WorldWideScience

Sample records for phev bi-directional charger

  1. PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-03-01

    More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term

  2. Bi-directional charger for swiss2G - Annual report; Bi-directional charger for swiss2G - Jahresbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, M.; Baumann, P.

    2010-11-15

    This short annual report for 2010 for the Swiss Federal Office of Energy (SFOE) takes a look at a bi-directional charger that can be used in intelligent 'Smart Grid' applications. The idea is based on being able to use electric vehicles as a source of electricity to help meet peak demand for mains electricity. The swiss2G project aims to produce an electric car battery-charger that also functions as an inverter to convert the car's DC battery voltage to mains electricity. The project was started in September 2010. The report describes the aims of the project and reports on initial work done in the areas of safety, switching electronics and AC/DC conversion. National and international co-operation is noted and prospects for further work are discussed.

  3. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  4. Anticipating PHEV Energy Impacts in California

    OpenAIRE

    Axsen, John; Kurani, Kenneth S.

    2009-01-01

    To explore the potential energy impacts of widespread PHEV use, an innovative, three-part survey instrument collected data from 877 new vehicle buyers in California. This analysis combines all the available information from each respondent—driving, recharge potential, and PHEV design priorities—to estimate the energy impacts of the respondents’ existing travel and understandings of PHEVs under a variety of recharging scenarios. Results suggest that the use of PHEV vehicles could halve g...

  5. Efficiency Test Method for Electric Vehicle Chargers

    DEFF Research Database (Denmark)

    Kieldsen, Andreas; Thingvad, Andreas; Martinenas, Sergejus

    2016-01-01

    This paper investigates different methods for measuring the charger efficiency of mass produced electric vehicles (EVs), in order to compare the different models. The consumers have low attention to the loss in the charger though the impact on the driving cost is high. It is not a high priority...... different vehicles. A unified method for testing the efficiency of the charger in EVs, without direct access to the component, is presented. The method is validated through extensive tests of the models Renault Zoe, Nissan LEAF and Peugeot iOn. The results show a loss between 15 % and 40 %, which is far...

  6. Grid regulation services for energy storage devices based on grid frequency

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  7. Grid regulation services for energy storage devices based on grid frequency

    Science.gov (United States)

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  8. PHEV Market Introduction Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Adrienne M [ORNL; Sikes, Karen R [ORNL

    2009-03-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately forty representatives from various stakeholder organizations. The event took place at the Hotel Helix in Washington, D.C. on December 1-2, 2008. The purpose of this workshop was to follow-up last year s PHEV Value Proposition Study, which showed that indeed, a viable and even thriving market for these vehicles can exist by the year 2030. This workshop aimed to identify immediate action items that need to be undertaken to achieve a successful market introduction and ensuing large market share of PHEVs in the U.S. automotive fleet.

  9. Game-theoretic control of PHEV charging with power flow analysis

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-03-01

    Full Text Available Due to an ever-increasing market penetration of plug-in hybrid electric vehicles (PHEVs, the charging demand is expected to become a main determinant of the load in future distribution systems. In this paper, we investigate the problem of controlling in-home charging of PHEVs to accomplish peak load shifting while maximizing the revenue of the distribution service provider (DSP and PHEV owners. A leader-follower game model is proposed to characterize the preference and revenue expectation of PHEV owners and DSP, respectively. The follower (PHEV owner decides when to start charging based on the pricing schedule provided by the leader (DSP. The DSP can incentivize the charging of PHEV owners to avoid system peak load. The costs associated with power distribution, line loss, and voltage regulation are incorporated in the game model via power flow analysis. Based on a linear approximation of the power flow equations, the solution of sub-game perfect Nash equilibrium (SPNE is obtained. A case study is performed based on the IEEE 13-bus test feeder and realistic PHEV charging statistics, and the results demonstrate that our proposed PHEV charging control scheme can significantly improve the power quality in distribution systems by reducing the peak load and voltage fluctuations.

  10. 21 CFR 870.3670 - Pacemaker charger.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker charger. 870.3670 Section 870.3670 Food... DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3670 Pacemaker charger. (a) Identification. A pacemaker charger is a device used transcutaneously to recharge the batteries of a rechargeable...

  11. Ferroresonant Flux-Coupled Battery Charger

    Science.gov (United States)

    Mclyman, C. W.

    1986-01-01

    Portable battery charger operates at about 20 kHz to take advantage of relatively low weight and low acoustical noise of ferroresonant circuits operating in this frequency range. Charger split into stationary unit connected to powerline and mobile unit connected to battery or other load. Power transferred to mobile unit by magnetic coupling between mating transformer halves. Advantage where sparking at electrical connection might pose explosion hazard or where operator disabled and cannot manipulate plug into wall outlet. Likely applications for charger include wheelchairs and robots.

  12. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing [Lamar University; Dong, Jing [Iowa State University; Lin, Zhenhong [ORNL

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  13. On electric vehicle battery charger modeling

    OpenAIRE

    Sainz Sapera, Luis; Mesas García, Juan José; Balcells Sendra, Josep

    2011-01-01

    The increase of electric vehicle (EV) battery chargers connected to electric networks could lead to future harmonic problems in power systems. These loads are nonlinear devices that inject harmonic currents and pollute network voltages. Thus, battery charger modeling must be studied in detail to determine their harmonic emissions and prevent future problems. This paper investigates EV battery charger behavior, analyzes its equivalent circuit and reports a model for each ...

  14. Energy Optimal Control Strategy of PHEV Based on PMP Algorithm

    Directory of Open Access Journals (Sweden)

    Tiezhou Wu

    2017-01-01

    Full Text Available Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV, from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC, which is hybrid energy storage system (Li-SC HESS, working together with internal combustion engine (ICE to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.

  15. Impact of PHEVs Penetration on Ontario’s Electricity Grid and Environmental Considerations

    Directory of Open Access Journals (Sweden)

    Lena Ahmadi

    2012-11-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs have a large potential to reduce greenhouse gases emissions and increase fuel economy and fuel flexibility. PHEVs are propelled by the energy from both gasoline and electric power sources. Penetration of PHEVs into the automobile market affects the electrical grid through an increase in electricity demand. This paper studies effects of the wide spread adoption of PHEVs on peak and base load demands in Ontario, Canada. Long-term forecasting models of peak and base load demands and the number of light-duty vehicles sold were developed. To create proper forecasting models, both linear regression (LR and non-linear regression (NLR techniques were employed, considering different ranges in the demographic, climate and economic variables. The results from the LR and NLR models were compared and the most accurate one was selected. Furthermore, forecasting the effects of PHEVs penetration is done through consideration of various scenarios of penetration levels, such as mild, normal and aggressive ones. Finally, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated for electricity production planning purposes.

  16. Optimization of PHEV Power Split Gear Ratio to Minimize Fuel Consumption and Operation Cost

    Science.gov (United States)

    Li, Yanhe

    A Plug-in Hybrid Electric Vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery pack. The battery pack can be charged by plugging the vehicle to the electric grid and from using excess engine power. The research activity performed in this thesis focused on the development of an innovative optimization approach of PHEV Power Split Device (PSD) gear ratio with the aim to minimize the vehicle operation costs. Three research activity lines have been followed: • Activity 1: The PHEV control strategy optimization by using the Dynamic Programming (DP) and the development of PHEV rule-based control strategy based on the DP results. • Activity 2: The PHEV rule-based control strategy parameter optimization by using the Non-dominated Sorting Genetic Algorithm (NSGA-II). • Activity 3: The comprehensive analysis of the single mode PHEV architecture to offer the innovative approach to optimize the PHEV PSD gear ratio.

  17. Optimal control strategy design for extending all-electric driving capability of plug-in hybrid electric vehicles (PHEVs)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, S.S [Concordia Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering, P.D Ziogas Power Electronics Laboratory

    2007-07-01

    The high voltage energy storage system in plug-in hybrid electric vehicles (PHEVs) is usually a rechargeable type that service a dual purpose, notably to supplement the power delivered by the internal combustion engine, and to provide partial propulsion energy from an off-board source of electricity. The energy storage devices in electric vehicles typically improve vehicle efficiency through engine downsizing and by recapturing braking energy. However, since PHEVs have the ability to recharge their energy storage systems directly from the power grid, the periods of all-electric operation can be extended, thereby reducing the dependence on the internal combustion engine. This is particularly useful in city driving conditions. Developers of PHEV technology are faced with the challenge of choosing the appropriate energy storage battery in order to improve the all-electric drive range. In this study, control strategies were modeled for specific driving load conditions using the Advanced Vehicle Simulator (ADVISOR) software. This paper presented specific control algorithms for PHEV operation for various city driving loads. The optimal design strategy considered the improvement of critical energy storage parameters, overall drive train efficiency, and vehicle performance characteristics. Future trends in the design and development of PHEV drive trains were also presented. 13 figs.

  18. Current sensorless quick charger for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2011-01-01

    An efficient, simple and low cost quick charger based on the double-loop controller is proposed for the charging of lithium-ion (Li-ion) batteries. With positive and negative feedback of the battery voltage, charging profile similar to the constant current and constant voltage (CC-CV) charging strategy can be performed without actually sensing the charging current. The charging time can easily be shortened by raising the level of saturation in the primary voltage control loop. Experimental results are included to demonstrate the effectiveness of the battery charger. The charger could be a low cost and high performance replacement for existing Li-ion battery chargers.

  19. Techno-economic analysis and decision making for PHEV benefits to society, consumers, policymakers and automakers

    Science.gov (United States)

    Al-Alawi, Baha Mohammed

    Plug-in hybrid electric vehicles (PHEVs) are an emerging automotive technology that has the capability to reduce transportation environmental impacts, but at an increased production cost. PHEVs can draw and store energy from an electric grid and consequently show reductions in petroleum consumption, air emissions, ownership costs, and regulation compliance costs, and various other externalities. Decision makers in the policy, consumer, and industry spheres would like to understand the impact of HEV and PHEV technologies on the U.S. vehicle fleets, but to date, only the disciplinary characteristics of PHEVs been considered. The multidisciplinary tradeoffs between vehicle energy sources, policy requirements, market conditions, consumer preferences and technology improvements are not well understood. For example, the results of recent studies have posited the importance of PHEVs to the future US vehicle fleet. No studies have considered the value of PHEVs to automakers and policy makers as a tool for achieving US corporate average fuel economy (CAFE) standards which are planned to double by 2030. Previous studies have demonstrated the cost and benefit of PHEVs but there is no study that comprehensively accounts for the cost and benefits of PHEV to consumers. The diffusion rate of hybrid electric vehicle (HEV) and PHEV technology into the marketplace has been estimated by existing studies using various tools and scenarios, but results show wide variations between studies. There is no comprehensive modeling study that combines policy, consumers, society and automakers in the U.S. new vehicle sales cost and benefits analysis. The aim of this research is to build a potential framework that can simulate and optimize the benefits of PHEVs for a multiplicity of stakeholders. This dissertation describes the results of modeling that integrates the effects of PHEV market penetration on policy, consumer and economic spheres. A model of fleet fuel economy and CAFE compliance for

  20. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    Energy Technology Data Exchange (ETDEWEB)

    Sriramulu, Suresh [Tiax LLC, Lexington, MA (United States); Stringfellow, Richard [Tiax LLC, Lexington, MA (United States)

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  1. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    Science.gov (United States)

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  2. Nanoparticle electrostatic loss within corona needle charger during particle-charging process

    International Nuclear Information System (INIS)

    Huang Chenghsiung; Alonso, Manuel

    2011-01-01

    A numerical investigation has been carried out to examine the electrostatic loss of nanoparticles in a corona needle charger. Two-dimensional flow field, electric field, particle charge, and particle trajectory were simulated to obtain the electrostatic deposition loss at different conditions. Simulation of particle trajectories shows that the number of charges per particle during the charging process depends on the particle diameter, radial position from the symmetry axis, applied voltage, Reynolds number, and axial distance along the charger. The numerical results of nanoparticle electrostatic loss agreed fairly well with available experimental data. The results reveal that the electrostatic loss of nanoparticles increases with increasing applied voltage and electrical mobility of particles; and with decreasing particle diameter and Reynolds number. A regression equation closely fitted the obtained numerical results for different conditions. The equation is useful for directly calculating the electrostatic loss of nanoparticles in the corona needle charger during particle-charging process.

  3. The design of electric vehicle intelligent charger

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    As the situation of the lack of energy and environment pollution deteriorates rapidly, electric vehicle, a new type of traffic tool, is being researched worldwide. As the core components of electric vehicle, the battery and charger's performance play an important roles in the quality of electric vehicle. So the design of the Electric Vehicle Intelligent Charger based on language-C is designed in this paper. The hardware system is used to produce the input signals of Electric Vehicle Intelligent Charger. The software system adopts the language-C software as development environment. The design can accomplish the test of the parametric such as voltage-current and temperature.

  4. Electric charger for an accumulator or battery

    NARCIS (Netherlands)

    Robers, E.W.J.; Molenaar, B.A.M.; Smit, W.; Bech, L.P.; Bouman, C.

    2009-01-01

    The invention relates to an electric charger for an accumulator or a battery or the like, which is adapted for rapid charging during an on-period and comprises for this purpose control means for starting and ending the on-period. The charger is provided with a circuit for converting a supply voltage

  5. Are you smarter than your charger?

    Energy Technology Data Exchange (ETDEWEB)

    Beauregard-Pontinha, P. [Hydro-Quebec, Montreal, PQ (Canada)

    2010-07-01

    A SMART vehicle is considered smart because it communicates with the electric vehicle prior to and during charging to detect any anomalies that might affect safety or the equipment. This presentation discussed SMART chargers and how they could be used for load shifting, load shedding, ancillary services, and demand response. The presentation also discussed why SMART chargers should be used in order to help optimize grid performance; delay infrastructure investment; reduce stress on the grid; and allow for a more efficient use of resources. For electric vehicle uses, SMART chargers empower users to actively participate in energy conservation and keep the cost of electricity low. They provides information on users habits, thus providing the users with more options and greater control. SMART chargers can be remotely monitored and controlled, and can help users to monitor their energy consumption and carbon footprint. The presentation also discussed a SMART zone demonstration in Quebec composed of the following 4 subprojects: distribution management systems and volt/var optimization implementation; advanced metering infrastructure and load management; renewable energy; and electric vehicle infrastructure. The presentation concluded with a discussion of a new zero-emission vehicle partnership involving Hydro-Quebec and the implementation of a charging infrastructure. figs.

  6. A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV.

    Science.gov (United States)

    Adnan, Nadia; Nordin, Shahrina Mohammad; Rahman, Imran; Amini, Mohammad Hadi

    2017-08-01

    With the rising concern about climate change, there has been an increased public awareness that has resulted in new government policies to support scientific research for mitigating these problems. Malaysia is among the major energy-intense countries and is under an excessive burden to advance its energy efficiency and to also work towards the reduction of its carbon emission. Plug-in hybrid electric vehicles (PHEVs) have the potential to lessen the carbon emission and gasoline consumption in order to alleviate environmental problems. Most of the energy problems linked to the increasing transportation pollution are now being reduced with the solution of the adoption of PHEVs. PHEVs are seen as a solution to cut carbon emission, which prevents environmental damages. Furthermore, PHEVs' driving range and performance can be comparable to the other hybrid vehicles as well as the conventional IC engines that have gasoline and diesel tanks. Thus, many efforts are being initiated to promote the use of PHEVs as an innovative and affordable transportation system. In order to achieve making the consumers aware of the adoption of PHEVs, we used a model which is based on the extended theory of planned behavior (TPB). This review is based on the factors affecting the adoption of PHEVs among Malaysian consumers. The model takes into account the ten key features that influence the adoption of PHEVs, such as environmental concern, personal norm, attitude, vehicle ownership costs, driving range, charging time, intention, subjective norm, perceived behavioral control, and personal norm. All these constructs are drivers towards the adoption of PHEVs. These factors affect the relationship between the adoption of PHEVs and how consumers intend to protect the environment. This review is based on improving how the "attitude-action" gap is understood as it is an important element for further studies on PHEVs. The aim of the research is to come up with a framework that examines how to

  7. High Voltage Homemade Capacitor Charger for Plasma Focus System

    International Nuclear Information System (INIS)

    Abdul Halim Baijan; Azaman Ahmad; Rokiah Mohd Sabri; Siti Aiasah Hashim; Mohd Rizal Md Chulan; Wah, L.K.; Azhar Ahmad; Rosli Che Ros; Mohd Faiz Mohd Zin

    2015-01-01

    A high voltage capacitor charger has been designed and built to replace a high voltage charger type General Atomics CCDs Power Supply which was damaged. The fabrication design was using materials which were easily available in the local market. Among the main components of the high-voltage charger is a transformer for neon lights, variable transformer rated 0 - 240 V 1 KVA, and 240 V transformer isolator. The results of experiments that have been conducted shows that a homemade capacitor charger was able to charge high voltage capacitors up to the required voltage of which was 12 kV. However the time taken for charging is quite long, up to more than 6 minutes. (author)

  8. Advancing Transportation through Vehicle Electrification - PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  9. Integral inverter/battery charger for use in electric vehicles

    Science.gov (United States)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  10. The use of A123Systems technology in PHEV applications

    Energy Technology Data Exchange (ETDEWEB)

    Chu, A. [A123 Systems, Watertown, MA (United States)

    2007-07-01

    A123Systems is a leading plug-in hybrid electric vehicle (PHEV) conversion company that supplies Automotive Class Lithium Ion cells for the Saturn Vue and Chevy Volt PHEV development programs through its subsidiary Hymotion. This paper described the advantages in power, safety and service life of its batteries that use doped nanophosphate technology in transportation applications, including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs). A123's technology has the unique ability to use the same active materials for high power and high energy applications. In high power applications, the technology has very low impedance growth due to cycling or elevated temperature storage, thereby ensuring a consistent power capability over the lifetime of the battery. High-power combined with low impedance growth allows the batteries to be smaller and lighter with better price-performance. For PHEV applications that require more energy, A123's doped nanophosphate cells provide good energy density, while maintaining low cell impedance, thereby simplifying thermal management by minimizing waste heat production. The deep-discharge cycle life allows more of the battery's energy to be used, by widening the range of state-of-charge (SOC) during cycling. In addition, the technology offers better abuse tolerance which is important for large format applications.

  11. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  12. Understanding and managing the effects of battery charger and inverter aging

    International Nuclear Information System (INIS)

    Gunther, W.; Aggarwal, S.

    1992-01-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs

  13. Design of an onboard battery charger for an electric vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Heckford, Simon

    2001-07-01

    This report describes the design of an on-board battery charger for an electric car. There are already various battery charger units on the market. However, these are not specifically designed for this application, and consequently do not provide an ideal solution. Because these products are not specific to one application, and instead opt to cover a variety of briefs, they are not ideal. They also tend to be heavier and more expensive than if the charger was built specifically for one purpose. The main design considerations were that the charger should be compact and lightweight. It was also specified that the design should be able to operate using either the single-phase or three-phase AC supply. Before the design process for the battery charger could commence, it was necessary for the author to get an appreciation of power electronics, since he had no previous experience in the subject. The author focused his attention on areas of the subject most valuable to the project, including becoming familiar with the principle behind battery chargers. Once the required knowledge was obtained, the author could begin designing the charger. The majority of the design was actually undertaken using two software packages called MATLAB and Simulink, whilst also using the knowledge acquired. Regular discussions were had with the project team in order to ensure that the correct methodology was being used and a suitable design was duly developed. Possible further work was identified which could not be carried out within the time constraints of this project.

  14. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  15. Proceedings of the PHEV09 conference : plug-in hybrid and electric vehicles

    International Nuclear Information System (INIS)

    2009-01-01

    The commercialization of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) will require careful consideration of the electric grid's generation and distribution capacities as well as new developments in electric drives and other PHEV and EV technologies. A greater understanding of the policy initiatives needed to develop and promote the use of PHEVs and EVs is also needed in Canada. With 344 delegates, this conference provided a forum for the discussion of issues related to the current PHEV and EV market in Canada. The first day of the conference focused on emerging battery technologies, while the second and third days discussed PHEV and EV technologies, markets, policies and regulations. Presentations at the conference were divided into 18 sessions: (1) performance of batteries in extreme conditions; (2) grid integration; (3) customer perspectives; (4) public and private support programs for the Canadian EV industry; (5) grid-vehicle interface; (6) standards, regulations and safety issues now and in the foreseeable future; (7) an overview of key initiatives in Canada; (8) applications in defence and space; (9) international perspectives on market issues and supportive policies; (10) power management; (11) applications in northern and remote communities; (12) emerging business models to accelerate electric drive; (13) power management; (14) renewable and zero GHG energy opportunities; (15) human resources implications; (16) OEM perspectives; (17) OEM perspectives part 2; and (18) a closing plenary session. The conference featured 64 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs.

  16. Intelligent energy allocation strategy for PHEV charging station using gravitational search algorithm

    Science.gov (United States)

    Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.

    2014-10-01

    Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.

  17. Lithium Ion Battery (LIB) Charger: Spacesuit Battery Charger Design with 2-Fault Tolerance to Catastrophic Hazards

    Science.gov (United States)

    Darcy, Eric; Davies, Frank

    2009-01-01

    Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.

  18. Detecting and mitigating battery charger and inverter aging

    International Nuclear Information System (INIS)

    Gunther, W.E.; Lewis, R.; Subudhi, M.

    1988-08-01

    This report constitutes the second of the two-phase approach for assessing the safety and operational aspects of battery charger and inverter aging in nuclear power plants. This work, conducted by Brookhaven National Laboratory (BNL) under the auspices of the US NRC Nuclear Plant Aging Research (NPAR) Program, evaluated operating experience data, nuclear power plant maintenance practices, and plant design information to determine the impact of battery charger and inverter aging on safety, and the methods which should be used to detect aging degradation and mitigate its effects. A naturally aged inverter and battery charger were tested at BNL to evaluate the naturally aged condition, the effectiveness of condition monitoring techniques, and the practicality of implementing selected maintenance and monitoring recommendations. Temperature monitoring, component parameter measurements, and the periodic observation of critical circuit waveforms are viable methods for monitoring aging degradation. A maintenance program for battery chargers and inverters is recommended. As described in this report, the maintenance program incorporates inspection, monitoring, testing and repair activities which should be performed to detect and mitigate aging effects, and thereby assure the operational readiness of this important equipment throughout the plant's operating life. 32 refs., 43 figs., 19 tabs

  19. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  20. Intelligent energy management of optimally located renewable energy systems incorporating PHEV

    International Nuclear Information System (INIS)

    El-Zonkoly, Amany

    2014-01-01

    Highlights: • The algorithm optimally selects the number, locations and sizes of DGs. • Wind units, PV units, diesel units and PHEV parking lots are considered as DGs. • The algorithm determines the corresponding energy scheduling of resources. • The problem is formulated as an optimization problem solved using ABC. • The objective is to minimize the overall energy cost of the system. - Abstract: The recent interest in plug-in-hybrid electric vehicles (PHEV) results in the increase in the utilization of vehicles batteries for grid support. In addition, the integration of renewable energy systems (RES) into electricity grid is a promising technique for addressing the environmental concerns. This paper presents a multi-objective algorithm to optimally allocate a number of renewable energy systems including parking lots for PHEV in a distribution system. The proposed algorithm determines the number, locations and sizes of the RES and parking lots. In addition, a rule based expert system is used to find the corresponding energy scheduling of the system resources. The objective of the proposed algorithm is to minimize the overall energy cost of the system. The problem is formulated as an optimization problem which is solved using artificial bee colony (ABC) algorithm taking into consideration the power system and PHEV operational constraints. The proposed algorithm is applied to a 45-bus distribution network of Alexandria, Egypt. The test results indicate an improvement in the operational conditions of the system

  1. Charger 1: A New Facility for Z-Pinch Research

    Science.gov (United States)

    Taylor, Brian; Cassibry, Jason; Cortez, Ross; Doughty, Glen; Adams, Robert; DeCicco, Anthony

    2017-01-01

    Charger 1 is a multipurpose pulsed power laboratory located on Redstone Arsenal, with a focus on fusion propulsion relevant experiments involving testing z-pinch diodes, pulsed magnetic nozzle and other related physics experiments. UAH and its team of pulsed power researchers are investigating ways to increase and optimize fusion production from Charger 1. Currently the team has reached high-power testing. Due to the unique safety issues related to high power operations the UAH/MSFC team has slowed repair efforts to develop safety and operations protocols. The facility is expected to be operational by the time DZP 2017 convenes. Charger 1 began life as the Decade Module 2, an experimental prototype built to prove the Decade Quad pinch configuration. The system was donated to UAH by the Defense Threat Reduction Agency (DRTA) in 2012. For the past 5 years a UAH/MSFC/Boeing team has worked to refurbish, assemble and test the system. With completion of high power testing in summer 2017 Charger 1 will become operational for experimentation. Charger 1 utilizes a Marx Bank of 72 100-kV capacitors that are charged in parallel and discharged in series. The Marx output is compressed to a pulse width of approximately 200 ns via a pulse forming network of 32 coaxial stainless steel tubes using water as a dielectric. After pulse compression a set of SF6 switches are triggered, allowing the wave front to propagate through the output line to the load. Charger 1 is capable of storing 572-kJ of energy and time compressing discharge to less than 250 ns discharge time producing a discharge of about 1 TW of discharge with 1 MV and 1 MA peak voltage and current, respectively. This capability will be used to study energy yield scaling and physics from solid density target as applied to advanced propulsion research.

  2. QMX3.3 module-based on-board vehicle charger

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S. [Delta-Q Technologies, Burnaby, BC (Canada)

    2010-07-01

    Delta-Q is a tier one supplier to industrial electric vehicle manufacturers offering in-house product design and development as well as sales, marketing and customer service. This presentation discussed on-board chargers for use in electric vehicles. Electric vehicle chargers are needed due to their lower cost, lack of time for generational change, and long lifetime and safety requirements. The presentation discussed universal on-board charger requirements as well as final design requirements. Other topics that were addressed included common control; QMX prototypes; steps from prototype to production; and Delta-Q and tier one partnering. It was concluded that there is a complicated array of diverse requirements with multiple stakeholders and standards. figs.

  3. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  4. Ferroresonant flux coupled battery charger

    Science.gov (United States)

    McLyman, Colonel W. T. (Inventor)

    1987-01-01

    A battery charger for incorporation into an electric-powered vehicle is disclosed. The charger includes a ferroresonant voltage-regulating circuit for providing an output voltage proportional to the frequency of an input AC voltage. A high frequency converter converts a DC voltage supplied, for example, from a rectifier connected to a standard AC outlet, to a controlled frequency AC voltage which is supplied to the input of the ferroresonant circuit. The ferroresonant circuit includes an output, a saturable core transformer connected across the output, and a first linear inductor and a capacitor connected in series across the saturable core transformer and tuned to resonate at the third harmonic of the AC voltage from the high frequency converter. The ferroresonant circuit further includes a second linear inductor connected between the input of the ferroresonant circuit and the saturable core transformer. The output voltage from the ferroresonant circuit is rectified and applied across a pair of output terminals adapted to be connected to the battery to be charged. A feedback circuit compares the voltage across the output terminals with a reference voltage and controls the frequency of the AC voltage produced by the high frequency converter to maintain the voltage across the output terminals at a predetermined value. The second linear inductor provides a highly reactive load in the event of a fault across the output terminals to render the charger short-circuit proof.

  5. A field study of human factors and vehicle performance associated with PHEV adaptation

    International Nuclear Information System (INIS)

    Farhar, B.C.; Maksimovic, D.; Tomac, W.A.; Coburn, T.C.

    2016-01-01

    Smart-grid and electric-vehicle technologies are rapidly diffusing, yet important policy implications remain to be fully analyzed. This multi-year field study sought to fill part of this gap by exploring human adaptation to plug-in hybrid electric vehicle (PHEV) performance and vehicle charging in smart-grid environments. Homes were equipped with smart meters in a smart-grid experiment conducted by the local utility. Study households were organized by either standard or time-of-use electricity pricing, and randomly assigned to “managed” or “unmanaged” charging scenarios. Using a mixed-methods approach, study data were collected through vehicle data loggers, smart-plugs interviews, and questionnaires. The paper describes vehicle operations and performance; the ways in which households managed PHEV charging; and the manner in which they responded to smart-grid, smart-plug, and dashboard feedback. Findings indicate that households actively managed PHEV charging; however, they preferred flexible charging scenarios. Charging-management decisions were influenced by electricity-pricing. Online feedback on household- and vehicle-electricity consumption was generally ignored, but drivers responded to dashboard feedback as they drove. These results provide empirical bases for government and corporate policymakers to improve policy decisions relative to PHEV impacts on electricity loads, design of smart-grid feedback, and design of charging infrastructures. - Highlights: •Utility pricing is the most important factor in vehicle-charging management. •Web-based energy feedback systems are ineffective in changing energy behavior. •Time-of-use pricing motivates off-peak vehicle charging. •PHEV charging infrastructure should be Placed in commercial/Multifamily buildings. •Charging systems need to be as unobtrusive as possible, requiring little of people.

  6. An SCR inverter with an integral battery charger for electric vehicles

    Science.gov (United States)

    Thimmeach, D.

    1983-01-01

    The feasibility of incorporating an onboard battery charger into the inverter previously developed under a NASA contract is successfully demonstrated. The rated output power of the resulting isolated battery charger is 3.6 kW at 220 Vac with an 86 percent efficiency and a 95 percent power factor. Also achieved are improved inverter efficiency (from 90 to 93 percent at 15 kW motor shaft power), inverter peak power capability (from 26 to 34 kW), and reduced weight and volume of the combined inverter/charger package (47 kg, 49 x 44 x 24 cm). Some major conclusions are that using the inverter commutation circuitry to perform the battery charging function is advantageous, and that the input-commutated thyristor inverter has the potential to be an excellent inverter and battery charger for use in electric vehicle applications.

  7. Performance and cavitation characteristics of bi-directional hydrofoils

    Science.gov (United States)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2013-11-01

    Tidal turbines extract energy from flows which reverse direction. One way to address this bi-directionality in horizontal axis turbines that avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, is to design bi-directional blades which perform (equally) well in either flow direction. A large number of proposed hydrofoil designs were investigated using numerical simulations. Selected candidate foils were also tested (at various speeds and angles of attack) in the High-Speed Cavitation Tunnel (HICaT) at the University of New Hampshire. Lift and drag were measured using a force balance, and cavitation inception and desinence were recorded. Experimental and numerical results were compared, and the foils were compared to each other and to reference foils. Bi-directional hydrofoils may provide a feasible solution to the problem of reversing flow direction, when their performance and cavitation characteristics are comparable to those for unidirectional foils, and the penalty in decreased energy production is outweighed by the cost reduction due to lower complexity and respectively lower installation and maintenance costs.

  8. Double input converters for different voltage sources with isolated charger

    Directory of Open Access Journals (Sweden)

    Chalash Sattayarak

    2014-09-01

    Full Text Available This paper presents the double input converters for different voltage input sources with isolated charger coils. This research aims to increase the performance of the battery charger circuit. In the circuit, there are the different voltage levels of input source. The operating modes of the switch in the circuit use the microcontroller to control the battery charge and to control discharge mode automatically when the input voltage sources are lost from the system. The experimental result of this research shows better performance for charging at any time period of the switch, while the voltage input sources work together. Therefore, this research can use and develop to battery charger for present or future.

  9. A Battery Charger and State of Charge Indicator

    Science.gov (United States)

    Latos, T. S.

    1984-01-01

    A battery charger which has a full wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches, which are programmed to actively shape the input dc line current to be a mirror image of the ac line voltage is discussed. The power circuit operates at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state of charge software programs. The state of charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictate the use of high power NPN Darlington switching transistors. The power circuit topology is a three switch design which utilizes a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.

  10. Costate Estimation of PMP-Based Control Strategy for PHEV Using Legendre Pseudospectral Method

    Directory of Open Access Journals (Sweden)

    Hanbing Wei

    2016-01-01

    Full Text Available Costate value plays a significant role in the application of PMP-based control strategy for PHEV. It is critical for terminal SOC of battery at destination and corresponding equivalent fuel consumption. However, it is not convenient to choose the approximate costate in real driving condition. In the paper, the optimal control problem of PHEV based on PMP has been converted to nonlinear programming problem. By means of KKT condition costate can be approximated as KKT multipliers of NLP divided by the LGL weights. A kind of general costate estimation approach is proposed for predefined driving condition in this way. Dynamic model has been established in Matlab/Simulink in order to prove the effectiveness of the method. Simulation results demonstrate that the method presented in the paper can deduce the closer value of global optimal value than constant initial costate value. This approach can be used for initial costate and jump condition estimation of PMP-based control strategy for PHEV.

  11. Low cost RISC implementation of intelligent ultra fast charger for Ni-Cd battery

    International Nuclear Information System (INIS)

    Petchjatuporn, Panom; Sirisuk, Phaophak; Khaehintung, Noppadol; Sunat, Khamron; Wicheanchote, Phinyo; Kiranon, Wiwat

    2008-01-01

    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel-cadmium (Ni-Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni-Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger

  12. Low cost RISC implementation of intelligent ultra fast charger for Ni-Cd battery

    Energy Technology Data Exchange (ETDEWEB)

    Petchjatuporn, Panom; Khaehintung, Noppadol [Department of Control and Instrumentation Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Sirisuk, Phaophak; Sunat, Khamron [Department of Computer Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Wicheanchote, Phinyo [Test Engineering Department, Sanmina-SCI Systems Co. Ltd. (Thailand); Kiranon, Wiwat [Department of Telecommunication Engineering, Faculty of Engineering, King Mongkut' s Institue of Technology, Ladkrabang, Bangkok 10520 (Thailand)

    2008-02-15

    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel-cadmium (Ni-Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni-Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger. (author)

  13. A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

    OpenAIRE

    Kuo-Kuang Chen

    2011-01-01

    The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS) converter with a quasiresonant converter (QRC) was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are compute...

  14. A Novel Application of Zero-Current-Switching Quasiresonant Buck Converter for Battery Chargers

    Directory of Open Access Journals (Sweden)

    Kuo-Kuang Chen

    2011-01-01

    Full Text Available The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS converter with a quasiresonant converter (QRC was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are computed by applying the characteristic curve and electric functions derived from the circuit configuration. Experiments were conducted using lead-acid batteries. The optimal parameters of the resonance components were determined using the load characteristic curve diagrams. These values enable the battery charger to turn on and off at zero current, resulting in a reduction of switching losses. The results of the experiments show that when compared with the traditional pulse-width-modulation (PWM converter for a battery charger, the buck converter with a zero- current-switching quasiresonant converter can lower the temperature of the activepower switch.

  15. Low wireless power transfer using inductive coupling for mobile phone charger

    International Nuclear Information System (INIS)

    Fareq, M; Fitra, M; Irwanto, M; Hasan, Syafruddin; Arinal, M

    2014-01-01

    A wireless power transfer (WPT) using inductive coupling for mobile phone charger is studied. The project is offer to study and fabricate WPT using inductive coupling for mobile phone charger that will give more information about distance is effect for WPT performance and WPT is not much influenced by the presence of hands, books and types of plastics. The components used to build wireless power transfer can be divided into 3 parts components, the transceiver for power transmission, the inductive coils in this case as the antenna, receiver and the rectifier which act convert AC to DC. Experiments have been conducted and the wireless power transfer using inductive coupling is suitable to be implemented for mobile phone charger.

  16. Risk management of smart grids based on managed charging of PHEVs and vehicle-to-grid strategy using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Hashemi-Dezaki, Hamed; Hamzeh, Mohsen; Askarian-Abyaneh, Hossein; Haeri-Khiavi, Homayoun

    2015-01-01

    Highlights: • Actual distribution system is used to analyze the proposed methodology. • A novel charging management method for PHEVs has been introduced. • The well-being criteria have been provided in addition to reliability indices. • The uncertainty of results is analyzed in addition to expected average results. • System effects due to charging and penetration level of PHEVs are analyzed. - Abstract: The unmanaged charging of plug-in-hybrid-electric vehicles (PHEVs) may adversely affect electric grid reliability because a large amount of additional electrical energy is required to charge the PHEVs. In this paper, a comprehensive method to evaluate the system reliability concerning the stochastic modeling of PHEVs, renewable resources, availability of devices, etc. is proposed. In addition, a novel risk management method in order to reduce the negative PHEVs effects is introduced. This method, which consists of managed charging and vehicle-to-grid (V2G) scenarios, can be practically implemented in smart grids because the bidirectional-power-conversion technologies and two-way of both the power and data are applicable. The introduced method was applied to a real 20 kV network of the Hormozgan Regional Electric Company (HREC) of Iran which is considered as a pilot system for upgrading to smart distribution grid. The results showed that the smart grid’s adequacy was jeopardized by using the PHEVs without any managed charging schedule. The sensitivity analyses results illustrated that by using the risk management scenarios, not only did the PHEVs not compromise the system reliability, but also in the V2G scenario acted as storage systems and improved the well-being criteria and adequacy indices. The comparison between the results based on the proposed method and the other conventional approaches in addition to study of various parameters uncertainty emphasized the advantages of the proposed method

  17. Plug-in hybrid electric vehicle impact study for the Progress Energy Carolinas Territory : condensed grid impact report for PHEV 2007 conference

    International Nuclear Information System (INIS)

    Waters, M.; Outlaw, T.; Boone, K.

    2007-01-01

    This presentation described a program designed to investigate the market viability of plug-in hybrid electric vehicles (PHEVs) and examine the impact of PHEVs on electricity generation systems. Three potential charging scenarios were examined: (1) uncontrolled; (2) delayed after 22:00, and (3) optimized off-peak. The study demonstrated that PHEVs have the capacity to provide greater value to users than conventional or standard hybrid vehicles, even when their higher initial cost is considered. Fuel savings were estimated at $600 more than savings estimated for standard hybrid vehicles. Developed market models were used to demonstrate that PHEVs will probably achieve sales market shares of 26 per cent by the year 2030. An estimated 670 GWh of electricity will be needed to charge the expected fleet. Results for the uncontrolled scenario showed additional peak demands. Delayed and off-peak scenarios were capable of massive penetrations of PHEVs without increases in transmission and distribution. Incremental emission rates for sulfur dioxide (SO 2 ) and nitrogen oxide (NO x ) decreased in off-peak scenarios. The study showed that all PHEV charging scenarios increased SO 2 emissions when compared to standard hybrids. NO x emissions were equal or slightly higher. It was concluded that PHEVs can also serve as a key component to alternative fuel strategies and provide significant reductions in oil imports. 30 refs., 2 tabs., 21 figs

  18. Implementation of Four-Phase Interleaved Balance Charger for Series-Connected Batteries with Power Factor Correction

    Science.gov (United States)

    Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.

    2017-11-01

    A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.

  19. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2003-07-01

    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  20. Unipolar charging of nanoparticles by the Surface-discharge Microplasma Aerosol Charger (SMAC)

    International Nuclear Information System (INIS)

    Kwon, Soon-Bark; Sakurai, Hiromu; Seto, Takafumi

    2007-01-01

    In this paper, we report the development of a novel unipolar charger for nanoparticles, a system that achieves low particle loss and high charging efficiency without the use of sheath air. The efficient unipolar charging of the system is realized mainly by the surface-discharge microplasma unit, a device previously applied with good success to the neutralization or charging of submicron particles [Kwon et al., 2005, Aerosol Sci. Technol., 39, 987-1001; 2006, J. Aerosol Sci., 37, 483-499]. The unipolar charger generates unipolar ions using the surface discharge of a single electrode with a DC pulse supply. This marks an advance from our previous method of generating bipolar ions with the use of dual electrodes in earlier studies. We evaluated the efficiency of the penetration (or loss) and charging of nanoparticles in the size range of 3-15 nm, then compared the charging efficiencies measured with those predicted by diffusion charging theory. More than 90% of inlet nanoparticles penetrated the charger (less than 10% of the particle were lost) without the use of sheath air. Other chargers have only realized this high penetration efficiency by relying on sheath air flow. Moreover, the measured charging efficiencies agreed well with those predicted by diffusion charging theory and were somewhat higher and more size-dependent than the charging efficiencies of other nanoparticle chargers

  1. A conceptual design of main components sizing for UMT PHEV powertrain

    Science.gov (United States)

    Haezah, M. N.; Norbakyah, J. S.; Atiq, W. H.; Salisa, A. R.

