto L

    2005-01-01

    .... The threat of ballistic missiles from Northeast Asia is especially high. China and North Korea are seen as the top threats in the region when it comes to the delivery of WMD through ballistic missiles...

  5. 33 CFR 334.1130 - Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones.

    Science.gov (United States)

    2010-07-01

    ... Missile Center (WSMC), Vandenberg AFB, Calif.; danger zones. 334.1130 Section 334.1130 Navigation and... RESTRICTED AREA REGULATIONS § 334.1130 Pacific Ocean, Western Space and Missile Center (WSMC), Vandenberg AFB... (WSMC) at Vandenberg AFB, California. (3) The impacting of missile debris from launch operations will...

  6. Characteristic Model-Based Robust Model Predictive Control for Hypersonic Vehicles with Constraints

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-06-01

    Full Text Available Designing robust control for hypersonic vehicles in reentry is difficult, due to the features of the vehicles including strong coupling, non-linearity, and multiple constraints. This paper proposed a characteristic model-based robust model predictive control (MPC for hypersonic vehicles with reentry constraints. First, the hypersonic vehicle is modeled by a characteristic model composed of a linear time-varying system and a lumped disturbance. Then, the identification data are regenerated by the accumulative sum idea in the gray theory, which weakens effects of the random noises and strengthens regularity of the identification data. Based on the regenerated data, the time-varying parameters and the disturbance are online estimated according to the gray identification. At last, the mixed H2/H∞ robust predictive control law is proposed based on linear matrix inequalities (LMIs and receding horizon optimization techniques. Using active tackling system constraints of MPC, the input and state constraints are satisfied in the closed-loop control system. The validity of the proposed control is verified theoretically according to Lyapunov theory and illustrated by simulation results.

  7. The NASA-sponsored Maryland center for hypersonic education and research

    Science.gov (United States)

    Lewis, Mark J.; Gupta, Ashwani K.

    1995-01-01

    The Office of Aeronautics of the National Aeronautics and Space Administration has established a program to support university programs in the field of hypersonic flight. Beginning in the fall of 1993, three universities, including the University of Maryland at College Park, were selected to participate in this activity. The program at the University of Maryland includes faculty in the Department of Aerospace Engineering and Department of Mechanical Engineering, and provides a multidisciplinary environment for graduate and undergraduate students to study and conduct research in the field of hypersonic flight. Ongoing projects cover the range of applications from cruisers through transatmospheric and reentry vehicles. Research activities, focused on propulsion, fluid dynamics, inverse design, and vehicle optimization and integration, are conducted in conjuntion with industrial partners and government laboratories.

  8. Downstream Effects on Orbiter Leeside Flow Separation for Hypersonic Flows

    Science.gov (United States)

    Buck, Gregory M.; Pulsonetti, Maria V.; Weilmuenster, K. James

    2005-01-01

    Discrepancies between experiment and computation for shuttle leeside flow separation, which came to light in the Columbia accident investigation, are resolved. Tests were run in the Langley Research Center 20-Inch Hypersonic CF4 Tunnel with a baseline orbiter model and two extended trailing edge models. The extended trailing edges altered the wing leeside separation lines, moving the lines toward the fuselage, proving that wing trailing edge modeling does affect the orbiter leeside flow. Computations were then made with a wake grid. These calculations more closely matched baseline experiments. Thus, the present findings demonstrate that it is imperative to include the wake flow domain in CFD calculations in order to accurately predict leeside flow separation for hypersonic vehicles at high angles of attack.

  9. Examination of uniform momentum zones in hypersonic turbulent boundary layers

    Science.gov (United States)

    Williams, Owen; Helm, Clara; Martin, Pino

    2017-11-01

    The presence of uniform momentum zones (UMZs) separated by regions of high shear is now well-established in incompressible flows, with the mean number of such zones increasing in a log-linear fashion with Reynolds number. While known to be present in supersonic and hypersonic boundary layers, the properties of these UMZs and the appropriate Reynolds number for comparison with incompressible results have not previously been investigated. A large, previously published DNS database of hypersonic boundary layers is used in this investigation, with Mach numbers up to 12 and wall temperatures from cold to adiabatic, resulting in a wide range of outer layer Reynolds numbers. UMZs are examined using a range of parameters in both conventional inner and semi-local scalings, and Reynolds number trends examined.

  10. Resonant influence of a longitudinal hypersonic field on the radiation from channeled electrons

    International Nuclear Information System (INIS)

    Grigoryan, L.Sh.; Mkrtchyan, A.R.; Mkrtchyan, A.H.; Khachatryan, H.F.; Prade, H.; Wagner, W.; Piestrup, M.A.

    2001-01-01

    The wave function of a planar/axially channeled electron with energy 10 MeV≤E<<1 GeV under the influence of a longitudinal hypersonic wave excited in a single crystal is calculated. Conditions for the resonant influence of the hypersonic wave on the quantum state of the channeled electron are deduced. Expressions for the wave function that are applicable in the case of resonance are obtained. Angular and spectral distributions of the radiation intensity from the planar/axially channeled electron are also calculated. The possibility of significant amplification of channeling radiation by a hypersonic wave is substantiated. It is found that the hypersound can excite inverse radiative transitions through which the transversal energy of the channeled electron is increased. These transitions have a resonant nature and can lead to a considerable intensification of the electron channeling radiation. In the case of axial channeling, the resonance radiation is sustained also by direct radiative transitions of the electron

  11. Iranian Ballistic Missile Threat and a Phased, Adaptive Approach for Missile Defense in Europe: Perceptions, Policies and Scenarios

    Science.gov (United States)

    2010-09-15

    vii ACRONYMS AA Aegis Ashore ABL Airborne Laser ABM Anti-Ballistic Missile ADCF Air Defense Command Frigates AEOI ...in September 2002 at the IAEA’s General Conference in Vienna, Iran’s Vice President and President of the Atomic Energy Organization of Iran ( AEOI

  12. Effects of the Phoenix Lander descent thruster plume on the Martian surface

    Science.gov (United States)

    Plemmons, D. H.; Mehta, M.; Clark, B. C.; Kounaves, S. P.; Peach, L. L.; Renno, N. O.; Tamppari, L.; Young, S. M. M.

    2008-08-01

    The exhaust plume of Phoenix's hydrazine monopropellant pulsed descent thrusters will impact the surface of Mars during its descent and landing phase in the northern polar region. Experimental and computational studies have been performed to characterize the chemical compounds in the thruster exhausts. No undecomposed hydrazine is observed above the instrument detection limit of 0.2%. Forty-five percent ammonia is measured in the exhaust at steady state. Water vapor is observed at a level of 0.25%, consistent with fuel purity analysis results. Moreover, the dynamic interactions of the thruster plumes with the ground have been studied. Large pressure overshoots are produced at the ground during the ramp-up and ramp-down phases of the duty cycle of Phoenix's pulsed engines. These pressure overshoots are superimposed on the 10 Hz quasi-steady ground pressure perturbations with amplitude of about 5 kPa (at touchdown altitude) and have a maximum amplitude of about 20-40 kPa. A theoretical explanation for the physics that causes these pressure perturbations is briefly described in this article. The potential for soil erosion and uplifting at the landing site is also discussed. The objectives of the research described in this article are to provide empirical and theoretical data for the Phoenix Science Team to mitigate any potential problem. The data will also be used to ensure proper interpretation of the results from on-board scientific instrumentation when Martian soil samples are analyzed.

  13. Missile impacts as sources of seismic energy on the moon

    Science.gov (United States)

    Latham, G.V.; McDonald, W.G.; Moore, H.J.

    1970-01-01

    Seismic signals recorded from impacts of missiles at the White Sands Missile Range are radically different from the signal recorded from the Apollo 12 lunar module impact. This implies that lunar structure to depths of at least 10 to 20 kilometers is quite different from the typical structure of the earth's crust. Results obtained from this study can be used to predict seismic wave amplitudes from future man-made lunar impacts. Seismic energy and crater dimensions from impacts are compared with measurements from chemical explosions.

  14. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.

    Science.gov (United States)

    Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M

    2008-07-18

    The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves.

  15. Protivoklopni vođeni projektili zapadne Evrope, Izraela i Indije / Anti-tank guided missiles of western Europe, Israel and India

    Directory of Open Access Journals (Sweden)

    Goran M. Lazić

    2010-10-01

    Full Text Available Protivoklopni vođeni projektili namenjeni su za uništavanje teško-oklopljenih tenkova, kao i drugih oklopnih vozila. Ovaj rad nudi istorijsko-tehnički pregled (razvoj projektila kroz generacije i osnovni podaci vezani za borbeno-operativno dejstvo ovih projektila ovog tipa naoružanja koje poseduju zemlje zapadne Evrope, Izraela i Indije. Pored osnovnih podataka navode se i cene nekih projektila ponaosob, kao i tendencije razvoja u ovoj grani naoružanja. / Anti-tank guided missiles are designed to hit and destroy heavily armored tanks and other armored fighting vehicles. This review offers a historical and technical overview (development of missiles throughout generations and basic data about combat and operational actions of this type of weapons in Western Europe, Israel and India. The review also offers prices of some missiles and tendencies of development in this branch. Anti-tank guided missiles are primarily designed to destroy armoured tanks as well as other armoured vehicles. Anti-tank guided systems differ in size, from small ones (shoulder-launched missile weapons carried by a single person to complex weapon systems (crewserved, vehicle-mounted and airborne systems. The first generation of anti-tank guided missiles is a manually guided MCLOS (Manual Command to Line of Sight projectile requiring an operator to guide and steer it to a target by a joystick. Vickers vigilant is a British anti-tank wire-guided missile, produced in 1956. The Bantam (Bofors Anti-Tank Missile or Robot 53 (RB 53 is a Swedish anti-tank wire-guided missile, produced in 1963. Cobra is a German - Swiss product which entered the operational use in 1956. It was replaced by Cobra 2000 and Mamaba systems, which are anti-tank guided missiles of the first generation, but with improved guidance and electronics. ENTAC (Engin téléguidé anti-char or MGM Petronor-32A is a French anti-tank wire-guided missile, widely spread and still in the operational use in many

  16. 48 CFR 225.7016 - Restriction on Ballistic Missile Defense research, development, test, and evaluation.

    Science.gov (United States)

    2010-10-01

    ... Missile Defense research, development, test, and evaluation. 225.7016 Section 225.7016 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS... Acquisition 225.7016 Restriction on Ballistic Missile Defense research, development, test, and evaluation. [68...

  17. Comparison of gimbal approaches to decrease drag force and radar cross sectional area in missile application

    Science.gov (United States)

    Sakarya, Doǧan Uǧur

    2017-05-01

    Drag force effect is an important aspect of range performance in missile applications especially for long flight time. However, old fashioned gimbal approaches force to increase missile diameter. This increase has negative aspect of rising in both drag force and radar cross sectional area. A new gimbal approach was proposed recently. It uses a beam steering optical arrangement. Therefore, it needs less volume envelope for same field of regard and same optomechanical assembly than the old fashioned gimbal approaches. In addition to longer range performance achieved with same fuel in the new gimbal approach, this method provides smaller cross sectional area which can be more invisible in enemies' radar. In this paper, the two gimbal approaches - the old fashioned one and the new one- are compared in order to decrease drag force and radar cross sectional area in missile application. In this study; missile parameters are assumed to generate gimbal and optical design parameters. Optical design is performed according to these missile criteria. Two gimbal configurations are designed with respect to modeled missile parameters. Also analyzes are performed to show decreased drag force and radar cross sectional area in the new approach for comparison.

  18. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Science.gov (United States)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  19. Survey of intestinal parasitism in dogs in the Phoenix metropolitan area.