    2015-12-01

    This paper presents a conceptual design of main components sizing for Universiti Malaysia Terengganu plug-in hybrid electric vehicle (UMT PHEV) powertrain. In the design of hybrid vehicles, it is important to identify a proper component sizes. Component sizing significantly affects vehicle performance, fuel economy and emissions. The proposed UMT PHEV has only one electric machine (EM) which functions as either a motor or generator at a time and using batteries and ultracapacitors as an energy storage system (ESS). In this work, firstly, energy and power requirements based on parameters, specifications and performance requirements of vehicle are calculated. Then, the parameters for internal combustion engine, EM and ESS are selected based on the developed Kuala Terengganu drive cycle. The results obtained from this analysis are within reasonable range and satisfactory.

  2. Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips

    International Nuclear Information System (INIS)

    Arslan, Okan; Yıldız, Barış; Ekin Karaşan, Oya

    2014-01-01

    In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance. - Highlights: • We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips. • We analyze the impacts of battery, driver and road network characteristics on the costs. • We provide critical managerial insights to shape the investment decisions about PHEVs. • Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs. • Negative effect of intolerance on cost may be overcome by battery capacity expansion

  3. Battery charger with a capacitor-diode clamped LLC resonant converter

    OpenAIRE

    Tsang, C.; Bingham, C.; Foster, M. P.; Stone, D.; Leech, J.

    2016-01-01

    The paper proposes a novel battery charger through use of\\ud two serially-connected LLC resonant converters. The first\\ud stage utilises a capacitor-diode clamped LLC resonant\\ud converter which allows operation in both constant voltage\\ud (CV) and constant current (CC) modes, as found in most\\ud battery chargers, to be realised, whilst the second stage\\ud provides the necessary gain and line and load regulation. A\\ud design example is included that demonstrates the resulting\\ud converter top...

  4. Outpatient blood pressure monitoring using bi-directional text messaging.

    Science.gov (United States)

    Anthony, Chris A; Polgreen, Linnea A; Chounramany, James; Foster, Eric D; Goerdt, Christopher J; Miller, Michelle L; Suneja, Manish; Segre, Alberto M; Carter, Barry L; Polgreen, Philip M

    2015-05-01

    To diagnose hypertension, multiple blood pressure (BP) measurements are recommended. We randomized patients into three groups: EMR-only (patients recorded BP measurements in an electronic medical record [EMR] web portal), EMR + reminders (patients were sent text message reminders to record their BP measurements in the EMR), and bi-directional text messaging (patients were sent a text message asking them to respond with their current BP). Subjects were asked to complete 14 measurements. Automated messages were sent to each patient in the bi-directional text messaging and EMR + reminder groups twice daily. Among 121 patients, those in the bi-directional text messaging group reported the full 14 measurements more often than both the EMR-only group (P text messaging is an effective way to gather patient BP data. Text-message-based reminders alone are an effective way to encourage patients to record BP measurements. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    Science.gov (United States)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  6. Policy strategies for an emergent technology: Lessons from the analysis of EV-policy in 8 North- European countries

    NARCIS (Netherlands)

    M. van der Steen (Martijn); R.M. Van Schelven; P. Van Deventer (Peter); M. van Twist (Mark); R. Kotter

    2015-01-01

    textabstractThis paper presents data from a comparative study of EV-policies in 8 different North-European countries, that maps out all of the policies of these countries (and a range of regions and cities) that target passenger vehicles (PHEV and BEV), chargers (home, private, public; level 1-3),

  7. A fast 30 kV 5 kHz repetition rate resonant capacitor charger

    NARCIS (Netherlands)

    Beckers, F.J.C.M.; Huiskamp, T.; van Heesch, E.J.M.; Pemen, A.J.M.

    2016-01-01

    A novel circuit topology of a fast 30 kV resonant capacitor charger is presented in this paper. The charger is designed for high repetition rate spark gap based pulsed power modulators. A spark gap can fire spontaneously (pre-firing) during charging of a capacitor bank due to poor dielectric

  8. Study on energy consumption of adapters and battery chargers

    International Nuclear Information System (INIS)

    Zijlstra, J.K.; Couvee, J.D.J.

    2001-04-01

    Under the authority of the Dutch Energy Agency 'Novem' industrial design and engineering office NewProducts has performed an inventory study on the energy consumption of adapters and battery chargers. Besides the energy aspects, various aspects of the adapters and chargers have been discussed: The products are classified in categories based on type of the appliance and function of the adapter; The proportions of the Dutch market of adapters and chargers and the players on this market are discussed in brief; The relevant technical background, especially with respect to the energy consumption is discussed. In general there are two types of adapters, linear and switch mode; Product specifications collected from several manufacturers are presented; To fill up the lack of data some measurements have been made of which the results are presented. Together with the product specifications this gives an overview of the performances of adapters and chargers; During the study several ideas and new developments have been found for reducing energy consumption. A remarkable conclusion is that there is no or not much attention from manufacturers or consumers for energy consumption of adapters or no-load power consumption, although there are some initiatives for reduction, e.g. the Code of Conduct on Efficiency of External Power Supplies of the European Union. Lots of linear adapters are still sold and in use, although the efficiency of the switch mode adapters is a lot better. The problem is the higher price. The switch mode adapters are being sold together with sophisticated electronic appliances. Most of the other initiatives and solutions to reduce the no-load energy consumption and improve the efficiency are also technical

  9. Bi-directional interhemispheric inhibition during unimanual sustained contractions

    Directory of Open Access Journals (Sweden)

    Ni Zhen

    2009-04-01

    Full Text Available Abstract Background The interaction between homologous muscle representations in the right and left primary motor cortex was studied using a paired-pulse transcranial magnetic stimulation (TMS protocol known to evoke interhemispheric inhibition (IHI. The timecourse and magnitude of IHI was studied in fifteen healthy right-handed adults at several interstimulus intervals between the conditioning stimulus and test stimulus (6, 8, 10, 12, 30, 40, 50 ms. IHI was studied in the motor dominant to non-dominant direction and vice versa while the right or left hand was at rest, performing isometric contraction of the first dorsal interosseous (FDI muscle, and isometric contraction of the FDI muscle in the context of holding a pen. Results Compared with rest, IHI was reduced at all ISIs during contraction of either type (with or without the context of pen. IHI was reduced bi-directionally without evidence of hemispheric dominance. Further, contraction of the hand contralateral to the conditioning and test pulse yielded similar reductions in IHI. Conclusion These data provide evidence for bi-directional reduction of IHI during unimanual contractions. During unimanual, sustained contractions of the hand, the contralateral and ipsilateral motor cortices demonstrate reduced inhibition. The data suggest that unimanual movement decreases inhibition bi-directionally across motor hemispheres and offer one explanation for the observation of ipsilateral M1 activity during hand movements.

  10. Controllers for Battery Chargers and Battery Chargers Therefrom

    Science.gov (United States)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  11. Integrated Inverter And Battery Charger

    Science.gov (United States)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  12. Modelling and simulation of current fed dc to dc converter for PHEV applications using renewable source

    Science.gov (United States)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    With the current rate of depletion of the fossil fuel the need to switch on to the renewable energy sources is the need of the hour. Thus the need for new and efficient converters arises so as to replace the existing less efficient diesel and petroleum IC engines with renewable energy sources. The PHEVs, which have been launched in the market, and Upcoming PHEVs have converters around 380V to 400V generated with a power range between 2KW to 2.8KW. The fundamental target of this paper is to plan a productive converter keeping in mind cost and size restriction. In this paper, a two-stage dc-dc converter is proposed. The proposed converter is utilized to venture up a voltage from 24V (photovoltaic source) to a yield voltage of 400V to take care of a power demand of 2.4kW for a plug-in hybrid electric vehicle (PHEV) application considering the real time scenario of PHEV. This paper talks about in detail why the current fed converter is utilized alongside a voltage doubler thus minimizing the transformer turns thereby reducing the overall size of the final product. Simulation results along with calculation for the duty cycle of the firing sequence for different value of transformer turns are presented for a prototype unit.

  13. On Training Bi-directional Neural Network Language Model with Noise Contrastive Estimation

    OpenAIRE

    He, Tianxing; Zhang, Yu; Droppo, Jasha; Yu, Kai

    2016-01-01

    We propose to train bi-directional neural network language model(NNLM) with noise contrastive estimation(NCE). Experiments are conducted on a rescore task on the PTB data set. It is shown that NCE-trained bi-directional NNLM outperformed the one trained by conventional maximum likelihood training. But still(regretfully), it did not out-perform the baseline uni-directional NNLM.

  14. Aerosol particle charger and an SO2 reactor using energetic electrons

    International Nuclear Information System (INIS)

    Davis, R.H.

    1984-01-01

    Two properties of energetic electrons in gas, their high specific ionization and their production of radicals and other chemically active specie, have promising applications to the cleanup of flue gas from coal combustion. The copious ionization has been used in a test particle charger to electrically charge 1 and 3 μm particles for subsequent removal by electrostatic precipitation. Particle charge greater than 5 times the theoretical ionic charging value for 1 μm particles have been observed in a bi-electrode electron beam precharger in which the beam energy is matched with the electrode spacing. In another test device, pulsed streamer coronas have been used to release and to energize electrons which promote gas phase chemical reactions and remote sulfur dioxide from humid air with high efficiency. The energized electrons produce oxidant radicals and chemically active specie which convert the SO 2 into sulfuric acid mist. While reported separately here, the two applications of energetic electrons may be amenable to combination in an integrated system for the combined treatment of flue gas

  15. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  16. A New Bi-Directional Projection Model Based on Pythagorean Uncertain Linguistic Variable

    Directory of Open Access Journals (Sweden)

    Huidong Wang

    2018-04-01

    Full Text Available To solve the multi-attribute decision making (MADM problems with Pythagorean uncertain linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the linguistic scale function to convert uncertain linguistic variable and provide a new projection model, subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives and ideal alternatives are defined. Furthermore, a comparative analysis with projection model is conducted to show the superiority of bi-directional projection method. Finally, an example of graduate’s job option is given to demonstrate the effectiveness and feasibility of the proposed method.

  17. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    D' Annunzio, Julie [Ford Motor Company, Dearborn, MI (United States); Slezak, Lee [U.S. DOE Office of Energy Efficiency & Renewable Energy, Washington, DC (United States); Conley, John Jason [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  18. Performance of a Nonlinear Real-Time Optimal Control System for HEVs/PHEVs during Car Following

    Directory of Open Access Journals (Sweden)

    Kaijiang Yu

    2014-01-01

    Full Text Available This paper presents a real-time optimal control approach for the energy management problem of hybrid electric vehicles (HEVs and plug-in hybrid electric vehicles (PHEVs with slope information during car following. The new features of this study are as follows. First, the proposed method can optimize the engine operating points and the driving profile simultaneously. Second, the proposed method gives the freedom of vehicle spacing between the preceding vehicle and the host vehicle. Third, using the HEV/PHEV property, the desired battery state of charge is designed according to the road slopes for better recuperation of free braking energy. Fourth, all of the vehicle operating modes engine charge, electric vehicle, motor assist and electric continuously variable transmission, and regenerative braking, can be realized using the proposed real-time optimal control approach. Computer simulation results are shown among the nonlinear real-time optimal control approach and the ADVISOR rule-based approach. The conclusion is that the nonlinear real-time optimal control approach is effective for the energy management problem of the HEV/PHEV system during car following.

  19. Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2014-01-01

    Full Text Available We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentical nonlinear charging system model into the first-order integrator. Then, a general saturation function is introduced to design the cooperative current-sharing control law which can guarantee the boundedness of the proposed control. The cooperative stability of the closed-loop system under fixed and dynamic communication topologies is rigorously proved with the aid of Lyapunov function and LaSalle invariant principle. Simulation using a multicharging test system further illustrates that the output currents of parallel chargers are balanced using the proposed control.

  20. Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles

    OpenAIRE

    Serrano Guillén, Isabel; Bermejo Fernández, Álvaro

    2013-01-01

    In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to reduce the size and cost of the charger. One solution to achieve this is to include the devices used in the traction circuit in the charger circuit; this is called an integrated motor drive and battery charger. A split-phase PM motor, a motor with double set of windings, gives the opportunity to implement different wind...

  1. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  2. Silent and Efficient Supersonic Bi-Directional Flying Wing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  3. Analysis of bi-directional piezoelectric-based converters for zero-voltage switching operation

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi-directional piezoel......This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi......-directional piezoelectric power converter is a difficult task. However, the analysis in this work will be convenient for overcoming this challenge. The analysis defines the zero-voltage region indicating the operating points whether or not soft switching can be met over the switching frequency and load range. For the first...... time, a comprehensive analysis is provided, which can be used as a design guideline for applying control techniques in order to drive switches in piezoelectric transformer-based converters. This study further conveys the proposed method to the region where all the switches can obtain soft switching...

  4. Bi-directional Multi Dimension CAP Transmission for Smart Grid Communication Services

    DEFF Research Database (Denmark)

    Zhang, Xu; Binti Othman, Maisara; Pang, Xiaodan

    2012-01-01

    We experimentally demonstrate bi-directional multi dimension carrierless amplitude and phase (CAP) transmission for smart grid communication services based on optical fiber networks. The proposed system is able to support multi-Gb/s transmission with high spectral efficiency.......We experimentally demonstrate bi-directional multi dimension carrierless amplitude and phase (CAP) transmission for smart grid communication services based on optical fiber networks. The proposed system is able to support multi-Gb/s transmission with high spectral efficiency....

  5. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  6. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  7. Portable battery-free charger for radiation dosimeters

    International Nuclear Information System (INIS)

    Manning, F.W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter

  8. Portable battery-free charger for radiation dosimeters

    Science.gov (United States)

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  9. Constant voltage and constant current control implementation for electric vehicles (evs) wireless charger

    Science.gov (United States)

    Tampubolon, Marojahan; Pamungkas, Laskar; Hsieh, Yao Ching; Chiu, Huang Jen

    2018-04-01

    This paper presents the implementation of Constant Voltage (CV) and Constant Current (CC) control for a wireless charger system. A battery charging system needs these control modes to ensure the safety of the battery and the effectiveness of the charging system. Here, the wireless charger system does not employ any post-regulator stage to control the output voltage and output current of the charger. But, it uses a variable frequency control incorporated with a conventional PI control. As a result, the size and the weight of the system are reduced. This paper discusses the brief review of the SS-WPT, control strategy and implementation of the CV and CC control. Experimental hardware with 2kW output power has been performed and tested. The results show that the proposed CV and CC control method works well with the system.

  10. Estimation of Bi induced changes in the direct E{sub 0} band gap of III–V-Bi alloys and comparison with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Samajdar, D.P., E-mail: dipprakash010@gmail.com; Dhar, S.

    2016-03-01

    Quantum dielectric Theory (QDT) is used to explain the band gap bowing effect observed in III–V-Bismides such as InSb{sub 1−x}Bi{sub x}, InAs{sub 1−x}Bi{sub x}, InP{sub 1−x}Bi{sub x}, GaSb{sub 1−x}Bi{sub x}, GaAs{sub 1−x}Bi{sub x} and GaP{sub 1−x}Bi{sub x.} The dependence of the direct E{sub 0} band gap for these alloys on Bi mole fraction is calculated using QDT which requires the evaluation of the bowing parameter c. The bowing parameter gives the deviation of the direct E{sub 0} band gap from the linear relationship of E{sub 0} with Bi mole fraction. The band gap reduction values obtained using QDT are compared with those calculated using Virtual Crystal approximation (VCA) and Valence Band Anticrossing (VBAC) model as well as with the reported experimental data and the results of the comparison shows excellent agreement.

  11. Portable Fuel Cell Battery Charger with Integrated Hydrogen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, Ulf G. [CH-5452 Oberrohrdorf (Switzerland)

    1999-10-01

    A fully self-sufficient portable fuel cell battery charger has been designed, built, operated and is now prepared for commercialisation. The lightweight device is equipped with 24 circular polymer electrolyte cells of an innovative design. Each cell is a complete unit and can be tested prior to stacking. Hydrogen is admitted to the anode chamber from the centre of the cell. Air can reach the cathode by diffusion through a porous metal foam layer placed between cathode and separator plate. Soft seals surround the centre hole of the cells to separate hydrogen from air. Water vapour generated by the electrochemical conversion is released into the atmosphere via the porous metal foam on the cathode. All hydrogen fed to the dead-ended anode chamber is converted to electric power. The device is equipped with a chemical hydrogen generator. The fuel gas is formed by adding small amounts of water to a particular chemical compound which is contained in disposable cartridges. With one such cartridge enough hydrogen can be generated to operate CD-players, radios, recorders or portable computers for some hours, depending on the current drawn by the electronic device. The handy portable battery charger delivers about 10 W at 12 V DC. It is designed to be used in remote areas as autonomous power source for charging batteries used in radios, CD players, cellular telephones, radio transmitters, flash lights or model air planes. The power can also be used directly to provide light, sound or motion. Patents have been filed and partners are sought for commercialisation. (author) 4 figs.

  12. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    OpenAIRE

    Pan, Liwen; Zhang, Chengning

    2015-01-01

    This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge cir...

  13. A New Bi-Directional Projection Model Based on Pythagorean Uncertain Linguistic Variable

    OpenAIRE

    Huidong Wang; Shifan He; Xiaohong Pan

    2018-01-01

    To solve the multi-attribute decision making (MADM) problems with Pythagorean uncertain linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the linguistic scale function to convert uncertain linguistic variable and provide a new projection model, subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives and ideal alternatives are defined. Furthermore, a comparative analysis with projection model is co...

  14. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.

    Science.gov (United States)

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-30

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

  15. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

    Directory of Open Access Journals (Sweden)

    Rui Zhao

    2017-01-01

    Full Text Available In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

  16. Analysis of Bi-directional Effects on the Response of a Seismic Base Isolation System

    International Nuclear Information System (INIS)

    Park, Hyung-Kui; Kim, Jung-Han; Kim, Min Kyu; Choi, In-Kil

    2014-01-01

    The floor response spectrum depends on the height of the floor of the structure. Also FRS depends on the characteristics of the seismic base isolation system such as the natural frequency, damping ratio. In the previous study, the floor response spectrum of the base isolated structure was calculated for each axis without considering bi-directional effect. However, the shear behavior of the seismic base isolation system of two horizontal directions are correlated each other by the bi-directional effects. If the shear behavior of the seismic isolation system changes, it can influence the floor response spectrum and displacement response of isolators. In this study, the analysis of a bi-directional effect on the floor response spectrum was performed. In this study, the response of the seismic base isolation system based on the bi-directional effects was analyzed. By analyzing the time history result, while there is no alteration in the maximum shear force of seismic base isolation system, it is confirmed that the shear force is generally more decreased in a one-directional that in a two-directional in most parts. Due to the overall decreased shear force, the floor response spectrum is more reduced in a two-directional than in a one-directional

  17. Sample-Data Modeling of a Zero Voltage Transition DC-DC Converter for On-Board Battery Charger in EV

    Directory of Open Access Journals (Sweden)

    Teresa R. Granados-Luna

    2014-01-01

    Full Text Available Battery charger is a key device in electric and hybrid electric vehicles. On-board and off-board topologies are available in the market. Lightweight, small, high performance, and simple control are desired characteristics for on-board chargers. Moreover, isolated single-phase topologies are the most common system in Level 1 battery charger topologies. Following this trend, this paper proposes a sampled-data modelling strategy of a zero voltage transition (ZVT DC-DC converter for an on-board battery charger. A piece-wise linear analysis of the converter is the basis of the technique presented such that a large-signal model and, therefore, a small-signal model of the converter are derived. Numerical and simulation results of a 250 W test rig validate the model.

  18. A High Efficiency Li-Ion Battery LDO-Based Charger for Portable Application

    Directory of Open Access Journals (Sweden)

    Youssef Ziadi

    2015-01-01

    Full Text Available This paper presents a high efficiency Li-ion battery LDO-based charger IC which adopted a three-mode control: trickle constant current, fast constant current, and constant voltage modes. The criteria of the proposed Li-ion battery charger, including high accuracy, high efficiency, and low size area, are of high importance. The simulation results provide the trickle current of 116 mA, maximum charging current of 448 mA, and charging voltage of 4.21 V at the power supply of 4.8–5 V, using 0.18 μm CMOS technology.

  19. Design and Evaluation of Energy Management using Map-Based ECMS for the PHEV Benchmark

    Directory of Open Access Journals (Sweden)

    Sivertsson Martin

    2015-01-01

    Full Text Available Plug-in Hybrid Electric Vehicles (PHEV provide a promising way of achieving the benefits of the electric vehicle without being limited by the electric range, but they increase the importance of the supervisory control to fully utilize the potential of the powertrain. The winning contribution in the PHEV Benchmark organized by IFP Energies nouvelles is described and evaluated. The control is an adaptive strategy based on a map-based Equivalent Consumption Minimization Strategy (ECMS approach, developed and implemented in the simulator provided for the PHEV Benchmark. The implemented control strives to be as blended as possible, whilst still ensuring that all electric energy is used in the driving mission. The controller is adaptive to reduce the importance of correct initial values, but since the initial values affect the consumption, a method is developed to estimate the optimal initial value for the controller based on driving cycle information. This works well for most driving cycles with promising consumption results. The controller performs well in the benchmark; however, the driving cycles used show potential for improvement. A robustness built into the controller affects the consumption more than necessary, and in the case of altitude variations the control does not make use of all the energy available. The control is therefore extended to also make use of topography information that could be provided by a GPS which shows a potential further decrease in fuel consumption.

  20. Portable Battery Charger Berbasis Sel Surya

    Directory of Open Access Journals (Sweden)

    Budhi Anto

    2014-04-01

    Full Text Available A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power on electric lamps for lightening culinary wagon or fisherman’s boat at night. Charge controller charges the battery with float charging which is implemented by maintaining 13.5 Volt between battery terminals and limiting the charging current to 1.5 Amperes. Charge controller circuit is based on adjustable linear voltage regulator LM338. The battery is of sealed lead acid type. This type of battery is maintenance free and more hygiene than other types of lead acid battery. The field experiment of charging the baterry of 50% residual capacity from 8 am to 4 pm under sunny weather shows that the solar module has charged the battery to its full capacity under battery safe charging conditions.Keywords: portable solar battery charger, float charging, LM338

  1. An area and power-efficient analog li-ion battery charger circuit.

    Science.gov (United States)

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  2. The structure of the polynomials in preconditioned BiCG algorithms and the switching direction of preconditioned systems

    OpenAIRE

    Itoh, Shoji; Sugihara, Masaaki

    2016-01-01

    We present a theorem that defines the direction of a preconditioned system for the bi-conjugate gradient (BiCG) method, and we extend it to preconditioned bi-Lanczos-type algorithms. We show that the direction of a preconditioned system is switched by construction and by the settings of the initial shadow residual vector. We analyze and compare the polynomial structures of four preconditioned BiCG algorithms.

  3. Portable Battery Charger Berbasis Sel Surya

    OpenAIRE

    Anto, Budhi; Hamdani, Edy; Abdullah, Rizki

    2014-01-01

    A type of solar battery charger is introduced in this paper. This equipment functions as a medium size rechargeable battery that is needed to move culinary merchants and coastal fishermen living in area which is not supplied by electrical networks. The equipment consists of solar module mounted onto portable mechanical construction, a 12-V 7.5-Ah lead acid battery and charge controller. Solar module charges the battery through charge controller and then the battery can be discharged to power ...

  4. Development of micro solar charger with blocking relay; Gyakuryu boshi relay wo oyoshita kogata solar judenki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nanno, I.; Matsushita, Y. Oka, S. [Omron Corp., Kyoto (Japan)

    1997-11-25

    Heavy-current tiny-scale solar charger is tentatively built, equipped with a function of preventing overcharge and countercurrent in case of charging storage batteries using solar cells. Incorporated into this solar charger are a countercurrent prevention relay system, a low loss current detection system, and a MOSFET parallel connection, which allow the solar charger to be designed small in size in the presence of an increase in heat due to circuit loss. In the countercurrent prevention relay system, the countercurrent prevention diode is bypassed by MOSFETs when too large a current is generated. In the low loss current detection system, currents are detected by use of the ON resistance of the MOSFETs for the prevention of overcharge. In the MOSFET parallel connection, MOSFETs are connected in parallel for a decrease in the ON resistance. The tentatively built charger is then subjected to a performance evaluation test outside the building, and the test is carried out by measuring the temperatures of the MOSFETs and the air. As the result, it is found that the temperature of MOSFET junction of the 12A tiny-size solar charger is approximately 42.5 degC at the highest, low enough to clear the requirements. 4 refs., 7 figs., 4 tabs.

  5. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  6. An efficiency improved single-phase PFC converter for electric vehicle charger applications

    DEFF Research Database (Denmark)

    Zhu, Dexuan; Tang, Yi; Jin, Chi

    2013-01-01

    This paper presents an efficiency improved single-phase power factor correction (PFC) converter with its target application to plug-in hybrid electric vehicle (PHEV) charging systems. The proposed PFC converter features sinusoidal input current, three-level output characteristic, and wide range...

  7. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-09-01

    Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Variables of interest included combinations of model drug (albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1-5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1% w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs.

  8. Study concerning today's and tomorrow's power metering and balance settlements structure for Plug-in Hybrid Electric Vehicle/Electric Vehicle charging; Studie avseende dagens och morgondagens elmaetnings- och avraekningsinfrastruktur foer PHEV/EV-laddning

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, Mika (Vattenfall Services Nordic AB (Sweden)); Spante, Lennart (Vattenfall Research and Development AB (Sweden))

    2009-07-01

    This study is a part of the ELFORSK programme: 'Plug-In Hybrids and Electric Vehicles', sub programme 'P6 - Future systems for payment, communication and charging of Plug-In Hybrids (PHEV) and electrical vehicles (EV)'. As a first task within this sub programme, a study concerning today's and tomorrow's infrastructure for electrical metering and clearing for PHEV/EV-charging was made during autumn 2008. This report shows the results and conclusions from the initial work concerning this market related issue. During an introductory market phase, it is assumed that public charging mainly will be made by connecting an onboard charger in the vehicle to a single-phase 230 V outlet with 10 (or 16 A) fuse. For charging power of 2.3 - 3.7 kW, the cost for electricity (including grid fee) will be 3 - 5 SEK/charging hour. Costs for charging post investment, and maintenance etc must also be added. The future total 'customer cost' for access to charging posts in this power range is estimated to be less than 10 SEK/charging hour including electricity. In larger cities the 'hour cost' for parking is, in many cases, considerably higher than this. Today, there are no official regulations for charging and associated payment of PHEV/EV. In the report a number of infrastructure solutions with different levels of ambitions for utilising existing systems, e g allowing electricity supplier selection, are presented. The examples describe possible flows of payment between different potential actors within the PHEV/EV market. In the first market phase the number of charging posts and consequently number of chargings will be limited. If current market regulations would be followed the administrative costs for billing each charge would exceed other costs associated with the charge, which is not realistic. A suitable solution is to manage PHEV/EV charging and payment outside the comprehensive regulations of the electricity market, by letting

  9. Secondary Use of PHEV and EV Batteries: Opportunities & Challenges (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.; Howell, D.

    2010-05-01

    NREL and partners will investigate the reuse of retired lithium ion batteries for plug-in hybrid, hybrid, and electric vehicles in order to reduce vehicle costs and emissions and curb our dependence on foreign oil. A workshop to solicit industry feedback on the process is planned. Analyses will be conducted, and aged batteries will be tested in two or three suitable second-use applications. The project is considering whether retired PHEV/EV batteries have value for other applications; if so, what are the barriers and how can they be overcome?

  10. A 2- μ m BiCMOS Rectifier-Free AC-DC Piezoelectric Energy Harvester-Charger IC.

    Science.gov (United States)

    Dongwon Kwon; Rincon-Mora, Gabriel A

    2010-12-01

    A fundamental problem that miniaturized systems, such as biomedical implants, face is limited space for storing energy, which translates to short operational life. Harvesting energy from the surrounding environment, which is virtually a boundless source at these scales, can overcome this restriction, if losses in the system are sufficiently low. To that end, the 2-μm bi-complementary metal-oxide semiconductor switched-inductor piezoelectric harvester prototype evaluated and presented in this paper eliminates the restrictions associated with a rectifier to produce and channel 30 μW from a periodic 72- μW piezoelectric source into a battery directly. In doing so, the circuit also increases the system's electrical damping force to draw more power and energy from the transducer, effectively increasing its mechanical-electrical efficiency by up to 78%. The system also harnesses up to 659 nJ from nonperiodic mechanical vibrations, which are more prevalent in the environment, with 6.1±1.5% to 8.8±6.9% of end-to-end mechanical-electrical efficiency.

  11. Modifications to Battery chargers and inverters Units

    International Nuclear Information System (INIS)

    Raison, Florent

    2015-01-01

    Over-exceeding the seismic specifications of the nuclear industry has always been the top priority of AEG Power Solutions. Since the Forsmark event, and especially since the Fukushima Daichi accident, utilities have reviewed their specifications. As a consequence, safety related battery chargers and inverters have to withstand higher acceleration levels. Simulation, design and test procedures are key drivers of the battery charger and inverter industry. Forces analysis through simulation is the first step of the product design process. The CAD drawings of our equipment, including the mechanical frame of the cabinet and the internal components, are used for the simulation of vibration. In the frame of 10 Hz, most new specifications show higher values, with higher constraints on our equipment. Our nuclear product range has been adapted to these new requirements. PCBs (Printed Circuit Boards), as key components in charge of the regulation and monitoring of the load, are first separately tested during the design phase, as a specific component. They are subjected to the following tests: Critical load analysis, Thermal imaging, Climatic test, Vibration and shock test. Then the complete equipment will follow a complete test program, including: Type test, EMC test, Seismic test, Aging test. Technology is key in achieving goals in terms of robustness and reliability of battery chargers and inverters. AEG Power Solutions renewed its entire range of products in 2011-2013 and made relevant choices. By updating its complete range of nuclear products, AEG Power Solutions is now offering a new range of solutions to the nuclear industry which minimize the risk of component obsolescence, in case of product replacement on existing nuclear power plants, or of new construction. In order to increase the product reliability and to facilitate the qualification programs of the products, the decision was made to offer 100% analogue technology (Software free). The different regulation and

  12. Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides

    Science.gov (United States)

    Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav

    2015-01-01

    We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.

  13. Integrating high dimensional bi-directional parsing models for gene mention tagging.

    Science.gov (United States)

    Hsu, Chun-Nan; Chang, Yu-Ming; Kuo, Cheng-Ju; Lin, Yu-Shi; Huang, Han-Shen; Chung, I-Fang

    2008-07-01

    Tagging gene and gene product mentions in scientific text is an important initial step of literature mining. In this article, we describe in detail our gene mention tagger participated in BioCreative 2 challenge and analyze what contributes to its good performance. Our tagger is based on the conditional random fields model (CRF), the most prevailing method for the gene mention tagging task in BioCreative 2. Our tagger is interesting because it accomplished the highest F-scores among CRF-based methods and second over all. Moreover, we obtained our results by mostly applying open source packages, making it easy to duplicate our results. We first describe in detail how we developed our CRF-based tagger. We designed a very high dimensional feature set that includes most of information that may be relevant. We trained bi-directional CRF models with the same set of features, one applies forward parsing and the other backward, and integrated two models based on the output scores and dictionary filtering. One of the most prominent factors that contributes to the good performance of our tagger is the integration of an additional backward parsing model. However, from the definition of CRF, it appears that a CRF model is symmetric and bi-directional parsing models will produce the same results. We show that due to different feature settings, a CRF model can be asymmetric and the feature setting for our tagger in BioCreative 2 not only produces different results but also gives backward parsing models slight but constant advantage over forward parsing model. To fully explore the potential of integrating bi-directional parsing models, we applied different asymmetric feature settings to generate many bi-directional parsing models and integrate them based on the output scores. Experimental results show that this integrated model can achieve even higher F-score solely based on the training corpus for gene mention tagging. Data sets, programs and an on-line service of our gene

  14. Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaowu, E-mail: xwhmaterials@aliyun.com [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Li, Yulong [School of Mechanical Electrical Engineering, Nanchang University, Nanchang 330031 (China); Liu, Yi [School of Materials Science and Engineering, Nanchang University, Nanchang 330031 (China); Min, Zhixian [China Electronics Technology Group Corporation No. 38 Research Institute, Hefei 230088 (China)

    2015-03-15

    Highlights: • The Sn0.7Cu–xBi solder alloys were directionally solidified. • Both spacing and diameter of fibers decreased with increasing solidification rate. • The UTS and YS first increased with increased solidification rate, then decreased. • The UTS and YS of Sn0.7Cu–xBi first increased with increased Bi content. - Abstract: Bi-containing Sn0.7Cu (SC) eutectic solder alloys were prepared and subjected to directional solidification, through which new types of fiber reinforced eutectic composites were generated. The influences of Bi addition on the microstructures and tensile properties of directionally solidified (DS) Bi-containing eutectic SC lead-free solder alloys have been investigated by using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and a tensile testing machine. The experimental results showed that addition of Bi could effectively reduce both the melting temperature and undercooling of SC solder alloy. The microstructures of DS SC–xBi solder alloys were composed of Sn-rich phase (β) and Cu{sub 6}Sn{sub 5} fiber. No other intermetallic compounds (IMCs) with Bi content were observed in the solder matrix for SC solder alloys with various Bi contents. Both fiber spacing and diameter all decreased gradually with increasing growth rate and/or Bi content. Besides, the regularity of Cu{sub 6}Sn{sub 5} fibers alignment also decreased with increasing growth rate, too. The tensile strengths of the SC–xBi eutectic solder alloys varied parabolically with growth rate (R). When R was 60 μm/s, maximum tensile strengths of 43.8, 55.2 and 56.37 MPa were reached for SC, SC0.7Bi and SC1.3Bi solder alloys. A comparison of tensile strength of SC, SC0.7Bi and SC1.3Bi with the same R indicated that the tensile strength increased with increasing Bi content, which was attributed to the presence of Bi and its role in refining microstructure and solid solution strengthening.

  15. Investigations of bi-directional flow behaviour of a large vertical opening in containment

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Markandeya, S.G.; Ghosh, A.K.; Kushwaha, H.S.

    2002-01-01

    Full text: In the complex codes developed for fire analysis and for containment thermal hydraulic analysis. The junction in the multi-compartment geometries are often modeled as uni-directional junctions. However, certain large size junctions are known to depict bi-directional flow behaviour under specific circumstances. Detailed investigations have been carried out to understand the bi-directionality of a junction by analyzing an earlier reported case study of fire in an enclosure. A computer code FDS was used for the analysis. The paper presents the details of the analysis, the results obtained and further studies required to be conducted so that the findings can be applied to the fire/containment thermal hydraulics analysis codes successfully

  16. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Hirsh, Richard F.

    2009-01-01

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition-and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world

  17. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)], E-mail: bsovacool@nus.edu.sg; Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)], E-mail: richard@vt.edu

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition-and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world.

  18. Beyond batteries. An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition - and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world. (author)

  19. Evaluation of a bi-directional aluminum honeycomb impact limiter design

    International Nuclear Information System (INIS)

    Doman, M.J.

    1995-01-01

    A 120 Ton shipping cask is being developed for the on-site shipment of dry spent fuel at the Idaho National Engineering Laboratory. Impact limiters were incorporated in the cask design to limit the inertial load of the package and its contents during the hypothetical 9-meter (30-foot) drop accident required by 10CFR71. The design process included: (1) a series of static and dynamic tests to determine the crush characteristics of the bi-directional aluminum honeycomb impact limiter material, (2) the development of an analytical model to predict the cask deceleration force as a function of impact limiter crush, and (3) a series of quarter scale model drop tests to qualify the analytical model. The scale model testing, performed at Sandia National Laboratory in Albuquerque, New Mexico, revealed several design aspects which should be considered in developing bi-directional aluminum honeycomb impact limiters and several other design aspects which should be considered for impact limiter designs in general

  20. Safety design of Pb-Bi-cooled direct contact boiling water fast reactor (PBWFR)

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Uchida, Shoji; Yamada, Yumi; Koyama, Kazuya

    2008-01-01

    In Pb-Bi-cooled direct contact boiling water small fast reactor (PBWFR), steam is generated by direct contact of feedwater with primary Pb-Bi coolant above the core, and Pb-Bi coolant is circulated by steam lift pump in chimneys. Safety design has been developed to show safety features of PBWFR. Negative void reactivity is inserted even if whole of the core and upper plenum are voided hypothetically by steam intrusion from above. The control rod ejection due to coolant pressure is prevented using in-vessel type control rod driving mechanism. At coolant leak from reactor vessel and feedwater pipes, Pb-Bi coolant level in the reactor vessel required for decay heat removal is kept using closed guard vessel. Dual pipes for feedwater are employed to avoid leak of water. Although there is no concern of loss of flow accident due to primary pump trip, feedwater pump trip initiates loss of coolant flow (LOF). Injection of high pressure water slows down the flow coast down of feedwater at the LOF event. The unprotected loss of flow and heat sink (ATWS) has been evaluated, which shows that the fuel temperatures are kept lower than the safety limits. (author)

  1. Reconfigurable, Bi-Directional Flexfet Level Shifter for Low-Power, Rad-Hard Integration

    Science.gov (United States)

    DeGregorio, Kelly; Wilson, Dale G.

    2009-01-01

    Two prototype Reconfigurable, Bi-directional Flexfet Level Shifters (ReBiLS) have been developed, where one version is a stand-alone component designed to interface between external low voltage and high voltage, and the other version is an embedded integrated circuit (IC) for interface between internal low-voltage logic and external high-voltage components. Targeting stand-alone and embedded circuits separately allows optimization for these distinct applications. Both ReBiLS designs use the commercially available 180-nm Flex fet Independently Double-Gated (IDG) SOI CMOS (silicon on insulator, complementary metal oxide semiconductor) technology. Embedded ReBiLS circuits were integrated with a Reed-Solomon (RS) encoder using CMOS Ultra-Low-Power Radiation Tolerant (CULPRiT) double-gated digital logic circuits. The scope of the project includes: creation of a new high-voltage process, development of ReBiLS circuit designs, and adjustment of the designs to maximize performance through simulation, layout, and manufacture of prototypes. The primary technical objectives were to develop a high-voltage, thick oxide option for the 180-nm Flexfet process, and to develop a stand-alone ReBiLS IC with two 8-channel I/O busses, 1.8 2.5 I/O on the low-voltage pins, 5.0-V-tolerant input and 3.3-V output I/O on the high-voltage pins, and 100-MHz minimum operation with 10-pF external loads. Another objective was to develop an embedded, rad-hard ReBiLS I/O cell with 0.5-V low-voltage operation for interface with core logic, 5.0-V-tolerant input and 3.3-V output I/O pins, and 100-MHz minimum operation with 10- pF external loads. A third objective was to develop a 0.5- V Reed-Solomon Encoder with embedded ReBilS I/O: Transfer the existing CULPRiT RS encoder from a 0.35-micron bulk-CMOS process to the ASI 180-nm Flexfet, rad-hard SOI Process. 0.5-V low-voltage core logic. 5.0-V-tolerant input and 3.3-V output I/O pins. 100-MHz minimum operation with 10- pF external loads. The stand

  2. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.

    Science.gov (United States)

    Wang, Limin; Cao, Bingfei; Kang, Wei; Hybertsen, Mark; Maeda, Kazuhiko; Domen, Kazunari; Khalifah, Peter G

    2013-08-19

    Two new metal oxide semiconductors belonging to the Ag-Bi-M-O (M = Nb, Ta) chemical systems have been synthesized as candidate compounds for driving overall water splitting with visible light on the basis of cosubstitution of Ag and Bi on the A-site position of known Ca2M2O7 pyrochlores. The low-valence band edge energies of typical oxide semiconductors prevents direct water splitting in compounds with band gaps below 3.0 eV, a limitation which these compounds are designed to overcome through the incorporation of low-lying Ag 4d(10) and Bi 6s(2) states into compounds of nominal composition "AgBiM2O7". It was found that the "AgBiTa2O7" pyrochlores are in fact a solid solution with an approximate range of Ag(x)Bi(5/6)Ta2O(6.25+x/2) with 0.5 semiconductors with the onset of strong direct absorption at 2.72 and 2.96 eV, respectively. Electronic structure calculations for an ordered AgBiNb2O7 structure show that the band gap reduction and the elevation of the valence band primarily result from hybridized Ag d(10)-O 2p orbitals that lie at higher energy than the normal O 2p states in typical pyrochlore oxides. While the minimum energy gap is direct in the band structure, the lowest energy dipole allowed optical transitions start about 0.2 eV higher in energy than the minimum energy transition and involve different bands. This suggests that the minimum electronic band gap in these materials is slightly smaller than the onset energy for strong absorption in the optical measurements. The elevated valence band energies of the niobate and tantalate compounds are experimentally confirmed by the ability of these compounds to reduce 2 H(+) to H2 gas when illuminated after functionalization with a Pt cocatalyst.

  3. Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet

    International Nuclear Information System (INIS)

    Pan, C.T.; Shen, S.C.

    2005-01-01

    Bi-directional polyimide (PI) electromagnetic microactuator with different geometries are designed, fabricated and tested. Fabrication of the electromagnetic microactuator consists of 10 μm thick Ni/Fe (80/20) permalloy deposition on the PI diaphragm by electroplating, high aspect ratio electroplating of copper planar coil with 10 μm in thickness, bulk micromachining, and excimer laser selective ablation. They were fabricated by a novel concept avoiding the etching selectivity and residual stress problems during wafer etching. A mathematical model is created by ANSYS software to analyze the microactuator. The external magnetic field intensity (H ext ) generated by the planar coil is simulated by ANSYS software. ANSYS software is used to predict the deflection angle of the microactuator. Besides, to provide bi-directional and large deflection angle of microactuator, hard magnet Fe/Pt is deposited at a low temperature of 300 deg. C by sputtering onto the PI diaphragm to produce a perpendicular magnetic anisotropic field. This magnetic field can enhance the interaction with H ext to induce attractive and repulsive bi-directional force to provide large displacement. The results of magnetic microactuator with and without hard magnets are compared and discussed. The preliminary result reveals that the electromagnetic microactuator with hard magnet shows a greater deflection angle than that without one

  4. A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2017-01-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs can be considered as a hybrid system (HS which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC strategy for PHEVs based on the mixed logical dynamical (MLD model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial improvement in fuel economy in the simulation results.

  5. Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5–40 nm

    Energy Technology Data Exchange (ETDEWEB)

    Kallinger, Peter, E-mail: peter.kallinger@univie.ac.at; Szymanski, Wladyslaw W. [University of Vienna, Faculty of Physics (Austria)

    2015-04-15

    Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based {sup 241}Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5–40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6–5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.

  6. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    Science.gov (United States)

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.

    1984-01-01

    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  7. Design and implementation of DSP based solar converter for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, Eser [TUBITAK - MRC, Kocaeli (Turkey). Energy Inst.; Ustun, Ozgur [Istanbul Technical Univ., Maslak (Turkey). Electrical Engineering Dept.

    2012-07-01

    This study discusses the design and implementation of a DSP controlled converter for photovoltaic system that can track the maximum power point, charge and discharge the battery. In the designed system, the boost converter operates the photovoltaic panels at the maximum power point and the bi-directional battery charger charges and discharges the battery bank as demanded. All required switching and control signals for these converters provided by the high performance C2000 series DSP produced by the Texas Instruments. The current, voltage and temperature data are collected by sensors from power stages by using DSP algorithms and the control signals are generated by the embedded software. The load bus is kept at constant voltage by the bi-directional battery charger. The boost converter is controlled by MPPT algorithms and the current sharing or battery charge modes are implemented depending on the radiation value. The designed photovoltaic system performance is verified by simulation and some experiments. (orig.)

  8. Dynamical implications of bi-directional resource exchange within a meta-ecosystem.

    Science.gov (United States)

    Rodriguez, Marisabel Rodriguez; Kopp, Darin; Allen, Daniel; Kang, Yun

    2018-05-05

    The exchange of resources across ecosystem boundaries can have large impacts on ecosystem structures and functions at local and regional scales. In this article, we develop a simple model to investigate dynamical implications of bi-directional resource exchanges between two local ecosystems in a meta-ecosystem framework. In our model, we assume that (1) Each local ecosystem acts as both a resource donor and recipient, such that one ecosystem donating resources to another results in a cost to the donating system and a benefit to the recipient; and (2) The costs and benefits of the bi-directional resource exchange between two ecosystems are correlated in a nonlinear fashion. Our model could apply to the resource interactions between terrestrial and aquatic ecosystems that are supported by the literature. Our theoretical results show that bi-directional resource exchange between two ecosystems can indeed generate complicated dynamical outcomes, including the coupled ecosystems having amensalistic, antagonistic, competitive, or mutualistic interactions, with multiple alternative stable states depending on the relative costs and benefits. In addition, if the relative cost for resource exchange for an ecosystem is decreased or the relative benefit for resource exchange for an ecosystem is increased, the production of that ecosystem would increase; however, depending on the local environment, the production of the other ecosystem may increase or decrease. We expect that our work, by evaluating the potential outcomes of resource exchange theoretically, can facilitate empirical evaluations and advance the understanding of spatial ecosystem ecology where resource exchanges occur in varied ecosystems through a complicated network. Copyright © 2018. Published by Elsevier Inc.

  9. On-chip remote charger model using plasmonic island circuit

    Directory of Open Access Journals (Sweden)

    J. Ali

    2018-06-01

    Full Text Available We propose the remote charger model using the light fidelity (LiFi transmission and integrate microring resonator circuit. It consists of the stacked layers of silicon-graphene-gold materials known as a plasmonic island placed at the center of the modified add-drop filter. The input light power from the remote LiFi can enter into the island via a silicon waveguide. The optimized input power is obtained by the coupled micro-lens on the silicon surface. The induced electron mobility generated in the gold layer by the interfacing layer between silicon-graphene. This is the reversed interaction of the whispering gallery mode light power of the microring system, in which the generated power is fed back into the microring circuit. The electron mobility is the required output and obtained at the device ports and characterized for the remote current source applications. The obtained calculation results have shown that the output current of ∼2.5 × 10−11 AW−1, with the gold height of 1.0 µm and the input power of 5.0 W is obtained at the output port, which is shown the potential application for a short range free pace remote charger.

  10. Observations of a bi-directional lightning leader producing an M-component

    Science.gov (United States)

    Kotovsky, D. A.; Uman, M. A.; Wilkes, R.; Carvalho, F. L.; Jordan, D. M.

    2017-12-01

    Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.

  11. Single-Phase Boost Inverter-Based Electric Vehicle Charger With Integrated Vehicle to Grid Reactive Power Compensation

    DEFF Research Database (Denmark)

    Wickramasinghe Abeywardana, Damith Buddika; Acuna, Pablo; Hredzak, Branislav

    2018-01-01

    Vehicle to grid (V2G) reactive power compensation using electric vehicle (EV) onboard chargers helps to ensure grid power quality by achieving unity power factor operation. However, the use of EVs for V2G reactive power compensation increases the second-order harmonic ripple current component...... from the grid, exposes the EV battery to these undesirable ripple current components for a longer period and discharges the battery due to power conversion losses. This paper presents a way to provide V2G reactive power compensation through a boost inverter-based single stage EV charger and a DC...

  12. Design of electronic pen pocket dosimeter with wireless battery charger

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.; Abdelkhalek, K.L.

    2009-01-01

    this paper presents the design of pen-thin electronic pocket dosimeter with high accuracy to measure personal accumulated quantities of gamma rays and the strength of the radiation field and display them on the integrated alphanumerical liquid crystal display (LCD). to overcome the need of removing the micro controller from the PCB to reprogram it , we use in circuit serial programming (ICSP) method which enhances the flexibility of the pocket dosimeter design as it reduces costs of field upgrades, reduces time to market, allows easy calibration of our system during manufacturing and allows adding a unique identification code (ID) to each instrument. the design of this device is based on the PIC16F876 micro controller and powered from two AAA size, 250 m Ah rechargeable batteries. recharging of these batteries is done using wireless charger which is the new trend now in charging devices. the design of this charger is based on the principle of magnetic inductive power transfer by sending the power through an air gap between a transmitting circuit in the attached docking station and receiving circuit which is built in the instrument

  13. Fast bi-directional prediction selection in H.264/MPEG-4 AVC temporal scalable video coding.

    Science.gov (United States)

    Lin, Hung-Chih; Hang, Hsueh-Ming; Peng, Wen-Hsiao

    2011-12-01

    In this paper, we propose a fast algorithm that efficiently selects the temporal prediction type for the dyadic hierarchical-B prediction structure in the H.264/MPEG-4 temporal scalable video coding (SVC). We make use of the strong correlations in prediction type inheritance to eliminate the superfluous computations for the bi-directional (BI) prediction in the finer partitions, 16×8/8×16/8×8 , by referring to the best temporal prediction type of 16 × 16. In addition, we carefully examine the relationship in motion bit-rate costs and distortions between the BI and the uni-directional temporal prediction types. As a result, we construct a set of adaptive thresholds to remove the unnecessary BI calculations. Moreover, for the block partitions smaller than 8 × 8, either the forward prediction (FW) or the backward prediction (BW) is skipped based upon the information of their 8 × 8 partitions. Hence, the proposed schemes can efficiently reduce the extensive computational burden in calculating the BI prediction. As compared to the JSVM 9.11 software, our method saves the encoding time from 48% to 67% for a large variety of test videos over a wide range of coding bit-rates and has only a minor coding performance loss. © 2011 IEEE

  14. AGOR 28: SIO Shipyard Representative Bi-Weekly Progress Report

    Science.gov (United States)

    2015-12-12

    inch streams 4 • Battery Chargers – The yard has replaced all of the original 100 Amp chargers with new. Two 65 Amp units were...installed in place of each of the single unit. This will add redundancy as a single 65 Amp charger can meet the demand of the connected circuit ...DC Ground Issues – Cummins is on board working on isolating the engine DC circuits from the vessel. • Engine Emergency Stop Circuit – Cummins

  15. Development of a bi-directional standing wave linear piezoelectric actuator with four driving feet.

    Science.gov (United States)

    Liu, Yingxiang; Shi, Shengjun; Li, Chunhong; Chen, Weishan; Wang, Liang; Liu, Junkao

    2018-03-01

    A bi-directional standing wave linear piezoelectric ultrasonic actuator with four driving feet is proposed in this work. Two sandwich type transducers operated in longitudinal-bending hybrid modes are set parallelly. The working mode of the transducer is not simple hybrid vibrations of a longitudinal one and a bending one, but a special coupling vibration mode contained both longitudinal and bending components. Two transducers with the same structure and unsymmetrical boundary conditions are set parallelly to accomplish the bi-directional driving: the first transducer can push the runner forward, while the other one produces the backward driving. In the experiments, two voltages with different amplitudes are applied on the two transducers, respectively: the one with higher voltage serves as the actuator, whereas the other one applied with lower voltage is used to reduce the frictional force. The prototype achieves maximum no-load speed and thrust force of 244 mm/s and 9.8 N. This work gives a new idea for the construction of standing wave piezoelectric ultrasonic actuator with bi-directional driving ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory

    Science.gov (United States)

    Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy

    2018-05-01

    This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.

  17. The Role of PTSD in Bi-directional Intimate Partner Violence in Military and Veteran Populations: A Research Review

    Directory of Open Access Journals (Sweden)

    Gabriela Misca

    2017-08-01

    Full Text Available Evidence supporting the higher prevalence of PTSD linked to combat-related trauma in military personnel and veteran populations is well-established. Consequently, much research has explored the effects that combat related trauma and the subsequent PTSD may have on different aspects of relationship functioning and adjustment. In particular, PTSD in military and veterans has been linked with perpetrating intimate partner violence (IPV. New research and theoretical perspectives suggest that in order to respond effectively to IPV, a more accurate understanding of the direction of the violence experienced within each relationship is critical. In both civilian and military populations, research that has examined the direction of IPV's, bi-directional violence have been found to be highly prevalent. Evidence is also emerging as to how these bi-directional violence differ in relation to severity, motivation, physical and psychological consequences and risk factors. Of particular importance within military IPV research is the need to deepen understanding about the role of PTSD in bi-directional IPV not only as a risk factor for perpetration but also as a vulnerability risk factor for victimization, as findings from recent research suggest. This paper provides a timely, critical review of emergent literature to disentangle what is known about bi-directional IPV patterns in military and veteran populations and the roles that military or veterans' PTSD may play within these patterns. Although, this review aimed to identify global research on the topic, the majority of research meeting the inclusion criteria was from US, with only one study identified from outside, from Canada. Strengths and limitations in the extant research are identified. Directions for future research are proposed with a particular focus on the kinds of instruments and designs needed to better capture the complex interplay of PTSD and bi-directional IPV in military populations and

  18. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs

    Directory of Open Access Journals (Sweden)

    Vaughn Matthew

    2010-11-01

    Full Text Available Abstract Background Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ messages (Σ being the size of the alphabet. Results In this paper we present a Θ(n/p time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/BBlog(M/B (M being the main memory size and B being the size of the disk block. We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster - both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. Conclusions The bi-directed

  19. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.

    Science.gov (United States)

    Kundeti, Vamsi K; Rajasekaran, Sanguthevar; Dinh, Hieu; Vaughn, Matthew; Thapar, Vishal

    2010-11-15

    Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p) time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ) messages (Σ being the size of the alphabet). In this paper we present a Θ(n/p) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/B)Blog(M/B)) (M being the main memory size and B being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster--both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. The bi-directed de Bruijn graph is a fundamental data structure for

  20. Integrated motor drive and non-isolated battery charger based on the split-phase PM motors for plug-in vehicles

    Directory of Open Access Journals (Sweden)

    Saeid Haghbin

    2014-06-01

    Full Text Available A novel integrated motor drive and non-isolated battery charger based on a split-phase permanent magnet (PM motor is presented and described for a plug-in vehicle. The motor windings are reconfigured by a relay for the traction and charging operation. In traction mode, the motor is like a normal three-phase motor, whereas in the charging mode, after windings reconnection, the system is a three-phase Boost rectifier. One important challenge to use the motor as three inductors in charger circuit is to have it in standstill during the battery charging. Based on the presented mathematical model of a split-phase PM motor, the zero-torque condition of the motor is explained which led to a proper windings reconnection for the charging. Simulation and experimental results of two separate practical systems are provided to verify the proposed integrated battery charger. Some practical limitations and design recommendations are provided to achieve a more realistic practical system.

  1. PSO Based PI Controller Design for a Solar Charger System

    OpenAIRE

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously....

  2. Implementation of a transcutaneous charger for fully implantable middle ear hearing device.

    Science.gov (United States)

    Lim, H; Yoon, Y; Lee, C; Park, I; Song, B; Cho, J

    2005-01-01

    A transcutaneous charger for the fully implantable middle ear hearing device (F-IMEHD), which can monitor the charging level of battery, has been designed and implemented. In order to recharge the battery of F-IMEHD, the electromagnetic coupling between primary coil at outer body and secondary coil at inner body has been used. Considering the implant condition of the F-IMEHD, the primary coil and the secondary coil have been designed. Using the resonance of LC tank circuit at each coil, transmission efficiency was increased. Since the primary and the secondary coil are magnetically coupled, the current variation of the primary coil is related with the impedance of internal resonant circuit. Using the principle mentioned above, the implanted module could transmit outward the information about charging state of battery or coupling between two coils by the changing internal impedance. As in the demonstrated results of experiment, the implemented charger has supplied the sufficient operating voltage for the implanted battery within about 10 mm distance. And also, it has been confirmed that the implanted module can transmit information outward by control of internal impedance.

  3. Hybrid, plug-in hybrid, or electric—What do car buyers want?

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-01-01

    We use a survey to compare consumers’ stated interest in conventional gasoline (CV), hybrid (HEV), plug-in hybrid (PHEV) and pure electric vehicles (EV) of varying designs and prices. Data are from 508 households representing new vehicle buyers in San Diego County, California in 2011. The mixed-mode survey collected information about access to residential recharge infrastructure, three days of driving patterns, and desired vehicle designs and motivations via design games. Across the higher and lower price scenarios, a majority of consumers designed and selected some form of PHEV for their next new vehicle, smaller numbers designed an HEV or a conventional vehicle, and only a few percent designed an EV. Of those who did not design an EV, the most frequent concerns with EVs were limited range, charger availability, and higher vehicle purchase prices. Positive interest in HEVs, PHEVs and EVs was associated with vehicle images of intelligence, responsibility, and support of the environment and nation (United States). The distribution of vehicle designs suggests that cheaper, smaller battery PHEVs may achieve more short-term market success than larger battery PHEVs or EV. New car buyers’ present interests align with less expensive first steps in a transition to electric-drive vehicles. - Highlights: • We assess consumer interest in various electric-drive vehicle designs. • Web-based design games completed by 508 households from San Diego, California. • Plug-in hybrids are most popular, followed by hybrids and conventional vehicles. • Only a few percent opted for a pure electric vehicle. • Electric-drive associated with intelligence, responsibility, and environment

  4. High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz Rojo

    2015-08-01

    Full Text Available The out of plane electrical conductivity of highly anisotropic Bi2Te3 films grown via electro-deposition process was determined using four probe current-voltage measurements performed on 4.6 - 7.2 μm thickness Bi2Te3 mesa structures with 80 - 120 μm diameters sandwiched between metallic film electrodes. A three-dimensional finite element model was used to predict the electric field distribution in the measured structures and take into account the non-uniform distribution of the current in the electrodes in the vicinity of the probes. The finite-element modeling shows that significant errors could arise in the measured film electrical conductivity if simpler one-dimensional models are employed. A high electrical conductivity of (3.2 ± 0.4 ⋅ 105 S/m is reported along the out of plane direction for Bi2Te3 films highly oriented in the [1 1 0] direction.

  5. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  6. Crowdsourced bi-directional disaster reporting and alerting on smartphones in Lao PDR

    OpenAIRE

    Frommberger, Lutz; Schmid, Falko

    2013-01-01

    Natural disasters are a large threat for people especially in developing countries such as Laos. ICT-based disaster management systems aim at supporting disaster warning and response efforts. However, the ability to directly communicate in both directions between local and administrative level is often not supported, and a tight integration into administrative workflows is missing. In this paper, we present the smartphone-based disaster and reporting system Mobile4D. It allows for bi-directio...

  7. Automatic Detection of Cortical Arousals in Sleep using Bi-direction LSTM Networks

    DEFF Research Database (Denmark)

    Brink-Kjaer, A.; Olesen, Alexander Neergaard; Jespersen, C. A.

    2018-01-01

    ) and chin electromyography (EMG) to compute a probability of arousals through a bi-directional long short-term memory neural network. The study used a dataset of 233 nocturnal PSGs of population-based samples from Wisconsin Sleep Cohort (WSC) and 30 nocturnal PSGs of clinical samples from the Stanford Sleep...

  8. Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Pele, Vincent; Barreteau, Celine [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France); Berardan, David, E-mail: david.berardan@u-psud.fr [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France); Zhao, Lidong; Dragoe, Nita [Institut de Chimie Moléculaire et des Matériaux d’Orsay, Univ. Paris-Sud, UMR 8182, Orsay F-91405 (France); CNRS, Orsay F-91405 (France)

    2013-07-15

    We report on the direct synthesis of BiCuChO based materials by mechanical alloying (Ch=Se, Te). We show that contrary to the synthesis paths used in the previous reports dealing with this family of materials, which use costly annealings in closed silica tubes under controlled atmosphere, this new synthesis route enables the synthesis of pure phase materials at room temperature under air, with reasonable milling time. This synthesis procedure is easily scalable for large scale applications. - Highlights: • Phase pure BiCuSeO doped and undoped prepared by mechanical alloying. • Synthesis performed under air at room temperature. • Electrical properties similar to that of samples synthesized by a classical path.

  9. Improved Battery Charger Circuit Utilizing Reduced DC-link Capacitors

    Directory of Open Access Journals (Sweden)

    Vencislav Valchev

    2017-11-01

    Full Text Available The article presents a comparison of advantages and disadvantages of a battery charger circuit with and without the use of DC-link capacitors in it. The specific application requirements, namely ultra-light electric vehicles, are set as lightness, efficiency and robustness of the design. Prove of greater reliability and improvement on maintenance costs without significant decrease in the quality of charging process with the removal of DC-link capacitors in rectifier and boost converter circuits is accomplished. The proposed circuit parameters are analyzed by carried out simulations.

  10. Li-Po Battery Charger Based on the Constant Current/Voltage Parallel Resonant Converter Operating in ZVS

    Directory of Open Access Journals (Sweden)

    Alberto M. Pernía

    2018-04-01

    Full Text Available Battery requirements for electrical vehicles are continuously becoming more demanding in terms of energy density and reliability. Nowadays, batteries for drones must be able to supply 100 A for 15 min, not to mention the specifications required for batteries in electrical vehicles. These specifications result in more stringent specifications for battery chargers. They are required to be more efficient, flexible, and, as with any another power equipment, to have reduced size and weight. Since the parallel resonant converter can operate as a current source and as a voltage source, this paper presents a battery charger power stage for lithium ion polymer batteries, based on the above topology, operating in zero voltage switching mode, and implementing frequency and duty cycle control.

  11. 76 FR 31749 - Energy Conservation Program for Certain Consumer Appliances: Test Procedures for Battery Chargers...

    Science.gov (United States)

    2011-06-01

    ... cellular telephones and portable media players such as MP3 players. D. Multiple-Voltage External Power... solid base for performing battery charger testing. (PG&E, Pub. Mtg. Tran., No. 2 at p. 14) PG&E, Delta-Q...

  12. Bi-directional LSTM Recurrent Neural Network for Chinese Word Segmentation

    OpenAIRE

    Yao, Yushi; Huang, Zheng

    2016-01-01

    Recurrent neural network(RNN) has been broadly applied to natural language processing(NLP) problems. This kind of neural network is designed for modeling sequential data and has been testified to be quite efficient in sequential tagging tasks. In this paper, we propose to use bi-directional RNN with long short-term memory(LSTM) units for Chinese word segmentation, which is a crucial preprocess task for modeling Chinese sentences and articles. Classical methods focus on designing and combining...

  13. Bi-directionally protective communication between neurons and astrocytes under ischemia.

    Science.gov (United States)

    Wu, Xiao-Mei; Qian, Christopher; Zhou, Yu-Fu; Yan, Yick-Chun; Luo, Qian-Qian; Yung, Wing-Ho; Zhang, Fa-Li; Jiang, Li-Rong; Qian, Zhong Ming; Ke, Ya

    2017-10-01

    The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP) astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM) induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Bi-directionally protective communication between neurons and astrocytes under ischemia

    Directory of Open Access Journals (Sweden)

    Xiao-Mei Wu

    2017-10-01

    Full Text Available The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions.

  15. Highly efficient and compact bidirectional charger for E-mobility; Hoch effizientes und kompaktes bidirektionales Ladegeraet fuer die Elektromobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Bruno; Goeldi, Benriah; Reichert, Stefan; Schoenberger, Stefan [Fraunhofer Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2011-07-01

    The increasing number of battery driven electric vehicles requires a wide range of charging possibilities. The key component for charging the battery is a charger in the car (on-board) or stationary - integrated in a charging station. The charging device connects the high voltage traction battery with the low voltage grid. Different technical approaches and different aspects have to be considered. A basic choice has to be made between an on-board or a stationary charging device and also whether to use a galvanic isolation or not. Within the Fraunhofer joint research project FSEM a transformerless, three-phase charger with highest efficiency and high power density was developed. (orig.)

  16. Dynamics of a minimal consumer network with bi-directional influence

    Science.gov (United States)

    Ekaterinchuk, Ekaterina; Jungeilges, Jochen; Ryazanova, Tatyana; Sushko, Iryna

    2018-05-01

    We study the dynamics of a model of interdependent consumer behavior defined by a family of two-dimensional noninvertible maps. This family belongs to a class of coupled logistic maps with different nonlinearity parameters and coupling terms that depend on one variable only. In our companion paper we considered the case of independent consumers as well as the case of uni-directionally connected consumers. The present paper aims at describing the dynamics in the case of a bi-directional connection. In particular, we investigate the bifurcation structure of the parameter plane associated with the strength of coupling between the consumers, focusing on the mechanisms of qualitative transformations of coexisting attractors and their basins of attraction.

  17. Moral judgment modulation by disgust is bi-directionally moderated by individual sensitivity

    Directory of Open Access Journals (Sweden)

    How Hwee eOng

    2014-03-01

    Full Text Available Modern theories of moral judgment predict that both conscious reasoning and unconscious emotional influences affect the way people decide about right and wrong. In a series of experiments, we tested the effect of subliminal and conscious priming of disgust facial expressions on moral dilemmas. Trolley-car-type scenarios were used, with subjects rating how acceptable they found the utilitarian course of action to be. On average, subliminal priming of disgust facial expressions resulted in higher rates of utilitarian judgments compared to neutral facial expressions. Further, in replication, we found that individual change in moral acceptability ratings due to disgust priming was modulated by individual sensitivity to disgust, revealing a bi-directional function. Our second replication extended this result to show that the function held for both subliminally and consciously presented stimuli. Combined across these experiments, we show a reliable bi-directional function, with presentation of disgust expression primes to individuals with higher disgust sensitivity resulting in more utilitarian judgments (i.e., number-based and presentations to individuals with lower sensitivity resulting in more deontological judgments (i.e., rules-based. Our results may reconcile previous conflicting reports of disgust modulation of moral judgment by modeling how individual sensitivity to disgust determines the direction and degree of this effect.

  18. Moral judgment modulation by disgust is bi-directionally moderated by individual sensitivity

    Science.gov (United States)

    Ong, How Hwee; Mullette-Gillman, O’Dhaniel A.; Kwok, Kenneth; Lim, Julian

    2014-01-01

    Modern theories of moral judgment predict that both conscious reasoning and unconscious emotional influences affect the way people decide about right and wrong. In a series of experiments, we tested the effect of subliminal and conscious priming of disgust facial expressions on moral dilemmas. “Trolley-car”-type scenarios were used, with subjects rating how acceptable they found the utilitarian course of action to be. On average, subliminal priming of disgust facial expressions resulted in higher rates of utilitarian judgments compared to neutral facial expressions. Further, in replication, we found that individual change in moral acceptability ratings due to disgust priming was modulated by individual sensitivity to disgust, revealing a bi-directional function. Our second replication extended this result to show that the function held for both subliminally and consciously presented stimuli. Combined across these experiments, we show a reliable bi-directional function, with presentation of disgust expression primes to individuals with higher disgust sensitivity resulting in more utilitarian judgments (i.e., number-based) and presentations to individuals with lower sensitivity resulting in more deontological judgments (i.e., rules-based). Our results may reconcile previous conflicting reports of disgust modulation of moral judgment by modeling how individual sensitivity to disgust determines the direction and degree of this effect. PMID:24639665

  19. A new low threshold bi-directional wind vane and its potential impact on unplanned atmospheric release prediction

    International Nuclear Information System (INIS)

    Parker, M.J.

    1996-01-01

    At the Savannah River Site, the Environmental Transport Group (ETG) maintains and develops a comprehensive meteorological monitoring program which employs bi-directional wind vanes (bivanes) for the measurement of horizontal and vertical wind direction and turbulence. Wind data collected near and below instrument starting thresholds under stable nighttime conditions with these bivanes can result in artificially large standard deviations of horizontal wind direction (σA). In one hypothetical case, downwind concentrations could be underestimated by a factor of 40 by using artificially high σA data in a Gaussian dispersion model. In an effort to improve low wind speed measurements of wind direction, a Cooperative Research and Development Agreement (CRADA) between Met One Instruments and the Westinghouse Savannah River Company (WSRC) has been created to improve the dynamic performance of the Met One Model 1585 Bi-Directional Wind Vane

  20. Three-port bi-directional converter for electric vehicles: focus on high-frequency coaxial transformer

    NARCIS (Netherlands)

    Waltrich, G.; Duarte, J.L.; Hendrix, M.A.M.; Paulides, J.J.H.

    2010-01-01

    A bi-directional multi-port converter can accommodate various energy storages and sources. Therefore, a multiport converter will be a good candidate for application as a future universal converter for (hybrid) electrical vehicles or local distribution systems. The main design challenge of the

  1. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...

  2. Qualification test on class 1E charger and inverter in nuclear power plant

    International Nuclear Information System (INIS)

    Li Mingcheng; Lin Jian; Fu Mingxing; Xu Benfu; Ma Peifeng

    2014-01-01

    The qualification approach for class lE electrical equipment was introduced, based on IEC, IEEE and RCC-E standards and technical documents. Combined with a lot of practical experience, the qualification scheme for class lE charger and inverter was developed. The component evaluation, performance and stress test, EMC test, seismic test and software qualification for the equipment were analyzed in detail. (authors)

  3. Bi-directional reflectance distribution function of a tungsten block for ITER divertor

    International Nuclear Information System (INIS)

    Iwamae, Atsushi; Ogawa, Hiroaki; Sugie, Tatsuo; Kusama, Yoshinori

    2012-02-01

    In order to investigate reflection properties on plasma-facing material in ITER, the bi-directional reflectance distribution function (BRDF) of a tungsten block sample has been measured. On the machining surface of the block, one-directional machining lines are engraved. Two laser diodes λ652 nm and λ473 nm were used to simulate H α and H β emissions, respectively. The reflected light is affected by the machining surface. The reflected light traces an arc when the incident light is injected in the parallel direction to the engraved line. On the other hand the reflected light traces a line shape when the incident light is injected in the perpendicular direction to the engraved lines. Ray tracing simulation qualitatively explains the experimental results. (author)

  4. Optimal Isolation Control of Three-Port Active Converters as a Combined Charger for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhixiang Ling

    2016-09-01

    Full Text Available The three-port converter has three H-bridge ports that can interface with three different energy sources and offers the advantages of flexible power transmission, galvanic isolation ability and high power density. The three-port full-bridge converter can be used in electric vehicles as a combined charger that consists of a battery charger and a DC-DC converter. Power transfer occurs between two ports while the third port is isolated, i.e., the average power is zero. The purpose of this paper is to apply an optimal phase shift strategy in isolation control and provide a detailed comparison between traditional phase shift control and optimal phase shift control under the proposed isolation control scheme, including comparison of the zero-voltage-switching range and the root mean square current for the two methods. Based on this analysis, the optimal parameters are selected. The results of simulations and experiments are given to verify the advantages of dual-phase-shift control in isolation control.

  5. Energy Management Strategy in Consideration of Battery Health for PHEV via Stochastic Control and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Yuying Wang

    2017-11-01

    Full Text Available This paper presents an energy management strategy for plug-in hybrid electric vehicles (PHEVs that not only tries to minimize the energy consumption, but also considers the battery health. First, a battery model that can be applied to energy management optimization is given. In this model, battery health damage can be estimated in the different states of charge (SOC and temperature of the battery pack. Then, because of the inevitability that limiting the battery health degradation will increase energy consumption, a Pareto energy management optimization problem is formed. This multi-objective optimal control problem is solved numerically by using stochastic dynamic programming (SDP and particle swarm optimization (PSO for satisfying the vehicle power demand and considering the tradeoff between energy consumption and battery health at the same time. The optimization solution is obtained offline by utilizing real historical traffic data and formed as mappings on the system operating states so as to implement online in the actual driving conditions. Finally, the simulation results carried out on the GT-SUITE-based PHEV test platform are illustrated to demonstrate that the proposed multi-objective optimal control strategy would effectively yield benefits.

  6. Design and implementation of current fed DC-DC converter for PHEV application using renewable source

    Science.gov (United States)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    As the fossil fuels are depleting day by day, the use of renewable energy sources came into existence and they evolved a lot lately. To increase efficiency and productivity in the hybrid vehicles, the existence less efficient petroleum and diesel IC engines need to be replaced with the new and efficient converters with renewable energy sources. This has to be done in such a way that impacts three factors mainly: cost, efficiency and reliability. The PHEVs that have been launched and the upcoming PHEVs using converters with voltage range around 380V to 400V generated with power ranges between 2.4KW to 2.8KW. The basic motto of this paper is to design a prolific converter while considering the factor such as cost and size. In this paper, a two stage DC-DC converter is proposed and the proposed DC-DC converter is utilized to endeavour voltage from 24V (photovoltaic source) to a yield voltage of 400V and to meet the power demand of 250W, since only one panel is being used for this proposed paper. This paper discuss in detail about why and how the current fed DC-DC converter is utilized along with a voltage doubler, thus reducing transformer turns and thereby reducing overall size of the product. Simulation and hardware results have been presented along with calculations for duty cycle required for firing sequence for different values of transformer turns.

  7. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    Science.gov (United States)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  8. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  9. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Hao, Shaobo [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Ye, Minhua [Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006 (China); Zhang, Anling [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Nan, Yang [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wang, Guangxiu; Jia, Zhifan [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Yu, Kai; Guo, Lianmei [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Pu, Peiyu [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Huang, Qiang, E-mail: huangqiang209@163.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhong, Yue, E-mail: zhongyue2457@sina.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2015-03-06

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.

  10. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    International Nuclear Information System (INIS)

    Tian, Yuan; Hao, Shaobo; Ye, Minhua; Zhang, Anling; Nan, Yang; Wang, Guangxiu; Jia, Zhifan; Yu, Kai; Guo, Lianmei; Pu, Peiyu; Huang, Qiang; Zhong, Yue

    2015-01-01

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE

  11. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Michalek, Jeremy J.

    2013-01-01

    Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives. - Highlights: ► We compare cost of PHEV batteries vs. charging infrastructure per gallon of gasoline saved. ► The lowest cost solution is to switch more drivers to low-capacity PHEVs and HEVs. ► If more gasoline savings is needed, batteries offer a better value than chargers. ► Extra batteries and chargers are both more costly per gal than oil premium estimates. ► Current subsidies are misaligned with fuel savings. We discuss alternatives.

  12. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    International Nuclear Information System (INIS)

    Traut, Elizabeth; Hendrickson, Chris; Klampfl, Erica; Liu, Yimin; Michalek, Jeremy J.

    2012-01-01

    Electrified vehicles can reduce greenhouse gas (GHG) emissions by shifting energy demand from gasoline to electricity. GHG reduction potential depends on vehicle design, adoption, driving and charging patterns, charging infrastructure, and electricity generation mix. We construct an optimization model to study these factors by determining optimal design of conventional vehicles, hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) with optimal allocation of vehicle designs and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over a range of scenarios. We focus on vehicles with similar body size and acceleration to a Toyota Prius under government 5-cycle driving conditions. We find that under the current US grid mix, PHEVs offer only small GHG emissions reductions compared to HEVs, and workplace charging is insignificant. With grid decarbonization, PHEVs and BEVs offer substantial GHG emissions reductions, and workplace charging provides additional benefits. HEVs are optimal or near-optimal for minimum cost in most scenarios. High gas prices and low vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost-optimal fleet. Carbon prices have little effect. Cost and range restrictions limit penetration of BEVs. - Highlights: ► We pose an MINLP model to minimize cost and GHG emissions of electrified vehicles. ► We design PHEVs and BEVs and assign vehicles and charging infrastructure in US fleet. ► Under US grid mix, PEVs provide minor GHG reductions and work chargers do little. ► HEVs are robust; PEVs and work charging potential improve with a decarbonized grid. ► We quantify factors needed for PEVs to enter and dominate the optimal fleet.

  13. Investigations of bi-directional flow behaviour in presence of a large vertical opening in a fire compartment

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Gera, B.

    2011-01-01

    In the complex thermal hydraulics codes developed for fire, reactor and containment safety the junctions in the multi-compartment geometries are often modeled as uni-directional junctions and some construct of flow coefficient. However, certain large size junctions are known to depict bi-directional flow behaviour under specific circumstances. The CFD based computer code FDS was used for an earlier reported study of fire in an enclosure on the bidirectional flow behaviour in present of a wall opening. Numerical simulation is directed to monitor the entrainment of the fresh air from outside to the fire compartment and resulting plume deflection due to presence of a big opening. The paper presents the details of the analysis, the results obtained, and comparison with the reported experimental data in terms of plume deflection, entrainment. Detailed investigations have been carried out to understand the bi-directionality of a junction by analyzing studying the outgoing hot air flow and incoming cold air. (orig.)

  14. Flower-like Bi2Se3 nanostructures: Synthesis and their application for the direct electrochemistry of hemoglobin and H2O2 detection

    International Nuclear Information System (INIS)

    Fan Hai; Zhang Shenxiang; Ju Peng; Su Haichao; Ai Shiyun

    2012-01-01

    Highlights: ► Flower-like Bi 2 Se 3 nanostructures were prepared via a hydrothermal technique. ► Bi 2 Se 3 nanostructures significantly improve the direct electron-transfer of Hb. ► The immobilized Hb shows high catalytic activity to the reduction of H 2 O 2 . - Abstract: In this paper, flower-like Bi 2 Se 3 nanostructures consisting of intercrossed nanosheets networks have been synthesized via a facile hydrothermal technique and applied to the protein electrochemistry for the first time. The prepared Bi 2 Se 3 nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The direct electrochemistry of hemoglobin (Hb) has been achieved by immobilizing Hb on the prepared Bi 2 Se 3 nanostructures and Nafion (Nf) modified glassy carbon electrode. Bi 2 Se 3 nanostructures show significant promotion to the direct electron-transfer of Hb. The immobilized Hb retained its biological activity well and shows high catalytic activity to the reduction of hydrogen peroxide (H 2 O 2 ). Under the optimal experimental conditions, the catalytic currents are linear to the concentrations of H 2 O 2 in the range of 2.0 × 10 −6 to 1.0 × 10 −4 M. The corresponding detection limits are 6.3 × 10 −7 M. The prepared flower-like Bi 2 Se 3 nanostructures provide an alternative matrix for protein immobilization and biosensor preparation.

  15. Comparative Study on Uni- and Bi-Directional Fluid Structure Coupling of Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Mesfin Belayneh Ageze

    2017-09-01

    Full Text Available The current trends of wind turbine blade designs are geared towards a longer and slender blade with high flexibility, exhibiting complex aeroelastic loadings and instability issues, including flutter; in this regard, fluid-structure interaction (FSI plays a significant role. The present article will conduct a comparative study between uni-directional and bi-directional fluid-structural coupling models for a horizontal axis wind turbine. A full-scale, geometric copy of the NREL 5MW blade with simplified material distribution is considered for simulation. Analytical formulations of the governing relations with appropriate approximation are highlighted, including turbulence model, i.e., Shear Stress Transport (SST k-ω. These analytical relations are implemented using Multiphysics package ANSYS employing Fluent module (Computational Fluid Dynamics (CFD-based solver for the fluid domain and Transient Structural module (Finite Element Analysis-based solver for the structural domain. ANSYS system coupling module also is configured to model the two fluid-structure coupling methods. The rated operational condition of the blade for a full cycle rotation is considered as a comparison domain. In the bi-directional coupling model, the structural deformation alters the angle of attack from the designed values, and by extension the flow pattern along the blade span; furthermore, the tip deflection keeps fluctuating whilst it tends to stabilize in the uni-directional coupling model.

  16. Single-stage three-phase AC to DC conversion with isolation and Bi-directional power flow

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Duarte, J.L.; Wijnands, C.G.E.; Lomonova, E.A.

    2014-01-01

    An approach for three-phase AC to DC conversion is proposed, which consists of a single-stage while offering galvanic isolation, soft-switching, bi-directional power flow and a significant reduction of inductive and capacitive energy storage. Two elements enable this approach, namely a neutral

  17. Photovoltaic High-Frequency Pulse Charger for Lead-Acid Battery under Maximum Power Point Tracking

    Directory of Open Access Journals (Sweden)

    Hung-I. Hsieh

    2013-01-01

    Full Text Available A photovoltaic pulse charger (PV-PC using high-frequency pulse train for charging lead-acid battery (LAB is proposed not only to explore the charging behavior with maximum power point tracking (MPPT but also to delay sulfating crystallization on the electrode pores of the LAB to prolong the battery life, which is achieved due to a brief pulse break between adjacent pulses that refreshes the discharging of LAB. Maximum energy transfer between the PV module and a boost current converter (BCC is modeled to maximize the charging energy for LAB under different solar insolation. A duty control, guided by a power-increment-aided incremental-conductance MPPT (PI-INC MPPT, is implemented to the BCC that operates at maximum power point (MPP against the random insolation. A 250 W PV-PC system for charging a four-in-series LAB (48 Vdc is examined. The charging behavior of the PV-PC system in comparison with that of CC-CV charger is studied. Four scenarios of charging statuses of PV-BC system under different solar insolation changes are investigated and compared with that using INC MPPT.