    Science.gov (United States)

    Cornell, Heather N; O'Neal, Peter R; Wong, Valerie M; Noah, Donald L

    2017-09-01

    OBJECTIVE To determine the prevalence of selected intestinal parasites in pet dogs and recently apprehended free-roaming (AFR) shelter dogs in the Phoenix metropolitan area and compare those prevalences between the 2 groups. DESIGN Cross-sectional study. SAMPLE Convenience samples of fecal specimens from owned pet dogs from the Phoenix metropolitan area (n = 175) and free-roaming dogs apprehended and admitted to Maricopa County Animal Care and Control and Arizona Humane Society facilities from November 2014 through March 2015 (188). PROCEDURES Fresh fecal specimens were collected from all dogs; for AFR shelter dogs, specimens were collected within 72 hours after facility admission. Standard centrifugal flotation tests and an ELISA were performed to detect 5 common intestinal parasites (roundworms, hookworms, whipworms, Giardia spp, and Cystoisospora spp). Group comparisons were performed by means of the χ 2 test and Rogan-Gladen prevalence estimate. RESULTS At least 1 of the 5 evaluated parasites was detected in 85 (45.2%) fecal specimens from AFR shelter dogs and 24 (13.7%) specimens from owned pet dogs. This prevalence differed significantly between the groups. Notably, the prevalence of Giardia spp in AFR shelter dogs (n = 76 [40.4%]) was higher than previously reported in the United States. CONCLUSIONS AND CLINICAL RELEVANCE The prevalence of the evaluated intestinal parasites, particularly of Giardia spp, in AFR shelter dogs was higher than expected. This information is important for veterinarians, animal shelter personnel, pet owners, human health-care providers, and public health officials to consider when devising effective interventions and risk communication efforts against potential zoonotic threats, particularly those relevant to the Phoenix metropolitan area.

  20. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  1. Radiation from channeled positrons in a hypersonic wave field

    International Nuclear Information System (INIS)

    Mkrtchyan, A.R.; Gasparyan, R.A.; Gabrielyan, R.G.

    1987-01-01

    The radiation emitted by channeled positrons in a longitudinal or transverse standing hypersonic wave field is considered. In the case of plane channeling the spectral distribution of the radiation intensity is shown to be of a resonance nature depending on the hypersound frequency

  2. Risk assessment methodology for extreme wind and missile effects on critical facilities

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1985-01-01

    The TORMIS methodology has been applied to a number of probabilistic risk assessments of critical facilities in the continental United States. These analyses have centered on the estimation of tornado missile impact and damage risks to individual targets as well as to groups of targets at specific plants. A number of advancements and generalizations in the approach have recently been made. These include: (1) generalization of windfield options to include straight winds (WINMIS) and hurricanes (HURMIS); (2) generalization of the scoring to enable analysis of Boolean system expressions for damage probabilities on compound series and parallel safety trains; (3) generalization of the failure criteria to include wind pressure as well as missile impact; (4) generalization of the plant modeling capability to enable more detailed treatment of targets partially or fully enclosed by vulnerable cladding and to allow tracking of missiles inside such enclosures; and (5) incorporation of windspeed criteria for structural failure and subsequent production of potential missiles. This paper will present some of the basic theory and key results of recent TORMIS, WINMIS, and HURMIS applications. The influence of uncertainties in the estimation process and the data needed for plant-specific risk assessments will also be discussed

  3. A joint mid-course and terminal course cooperative guidance law for multi-missile salvo attack

    Directory of Open Access Journals (Sweden)

    Jie ZENG

    2018-06-01

    Full Text Available Salvo attacking a surface target by multiple missiles is an effective tactic to enhance the lethality and penetrate the defense system. However, existing cooperative guidance laws in the mid-course or terminal course are not suitable for long- and medium-range missiles or stand-off attacking. Because the initial conditions of cooperative terminal guidance that are generally generated from the mid-course flight may not lead to a successful cooperative terminal guidance without proper mid-course flight adjustment. Meanwhile, cooperative guidance in the mid-course cannot solely guarantee the accuracy of a simultaneous arrival of multiple missiles. Therefore, a joint mid-course and terminal course cooperative guidance law is developed. By building a distinct leader-follower framework, this paper proposes an efficient coordinated Dubins path planning method to synchronize the arrival time of all engaged missiles in the mid-course flight. The planned flight can generate proper initial conditions for cooperative terminal guidance, and also benefit an earliest simultaneous arrival. In the terminal course, an existing cooperative proportional navigation guidance law guides all the engaged missiles to arrive at a target accurately and simultaneously. The integrated guidance law for an intuitive application is summarized. Simulations demonstrate that the proposed method can generate fast and accurate salvo attack. Keywords: Cooperative systems, Dubins path, Mid-course flight, Missile guidance, Salvo attack

  4. Study on the perforation of reinforced concrete slabs by rigid missiles. General introduction

    International Nuclear Information System (INIS)

    Gueraud, R.; Sokolovsky, A.

    1975-01-01

    Problems encountered in computing nuclear plant protective devices against the impact of a given rigid missile (e.g. turbine disc fragments) are emphasized. The experimental program of balistic tests (missile velocities between 90m.s -1 and 170m.s -2 ) and reduced scale tests carried out in France is briefly outlined [fr

  5. Engineering method for aero-propulsive characteristics at hypersonic Mach numbers

    Science.gov (United States)

    Goradia, Suresh; Torres, Abel O.; Stack, Sharon H.; Everhart, Joel L.

    1991-01-01

    An engineering method has been developed for the rapid analysis of external aerodynamics and propulsive performance characteristics of airbreathing vehicles at hypersonic Mach numbers. This method, based on the theory of characteristics, has been developed to analyze fuselage-wing body combinations and body flaps with blunt or sharp leading/trailing edges. Arbitrary ratio of specific heat for the flowing medium can be specified in the program. Furthermore, the capability exists in the code to compute the inviscid inlet mass capture and momentum flux. The method is under development for computations of pressure distribution, and flow characteristics in the inlet, along with the effect of viscosity. Correlative studies have been performed for representative hypersonic configurations using the current method. The results of these correlations for various aerodynamics parameters are encouraging.

  6. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  7. Analysis of Windward Side Hypersonic Boundary Layer Transition on Blunted Cones at Angle of Attack

    Science.gov (United States)

    2017-01-09

    correlated with PSE/LST N-Factors. 15. SUBJECT TERMS boundary layer transition, hypersonic, ground test 16. SECURITY CLASSIFICATION OF: 17. LIMITATION ...Maccoll) solution e condition at boundary layer edge w condition at wall, viscous ∞ condition in freestream Conventions LST Linear Stability Theory PSE...STATES AIR FORCE AFRL-RQ-WP-TP-2017-0169 ANALYSIS OF WINDWARD SIDE HYPERSONIC BOUNDARY LAYER TRANSITION ON BLUNTED CONES AT ANGLE OF ATTACK Roger

  8. Deterrence of ballistic missile systems and their effects on today's air operations

    Science.gov (United States)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  9. Start-up physics test predictions for Indian Point 3, cycle 7, utilized PHOENIX-P/ANC

    International Nuclear Information System (INIS)

    Powers, M.A.; Buechel, R.J.

    1989-01-01

    The Westinghouse Advanced In-Core Fuel Management System (PHOENIX-P/ANC) was utilized to predict start-up physics test parameters for Indian Point 3 (IP3) cycle 7. This core utilizes a low-leakage loading pattern implementing VANTAGE-5 fuel, which incorporates axial blankets and integral fuel burnable absorbers. Discrete part-length wet annular burnable absorbers (WABAs) are used in some feed assemblies as well. As a measure to reduce vessel fluence, certain peripheral twice-burned assemblies also contain fresh full-length WABAs. The New York Power Authority (NYPA) is using the Westinghouse code system since the methodology was licensed by the U.S. Nuclear Regulatory Commission and because of the user support supplied by Westinghouse. The IP3 cycle 7 PHOENIX-P/ANC model was developed as a joint effort by NYPA and Westinghouse as part of a technology transfer agreement. The PHOENIX-P/ANC model performed very well in start-up physics test predictions and is expected to agree well through cycle depletion. These results have given NYPA further incentive to use the Westinghouse methodology for core follow, loading pattern design determination, and in the safety analysis area

  10. An engineering code to analyze hypersonic thermal management systems

    Science.gov (United States)

    Vangriethuysen, Valerie J.; Wallace, Clark E.

    1993-01-01

    Thermal loads on current and future aircraft are increasing and as a result are stressing the energy collection, control, and dissipation capabilities of current thermal management systems and technology. The thermal loads for hypersonic vehicles will be no exception. In fact, with their projected high heat loads and fluxes, hypersonic vehicles are a prime example of systems that will require thermal management systems (TMS) that have been optimized and integrated with the entire vehicle to the maximum extent possible during the initial design stages. This will not only be to meet operational requirements, but also to fulfill weight and performance constraints in order for the vehicle to takeoff and complete its mission successfully. To meet this challenge, the TMS can no longer be two or more entirely independent systems, nor can thermal management be an after thought in the design process, the typical pervasive approach in the past. Instead, a TMS that was integrated throughout the entire vehicle and subsequently optimized will be required. To accomplish this, a method that iteratively optimizes the TMS throughout the vehicle will not only be highly desirable, but advantageous in order to reduce the manhours normally required to conduct the necessary tradeoff studies and comparisons. A thermal management engineering computer code that is under development and being managed at Wright Laboratory, Wright-Patterson AFB, is discussed. The primary goal of the code is to aid in the development of a hypersonic vehicle TMS that has been optimized and integrated on a total vehicle basis.

  11. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  12. Fired missile projectiles

    International Nuclear Information System (INIS)

    Williams, K.D.; Gieszl, R.; Keller, P.J.; Drayer, B.P.

    1989-01-01

    This paper reports ferromagnetic properties of fired missile projectiles (bullets, BBs, etc) investigated. Projectile samples were obtained from manufactures, police, and commercial sources. Deflection measurements at the portal of a 1.5-T magnetic field were performed for 47 projectiles. Sixteen bullets were examined in gelatin phantoms for rotation-translation movements as well. Ferromagnetic bullets displayed considerable deflection forces in the presence of the magnetic field and could be rotated to 80 degrees from their previous alignments when introduced perpendicular to the magnetic field in our gelatin phantom experiments. Military bullet calibers appear to pose the greatest ferromagnetic risk. Commercial sporting ammunition is generally nonferromagnetic

  13. Multiscale Computational Analysis of Nitrogen and Oxygen Gas-Phase Thermochemistry in Hypersonic Flows

    Science.gov (United States)

    Bender, Jason D.

    Understanding hypersonic aerodynamics is important for the design of next-generation aerospace vehicles for space exploration, national security, and other applications. Ground-level experimental studies of hypersonic flows are difficult and expensive; thus, computational science plays a crucial role in this field. Computational fluid dynamics (CFD) simulations of extremely high-speed flows require models of chemical and thermal nonequilibrium processes, such as dissociation of diatomic molecules and vibrational energy relaxation. Current models are outdated and inadequate for advanced applications. We describe a multiscale computational study of gas-phase thermochemical processes in hypersonic flows, starting at the atomic scale and building systematically up to the continuum scale. The project was part of a larger effort centered on collaborations between aerospace scientists and computational chemists. We discuss the construction of potential energy surfaces for the N4, N2O2, and O4 systems, focusing especially on the multi-dimensional fitting problem. A new local fitting method named L-IMLS-G2 is presented and compared with a global fitting method. Then, we describe the theory of the quasiclassical trajectory (QCT) approach for modeling molecular collisions. We explain how we implemented the approach in a new parallel code for high-performance computing platforms. Results from billions of QCT simulations of high-energy N2 + N2, N2 + N, and N2 + O2 collisions are reported and analyzed. Reaction rate constants are calculated and sets of reactive trajectories are characterized at both thermal equilibrium and nonequilibrium conditions. The data shed light on fundamental mechanisms of dissociation and exchange reactions -- and their coupling to internal energy transfer processes -- in thermal environments typical of hypersonic flows. We discuss how the outcomes of this investigation and other related studies lay a rigorous foundation for new macroscopic models for

  14. CT analysis of missile head injury

    International Nuclear Information System (INIS)

    Besenski, N.; Jadro-Santel, D.; Jelavic-Koic, F.; Pavic, D.; Mikulic, D.; Glavina, K.; Maskovic, J.

    1995-01-01

    Between August 1991 and December 1992, CT was performed in 154 patients who had suffered missile head injury during the war in the Republic of Croatia. In 54% CT was performed 1-24 h after injury, and in 27% follow-up CT was also obtained. The wounds were penetrating, tangential or perforating (45%, 34% and 21%, respectively). Haemorrhage was the most frequent lesion in the brain (84%). Follow-up CT evolution of haemorrhage, oedema, cerebritis, abscess, secondary vascular lesions, necrosis, encephalomalacia and hydrocephalus. The most dynamic changes occurred 7-14 days after injury. In 14% of cases, deep cerebral lesions were found in the corpus callosum, septum pellucidum periventricular region and pons, although bone and shell fragments were in a different part of the brain parenchyma. Such lesions were found in penetrating injuries only. CT proved very useful for assessing the extent and type of lesions. Although different mechanisms of brain damage in missile head injury are known, here they are, to the best of our knowledge, shown for the first time by CT. (orig.)