  18. Study on bi-directional pedestrian movement using ant algorithms

    International Nuclear Information System (INIS)

    Gokce, Sibel; Kayacan, Ozhan

    2016-01-01

    A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity–density and flux–density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones. (paper)

  19. Bi-directional associations between psychological arousal, cortisol, and sleep

    DEFF Research Database (Denmark)

    Garde, Anne Helene; Albertsen, Karen; Persson, Roger

    2012-01-01

    The aim was to elucidate the possible bi-directional relation between daytime psychological arousal, cortisol, and self-reported sleep in a group of healthy employees in active employment. Logbook ratings of sleep (Karolinska Sleep Questionnaire), stress, and energy, as well as positive...... and negative experiences in work and private life, were collected together with salivary cortisol over 3 days (n = 265). Higher bedtime ratings of stress and problems during the day were associated with morning ratings of poor sleep. Poorer morning ratings of sleep were associated with higher ratings of stress...... and problems during the day. The results underpin the possibility that arousal and poor sleep might create a self-reinforcing vicious circle that negatively affects a person's well-being....

  20. Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid

    International Nuclear Information System (INIS)

    Nurre, Sarah G.; Bent, Russell; Pan, Feng; Sharkey, Thomas C.

    2014-01-01

    We consider a deterministic integer programming model for determining the optimal operations of multiple plug-in hybrid electric vehicle (PHEV) battery exchange stations over time. The operations include the number of batteries to charge, discharge, and exchange at each point in time over a set time horizon. We allow discharging of batteries back to the power grid, through vehicle-to-grid technology. We incorporate the exchange station's dependence on the power network, transportation network, and other exchange stations. The charging and discharging at these exchange stations lead to a greater amount of variability which creates a less predictable and flat power generation curve. We introduce and test three policies to smooth the power generation curve by balancing its load. Further, tests are conducted evaluating these policies while factoring wind energy into the power generation curve. These computational tests use realistic data and analysis of the results suggest general operating procedures for exchange stations and evaluate the effectiveness of these power flattening policies. - Highlights: • Model the operations of plug-in hybrid electric vehicle battery exchange stations. • Determine the optimal and general charging, discharging, and exchange operations. • Conclude that forced customer service levels are unnecessary with proper pricing. • Examine policies to reduce variability in power generation from PHEVs and wind. • Observe that strict constraints on exchange stations best reduce variability

  1. A High-Gain Reflex-Based Bidirectional DC Charger with Efficient Energy Recycling for Low-Voltage Battery Charging-Discharging Power Control

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2018-03-01

    Full Text Available This study proposes a high-gain reflex-charging-based bidirectional DC charger (RC-BDC to enhance the battery charging efficiency of light electric vehicles (LEV in a DC-microgrid. The proposed charger topology consists of an unregulated level converter (ULC and a two-phase interleaved buck-boost charge-pump converter (IBCPC, which together provide low ripple and high voltage conversion ratio. As the high-gain RC-BDC charges, the LEV’s battery with reflex charging currents, high battery charging efficiency, and prolonged battery life cycles are achieved. This is possible due to the recovering of negative pulse energy of reflex charging currents to reduce charge dissipations within LEV’s batteries. Derivations of the operating principles of the high-gain RC-BDC, analyses of its topology, and the closed-loop control designs were presented. Simulations and experiments were implemented with battery voltage of 48 V and DC-bus voltage of 400 V for a 500 W prototype. The results verify the feasibility of the proposed concept and were compared with the typical constant-current/constant-voltage (CC/CV charger. The comparison shows that the proposed high gain RC-BDC improves battery charging speed and reduces the battery thermal deterioration effect by about 12.7% and 25%, respectively.

  2. Microstructure Of MnBi/Bi Eutectic Alloy

    Science.gov (United States)

    Wilcox, William R.; Eisa, G. F.; Baskaran, B.; Richardson, Donald C.

    1988-01-01

    Collection of three reports describes studies of directional solidification of MnBi/Bi eutectic alloy. Two of the reports, "Influence of Convection on Lamellar Spacing of Eutectics" and "Influence of Convection on Eutectic Microstructure," establish theoretical foundation for remaining document. Reports seek to quantify effect of convection on concentration field of growing lamellar eutectic. Remaining report, "Study of Eutectic Formation," begins by continuing theoretical developments. New technique under development by one of the authors helps to reveal three-dimensional microstructures of alloys.

  3. An Observational Approach to Testing Bi-Directional Parent-Child Interactions as Influential to Child Eating and Weight

    Science.gov (United States)

    Demir, Defne; Skouteris, Helen; Dell'Aquila, Daniela; Aksan, Nazan; McCabe, Marita P.; Ricciardelli, Lina A.; Milgrom, Jeannette; Baur, Louise A.

    2012-01-01

    Obesity among children has been on the rise globally for the past few decades. Previous research has centred mainly on self/parent-reported measures examining only uni-directional parental feeding styles and practices. Recent discussions in the literature have raised the importance of bi-directional parent-child interactions in influencing…

  4. Aplikasi Migrasi Database dan Replikasi Bi-Directional

    Directory of Open Access Journals (Sweden)

    Michael Yoseph Ricky

    2011-12-01

    Full Text Available This study aims to analyze and design a migration and replication configurations in an enterprise using several methods such as literary study and direc survey to the company; analysis on hangar systems, process migration and replication as well as existing problems; and a prototype design for migration process implementated with Oracle SQL Developer and replication process implementated with Oracle GoldenGate. The study resluts ini a prototype for migration and replication configuration processes using Oracle's Golden Gate which can produce two sets of identical data for backup and recovery. Also a simple tool is designed to assist active-active replication process as well as active-passive one. The migration process from MySQL database to Oracle database using Oracle GoldenGate can not be done because GoldenGate Oracle has bugs related to the binary log, so database migration is done using Oracle SQL Developer. However, bi-directional replication between Oracle database using Oracle GoldenGate can ensure data availability and reduce the workload of primary database. 

  5. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation

    International Nuclear Information System (INIS)

    Shrimali, M.K.; Jangid, R.S.

    2002-01-01

    Seismic response of the liquid storage tanks isolated by lead-rubber bearings is investigated for bi-directional earthquake excitation (i.e. two horizontal components). The biaxial force-deformation behaviour of the bearings is considered as bi-linear modelled by coupled non-linear differential equations. The continuous liquid mass of the tank is modelled as lumped masses known as convective mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. Since the force-deformation behaviour of the bearings is non-linear, as a result, the seismic response is obtained by the Newmark's step-by-step method. The seismic responses of two types of the isolated tanks (i.e. slender and broad) are investigated under several recorded earthquake ground to study the effects of bi-directional interaction. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) the period of isolation, (ii) the damping of isolation bearings and (iii) the yield strength level of the bearings. It has been observed that the seismic response of isolated tank is found to be insensitive to interaction effect of the bearing forces. Further, there exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value. Therefore, increasing the bearing damping beyond a certain value may decrease the bearing and sloshing displacements but it may increase the base shear

  6. Design and Validation of a Control Algorithm for a SAE J2954-Compliant Wireless Charger to Guarantee the Operational Electrical Constraints

    Directory of Open Access Journals (Sweden)

    José Manuel González-González

    2018-03-01

    Full Text Available Wireless power transfer is foreseen as a suitable technology to provide charge without cables to electric vehicles. This technology is mainly supported by two coupled coils, whose mutual inductance is sensitive to their relative positions. Variations on this coefficient greatly impact the electrical magnitudes of the wireless charger. The aim of this paper is the design and validation of a control algorithm for an Society of Automotive Engineers (SAE J2954-compliant wireless charger to guarantee some operational and electrical constraints. These constraints are designed to prevent some components from being damaged by excessive voltage or current. This paper also presents the details for the design and implementation of the bidirectional charger topology in which the proposed controller is incorporated. The controller is installed on the primary and on the secondary side, given that wireless communication is necessary with the other side. The input data of the controller helps it decide about the phase shift required to apply in the DC/AC converter. The experimental results demonstrate how the system regulates the output voltage of the DC/AC converter so that some electrical magnitudes do not exceed predefined thresholds. The regulation, which has been tested when coil misalignments occur, is proven to be effective.

  7. [Differences of bi-directional regulative effects between acu-moxibustion and Chinese materia medica interventions].

    Science.gov (United States)

    Cao, Xin; Yu, Zhi; Xu, Bin

    2012-10-01

    Bi-directional regulation is referred to a balancing effect of both acu-moxibustion and Chinese materia medica interventions when the human body is experiencing a hyperactivity or hypoactivity due to abnormal intrinsic or external factors. In the present paper, the authors analyze their identical and different characteristics from: 1) definition; 2) characters of regulative effects of acu-moxibustion therapy: A) differentiation of meridian and zangfu-organs being the basis of treatment, B) four factors (acupoint-location, body's functional state, acupoint-formula and needle-manipulation techniques) dependant, C) entirety regulation, and D) centrotaxis modulation; 3) characters of Chinese materia medica intervention: including a) correspondence between the drug property and the syndrome being the basis of the regulative effect, b) multi-factors [components (antagonist and agonist), combination, dosages and processing quality of Chinese materia medica, and functional state of the human body] dependant, c) entirety regulation, and d) both centrotaxis and deviation adjustment. In one word, the bi-directional regulation effect is one of the basic characteristics of both acu-moxibustion and Chinese materia medica in clinical practice, but their basis and modes for inducing effects are different.

  8. Design And Construction Of Microcontroller Based Solar Battery Charger

    Directory of Open Access Journals (Sweden)

    Zar Ni Tun

    2015-08-01

    Full Text Available This research paper describes a microcontroller based battery charger by using solar energy. Solar-powered charging systems are already available in rural as well as urban areas. Solar energy is widely used around the worldwide. This system converts solar energy to electrical energy and stores it in a battery. Photovoltaic panel is used to convert solar energy to electrical energy and stored in a 12V battery. Battery is the main component in solar charging system to store the energy generated from sunlight for various application. This system requires sensor to sense whether the battery is fully charged or not. Microcontroller is the heart of the circuit. Lead-acid batteries are the most commonly used power source for many applications. This system consists of voltage sensing charging controlling and display unit.

  9. PANANICA quick charger for portable VIR and color camera

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y; Sato, K; Kitani, M

    1978-04-01

    Recently, the use of portable VTR and color camera systems has become popular for producing various news films, documentary films, general TV programs, and VTR commercials. A cylindrical sealed nickel--cadmium rechargeable battery has been used as the system power source, and, therefore, a method of quick charge to keep the battery ready for the next use has been strongly demanded. The usual charge method, however, leaves something to be desired. It cannot give full performance with respect to required capacity, and it damages the battery by overcharge. The PANANICA Quck Charger, which can charge the battery safely and effectively, was developed by using the pulse-charge method, a temperature sensor to control the charge, the charge-stop function to prevent overcharge, exclusive intergrated circuit, etc. (7 figures, 3 tables)

  10. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Fang, Jiakun; Li, Jinghua

    2016-01-01

    Nowadays, the electric power system and natural gas network are becoming increasingly coupled and interdependent. A harmonized integration of natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables in terms of system...... flexibility. This work focuses on the steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion. A unified energy flow formulation is developed to describe the nodal balance and branch flow in both systems and it is solved with the Newton......–Raphson method. Both the unification of units and the per-unit system are proposed to simplify the system description and to enhance the computation efficiency. The applicability of the proposed method is demonstrated by analyzing an IEEE-9 test system integrated with a 7-node natural gas network. Later, time...

  11. Early Childhood Media Exposure and Self-Regulation: Bi-Directional Longitudinal Associations.

    Science.gov (United States)

    Cliff, Dylan P; Howard, Steven J; Radesky, Jenny S; McNeill, Jade; Vella, Stewart A

    2018-04-26

    To investigate: i) prospective associations between media exposure (television viewing, computers, and electronic games) at 2 years and self-regulation at 4 and 6 years, and ii) bi-directional associations between media exposure and self-regulation at 4 and 6 years. We hypothesized that media exposure and self-regulation would display a negative prospective association and subsequent bi-directional inverse associations. Data from the nationally-representative Longitudinal Study of Australian Children (LSAC) when children were aged 2 (n=2786) and 4/6 years (n=3527) were used. Primary caregivers reported children's weekly electronic media exposure. A composite measure of self-regulation was computed from caregivers-, teacher-, and observer-report data. Associations were examined using linear regression and cross-lagged panel models, accounting for covariates. Lower television viewing and total media exposure at 2 years were associated with higher self-regulation at 4 years (both β -0.02; 95% confidence interval [CI] -0.03, -0.01). Lower self-regulation at 4 years was also significantly associated with higher television viewing (β -0.15; 95% CI -0.21, -0.08), electronic game use (β -0.05; 95% CI -0.09, -0.01), and total media exposure (β -0.19; 95% CI -0.29, -0.09) at 6 years. However, media exposure at 4 years was not associated with self-regulation at 6 years. Although media exposure duration at 2 years was associated with later self-regulation, and self-regulation at 4 years was associated with later media exposure, associations were of small magnitude. More research is needed examining content quality, social context, and mobile media use and child self-regulation. Copyright © 2018. Published by Elsevier Inc.

  12. Ga-Bi-Te system

    International Nuclear Information System (INIS)

    Rustamov, P.G.; Seidova, N.A.; Shakhbazov, M.G.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neorganicheskoj i Fizicheskoj Khimii)

    1976-01-01

    To elucidate the nature of interaction in the system Ga-Bi-Te, a study has been made of sections GaTe-Bi 2 Te 3 , Ga 2 Te 3 -Bi, GaTe-Bi and Bi 2 Te 3 -Ga. The alloys have been prepared by direct melting of the components or their alloys with subsequent homogenizin.o annealing at 400 deg C. The study has been made by the methods of differential thermal, microstructural analysis and by microhardness measurements. On the basis of literature data and data obtained a projection of the liquidus surface of the phase diagram for the system Ga-Bi-Te has been constructed. In the ternary system there are 17 curves of monovariant equilibrium dividing the liquidus into 10 fields of primary crystallization of phases, 9 points of non-variant equilibrium of which 4 points are triple eutectics and 5 points are triple peritectics

  13. Bi-directional causality in California's electricity and natural-gas markets

    International Nuclear Information System (INIS)

    Woo, Chi-Keung; Olson, Arne; Horowitz, Ira; Luk, Stephen

    2006-01-01

    The Granger instantaneous-causality test is applied to explore the potential causal relationships between wholesale electricity and natural-gas prices in California. The test shows these relationships to be bi-directional, and reveals California's electricity and natural-gas markets to be as inextricably intertwined as casual observation and theoretical considerations would suggest they ought to be. This meshing of markets exacerbated the effects of California's natural-gas crisis on the contemporaneous electricity crisis, while concurrently the electricity crisis may have contributed to the dysfunction in the national-gas market and helped to precipitate the natural-gas crisis. The finding supports an integrated approach, as opposed to a piecemeal approach, for formulating energy policy recommendations, not just in California but in the world at large

  14. Cooperation of electrically stimulated muscle and pneumatic muscle to realize RUPERT bi-directional motion for grasping.

    Science.gov (United States)

    Xikai Tu; Jiping He; Yue Wen; Jian Huang; Xinhan Huang; Hailong Huang; Meng Guo; Yong Yuan

    2014-01-01

    Robot-assisted rehabilitation is an active area of research to meet the demand of repetitive therapy in stroke rehabilitation. Robotic upper-extremity repetitive trainer (RUPERT) with its unidirectional pneumatic muscle actuation (PMA) can be used by most stroke patients that have difficulty moving in one direction because of a weak agonist or hyperactive antagonist. In this research, to broaden the usage of RUPERT, we not only add grasping functionality to the rehabilitation robot with the help of surface Functional Electrical Stimulation (FES) but also realize the robot joint bi-directional motion by using a PMA in cooperation with surface FES evoked paralyzed muscle force. This integrative rehabilitation strategy is explored for training patients to practice coordinated reaching and grasping functions. The effectiveness of this FES electrically evoked bio-actuator way is verified through a method that separates the mixed electromyogram (MEMG) into the electrically evoked electromyogram (EEMG) and voluntary electromyogram (VEMG). This is a promising approach to alleviate the size and mechanical complexity of the robot, thereby the cost of the joint bi-directional actuator rehabilitation robot by means of their own characteristics of stroke subjects.

  15. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghee, E-mail: jonghee.lee@etri.re.kr [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Koh, Tae-Wook [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Cho, Hyunsu [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Schwab, Tobias [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jae-Hyun [Department School of Global Convergence Studies, Hanbat National University, San 16-1, Duckmyoung-dong, Daejeon 305-719 (Korea, Republic of); Hofmann, Simone [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01062 Dresden (Germany); Lee, Jeong-Ik [OLED Research Center, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Yoo, Seunghyup [Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); and others

    2015-06-15

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m{sup −2}. At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage.

  16. Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers

    International Nuclear Information System (INIS)

    Lee, Jonghee; Koh, Tae-Wook; Cho, Hyunsu; Schwab, Tobias; Lee, Jae-Hyun; Hofmann, Simone; Lee, Jeong-Ik; Yoo, Seunghyup

    2015-01-01

    We report a study on transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors, enabled by color-conversion organic capping layers. Starting from a transparent blue OLED with an uncapped Ag top electrode exhibiting an average transmittance of 33.9%, a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped tris-(8-hydroxy-quinolinato)-aluminum (Alq3) capping layer is applied to achieve color-conversion from blue to orange-red on the top side while maintaining almost unchanged device transmittance. This color-conversion capping layer does not only change the color of the top side emission, but also enhances the overall device efficiency due to the optical interaction of the capping layer with the primary blue transparent OLED. Top white emission from the transparent bi-directional OLED exhibits a correlated color temperature around 6000–7000 K, with excellent color stability as evidenced by an extremely small variation in color coordinate of Δ(x,y)=(0.002, 0.002) in the forward luminance range of 100–1000 cd m −2 . At the same time, the blue emission color of bottom side is not influenced by the color conversion capping layer, which finally results in different emission colors of the two opposite sides of our transparent OLEDs. - Highlights: • We report transparent organic light-emitting diodes (OLEDs) with different bi-directional emission colors. • Transparent blue OLED with color-conversion organic capping layers (CCL) shows orange top side emission. • Top white emission exhibits a CCT around 7000 K, with excellent color stability on a driving voltage

  17. A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake

    International Nuclear Information System (INIS)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2011-01-01

    This paper proposes a new approach to modeling the magnetic circuit of an MR brake and applies it to explore an engineering optimization problem. The MR brake used in this work is a bi-directional type whose range of braking torque varies from negative to positive values. The model of the bi-directional MR brake can be split into two components: the mechanical part and the magnetic circuit. While the mechanical part is modeled using Bingham's equation, an approach to modeling the magnetic circuit is proposed in this work. For verification of the effectiveness of this method, an optimal design aiming to minimize the mass subjected to the geometric and desired torque constraints is undertaken. In order to solve such an optimization problem, which consists of numerous constraints and potential local optima, a particle swarm optimization (PSO) algorithm in combination with a gradient-based repair method is proposed. The optimal solution of the problem obtained from the proposed method is then investigated and compared with that obtained from finite element analysis (FEA). In addition, an experiment on a manufactured bi-directional MR brake with the optimal parameters is undertaken to validate the accuracy of the proposed analysis methodology

  18. UHD Video Transmission over Bi-Directional Underwater Wireless Optical Communication

    KAUST Repository

    Al-Halafi, Abdullah

    2018-04-02

    In this paper, we experimentally demonstrate for the first time a bi-directional underwater wireless optical communication system that is capable of transmitting an ultra high definition real-time video using a downlink channel while simultaneously receiving the feedback messages on the uplink channel. The links extend up to 4.5 m using QPSK, 16-QAM and 64-QAM modulations. The system is built using software defined platforms connected to TO-9 packaged pigtailed 520 nm directly modulated green laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter for video streaming on the downlink, and an avalanche photodiode (APD) module as the downlink receiver. The uplink channel is connected to another pigtailed 450 nm directly modulated blue LD with 1.2 GHz bandwidth as the optical uplink transmitter for the feedback channel, and to a second APD as the uplink receiver. We perform laboratory experiments on different water types. The measured throughput is 15 Mbps for QPSK, and 30 Mbps for both 16-QAM and 64-QAM. We evaluate the quality of the received live video streams using Peak Signal-to-Noise Ratio and achieve values up to 16 dB for 64-QAM when streaming UHD video in harbor II water and 22 dB in clear ocean.

  19. UHD Video Transmission over Bi-Directional Underwater Wireless Optical Communication

    KAUST Repository

    Al-Halafi, Abdullah; Shihada, Basem

    2018-01-01

    In this paper, we experimentally demonstrate for the first time a bi-directional underwater wireless optical communication system that is capable of transmitting an ultra high definition real-time video using a downlink channel while simultaneously receiving the feedback messages on the uplink channel. The links extend up to 4.5 m using QPSK, 16-QAM and 64-QAM modulations. The system is built using software defined platforms connected to TO-9 packaged pigtailed 520 nm directly modulated green laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter for video streaming on the downlink, and an avalanche photodiode (APD) module as the downlink receiver. The uplink channel is connected to another pigtailed 450 nm directly modulated blue LD with 1.2 GHz bandwidth as the optical uplink transmitter for the feedback channel, and to a second APD as the uplink receiver. We perform laboratory experiments on different water types. The measured throughput is 15 Mbps for QPSK, and 30 Mbps for both 16-QAM and 64-QAM. We evaluate the quality of the received live video streams using Peak Signal-to-Noise Ratio and achieve values up to 16 dB for 64-QAM when streaming UHD video in harbor II water and 22 dB in clear ocean.

  20. ROLE OF LEAF SURFACE WATER IN THE BI-DIRECTIONAL AMMONIA EXCHANGE BETWEEN THE ATMOSPHERE AND TERRESTRIAL BIOSPHERE

    Science.gov (United States)

    A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in Duplin County, North Carolina during the summer of 2002. Measurements indicate that the net canopy-scale ammonia exchange is bi-directional and has a significant...

  1. 10 kW Contactless Power Transfer System for Rapid Charger of Electric Vehicle

    OpenAIRE

    Yamanaka, Tomohiro; Kaneko, Yasuyoshi; Abe, Shigeru; Yasuda, Tomio

    2012-01-01

    A contactless power transfer system for charging electric vehicles requires a high efficiency, a large air gap, and a good tolerance to lateral misalignment and needs to be compact and lightweight. A double-sided winding 10 kW transformer based on a 1.5 kW H-shaped core transformer was developed for a rapid charger. Even though the transformer capacity was increased, the dimensions of the 10 kW transformer were almost the same as those of the 1.5 kW transformer. In this paper, the design conc...

  2. Possible fire hazard caused by mismatching electrical chargers with the incorrect device within the operating room.

    LENUS (Irish Health Repository)

    Hargrove, Martin

    2012-02-03

    It has come to our attention that numerous devices that need charging adaptors during cardiopulmonary bypass (CPB) have similar charging sockets but different voltage requirements. This has caused one of our devices in the operating theater to overheat and completely shut down when connected to an incorrect higher-voltage charger. The possibility of fire, device destruction, or patient harm in such circumstances is of serious concern.

  3. A high-damping magnetorheological elastomer with bi-directional magnetic-control modulus for potential application in seismology

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie; Zhu, Mi [Key Lab for Optoelectronic Technology and Systems, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-09-14

    A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when the orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.

  4. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues

    Science.gov (United States)

    Lubner, Sean D.; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C.; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  5. The effect of bi-directional loading on fatigue assessment of pressurized piping elbows with local thinned areas

    International Nuclear Information System (INIS)

    Balan, C.; Redekop, D.

    2005-01-01

    An elastic-plastic finite element study is conducted to determine the effect of bi-directional loading on the fatigue characteristics of pressurized 90 deg. piping elbows with local thinned areas. The analysis is conducted on pressurized piping elbows considered previously in the literature, but analyzed only for in-plane loading. Considering also the out-of-plane loading the present analysis seeks to simulate simultaneous horizontal and vertical seismic actions. A validation study is first conducted in which the present results obtained for in-plane loading are compared with previous results. Comparisons are made for deformation patterns, hoop strain histories, and reaction forces. The relative in-plane to out-of-plane load intensities to be adopted for the combined loading case is determined next. Results considering bi-directional loadings are then found for the pressurized piping elbow for a total of 23 cases of local area thinning. Finally conclusions are drawn about the significance of considering the additional out-of-plane loading

  6. Demonstration of surface transport in a hybrid Bi2Se3/Bi2Te3 heterostructure

    OpenAIRE

    Zhao, Yanfei; Chang, Cui-Zu; Jiang, Ying; DaSilva, Ashley; Sun, Yi; Wang, Huichao; Xing, Ying; Wang, Yong; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Jian

    2013-01-01

    In spite of much work on topological insulators (TIs), systematic experiments for TI/TI heterostructures remain absent. We grow a high quality heterostructure containing single quintuple layer (QL) of Bi2Se3 on 19 QLs of Bi2Te3 and compare its transport properties with 20 QLs Bi2Se3 and 20 QLs Bi2Te3. All three films are grown on insulating sapphire (0001) substrates by molecular beam epitaxy (MBE). In situ angle-resolved photoemission spectroscopy (ARPES) provides direct evidence that the su...

  7. Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation

    Science.gov (United States)

    Zhang, Liping; Wang, Guohong; Xiong, Zhenzhong; Tang, Hua; Jiang, Chuanjia

    2018-04-01

    A combined hydrothermal-calcination approach is developed to synthesize hierarchical β-Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced visible light photoactivity for Rhodamine B (RhB) degradation. First, Bi2O2CO3 microflowers were hydrothermally prepared using Bi(NO3)3·5H2O as feedstocks, and then a series of β-Bi2O3/g-C3N4 direct Z-scheme photocatalysts were synthesized via a facile calcination method using Bi2O2CO3 and g-C3N4 as precursors. The samples were systematically characterized by various characterization technologies including X-ray diffraction, scanning and transmission electron microscopes, Fourier transform infrared spectroscopy and N2 absorption-desorption equipment. It was found that the g-C3N4 content in the precursors played a key role in affecting the photocatalytic activity of the final products. The β-Bi2O3/g-C3N4 heterojunction exhibited higher photocatalytic activity than single active components (β-Bi2O3 and g-C3N4), indicating the presence of a synergistic effect between two active components in β-Bi2O3/g-C3N4 heterojunction. Among all as-prepared catalysts, the 70 wt.% g-C3N4/Bi2O2CO3 exhibits the highest activity for RhB degradation, and the apparent reaction rate constant k (42.2 × 10-3 min-1) is 3.1 and 1.7 times as high as that of pure β-Bi2O3 (13.5 × 10-3 min-1) and g-C3N4 (25.2 × 10-3 min-1), respectively. The enhanced photocatalytic performance of β-Bi2O3/g-C3N4 heterostructure photocatalysts is mainly due to the high surface area, closely contacted interfaces between the β-Bi2O3 and g-C3N4 component, and the formation of direct Z-scheme structure in the β-Bi2O3/g-C3N4 composites.

  8. Certain physicochemical characteristics of Bi1.4Y0.6O3 prepared by the method of direct high-frequency fusion in cold crucible

    International Nuclear Information System (INIS)

    Poluyan, A.F.; Lashneva, V.V.; Vecher, A.A.; Voropaev, A.G.; Savitskij, A.A.; Tatarintsev, V.M.

    1988-01-01

    Electric properties and the nature of conductivity of Bi 1.4 V 0.6 O 3 solid solution prepared by the method of direct high-frequency melting in the cold crucible are studied. A sample of Bi 1.4 Y 0.6 O 3 composition synthesized by this technique has a higher electric conductivity value as compared with analogous polycrystal sample has a cubic face-centered structure of the τ-Bi 2 O 3 type. On the basis of experimental e.m.f. values temperature dependences of pressures of oxygen dissociation for Bi 2 O 3 and Bi 1.4 Y 0.6 O 3 are calculated. Bi 1.4 Y 0.6 O 3 solid solution has lower values of Po 2 dissociation pressure as compared with bismuth oxide. This expands the limits of its application

  9. High-resolution quantization based on soliton self-frequency shift and spectral compression in a bi-directional comb-fiber architecture

    Science.gov (United States)

    Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong

    2018-03-01

    We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.

  10. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems

    Directory of Open Access Journals (Sweden)

    Sergio Ignacio Serna-Garcés

    2016-03-01

    Full Text Available Stand-alone power systems based on renewable energy sources are used to replace generators based on fossil fuels. Those renewable power systems also require Energy Storage Devices (ESD interfaced by a charger/discharger power converter, which consist of a bidirectional DC/DC converter, and a DC bus. This paper proposes a single sliding-mode controller (SMC for the charger/discharger DC/DC converter to provide a stable DC bus voltage in any operation condition: charging or discharging the ESD, or even without any power exchange between the ESD and the DC bus. Due to the non-linear nature of the power converter, the SMC parameters are adapted on-line to ensure global stability in any operation condition. Such stability of the adaptive SMC is mathematically demonstrated using analytical expressions for the transversality, reachability and equivalent control conditions. Moreover, a design procedure for the adaptive SMC parameters is provided in order to ensure the dynamic response required for the correct operation of the load. Finally, simulations and experimental tests validate the proposed controller and design procedure.

  11. A novel method for sampling the suspended sediment load in the tidal environment using bi-directional time-integrated mass-flux sediment (TIMS) samplers

    Science.gov (United States)

    Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.

    2017-12-01

    Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of

  12. Ultrahigh vacuum STM/STS studies of the Bi-O surface in Bi2Sr2CuOy single crystals

    International Nuclear Information System (INIS)

    Ikeda, Kazuto; Tomeno, Izumi; Takamuku, Kenshi; Yamaguchi, Koji; Itti, Rittaporn; Koshizuka, Naoki

    1992-01-01

    Scanning tunneling microscopic and spectroscopic studies were made on cleaved surfaces of Bi 2 Sr 2 CuO y single crystals using an ultrahigh-vacuum scanning tunneling microscope (UHV-STM). The modulation structures of the Bi-O surface were observed at room temperature with atomic resolution. The tunneling spectra showed electronic gap structures similar to those observed for the Bi-O surface of superconducting Bi-2212 single crystals. This suggests that superconductivity is not directly related to the electronic structure observed in the Bi-O plane. (orig.)

  13. Inductorless bi-directional piezoelectric transformerbased converters: Design and control considerations

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    electromagnetic interference, compact, light, high power density and low cost allows for promising market in the near future. The piezoelectric transformer technology has the potential to be used in various applications e.g. motor driver for magnetic resonance imaging scans, the electronic ballast for fluorescent...... of inductorless switch-mode power supplies employing piezoelectric transformers. The main focus of this research is on the functionality of the piezoelectric transformer-based power converters and applying control techniques in order to exploit advantages of the piezoelectric transformers for the power converters...... detector applicable for switch-mode power supplies, optimum phase detector, bi-directional wide bandwidth current sensor and a comprehensive analysis of piezoelectric transformer-based switch-mode power supplies for zero-voltage switching, where all finalized with improving the unidirectional topology...

  14. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Science.gov (United States)

    2010-01-01

    ... Requirements,” append this sentence to the end: “The test equipment must be capable of accounting for crest factor and frequency spectrum in its measurement of the UUT input current.” 4. Test Measurement: (a) Inactive Mode Energy Consumption Measurement. The measurement of the battery charger energy ratio shall...

  15. Imidazoline derivative templated synthesis of broccoli-like Bi2S3 and its electrocatalysis towards the direct electrochemistry of hemoglobin.

    Science.gov (United States)

    Chen, Xiaoqian; Wang, Qingxiang; Wang, Liheng; Gao, Feng; Wang, Wei; Hu, Zhengshui

    2015-04-15

    A broccoli-like bismuth sulfide (bBi2S3) was synthesized via a solvothermal method using a self-made imidazoline derivative of 2-undecyl-1-dithioureido-ethyl-imidazoline as the soft template. The morphology and chemical constitution of the product were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electrochemical characterization experiments show that the bBi2S3 has the higher specific surface area and standard heterogeneous electron transfer rate constant than the rod-like Bi2S3 (rBi2S3). Hemoglobin (Hb) was then chosen as a protein model to investigate the electrocatalytic property of the synthesized bBi2S3. The results show that Hb entrapped in the composite film of chitosan and bBi2S3 displays an excellent direct electrochemistry, and retains its biocatalytic activity toward the electro-reduction of hydrogen peroxide. The current response in the amperometry shows a linear response to H2O2 concentrations in the range from 0.4 to 4.8µM with high sensitivity (444µAmM(-1)) and low detection limit (0.096µM). The Michaelis-Menten constant (KM(app)) of the fabricated bioelectrode for H2O2 was determined as low as 1µM. These results demonstrate that the synthesized bBi2S3 offers a new path for the immobilization of redox-active protein and the construction of the third-generation biosensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Response of MnBi-Bi eutectic to freezing rate changes

    Science.gov (United States)

    Nair, M.; Fu, T.-W.; Wilcox, W. R.; Doddi, K.; Ravishankar, P. S.; Larson, D.

    1982-01-01

    Reference is made to a study by Fu and Wilcox (1981), which treated theoretically the influence on freezing rate of sudden changes in translation rate in the Bridgman-Stockbarger technique. This treatment is extended here to a linear ramped translation rate and an oscillatory freezing rate. It is found that oscillations above a few hertz are highly damped in small-diameter apparatus. An experimental test is carried out of the theoretical predictions for a sudden change of translation rate. The MnBi-Bi eutectic is solidified with current-induced interface demarcation. The experimental results accord reasonably well with theory if the silica ampoule wall is assumed to either (1) contribute only a resistance to heat exchange between the sample and the furnace wall or (2) transmit heat effectively in the axial direction by radiation. In an attempt to explain the fact that a finer microstructure is obtained in space, MnBi-Bi microstructure is determined when the freezing rate is increased or decreased rapidly. Preliminary results suggest that fiber branching does not occur as readily as fiber termination.

  17. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine.

    Science.gov (United States)

    Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng

    2014-12-30

    This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.

  18. The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chuncai Xiao

    2014-12-01

    Full Text Available This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM and improved particle swarm optimization (IPSO algorithm (SVM-IPSO. In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN, the basic particle swarm optimization (PSO method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.

  19. Clinico-serologic co-relation in bi-directional ABO incompatible hemopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sabita Basu

    2015-01-01

    Full Text Available Background: The ABO blood group system is of prime significance in red cell transfusion and organ transplantation. However, ABO compatibility is not critical in allogenic hemopoietic stem cell transplantation (HSCT and approximately 40-50% of hemopoietic stem cell transplants are ABO incompatible. This incompatibility may be major, minor or bi-directional. Though there are descriptions of transfusion practice and protocols in ABO incompatible HSCT, there are considerable variations and transfusion support in these patients can be very challenging. Aims: The immunohematologic observations in two cases of bi-directional ABO incompatible HSCT have been described, and clinico-serologic correlation has been attempted. Materials and Methods: In both cases, peripheral blood stem cell harvests were obtained using the Cobe spectra cell separator. Immunohematologic assessments in the donor and recipient were done as a part of pre HSCT evaluation. Both the standard tube technique and column agglutination method (Ortho Biovue Micro Bead System was used. Antibody screen was done by column agglutination method using three cell panel (Surgiscreen cells. Isoagglutinin titration was done by the master dilution method and standard validated techniques were used. Results: The pattern of laboratory findings in the two cases was different and so were the clinical outcomes. Although there was early engraftment in the first case, the second case developed pure red cell aplasia and this was well-reflected in the immunohematologic assessments. Conclusion: Immunohematologic assessment correlated well with the clinical picture and could be used to predict clinical outcome and onset of complications in ABO incompatible HSCT.

  20. Exploring bi-directional and SMS messaging for communications between Public Health Agencies and their stakeholders: a qualitative study.

    Science.gov (United States)

    Revere, Debra; Calhoun, Rebecca; Baseman, Janet; Oberle, Mark

    2015-07-08

    Communication technologies that enable bi-directional/two-way communications and cell phone texting (SMS) between public health agencies and their stakeholders may improve public health surveillance, ensure targeted distribution of alerts to hard-to-reach populations, reduce mortality and morbidity in an emergency, and enable a crucial feedback loop between public health agencies and the communities they serve. Building on prior work regarding health care provider preferences for receiving one-way public health communications by email, fax or SMS, we conducted a formative, exploratory study to understand how a bi-directional system and the incorporation of SMS in that system might be used as a strategy to send and receive messages between public health agencies and community-based organizations which serve vulnerable populations, health care providers, and public health workers. Our research question: Under what conditions and/or situations might public health agencies utilize bi-directional and/or SMS messaging for disseminating time-sensitive public health information (alerts, advisories, updates, etc.) to their stakeholders? A mixed methods (qualitative and quantitative) study was conducted between April and July 2014. Data collection included a survey distributed to health care providers and semi-structured interviews with providers, community- and government-based organization leaders and directors, and public health agency internal workforce staff. Survey respondents and interviewees were asked about their exposure to public health messages, how these messages are received and how the information in these messages are handled, and in what situations (for example, a local vs. a national event, a pandemic or emergency vs. a health update) a bi-directional and/or SMS messaging system might improve communications between public health agencies and their stakeholder group. Interview and survey data were qualitatively analyzed. Thematic codes were quantitized into

  1. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi{sub 2}MoO{sub 6} with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengyao [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China); Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Dai, Ke [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen, Hao, E-mail: hchenhao@mail.hzau.edu.cn [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China)

    2017-01-01

    Highlights: • A visible light heterojunction photocatalyst of BiOBr-Bi{sub 2}MoO{sub 6} was simply synthesized. • Carriers transferred efficiently in sandwiched layers causing an enhance activity. • A possible direct Z-scheme charge transfer mechanism of BiOBr-Bi2MoO6 is proposed. - Abstract: In this study, a direct Z-scheme heterojunction BiOBr-Bi{sub 2}MoO{sub 6} with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi{sub 2}MoO{sub 6} through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi{sub 2}MoO{sub 6} occurred mainly on the (001) facets of BiOBr and (001) facets of Bi{sub 2}MoO{sub 6}. The photocatalytic activity of the BiOBr-Bi{sub 2}MoO{sub 6} was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi{sub 2}MoO{sub 6} could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.

  2. Analysis and Design of Bi-Directional DC-DC Converter in the Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes. The deli......Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes...

  3. Bi-directional SIFT predicts a subset of activating mutations.

    Directory of Open Access Journals (Sweden)

    William Lee

    Full Text Available Advancements in sequencing technologies have empowered recent efforts to identify polymorphisms and mutations on a global scale. The large number of variations and mutations found in these projects requires high-throughput tools to identify those that are most likely to have an impact on function. Numerous computational tools exist for predicting which mutations are likely to be functional, but none that specifically attempt to identify mutations that result in hyperactivation or gain-of-function. Here we present a modified version of the SIFT (Sorting Intolerant from Tolerant algorithm that utilizes protein sequence alignments with homologous sequences to identify functional mutations based on evolutionary fitness. We show that this bi-directional SIFT (B-SIFT is capable of identifying experimentally verified activating mutants from multiple datasets. B-SIFT analysis of large-scale cancer genotyping data identified potential activating mutations, some of which we have provided detailed structural evidence to support. B-SIFT could prove to be a valuable tool for efforts in protein engineering as well as in identification of functional mutations in cancer.

  4. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper

    Science.gov (United States)

    Sun, C.; Jahangiri, V.