  15. Morning Frost in Trench Dug by Phoenix, Sol 113

    Science.gov (United States)

    2008-01-01

    This image from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows morning frost inside the 'Snow White' trench dug by the lander, in addition to subsurface ice exposed by use of a rasp on the floor of the trench. The camera took this image at about 9 a.m. local solar time during the 113th Martian day of the mission (Sept. 18, 2008). Bright material near and below the four-by-four set of rasp holes in the upper half of the image is water-ice exposed by rasping and scraping in the trench earlier the same morning. Other bright material especially around the edges of the trench, is frost. Earlier in the mission, when the sun stayed above the horizon all night, morning frost was not evident in the trench. This image is presented in approximately true color. The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide. Phoenix landed on a Martian arctic plain on May 25, 2008. The mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  16. THE DEVELOPMENT OF AUTOMATION MANAGEMENT TOOLS BY THE DIVISIONS OF TACTICAL MISSILE DEFENSE

    Directory of Open Access Journals (Sweden)

    O. V. Voronin

    2017-01-01

    Full Text Available The article summarizes the basic directions of automation for planning and management of combat by the divisions of tactical missile defense. The article focuses on the problem of the automated choice of rational option for combat order and fire control carried out by the divisions of tactical missile defense during operation.

  17. Water-Exit Process Modeling and Added-Mass Calculation of the Submarine-Launched Missile

    Directory of Open Access Journals (Sweden)

    Yang Jian

    2017-11-01

    Full Text Available In the process that the submarine-launched missile exits the water, there is the complex fluid solid coupling phenomenon. Therefore, it is difficult to establish the accurate water-exit dynamic model. In the paper, according to the characteristics of the water-exit motion, based on the traditional method of added mass, considering the added mass changing rate, the water-exit dynamic model is established. And with help of the CFX fluid simulation software, a new calculation method of the added mass that is suit for submarine-launched missile is proposed, which can effectively solve the problem of fluid solid coupling in modeling process. Then by the new calculation method, the change law of the added mass in water-exit process of the missile is obtained. In simulated analysis, for the water-exit process of the missile, by comparing the results of the numerical simulation and the calculation of theoretical model, the effectiveness of the new added mass calculation method and the accuracy of the water-exit dynamic model that considers the added mass changing rate are verified.

  18. Analysis of the overall structural behavior due to the impact of deformable missiles

    International Nuclear Information System (INIS)

    Ettouney, M.M.; Radini, R.R.; Hsueh, P.S.

    1979-01-01

    This paper presents a method of analysis to evaluate the overall behavior of reinforced concrete structures subjected to impact from deformable missiles. This method approaches the analysis in a very simple and practical way. The analysis is based on approximating the structure-missile system by a two-degree of freedom model. The two degrees of freedom model represents the missile and the structure, respectively. The hysteretic damping effects are considered implicitly through the nonlinearity of the two springs. Empirical formulas are presented for the evaluation of the dynamic properties of the nonlinear spring representing the concrete structure. The impact is simulated by applying an impulse on the two degrees of freedom system, then by the method of step by step numerical time integration (central difference formula is used) the time histories of the displacements and velocities of both the missile and structure are obtained. The numerical procedure is simple enough to be programmed by a hand or desk calculator which makes the method handy for most engineers and analysis. (orig.)

  19. Solution-Space Screening of a Hypersonic Endurance Demonstrator

    Science.gov (United States)

    Chudoba, Bernd; Coleman, Gary; Oza, Amit; Gonzalez, Lex; Czysz, Paul

    2012-01-01

    This report documents a parametric sizing study performed to develop a program strategy for research and development and procurement of a feasible next-generation hypersonic air-breathing endurance demonstrator. Overall project focus has been on complementing technical and managerial decision-making during the earliest conceptual design phase towards minimization of operational, technical, and managerial risks.

  20. Assessment of missiles generated by pressure component failure and its application to recent gas-cooled nuclear plant design

    International Nuclear Information System (INIS)

    Tulacz, J.; Smith, R.E.

    1980-01-01

    Methods for establishing characteristics of missiles following pressure barrier rupture have been reviewed in order to enable evaluation of structural response to missile impact and to aid the design of barriers to protect essential plant on gas cooled nuclear plant against unacceptable damage from missile impact. Methods for determining structural response of concrete barriers to missile impact have been reviewed and some methods used for assessing the adequacy of steel barriers on gas-cooled nuclear plant have been described. The possibility of making an incredibility case for some of the worst missiles based on probability arguments is briefly discussed. It is shown that there may be scope for such arguments but there are difficulties in quantifying some of the probability factors. (U.K.)

  1. Microscopy analysis of soils at the Phoenix landing site, Mars : Classification of soil particles and description of their optical and magnetic properties

    NARCIS (Netherlands)

    Goetz, W.; Pike, W.T.; Hviid, S.F.; Madsen, M.B.; Morris, R.V.; Hecht, M.H.; Staufer, U.; Leer, K.; Sykulska, H.; Hemmig, E.; Marshall, J.; Morookian, J.M.; Parrat, D.; Vijendran, S.; Bos, B.J.; El Maarry, M.R.; Keller, H.U.; Kramm, R.; Markiewicz, W.J.; Drube, L.; Blaney, D.; Arvidson, R.E.; Bell, J.F.; Reynolds, R.; Smith, P.H.; Woida, P.; Woida, R.; Tanner, R.

    2010-01-01

    The optical microscope onboard the Phoenix spacecraft has returned color images (4 ?m pixel?1) of soils that were delivered to and held on various substrates. A preliminary taxonomy of Phoenix soil particles, based on color, size, and shape, identifies the following particle types [generic names in

  2. Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.

    2012-01-01

    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.

  3. Numerical analysis of hypersonic turbulent film cooling flows

    Science.gov (United States)

    Chen, Y. S.; Chen, C. P.; Wei, H.

    1992-01-01

    As a building block, numerical capabilities for predicting heat flux and turbulent flowfields of hypersonic vehicles require extensive model validations. Computational procedures for calculating turbulent flows and heat fluxes for supersonic film cooling with parallel slot injections are described in this study. Two injectant mass flow rates with matched and unmatched pressure conditions using the database of Holden et al. (1990) are considered. To avoid uncertainties associated with the boundary conditions in testing turbulence models, detailed three-dimensional flowfields of the injection nozzle were calculated. Two computational fluid dynamics codes, GASP and FDNS, with the algebraic Baldwin-Lomax and k-epsilon models with compressibility corrections were used. It was found that the B-L model which resolves near-wall viscous sublayer is very sensitive to the inlet boundary conditions at the nozzle exit face. The k-epsilon models with improved wall functions are less sensitive to the inlet boundary conditions. The testings show that compressibility corrections are necessary for the k-epsilon model to realistically predict the heat fluxes of the hypersonic film cooling problems.

  4. Robust stabilization control based on guardian maps theory for a longitudinal model of hypersonic vehicle.

    Science.gov (United States)

    Liu, Yanbin; Liu, Mengying; Sun, Peihua

    2014-01-01

    A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.

  5. Tuhast tõusnud Phoenix jõudis Marsile elu võimalikkust uurima / Liisi Poll

    Index Scriptorium Estoniae

    Poll, Liisi, 1980-

    2008-01-01

    Vt. ka Postimees : na russkom jazõke 27. mai, lk. 8. Marsile jõudnud NASA automaatjaam Phoenix maandus naaberplaneedi põhjapoolusele lähemale kui ükski inimese leiutatud masin kunagi varem. Lisa: Marsi uurimiste ajalugu

  6. Preliminary Studies on Aerodynamic Control with Direct Current Discharge at Hypersonic Speed

    Science.gov (United States)

    Watanabe, Yasumasa; Takama, Yoshiki; Imamura, Osamu; Watanuki, Tadaharu; Suzuki, Kojiro

    A new idea of an aerodynamic control device for hypersonic vehicles using plasma discharges is presented. The effect of DC plasma discharge on a hypersonic flow is examined with both experiments and CFD analyses. It is revealed that the surface pressure upstream of plasma area significantly increases, which would be preferable in realizing a new aerodynamic control devices. Such pressure rise is also observed in the result of analyses of the Navier-Stokes equations with energy addition that simulates the Joule heating of a plasma discharge. It is revealed that the pressure rise due to the existence of the plasma discharge can be qualitatively explained as an effect of Joule heating.

  7. Study of the coupling between real gas effects and rarefied effects on hypersonic aerodynamics

    Science.gov (United States)

    Chen, Song; Hu, Yuan; Sun, Quanhua

    2012-11-01

    Hypersonic vehicles travel across the atmosphere at very high speed, and the surrounding gas experiences complicated physical and chemical processes. These processes produce real gas effects at high temperature and rarefied gas effects at high altitude where the two effects are coupled through molecular collisions. In this study, we aim to identify the individual real gas and rarefied gas effects by simulating hypersonic flow over a 2D cylinder, a sphere and a blunted cone using a continuum-based CFD approach and the direct simulation Monte Carlo method. It is found that physical processes such as vibrational excitation and chemical reaction will reduce significantly the shock stand-off distance and flow temperature for flows having small Knudsen number. The calculated skin friction and surface heat flux will decrease when the real gas effects are considered in simulations. The trend, however, gets weakened as the Knudsen number increases. It is concluded that the rarefied gas effects weaken the real gas effects on hypersonic flows.

  8. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN.

    Science.gov (United States)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Mélanie

    2008-02-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of (61)Fe daughter nuclides from the decay of (61)Mn nuclides. Preliminary results are given.

  9. Status of the PHOENIX electron cyclotron resonance charge breeder at ISOLDE, CERN

    International Nuclear Information System (INIS)

    Barton, Charles; Cederkall, Joakim; Delahaye, Pierre; Kester, Oliver; Lamy, Thierry; Marie-Jeanne, Melanie

    2008-01-01

    We report here on the last progresses made with the PHOENIX electron cyclotron resonance charge breeder test bench at ISOLDE. Recently, an experiment was performed to test the trapping of 61 Fe daughter nuclides from the decay of 61 Mn nuclides. Preliminary results are given

  10. Analyzing and designing object-oriented missile simulations with concurrency

    Science.gov (United States)

    Randorf, Jeffrey Allen

    2000-11-01

    A software object model for the six degree-of-freedom missile modeling domain is presented. As a precursor, a domain analysis of the missile modeling domain was started, based on the Feature-Oriented Domain Analysis (FODA) technique described by the Software Engineering Institute (SEI). It was subsequently determined the FODA methodology is functionally equivalent to the Object Modeling Technique. The analysis used legacy software documentation and code from the ENDOSIM, KDEC, and TFrames 6-DOF modeling tools, including other technical literature. The SEI Object Connection Architecture (OCA) was the template for designing the object model. Three variants of the OCA were considered---a reference structure, a recursive structure, and a reference structure with augmentation for flight vehicle modeling. The reference OCA design option was chosen for maintaining simplicity while not compromising the expressive power of the OMT model. The missile architecture was then analyzed for potential areas of concurrent computing. It was shown how protected objects could be used for data passing between OCA object managers, allowing concurrent access without changing the OCA reference design intent or structure. The implementation language was the 1995 release of Ada. OCA software components were shown how to be expressed as Ada child packages. While acceleration of several low level and other high operations level are possible on proper hardware, there was a 33% degradation of 4th order Runge-Kutta integrator performance of two simultaneous ordinary differential equations using Ada tasking on a single processor machine. The Defense Department's High Level Architecture was introduced and explained in context with the OCA. It was shown the HLA and OCA were not mutually exclusive architectures, but complimentary. HLA was shown as an interoperability solution, with the OCA as an architectural vehicle for software reuse. Further directions for implementing a 6-DOF missile modeling

  11. Quantifying Non-Equilibrium in Hypersonic Flows Using Entropy Generation

    Science.gov (United States)

    2007-03-01

    do this, two experimental cases performed at the Calspan- University of Buffalo Research Center ( CUBRC ) were modeled using Navier-Stokes based CFD...data provided by the CUBRC hypersonic wind tunnel facility (Holden and Wadhams, 2004). The wall data in Figure 9 and Figure 10 reveals some difference

  12. Advanced Metal Rubber Sensors for Hypersonic Decelerator Entry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to design and develop light-weight, low-modulus, and durable Metal Rubber™ sensors for aeroelastic analysis of Hypersonic Decelerator Entry...

  13. Investigation of piloting aids for manual control of hypersonic maneuvers

    Science.gov (United States)

    Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.

    1995-01-01

    An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.

  14. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 1

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Ohnuma, H.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Structural damage induced by an aircraft crashing into a reinforced concrete structure includes local damage caused by the deformable engines, and global damage caused by the entire aircraft. Local damage to the target may consist of spalling of concrete from its front face together with missile penetration into it, scabbing of concrete from its rear face, and perforation of missile through it. Until now, local damage to concrete structures has been mainly evaluated by rigid missile impact tests. Past research work regarding local damage caused by impact of deformable missiles has been limited. This paper presents the results of a series of impact tests of small-, intermediate-, and full-scale engine models into reinforced concrete panels. The purpose of the tests was to determine the local damage to a reinforced concrete structure caused by the impact of a deformable aircraft engine. (orig.)

  15. Results of the Phoenix Relative Humidity Sensor Recalibration

    Science.gov (United States)

    Martinez, G.; Fischer, E.; Renno, N. O.

    2017-12-01

    We show results of the recalibration of the Thermal and Electrical Conductivity Probe (TECP) relative humidity (RH) sensor of the Phoenix Mars lander [Zent et al., 2009]. Due to uncertainties in its pre-flight calibration, which partially overlapped the environmental conditions found at the Phoenix landing site [Tamppari et al., 2010], only the raw, unprocessed output of the TECP RH sensor is available in NASA's Planetary Data System (PDS). The sensor's calibration was revised in 2016 to correct for inaccuracies at the lowest temperatures [Zent et al., 2016], but the new processed RH values were not posted in the PDS. We have been using a spare engineering unit of the TECP to recalibrate the sensor in the full range of Phoenix landing site conditions in the Michigan Mars Environmental Chamber (MMEC) [Fischer et al., 2016]. We compare raw output data of the engineering unit in the MMEC with that of the flight unit from the preflight calibration. We observed that the engineering unit's RH sensor output was shifted to higher values compared to the flight unit's output at the same conditions of temperature and humidity. Based on this shift, we use a translation function that fits the in-situ measurements of the flight unit into the engineering unit output space. To improve the accuracy of this function, we use additional observations corresponding to saturated conditions when near-surface fog was observed [Whiteway et al., 2009], as well as observations around noon when the RH is expected to be below 5%. The entire range of conditions observed on the Martian surface is covered in our recalibration. The raw output of the sensor is used to obtain a new calibration function. This allows us to obtain high-level RH data at Martian polar conditions. The recalibrated data will be posted in the PDS. REFERENCES: Fischer, E., et al. (2016), Astrobiology, 16, 12, doi: 10.1089/ast.2016.1525. Tamppari, L. K., et al. (2010), J. Geophys. Res., 115, E00E17, doi:10.1029/2009JE003415

  16. Experimental studies on local damage of reinforced concrete structures by the impact of deformable missiles-Part 1

    International Nuclear Information System (INIS)

    Muto, K.; Tachikawa, H.; Sugano, T.; Tsubota, H.; Kobayshi, H.; Kasai, Y.; Koshika, N.; Tsujimoto, T.

    1989-01-01

    Structural damage induced by an accidental aircraft crash into a reinforced concrete structure includes local damage caused by the engine, the rigid portion of the aircraft, and the global elasto-plastic structural response caused by the entire aircraft. Local damage consists of spalling of concrete from the front face of the target together with missile penetration into the target, scabbing of concrete from the rear face of the target and perforation of the missile through the target. The engine is a soft missile that deforms during impact. An experimental research program has been planned and executed to establish a rational evaluation method of the local damage by the deformable engine missiles

  17. What to Do About That Pack of Wolves at the Door: A Binational Organization and Acquisitions Approach to Homeland Cruise Missile Defense

    Science.gov (United States)

    2016-04-04

    own cruise missile, the Tomahawk. Since then, the United States and Russia have cornered the market in cruise missile technology. For decades the...and low-visibility cruise missiles, and the ability to successfully neutralize large numbers of inbound cruise missiles. The USG also lacks the...well as High Altitude Sensors (HAS) to detect inbound missiles.42 In 2006, Naval Post Graduate students utilized game theory analysis to score all

  18. Framing the Tenth Anniversary of 9/11:  A Comparison of CNN and Phoenix TV commemorative websites

    OpenAIRE

    Zhuang, Yuxi

    2013-01-01

    It has been more than ten years since the 9/11 attacks in 2001, but the events related to the attacks are still a focus for the whole world. This study examined the news coverage of the 9/11 tenth anniversary from Phoenix TV and CNN, which are among the most influential news media in China and the U.S., respectively. A systematic content analysis was performed using latest news, opinion articles, photographs, and videos as classified by CNN and Phoenix TV on their commemorative 9/11 tenth ann...

  19. Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO 2 TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed

  20. Tornado missile simulation and design methodology. Volume 1: simulation methodology, design applications, and TORMIS computer code. Final report

    International Nuclear Information System (INIS)

    Twisdale, L.A.; Dunn, W.L.

    1981-08-01

    A probabilistic methodology has been developed to predict the probabilities of tornado-propelled missiles impacting and damaging nuclear power plant structures. Mathematical models of each event in the tornado missile hazard have been developed and sequenced to form an integrated, time-history simulation methodology. The models are data based where feasible. The data include documented records of tornado occurrence, field observations of missile transport, results of wind tunnel experiments, and missile impact tests. Probabilistic Monte Carlo techniques are used to estimate the risk probabilities. The methodology has been encoded in the TORMIS computer code to facilitate numerical analysis and plant-specific tornado missile probability assessments. Sensitivity analyses have been performed on both the individual models and the integrated methodology, and risk has been assessed for a hypothetical nuclear power plant design case study

  1. Implementation of a quality management system at the PHOENIX facility (CryoMaK)

    International Nuclear Information System (INIS)

    Urbach, Elisabeth; Bagrets, Nadezda; Weiss, Klaus-Peter

    2013-01-01

    Within a variety of mechanical tests in the Cryogenic Material Test Facility Karlsruhe (CryoMaK) at Karlsruhe Institute of Technology (KIT) the PHOENIX facility was prepared for multiple standard tensile tests in liquid helium, liquid nitrogen and at room temperature. With the multiple specimens holder 10 specimens can be tested within one cool down one after another. A quality management system is needed for ensuring reproducible preconditions. For the guarantee of the competence of the laboratory and the measurement equipment, a quality management system was implemented and prepared for accreditation according to DIN EN ISO/IEC 17025 (ISO 17025). The implementation of a quality management system allows high precision test results included the estimation of measurement uncertainty. This paper gives an overview of the management and technical requirements for the accreditation of the PHOENIX testing facility

  2. Implementation of a quality management system at the PHOENIX facility (CryoMaK)

    Energy Technology Data Exchange (ETDEWEB)

    Urbach, Elisabeth, E-mail: elisabeth.urbach@kit.edu; Bagrets, Nadezda; Weiss, Klaus-Peter

    2013-10-15

    Within a variety of mechanical tests in the Cryogenic Material Test Facility Karlsruhe (CryoMaK) at Karlsruhe Institute of Technology (KIT) the PHOENIX facility was prepared for multiple standard tensile tests in liquid helium, liquid nitrogen and at room temperature. With the multiple specimens holder 10 specimens can be tested within one cool down one after another. A quality management system is needed for ensuring reproducible preconditions. For the guarantee of the competence of the laboratory and the measurement equipment, a quality management system was implemented and prepared for accreditation according to DIN EN ISO/IEC 17025 (ISO 17025). The implementation of a quality management system allows high precision test results included the estimation of measurement uncertainty. This paper gives an overview of the management and technical requirements for the accreditation of the PHOENIX testing facility.

  3. Space and Missile Systems Center Standard: Systems Engineering Requirements and Products

    Science.gov (United States)

    2013-07-01

    MISSILE SYSTEMS CENTER Air Force Space Command 483 N. Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space...Any RF receiver with a burnout level of less than 30 dBm (1 mW). b. A summary of all significant areas are addressed in the EMC Control Plan...address 7. Date Submitted 8. Preparing Activity Space and Missile Systems Center AIR FORCE SPACE COMMAND 483 N. Aviation Blvd. El Segundo, CA 91245 Attention: SMC/EN February 2013

  4. Slender body treatment of some specialized problems associated with elliptic-cross-section missile configurations

    Science.gov (United States)

    Barger, R. L.

    1977-01-01

    Slender body methods were applied to some specialized problems associated with missile configurations with elliptic cross sections. Expressions are derived for computing the velocity distribution on the nose section when the ellipse eccentricity is varying longitudinally on the missile. The cross flow velocity on a triform fin section is also studied.

  5. Dictionary of Missile and Artillery Terms

    Science.gov (United States)

    1982-05-20

    missile and projectile control. Remote control is used widely in military affairs. TEMPERATURA VSPYShKI VZRYVChATYKh VEShchESTV (Explosive Flash Point... TEMPERATURA GORENIYa POROKhA [Powder Combustion Temperature] (T 1 ) -. combustion (formation) temperature of powder computed from 00 K (absolute scale...234 // TEMPERATURA OBYChNOGO VZRYVA [Normal Burst Temperature] - maximum temperature to which gaseous products are heated during the explosion of a

  6. Computation of hypersonic axisymmetric flows of equilibrium gas over blunt bodies

    International Nuclear Information System (INIS)

    Hejranfar, K.; Esfahanian, V.; Moghadam, R.K.

    2005-01-01

    An appropriate combination of the thin-layer Navier-Stokes (TLNS) and parabolized Navier-Stokes (PNS) solvers is used to accurately and efficiently compute hypersonic flowfields of equilibrium air around blunt-body configurations. The TLNS equations are solved in the nose region to provide the initial data plane needed for the solution of the PNS equations. Then the PNS equations are employed to efficiently compute the flowfield for the afterbody region by using a space marching procedure. Both the TLNS and the PNS equations are numerically solved by using the implicit non-iterative finite-difference algorithm of Beam and Warming. A shock fitting technique is used in both the TLNS and PNS codes to obtain accurate solution in the vicinity of the shock. To validate the results of the developed TLNS code, hypersonic laminar flow over a sphere at Mach number of 11.26 is computed. To demonstrate the accuracy and efficiency of using the present TLNS-PNS methodology, the computations are performed for hypersonic flow over 5 o long slender blunt cone at Mach number of 19.25. The results of these computations are found to be in good agreement with available numerical and experimental data. The effects of real gas on the flowfield characteristics are also studied in both the TLNS and PNS solutions. (author)

  7. X-43A Hypersonic Experimental Vehicle - Artist Concept in Flight

    Science.gov (United States)

    1999-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  8. Hypersonic Free-Flight Measurement of Aeroshell Forces and Flowfields, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Hypersonic Gun Tunnel and laser based high speed imaging systems will be used to generate a unique, free flight, aerodynamic data base of potential Mars aeroshell...

  9. Experimental Studies of Shock Interaction Phenomena Associated with Hypersonic Airbreathing Propulsion

    National Research Council Canada - National Science Library

    Holden, Michael

    2001-01-01

    ... and double cone configurations in hypersonic flow. In the best Navier-Stokes solutions the structure and density of the flowfield was captured exactly over both the hollow cylinder/flare and double cone models...

  10. A Laser-Based Diagnostic Suite for Hypersonic Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR effort, Los Gatos Research (LGR) proposes to develop a suite of laser-based diagnostics for the study of reactive and non-reactive hypersonic flows....

  11. Assessment of Containment Structures Against Missile Impact Threats

    Institute of Scientific and Technical Information of China (English)

    LI Q M

    2006-01-01

    In order to ensure the highest safety requirements,nuclear power plant structures (the containment structures,the fuel storages and transportation systems) should be assessed against all possible internal and external impact threats.The internal impact threats include kinetic missiles generated by the failure of high pressure vessels and pipes,the failure of high speed rotating machineries and accidental drops.The external impact threats may come from airborne missiles,aircraft impact,explosion blast and fragments.The impact effects of these threats on concrete and steel structures in a nuclear power plant are discussed.Methods and procedures for the impact assessment of nuclear power plants are introduced.Recent studies on penetration and perforation mechanics as well as progresses on dynamic properties of concrete-like materials are presented to increase the understanding of the impact effects on concrete containment structures.