    2018-05-01

    Offshore wind turbines suffer from excessive bi-directional vibrations due to wind-wave misalignment and vortex induced vibrations. However, most of existing research focus on unidirectional vibration attenuation which is inadequate for real applications. The present paper proposes a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the tower and nacelle dynamic response in the fore-aft and side-side directions. An analytical model of the wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades, the tower and the 3d-PTMD is modeled. Aerodynamic loading is computed using the Blade Element Momentum method where the Prandtls tip loss factor and the Glauert correction are considered. JONSWAP spectrum is adopted to generate wave data. Wave loading is computed using Morisons equation in collaboration with the strip theory. Via a numerical search approach, the design formula of the 3d-PTMD is obtained and examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine model under misaligned wind, wave and seismic loading. Dual linear tuned mass dampers (TMDs) deployed in the fore-aft and side-side directions are utilized for comparison. It is found that the 3d-PTMD with a mass ratio of 2 % can improve the mitigation of the root mean square and peak response by around 10 % when compared with the dual linear TMDs in controlling the bi-directional vibration of the offshore wind turbines under misaligned wind, wave and seismic loading.

  5. Isolated battery charger with unit power factor; Carregador de baterias isolado com fator de potencia unitario

    Energy Technology Data Exchange (ETDEWEB)

    Co, Marcio Almeida

    1993-05-01

    This work presents a single phase, isolated AC/DC converter (Battery Charger) with active power factor correction in a single stage of power processing. the topology studied is the fed-current full-bridge, in boost mode operation, at fixed switching frequency. After a complete design of converter and simulations, the results of a 1.500 W e 50 kHz prototype are shown. a Unit Power Factor and Total Harmonic Distortion less than 5% were obtained. (author)

  6. Technical and legal considerations and solutions in the area of battery charging for electric vehicles

    Science.gov (United States)

    Juda, Z.

    2016-09-01

    The issue of protecting health of residents of urbanized areas from the effect of excessive particulate matter and toxic components of car exhaust gases imposes the need of introduction of clean electric vehicles to the market. The increasing market availability of electric vehicles, especially in the segment of short-range (neighborhood) vehicles is followed by development of new and advanced infrastructure solutions. This also applies to the increasingly popular hybrid vehicles PHEV (Plug-in Hybrid Electric Vehicles). However, problems with the existing designs are primarily associated with limited driving range on a single battery charge, the density of charging stations in urban and suburban area, energy system efficiency due to increased electricity demand and the unification of solutions for charging stations, on-board chargers and the necessary accessories. Technical solutions are dependent on many factors, including the type and size of battery in the vehicle and access to power grid with increased load capacity. The article discusses the legal and technical actions outlined in the above directions. It shows the available and planned solutions in this area.

  7. Bi-directional exchange of membrane components occurs during co-culture of mesenchymal stem cells and nucleus pulposus cells.

    Science.gov (United States)

    Strassburg, Sandra; Hodson, Nigel W; Hill, Patrick I; Richardson, Stephen M; Hoyland, Judith A

    2012-01-01

    Mesenchymal stem cell (MSC)-based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. We have previously demonstrated that when MSCs are co-cultured with nucleus pulposus (NP) cells with direct cell-cell contact, they differentiate along the NP lineage and simultaneously stimulate the degenerate NP cell population to regain a normal (non-degenerate) phenotype, an effect which requires cell-cell communication. However, the mechanisms by which NP cells and MSCs interact in this system are currently unclear. Thus, in this study we investigated a range of potential mechanisms for exchange of cellular components or information that may direct these changes, including cell fusion, gap-junctional communication and exchange of membrane components by direct transfer or via microvesicle formation. Flow cytometry of fluorescently labeled MSCs and NP cells revealed evidence of some cell fusion and formation of gapjunctions, although at the three timepoints studied these phenomena were detectable only in a small proportion of cells. While these mechanisms may play a role in cell-cell communication, the data suggests they are not the predominant mechanism of interaction. However, flow cytometry of fluorescently dual-labeled cells showed that extensive bi-directional transfer of membrane components is operational during direct co-culture of MSCs and NP cells. Furthermore, there was also evidence for secretion and internalization of membrane-bound microvesicles by both cell types. Thus, this study highlights bi-directional intercellular transfer of membrane components as a possible mechanism of cellular communication between MSC and NP cells.

  8. Imaging Formation Algorithm of the Ground and Space-Borne Hybrid BiSAR Based on Parameters Estimation from Direct Signal

    Directory of Open Access Journals (Sweden)

    Qingjun Zhang

    2014-01-01

    Full Text Available This paper proposes a novel image formation algorithm for the bistatic synthetic aperture radar (BiSAR with the configuration of a noncooperative transmitter and a stationary receiver in which the traditional imaging algorithm failed because the necessary imaging parameters cannot be estimated from the limited information from the noncooperative data provider. In the new algorithm, the essential parameters for imaging, such as squint angle, Doppler centroid, and Doppler chirp-rate, will be estimated by full exploration of the recorded direct signal (direct signal is the echo from satellite to stationary receiver directly from the transmitter. The Doppler chirp-rate is retrieved by modeling the peak phase of direct signal as a quadratic polynomial. The Doppler centroid frequency and the squint angle can be derived from the image contrast optimization. Then the range focusing, the range cell migration correction (RCMC, and the azimuth focusing are implemented by secondary range compression (SRC and the range cell migration, respectively. At last, the proposed algorithm is validated by imaging of the BiSAR experiment configured with china YAOGAN 10 SAR as the transmitter and the receiver platform located on a building at a height of 109 m in Jiangsu province. The experiment image with geometric correction shows good accordance with local Google images.

  9. Myths on Bi-direction Communication of Web 2.0 Based Social Networks: Is Social Network Truly Interactive?

    Science.gov (United States)

    2011-03-10

    more and more social interactions are happening on the on-line. Especially recent uptake of the social network sites (SNSs), such as Facebook (http...Smart phones • Live updates within social networks • Facebook & Twitters Solution: WebMon for Risk Management Need for New WebMon for Social Networks ...Title: Myths on bi-direction communication of Web 2.0 based social networks : Is social network truly interactive

  10. Targeting SR-BI for cancer diagnostics, imaging and therapy

    Directory of Open Access Journals (Sweden)

    Maneesha Amrita Rajora

    2016-09-01

    Full Text Available Scavenger receptor class B type I (SR-BI plays an important role in trafficking cholesteryl esters between the core of high density lipoprotein and the liver. Interestingly, this integral membrane protein receptor is also implicated in the metabolism of cholesterol by cancer cells, whereby overexpression of SR-BI has been observed in a number of tumours and cancer cell lines, including breast and prostate cancers. Consequently, SR-BI has recently gained attention as a cancer biomarker and exciting target for the direct cytosolic delivery of therapeutic agents. This brief review highlights these key developments in SR-BI-targeted cancer therapies and imaging probes. Special attention is given to the exploration of high density lipoprotein nanomimetic platforms that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery and cancer diagnostics, and promising future directions in the development of these agents.

  11. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity

    Science.gov (United States)

    He, Rongan; Zhou, Jiaqian; Fu, Huiqing; Zhang, Shiying; Jiang, Chuanjia

    2018-02-01

    Constructing direct Z-scheme heterojunction is an effective approach to separating photogenerated charge carriers and improving the activity of semiconductor photocatalysts. Herein, a composite of bismuth(III) oxide (Bi2O3) and graphitic carbon nitride (g-C3N4) was in situ fabricated at room temperature by photoreductive deposition of Bi3+ and subsequent air-oxidation of the resultant metallic Bi. Quantum-sized ω-Bi2O3 nanoparticles approximately 6 nm in diameter were uniformly distributed on the surface of mesoporous g-C3N4. The as-prepared Bi2O3/g-C3N4 composite exhibited higher photocatalytic activity than pure Bi2O3 and g-C3N4 for photocatalytic degradation of phenol under visible light. Reactive species trapping experiments revealed that superoxide radicals and photogenerated holes played important roles in the photocatalytic degradation of phenol. The enhanced photocatalytic activity, identification of reactive species and higher rate of charge carrier recombination (as indicated by stronger photoluminescence intensity) collectively suggest that the charge migration within the Bi2O3/g-C3N4 composite followed a Z-scheme mechanism. Photogenerated electrons on the conduction band of Bi2O3 migrate to the valence band of g-C3N4 and combine with photogenerated holes therein. At the cost of these less reactive charge carriers, the Z-scheme heterojunction enables efficient charge separation, while preserving the photogenerated electrons and holes with stronger redox abilities, which is beneficial for enhanced photocatalytic activity.

  12. An analysis of periodic solutions of bi-directional associative memory networks with time-varying delays

    International Nuclear Information System (INIS)

    Cao Jinde; Jiang Qiuhao

    2004-01-01

    In this Letter, several sufficient conditions are derived for the existence and uniqueness of periodic oscillatory solution for bi-directional associative memory (BAM) networks with time-varying delays by employing a new Lyapunov functional and an elementary inequality, and all other solutions of the BAM networks converge exponentially to the unique periodic solution. These criteria are presented in terms of system parameters and have important leading significance in the design and applications of periodic neural circuits for delayed BAM. As an illustration, two numerical examples are worked out using the results obtained

  13. Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters

    CERN Document Server

    Cravero, Jean-Marc

    2013-01-01

    This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.

  14. A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range

    Directory of Open Access Journals (Sweden)

    Wenzheng Xu

    2017-10-01

    Full Text Available Phase-shifted converters are practically important to provide high conversion efficiencies through soft-switching techniques. However, the limitation on a resonant inductor current in the converters often leads to a non-fulfillment of the requirement of minimum load current. This paper presents a new power electronics control technique to enable the dual features of bi-directional power flow and an extended load range for soft-switching in phase-shift-controlled DC-DC converters. The proposed technique utilizes two identical full bridge converters and inverters in conjunction with a new control logic for gate-driving signals to facilitate both Zero Current Switching (ZCS and Zero Voltage Switching (ZVS in a single phase-shift-controlled DC-DC converter. The additional ZCS is designed for light load conditions at which the minimum load current cannot be attained. The bi-directional phase-shift-controlled DC-DC converter can implement the function of synchronous rectification. Its fast dynamic response allows for quick energy recovery during the regenerative braking of traction systems in electrified trains.

  15. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  16. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    Science.gov (United States)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  17. Local variation in Bi crystal sites of epitaxial GaAsBi studied by photoelectron spectroscopy and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Laukkanen, P., E-mail: pekka.laukkanen@utu.fi [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Punkkinen, M.P.J., E-mail: marko.punkkinen@utu.fi [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Lahti, A. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Puustinen, J. [Optoelectronics Research Centre, Tampere University of Technology, FI-33101 Tampere (Finland); Tuominen, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Hilska, J. [Optoelectronics Research Centre, Tampere University of Technology, FI-33101 Tampere (Finland); Mäkelä, J.; Dahl, J.; Yasir, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kuzmin, M. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021, Russian Federation (Russian Federation); Osiecki, J.R.; Schulte, K. [The MAX IV laboratory, P. O. Box 118, Lund University, SE-221 00 Lund (Sweden); Guina, M. [Optoelectronics Research Centre, Tampere University of Technology, FI-33101 Tampere (Finland); Kokko, K. [Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2017-02-28

    Highlights: • XPS is used to study bulk-like properties of GaAsBi crystals. • Surface effects are removed from XPS signal by an epitaxial AlAs cap film. • Local variation of Bi composition is found. • The result is consistent with photoluminescence and theoretical results. • Ga vacancies and Bi crystallites are suggested to be dominating defects. - Abstract: Epitaxial Bi-containing III–V crystals (III-V{sub 1-x}Bi{sub x}) have attracted increasing interest due to their potential in infrared applications. Atomic-scale characterization and engineering of bulk-like III-V{sub 1-x}Bi{sub x} properties (e.g., Bi incorporation and defect formation) are challenging but relevant to develop applications. Toward that target, we report here that the traditional surface-science measurement of photoelectron spectroscopy (PES) is a potential, non-destructive method to be combined in the studies of bulk-like properties, when surface effects are properly removed. We have investigated epitaxial GaAs{sub 1-x}Bi{sub x} films, capped by epitaxial AlAs layers, with high-resolution photoelectron spectroscopy. The Bi5d core-level spectra of GaAs{sub 1-x}Bi{sub x} together with ab-initio calculations give direct evidence of variation of Bi bonding environment in the lattice sites. The result agrees with photoluminescence (PL) measurement which shows that the studied GaAs{sub 1-x}Bi{sub x} films include local areas with higher Bi content, which contribute to PL but do not readily appear in x-ray diffraction (XRD). The measured and calculated Bi core-level shifts show also that Ga vacancies and Bi clusters are dominant defects.

  18. Parenting and Anxiety: Bi-directional Relations in Young Children.

    Science.gov (United States)

    Gouze, Karen R; Hopkins, Joyce; Bryant, Fred B; Lavigne, John V

    2017-08-01

    Developmental psychopathologists have long posited a reciprocal relation between parenting behaviors and the development of child anxiety symptoms. Yet, little empirical research has utilized a longitudinal design that would allow exploration of this bi-directional influence. The present study examined the reciprocal relations between parental respect for autonomy, parental hostility, and parental support, and the development of childhood anxiety during a critical developmental period-the transition from preschool to kindergarten and then first grade. Study participants included a community sample of 391 male and 405 female socioeconomically, racially and ethnically diverse 4 to 6-7 year olds. 54 % of the sample was White, non-Hispanic, 16.8 % was African American, 20.4 % was Hispanic, 2.4 % were Asian and 4.4 % self-identified as Other or mixed race. Parent report and observational methodology were used. Parenting and anxiety were found to interact reciprocally over time. Higher levels of age 4 anxiety led to reduced respect for child autonomy at age 5. At age 4 higher levels of parental hostility led to small increases in age 5 anxiety, and increased age 5 anxiety led to increased levels of age 6 parent hostility. Parental support at age 5 resulted in decreased anxiety symptoms at age 6-7 while higher age 5 anxiety levels were associated with reductions in age 6-7 parental support. No relations were found between these variables at the younger ages. Although the magnitude of these findings was small, they suggest that early treatment for childhood anxiety should include both parent intervention and direct treatment of the child's anxiety symptoms.

  19. DFT study on the interfacial properties of vertical and in-plane BiOI/BiOIO3 hetero-structures.

    Science.gov (United States)

    Dai, Wen-Wu; Zhao, Zong-Yan

    2017-04-12

    Composite photocatalysts with hetero-structures usually favor the effective separation of photo-generated carriers. In this study, BiOIO 3 was chosen to form a hetero-structure with BiOI, due to its internal polar field and good lattice matching with BiOI. The interfacial properties and band offsets were focused on and analyzed in detail by DFT calculations. The results show that the charge depletion and accumulation mainly occur in the region near the interface. This effect leads to an interfacial electric field and thus, the photo-generated electron-hole pairs can be easily separated and transferred along opposite directions at the interface, which is significant for the enhancement of the photocatalytic activity. Moreover, according to the analysis of band offsets, the vertical BiOI/BiOIO 3 belongs to the type-II hetero-structure, while the in-plane BiOI/BiOIO 3 belongs to the type-I hetero-structure. The former type of hetero-structure has more favorable effects to enhance the photocatalytic activity of BiOI than that of the latter type of hetero-structure. In the case of the vertical BiOI/BiOIO 3 hetero-structure, photo-generated electrons can move from the conduction band of BiOI to that of BiOIO 3 , while holes can move from the valence band of BiOIO 3 to that of BiOI under solar radiation. In addition, the introduced internal electric field functions as a selector that can promote the separation of photo-generated carriers, resulting in the higher photocatalytic quantum efficiency. These findings illustrate the underlying mechanism for the reported experiments, and can be used as a basis for the design of novel highly efficient composite photocatalysts with hetero-structures.

  20. Fuzzy Bi-level Decision-Making Techniques: A Survey

    Directory of Open Access Journals (Sweden)

    Guangquan Zhang

    2016-04-01

    Full Text Available Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques.

  1. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  2. A novel biosensor based on the direct electrochemistry of horseradish peroxidase immobilized in the three-dimensional flower-like Bi_2WO_6 microspheres

    International Nuclear Information System (INIS)

    Liu, Hui; Guo, Kai; Duan, Congyue; Chen, Xianjin; Zhu, Zhenfeng

    2016-01-01

    Three-dimensional flower-like Bi_2WO_6 microspheres (3D-Bi_2WO_6 MSs) have been synthesized through a simple hydrothermal method. The morphology and structure of 3D-Bi_2WO_6 MSs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 3D-Bi_2WO_6 MSs subsequently were used to immobilize horseradish peroxidase (HRP) and fabricate a mediator-free biosensor for the detection of H_2O_2. Spectroscopic and electrochemical results reveal that 3D-Bi_2WO_6 MSs constitute an excellent immobilization matrix with biocompatibility for enzymes. Meanwhile, due to unique morphology of the flower-like microspheres, the direct electron transfer of HRP is facilitated and the prepared biosensors display good performances for the detection of H_2O_2 with a wide linear range, including two linear sections: 0.5–100 μM (R"2 = 0.9983) and 100–250 μM (R"2 = 0.9981), as well as an extremely low method detection limit of 0.18 μM. - Highlights: • 3D-Bi_2WO_6 microspheres are used to fabricate a mediator-free biosensor firstly. • The biosensor displays a wide linear range of 0.5–250 μM for H_2O_2. • The biosensor exhibits a low detection limit of 0.18 μM for H_2O_2.

  3. Synthesis of chemically bonded BiOCl@Bi{sub 2}WO{sub 6} microspheres with exposed (0 2 0) Bi{sub 2}WO{sub 6} facets and their enhanced photocatalytic activities under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongchao [Qingdao Agricultural University, Qingdao 266109 (China); Chen, Zhiwei [School of Life Sciences, Shandong University of Technology, Zibo 255049 (China); Qu, Dan [Qingdao Agricultural University, Qingdao 266109 (China); Shi, Jinsheng, E-mail: jsshiqn@aliyun.com [Qingdao Agricultural University, Qingdao 266109 (China)

    2016-01-15

    Graphical abstract: - Highlights: • BiOCl@Bi{sub 2}WO{sub 6} composites were prepared via a controlled anion exchange method. • The shell of composites was composed of Bi{sub 2}WO{sub 6} sheets with exposed (0 2 0) facets. • The BiOCl@Bi{sub 2}WO{sub 6} composites showed efficient photocatalytic activity. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi{sub 2}WO{sub 6} photocatalysts has been extensively studied for its photocatalytic activity. However, few works have been conducted on hierarchical Bi{sub 2}WO{sub 6} composite photocatalysts with specifically exposed facets. In this work, we report a facile method to synthesize BiOCl@Bi{sub 2}WO{sub 6} hierarchical composite microspheres. Bi{sub 2}WO{sub 6} nanosheets with specifically exposed (0 2 0) facet were directly formed on the surface of BiOCl precursor microspheres via a controlled anion exchange route between BiOCl and Na{sub 2}WO{sub 4}. The visible-light photocatalytic activity of the BiOCl@Bi{sub 2}WO{sub 6} heterojunction with exposed (0 2 0) facets (denoted as BiOCl@Bi{sub 2}WO{sub 6}) was investigated by degradation of Rhodamine B (RhB) and ciprofloxacin (CIP) aqueous solution under visible light irradiation. The experimental results indicated that the BiOCl@Bi{sub 2}WO{sub 6} composite microsphere with intimate interfacial contacts exhibited improved efficiency for RhB photodegradation in comparison with pure BiOCl and Bi{sub 2}WO{sub 6}. The BiOCl@Bi{sub 2}WO{sub 6} composite microsphere also shows high photocatalytic activity for degradation of CIP under visible light irradiation. The enhanced photocatalytic performance of BiOCl@Bi{sub 2}WO{sub 6}-020 hierarchical microspheres can be ascribed to the improved visible light harvesting ability, high charge separation and transfer. This work will make significant contributions toward the exploration of novel heterostructures with high potential in photocatalytic applications.

  4. Using a Single VCSEL Source Employing OFDM Downstream Signal and Remodulated OOK Upstream Signal for Bi-directional Visible Light Communications.

    Science.gov (United States)

    Yeh, Chien-Hung; Wei, Liang-Yu; Chow, Chi-Wai

    2017-11-20

    In this work, we propose and demonstrate for the first time up to our knowledge, using a 682 nm visible vertical-cavity surface-emitting laser (VCSEL) applied in a bi-directional wavelength remodulated VLC system with a free space transmission distance of 3 m. To achieve a high VLC downstream traffic, spectral efficient orthogonal-frequency-division-multiplexing quadrature-amplitude-modulation (OFDM-QAM) with bit and power loading algorithms are applied on the VCSEL in the central office (CO). The OFDM downstream wavelength is remodulated by an acousto-optic modulator (AOM) with OOK modulation to produce the upstream traffic in the client side. Hence, only a single VCSEL laser is needed for the proposed bi-directional VLC system, achieving 10.6 Gbit/s OFDM downstream and 2 Mbit/s remodulated OOK upstream simultaneously. For the proposed system, as a single laser source with wavelength remodulation is used, the laser wavelength and temperature managements at the client side are not needed; and the whole system could be cost effective and energy efficient.

  5. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...... constraints in both systems. An iterative method is proposed to deal with the nonlinearity in the proposed model. The models of the natural gas and power system are linearized in every iterative step. Simulation results demonstrate the effectiveness of the approach. Applicability of the proposed method...... is tested in the sample case. Finally, the effect of Power to Gas (P2G) on the daily economic dispatch is also investigated....

  6. A new method for the measurement of two-phase mass flow rate using average bi-directional flow tube

    International Nuclear Information System (INIS)

    Yoon, B. J.; Uh, D. J.; Kang, K. H.; Song, C. H.; Paek, W. P.

    2004-01-01

    Average bi-directional flow tube was suggested to apply in the air/steam-water flow condition. Its working principle is similar with Pitot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of pitot tube when it is used in the depressurization condition. The suggested flow tube was tested in the air-water vertical test section which has 80mm inner diameter and 10m length. The flow tube was installed at 120 of L/D from inlet of test section. In the test, the pressure drop across the average bi-directional flow tube, system pressure and average void fraction were measured on the measuring plane. In the test, fluid temperature and injected mass flow rates of air and water phases were also measured by a RTD and two coriolis flow meters, respectively. To calculate the phasic mass flow rates : from the measured differential pressure and void fraction, Chexal drift-flux correlation was used. In the test a new correlation of momentum exchange factor was suggested. The test result shows that the suggested instrumentation using the measured void fraction and Chexal drift-flux correlation can predict the mass flow rates within 10% error of measured data

  7. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing on a...... circuit demonstrates a 1/f noise corner frequency around 10 kHz....

  8. The influence of the first non-singular stress terms on crack initiation direction in an orthotropic bi-material plate

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Hrstka, M.; Profant, T.; Krepl, Ondřej; Ševeček, O.; Kotoul, M.

    2014-01-01

    Roč. 71, JUN (2014), s. 67-75 ISSN 0167-8442 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA14-11234S Institutional support: RVO:68081723 Keywords : Bi-material notch * Crack initiation direction * Non-singular stress term * Generalized fracture mechanics * Path-independent integral Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.262, year: 2014

  9. Comparison of ultraviolet Bi-directional Reflectance Distribution Function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS)

    NARCIS (Netherlands)

    Butler, J.J.; Park, H.; Barnes, P.Y.; Early, E.A.; Eijk-Olij, C. van; Zoutman, A.E.; Buller-Leeuwen, S. van; Groote Schaarsberg, J.

    2002-01-01

    The measurement and long-term monitoring of global total ozone by ultraviolet albedo measuring satellite instruments require accurate and precise determination of the Bi-directional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in the pre-launch calibration of those

  10. Bi-Directional Theta Modulation between the Septo-Hippocampal System and the Mammillary Area in Free-Moving Rats

    Directory of Open Access Journals (Sweden)

    Ming Ruan

    2017-09-01

    Full Text Available Hippocampal (HPC theta oscillations have long been linked to various functions of the brain. Many cortical and subcortical areas that also exhibit theta oscillations have been linked to functional circuits with the hippocampus on the basis of coupled activities at theta frequencies. We examine, in freely moving rats, the characteristics of diencephalic theta local field potentials (LFPs recorded in the supramammillary/mammillary (SuM/MM areas that are bi-directionally connected to the HPC through the septal complex. Using partial directed coherence (PDC, we find support for previous suggestions that SuM modulates HPC theta at higher frequencies. We find weak separation of SuM and MM by dominant theta frequency recorded locally. Contrary to oscillatory cell activities under anesthesia where SuM is insensitive, but MM is sensitive to medial septal (MS inactivation, theta LFPs persisted and became indistinguishable after MS-inactivation. However, MS-inactivation attenuated SuM/MM theta power, while increasing the frequency of SuM/MM theta. MS-inactivation also reduced root mean squared power in both HPC and SuM/MM equally, but reduced theta power differentially in the time domain. We provide converging evidence that SuM is preferentially involved in coding HPC theta at higher frequencies, and that the MS-HPC circuit normally imposes a frequency-limiting modulation over the SuM/MM area as suggested by cell-based recordings in anesthetized animals. In addition, we provide evidence that the postulated SuM-MS-HPC-MM circuit is under complex bi-directional control, rather than SuM and MM having roles as unidirectional relays in the network.

  11. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    International Nuclear Information System (INIS)

    Lee, Jun Hee; Fishman, Randy S; Kézsmáki, István

    2016-01-01

    Due to the complicated magnetic and crystallographic structures of BiFeO 3 , its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO 3 . First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO 3 . A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. (paper)

  12. Photoelectrochemical properties of TiO2 Nanotube Arrays Modified with BiOCl nanosheets

    International Nuclear Information System (INIS)

    Liu, Haipeng; Xu, Guangqing; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    Highlights: • BiOCl were deposited on TiO2 NTAs by sequential chemical bath deposition. • BiOCl can decrease background photocurrent and increase current response. • High sensitivity BiOCl/TiO2 is due to the direct oxidation of organics on BiOCl. - Abstract: BiOCl nanosheets were deposited on anodized TiO 2 nanotube arrays (NTAs) by sequential chemical bath deposition method to get BiOCl/TiO 2 NTAs for photoelectrochemical detection of organic compounds (represented by glucose). The structures, elemental components and morphologies of TiO 2 and BiOCl/TiO 2 NTAs were characterized by using X-ray diffraction diffractometer, scanning electron microscope and transmission electron microscope. The photoelectrochemical behaviors of TiO 2 and BiOCl/TiO 2 NTAs in the buffer and glucose solutions were measured by cyclic votammetry and amperometry with different optical powers. The modification of BiOCl nanosheets on TiO 2 NTAs decreases the photocurrents of TiO 2 NTAs in the buffer solution and increases the current response to glucose. Both of the background photocurrent decrease and current response increase are benefit for photoelectrochemical detection of organic compounds. When glucose was used as the target organic compound, the optimized BiOCl/TiO 2 NTAs sensor achieved a sensitivity of 0.327 μA/μM (0.417 μA·cm −2 ·μM −1 ), linear range from 0 to 1300 μM and calculated detection limit of 5.7 μM. Mechanisms of BiOCl modification were studied by measuring the optical absorption and hydroxyl radical HO· productivity. The transfer of holes from TiO 2 to BiOCl and the direct oxidation of organic compounds on BiOCl nanosheets led to the decrease of background photocurrent (lower reaction rate of water splitting on BiOCl nanosheets) and the increase of current response to organic compounds (higher reaction rate of direct oxidation of organic compounds)

  13. Constant DC-Capacitor Voltage-Control-Based Harmonics Compensation Strategy of Smart Charger for Electric Vehicles in Single-Phase Three-Wire Distribution Feeders

    Directory of Open Access Journals (Sweden)

    Fuka Ikeda

    2017-06-01

    Full Text Available This paper discusses harmonic current compensation of the constant DC-capacitor voltage-control (CDCVC-based strategy of smart chargers for electric vehicles (EVs in single-phase three-wire distribution feeders (SPTWDFs under nonlinear load conditions. The basic principle of the CDCVC-based harmonics compensation strategy under nonlinear load conditions is discussed in detail. The instantaneous power flowing into the three-leg pulse-width modulated (PWM rectifier, which performs as a smart charger, shows that the CDCVC-based strategy achieves balanced and sinusoidal source currents with a unity power factor. The CDCVC-based harmonics compensation strategy does not require any calculation blocks of fundamental reactive, unbalanced active, and harmonic currents. Thus, the authors propose a simplified algorithm to compensate for reactive, unbalanced active, and harmonic currents. A digital computer simulation is implemented to confirm the validity and high practicability of the CDCVC-based harmonics compensation strategy using PSIM software. Simulation results demonstrate that balanced and sinusoidal source currents with a unity power factor in SPTWDFs are obtained on the secondary side of the pole-mounted distribution transformer (PMDT during both the battery-charging and discharging operations in EVs, compensating for the reactive, unbalanced active, and harmonic currents.

  14. In situ grown hierarchical 50%BiOCl/BiOI hollow flowerlike microspheres on reduced graphene oxide nanosheets for enhanced visible-light photocatalytic degradation of rhodamine B

    Science.gov (United States)

    Su, Xiangde; Yang, Jinjin; Yu, Xiang; Zhu, Yi; Zhang, Yuanming

    2018-03-01

    50%BiOCl/BiOI/reduced graphene oxide (50%BiOCl/BiOI/rGO) composite photocatalyst was synthesized successfully by a facile one-step solvothermal route in this work. Reduction of graphene oxide (GO) took place in the process of solvothermal reaction and a new Bi-C bond between rGO and 50%BiOCl/BiOI was formed. The introduction of rGO affected the morphology of 50%BiOCl/BiOI, resulting in the transformation of 50%BiOCl/BiOI from solid microspheres to hollow microspheres. Both the introduction of rGO and formation of 50%BiOCl/BiOI hollow microspheres can facilitate the light absorption. The strong interaction between 50%BiOCl/BiOI and rGO and the electrical conductivity of rGO greatly improved the effective separation of photogenerated carriers. Hence, GOB-5 demonstrated the highest photocatalytic activity which was over twice of the pristine 50%BiOCl/BiOI in the presence of visible light. Mechanism study revealed that 50%BiOCl/BiOI generated electrons and holes in the presence of visible light, and holes together with rad O2- generated from reduction of O2 by electrons degraded the pollutant directly. Overall, this work provides an excellent reference to the synthesis of chemically bonded BiOX/BiOY (X, Y = Cl, Br, I)/rGO nanocomposite and helps to promote their applications in environmental protection and photoelectric conversion.

  15. PSO based PI controller design for a solar charger system.

    Science.gov (United States)

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  16. PSO Based PI Controller Design for a Solar Charger System

    Directory of Open Access Journals (Sweden)

    Her-Terng Yau

    2013-01-01

    Full Text Available Due to global energy crisis and severe environmental pollution, the photovoltaic (PV system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs.

  17. Technologies for hydrogen production based on direct contact of gaseous hydrocarbons and evaporated water with Molten Pb or Pb-Bi

    International Nuclear Information System (INIS)

    Gulevich, A. V.; Martynov, P. N.; Gulevsky, V. A.; Ulyanov, V. V.

    2007-01-01

    Results of studies intended for the substantiation of a new energy-saving and safe technology for low cost hydrogen production have been presented. The technology's basis is direct mixing of water and (or) gaseous hydrocarbons with heavy liquid metal coolants (HLMC) Pb or Pb-Bi. Preliminary research has been done on thermal dynamics and kinetics of the processes taking place in the interaction of HLMC with hydrocarbon-containing gases. It has been shown as a result that water and gaseous hydrocarbons interact with molten Pb and Pb-Bi relatively quietly in chemical aspect (without ignition and explosions). Therefore, (and taking into account the thermal physics, physical and chemical properties of HLMC such as low pressure of saturated vapor of Pb and Pb- Bi in enhanced temperatures, their good heat conductivity and heat capacity, low viscosity, etc.) heat transfer is possible from the molten metal to water and hydrocarbons without heat transferring partitions (that is, by direct contact of the working media). Devices to implement this method of heating liquid and gaseous media provide essential advantages: - A simple design; - None heat-transferring surfaces subject to corrosion, contamination, thermal fatigue, vibration impacts; - A high effectiveness owing to a larger heat exchanging surface per volume unit; - A small hydraulic resistance. The possibility and effectiveness of heating various gaseous and liquid media in their direct contact with molten Pb and Pb-Bi has been substantiated convincingly by experimental results at IPPE. Besides, the following processes of hydrogen-containing media conversion have been proved feasible thereby. 1. Water decomposition into hydrogen and oxygen. The process can develop at temperatures of 400-1000 degree C. It is necessary to provide constant removal of oxygen from the reaction zone and maintain a minimum possible content of chemically active oxygen in the melt. 2. Pyrolytic decomposition of hydrocarbons into carbon and

  18. Bi-directional Exchange: the Cornerstone of Globally Focused Social Work.

    Science.gov (United States)

    Parker, Gary; Ali, Samira; Ringell, Kassia; McKay, Mary

    2014-03-01

    Social work holds a unique place relative to other professions in that it prioritizes the elimination of human suffering as its primary goal. The roots of the profession are firmly planted in Western theories, historically and culturally specific perspectives, and knowledge. History has repeatedly demonstrated an association between the arrival of Westerners and the subsequent control of natural resources. Some argue that the development of global social work practice has serious pitfalls, including diverting needed resources away from local contexts and inadvertently spreading western world-views, paradigms and practices. However, the social work profession is uniquely positioned to offer expertise and collaborate with those experiencing the serious consequences of social inequity and the dearth of economic and social resources locally and across the globe. Grounded in anti-oppressive theory, guided by the difficult, yet acute awareness of western privilege and racism, and drawing from social/collective action and collaborative paradigms, a bi-directional exchange and action are detailed as the foundations for globally focused social work. The skills and knowledge base for global social work are essential as populations locally and worldwide are impacted by a global economic system that innately increases serious social inequity. Comprehensive training and preparation for globally focused social work, critical to successful engagement in global practice are outlined.

  19. Testing of a naturally aged nuclear power plant inverter and battery charger

    International Nuclear Information System (INIS)

    Gunther, W.E.

    1988-09-01

    A naturally aged inverter and battery charger were obtained from the Shippingport facility. This equipment was manufactured in 1974, and was installed at Shippingport in 1975 as part of a major plant modification. Testing was performed on this equipment under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program to evaluate the type and extent of degradation due to aging, and to determine the effectiveness of condition monitoring techniques which could be used to detect aging effects. Steady state testing was conducted over the equipment's entire operating range. Step load changes were also initiated in order to monitor the electrical response. During this testing, component temperatures were monitored and circuit waveforms analyzed. Results indicated that aging had not substantially affected equipment operation. On the other hand, when compared with original acceptance test data, the monitoring techniques employed were sensitive to changes in measurable component and equipment parameters indicating the viability of detecting degradation prior to catastrophic failure. 7 refs., 34 figs., 12 tabs

  20. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study

    Science.gov (United States)

    Opoku, Francis; Govender, Krishna Kuben; Sittert, Cornelia Gertina Catharina Elizabeth van; Govender, Penny Poomani

    2018-01-01

    Graphite-like carbon nitride (g-C3N4)-based heterostructures have received much attention due to their prominent photocatalytic activity. The g-C3N4/Bi2WO6 and g-C3N4/Bi2MoO6 heterostructures, which follow a typical hetero-junction charge transfer mechanisms show a weak potential for hydrogen evolution and reactive radical generation under visible light irradiation. A mediator-free Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures photocatalyst are designed for the first time using first-principles studies. Moreover, theoretical understanding of the underlying mechanism, the effects of interfacial composition and the role the interface play in the overall photoactivity is still unexplained. The calculated band gap of the heterostructures is reduced compared to the bulk Bi2WO6 and Bi2MoO6. In this study, we systematically calculated energy band structure, optical properties and charge transfer of the g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures using the hybrid density functional theory approach. The results show that the charge transfer at the interface of the heterostructures induces a built-in potential, which benefits the separation of photogenerated charge carriers. The g-C3N4/Bi2MoO6(010) heterostructure with more negative adhesion energy (-1.10 eVA-2) is predicted to have a better adsorptive ability and can form more easily compared to the g-C3N4/Bi2WO6(010) interface (-1.16 eVA-2). Therefore, our results show that the g-C3N4 interaction with Bi2MoO6 is stronger than Bi2WO6, which is also verified by the smaller vertical separation (3.25 Å) between Bi2MoO6 and g-C3N4 compared to the g-C3N4/Bi2WO6(010) interface (3.36 Å). The optical absorption verifies that these proposed Z-scheme heterostructures are excellent visible light harvesting semiconductor photocatalyst materials. This enhancement is ascribed to the role of g-C3N4 monolayer as an electron acceptor and the direct Z-scheme charge carrier transfer at the interface of

  1. Response Accuracy and Tracking Errors with Decentralized Control of Commercial V2G Chargers

    DEFF Research Database (Denmark)

    Ziras, Charalampos; Zecchino, Antonio; Marinelli, Mattia

    2018-01-01

    There is a growing interest in using the flexibility of electric vehicles (EVs) to provide power system services, such as fast frequency regulation. Decentralized control is advocated due to its reliability and much lower communication requirements. A commonly used linear droop characteristic...... results in low average efficiencies, whereas controllers with 3 modes (idle, fully charging, fully discharging) result in large reserve errors when the aggregation size is small. To address these issues, we propose a stochastic, decentralized controller with tunable response granularity which minimizes...... switching actions. The EV fleet operator can optimize the chargers’ performance according to the fleet size, the service error requirements, the average switching rate and the average efficiency. We use real efficiency characteristics from EVs and chargers providing fast frequency regulation and we show...

  2. Design and Implementation of Battery Charger with Power Factor Correction Using Sepic Converter and Full-bridge DC-DC Converter

    OpenAIRE

    Efendi, Moh. Zaenal; Windarko, Novie Ayub; Amir, Moh. Faisal

    2013-01-01

    This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulato...

  3. Effect of Working Fluids on the Thermal Performance of a Bi-directional Solar Thermodiode

    International Nuclear Information System (INIS)

    Ko, Yung Joo

    2008-02-01

    An excessive use of fossil fuel leads to the limitation of coal deposits and carbon dioxide accumulation that accelerates the global warming, so the international environment regulation becomes more strict to control the greenhouse gas emission. Many researches are being made on alternative energy development to cut down fossil fuel and to decrease carbon dioxide. During the last decade, there have been active tries to utilize the solar energy that is unlimited and clean . The application of solar energy to heating and cooling of the building has much improved the economical efficiency and function with the development of high-technology materials, and it is not rare to find the recently built houses and commercial buildings equipped with solar energy systems. In particular, the advanced countries such as USA and Japan attempt the remarkable reduction of energy consumption in heating and cooling of buildings. For this, they are searching for the more effective application of various alternative energies including the solar energy. In addition, they are trying to realize the distinct zero energy conception by applying the new techniques and materials to the existing buildings. In developing the new techniques of solar energy application to heating and cooling system, the economic problems hire to be addressed, The typical problems encountered in applying the solar energy are insufficient design concept for HVAC(heating, ventilation, and air conditioning) system and low reliability, Further, the economical efficiency of the solar energy is still low to compete with the oil, and there are many limits on the realization of the actual system in a building, e.g. spatial alignments and exterior appearances. The purpose of this study is to find the improved method to increase the heat transfer efficiency of the solar energy system that are to be installed in houses and commercial buildings. For this, a series of experiments using the bi-directional thermo diode system

  4. Microwave-assisted hydrothermal synthesis of Bi2S3 nanorods in flower-shaped bundles

    International Nuclear Information System (INIS)

    Thongtem, Titipun; Pilapong, Chalermchai; Kavinchan, Jutarat; Phuruangrat, Anukorn; Thongtem, Somchai

    2010-01-01

    Bi 2 S 3 nanorods in flower-shaped bundles were successfully synthesized from the decomposition of Bi-thiourea complexes under the microwave-assisted hydrothermal process. X-ray powder diffraction (XRD) patterns and field emission scanning electron microscopy (FE-SEM) show that Bi 2 S 3 has the orthorhombic phase and appears as nanorods in flower-shaped bundles. A transmission electron microscopic (TEM) study reveals the independent single Bi 2 S 3 nanorods with their growth along the [0 0 1] direction. A possible formation mechanism of Bi 2 S 3 nanorods in flower-shaped bundles is also proposed and discussed. Their UV-vis spectrum shows the absorbance at 596 nm, with its direct energy band gap of 1.82 eV.

  5. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies

    International Nuclear Information System (INIS)

    Berg, R.; Stroinski, M.; Giachetti, R.