  12. Debris flows from small catchments of the Ma Ha Tuak Range, metropolitan Phoenix, Arizona

    Science.gov (United States)

    Dorn, Ronald I.

    2010-08-01

    Debris flows debauch from tiny but steep mountain catchments throughout metropolitan Phoenix, Arizona, USA. Urban growth in the past half-decade has led to home construction directly underneath hundreds of debris-flow channels, but debris flows are not recognized as a potential hazard at present. One of the first steps in a hazard assessment is to determine occurrence rates. The north flank of the Ma Ha Tuak Range, just 10 km from downtown Phoenix, was selected to determine the feasibility of using the varnish microlaminations (VML) method to date every debris-flow levee from 127 catchment areas. Only 152 of the 780 debris-flow levees yielded VML ages in a first round of sampling; this high failure rate is due to erosion of VML by microcolonial fungi. The temporal pattern of preserved debris-flow levees indicates anomalously high production of debris flows at about 8.1 ka and about 2.8 ka, corresponding to Northern Hemisphere climatic anomalies. Because many prior debris flows are obliterated by newer events, the minimum overall occurrence rates of 1.3 debris flows per century for the last 60 ka, 2.2 flows/century for the latest Pleistocene, and 5 flows/century for the last 8.1 ka has little meaning in assessment of a contemporary hazard. This is because newer debris flows have obliterated an unknown number of past deposits. More meaningful to a hazards analysis is the estimate that 56 flows have occurred in the last 100 years on the north side of the range, an estimate that is consistent with direct observations of three small debris flows resulting events from a January 18-22, 2010 storm producing 70 mm of precipitation in the Ma Ha Tuak Range, and a 500 m long debris flow in a northern metropolitan Phoenix location that received over 150 mm of precipitation in this same storm. These findings support the need for a more extensive hazard assessment of debris flows in metropolitan Phoenix.

  13. Research of Short-range Missile Motion in Terms of Different Wind Loads

    Directory of Open Access Journals (Sweden)

    A. N. Klishin

    2015-01-01

    Full Text Available When modeling the aircraft motion it is advisable to choose a particular model of the Earth, depending both on the task and on the required accuracy of calculation. The article describes various models of the Earth, such as the flat Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a plane-parallel field of gravity, spherical and non-rotating Earth with a central gravitational field, spherical and non-rotating Earth, taking into account the polar flattening of the Earth, spherical Earth based compression and polar daily rotation. The article also considers the influence of these models on the motion of the selected aircraft.To date, there is technical equipment to provide highly accurate description of the Earthshape, gravitational field, etc. The improved accuracy of the Earth model description results in more correct description of the trajectory and motion parameters of a ballistic missile. However, for short ranges (10-20 km this accuracy is not essential, and, furthermore, it increases time of calculation. Therefore, there is a problem of choosing the optimal description of the Earth parameters.The motion in the model of the Earth, which takes into account a daily rotation of the planet and polar flattening, is discussed in more detail, and the geographical latitude impact on coordinates of the points of fall of a ballistic missile is analyzed on the basis of obtained graphs.The article individually considers a problem of the wind effect on the aircraft motion and defines dependences of the missile motion on the parameters of different wind loads, such as wind speed and height of its action.A mathematical model of the missile motion was built and numerically integrated, using the Runge-Kutta 4th order method, for implementation and subsequent analysis.Based on the analysis of the calculation results in the abovementioned models of the Earth, differences in impact of these models on the parameters of the

  14. Modelling cavitating flow around underwater missiles

    Directory of Open Access Journals (Sweden)

    Fabien Petitpas

    2011-12-01

    Full Text Available The diffuse interface model of Saurel et al. (2008 is used for the computation of compressible cavitating flows around underwater missiles. Such systems use gas injection and natural cavitation to reduce drag effects. Consequently material interfaces appear separating liquid and gas. These interfaces may have a really complex dynamics such that only a few formulations are able to predict their evolution. Contrarily to front tracking or interface reconstruction method the interfaces are computed as diffused numerical zones, that are captured in a routinely manner, as is done usually with gas dynamics solvers for shocks and contact discontinuity. With the present approach, a single set of partial differential equations is solved everywhere, with a single numerical scheme. This leads to very efficient solvers. The algorithm derived in Saurel et al. (2009 is used to compute cavitation pockets around solid bodies. It is first validated against experiments done in cavitation tunnel at CNU. Then it is used to compute flows around high speed underwater systems (Shkval-like missile. Performance data are then computed showing method ability to predict forces acting on the system.

  15. Seeing 2020: America’s New Vision for Integrated Air and Missile Defense

    Science.gov (United States)

    2015-01-01

    MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14...siles. Examples included the Nike Zeus and Nike -X anti-ballistic missiles (ABMs), which used nuclear warheads to destroy incoming missiles (a practice...the Soviets also explored) in their terminal phase of flight. Yet despite some successful tests, the Nike programs were never fully implemented

  16. Field observations of regional and urban impacts on NO2, ozone, UVB, and nitrate radical production rates in the Phoenix air basin

    International Nuclear Information System (INIS)

    Gaffney, J.S.; Marley, N.A.; Drayton, P.J.; Doskey, P.V.; Kotamarthi, V.R.; Cunningham, M.M.; Baird, J.C.; Dintaman, J.; Hart, H.L.

    2002-01-01

    In the May and June of 1998, field measurements were taken at a site near the Usery Pass Recreation Area, ∼27 miles from the downtown Phoenix area, overlooking Phoenix and Mesa, Arizona. This site was selected to examine the impacts of the Phoenix urban plume on the Usery Pass Recreation Area and surrounding regions. Data were obtained for ultraviolet-B (UVB) radiation, nitrogen dioxide (NO 2 ), peroxyacetyl nitrate (PAN), ozone (O 3 ), and carbon monoxide (CO). Nocturnal plumes of NO 2 (in tens of ppb), observed near midnight, were correlated with CO and anti-correlated with O 3 . This behavior was consistent with the titration of locally generated NO by boundary layer O 3 to form the nighttime NO 2 plumes that were subsequently transported into the Usery Pass Recreation area. Nitrate radical (NO 3 ) production rates were calculated to be very high on the edges of these nocturnal plumes. Examination of O 3 and PAN data also indicates that Phoenix is being affected by long-range transport of pollutants from the Los Angeles to San Diego areas. A regional smoke episode was observed in May, accompanied by a decrease in UVB of factor of two and a decrease in O 3 and an increase in methyl chloride. Low level back trajectories and chemical evidence confirm that the smoke event originated in northern Mexico and that the reduced O 3 levels observed at Usery Pass could be partially due to reduced photolysis rates caused by carbonaceous soot aerosols transported in the smoke plume. The results are discussed with regard to potential effects of local pollution transport from the Phoenix air basin as well as an assessment of the contributions from long-range transport of pollutants to the background levels in the Phoenix-Usery Pass area. (author)

  17. Experimental And Numerical Investigation Of Aerothermal Characteristics Of The IXV Hypersonic Vehicle

    Science.gov (United States)

    Paris, S.; Charbonnier, D.; Tran, D.

    2011-05-01

    The main results of the aerothermodynamic hypersonic characterization of Intermediate eXperimental Vehicle (IXV), by means of both CFD simulations and wind tunnel measurements, have been reported and analyzed. In the framework of ESA FLPP Program, the VKI (Von Karman Institute) was in charge of an experimental test campaign for the consolidation of the aerothermal database in cold hypersonic regime. The tests campaign has been carried out at VKI Free Piston Longshot wind tunnel at mach 14. The numerical simulations have been performed for VKI wind tunnel conditions by CFSE with the in-house NSMB flow solver (Navier-Stokes Multi-Blocks 3D), the goal being to support the procedure of extrapolation-to-flight of the measurements and the general aerothermal characterization. Laminar, transitional and fully turbulent flows have been computed, with air considered as an ideal gas, for the wind tunnel tests numerical rebuilding. A detailed comparison of all measured and predicted hypersonic relevant phenomena and parameters (surface pressure and heat flux) is reported in the paper, together with a detailed description of configuration, freestream conditions, model attitude effects and flap deflection effect. The detailed analyze of the experimental and numerical data gives information on the nature of the flow on the body and on the flaps for the most critical configuration

  18. Control characteristics for wrap-around fins on cruise missiles configurations

    Science.gov (United States)

    Sawyer, W. C.; Monta, W. J.; Carter, W. V.; Alexander, W. K.

    1981-01-01

    This paper presents selected results of a panel loads study conducted as part of the final phase of an extensive investigation of an air-breathing missile concept employing wrap-around aerodynamic surfaces. Typical results for M = 2.36 are presented for the fin load results, plus a brief review of basic results of the previously reported tests. Vapor screen results are also discussed. The present results indicate that the fin load characteristics are nearly identical for planar and curved fins having the same projected planform and would permit the use of planar-surface predictions for supersonic speeds in the preliminary design stages of missiles employing wrap-around curved fins.

  19. Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium

    Science.gov (United States)

    Erickson, Wayne D.

    1960-01-01

    The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.

  20. Application of CFD to a generic hypersonic flight research study

    Science.gov (United States)

    Green, Michael J.; Lawrence, Scott L.; Dilley, Arthur D.; Hawkins, Richard W.; Walker, Mary M.; Oberkampf, William L.

    1993-01-01

    Computational analyses have been performed for the initial assessment of flight research vehicle concepts that satisfy requirements for potential hypersonic experiments. Results were obtained from independent analyses at NASA Ames, NASA Langley, and Sandia National Labs, using sophisticated time-dependent Navier-Stokes and parabolized Navier-Stokes methods. Careful study of a common problem consisting of hypersonic flow past a slightly blunted conical forebody was undertaken to estimate the level of uncertainty in the computed results, and to assess the capabilities of current computational methods for predicting boundary-layer transition onset. Results of this study in terms of surface pressure and heat transfer comparisons, as well as comparisons of boundary-layer edge quantities and flow-field profiles are presented here. Sensitivities to grid and gas model are discussed. Finally, representative results are presented relating to the use of Computational Fluid Dynamics in the vehicle design and the integration/support of potential experiments.

  1. From A-4 to Explorer 1. [U.S. rocket and missile technology historical review

    Science.gov (United States)

    Debus, K. H.

    1973-01-01

    Historical review of the development of rocket and missile technology in the United States over the period from 1945 to 1958. Attention is given to the organization of activities, the launch facilities, and the scope of test rocket firings at the White Sands Proving Ground area during the initial phase of research with captured German V2 rockets. The development of the Redstone missiles is outlined by discussing aspects of military involvement, cooperation with industrial suppliers, details of ground support equipment, and results of initial test firings. Subsequent development of the Jupiter missiles is examined in a similar manner, and attention is given to activities involved in the launching of the Explorer 1 satellite.

  2. High-Fidelity Kinetics and Radiation Transport for NLTE Hypersonic Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The modeling of NLTE hypersonic flows combines several disciplines: chemistry, kinetics, radiation transport, fluid mechanics, and surface science. No single code or...

  3. Effective high-order solver with thermally perfect gas model for hypersonic heating prediction

    International Nuclear Information System (INIS)

    Jiang, Zhenhua; Yan, Chao; Yu, Jian; Qu, Feng; Ma, Libin

    2016-01-01

    Highlights: • Design proper numerical flux for thermally perfect gas. • Line-implicit LUSGS enhances efficiency without extra memory consumption. • Develop unified framework for both second-order MUSCL and fifth-order WENO. • The designed gas model can be applied to much wider temperature range. - Abstract: Effective high-order solver based on the model of thermally perfect gas has been developed for hypersonic heat transfer computation. The technique of polynomial curve fit coupling to thermodynamics equation is suggested to establish the current model and particular attention has been paid to the design of proper numerical flux for thermally perfect gas. We present procedures that unify five-order WENO (Weighted Essentially Non-Oscillatory) scheme in the existing second-order finite volume framework and a line-implicit method that improves the computational efficiency without increasing memory consumption. A variety of hypersonic viscous flows are performed to examine the capability of the resulted high order thermally perfect gas solver. Numerical results demonstrate its superior performance compared to low-order calorically perfect gas method and indicate its potential application to hypersonic heating predictions for real-life problem.