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein

  6. A study of the formation processes of the 2212 phase in the Bi-based superconductor systems. [BiSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Lo; Glowacki, B A [Interdisciplinary Research Centre in Superconductivity, Univ. of Cambridge (United Kingdom)

    1992-04-15

    A study towards the identification of the reactions contributing to and accompanying the formation of the 2212 phase from oxides and carbonates by solid state reaction processes was conducted. The formation processes were investigated by thermal analysis, powder X-ray diffractometry and AC magnetic susceptometry. The 2212 phase was found to form from reactions between the 2201 phases (the non-superconducting pseudo-tetragonal and the superconducting monoclinic phases), Bi{sub 6}Ca{sub 7}O{sub 16}, CuO and SrCO{sub 3}. The 2201 phases were produced by the reactions of Bi-Sr-Cu-O or Bi-Sr-O compounds with SrCO{sub 3} or CuO. The 2201 phases could also be formed through the direct reaction between Bi{sub 2}CuO{sub 4} and SrCO{sub 3}. (orig.).

  7. CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.

    Science.gov (United States)

    Plötz, P; Funke, S A; Jochem, P; Wietschel, M

    2017-11-28

    The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.

  8. Bi-Force

    DEFF Research Database (Denmark)

    Sun, Peng; Speicher, Nora K; Röttger, Richard

    2014-01-01

    of pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A...... comparative analysis of biclustering algorithms for gene expressiondata. Brief. Bioinform., 14:279-292.) and compared Bi-Force against eight existing tools: FABIA, QUBIC, Cheng and Church, Plaid, BiMax, Spectral, xMOTIFs and ISA. To this end, a suite of synthetic datasets as well as nine large gene expression...

  9. Bi-directional Reflectance of Icy Surface Analogs: A Dual Approach

    Science.gov (United States)

    Quinones, Juan Manuel; Vides, Christina; Nelson, Robert M.; Boryta, Mark; Mannat, Ken s.

    2018-01-01

    Bi-directional reflectance measurements of analogs for planetary regolith have provided insight into the surface properties of planetary satellites and small bodies. Because Aluminum Oxide (Al2O3) and water ice share a similar hexagonal crystalline structure, the former has been used in laboratory experiments to simulate the regolith of both icy and dusty planetary bodies. By measuring various sizes of well sorted size fractions of Al2O3, the reflectance phase curve and porosity of a planetary regolith can be determined. We have designed an experiment to test the laboratory measurements produced by Nelson et al. (2000). Additionally, we made reflectance measurements for other alkali-halide compounds that could be used for applications beyond astronomy and planetary science.In order to provide an independent check on the Nelson et al. data, we designed an instrument with a different configuration. While both instruments take bidirectional reflectance measurements, our instrument, the Rigid Photometric Goniometer (RPG), is fixed at a phase angle of 5° and detects the scattered light with a photomultiplier tube (PMT). The PMT current is then measured with an electrometer. Following the example of Nelson et al., we measured the bidirectional reflectance of Al2O3 particulate size fractions between 0.1sizes from 20size that provided optimal, or maximum, reflectance for each compound. Our conclusions bring confirmation and clarity to photometric sciences.

  10. MR imaging of the brain in large cohort studies: feasibility report of the population- and patient-based BiDirect study

    International Nuclear Information System (INIS)

    Teuber, Anja; Berger, Klaus; Wersching, Heike; Sundermann, Benedikt; Kugel, Harald; Schwindt, Wolfram; Heindel, Walter; Minnerup, Jens; Dannlowski, Udo

    2017-01-01

    To describe the implementation and protocol of cerebral magnetic resonance imaging (MRI) in the longitudinal BiDirect study and to report rates of study participation as well as management of incidental findings. Data came from the BiDirect study that investigates the relationship between depression and arteriosclerosis and comprises 2258 participants in three cohorts: 999 patients with depression, 347 patients with manifest cardiovascular disease (CVD) and 912 population-based controls. The study program includes MRI of the brain. Reasons for non-participation were systematically collected. Incidental findings were categorized and disclosed according to clinical relevance. At baseline 2176 participants were offered MRI, of whom 1453 (67 %) completed it. Reasons for non-participation differed according to cohort, age and gender with controls showing the highest participation rate of 79 %. Patient cohorts had higher refusal rates and CVD patients a high prevalence of contraindications. In the first follow-up examination 69 % of participating subjects completed MRI. Incidental findings were disclosed to 246 participants (17 %). The majority of incidental findings were extensive white matter hyperintensities requiring further diagnostic work-up. Knowledge about subjects and sensible definition of incidental findings are crucial for large-scale imaging projects. Our data offer practical and concrete information for the design of future studies. (orig.)

  11. MR imaging of the brain in large cohort studies: feasibility report of the population- and patient-based BiDirect study

    Energy Technology Data Exchange (ETDEWEB)

    Teuber, Anja; Berger, Klaus; Wersching, Heike [University of Muenster, Institute of Epidemiology and Social Medicine, Muenster (Germany); Sundermann, Benedikt; Kugel, Harald; Schwindt, Wolfram; Heindel, Walter [University Hospital Muenster, Department of Clinical Radiology, Muenster (Germany); Minnerup, Jens [University Hospital Muenster, Department of Neurology, Muenster (Germany); Dannlowski, Udo [University of Muenster, Department of Psychiatry, Muenster (Germany); University of Marburg, Department of Psychiatry, Marburg (Germany)

    2017-01-15

    To describe the implementation and protocol of cerebral magnetic resonance imaging (MRI) in the longitudinal BiDirect study and to report rates of study participation as well as management of incidental findings. Data came from the BiDirect study that investigates the relationship between depression and arteriosclerosis and comprises 2258 participants in three cohorts: 999 patients with depression, 347 patients with manifest cardiovascular disease (CVD) and 912 population-based controls. The study program includes MRI of the brain. Reasons for non-participation were systematically collected. Incidental findings were categorized and disclosed according to clinical relevance. At baseline 2176 participants were offered MRI, of whom 1453 (67 %) completed it. Reasons for non-participation differed according to cohort, age and gender with controls showing the highest participation rate of 79 %. Patient cohorts had higher refusal rates and CVD patients a high prevalence of contraindications. In the first follow-up examination 69 % of participating subjects completed MRI. Incidental findings were disclosed to 246 participants (17 %). The majority of incidental findings were extensive white matter hyperintensities requiring further diagnostic work-up. Knowledge about subjects and sensible definition of incidental findings are crucial for large-scale imaging projects. Our data offer practical and concrete information for the design of future studies. (orig.)

  12. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    Science.gov (United States)

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. IEEE Std 650-1990: IEEE standard for qualification of Class 1E static battery chargers and inverters for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Methods for qualifying static battery chargers and inverters for Class 1E installations in a mild environment outside containment in nuclear power generating stations are described. The qualification methods set forth employ a combination of type testing and analysis, the latter including a justification of methods, theories, and assumptions used. These procedures meet the requirements of IEEE Std 323-1983, IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations

  14. A novel biosensor based on the direct electrochemistry of horseradish peroxidase immobilized in the three-dimensional flower-like Bi{sub 2}WO{sub 6} microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui, E-mail: liuhui@sust.edu.cn; Guo, Kai; Duan, Congyue; Chen, Xianjin; Zhu, Zhenfeng

    2016-07-01

    Three-dimensional flower-like Bi{sub 2}WO{sub 6} microspheres (3D-Bi{sub 2}WO{sub 6} MSs) have been synthesized through a simple hydrothermal method. The morphology and structure of 3D-Bi{sub 2}WO{sub 6} MSs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The 3D-Bi{sub 2}WO{sub 6} MSs subsequently were used to immobilize horseradish peroxidase (HRP) and fabricate a mediator-free biosensor for the detection of H{sub 2}O{sub 2}. Spectroscopic and electrochemical results reveal that 3D-Bi{sub 2}WO{sub 6} MSs constitute an excellent immobilization matrix with biocompatibility for enzymes. Meanwhile, due to unique morphology of the flower-like microspheres, the direct electron transfer of HRP is facilitated and the prepared biosensors display good performances for the detection of H{sub 2}O{sub 2} with a wide linear range, including two linear sections: 0.5–100 μM (R{sup 2} = 0.9983) and 100–250 μM (R{sup 2} = 0.9981), as well as an extremely low method detection limit of 0.18 μM. - Highlights: • 3D-Bi{sub 2}WO{sub 6} microspheres are used to fabricate a mediator-free biosensor firstly. • The biosensor displays a wide linear range of 0.5–250 μM for H{sub 2}O{sub 2}. • The biosensor exhibits a low detection limit of 0.18 μM for H{sub 2}O{sub 2}.

  15. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing

    Science.gov (United States)

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao

    2016-01-01

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250

  16. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    Science.gov (United States)

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  17. Performance Evaluation of a Thermal Load Reduction System in a Hyundai Sonata PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gallagher, James [Gentherm, Inc.; Scott, Matthew [Hyundai America Technical Center, Inc.

    2017-11-28

    Increased adoption of electric-drive vehicles (EDVs) requires overcoming hurdles including limited vehicle range. Vehicle cabin heating and cooling demand for occupant climate control requires energy from the main battery and has been shown to significantly degrade vehicle range. During peak cooling and heating conditions, climate control can require as much or more energy as propulsion. As part of an ongoing project, NREL and project partners Hyundai America Technical Center, Inc. (HATCI), Gentherm , Pittsburgh Glass Works (PGW), PPG Industries, Sekisui, 3M, and Hanon Systems developed a thermal load reduction system in order to reduce the range penalty associated with electric vehicle climate control. Solar reflective paint, solar control glass, heated and cooled/ventilated seats, heated surfaces, and heated windshield with door demisters were integrated into a Hyundai Sonata plug-in hybrid electric vehicle (PHEV). Cold weather field-testing was conducted in Fairbanks, Alaska while warm weather testing was conducted in Death Valley, California to assess the system performance in comparison to the baseline production vehicle. In addition, environmental chamber testing at peak heating and cooling conditions was performed to assess the performance of the system in standardized conditions compared to the baseline. Experimental results are presented in this paper providing quantitative data to automobile manufacturers on the impact of climate control thermal load reduction technologies to increase the advanced thermal technology adoption and market penetration of electric drive vehicles.

  18. Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles including limited vehicle range and the elevated cost of EDVs as compared to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. In order to minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata PHEV. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning. Heated surfaces and increased insulation demonstrated significant reductions in energy use from steady-state heating, including a 29% - 59% reduction from heated surfaces. Solar control glass packages demonstrated significant reductions in energy use for both transient and steady-state cooling, with up to a 42% reduction in transient and 12.8% reduction in steady-state energy use for the packages evaluated. Technologies that demonstrated significant climate control load reduction were selected for incorporation into a complete thermal load reduction package. The complete package is set to be evaluated in the second phase of the ongoing project.

  19. Reliability analysis of an LCL tuned track segmented bi-directional inductive power transfer system

    DEFF Research Database (Denmark)

    Asif Iqbal, S. M.; Madawala, U. K.; Thrimawithana, D. J.

    2013-01-01

    Bi-directional Inductive Power Transfer (BDIPT) technique is suitable for renewable energy based applications such as electric vehicles (EVs), for the implementation of vehicle-to-grid (V2G) systems. Recently, more efforts have been made by researchers to improve both efficiency and reliability...... of renewable energy systems to further enhance their economical sustainability. This paper presents a comparative reliability study between a typical BDIPT system and an individually controlled segmented BDIPT system. Steady state thermal simulation results are provided for different output power levels...... for a 1.5 kW BDIPT system in a MATLAB/Simulink environment. Reliability parameters such as failure rate and mean time between failures (MTBF) are compared between the two systems. A nonlinear programming (NP) model is developed for optimizing charging schedule for a stationery EV. A case study of EV...

  20. Bi-induced band gap reduction in epitaxial InSbBi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rajpalke, M. K.; Linhart, W. M.; Birkett, M.; Alaria, J.; Veal, T. D., E-mail: T.Veal@liverpool.ac.uk [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, University of Liverpool, Liverpool L69 7ZF (United Kingdom); Yu, K. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bomphrey, J. J.; Jones, T. S.; Ashwin, M. J., E-mail: M.J.Ashwin@warwick.ac.uk [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Sallis, S.; Piper, L. F. J. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-11-24

    The properties of molecular beam epitaxy-grown InSb{sub 1−x}Bi{sub x} alloys are investigated. Rutherford backscattering spectrometry shows that the Bi content increases from 0.6% for growth at 350 °C to 2.4% at 200 °C. X-ray diffraction indicates Bi-induced lattice dilation and suggests a zinc-blende InBi lattice parameter of 6.626 Å. Scanning electron microscopy reveals surface InSbBi nanostructures on the InSbBi films for the lowest growth temperatures, Bi droplets at intermediate temperatures, and smooth surfaces for the highest temperature. The room temperature optical absorption edge was found to change from 172 meV (7.2 μm) for InSb to ∼88 meV (14.1 μm) for InSb{sub 0.976}Bi{sub 0.024}, a reduction of ∼35 meV/%Bi.

  1. The voice of the customer: consumers define the ideal battery charger.

    Science.gov (United States)

    Lane, J P; Usiak, D J; Stone, V I; Scherer, M J

    1997-01-01

    The Rehabilitation Engineering Research Center on Technology Evaluation and Transfer is exploring how the users of assistive technology devices define the ideal device. This work is called the Consumer Ideal Product program. The results show what device characteristics are most and least important, indicating where to place the priority on product features and functions from the consumer's perspective. The "voice of the customer" can be used (1) to define the ideal characteristics of a product, (2) to make trade-offs in product design and function improvements based on their relative importance to the consumer, (3) to compare the characteristics of existing products against the characteristics of the ideal product, or (4) to generate a product checklist for consumers to use when making a purchase decision. This paper presents the results of consumers' defining the ideal battery charger. Four focus groups generated the survey's content, then 100 experienced users rated 159 characteristics organized under 11 general evaluation criteria. The consumers placed the highest importance on characteristics from the general evaluation criteria of product reliability, effectiveness, and physical security/safety. The findings should help manufacturers and vendors improve their products and services and help professionals and consumers make informed choices.

  2. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    International Nuclear Information System (INIS)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  3. Architectural innovation foresight of thermoelectric generator charger integrated portable power supply for portable consumer electronic device in metropolitan market: The case study of Thailand

    Science.gov (United States)

    Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.

    2012-06-01

    In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for

  4. Dispersion interactions between neighboring Bi atoms in (BiH3 )2 and Te(BiR2 )2.

    Science.gov (United States)

    Haack, Rebekka; Schulz, Stephan; Jansen, Georg

    2018-03-13

    Triggered by the observation of a short Bi⋯Bi distance and a BiTeBi bond angle of only 86.6° in the crystal structure of bis(diethylbismuthanyl)tellurane quantum chemical computations on interactions between neighboring Bi atoms in Te(BiR 2 ) 2 molecules (R = H, Me, Et) and in (BiH 3 ) 2 were undertaken. Bi⋯Bi distances atoms were found to significantly shorten upon inclusion of the d shells of the heavy metal atoms into the electron correlation treatment, and it was confirmed that interaction energies from spin component-scaled second-order Møller-Plesset theory (SCS-MP2) agree well with coupled-cluster singles and doubles theory including perturbative triples (CCSD(T)). Density functional theory-based symmetry-adapted perturbation theory (DFT-SAPT) was used to study the anisotropy of the interplay of dispersion attraction and steric repulsion between the Bi atoms. Finally, geometries and relative stabilities of syn-syn and syn-anti conformers of Te(BiR 2 ) 2 (R = H, Me, Et) and interconversion barriers between them were computed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  5. Photoconductivity in BiFeO3 thin films

    Science.gov (United States)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  6. Will Your Battery Survive a World With Fast Chargers?

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.

    2015-05-04

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development of BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.

  7. Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties

    International Nuclear Information System (INIS)

    Chen, Dongling; Zhang, Min; Lu, Qiuju; Chen, Junfang; Liu, Bitao; Wang, Zhaofeng

    2015-01-01

    This paper presents a novel and facile method to fabricate Bi/BiOCl composites with dominant (001) facets in situ via a microwave reduction route. Different characterization techniques, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission scanning electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance spectroscopy (ESR), cathodoluminescence spectrum (CL), and lifetime, have been employed to investigate the structure, optical and electrical properties of the Bi/BiOCl composites. The experimental results show that the introduction of Bi particles can efficiently enhance the photocatalytic performance of BiOCl for the degradation of several dyes under ultraviolet (UV) light irradiation, especially for negative charged methyl orange (MO). Unlike the UV photocatalytic performance, such Bi/BiOCl composite shows higher degradation efficiency towards rhodamine B (RhB) than MO and methylene blue (MB) under visible light irradiation. This special photocatalytic performance can be ascribed to the synergistic effect between oxygen vacancies and Bi particles. This work provides new insights about the photodegradation mechanisms of MO, MB and RhB under UV and visible light irradiation, which would be helpful to guide the selection of an appropriate catalyst for other pollutants. - Highlights: • Bi/BiOCl composites were synthesized via a microwave reduction. • Tunable selectivity photocatalytic activity can be achieved. • Photodegradation mechanism under UV and visible light were proposed

  8. Bismuth-boron multiple bonding in BiB_2O"- and Bi_2B"-

    International Nuclear Information System (INIS)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng

    2017-01-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB_2O"- and Bi_2B"-, containing triple and double B-Bi bonds are presented. The BiB_2O"- and Bi_2B"- clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB_2O"- ([Bi≡B-B≡O]"-) and Bi_2B"- ([Bi=B=Bi]"-), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. The modulation and reconstruction of a BiO layer of cuprate Bi2212

    International Nuclear Information System (INIS)

    Fan Wei; Zeng, Z

    2011-01-01

    Studies based on ab initio density functional theory show that the modulated structures of BiO surfaces of cuprate Bi2212 superconductors are spontaneously formed and closely related to the reconstructions of BiO surfaces. The reconstructions of BiO layers occur both on the surface and in the bulk, accompanied with the formations of BiO-zigzag chains and Bi 2 O 2 quadrilaterals. The structural modulations of the BiO surface are along the b axis, perpendicular to the BiO-zigzag chains along the a axis. Our calculations provide a unified understanding of the formation of modulating structures in Bi2212. Another interesting result is that electronic structures of BiO surfaces are significantly influenced by the CuO 2 layer beneath because of the structural modulations and reconstructions.

  10. Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance

    Science.gov (United States)

    Lyu, Jianchang; Li, Zhenlu; Ge, Ming

    2018-06-01

    Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.

  11. Photocatalytic activity of Bi_2WO_6/Bi_2S_3 heterojunctions: the facilitation of exposed facets of Bi_2WO_6 substrate

    International Nuclear Information System (INIS)

    Yan, Long; Wang, Yufei; Shen, Huidong; Zhang, Yu; Li, Jian; Wang, Danjun

    2017-01-01

    Highlights: • Bi_2S_3/Bi_2WO_6 hybrids with exposed (020) Bi_2WO_6 facets have been synthesized. • X-ray photoelectron spectroscopy reveals that a small amount of Bi_2S_3 was formed. • The enhanced photoactivity of hybrids is due to heterojunction and (020) facets. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi_2S_3/Bi_2WO_6 hybrid architectures with exposed (020) Bi_2WO_6 facets have been synthesized via a controlled anion exchange approach. X-ray photoelectron spectroscopy (XPS) reveals that a small amount of Bi_2S_3 was formed on the surface of Bi_2WO_6 during the anion exchange process, thus leading to the transformation from the Bi_2WO_6 to Bi_2S_3/Bi_2WO_6. A rhodamine B (RhB) aqueous solution was chosen as model organic pollutants to evaluate the photocatalytic activities of the Bi_2S_3/Bi_2WO_6 catalysts. Under visible light irradiation, the Bi_2S_3/Bi_2WO_6-TAA displayed the excellent visible light photoactivities compared with pure Bi_2S_3, Bi_2WO_6 and other composite photocatalysts. The efficient photocatalytic activity of the Bi_2S_3/Bi_2WO_6-TAA composite microspheres was ascribed to the constructed heterojunctions and the inner electric field caused by the exposed (020) Bi_2WO_6 facets. Active species trapping experiments revealed that h"+ and O_2·"− are the main active species in the photocatalytic process. Furthermore, the as-obtained photocatalysts showed good photocatalytic activity after four recycles. The results presented in this study provide a new concept for the rational design and development of highly efficient photocatalysts.

  12. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts.

    Directory of Open Access Journals (Sweden)

    Karani S Vimaleswaran

    Full Text Available Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI and 25-hydroxyvitamin D [25(OHD] using genetic markers as instrumental variables (IVs in bi-directional Mendelian randomization (MR analysis.We used information from 21 adult cohorts (up to 42,024 participants with 12 BMI-related SNPs (combined in an allelic score to produce an instrument for BMI and four SNPs associated with 25(OHD (combined in two allelic scores, separately for genes encoding its synthesis or metabolism as an instrument for vitamin D. Regression estimates for the IVs (allele scores were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT consortium (n = 123,864. Each 1 kg/m(2 higher BMI was associated with 1.15% lower 25(OHD (p = 6.52×10⁻²⁷. The BMI allele score was associated both with BMI (p = 6.30×10⁻⁶² and 25(OHD (-0.06% [95% CI -0.10 to -0.02], p = 0.004 in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OHD (p≤8.07×10⁻⁵⁷ for both scores but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08 in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OHD concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p = 0.005. No association was seen for genetically instrumented 25(OHD with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores.On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OHD, while any effects of lower 25(OHD increasing BMI are likely to be small. Population level interventions to

  13. Heterojunction BiOI/Bi2MoO6 nanocomposite with much enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Wen Ting; Zheng, Yi Fan; Yin, Hao Yong; Song, Xu Chun

    2015-01-01

    BiOI/Bi 2 MoO 6 heterostructures with different amounts of BiOI were successfully prepared via a facile deposition method. The obtained BiOI/Bi 2 MoO 6 photocatalysts exhibited much higher visible light (λ > 420 nm) induced photocatalytic activity compared with single Bi 2 MoO 6 and BiOI photocatalysts. 20 % BiOI/Bi 2 MoO 6 nanocomposite exhibited the highest photocatalytic activity with almost all RhB decomposed within 70 min. However, excess BiOI covering on the surface of Bi 2 MoO 6 can inversely reduce the photocatalytic activity. The enhanced photocatalytic activities could be resulted from the function of the novel p–n heterojunction interface between Bi 2 MoO 6 and BiOI, which could separate photoinduced carriers efficiently. Possible mechanisms on the basis of the relative band positions were also discussed

  14. Multiferroic BiFeO3-BiMnO3 Nanocheckerboard From First Principles

    OpenAIRE

    Palova, L.; Chandra, P.; Rabe, K. M.

    2010-01-01

    We present a first principles study of an unusual heterostructure, an atomic-scale checkerboard of BiFeO3-BiMnO3, and compare its properties to the two bulk constituent materials, BiFeO3 and BiMnO3. The "nanocheckerboard" is found to have a multiferroic ground state with the desired properties of each constituent: polar and ferrimagnetic due to BiFeO3 and BiMnO3, respectively. The effect of B-site cation ordering on magnetic ordering in the BiFeO3-BiMnO3 system is studied. The checkerboard ge...

  15. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A

    International Nuclear Information System (INIS)

    Xiao, Xin; Hao, Rong; Liang, Min; Zuo, Xiaoxi; Nan, Junmin; Li, Laisheng; Zhang, Weide

    2012-01-01

    Highlights: ► Synthesis of 3D BiOI/BiOCl microspheres by a one-pot template-free solvothermal method. ► Photocatalyst is BiOI/BiOCl composites. ► BiOI/BiOCl composites have enhanced visible-light photocatalytic ability to bisphenol-A. ► A simple and direct photodegradation pathway of bisphenol-A is proposed. - Abstract: Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI 3 and BiCl 3 as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir–Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L −1 in the BPA solution (C 0 = 20 mg L −1 , pH = 7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron–hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC–MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst exhibited a high mineralization ratio, high stability and easy separation for recycling use, suggesting that it is a

  16. [The Support System for Diabetic Patients at Home with Bi-Directional IT Communication].

    Science.gov (United States)

    Kubota, Masakazu; Hosoda, Kiminori; Eguchi, Kyoko; Nishijima, Yuki; Nakao, Kazuwa; Kinoshita, Ayae

    2010-12-01

    The present study analyzed the effects of bi-directional IT communication on the purpose of preventing diabetes progression and to reduce a caregiver burden. Diabetic patients were informed of the nature and purpose of the study before giving their voluntary consents to participate in the study. For the period of 12 weeks, a diabetic patient and his caregiver were communicated with a nurse through the TV telephone for 30 minutes once a week. Medical staff checked the list of weight change, compliance check, exercise habit, and attached pictures of the plate with a diabetic patient through the TV telephone in real time. We encouraged a diabetic patient to eat properly based on the diet record. The 12-week TV telephone communication resulted in the body weight decrease and HbA1c. There was a consciousness change about their daily eating habit. In the present study, the 12-week TV telephone communication once a week might be useful as an auxiliary therapy for changing a bad daily habit to a good daily habit for a diabetic patient at home.

  17. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    Directory of Open Access Journals (Sweden)

    Giulio Benetti

    2017-03-01

    Full Text Available Ultrathin coatings based on bi-elemental nanoparticles (NPs are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  18. Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles

    Science.gov (United States)

    Benetti, Giulio; Cavaliere, Emanuele; Canteri, Adalberto; Landini, Giulia; Rossolini, Gian Maria; Pallecchi, Lucia; Chiodi, Mirco; Van Bael, Margriet J.; Winckelmans, Naomi; Bals, Sara; Gavioli, Luca

    2017-03-01

    Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.

  19. In-situ synthesis of nanofibers with various ratios of BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} for effective trichloroethylene photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifan [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of); Park, Mira [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Hak Yong [Department of BIN Convergence Technology, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Ding, Bin [College of Textiles, Donghua University, Shanghai 201620 (China); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of)

    2016-10-30

    Highlights: • BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN fibers were synthesized by in-situ method. • Photodegradation behavior of BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN fibers was measured under solar light irradiation. • BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4}/PAN fibers exhibited the highest photocatalytic activity. • Photocatalytic mechanism was discussed in detail. - Abstract: In this work, BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} (x + y + z = 1) composite nanofibers were prepared through electrospinning and the sol-gel methods. Photocatalytic degradation of trichloroethylene (TCE) by BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z}/PAN nanofibers was systematically investigated via gas chromatography (GC). Optimum photocatalytic activity was achieved with BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4} fibers under solar light irradiation. X-ray photoelectron spectroscopy (XPS) peaks due to C−O and C=O were observed at 286.0 and 288.3 eV, respectively, it indicated that the BiOCl{sub x}/BiOBr{sub y}/BiOI{sub z} mixture had been successfully doped on the polyacrylonitrile (PAN) fibers. Furthermore, X-ray diffraction (XRD) results also confirmed that we had synthesized the as-prepared composite nanofibers successfully. Photocatalytic activities of BiOCl{sub 0.3}/BiOBr{sub 0.3}/BiOI{sub 0.4} were up to 3 times higher than the pure BiOCl, BiOBr and BiOI samples, respectively.

  20. The role of the isolated 6s states in BiVO{sub 4} on the electronic and atomic structures

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Lin-Wang [Joint Center for Artificial Photosynthesis and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-10-27

    BiVO{sub 4} is one of the most promising photoanodes for water-splitting applications. Similar to many d{sup 10} materials, where the full-shell d electrons are not directly involved in the bonding, the Bi 6s electrons form isolated low-energy bands in BiVO{sub 4}. By systematically altering the energy of the Bi 6s states, we find direct evidences that the isolated s states, through the s-p coupling, affect the BiVO{sub 4} properties, including valence band maximum position, charge density, and atomic structural distortion. We find that many good properties of BiVO{sub 4} for water splitting are related to the s-p coupling due to the existence of Bi 6s states. Based on this understanding, we propose that alloying Bi with Sb can enhance these properties, and hence improve the water-splitting efficiency.

  1. Synthesis, crystal structure, and physical properties of the Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} phases

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, Scott; Yuan, Fang [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Kosuda, Kosuke; Kolodiazhnyi, Taras [Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada)

    2016-01-15

    The second and third known rare-earth bismuthide oxides, Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8}, have been discovered via high temperature reactions at 1300 °C. Like its Gd–Sb–O counterparts, the Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} phases crystallize in the monoclinic C2/m space group, with the latter containing disordered Bi atoms along the b direction of the unit cell. Unlike the RE{sub 8}Sb{sub 3}O{sub 8} series, the formation of the Gd{sub 3}BiO{sub 3} phase does not necessarily precede the formation of Gd{sub 8}Bi{sub 3}O{sub 8}, which is likely due to the difficulty of accommodating bismuth in the RE–O framework due to its larger size. Physical property measurements performed on a pure Gd{sub 8}Bi{sub 3}O{sub 8} sample reveal semiconducting behavior. Although electronic structure calculations predict metallic behavior due to an unbalanced electron count, the semiconducting behavior originates from the Anderson localization of the Bi p states near the Fermi level as a result of atomic disorder. - Graphical abstract: Reaction of GdBi and Gd{sub 2}O{sub 3} at high temperatures yields Gd–Bi–O phases. - Highlights: • Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8}, the second and third rare-earth bismuthide oxides, have been discovered. • Gd{sub 3}BiO{sub 3} and Gd{sub 8}Bi{sub 3}O{sub 8} are isostructural with RE{sub 3}SbO{sub 3} and RE{sub 8}Sb{sub 3}O{sub 8}. • Gd{sub 8}Bi{sub 3}O{sub 8} displays semiconducting behavior despite an unbalanced electron count. • Anderson localization of Bi p states results in semiconducting behavior in Gd{sub 8}Bi{sub 3}O{sub 8}.

  2. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    Science.gov (United States)

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  3. Facile Fabrication of BiOI/BiOCl Immobilized Films With Improved Visible Light Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Yingxian Zhong

    2018-03-01

    Full Text Available HIGHLIGHTSA facial method was used to fabricate BiOI/BiOCl film at room temperature.30% BiOI/BiOCl showed an excellent photocatalytic activity and stability.Improvement of photocatalytic activity was owed to expanded visible light absorption and high separation efficiency of charge.Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after five recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  4. Influence of photoinduced Bi-related self-doping on the photocatalytic activity of BiOBr nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); Yue, Songtao; Wang, Wei [College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); An, Tiacheng, E-mail: antc99@gig.ac.cn [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Guiying [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Ye, Liqun [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China); Yip, Ho Yin [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); Wong, Po Keung, E-mail: pkwong@cuhk.edu.hk [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China)

    2017-01-01

    Highlights: • Bi{sup 5+} self-doped BiOBr nanosheets are achieved under UV irradiation. • Bi{sup 5+} is formed due to the oxidation of surface Bi{sup 3+} by photoexcited h{sup +} of BiOBr. • Two photoinduced h{sup +} mediated oxidation processes happen simultaneously. • Self-doped BiOBr is superior in phenol degradation and bacterial inactivation. • Bi{sup 5+} electron trapping induced photocatalytic enhancement mechanism is proposed. - Abstract: Under UV irradiation, self-doped Bi{sup 5+} is evidenced to be generated on the surface of BiOBr nanosheets, but with well-preserved crystal structure and morphology compared with pure counterpart. Bi{sup 5+} self-doping BiOBr (BiOBr-4) exhibits distinct photocatalytic mode for dyes degradation, as compared with pure BiOBr nanosheets. These photodegradation distinctions are mainly due to the simultaneous occurrence of two photoinduced hole (h{sup +}) mediated oxidation processes on the BiOBr surfaces: (1) a portion of photoexcited h{sup +} participates in the photocatalytic oxidation of dyes, and (2) partial h{sup +} involves the oxidation of Bi{sup 3+} to Bi{sup 5+}. Notably, BiOBr-4 nanosheets comparatively show superior photocatalytic activity for the phenol decomposition as well as the bacterial inactivation. Besides Bi{sup 5+} induced narrowed bandgap and enhanced light adsorption capacity, significantly, the oxidative Bi{sup 5+} acts as electron traps to promote the photoexcited electron-hole separation and accelerate h{sup +} migration, resulting in the considerable photocatalytic enhancement of BiOBr-4 nanosheets. These novel findings will not only give new insights into the photocatalytic mechanism but also explore new route to enhance photocatalytic performance of Bi-based materials.

  5. Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.

    Science.gov (United States)

    Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara

    2017-09-01

    Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.

  6. Bi3+–Pr3+ energy transfer processes and luminescent properties of LuAG:Bi,Pr and YAG:Bi,Pr single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, M.; Mares, J.A.; Beitlerova, A.; Jary, V.

    2013-01-01

    Absorption, cathodoluminescence, excitation spectra of photoluminescence (PL) and PL decay kinetics were studied at 300 K for the double doped with Bi 3+ –Pr 3+ and separately doped with Bi 3+ and Pr 3+ Lu 3 Al 5 O 12 (LuAG) and Y 3 Al 5 O 12 (YAG) single crystalline film (SCF) phosphors grown by the liquid phase epitaxy method. The emission bands in the UV range arising from the intrinsic radiative transitions of Bi 3+ based centers, and emission bands in the visible range, related to the luminescence of excitons localized around Bi 3+ based centers, were identified both in Bi–Pr and Bi-doped LuAG and YAG SCFs. The energy transfer processes from the host lattice simultaneously to Bi 3+ and Pr 3+ ions and from Bi 3+ to Pr 3+ ions were investigated. Competition between Pr 3+ and Bi 3+ ions in the energy transfer processes from the LuAG and YAG hosts was evidenced. The strong decrease of the intensity of Pr 3+ luminescence both in LuAG:Pr and YAG:Pr SCFs phosphors, grown from Bi 2 O 3 flux, is observed due to the quenching influence of Bi 3+ flux related impurity. Due to overlap of the UV emission band of Bi 3+ centers with the f–d absorption bands of Pr 3+ ions in the UV range and the luminescence of excitons localized around Bi ions with the f–f absorption bands of Pr 3+ ions in the visible range, an effective energy transfer from Bi 3+ ions to Pr 3+ ions takes place in LuAG:Bi,Pr and YAG:Bi,Pr SCFs, resulting in the appearance of slower component in the decay kinetics of the Pr 3+ d–f luminescence. -- Highlights: • Bi and Pr doped film phosphor grown by liquid phase epitaxy method. • Energy transfer from Bi 3+ to Pr 3+ ions. • Strong quenching of the Pr 3+ luminescence by Bi 3+ co-dopant

  7. Facile Fabrication of BiOI/BiOCl Immobilized Films with Improved Visible Light Photocatalytic Performance

    Science.gov (United States)

    Zhong, Yingxian; Liu, Yuehua; Wu, Shuang; Zhu, Yi; Chen, Hongbin; Yu, Xiang; Zhang, Yuanming

    2018-03-01

    Photocatalysis has been considered to be one of the most promising ways to photodegrade organic pollutants. Herein, a series of BiOI/BiOCl films coating on FTO were fabricated through a simple method at room temperature. The photocatalytic efficiency of 30%BiOI/BiOCl could reach more than 99% aiming to degrading RhB and MB after 90 and 120 min, respectively. Compared with BiOCl, 30%BiOI/BiOCl showed 12 times higher efficiency when degrading RhB. In comparison with BiOI, 30%BiOI/BiOCl showed 5 and 6 times higher efficiency when degrading RhB and MB, respectively. These obvious enhancements were attributed to expanded visible light absorption and high separation performance of photoinduced charge. Moreover, the photocatalytic activity of 30%BiOI/BiOCl had no obvious decrease after 5 recycles, suggesting that it was a promising photocatalyst for the removal of MB and RhB pollutants. Finally, the possible growth process for the BiOI/BiOCl thin films and photocatalysis mechanism were investigated in details. This work would provide insight to the reasonable construction of BiOX heterojunction and the photocatalytic mechanism in degrading organic pollutants.

  8. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI3 and CuI

    International Nuclear Information System (INIS)

    Kulbachinskii, Vladimir A.; Kytin, Vladimir G.; Kudryashov, Alexey A.; Kuznetsov, Alexei N.; Shevelkov, Andrei V.

    2012-01-01

    The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin–orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. The optimized crystal structures show a tendency for the Bi–X (X=Br, I) bond elongation compared to the Bi–Te one. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering model. Because of larger thermopower BiTeBr exhibits a twice higher thermoelectric figure-of-merit near room temperature, ZT=0.17, compared to BiTeI. The addition of 1 mass% of BiI 3 or CuI to BiTeI decreases the mobility of electrons by two orders of magnitude, leading to significantly lower electrical conductivity, but at the same time effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. - Graphical abstract: View of the crystal structure of BiTeBr is shown in the figure The optimized crystal structures show a tendency for the Bi–X (X=Br, I) bond elongation compared to the Bi–Te one. The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin–orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering

  9. Structural properties of superconducting Bi-2223/Ag tapes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalck Andersen, L.

    2001-05-01

    The structural properties of silver clad high-T{sub c} superconducting ceramic tapes of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) have been investigated by means of synchrotron X-ray diffraction (including the 3DXRD microscope setup), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS). By synchrotron X-ray diffraction in situ studies of the phase development during the transformation of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub x} (Bi-2212) into Bi-2223, the stoichiometry changes and the texture have been performed during annealing in 8% O{sub 2} and in air. Furthermore, an annealing with two high temperature cycles has been performed to study the equilibrium phenomena. During heating (Ca,Sr){sub 2}PbO{sub 4} decomposes at temperatures between 700 deg. C and 840 deg.C. Simultaneously, the Bi-2212 lattice contracts, indicating an incorporation of Pb. Moreover, the grain mis-alignment decreases significantly. In air we have observed that Bi-2212 partly dissociates into (Ca,Sr){sub 2}CuO{sub 3} and a liquid at temperatures above 812 deg. C. At the annealing temperature Bi-2212 and (Ca,Sr){sub 2}CuO{sub 3} react with the liquid to form Bi-2223. The transformation mechanism is discussed. During cooling below {approx}750 deg.C (Ca,Sr){sub 2}CuO{sub 3} and the liquid mainly transform into Bi-2201. Below {approx}780 deg. C Bi-2223 decomposes to 3221. In addition, a two-step cooling experiment and a decomposition study have been performed in 8% O{sub 2}. By TEM the grain and colony size in the c-axis direction, the angles of c-axis tilt grain boundaries and the intergrowth content are investigated. A fully processed tape has on average 50% thicker grains than a tape after the 1st annealing. The angles of c-axis tilt grain boundaries are on average 14 deg. and 26 deg. for the fully processed tape and the tape after the 1st annealing, respectively. The intergrowth content (15%) and

  10. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films

    NARCIS (Netherlands)

    Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.; Huijben, Mark; Yu, Pu; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions − an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field

  11. Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)'s transport sector: A fully modified bi-directional relationship approach

    International Nuclear Information System (INIS)

    Saboori, Behnaz; Sapri, Maimunah; Baba, Maizan bin

    2014-01-01

    This paper explores the bi-directional long-run relationship between energy consumption in the road transport sector with CO 2 emissions and economic growth in OECD countries. Using time series data from 1960 to 2008 and employing the Fully Modified Ordinary Least Squares cointegration approach, the paper shows positive significant long-run bi-directional relationship between CO 2 emissions and economic growth, road sector energy consumption and economic growth and CO 2 emissions and road sector energy consumption in all the OECD countries. To examine the response of each of the variables to shocks in the value of other variables, the generalized impulse response approach is employed. The response of CO 2 emissions to economic growth is initially positive in most cases but it is relatively shorter when compared to its initial response to the road transport sector energy consumption. Moreover, in most cases, the response of carbon emissions to the road transport sector energy consumption lasts longer than its response to economic growth. This implies that most of the CO 2 emissions from transport come from energy consumption, thus long-run policies related to the efficient use of energy and shifting to biofuel, renewable and nuclear energy can bring major benefits in mitigating GHG (Greenhouse Gas) emissions. - Highlights: • The relationship between GDP, energy and CO 2 in OECD's transport is investigated. • The Fully Modified Ordinary Least Squares cointegration approach was employed. • There is positive long-run bi-directional relationship between the variables. • The response of CO 2 to GDP is shorter than its response to the energy consumption

  12. A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems

    DEFF Research Database (Denmark)

    McNeil, A.; Jonsson, C.J.; Appelfeld, David

    2013-01-01

    , or daylighting systems. However, such tools require users to provide bi-directional scattering distribution function (BSDF) data that describe the solar-optical performance of the CFS. A free, open-source Radiance tool genBSDF enables users to generate BSDF data for arbitrary CFS. Prior to genBSDF, BSDF data.......We explain the basis and use of the genBSDF tool and validate the tool by comparing results for four different cases to BSDF data produced via alternate methods. This validation demonstrates that BSDFs created with genBSDF are comparable to BSDFs generated analytically using TracePro and by measurement...