  4. A new guidance law for a tactical surface-to-surface missile

    Directory of Open Access Journals (Sweden)

    Danilo V. Ćuk

    2012-01-01

    Full Text Available Modern tactical surface-to-surface missiles, equipped with strapdown inertial navigation systems, achieve very good accuracy compared with free-flight rockets. The probable range dispersion mainly depends on instruments errors and longitudinal disturbances such as rocket motor total-impulse deviation as well as differences between the estimated and actual values of the axial force and head wind. This paper gives an extension of the correlated velocity concept for surface-to-surface missiles without a thrust-terminating mechanism. The calculated parameters of the correlated velocity are stored into the memory of an onboard guidance computer. On the basis of the correlated velocity concept, the modified proportional navigation with the adjustment of the time-to-go of the missile to the target was proposed. It is shown that the new guidance law can compensate for the longitudinal disturbances of different levels successfully. The effectiveness of the proposed guidance method was confirmed by means of the calculated probable range and lateral dispersion for the anticipated disturbances in the guidance system.

  5. SiC Matrix Composites for High Temperature Hypersonic Vehicle Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Durable high temperature materials are required for hypersonic engine and structural thermal protection systems. In particular, 2700ºF or greater capable structural...

  6. Safety catching device for pipes in missile shielding cylinders of nuclear power plants

    International Nuclear Information System (INIS)

    Hering, S.; Doll, B.

    1976-01-01

    The safety catching device consists of a steel wire passed in U-shape around the pipe to be caught and supported by two anchor ties embedded in the concrete of the missile shielding cylinder. This flexible catching device is to cause the energy released in case of a pipe rupture to be absorbed and no dangerous bending shesses to be transferred to the walls of the missile shielding cylinder. (UWI) [de

  7. Destruction of the Phoenix/Hibiscus and Barringtonia racemosa Communities at Richards Bay, Natal, South Africa

    Directory of Open Access Journals (Sweden)

    P. J. Weisser

    1982-10-01

    Full Text Available The destruction of the Phoenix!Hibiscus and Barringtonia racemosa Communities described by Venter in 1972 on the southern shores of Richards Bay is reported. The cause was the artificial openingof a new mouth about 5,5 km south of the original mouth, which increased tidal range and salinity. These swamp communities occupied a narrow band about 6 ha in area behind the Bruguiera gymnorrhiza Community. An estimated 95 % of the communities was affected and only on the landward border were some isolated remnants of species such as Acrostichum aureum, Hibiscus tiliaceus and Phoenix reclinata detected .Young stands of  Phragmites australis, seedlings of  Bruguiera gymnorrhiza and Avicennia marina and epipelic algae are recoIonizing the affected area.

  8. Health Management Issues and Strategy for Air Force Missiles

    National Research Council Canada - National Science Library

    Ruderman, Gregory

    2005-01-01

    ... ideal application for health monitoring. However, solid rocket motors that serve as the propulsion system for these missiles present a number of unique challenges for the development of integrated vehicle health monitoring systems...

  9. Hypersonic Technology Developments with EU Co-Funded Projects

    Science.gov (United States)

    2010-09-01

    and Hypersonic Systems and Technologies Conference, AIAA-2006-8109, 06-09/11 2006, Canberra, Australia. [18] Karl S., Hannemann K., Steelant J. and...Canberra, Australia. [23] Haidn, O., Ciezki, H., Hannemann , K. and Karl., S., Selected Supersonic Combustion Activities at DLR within the European...LAPCAT Project, 2nd European Conference for Aerospace Sciences (EUCASS), July 2007, Brussels, Belgium. [24] Martinez-Schram J. , Karl S., Hannemann K

  10. Molecular-Based Optical Diagnostics for Hypersonic Nonequilibrium Flows

    Science.gov (United States)

    Danehy, Paul; Bathel, Brett; Johansen, Craig; Winter, Michael; O'Byrne, Sean; Cutler, Andrew

    2015-01-01

    This presentation package consists of seven different talks rolled up into one. These talks are all invited orals presentations in a special session at the Aviation 2015 conference and represent contributions that were made to a recent AIAA book that will be published entitled 'Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances'. Slide 5 lists the individual presentations that will be given during the special session.

  11. Matching algorithm of missile tail flame based on back-propagation neural network

    Science.gov (United States)

    Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan

    2018-02-01

    This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.

  12. A model for supersonic and hypersonic impactors for nanoparticles

    International Nuclear Information System (INIS)

    Abouali, Omid; Ahmadi, Goodarz

    2005-01-01

    In this study the performance of supersonic and hypersonic impactors for collection efficiency of nanoparticles (in the size range of 2-100 nm) under various operating conditions is analyzed. Axisymmetric forms of the compressible Navier-Stokes and energy equations are solved and the airflow and thermal condition in the impactor are evaluated. A Lagrangian particle trajectory analysis procedure is used and the deposition rates of different size particles under various operating conditions are studied. For dilute particle concentrations, the assumption of one-way interaction is used and the effect of particles on gas flow field is ignored. The importance of drag, lift and Brownian forces on particle motions in supersonic impactors is discussed. Sensitivity of the simulation results to the use of different assumptions for the Cunningham correction coefficient is studied. It is shown that accurate evaluation of the gas mean free path and the Cunningham correction factor is important for accurate simulation of nano-particle transport and deposition in supersonic/hypersonic impactors. The computer simulation results are compared favorably with the available experimental data

  13. Validation of engineering methods for predicting hypersonic vehicle controls forces and moments

    Science.gov (United States)

    Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.

    1991-01-01

    This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.

  14. Visual Analytics for the Food-Water-Energy Nexus in the Phoenix Active Management Area

    Science.gov (United States)

    Maciejewski, R.; Mascaro, G.; White, D. D.; Ruddell, B. L.; Aggarwal, R.; Sarjoughian, H.

    2016-12-01

    The Phoenix Active Management Area (AMA) is an administrative region of 14,500 km2 identified by the Arizona Department of Water Resources with the aim of reaching and maintaining the safe yield (i.e. balance between annual amount of groundwater withdrawn and recharged) by 2025. The AMA includes the Phoenix metropolitan area, which has experienced a dramatic population growth over the last decades with a progressive conversion of agricultural land into residential land. As a result of these changes, the water and energy demand as well as the food production in the region have significantly evolved over the last 30 years. Given the arid climate, a crucial role to support this growth has been the creation of a complex water supply system based on renewable and non-renewable resources, including the energy-intensive Central Arizona Project. In this talk, we present a preliminary characterization of the evolution in time of the feedbacks between food, water, and energy in the Phoenix AMA by analyzing secondary data (available from water and energy providers, irrigation districts, and municipalities), as well as satellite imagery and primary data collected by the authors. A preliminary visual analytics framework is also discussed describing current design practices and ideas for exploring networked components and cascading impacts within the FEW Nexus. This analysis and framework represent the first steps towards the development of an integrated modeling, visualization, and decision support infrastructure for comprehensive FEW systems decision making at decision-relevant temporal and spatial scales.

  15. NATO Pallet with Javelin Missiles, MIL-STD-1660 Tests

    National Research Council Canada - National Science Library

    2004-01-01

    The U.S. Army Defense Ammunition Center (DAC), Validation Engineering Division (SJMAC-DEV) conducted tests in accordance with MIL-STD-1660, "Design Criteria for Ammunition Unit Loads" on the NATO pallet with Javelin missiles...

  16. Experimental results of a Mach 10 conical-flow derived waverider to 14-X hypersonic aerospace vehicle

    Directory of Open Access Journals (Sweden)

    Tiago Cavalcanti Rolim

    2011-05-01

    Full Text Available This paper presents a research in the development of the 14-X hypersonic airspace vehicle at Institute for Advanced Studies (IEAv from Department of Science and Aerospace Technology (DCTA of the Brazilian Air Force (FAB. The 14-X project objective is to develop a higher efficient satellite launch alternative, using a Supersonic Combustion Ramjet (SCRAMJET engine and waverider aerodynamics. For this development, the waverider technology is under investigation in Prof. Henry T. Nagamatsu Aerothermodynamics and Hypersonics Laboratory (LHTN, in IEAv/DCTA. The investigation has been conducted through ground test campaigns in Hypersonic Shock Tunnel T3. The 14-X Waverider Vehicle characteristic was verified in shock tunnel T3 where surface static pressures and pitot pressure for Mach number 10 were measured and, using Schlieren photographs Diagnostic Method, it was possible to identify a leading-edge attached shock wave in 14-X lower surface.

  17. Adaptive Command Filtered Integrated Guidance and Control for Hypersonic Vehicle with Magnitude, Rate and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Wang Liang

    2018-01-01

    Full Text Available This paper proposes a novel integrated guidance and control (IGC method for hypersonic vehicle in terminal phase. Firstly, the system model is developed with a second order actuator dynamics. Then the back-stepping controller is designed hierarchically with command filters, where the first order command filters are implemented to construct the virtual control input with ideal states predicted by an adaptive estimator, and the nonlinear command filter is designed to produce magnitude, rate and bandwidth limited control surface deflection finally tracked by a terminal sliding mode controller with finite convergence time. Through a series of 6-DOF numerical simulations, it’s indicated that the proposed method successfully cancels out the large aerodynamics coefficient uncertainties and disturbances in hypersonic flight under limited control surface deflection. The contribution of this paper lies in the application and determination of nonlinear integrated design of guidance and control system for hypersonic vehicle.

  18. Thermomechanical response of a cross-ply titanium matrix composite subjected to a generic hypersonic flight profile

    International Nuclear Information System (INIS)

    Mirdamadi, M.; Johnson, W.S.

    1993-01-01

    Cross-ply laminate behavior of Ti-15V-3Cr-3AI-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a generic hypersonic flight profile was evaluated experimentally and analytically. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failure. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled

  19. A study of upwind schemes on the laminar hypersonic heating predictions for the reusable space vehicle

    Science.gov (United States)

    Qu, Feng; Sun, Di; Zuo, Guang

    2018-06-01

    With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.

  20. Ramjet Nozzle Analysis for Transport Aircraft Configuration for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Raman Baidya

    2018-04-01

    Full Text Available For the past several decades, research dealing with hypersonic flight regimes has been restricted mainly to military applications. Hypersonic transportation could be a possible and affordable solution to travel in the medium term and there is renewed interest from several private organisations for commercial exploitation in this direction. Various combined cycle propulsion configurations have been proposed and the present paper deals with implications for the nozzle component of a ramjet configuration as part of one such combined cycle propulsion configuration. An investigation was undertaken for a method of turbine-based propulsion which enables the hypersonic vehicle to take off under its own power and propel the aircraft under different mission profiles into ramjet operational Mach regimes. The present study details an optimal method of ramjet exhaust expansion to produce sufficient thrust to propel the vehicle into altitudes and Mach regimes where scramjet operation can be initiated. This aspect includes a Computational Fluid Dynamics (CFD-based geometric study to determine the optimal configuration to provide the best thrust values. The CFD parametric analysis investigated three candidate nozzles and indicated that the dual bell nozzle design produced the highest thrust values when compared to other nozzle geometries. The altitude adaptation study also validated the effectiveness of the nozzle thrust at various altitudes without compromising its thrust-producing capabilities. Computational data were validated against published experimental data, which indicated that the computed values correlated well with the experimental data.

  1. Dissociation–recombination models in hypersonic boundary layer O2/O flows

    International Nuclear Information System (INIS)

    Armenise, I.; Esposito, F.

    2012-01-01

    Graphical abstract: In hypersonic boundary layers, in which the temperature strongly decreases from the edge to the body surface, the coupling of transport phenomena and chemical kinetics causes a strong vibrational non-equilibrium, as demonstrated by the vibrational distributions and the pseudo-first-order dissociation constants. In this work a pure O2/O mixture has been investigated to evaluate the role of new multiquanta atom-molecule collision rate coefficients, calculated by means of a quasiclassical trajectory (QCT) method. Highlights: ► We evaluate the vibrational non-equilibrium in oxygen hypersonic boundary layer flows. ► We adopt a state-to-state vibrational kinetics model. ► We use updated quasicassical trajectory atom–molecule collision rate coefficients. ► Multiquanta transitions and direct dissociation–recombination are important. ► We calculate the heat flux through the boundary layer. - Abstract: A recent complete set of oxygen atom–molecule collision rate coefficients, calculated by means of a quasiclassical trajectory (QCT) method, has been used to evaluate the vibrational non-equilibrium in hypersonic boundary layer flows. The importance of multiquanta transitions has been demonstrated. Moreover a new ‘direct dissociation–recombination’ (DDR) model has been adopted and the corresponding results differ from the ones obtained with the ladder-climbing (LC) model, characterized by the extrapolation of bound-to-bound transitions to the continuum. The heat flux through the boundary layer and at the surface has been calculated too.