  13. The physic properties of Bi-Zn codoped Y-type hexagonal ferrite

    International Nuclear Information System (INIS)

    Bai Yang; Zhou Ji; Gui Zhilun; L, Longtu; Qiao Lijie

    2008-01-01

    The magnetic and dielectric properties of Bi-Zn codoped Y-type hexagonal ferrite was investigated. The samples with composition of Ba 2-x Bi x Zn 0.8+x Co 0.8 Cu 0.4 Fe 12-x O 22 (x = 0-0.4) were prepared by the solid-state reaction method. Phase formation was characterized by X-ray diffraction. The microstructure was observed via scanning electron microscopy. The magnetic and dielectric properties were measured using an impedance analyzer. Direct current (dc) electrical resistivity was measured using a pA meter/dc voltage source. Minor Bi doping (x = 0.05-0.25) will not destroy the phase formation of Y-type hexagonal ferrite, but lower the phase formation temperature distinctly. Bi substitution can also promote the sintering process. The Bi-containing samples (x > 0.05) can be sintered well under 900 deg. C without any other addition. The sintering temperature is about 200 deg. C lower than that of the Bi-free sample. The Bi-Zn codoped samples exhibit excellent magnetic and dielectric properties in hyper frequency. These materials are suitable for multi-layer chip-inductive components

  14. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.

    Science.gov (United States)

    Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram

    2016-01-27

    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.

  15. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Hao, Rong; Liang, Min; Zuo, Xiaoxi [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Nan, Junmin, E-mail: jmnan@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Li, Laisheng [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Zhang, Weide [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Synthesis of 3D BiOI/BiOCl microspheres by a one-pot template-free solvothermal method. Black-Right-Pointing-Pointer Photocatalyst is BiOI/BiOCl composites. Black-Right-Pointing-Pointer BiOI/BiOCl composites have enhanced visible-light photocatalytic ability to bisphenol-A. Black-Right-Pointing-Pointer A simple and direct photodegradation pathway of bisphenol-A is proposed. - Abstract: Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI{sub 3} and BiCl{sub 3} as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir-Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L{sup -1} in the BPA solution (C{sub 0} = 20 mg L{sup -1}, pH = 7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron-hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC-MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst

  16. Improved photoelectrochemical performance of Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} heterostructure and degradation property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junqi, E-mail: sfmlab@163.com; Yuan, Huan; Zhu, Zhenfeng

    2016-11-01

    Highlights: • A novel Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} composite was synthesized. • The Z-scheme system we made can remain the strong reducibility and oxidizability of the photocatalysts. • The solar light was made the utmost use both the ultraviolet and visible region light through the g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} composite. - Abstract: In g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}, the p–n junction between p-type Bi{sub 2}O{sub 3} and n-type BiPO{sub 4} was encapsulated by g-C{sub 3}N{sub 4} and a direct Z-scheme was built between g-C{sub 3}N{sub 4} and Bi{sub 2}O{sub 3}. The optical, morphological and photoelectrochemical (PEC) properties of BiPO{sub 4}, g-C{sub 3}N{sub 4}/BiPO{sub 4}, Bi{sub 2}O{sub 3}/BiPO{sub 4} and g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4} hierarchical Z-scheme system were studied. More than 90% photodegradation of methyl orange (MO) with the exposure of simulated solar light was achieved within 160 min with the g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}, which displayed remarkably promoted photocatalytic activities than other samples. The electrochemical impedance spectra and photocurrent results also proved that efficient charge separation and better electron transport properties were achieved by g-C{sub 3}N{sub 4}/Bi{sub 2}O{sub 3}/BiPO{sub 4}. In general, the addition of g-C{sub 3}N{sub 4} can guide the residual electrons on p-type Bi{sub 2}O{sub 3} to recombine with photoholes of g-C{sub 3}N{sub 4} and make sure the left carries exhibit stronger oxidation and reduction ability to boost the production of active groups.

  17. Accurate torque control of a bi-directional magneto-rheological actuator considering hysteresis and friction effects

    International Nuclear Information System (INIS)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2013-01-01

    This paper presents a novel type of magneto-rheological (MR) actuator called a bi-directional magneto-rheological (BMR) actuator and accurate torque control results considering both hysteresis and friction compensation. The induced torque of this actuator varies from negative to positive values. As a result, it can work as either a brake or a clutch depending on the scheme of current input. In our work, the configuration of the actuator as well as its driving system is presented first. Subsequently, a congruency hysteresis based (CBH) model to take account of the effect of the hysteresis is proposed. After that, a compensator based on this model is developed. In addition, the effect of dry friction, which exists inherently with MR actuators in general, is also considered. In order to assess the effectiveness of the hysteresis compensator, several experiments on modeling and control of the actuator with different waveforms are carried out. (paper)

  18. Accurate torque control of a bi-directional magneto-rheological actuator considering hysteresis and friction effects

    Science.gov (United States)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2013-05-01

    This paper presents a novel type of magneto-rheological (MR) actuator called a bi-directional magneto-rheological (BMR) actuator and accurate torque control results considering both hysteresis and friction compensation. The induced torque of this actuator varies from negative to positive values. As a result, it can work as either a brake or a clutch depending on the scheme of current input. In our work, the configuration of the actuator as well as its driving system is presented first. Subsequently, a congruency hysteresis based (CBH) model to take account of the effect of the hysteresis is proposed. After that, a compensator based on this model is developed. In addition, the effect of dry friction, which exists inherently with MR actuators in general, is also considered. In order to assess the effectiveness of the hysteresis compensator, several experiments on modeling and control of the actuator with different waveforms are carried out.

  19. Preparation, characterization and enhanced visible-light photocatalytic activities of BiPO4/BiVO4 composites

    International Nuclear Information System (INIS)

    Wu, Siyuan; Zheng, Hong; Lian, Youwei; Wu, Yiying

    2013-01-01

    Graphical abstract: - Highlights: • BiPO 4 /BiVO 4 composites were successfully prepared by the hydrothermal method. • BiPO 4 /BiVO 4 composites exhibited broad absorption in the visible region. • Visible-light photocatalytic activities of BiPO 4 /BiVO 4 composites were enhanced. • P/V molar ratio and pH value of the reaction affect photocatalytic activity. • The mechanism of enhanced visible-light photocatalytic activities was discussed. - Abstract: BiPO 4 /BiVO 4 composites with different P/V molar ratios were prepared by the hydrothermal method and the effect of pH values of hydrothermal reaction on photocatalytic activity of BiPO 4 /BiVO 4 composite was investigated. The photocatalysts were characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. The photocatalytic property of BiPO 4 /BiVO 4 was evaluated by photocatalytic degradation of Methylene blue under visible light irradiation. The results showed that the photocatalytic activity of the composites was much higher than that of pure BiPO 4 and BiVO 4 . The rate constant of Methylene blue degradation over BiPO 4 /BiVO 4 (P/V molar ratio of 5:1 and hydrothermal reaction pH value of 1.5) is 1.7 times that of pure BiVO 4 . The photocatalytic activity enhancement of BiPO 4 /BiVO 4 composite is closely related to the BiVO 4 functioning as a sensitizer to adsorb visible light and the heterojunction of BiPO 4 /BiVO 4 acting as an active center for hindering the rapid recombination of electron–hole pairs during the photocatalytic reaction

  20. Comparison of ultraviolet Bi-directional Reflectance Distribution Function (BRDF) measurements of diffusers used in the calibration of the Total Ozone Mapping Spectrometer (TOMS)

    OpenAIRE

    Butler, J.J.; Park, H.; Barnes, P.Y.; Early, E.A.; Eijk-Olij, C. van; Zoutman, A.E.; Buller-Leeuwen, S. van; Groote Schaarsberg, J.

    2002-01-01

    The measurement and long-term monitoring of global total ozone by ultraviolet albedo measuring satellite instruments require accurate and precise determination of the Bi-directional Reflectance Distribution Function (BRDF) of laboratory-based diffusers used in the pre-launch calibration of those instruments. To assess the ability of laboratories to provide accurate Ultra Violet (UV) diffuse BRDF measurements, a BRDF measurement comparison was initiated by the NASA Total Ozone Mapping Spectrom...

  1. U.S. Army Technology Collaboration Briefing

    Science.gov (United States)

    2012-09-11

    engine boosting ( turbo chargers and super chargers), homogeneous charged compression, direct injection, etc. • Advanced light-weight materials...mitigation, recycling, and supply chain development. • Alternative fuels including biofuels, hydrogen, electricity, diesel , etc. • Vehicle

  2. State diagram of Pr-Bi system

    International Nuclear Information System (INIS)

    Abulkhaev, V.L.; Ganiev, I.N.

    1994-01-01

    By means of thermal differential analysis, X-ray and microstructural analysis the state diagram of Pr-Bi system was studied. Following intermetallic compounds were defined in the system: Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 , Pr Bi, PrBi 2 , Pr 2 Bi, Pr 5 Bi 3 , Pr 4 Bi 3 and PrBi 2 . The data analysis on Ln-Bi diagram allowed to determine the regularity of change of properties of intermetallic compounds in the line of rare earth elements of cerium subgroup.

  3. Passive direct methanol fuel cells for portable electronic devices

    International Nuclear Information System (INIS)

    Achmad, F.; Kamarudin, S.K.; Daud, W.R.W.; Majlan, E.H.

    2011-01-01

    Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm 2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm -2 . The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W -1 , and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.

  4. Shape Optimization of the Assisted Bi-directional Glenn surgery for stage-1 single ventricle palliation

    Science.gov (United States)

    Verma, Aekaansh; Shang, Jessica; Esmaily-Moghadam, Mahdi; Wong, Kwai; Marsden, Alison

    2016-11-01

    Babies born with a single functional ventricle typically undergo three open-heart surgeries starting as neonates. The first of these stages (BT shunt or Norwood) has the highest mortality rates of the three, approaching 30%. Proceeding directly to a stage-2 Glenn surgery has historically demonstrated inadequate pulmonary flow (PF) & high mortality. Recently, the Assisted Bi-directional Glenn (ABG) was proposed as a promising means to achieve a stable physiology by assisting the PF via an 'ejector pump' from the systemic circulation. We present preliminary parametrization and optimization results for the ABG geometry, with the goal of increasing PF. To limit excessive pressure increases in the Superior Vena Cava (SVC), the SVC pressure is included as a constraint. We use 3-D finite element flow simulations coupled with a single ventricle lumped parameter network to evaluate PF & the pressure constraint. We employ a derivative free optimization method- the Surrogate Management Framework, in conjunction with the OpenDIEL framework to simulate multiple simultaneous evaluations. Results show that nozzle diameter is the most important design parameter affecting ABG performance. The application of these results to patient specific situations will be discussed. This work was supported by an NSF CAREER award (OCI1150184) and by the XSEDE National Computing Resource.

  5. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance

    Science.gov (United States)

    Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi

    2018-02-01

    In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.

  6. Design and Implementation of Battery Charger with Power Factor Correction using Sepic Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2013-12-01

    Full Text Available This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulator of output voltage and operates at continuous conduction mode. The experimental results show that the power factor of this converter system can be achieved up to 0.96.

  7. First-principles approach to the dynamic magnetoelectric couplings for the non-reciprocal directional dichroism in BiFeO3

    Science.gov (United States)

    Lee, Jun Hee; Kézsmáki, István; Fishman, Randy S.

    2016-04-01

    Due to the complicated magnetic and crystallographic structures of BiFeO3, its magnetoelectric (ME) couplings and microscopic model Hamiltonian remain poorly understood. By employing a first-principles approach, we uncover all possible ME couplings associated with the spin-current (SC) and exchange-striction (ES) polarizations, and construct an appropriate Hamiltonian for the long-range spin-cycloid in BiFeO3. First-principles calculations are used to understand the microscopic origins of the ME couplings. We find that inversion symmetries broken by ferroelectric and antiferroelectric distortions induce the SC and the ES polarizations, which cooperatively produce the dynamic ME effects in BiFeO3. A model motivated by first principles reproduces the absorption difference of counter-propagating light beams called non-reciprocal directional dichroism. The current paper focuses on the spin-driven (SD) polarizations produced by a dynamic electric field, i.e. the dynamic ME couplings. Due to the inertial properties of Fe, the dynamic SD polarizations differ significantly from the static SD polarizations. Our systematic approach can be generally applied to any multiferroic material, laying the foundation for revealing hidden ME couplings on the atomic scale and for exploiting optical ME effects in the next generation of technological devices such as optical diodes. This manuscript has been written by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.

  8. Bi-directional effects of depressed mood in the postnatal period on mother-infant non-verbal engagement with picture books.

    Science.gov (United States)

    Reissland, Nadja; Burt, Mike

    2010-12-01

    The purpose of the present study is to examine the bi-directional nature of maternal depressed mood in the postnatal period on maternal and infant non-verbal behaviors while looking at a picture book. Although, it is acknowledged that non-verbal engagement with picture books in infancy plays an important role, the effect of maternal depressed mood on stimulating the interest of infants in books is not known. Sixty-one mothers and their infants, 38 boys and 23 girls, were observed twice approximately 3 months apart (first observation: mean age 6.8 months, range 3-11 months, 32 mothers with depressed mood; second observation: mean age 10.2 months, range 6-16 months, 17 mothers with depressed mood). There was a significant effect for depressed mood on negative behaviors: infants of mothers with depressed mood tended to push away and close books more often. The frequency of negative behaviors (pushing the book away/closing it on the part of the infant and withholding the book and restraining the infant on the part of the mother) were behaviors which if expressed during the first visit were more likely to be expressed during the second visit. Levels of negative behaviors by mother and infant were strongly related during each visit. Additionally, the pattern between visits suggests that maternal negative behavior may be the cause of her infant negative behavior. These results are discussed in terms of the effects of maternal depressed mood on the bi-directional relation of non-verbal engagement of mother and child. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  9. Physical activity and self-esteem: testing direct and indirect relationships associated with psychological and physical mechanisms.

    Science.gov (United States)

    Zamani Sani, Seyed Hojjat; Fathirezaie, Zahra; Brand, Serge; Pühse, Uwe; Holsboer-Trachsler, Edith; Gerber, Markus; Talepasand, Siavash

    2016-01-01

    In the present study, we investigated the relationship between physical activity (PA) and self-esteem (SE), while introducing body mass index (BMI), perceived physical fitness (PPF), and body image (BI) in adults (N =264, M =38.10 years). The findings indicated that PA was directly and indirectly associated with SE. BMI predicted SE neither directly nor indirectly, but was directly associated with PPF and both directly and indirectly with BI. Furthermore, PPF was directly related to BI and SE, and a direct association was found between BI and SE. The pattern of results suggests that among a sample of adults, PA is directly and indirectly associated with SE, PPF, and BI, but not with BMI. PA, PPF, and BI appear to play an important role in SE. Accordingly, regular PA should be promoted, in particular, among adults reporting lower SE.

  10. Bi-directional evolutionary structural optimization for strut-and-tie modelling of three-dimensional structural concrete

    Science.gov (United States)

    Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz

    2017-12-01

    This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.

  11. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    Directory of Open Access Journals (Sweden)

    Yuxin Wang

    2017-08-01

    Full Text Available In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM. The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at% Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  12. Polycrystalline and Mesoporous 3-D Bi2O3 Nanostructured Negatrodes for High-Energy and Power-Asymmetric Supercapacitors: Superfast Room-Temperature Direct Wet Chemical Growth.

    Science.gov (United States)

    Shinde, Nanasaheb M; Xia, Qi Xun; Yun, Je Moon; Mane, Rajaram S; Kim, Kwang Ho

    2018-04-04

    Superfast (≤10 min) room-temperature (300 K) chemical synthesis of three-dimensional (3-D) polycrystalline and mesoporous bismuth(III) oxide (Bi 2 O 3 ) nanostructured negatrode (as an abbreviation of negative electrode) materials, viz., coconut shell, marigold, honey nest cross section and rose with different surface areas, charge transfer resistances, and electrochemical performances essential for energy storage, harvesting, and even catalysis devices, are directly grown onto Ni foam without and with poly(ethylene glycol), ethylene glycol, and ammonium fluoride surfactants, respectively. Smaller diffusion lengths, caused by the involvement of irregular crevices, allow electrolyte ions to infiltrate deeply, increasing the utility of inner active sites for the following electrochemical performance. A marigold 3-D Bi 2 O 3 electrode of 58 m 2 ·g -1 surface area has demonstrated a specific capacitance of 447 F·g -1 at 2 A·g -1 and chemical stability of 85% even after 5000 redox cycles at 10 A·g -1 in a 6 M KOH electrolyte solution, which were higher than those of other morphology negatrode materials. An asymmetric supercapacitor (AS) device assembled with marigold Bi 2 O 3 negatrode and manganese(II) carbonate quantum dots/nickel hydrogen-manganese(II)-carbonate (MnCO 3 QDs/NiH-Mn-CO 3 ) positrode corroborates as high as 51 Wh·kg -1 energy at 1500 W·kg -1 power and nearly 81% cycling stability even after 5000 cycles. The obtained results were comparable or superior to the values reported previously for other Bi 2 O 3 morphologies. This AS assembly glowed a red-light-emitting diode for 20 min, demonstrating the scientific and industrial credentials of the developed superfast Bi 2 O 3 nanostructured negatrodes in assembling various energy storage devices.

  13. Phase development and kinetics of high temperature Bi-2223 phase

    International Nuclear Information System (INIS)

    Yavuz, M.; Maeda, H.; Hua, K.L.; Shi, X.D.

    1998-01-01

    The two-dimensional nucleation (random)-growth mechanism were observed as a support for the related previous works, which is attributable to the growth of the Bi-2223 grain in the a-b plane direction of the Bi-2212 matrix is being much faster than in the c-direction, or that the early-formed plate-like 2212 phase confines the 2223 product. At the beginning of the reaction, the additional phases are partially melted. Because of the structure, composition and thermal fluctuation, the 2223 nucleates and grows in the phase boundary between the liquid phase and Bi-2212. It was shown here that the nucleation and the growth rate were relatively fast between 0 and 36 h. At the final stage, between 36 and 60 h, because of the impingement of the growth fronts of different nuclei, the high formation rate of 2223 is suppressed. The major reactant 2212 remains as a solid and its plate-like configuration determines the two dimensional nature of the reaction. The amount of liquid forms during reaction is small. (orig.)

  14. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J., E-mail: jun.cui@pnnl.gov; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D. [Materials Sciences and Engineering Division, Ames Laboratory, Ames, Iowa 50011 (United States); Marinescu, M. [Electron Energy Corporation, Landisville, Pennsylvania 17538 (United States); Huang, Q. Z.; Wu, H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States); Vuong, N. V.; Liu, J. P. [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  15. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  16. Global EiBI-monopole

    Directory of Open Access Journals (Sweden)

    JIN Xinghua

    2014-04-01

    Full Text Available A global EiBI-monopole problem is studied under EiBI gravitational theory.The equations of global EiBI-monopole are derived in the curved spacetime and the relation between the spacetime metric and auxiliary metric is found.In the case of a very small parameter,an asymptotic form of equations is given.The series solutions of global EiBI-monopole at infinity are found.

  17. Bi-layer plate-type acoustic metamaterials with Willis coupling

    Science.gov (United States)

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-01-01

    Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.

  18. Electron microscopy analyses and electrical properties of the layered Bi2WO6 phase

    International Nuclear Information System (INIS)

    Taoufyq, A.; Ait Ahsaine, H.; Patout, L.; Benlhachemi, A.; Ezahri, M.

    2013-01-01

    The bismuth tungstate Bi 2 WO 6 was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2 1 non centrosymmetric space group previously proposed for this phase. The layers Bi 2 O 2 2+ and WO 4 2− have been directly evidenced from the HRTEM images. The electrical properties of Bi 2 WO 6 compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi 2 WO 6 phase, with a representation of the cell dimensions (b and c vectors). The Bi 2 O 2 2+ and WO 4 2− sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi 2 WO 6 . • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification

  19. Shielded high-T{sub c} (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Lelovic, M.; Eror, N.G. [Department of Materials Science, University of Pittsburgh, Pittsburgh, PA (United States); Balachandran, U.; Prorok, B. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Selvamanickam, V.; Haldar, P. [Intermagnetics General Corporations, Latham, NY (United States); Talvacchio, J.; Young, R. [Science and Technology Center, Northrop Grumman, Pittsburgh, PA (United States)

    1998-11-01

    A new composite tape was fabricated in which the primary function of the central Ag-sheathed (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) filaments was to conduct transport current. A YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (Y-123) thin film was deposited on the top of the Ag-sheathed Bi-2223 tape to shield the applied magnetic field and to protect the central Bi-2223 filaments. The critical current densities of the Y-123-coated, Ag-sheathed Bi-2223 tapes were better than those of an uncoated tape. However, the Y-123 thin film exhibited T{sub c} approx.= 72 K and a broad transition region that shifted the effect to lower temperatures. Furthermore, pole figure measurements showed widely spread a,b planes along the rolling direction, indicating high-angle grain boundaries that diminished the magnitude of the effect. Microstructural observations showed platelike grains of Y-123 with fine growth ledges in the thin film that was heat treated, in contrast with the microstructure of an as-coated thin film that showed large twinned grains. From the processing point of view, the results showed that heat treating Y-123 thin film according to the Bi-2223 tape schedule was compatible with and beneficial for Y-123. These preliminary results may provide a basis for further improvements in processing of long-length Bi-2223 tapes for high-field applications. (author)

  20. First-principles study on doping and temperature dependence of thermoelectric property of Bi2S3 thermoelectric material

    International Nuclear Information System (INIS)

    Guo, Donglin; Hu, Chenguo; Zhang, Cuiling

    2013-01-01

    Graphical abstract: The direction-induced ZT is found. At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36, which is three times as much as maximal laboratorial value. This result matches well the analysis of electron effective mass. Highlights: ► Electrical transportations of Bi 2 S 3 depend on the concentration and temperature. ► The direction-induced ZT is found. ► At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36. ► The maximal ZT value is three times as much as maximal laboratorial value. ► By doping and temperature tuning, Bi 2 S 3 is a promising thermoelectric material. - Abstract: The electronic structure and thermoelectric property of Bi 2 S 3 are investigated. The electron and hole effective mass of Bi 2 S 3 is analyzed in detail, from which we find that the thermoelectric transportation varies in different directions in Bi 2 S 3 crystal. Along ac plane the higher figure of merit (ZT) could be achieved. For n-type doped Bi 2 S 3 , the optimal doping concentration is found in the range of (1.0–5.0) × 10 19 cm −3 , in which the maximal ZT reaches 0.21 at 900 K, but along ZZ direction, the maximal ZT reaches 0.36. These findings provide a new understanding of thermoelectricity-dependent structure factors and improving ZT ways. The donor concentration N increases as T increases at one bar of pressure under a suitable chemical potential μ, but above this chemical potential μ, the donor concentration N keeps a constant

  1. High photocatalytic performance of BiOI/Bi{sub 2}WO{sub 6} toward toluene and Reactive Brilliant Red

    Energy Technology Data Exchange (ETDEWEB)

    Li Huiquan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Key Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Cui Yumin, E-mail: cuiyumin0908@163.com [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China); Hong Wenshan [School of Chemistry and Chemical Engineering, Fuyang Normal College, Fuyang 236041 (China)

    2013-01-01

    Graphical abstract: When BiOI/Bi{sub 2}WO{sub 6} catalyst was exposed to UV or visible light, the electrons in the valence band of Bi{sub 2}WO{sub 6} would be excited into the conduction band and then injected into the more positive conduction band of BiOI. Therefore, the photoelectrons were generated from Bi{sub 2}WO{sub 6} and transferred across the interface between BiOI and Bi{sub 2}WO{sub 6} to the surface of BiOI, leaving the photogenerated holes in the valence band of Bi{sub 2}WO{sub 6}. In this way, the photoinduced electron-hole pairs were effectively separated. Highlights: Black-Right-Pointing-Pointer BiOI sensitized Bi{sub 2}WO{sub 6} catalysts were successfully prepared by a facile method. Black-Right-Pointing-Pointer The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits higher photoactivities than P25. Black-Right-Pointing-Pointer A possible transfer process of photogenerated carriers was proposed. - Abstract: BiOI sensitized nano-Bi{sub 2}WO{sub 6} photocatalysts with different BiOI contents were successfully synthesized by a facile deposition method at room temperature, and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) high-resolution transmission electron microscopy (HR-TEM), photoluminescence (PL) spectra, UV-vis diffuse reflection spectroscopy (UV-vis DRS) and Brunauer-Emmett-Teller (BET) surface area measurements. The photocatalytic activity of BiOI/Bi{sub 2}WO{sub 6} was evaluated by the photo-degradation of Reactive Brilliant Red (X-3B) in suspended solution and toluene in gas phase. It has been shown that the BiOI/Bi{sub 2}WO{sub 6} catalysts exhibit a coexistence of both tetragonal BiOI and orthorhombic Bi{sub 2}WO{sub 6} phases. With increasing BiOI content, the absorption intensity of BiOI/Bi{sub 2}WO{sub 6} catalysts increases in the 380-600 nm region and the absorption edge shifts significantly to longer wavelengths as compared to pure Bi{sub 2}WO{sub 6}. The 13.2% BiOI/Bi{sub 2}WO{sub 6} catalyst exhibits

  2. MLED_BI: a new BI Design Approach to Support Multilingualism in Business Intelligence

    Directory of Open Access Journals (Sweden)

    Nedim Dedić

    2017-11-01

    Full Text Available Existing approaches to support Multilingualism (ML in Business Intelligence (BI create problems for business users, present a number of challenges from the technical perspective, and lead to issues with logical dependence in the star schema. In this paper, we propose MLED_BI (Multilingual Enabled Design for Business Intelligence, a novel BI design approach to support the application of ML in BI Environment, which overcomes the issues and problems found with existing approaches. The approach is based on a revision of the data warehouse dimensional modelling approach and treats the Star Schema as a higher level entity. This paper describes MLED_BI and the validation and evaluation approach used.

  3. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gaora Peadar Ó

    2010-10-01

    Full Text Available Abstract Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of

  4. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    International Nuclear Information System (INIS)

    Xiong Ka; Wang Weichao; Alshareef, Husam N; Gupta, Rahul P; Gnade, Bruce E; Cho, Kyeongjae; White, John B

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2 Te 3 , NiTe/Bi 2 Te 3 , Co/Bi 2 Te 3 and CoTe 2 /Bi 2 Te 3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi 2 Te 3 . The interface formation energy for Co/Bi 2 Te 3 interfaces is much lower than that of Ni/Bi 2 Te 3 interfaces. Furthermore, we found that NiTe on Bi 2 Te 3 is more stable than Ni, while the formation energies for Co and CoTe 2 on Bi 2 Te 3 are comparable.

  5. Performance Analysis of Video PHY Controller Using Unidirection and Bi-directional IO Standard via 7 Series FPGA

    DEFF Research Database (Denmark)

    Das, Bhagwan; Abdullah, M F L; Hussain, Dil muhammed Akbar

    2017-01-01

    graphics consumes more power, this creates a need of designing the low power design for Video PHY controller. In this paper, the performance of Video PHY controller is analyzed by comparing the power consumption of unidirectional and bi-directional IO Standard over 7 series FPGA. It is determined...... that total on-chip power is reduced for unidirectional IO Standard based Video PHY controller compared to bidirectional IO Standard based Video PHY controller. The most significant achievement of this work is that it is concluded that unidirectional IO Standard based Video PHY controller consume least...... standby power compared to bidirectional IO Standard based Video PHY controller. It is defined that for 6 GHz operated frequency Video PHY controller, the 32% total on-chip power is reduced using unidirectional IO Standard based Video PHY controller is less compared to bidirectional IO Standard based Video...

  6. Unidirectional THz radiation propagation in BiFeO3

    Science.gov (United States)

    Room, Toomas

    The mutual coupling between magnetism and electricity present in many multiferroic materials permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to write a magnetic state current-free by an electric voltage would provide a huge technological advantage. However, ME coupling changes the low energy electrodynamics of these materials in unprecedented way - optical ME effects give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. The transparent direction can be switched with dc magnetic or electric field, thus opening up new possibilities to manipulate the propagation of electromagnetic waves in multiferroic materials. We studied the unidirectional transmission of THz radiation in BiFeO3 crystals, the unique multiferroic compound offering a real potential for room temperature applications. The electrodynamics of BiFeO3 at 1THz and below is dominated by the spin wave modes of cycloidal spin order. We found that the optical magnetoelectric effect generated by spin waves in BiFeO3 is robust enough to cause considerable nonreciprocal directional dichroism in the GHz-THz range even at room temperature. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. Our work demonstrates that the nonreciprocal directional dichroism spectra of low energy excitations and their theoretical analysis provide microscopic model of ME couplings in multiferroic materials. Recent THz spectroscopy studies of multiferroic materials are an important step toward the realization of optical diodes, devices which transmit light in one but not in the opposite direction.

  7. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka; Wang, Weichao; Alshareef, Husam N.; Gupta, Rahul P.; White, John B.; Gnade, Bruce E.; Cho, Kyeongjae

    2010-01-01

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  8. Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces

    KAUST Repository

    Xiong, Ka

    2010-03-04

    We investigate the electronic structures and stability for Ni/Bi 2Te3, NiTe/Bi2Te3, Co/Bi 2Te3 and CoTe2/Bi2Te3 interfaces by first-principles calculations. It is found that the surface termination strongly affects the band alignment. Ni and Co are found to form Ohmic contacts to Bi2Te3. The interface formation energy for Co/Bi2Te3 interfaces is much lower than that of Ni/Bi2Te3 interfaces. Furthermore, we found that NiTe on Bi2Te3 is more stable than Ni, while the formation energies for Co and CoTe2 on Bi2Te3 are comparable. © 2010 IOP Publishing Ltd.

  9. Bismuth-boron multiple bonding in BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Tian; Cheung, Ling Fung; Chen, Teng-Teng; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, RI (United States)

    2017-08-01

    Despite its electron deficiency, boron is versatile in forming multiple bonds. Transition-metal-boron double bonding is known, but boron-metal triple bonds have been elusive. Two bismuth boron cluster anions, BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -}, containing triple and double B-Bi bonds are presented. The BiB{sub 2}O{sup -} and Bi{sub 2}B{sup -} clusters are produced by laser vaporization of a mixed B/Bi target and characterized by photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra are obtained and interpreted with the help of ab initio calculations, which show that both species are linear. Chemical bonding analyses reveal that Bi forms triple and double bonds with boron in BiB{sub 2}O{sup -} ([Bi≡B-B≡O]{sup -}) and Bi{sub 2}B{sup -} ([Bi=B=Bi]{sup -}), respectively. The Bi-B double and triple bond strengths are calculated to be 3.21 and 4.70 eV, respectively. This is the first experimental observation of Bi-B double and triple bonds, opening the door to design main-group metal-boron complexes with multiple bonding. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Direct observation of anisotropic small-hole polarons in an orthorhombic structure of BiV O4 films

    Science.gov (United States)

    Chaudhuri, A.; Mandal, L.; Chi, X.; Yang, M.; Scott, M. C.; Motapothula, M.; Yu, X. J.; Yang, P.; Shao-Horn, Y.; Venkatesan, T.; Wee, A. T. S.; Rusydi, A.

    2018-05-01

    Here, we report an anisotropic small-hole polaron in an orthorhombic structure of BiV O4 films grown by pulsed-laser deposition on yttrium-doped zirconium oxide substrate. The polaronic state and electronic structure of BiV O4 films are revealed using a combination of polarization-dependent x-ray absorption spectroscopy at V L3 ,2 edges, spectroscopic ellipsometry, x-ray photoemission spectroscopies, and high-resolution x-ray diffraction with the support of first-principles calculations. We find that in the orthorhombic phase, which is slightly different from the conventional pucherite structure, the unoccupied V 3d orbitals and charge inhomogeneities lead to an anisotropic small-hole polaron state. Our result shows the importance of the interplay of charge and lattice for the formation of a hole polaronic state, which has a significant impact in the electrical conductivity of BiV O4 , hence its potential use as a photoanode for water splitting.

  11. Photocatalytic activity of Bi{sub 2}WO{sub 6}/Bi{sub 2}S{sub 3} heterojunctions: the facilitation of exposed facets of Bi{sub 2}WO{sub 6} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Long [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China); Wang, Yufei [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); Shen, Huidong; Zhang, Yu [School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China); Li, Jian [School of Chemistry and Chemical Engineering, Yulin University, Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin 71900 (China); Wang, Danjun, E-mail: yulyanlong@aliyun.com [School of Chemistry and Chemical Engineering, Yan’an University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan’an 716000 (China)

    2017-01-30

    Highlights: • Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} hybrids with exposed (020) Bi{sub 2}WO{sub 6} facets have been synthesized. • X-ray photoelectron spectroscopy reveals that a small amount of Bi{sub 2}S{sub 3} was formed. • The enhanced photoactivity of hybrids is due to heterojunction and (020) facets. • A possible photocatalytic degradation mechanism is proposed. - Abstract: Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} hybrid architectures with exposed (020) Bi{sub 2}WO{sub 6} facets have been synthesized via a controlled anion exchange approach. X-ray photoelectron spectroscopy (XPS) reveals that a small amount of Bi{sub 2}S{sub 3} was formed on the surface of Bi{sub 2}WO{sub 6} during the anion exchange process, thus leading to the transformation from the Bi{sub 2}WO{sub 6} to Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}. A rhodamine B (RhB) aqueous solution was chosen as model organic pollutants to evaluate the photocatalytic activities of the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6} catalysts. Under visible light irradiation, the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}-TAA displayed the excellent visible light photoactivities compared with pure Bi{sub 2}S{sub 3}, Bi{sub 2}WO{sub 6} and other composite photocatalysts. The efficient photocatalytic activity of the Bi{sub 2}S{sub 3}/Bi{sub 2}WO{sub 6}-TAA composite microspheres was ascribed to the constructed heterojunctions and the inner electric field caused by the exposed (020) Bi{sub 2}WO{sub 6} facets. Active species trapping experiments revealed that h{sup +} and O{sub 2}·{sup −} are the main active species in the photocatalytic process. Furthermore, the as-obtained photocatalysts showed good photocatalytic activity after four recycles. The results presented in this study provide a new concept for the rational design and development of highly efficient photocatalysts.

  12. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  13. Self-Poling of BiFeO3 Thick Films.

    Science.gov (United States)

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-03

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  14. Selenium-assisted controlled growth of graphene–Bi_2Se_3 nanoplates hybrid Dirac materials by chemical vapor deposition

    International Nuclear Information System (INIS)

    Sun, Zhencui; Man, Baoyuan; Yang, Cheng; Liu, Mei; Jiang, Shouzhen; Zhang, Chao; Zhang, Jiaxin; Liu, Fuyan; Xu, Yuanyuan

    2016-01-01

    Graphical abstract: - Highlights: • We synthesize the graphene–Bi_2Se_3 nanoplates hybrid Dirac materials via CVD. • The Se seed layer impels the Bi_2Se_3 plates growing along the lateral direction. • The Se seed layer can supply enough Se atoms to fill the Se vacancies. • The Se seed layer can effectively avoid the interaction of Bi_2Se_3 and the graphene. • The Se seed layer can be used to control the density of the Bi_2Se_3 nanoplates. - Abstract: Se seed layers were used to synthesize the high-quality graphene–Bi_2Se_3 nanoplates hybrid Dirac materials via chemical vapor deposition (CVD) method. The morphology, crystallization and structural properties of the hybrid Dirac materials were characterized by SEM, EDS, Raman, XRD, AFM and HRTEM. The measurement results verify that the Se seed layer on the graphene surface can effectively saturate the surface dangling bonds of the graphene, which not only impel the uniform Bi_2Se_3 nanoplates growing along the horizontal direction but also can supply enough Se atoms to fill the Se vacancies. We also demonstrate the Se seed layer can effectively avoid the interaction of Bi_2Se_3 and the graphene. Further experiments testify the different Se seed layer on the graphene surface can be used to control the density of the Bi_2Se_3 nanoplates.

  15. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    OpenAIRE

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-01-01

    A new BiS2-based superconductor Bi2(O,F)S2 was discovered. This is a layered compound consisting of alternate stacking structure of rock-salt-type BiS2 superconducting layer and fluorite-type Bi(O,F) blocking layer. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2, which is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis length increased and decreased, respe...

  16. Improving historical spelling normalization with bi-directional LSTMs and multi-task learning

    OpenAIRE

    Bollmann, Marcel; Søgaard, Anders

    2016-01-01

    Natural-language processing of historical documents is complicated by the abundance of variant spellings and lack of annotated data. A common approach is to normalize the spelling of historical words to modern forms. We explore the suitability of a deep neural network architecture for this task, particularly a deep bi-LSTM network applied on a character level. Our model compares well to previously established normalization algorithms when evaluated on a diverse set of texts from Early New Hig...

  17. One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Lingling [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Luo, Zhijun, E-mail: lzj@ujs.edu.cn [School of the Environment, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China); Tang, Chao [Maple Leaf International High School, Zhenjiang 212013 (China)

    2013-11-15

    Graphical abstract: Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core–shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs). Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation. - Highlights: • One step synthesis of Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon spheres. • Functional groups of sodium gluconate play synergetic roles in the formation of Bi@Bi{sub 2}O{sub 3}@CRCSs. • Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits enhanced photocatalytic activity under visible light irradiation. - Abstract: Bi@Bi{sub 2}O{sub 3}@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi{sub 2}O{sub 3}@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi{sub 2}O{sub 3}@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi{sub 2}O{sub 3}@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O{sub 2}-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O{sub 2}·{sup −} are the main active oxidative species.

  18. Topotactic synthesis of a new BiS2-based superconductor Bi2(O,F)S2

    Science.gov (United States)

    Okada, Tomoyuki; Ogino, Hiraku; Shimoyama, Jun-ichi; Kishio, Kohji

    2015-02-01

    A new BiS2-based superconductor, Bi2(O,F)S2, was discovered. It is a layered compound consisting of alternately stacked structure of rock-salt-type BiS2 superconducting layers and fluorite-type Bi(O,F) blocking layers. Bi2(O,F)S2 was obtained as the main phase by topotactic fluorination of undoped Bi2OS2 using XeF2. This is the first topotactic synthesis of an electron-doped superconductor via reductive fluorination. With increasing F-content, a- and c-axis lengths increased and decreased, respectively, and Tc increased to 5.1 K.

  19. Sodium citrate-assisted anion exchange strategy for construction of Bi2O2CO3/BiOI photocatalysts

    International Nuclear Information System (INIS)

    Song, Peng-Yuan; Xu, Ming; Zhang, Wei-De

    2015-01-01

    Highlights: • Heterostructured Bi 2 O 2 CO 3 /BiOI microspheres were prepared via anion exchange. • Sodium citrate-assisted anion exchange for construction of composite photocatalysts. • Bi 2 O 2 CO 3 /BiOI composites show high visible light photocatalytic activity. - Abstract: Bi 2 O 2 CO 3 /BiOI heterojuncted photocatalysts were constructed through a facile partial anion exchange strategy starting from BiOI microspheres and urea with the assistance of sodium citrate. The content of Bi 2 O 2 CO 3 in the catalysts was regulated by modulating the amount of urea as a precursor, which was decomposed to generate CO 3 2− in the hydrothermal process. Citrate anion plays a key role in controlling the morphology and composition of the products. The Bi 2 O 2 CO 3 /BiOI catalysts display much higher photocatalytic activity than pure BiOI and Bi 2 O 2 CO 3 towards the degradation of rhodamine B (RhB) and bisphenol A (BPA). The enhancement of photocatalytic activity of the heterojuncted catalysts is attributed to the formation of p–n junction between p-BiOI and n-Bi 2 O 2 CO 3 , which is favorable for retarding the recombination of photoinduced electron-hole pairs. Moreover, the holes are demonstrated to be the main active species for the degradation of RhB and BPA

  20. Rotational Symmetry Breaking in a Trigonal Superconductor Nb-doped Bi_{2}Se_{3}

    Directory of Open Access Journals (Sweden)

    Tomoya Asaba

    2017-01-01

    Full Text Available The search for unconventional superconductivity has been focused on materials with strong spin-orbit coupling and unique crystal lattices. Doped bismuth selenide (Bi_{2}Se_{3} is a strong candidate, given the topological insulator nature of the parent compound and its triangular lattice. The coupling between the physical properties in the superconducting state and its underlying crystal symmetry is a crucial test for unconventional superconductivity. In this paper, we report direct evidence that the superconducting magnetic response couples strongly to the underlying trigonal crystal symmetry in the recently discovered superconductor with trigonal crystal structure, niobium (Nb-doped Bi_{2}Se_{3}. As a result, the in-plane magnetic torque signal vanishes every 60°. More importantly, the superconducting hysteresis loop amplitude is enhanced along one preferred direction, spontaneously breaking the rotational symmetry. This observation indicates the presence of nematic order in the superconducting ground state of Nb-doped Bi_{2}Se_{3}.