  2. RTO WG 10: Test Cases for CFD Validation of Hypersonic Flight

    National Research Council Canada - National Science Library

    Knight, Doyle

    2006-01-01

    .... An overview of Subgroup 3 (SG 3) is presented in this paper. The SG 3 participants defined six topical areas for which validation of CFD methodologies was deemed essential for effective analysis and design of propelled hypersonic vehicles...

  3. Technologies for propelled hypersonic flight: Technologies des vols hypersoniques propulsés

    National Research Council Canada - National Science Library

    2006-01-01

    These reports document the results of the Applied Vehicle Technology Panel Working Group 10, Subgroups 1, 2, and 3, who aimed to address selected critical issues related to propelled hypersonic flight...

  4. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    Science.gov (United States)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  5. Observer-based linear parameter varying H∞ tracking control for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Yiqing Huang

    2016-11-01

    Full Text Available This article aims to develop observer-based linear parameter varying output feedback H∞ tracking controller for hypersonic vehicles. Due to the complexity of an original nonlinear model of the hypersonic vehicle dynamics, a slow–fast loop linear parameter varying polytopic model is introduced for system stability analysis and controller design. Then, a state observer is developed by linear parameter varying technique in order to estimate the unmeasured attitude angular for slow loop system. Also, based on the designed linear parameter varying state observer, a kind of attitude tracking controller is presented to reduce tracking errors for all bounded reference attitude angular inputs. The closed-loop linear parameter varying system is proved to be quadratically stable by Lypapunov function technique. Finally, simulation results show that the developed linear parameter varying H∞ controller has good tracking capability for reference commands.

  6. Effects of towed-decoys against an anti-air missile with a monopulse seeker

    OpenAIRE

    Yeh, Jia-Hsin

    1995-01-01

    This thesis evaluates the protection provided by towed decoys deployed by an aircraft during an engagement against an anti-air missile equipped with a monopulse seeker. The research emphasizes the use of passive decoys. Many of the operational parameters required before the deployment of towed-decoy are investigated, including the strength of reflection, the tether length, the direction of release, under different missile incoming directions. This thesis evaluated two reflection cases. One is...

  7. Influence of transverse reinforcement on perforation resistance of reinforced concrete slabs under hard missile impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    This paper describes the work conducted by the Canadian Nuclear Safety Commission (CNSC) related to the influence of transverse reinforcement on perforation capacity of reinforced concrete (RC) slabs under “hard” missile impact (impact with negligible missile deformations). The paper presents the results of three tests on reinforced concrete slabs conducted at VTT Technical Research Centre (Finland), along with the numerical simulations as well as a discussion of the current code provisions related to impactive loading. Transverse reinforcement is widely used for improving the shear and punching strength of concrete structures. However, the effect of this reinforcement on the perforation resistance under localized missile impact is still unclear. The goal of this paper is to fill the gap in the current literature related to this topic. Based on similar tests designed by the authors with missile velocity below perforation velocity, it was expected that transverse reinforcement would improve the perforation resistance. Three slabs were tested under almost identical conditions with the only difference being the transverse reinforcement. One slab was designed without transverse reinforcement, the second one with the transverse reinforcement in form of conventional stirrups with hooks and the third one with the transverse reinforcement in form of T-headed bars. Although the transverse reinforcement reduced the overall damage of the slabs (the rear face scabbing), the conclusion from the tests is that the transverse reinforcement does not have important influence on perforation capacity of concrete slabs under rigid missile impact. The slab with T-headed bars presented a slight improvement compared to the baseline specimen without transverse reinforcement. The slab with conventional stirrups presented slightly lower perforation capacity (higher residual missile velocity) than the slab without transverse reinforcement. In conclusion, the performed tests show slightly

  8. Shock stand off Calculations for Hemisphere in Hypersonic Flows

    International Nuclear Information System (INIS)

    Hanif, M.; Ghaffar, A.; Bilal, S.; Zahir, S.; Khan, M.A.

    2004-01-01

    The shape and location of shock has been studied by solving the axi symmetric Navier Stokes Equations for a hemisphere in hypersonic flow. The effect of Mach number on shock stand-off distance has been investigated. It is found that the shock location varies with Mach number and the free stream conditions at a given nose radius. (author)

  9. Photometric Properties of Soils at the Mars Phoenix Landing Site: Preliminary Analysis from CRISM EPF Data

    Science.gov (United States)

    Cull, S. C.; Arvidson, R. E.; Seelos, F.; Wolff, M. J.

    2010-03-01

    Using data from CRISM's Emission Phase Function observations, we attempt to constrain Phoenix soil scattering properties, including soil grain size, single-scattering albedo, and surface phase function.

  10. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    Science.gov (United States)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  11. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan; Cheng, Wan; Luo, Xisheng; Qin, Fenghua

    2013-01-01

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model

  12. Improved-Delayed-Detached-Eddy Simulation of cavity-induced transition in hypersonic boundary layer

    International Nuclear Information System (INIS)

    Xiao, Lianghua; Xiao, Zhixiang; Duan, Zhiwei; Fu, Song

    2015-01-01

    Highlights: • This work is about hypersonic cavity-induced transition with IDDES approach. • The length-to-width-to-depth ratio of the cavity is 19.9:3.57:1 at AoA −10° and −15°. • Flow remains laminar at −10°, transition occurs at −15° and cavity changed from open to close type. • Streamwise vortices, impingement shock, traveling shocks and exit shock are observed. • Breakdown of these vortices triggering rapid flow transition. - Abstract: Hypersonic flow transition from laminar to turbulent due to the surface irregularities, like local cavities, can greatly affect the surface heating and skin friction. In this work, the hypersonic flows over a three-dimensional rectangular cavity with length-to-width-to-depth ratio, L:W:D, of 19.9:3.57:1 at two angles of attack (AoA) were numerically studied with Improved-Delayed-Detached-Eddy Simulation (IDDES) method to highlight the mechanism of transition triggered by the cavity. The present approach was firstly applied to the transonic flow over M219 rectangular cavity. The results, including the fluctuating pressure and frequency, agreed with experiment well. In the hypersonic case at Mach number about 9.6 the cavity is seen as “open” at AoA of −10° but “closed” at AoA of −15° unconventional to the two-dimensional cavity case where the flow always exhibits closed cavity feature when the length-to-depth ratio L/D is larger than 14. For the open cavity flow, the shear layer is basically steady and the flow maintains laminar. For the closed cavity case, the external flow goes into the cavity and impinges on the bottom floor. High intensity streamwise vortices, impingement shock and exit shock are observed causing breakdown of these vortices triggering rapid flow transition

  13. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch...

    Science.gov (United States)

    2010-01-01

    ... Vehicles (including cruise missile systems, target drones and reconnaissance drones) End-Uses. 744.3... missile systems, target drones and reconnaissance drones) End-Uses. (a) General prohibition. In addition..., anywhere in the world except by governmental programs for nuclear weapons delivery of NPT Nuclear Weapons...

  14. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan

    2013-12-17

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  15. The Hypersonic Revolution. Case Studies in the History of Hypersonic Technology. Volume III: The Quest for the Orbital Jet: The National Aero-Space Plane Program (1983-1995)

    National Research Council Canada - National Science Library

    Schwelkart, Larry

    1998-01-01

    ... that could fly fast enough to attain orbital velocity, is considered a success by many of the participants.1 They contend that by "showing up," NASP survived long enough to produce what many deem critical technologies for hypersonic flight...

  16. CRED REA Coral Population Parameters at Howland, Phoenix Islands, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Belt transects along 2 consecutively-placed, 25m transect lines were surveyed as part of Rapid Ecological Assessments conducted at 4 sites at Howland, Phoenix...

  17. Hypersonic Transition and Turbulence with Non-Equilibrium Thermochemistry

    Science.gov (United States)

    2009-08-31

    from the literamre. In summary, this AFOSR MURI project has resulted in the production of new knowledge that should significantly improve the accuracy...behavior. The accumulated knowledge and understanding are expected to help development of better dissipation models for compressible flow fields. 2.23.2...8ffipüC<Pressurt Modieung suggestions from physics study <T acautttc Hypersonic Mach numbers Supersonic Mach numbers * skier * *a Subsonic

  18. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    Science.gov (United States)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  19. Salvage radiotherapy for patients with P.S.A. relapse after radical prostatectomy: comparisons among Astro and Phoenix biochemical failure definitions

    International Nuclear Information System (INIS)

    Quero, L.; Hennequin, V.; Maylin, C.; Hennequin, C.; Ravery, V.; Mongiat-Artus, P.; Desgrandchamps, F.

    2009-01-01

    Purpose Study about the efficacy of salvage radiotherapy (R.T.), in terms of biochemical disease free survival (b.D.F.S.), according to Astro and Phoenix (nadir + 2) definitions, for persistent or rising P.S.A. after radical prostatectomy. Patients and methods Retrospective analysis of 59 patients who underwent R.T. between 1990 and 2003 for P.S.A. recurrence after radical prostatectomy. Patients received a median of 66 Gy to the prostate bed with 3D or 2D R.T.. The main end point was b.D.F.S. according to Astro and Phoenix (nadir + 2) definitions. Different criterion sets were analysed to calculate b.D.F.S. and pretreatment factors that might predict biochemical relapse were sought for each. Results After a 38-month median follow-up, the 3-year b.D.F.S. rates were: 60 and 72% for Astro and Phoenix (nadir + 2 ng/ml) definitions respectively. According to univariate analysis, pre-R.T. P.S.A. = 1 ng/ml and seminal vesicle involvement were associated with biochemical relapse. Multivariate analysis retained only pre-R.T. P.S.A. = 1 ng/ml as an independent predictor of biochemical relapse for the two definitions. Conclusion Salvage R.T. is an effective treatment after radical prostatectomy according to Astro or Phoenix definitions. Only pre-R.T. P.S.A. = 1 ng/ml predicted relapse. (authors)

  20. Multiple-step fault estimation for interval type-II T-S fuzzy system of hypersonic vehicle with time-varying elevator faults

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-03-01

    Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.

  1. Development of System Architecture to Investigate the Impact of Integrated Air and Missile Defense in a Distributed Lethality Environment

    Science.gov (United States)

    2017-12-01

    SYSTEM ARCHITECTURE TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT by Justin K. Davis...TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Justin K...ARCHITECTURE TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT Justin K. Davis Lieutenant

  2. Adaptive fuzzy tracking control for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    Directory of Open Access Journals (Sweden)

    Peng Fei Wang

    2016-10-01

    Full Text Available The design of an adaptive fuzzy tracking control for a flexible air-breathing hypersonic vehicle with actuator constraints is discussed. Based on functional decomposition methodology, velocity and altitude controllers are designed. Fuzzy logic systems are applied to approximate the lumped uncertainty of each subsystem of air-breathing hypersonic vehicle model. Every controllers contain only one adaptive parameter that needs to be updated online with a minimal-learning-parameter scheme. The back-stepping design is not demanded by converting the altitude subsystem into the normal output-feedback formulation, which predigests the design of a controller. The special contribution is that novel auxiliary systems are developed to compensate both the tracking errors and desired control laws, based on which the explored controller can still provide effective tracking of velocity and altitude commands when the inputs are saturated. Finally, reference trajectory tracking simulation shows the effectiveness of the proposed method in its application to air-breathing hypersonic vehicle control.

  3. Efficient adaptive constrained control with time-varying predefined performance for a hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Caisheng Wei

    2017-03-01

    Full Text Available A novel low-complexity adaptive control method, capable of guaranteeing the transient and steady-state tracking performance in the presence of unknown nonlinearities and actuator saturation, is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. In order to attenuate the negative effects of classical predefined performance function for unknown initial tracking errors, a modified predefined performance function with time-varying design parameters is presented. Under the newly developed predefined performance function, two novel adaptive controllers with low-complexity computation are proposed for velocity and altitude subsystems of the hypersonic flight vehicle, respectively. Wherein, different from neural network-based approximation, a least square support vector machine with only two design parameters is utilized to approximate the unknown hypersonic dynamics. And the relevant ideal weights are obtained by solving a linear system without resorting to specialized optimization algorithms. Based on the approximation by least square support vector machine, only two adaptive scalars are required to be updated online in the parameter projection method. Besides, a new finite-time-convergent differentiator, with a quite simple structure, is proposed to estimate the unknown generated state variables in the newly established normal output-feedback formulation of altitude subsystem. Moreover, it is also employed to obtain accurate estimations for the derivatives of virtual controllers in a recursive design. This avoids the inherent drawback of backstepping — “explosion of terms” and makes the proposed control method achievable for the hypersonic flight vehicle. Further, the compensation design is employed when the saturations of the actuator occur. Finally, the numerical simulations validate the efficiency of the proposed finite-time-convergent differentiator and control method.

  4. The Air Campaign vs. Ballistic Missiles: Seeking the Strategic Win in the 21st Century

    Science.gov (United States)

    2017-06-01

    combined knowledge of air power history provided ample fodder from which to pick and develop a topic of great interest to me. I owe a special debt...Scud missile campaign, the Great Scud Chase. The cases show that while both Germany and Iraq’s missile campaigns failed to win their wars for them...68 Illustrations Table 1 Summarized Comparison

  5. High-speed Imaging of Global Surface Temperature Distributions on Hypersonic Ballistic-Range Projectiles

    Science.gov (United States)

    Wilder, Michael C.; Reda, Daniel C.

    2004-01-01

    The NASA-Ames ballistic range provides a unique capability for aerothermodynamic testing of configurations in hypersonic, real-gas, free-flight environments. The facility can closely simulate conditions at any point along practically any trajectory of interest experienced by a spacecraft entering an atmosphere. Sub-scale models of blunt atmospheric entry vehicles are accelerated by a two-stage light-gas gun to speeds as high as 20 times the speed of sound to fly ballistic trajectories through an 24 m long vacuum-rated test section. The test-section pressure (effective altitude), the launch velocity of the model (flight Mach number), and the test-section working gas (planetary atmosphere) are independently variable. The model travels at hypersonic speeds through a quiescent test gas, creating a strong bow-shock wave and real-gas effects that closely match conditions achieved during actual atmospheric entry. The challenge with ballistic range experiments is to obtain quantitative surface measurements from a model traveling at hypersonic speeds. The models are relatively small (less than 3.8 cm in diameter), which limits the spatial resolution possible with surface mounted sensors. Furthermore, since the model is in flight, surface-mounted sensors require some form of on-board telemetry, which must survive the massive acceleration loads experienced during launch (up to 500,000 gravities). Finally, the model and any on-board instrumentation will be destroyed at the terminal wall of the range. For these reasons, optical measurement techniques are the most practical means of acquiring data. High-speed thermal imaging has been employed in the Ames ballistic range to measure global surface temperature distributions and to visualize the onset of transition to turbulent-flow on the forward regions of hypersonic blunt bodies. Both visible wavelength and infrared high-speed cameras are in use. The visible wavelength cameras are intensified CCD imagers capable of integration

  6. Space missiles start-up impact on environment and dermatosis distribution for population residing areas adjacent to the 'Baikanur' space spot and to that of worked out stages of missile carriers fall: development and immunoprophylaxis measures

    International Nuclear Information System (INIS)

    Kozlovskij, V.A.; Mukhamedzhanov, Eh.K.

    2005-01-01

    This paper presents review of literary data of missile start-ups impact on environment and human health, condition of dermatological diseases in the regions adjacent to 'Baikanur' missile-space complex. It is reported that in-depth study upon assessment of dermatosis distribution for adults and children, development mechanisms of a number dermatological diseases under effect of excess ultraviolet radiation condition and that of asymmetrical dimethylhydrazine (heptyl) in the regions of possible impact of missile carrier's start-ups on dermatosis development epidemic process will be carried out. The study results will be compared with assessment of general level of population life within the last 20 years and adequacy of medicine, including dermatological care for the population. (author)

  7. Nonlinear Constrained Adaptive Backstepping Tracking Control for a Hypersonic Vehicle with Uncertainty

    Directory of Open Access Journals (Sweden)

    Qin Zou

    2015-01-01

    Full Text Available The control problem of a flexible hypersonic vehicle is presented, where input saturation and aerodynamic uncertainty are considered. A control-oriented model including aerodynamic uncertainty is derived for simple controller design due to the nonlinearity and complexity of hypersonic vehicle model. Then it is separated into velocity subsystem and altitude subsystem. On the basis of the integration of robust adaptive control and backstepping technique, respective controller is designed for each subsystem, where an auxiliary signal provided by an additional dynamic system is used to compensate for the control saturation effect. Then to deal with the “explosion of terms” problem inherent in backstepping control, a novel first-order filter is proposed. Simulation results are included to demonstrate the effectiveness of the adaptive backstepping control scheme.

  8. Modelling of Influence of Hypersonic Conditions on Gyroscopic Inertial Navigation Sensor Suspension

    Directory of Open Access Journals (Sweden)

    Korobiichuk Igor

    2017-06-01

    Full Text Available The upcoming hypersonic technologies pose a difficult task for air navigation systems. The article presents a designed model of elastic interaction of penetrating acoustic radiation with flat isotropic suspension elements of an inertial navigation sensor in the operational conditions of hypersonic flight. It has been shown that the acoustic transparency effect in the form of a spatial-frequency resonance becomes possible with simultaneous manifestation of the wave coincidence condition in the acoustic field and equality of the natural oscillation frequency of a finite-size plate and a forced oscillation frequency of an infinite plate. The effect can lead to additional measurement errors of the navigation system. Using the model, the worst and best case suspension oscillation frequencies can be determined, which will help during the design of a navigation system.

  9. Cosmic radiation exposure of future hypersonic flight missions

    International Nuclear Information System (INIS)

    Koops, L.

    2017-01-01

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, air crews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. (author)

  10. Parametric Study of Cantilever Plates Exposed to Supersonic and Hypersonic Flows

    Science.gov (United States)

    Sri Harsha, A.; Rizwan, M.; Kuldeep, S.; Giridhara Prasad, A.; Akhil, J.; Nagaraja, S. R.

    2017-08-01

    Analysis of hypersonic flows associated with re-entry vehicles has gained a lot of significance due to the advancements in Aerospace Engineering. An area that is studied extensively by researchers is the simultaneous reduction aerodynamic drag and aero heating in re-entry vehicles. Out of the many strategies being studied, the use of aerospikes at the stagnation point of the vehicle is found to give favourable results. The structural stability of the aerospike becomes important as it is exposed to very high pressures and temperatures. Keeping this in view, the deflection and vibration of an inclined cantilever plate in hypersonic flow is carried out using ANSYS. Steady state pressure distribution obtained from Fluent is applied as load to the transient structural module for analysis. After due validation of the methods, the effects of parameters like flow Mach number, plate inclination and plate thickness on the deflection and vibration are studied.

  11. Acquisition: Acquisition of Targets at the Missile Defense Agency

    National Research Council Canada - National Science Library

    Ugone, Mary L; Meling, John E; James, Harold C; Haynes, Christine L; Heller, Brad M; Pomietto, Kenneth M; Bobbio, Jaime; Chang, Bill; Pugh, Jacqueline

    2005-01-01

    .... This audit was performed in response to allegations made to the DoD Hotline in March 2003. This report addresses 10 allegations about the effectiveness of the process that the Missile Defense Agency used to manage and acquire targets...

  12. THE WHITE SANDS MISSILE RANGE PULSED REACTOR FACILITY, MAY 1963

    Energy Technology Data Exchange (ETDEWEB)

    Long, Robert L.; Boor, R. A.; Cole, W. M.; Elder, G. E.

    1963-05-15

    A brief statement of the mission of the White Sands Missile Range Nuclear Effects Laboratory is given. The new Nuclear Effects Laboratory Facility is described. This facility consists of two buildings-a laboratory and a reactor building. The White Sands Missile Range bare critical assembly, designated as the MoLLY-G, is described. The MoLLY-G, an unreflected, unmoderated right circular cylinder of uranium-molybdenum alloy designed for pulsed operation, will have a maximum burst capability of approximately 2 x 10/sup 17/ fissions with a burst width of 50 microseconds. The reactor construction and operating procedures are described. As designed, the MoLLY-G will provide an intense source of pulsed neutron and gamma radiation for a great variety of experimental and test arrangements. (auth)

  13. Missiles for Asia The Need for Operational Analysis of U.S. Theater Ballistic Missiles in the Pacific

    Science.gov (United States)

    2016-01-01

    durability of the Intermediate-Range Nuclear Forces Treaty is in doubt. • China’s rapid military modernization could threaten U.S. forces. • Theater...conventional land-based theater ballistic missiles (TBMs) could add to the U.S. portfolio of strike capabilities. In particular, the U.S. Army should ana- lyze...the potential military value of TBMs in the Pacific and whether they might plausibly help the U.S. offset China’s military modernization . TBMs could

  14. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    Science.gov (United States)

    2016-04-05

    Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress Ronald O’Rourke Specialist in Naval...Affairs April 5, 2016 Congressional Research Service 7-5700 www.crs.gov R41129 Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine...1,091.1 million in research and development funding for the Ohio replacement program (ORP), a program to design and build a new class of 12 ballistic

  15. Justification of Estimates for Fiscal Year 1984 Submitted to Congress January 1983: Missile Procurement.

    Science.gov (United States)

    1983-01-01

    initial procurement of 224 missiles (RDT&E PE 64314F, 27163F) STINGER - STINOER is a man-portable, shoulder fired , anti-aircraft missile system for...864 and will consist of a prefabricated metal wall and roof panels, steel framing, concrete floor (reinforoed/unreinforced), blast walls, monorail ...HVAC, fire protection system and normal facilities required of a building of this nature/function. Building will be designed to include energy

  16. Application of supersonic linear theory and hypersonic impact methods to three nonslender hypersonic airplane concepts at Mach numbers from 1.10 to 2.86

    Science.gov (United States)

    Pittman, J. L.

    1979-01-01

    Aerodynamic predictions from supersonic linear theory and hypersonic impact theory were compared with experimental data for three hypersonic research airplane concepts over a Mach number range from 1.10 to 2.86. The linear theory gave good lift prediction and fair to good pitching-moment prediction over the Mach number (M) range. The tangent-cone theory predictions were good for lift and fair to good for pitching moment for M more than or equal to 2.0. The combined tangent-cone theory predictions were good for lift and fair to good for pitching moment for M more than or equal to 2.0. The combined tangent-cone/tangent-wedge method gave the least accurate prediction of lift and pitching moment. The zero-lift drag was overestimated, especially for M less than 2.0. The linear theory drag prediction was generally poor, with areas of good agreement only for M less than or equal to 1.2. For M more than or equal to 2.), the tangent-cone method predicted the zero-lift drag most accurately.

  17. Computational Tool for Coupled Simulation of Nonequilibrium Hypersonic Flows with Ablation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this SBIR project is to develop a predictive computational tool for the aerothermal environment around ablation-cooled hypersonic atmospheric entry...

  18. The ecological importance of mixed-severity fires: Nature's phoenix [Book Review

    Science.gov (United States)

    Carolyn H. Sieg

    2016-01-01

    The stated goal of a recent book, The Ecological Importance of Mixed-Severity Fires: Nature’s Phoenix, edited by Dominick A. DellaSala and Chad T. Hansen, is to provide a global reference on the benefits of mixed- and high-severity fires. Note that the goal is not to provide an objective reference on the ecological aspects of mixed- and high-severity fires. Rather, the...

  19. Integrating Technologies to Protect the Home Front against Ballistic Threats and Cruise Missiles

    OpenAIRE

    Yossi Arazi; Gal Perel

    2013-01-01

    This article discusses active protection in response to the rocket threat to Israel’s home front. The defense establishment anticipates that in an allout war, the home front would be attacked for about thirty days, and that every day there would be about one thousand rocket and missile hits that would cause thousands of casualties as well as damage to infrastructures and strategic sites. Israel has an active protection system with five layers of interceptor missiles, and in cooperation with t...

  20. Assessment of Turbulence-Chemistry Interactions in Missile Exhaust Plume Signature Analysis

    National Research Council Canada - National Science Library

    Calhoon, W

    2002-01-01

    ... components and missile defense systems. Current engineering level models neglect turbulence chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...