  1. Partial enthalpies of Bi and Te in Bi-Te melts and of In and Te in In-Te melts

    International Nuclear Information System (INIS)

    Yassin, Abeer; Amzil, Abdelhamid; Castanet, Robert

    2000-01-01

    Full text.Calorimetric measurement are reported which allow the enthalpic behaviour of Bi-Te melts to be established. Further work is required, however, to supplement results obtained for In-Te melts. The partial enthalpies of bismuth and tellurium in the Bi-Te melts at 755K and those of indium and tellurium in the In-Te melts at 1010 and 987K were measured at high dilution by direct reaction calorimetry (drop method) with the help of a Tian-Calvet calorimeter. The limiting partial enthalpies of the components were deduced by extrapolation at infinite dilution: Δh f,∞ B i(755K)/KJ.mol -1 = -34.0 and Δh f,∞ Te(755K) /KJ·mol -1 = -24.1 in the Bi-Te melts Δh f,∞ In(1010K) /KJ·mol -1 = -75.9 and Δh f,∞ Te(1010K) /KJ·mol -1 = -47.8 in the In-Te melts Δh f,∞ In(987K) /KJ·mol -1 = -75.2 and Δh f,∞ Te(987K) /KJ·mol -1 = -48.0 in the In-Te melts

  2. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?

    Science.gov (United States)

    Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza

    2016-04-01

    Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Tomar, Monika [Department of Physics, Miranda Housea, University of Delhi, Delhi (India); James, A. R. [Defence Metallurgical Research Laboratory, Hyderabad (India); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar [Department of Electrical and Computer Engineering, College of Engineering, University of Texas at SanAntonio, San Antonio 78249 (United States)

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  4. Investigation of the electronic structure of the BiSBr and BiSeBr clusters by density functional method

    International Nuclear Information System (INIS)

    Audzijonis, A.; Gaigalas, G.; Zigas, L.; Pauliukas, A.; Zaltauskas, R.; Kvedaravicius, A.; Cerskus, A.

    2008-01-01

    The energy levels of valence bands (VB) of the BiSBr and BiSeBr crystals have been calculated for investigation of the photoelectron emission spectra of BiSBr, BiSeBr and BiSI crystals. The molecular model of this crystal has been used for the calculation of VB by the Density Functional Theory (DFT) method. The molecular cluster, consisting of 20 molecules of BiSBr, BiSeBr, has been used for calculations of averaged total density of states, including atom vibrations. The spectra of the averaged total density of states from VB of BiSBr and BiSeBr clusters have been compared with the experimental photoelectron emission spectra from VB of BiSI crystals. The results clarify that the atomic vibrations in A 5 B 6 C 7 type crystals with chain structure create a smoother appearance of the averaged total density of state spectrum and the experimental X-ray photoemission spectra (XPS)

  5. Luminescence of Bi3+ ions in Y3Al5O12:Bi single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Voznyak, T.; Vistovsky, V.; Nedilko, S.; Nikl, M.

    2007-01-01

    The absorption and cathodoluminescence spectra of single crystalline films (SCF) of Y 3 Al 5 O 12 :Bi garnet depending on Bi concentration were analyzed. For consideration of the nature of the UV and visible Bi-related emission bands the time-resolved luminescence of Bi 3+ (ns 2 ) ions in YAG:Bi SCF was studied at 10 K under excitation by synchrotron radiation. The difference in the excitation spectra and emission decay of the UV and visible bands has been explained via radiative relaxation from the 3 P 1,0 excited states to the 1 S 0 ground state of the isolated and pair/clustered Bi 3+ emission centers in the garnet lattice, respectively

  6. Vibration Energy Harvester with Bi-stable Curved Beam Spring Offset by Gravitational Acceleration

    International Nuclear Information System (INIS)

    Yamamoto, Koki; Fujita, Takayuki; Kanda, Kensuke; Maenaka, Kazusuke; Badel, Adrien; Formosa, Fabien

    2015-01-01

    We developed MEMS bi-stable spring for vibration energy harvester (VEH), which consists of intrinsically curved shape spring and gravitational acceleration. By applying the gravitational acceleration, the curved beam is offset to the gravity direction. It will make more symmetrical bi-stable motion and the symmetry is improved from 3.3 to 65.4%. We proposed that the combination between curved beam and gravity acceleration for decreasing snap- through acceleration. From the analytical result, we investigate the combination can effective to use for decreasing of snap-through force. We also fabricated the prototype device by using MEMS fabrication process. The frequency response for horizontal direction and the acceleration response for vertical direction are measured. The acceleration response shows that the gravitational acceleration improves the symmetry of snap-through force. (paper)

  7. Photoreduction of non-noble metal Bi on the surface of Bi{sub 2}WO{sub 6} for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojing [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); Yu, Shan; Liu, Yang; Zhang, Qian [The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); Zhou, Ying, E-mail: yzhou@swpu.edu.cn [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China); The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, No. 8, Xindu Road, Xindu District, Chengdu 610500 (China)

    2017-02-28

    Highlights: • Bi{sub 2}WO{sub 6}-Bi composite was synthesized by in situ photoreduction of Bi{sub 2}WO{sub 6}. • Bi{sub 2}WO{sub 6}-Bi exhibits improved photocatalytic efficiency towards degradation of Rhodamine B. • The generation of elemental Bi in Bi{sub 2}WO{sub 6}-Bi induces vacancy and structure distortion of Bi{sub 2}WO{sub 6}. • The surface oxygen adsorption mode changes from hydroxyl group on Bi{sub 2}WO{sub 6} to molecular oxygen on Bi{sub 2}WO{sub 6}-Bi. - Abstract: In this report, Bi{sub 2}WO{sub 6}-Bi composite was prepared through an in situ photoreduction method and was characterized systematically by X-Ray diffraction, transmission electron microscopy, X-Ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The as-prepared Bi{sub 2}WO{sub 6}-Bi maintains the same crystal structure with the pristine Bi{sub 2}WO{sub 6} regardless of some surface defects. Nevertheless, these surface defects result in the change of surface oxygen adsorption mode from hydroxyl to molecular oxygen on Bi{sub 2}WO{sub 6}. Photocatalytic activity over Bi{sub 2}WO{sub 6}-Bi is 2.4 times higher than that of Bi{sub 2}WO{sub 6} towards the degradation of organic dye Rhodamine B (RhB) under visible light irradiation (λ > 420 nm). A deep study shows that cleavage of benzene ring is the main pathway for RhB degradation over Bi{sub 2}WO{sub 6}, but both the benzene cleavage and de-ethylation pathway coexist for RhB decomposition in the presence of Bi{sub 2}WO{sub 6}-Bi as the photocatalyst. Photoelectrochemical study including transient photocurrent tests and electrochemical impedance spectroscopy measurements shows that Bi{sub 2}WO{sub 6}-Bi could facilitate the charge transfer process compared to Bi{sub 2}WO{sub 6}. These data above has indicated a new insight into the promotion mechanism based on Bi related heterostructures.

  8. High Gain and High Directive of Antenna Arrays Utilizing Dielectric Layer on Bismuth Titanate Ceramics

    Directory of Open Access Journals (Sweden)

    F. H. Wee

    2012-01-01

    Full Text Available A high gain and high directive microstrip patch array antenna formed from dielectric layer stacked on bismuth titanate (BiT ceramics have been investigated, fabricated, and measured. The antennas are designed and constructed with a combination of two-, four-, and six-BiT elements in an array form application on microwave substrate. For gain and directivity enhancement, a layer of dielectric was stacked on the BiT antenna array. We measured the gain and directivity of BiT array antennas with and without the dielectric layer and found that the gain of BiT array antenna with the dielectric layer was enhanced by about 1.4 dBi of directivity and 1.3 dB of gain over the one without the dielectric layer at 2.3 GHz. The impedance bandwidth of the BiT array antenna both with and without the dielectric layer is about 500 MHz and 350 MHz, respectively, which is suitable for the application of the WiMAX 2.3 GHz system. The utilization of BiT ceramics that covers about 90% of antenna led to high radiation efficiency, and small-size antennas were produced. In order to validate the proposed design, theoretical and measured results are provided and discussed.

  9. Shock compression behavior of bi-material powder composites with disparate melting temperatures

    International Nuclear Information System (INIS)

    Sullivan, Kyle T.; Swift, Damian; Barham, Matthew; Stölken, James; Kuntz, Joshua; Kumar, Mukul

    2014-01-01

    Laser driven experiments were used to investigate the shock compression behavior of powder processed Bismuth/Tungsten (Bi/W) composite samples. The constituents provide different functionality to the composite behavior as Bi could be shock melted at the pressures attained in this work, while the W could not. Samples were prepared by uniaxial pressing, and the relative density was measured as a function of particle size, applied pressure, and composition for both hot and cold pressing conditions. This resulted in sample densities between 73% and 99% of the theoretical maximum density, and also noticeable differences in microstructure in the hot and cold pressed samples. The compression waves were generated with a 1.3 × 1.3 mm square spot directly onto the surface of the sample, using irradiances between 10 12 and 10 13  W/cm 2 , which resulted in calculated peak pressures between 50 and 150 GPa within a few micrometers. Sample recovery and post-mortem analysis revealed the formation of a crater on the laser drive surface, and the depth of this crater corresponded to the depth to which the Bi had been melted. The melt depth was found to be primarily a function of residual porosity and composition, and ranged from 167 to 528 μm. In general, a higher porosity led to a larger melt depth. Direct numerical simulations were performed, and indicated that the observed increase in melt depth for low-porosity samples could be largely attributed to increased heating associated with work done for pore collapse. However, the relative scaling was sensitive to composition, with low volume fraction Bi samples exhibiting a much stronger dependence on porosity than high Bi content samples. Select samples were repeated using an Al foil ablator, but there were no noticeable differences ensuring that the observed melting was indeed pressure-driven and was not a result of direct laser heating. The resultant microstructures and damage near the spall surface were also investigated

  10. CFD Simulations of Pb-Bi Two-Phase Flow

    International Nuclear Information System (INIS)

    Dostal, Vaclav; Zelezny, Vaclav; Zacha, Pavel

    2008-01-01

    In a Pb-Bi cooled direct contact steam generation fast reactor water is injected directly above the core, the produced steam is separated at the top and is send to the turbine. Neither the direct contact phenomenon nor the two-phase flow simulations in CFD have been thoroughly described yet. A first attempt in simulating such two-phase flow in 2D using the CFD code Fluent is presented in this paper. The volume of fluid explicit model was used. Other important simulation parameters were: pressure velocity relation PISO, discretization scheme body force weighted for pressure, second order upwind for momentum and CISCAM for void fraction. Boundary conditions were mass flow inlet (Pb-Bi 0 kg/s and steam 0.07 kg/s) and pressure outlet. The effect of mesh size (0.5 mm and 0.2 mm cells) was investigated as well as the effect of the turbulent model. It was found that using a fine mesh is very important in order to achieve larger bubbles and the turbulent model (k-ε realizable) is necessary to properly model the slug flow. The fine mesh and unsteady conditions resulted in computationally intense problem. This may pose difficulties in 3D simulations of the real experiments. (authors)

  11. Label-Free Biosensors Based on Bimodal Waveguide (BiMW) Interferometers.

    Science.gov (United States)

    Herranz, Sonia; Gavela, Adrián Fernández; Lechuga, Laura M

    2017-01-01

    The bimodal waveguide (BiMW) sensor is a novel common path interferometric transducer based on the evanescent field detection principle, which in combination with a bio-recognition element allows the direct detection of biomolecular interactions in a label-free scheme. Due to its inherent high sensitivity it has great potential to become a powerful analytical tool for monitoring substances of interest in areas such as environmental control, medical diagnostics and food safety, among others. The BiMW sensor is fabricated using standard silicon-based technology allowing cost-effective production, and meeting the requirements of portability and disposability necessary for implementation in a point-of-care (POC) setting.In this chapter we describe the design and fabrication of the BiMW transducer, as well as its application for bio-sensing purposes. We show as an example the biosensor capabilities two different applications: (1) the immunodetection of Irgarol 1051 biocide useful in the environmental field, and (2) the detection of human growth hormone as used in clinical diagnostics. The detection is performed in real time by monitoring changes in the intensity pattern of light exiting the BiMW transducer resulting from antigen-antibody interactions on the surface of the sensor.

  12. Calorimetric investigation of (Pb0.45Bi0.55)-U system

    International Nuclear Information System (INIS)

    Agarwal, Renu; Samui, Pradeep; Mukerjee, S.K.; Ramakumar, K.L.

    2016-01-01

    Lead-bismuth eutectic (LBE) is being considered as a coolant of future high temperature reactors. As lead and bismuth are good spallation target material, they are planned to be used in accelerator driven reactor systems (ADS). Under the clad breach conditions these elements may come in direct contact with uranium of metallic fuel. In our labs, we had earlier investigated binary interactions of U-Pb and U-Bi. To assess interaction behaviour of 'U' with the eutectic melt, it was planned to measure enthalpy of mixing of LBE-U and compares it with the binary mixing. SEM-EDS studies of the product formed after mixing of LBE and 'U' were carried out to establish coexisting phases and their compositions. UPb 3 is Pb-rich compound of U-Pb and UBi 2 is Bi-rich compound of U-Bi. So addition of 'U' in (Pb 0.45 Bi 0.55 ) will result in formation of the more stable compound among UPb 3 and UBi 2

  13. Extracting the Evaluations of Stereotypes: Bi-factor Model of the Stereotype Content Structure

    Directory of Open Access Journals (Sweden)

    Pablo Sayans-Jiménez

    2017-10-01

    Full Text Available Stereotype dimensions—competence, morality and sociability—are fundamental to studying the perception of other groups. These dimensions have shown moderate/high positive correlations with each other that do not reflect the theoretical expectations. The explanation for this (e.g., halo effect undervalues the utility of the shared variance identified. In contrast, in this work we propose that this common variance could represent the global evaluation of the perceived group. Bi-factor models are proposed to improve the internal structure and to take advantage of the information representing the shared variance among dimensions. Bi-factor models were compared with first order models and other alternative models in three large samples (300–309 participants. The relationships among the global and specific bi-factor dimensions with a global evaluation dimension (measured through a semantic differential were estimated. The results support the use of bi-factor models rather than first order models (and other alternative models. Bi-factor models also show a greater utility to directly and more easily explore the stereotype content including its evaluative content.

  14. Extracting the Evaluations of Stereotypes: Bi-factor Model of the Stereotype Content Structure.

    Science.gov (United States)

    Sayans-Jiménez, Pablo; Cuadrado, Isabel; Rojas, Antonio J; Barrada, Juan R

    2017-01-01

    Stereotype dimensions-competence, morality and sociability-are fundamental to studying the perception of other groups. These dimensions have shown moderate/high positive correlations with each other that do not reflect the theoretical expectations. The explanation for this (e.g., halo effect) undervalues the utility of the shared variance identified. In contrast, in this work we propose that this common variance could represent the global evaluation of the perceived group. Bi-factor models are proposed to improve the internal structure and to take advantage of the information representing the shared variance among dimensions. Bi-factor models were compared with first order models and other alternative models in three large samples (300-309 participants). The relationships among the global and specific bi-factor dimensions with a global evaluation dimension (measured through a semantic differential) were estimated. The results support the use of bi-factor models rather than first order models (and other alternative models). Bi-factor models also show a greater utility to directly and more easily explore the stereotype content including its evaluative content.

  15. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ∼29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ∼2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  16. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate

    Science.gov (United States)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ˜29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ˜2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  17. Simulating bi-directional pedestrian flow in a cellular automaton model considering the body-turning behavior

    Science.gov (United States)

    Jin, Cheng-Jie; Jiang, Rui; Yin, Jun-Lin; Dong, Li-Yun; Li, Dawei

    2017-09-01

    In the experiments of bi-directional pedestrian flow, it is often observed that pedestrians turn their bodies and change from walking straight to walking sideways, in order to mitigate or avoid the conflicts with opposite walking ones. When these conflicts disappear, pedestrians restore and walk straight again. In the turning states, the forward velocities of pedestrians are not affected. In order to simulate this body-turning behavior, we use a cellular automaton (CA) model named ITP model, which has been proposed before. But the occupied area of one pedestrian is set as 0.4 m∗0.2 m. After the introduction of new rules of turnings and restorations, the pedestrians become more intelligent and flexible during the lane formation process, and some improvements of the fundamental diagram of pedestrian flow can be found. The simulation results of two different scenarios under open boundary conditions are also presented, and compared with the experimental data. It is shown that the new model performs much better than the original model in various tests, which further confirms the validity of the new rules. We think this approach is one useful contribution to the pedestrian flow modeling.

  18. Synthesis and characterization of Bi2S3 composite nanoparticles with high X-ray absorption

    International Nuclear Information System (INIS)

    Huang, Huan-Huan; Chen, Jun; Meng, Yuan-Zheng; Yang, Xiao-Quan; Zhang, Ming-Zhen; Yu, Yong; Ma, Zhi-Ya; Zhao, Yuan-Di

    2013-01-01

    Graphical abstract: - Highlights: • Uniform Bi 2 S 3 nanorods were prepared via a hot injection method. • Bi 2 S 3 nanorods were coated with TEOS and PEG for surface modification. • CT images of Bi 2 S 3 @SiO 2 -PEG are much higher than clinical iobitridol when they have the same concentration. • Cellular toxicity of Bi 2 S 3 @SiO 2 -PEG is low when the probes were directly in contact with tissue fluid. - Abstract: Owing to the high X-ray absorption, Bi 2 S 3 nanocrystals are widely used as CT contrast agents. Here, we prepared uniform Bi 2 S 3 nanorods via a hot injection method using bismuth (III) chloride, sulfur and oleyl amine. The resulting nanocrystals were coated with tetraethylorthosilicate (TEOS) and 2-[methoxy(polyethyleneoxy)propyl]yrimethoxysilane (PEG-silane) for the biological utility. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that the Bi 2 S 3 nanorods had an orthorhombic structure with the length of 14 nm and the diameter of 7 nm, respectively. Composite nanoparticles (0.0226 M) gave a CT number at 550 (HU), which was higher than that of the commercial available iobitridol CT contrast agent. Furthermore, cell experiments revealed that Bi 2 S 3 composite nanoparticles had a low cytotoxicity with a concentration up to 0.01 M of Bi for 24 h

  19. Electricity-price arbitrage with plug-in hybrid electric vehicle: Gain or loss?

    International Nuclear Information System (INIS)

    Shang, Duo; Sun, Guodong

    2016-01-01

    Customers, utilities, and society can gain many benefits from distributed energy resources (DERs), including plug-in hybrid electric vehicles (PHEVs). Using battery on PHEV to arbitrage electricity price is one of the potential benefits to PHEV owners. There is, however, disagreement on the magnitude of such profit. This study uses a stochastic optimization model to estimate the potential profit from electricity price arbitrage of two types of PHEVs (PHEV-10, and PHEV-40) under three scenarios with variant electricity tariff and PHEV owners over a five-year period. The simulation results indicate that under current market structure, even with significant improvement in battery technologies (e.g., higher efficiency, lower cost), the PHEV owners can't achieve a positive arbitrage profit. This finding implies that expected arbitrage profit solely is not a viable option to engage PHEVs larger adoption. Subsidy and combining PHEV arbitraging with alternative PHEV services are required. - Highlights: •A stochastic optimization model is proposed to assess the arbitrage value of plug-in hybrid electric vehicle (PHEV). •Under current market condition, PHEV owners lose money from conducting PHEV arbitrage if counting battery degradation cost. •PHEV owner loses more money at real time pricing (RTP) than at time of use (TOU) scheme. •Battery improvement will reduce but can't even the arbitrage loss. •Expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing ancillary services.

  20. Strategy and criteria for deployment of high speed chargers - Part 1; Strategi og kriteriesett for utplassering av hurtigladere - Del 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    This report was commissioned by Transnova, as a part of their commitment to the electrification of road transport. The project has been conducted by Poeyry and Architect Harald N. Roestvik in close cooperation with representatives of Transnova and Vegdirektoratet. In addition, a number of external experts provided information during the process. The first part of the report describes a strategy and a set of criteria for the deployment of fast charging stations. The purpose of this section is to find out how many charging points are needed and where they should be placed. The second part describes the possible business models for providers of quick chargers. This section is intended to give some ideas to those who are interested in running high speed charging, and evaluate opportunities for commercial operations.(auth)

  1. Bi-directional activation between mesenchymal stem cells and CLL B-cells: implication for CLL disease progression.

    Science.gov (United States)

    Ding, Wei; Nowakowski, Grzegorz S; Knox, Traci R; Boysen, Justin C; Maas, Mary L; Schwager, Susan M; Wu, Wenting; Wellik, Linda E; Dietz, Allan B; Ghosh, Asish K; Secreto, Charla R; Medina, Kay L; Shanafelt, Tait D; Zent, Clive S; Call, Timothy G; Kay, Neil E

    2009-11-01

    It was hypothesized that contact between chronic lymphocytic leukaemia (CLL) B-cells and marrow stromal cells impact both cell types. To test this hypothesis, we utilized a long-term primary culture system from bone biopsies that reliably generates a mesenchymal stem cell (MSC). Co-culture of MSC with CLL B-cells protected the latter from both spontaneous apoptosis and drug-induced apoptosis. The CD38 expression in previously CD38 positive CLL B-cells was up-regulated with MSC co-culture. Upregulation of CD71, CD25, CD69 and CD70 in CLL B-cells was found in the co-culture. CD71 upregulation was more significantly associated with high-risk CLL, implicating CD71 regulation in the microenvironment predicting disease progression. In MSC, rapid ERK and AKT phosphorylation (within 30 min) were detected when CLL B-cells and MSC were separated by transwell; indicating that activation of MSC was mediated by soluble factors. These findings support a bi-directional activation between bone marrow stromal cells and CLL B-cells.

  2. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    Energy Technology Data Exchange (ETDEWEB)

    Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache (France); Société CESIGMA—Signals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); and others

    2013-07-15

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.

  3. Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Lee, J. H.; Ke, X.; Misra, R.; Schiffer, P.; Ihlefeld, J. F.; Mei, Z. G.; Liu, Z. K.; Xu, X. S.; Musfeldt, J. L.; Heeg, T.; Schlom, D. G.; Roeckerath, M.; Schubert, J.

    2010-01-01

    We have developed the means to grow BiMnO 3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO 3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with ω rocking curve full width at half maximum values as narrow as 11 arc sec (0.003 deg. ). Optical absorption measurements reveal that BiMnO 3 has a direct band gap of 1.1±0.1 eV.

  4. Antiphase Boundaries in the Turbostratically Disordered Misfit Compound (BiSe)(1+δ)NbSe2.

    Science.gov (United States)

    Mitchson, Gavin; Falmbigl, Matthias; Ditto, Jeffrey; Johnson, David C

    2015-11-02

    (BiSe)(1+δ)NbSe2 ferecrystals were synthesized in order to determine whether structural modulation in BiSe layers, characterized by periodic antiphase boundaries and Bi-Bi bonding, occurs. Specular X-ray diffraction revealed the formation of the desired compound with a c-axis lattice parameter of 1.21 nm from precursors with a range of initial compositions and initial periodicities. In-plane X-ray diffraction scans could be indexed as hk0 reflections of the constituents, with a rectangular basal BiSe lattice and a trigonal basal NbSe2 lattice. Electron micrographs showed extensive turbostratic disorder in the samples and the presence of periodic antiphase boundaries (approximately 1.5 nm periodicity) in BiSe layers oriented with the [110] direction parallel to the zone axis of the microscope. This indicates that the structural modulation in the BiSe layers is not due to coherency strain resulting from commensurate in-plane lattices. Electrical transport measurements indicate that holes are the dominant charge carrying species, that there is a weak decrease in resistivity as temperature decreases, and that minimal charge transfer occurs from the BiSe to NbSe2 layers. This is consistent with the lack of charge transfer from the BiX to the TX2 layers reported in misfit layer compounds where antiphase boundaries were observed. This suggests that electronic considerations, i.e., localization of electrons in the Bi-Bi pairs at the antiphase boundaries, play a dominant role in stabilizing the structural modulation.

  5. Direct observation of interlayer Josephson vortices in heavily Pb-doped Bi2Sr2CaCu2Oy by scanning superconducting quantum interference device microscopy

    International Nuclear Information System (INIS)

    Kasai, Junpei; Hasegawa, Tetsuya; Okazaki, Noriaki; Koinuma, Hideomi; Nakayama, Yuri; Shimoyama, Jun-ichi; Kishio, Kohji; Motohashi, Teruki; Matsumoto, Yuji

    2006-01-01

    Josephson vortices trapped in cross-sectional edge surfaces of Pb 0.6 Bi 1.4 Sr 2 CaCu 2 O y has been directly observed by using a scanning superconducting quantum interference device (SQUID) microscope. The magnetic field distribution B z around each vortex is substantially anisotropic, compared with the usual vortex in the ab-plane, and is extended over 100 μm toward the in-plane direction. By fitting a theoretical B z function to experimental ones, c-axis penetration depth λ c was estimated to be 11.2 ±0.7 μm, which is in good agreement with the literature value, 12.6 μm, obtained from the Josephson plasma edge frequency. (author)

  6. Growth, characterization, and physical properties of Bi-Sr-Ca-Cu-O superconducting whiskers

    International Nuclear Information System (INIS)

    Kraak, W.; Thiele, P.

    1996-01-01

    Single crystal whiskers of the Bi-based high-T c superconductors have been grown directly from the stoichiometric melt. Conditions for the preferable growth of the (2212) phase and annealing conditions for the conversion from the (2212) phase to the (2223) and (2234) Bi-based superconducting phases are achieved. The orientation and chemical composition of the crystals were characterized by X-ray diffractometry and energy dispersive X-ray analysis. Characteristic structural properties of the whiskers (incommensurable modulation in b-direction, peculiarities of dislocation networks) have been revealed by transmission electron microscopy and electron diffraction. Some special features of the broad superconducting transition in multiphase whiskers have been examined by spatially resolved measurements using low-temperature scanning electron microscopy. (orig.)

  7. Strongly compressed Bi (111) bilayer films on Bi{sub 2}Se{sub 3} studied by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093 (China)

    2015-09-21

    Ultra-thin Bi films show exotic electronic structure and novel quantum effects, especially the widely studied Bi (111) film. Using reflection high-energy electron diffraction and scanning tunneling microscopy, we studied the structure and morphology evolution of Bi (111) thin films grown on Bi{sub 2}Se{sub 3}. A strongly compressed, but quickly released in-plane lattice of Bi (111) is found in the first three bilayers. The first bilayer of Bi shows a fractal growth mode with flat surface, while the second and third bilayer show a periodic buckling due to the strong compression of the in-plane lattice. The lattice slowly changes to its bulk value with further deposition of Bi.

  8. Preparation and characterization of PtRu/C, PtBi/C, PtRuBi/C electrocatalysts for direct electro-oxidation of ethanol in PEM fuels cells using the method of reduction by sodium borohydride

    International Nuclear Information System (INIS)

    Brandalise, Michele

    2010-01-01

    Pt/C, PtBi/C, PtRu/C and PtRuBi/C electrocatalysts were prepared by a borohydride reduction methodology and tested for ethanol oxidation. This methodology consists in mix a solution with sodium hydroxide and sodium borohydride to a mixture containing water/isopropyl alcohol, metallic precursors and the Vulcan XC 72 carbon support. It was studied the addition method of borohydride (drop by drop addition or rapid addition). The obtained electrocatalysts were characterized by energy dispersive X ray spectroscopy (EDX), thermogravimetric analysis (TGA), X ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry. The ethanol electro-oxidation was studied by cyclic voltammetry and chronoamperometry using the thin porous coating technique. The electrocatalysts were tested in real conditions of operation by unit cell tests. The stability of PtRuBi/C electrocatalysts was evaluated by cyclic voltammetry, chronoamperometry using the ultra-thin porous coating technique and ring-disk electrode. The PtRuBi/C electro catalyst apparently presented a good performance for ethanol electro-oxidation but experimental evidences showed accentuated bismuth dissolution. (author)

  9. Thermal-induced structural transition and depolarization behavior in (Bi0.5Na0.5)TiO3-BiAlO3 ceramics

    Science.gov (United States)

    Peng, Ping; Nie, Hengchang; Cheng, Guofeng; Liu, Zhen; Wang, Genshui; Dong, Xianlin

    2018-03-01

    The depolarization temperature Td determines the upper temperature limit for the application of piezoelectric materials. However, the origin of depolarization behavior for Bi-based materials still remains controversial and the mechanism is intricate for different (Bi0.5Na0.5)TiO3-based systems. In this work, the structure and depolarization behavior of (1-x)(Bi0.5Na0.5)TiO3-xBiAlO3 (BNT-BA, x = 0, 0.02, 0.04, 0.06, 0.07) ceramics were investigated using a combination of X-ray diffraction and electrical measurements. It was found that as temperature increased, the induced long-range ferroelectric phase irreversibly transformed to the relaxor phase as evidenced by the temperature-dependent ferroelectric and dielectric properties, which corresponded to a gradual structural change from the rhombohedral to the pseudocubic phase. Therefore, the thermal depolarization behavior of BNT-BA ceramics was proposed to be directly related to the rhombohedral-pseudocubic transition. Furthermore, Td (obtained from thermally stimulated depolarization currents curves) was higher than the induced ferroelectric-relaxor phase transition temperature TFR (measured from dielectric curves). The phenomenon was quite different from other reported BNT-based systems, which may suggest the formation of polar nanoregions (PNRs) within macrodomains prior to the detexturation of short-range ferroelectric domains with PNRs or nanodomains.

  10. An ion exchange strategy to BiOI/CH{sub 3}COO(BiO) heterojunction with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong

    2017-05-01

    Highlights: • BiOI/BiOAc heterojunction was firstly synthesized by an ion exchange route. • BiOI/BiOAc exhibited enhanced visible-light-driven photoreactivity for the dyes degradation in comparison with individuals. • Photocatalytic activity of the as-prepared BiOI/BiOAc is better than that prepared by precipitation-deposition method. • Photosensitization effect of BiOI to BiOAc was superior to that of Bi{sub 2}S{sub 3} due to suitable solubility constant. - Abstract: It is very significant to develop CH{sub 3}COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.

  11. Bi-directional x-ray phase-contrast mammography.

    Directory of Open Access Journals (Sweden)

    Kai Scherer

    Full Text Available Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.

  12. Delay-dependent exponential stability analysis of bi-directional associative memory neural networks with time delay: an LMI approach

    International Nuclear Information System (INIS)

    Li Chuandong; Liao Xiaofeng; Zhang Rong

    2005-01-01

    For bi-directional associative memory (BAM) neural networks (NNs) with different constant or time-varying delays, the problems of determining the exponential stability and estimating the exponential convergence rate are investigated in this paper. An approach combining the Lyapunov-Krasovskii functional with the linear matrix inequality (LMI) is taken to study the problems, which provide bounds on the interconnection matrix and the activation functions, so as to guarantee the system's exponential stability. Some criteria for the exponential stability, which give information on the delay-dependent property, are derived. The results obtained in this paper provide one more set of easily verified guidelines for determining the exponential stability of delayed BAM (DBAM) neural networks, which are less conservative and less restrictive than the ones reported so far in the literature. Some typical examples are presented to show the application of the criteria obtained in this paper

  13. Calorimetric investigations of U-Bi system

    International Nuclear Information System (INIS)

    Agarwal, Renu; Joshi, A.R.

    2013-01-01

    U 0.333 Bi 0.667 is a compound that may form on breach of clad during reactor operation with metallic fuel and lead-bismuth coolant. Therefore, enthalpy of mixing of U-Bi liquid solution in limited composition range and enthalpy of formation of U 0.333 Bi 0.667 compound were measured by high temperature calorimetry. The enthalpy of mixing follows subregular solution model and enthalpy of formation U 0.333 Bi 0.667 from U(l) and Bi(l) at 843 K was -52.5 kJ/mol and -40.8 kJ/mol from U(s) and Bi(s) at 298.15 K. Both enthalpy of mixing and enthalpy of formation of intermetallic compound obtained experimentally were compared with Miedema model values. (author)

  14. Exploratory Bi-factor Analysis: The Oblique Case

    OpenAIRE

    Jennrich, Robert L.; Bentler, Peter M.

    2011-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford (1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler (2011) introduced an exploratory form of bi-factor analysis that does not require one to provide an explicit bi-factor structure a priori. They use exploratory factor analysis and a bi-factor rotation criterion designed to produce a rotated loading mat...

  15. Paediatric ED BiPAP continuous quality improvement programme with patient analysis: 2005-2013.

    Science.gov (United States)

    Abramo, Thomas; Williams, Abby; Mushtaq, Samaiya; Meredith, Mark; Sepaule, Rawle; Crossman, Kristen; Burney Jones, Cheryl; Godbold, Suzanne; Hu, Zhuopei; Nick, Todd

    2017-01-16

    In paediatric moderate-to-severe asthmatics, there is significant bronchospasm, airway obstruction, air trapping causing severe hyperinflation with more positive intraplural pressure preventing passive air movement. These effects cause an increased respiratory rate (RR), less airflow and shortened inspiratory breath time. In certain asthmatics, aerosols are ineffective due to their inadequate ventilation. Bilevel positive airway pressure (BiPAP) in acute paediatric asthmatics can be an effective treatment. BiPAP works by unloading fatigued inspiratory muscles, a direct bronchodilation effect, offsetting intrinsic PEEP and recruiting collapsed alveoli that reduces the patient's work of breathing and achieves their total lung capacity quicker. Unfortunately, paediatric emergency department (PED) BiPAP is underused and quality analysis is non-existent. A PED BiPAP Continuous Quality Improvement Program (CQIP) from 2005 to 2013 was evaluated using descriptive analytics for the primary outcomes of usage, safety, BiPAP settings, therapeutics and patient disposition. PED BiPAP CQIP descriptive analytics. Academic PED. 1157 patients. A PED BiPAP CQIP from 2005 to 2013 for the usage, safety, BiPAP settings, therapeutic response parameters and patient disposition was evaluated using descriptive analytics. Safety, usage, compliance, therapeutic response parameters, BiPAP settings and patient disposition. 1157 patients had excellent compliance without complications. Only 6 (0.5%) BiPAP patients were intubated. BiPAP median settings: IPAP 18 (16,20) cm H 2 O range 12-28; EPAP 8 cmH 2 O (8,8) range 6-10; inspiratory-to-expiratory time (I:E) ratio 1.75 (1.5,1.75). Pediatric Asthma Severity score and RR decreased (pimproved therapeutics times, very low intubations and decreased PICU admissions. CQIP analysis demonstrated that using a higher IPAP, low EPAP with longer I:E optimises the patient's BiPAP settings and showed a significant improvement in PAS, RR and tidal volume. Bi

  16. Unusual Concentration Induced Antithermal Quenching of the Bi(2+) Emission from Sr2P2O7:Bi(2.).

    Science.gov (United States)

    Li, Liyi; Peng, Mingying; Viana, Bruno; Wang, Jing; Lei, Bingfu; Liu, Yingliang; Zhang, Qinyuan; Qiu, Jianrong

    2015-06-15

    The resistance of a luminescent material to thermal quenching is essential for the application in high power LEDs. Usually, thermal luminescence quenching becomes more and more serious as the activator concentration increases. Conversely, we found here that a red phosphor Sr2P2O7:Bi(2+) is one of the exceptions to this as we studied the luminescence properties at low (10-300 K) and high (300-500 K) temperatures. As Bi(2+) ions are incorporated into Sr2P2O7, they exhibit the emissions at ∼660 and ∼698 nm at room temperature and are encoded, hereafter, as Bi(1) and Bi(2) due to the substitutions for two different crystallographic sites Sr(1) and Sr(2), respectively, in the compound. However, they will not substitute for these sites equally. At lower dopant concentration, they will occupy preferentially Sr(2) sites partially due to size match. As the concentration increases, more Bi(2+) ions start to occupy the Sr(1) sites. This can be verified by the distinct changes of emission intensity ratio of Bi(2) to Bi(1). As environment temperature increases, the thermal quenching happens, but it can be suppressed by the Bi(2+) concentration increase. This becomes even more pronounced in Bi(2+) heavily doped sample as we decompose the broad emission band into separated Bi(1) and Bi(2) Gaussian peaks. For the sample, the Bi(1) emission at ∼660 nm even shows antithermal-quenching particularly at higher temperatures. This phenomenon is accompanied by the blue shift of the overall emission band and almost no changes of lifetimes. A mechanism is proposed due to volume expansion of the unit cell, the increase of Bi(1) content, and temperature dependent energy transfer between Bi(2) and Bi(1). This work helps us better understand the complex luminescent behavior of Bi(2+) doped materials, and it will be helpful to design in the future the heavily doped phosphor for WLEDs with even better resistance to thermal quenching.

  17. In-plane heterostructures of Sb/Bi with high carrier mobility

    Science.gov (United States)

    Zhao, Pei; Wei, Wei; Sun, Qilong; Yu, Lin; Huang, Baibiao; Dai, Ying

    2017-06-01

    In-plane two-dimensional (2D) heterostructures have been attracting public attention due to their distinctive properties. However, the pristine materials that can form in-plane heterostructures are reported only for graphene, hexagonal BN, transition-metal dichalcogenides. It will be of great significance to explore more suitable 2D materials for constructing such ingenious heterostructures. Here, we demonstrate two types of novel seamless in-plane heterostructures combined by pristine Sb and Bi monolayers by means of first-principle approach based on density functional theory. Our results indicate that external strain can serve as an effective strategy for bandgap engineering, and the transition from semiconductor to metal occurs when a compressive strain of -8% is applied. In addition, the designed heterostructures possess direct band gaps with high carrier mobility (˜4000 cm2 V-1 s-1). And the mobility of electrons and holes have huge disparity along the direction perpendicular to the interface of Sb/Bi in-plane heterostructures. It is favorable for carriers to separate spatially. Finally, we find that the band edge positions of Sb/Bi in-plane heterostructures can meet the reduction potential of hydrogen generation in photocatalysis. Our results not only offer alternative materials to construct versatile in-plane heterostructures, but also highlight the applications of 2D in-plane heterostructures in diverse nanodevices and photocatalysis.

  18. Synthesis and crystal structure analysis of titanium bismuthide oxide, Ti{sub 8}BiO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Shinsaku; Yamane, Hisanori, E-mail: yamane@tagen.tohoku.ac.jp

    2016-08-05

    Silver metallic luster columnar single crystals of a novel compound, Ti{sub 8}BiO{sub 7}, were synthesized using a bismuth flux. Ti{sub 8}BiO{sub 7} having a new structure type crystallizes in an orthorhombic cell, a = 7.8473(4) Å, b = 16.8295(10) Å, c = 3.0256(2) Å, space group: Cmmm. The Ti atoms enter the sites of isosceles-triangle 3-fold and rectangular 4-fold coordination of O atoms and the site of octahedral 6-fold coordination of O and Bi atoms. O atoms are in the rectangles, tetrahedra, and orthogonal pyramids of Ti atoms. The electrical resistivity measured for a Ti{sub 8}BiO{sub 7} single crystal in the c-axis direction was 6.2 × 10{sup −7} Ωm at 300 K and 1.3 × 10{sup −7} Ωm at 10 K. - Highlights: • A novel bismuthide oxide containing titanium, Ti{sub 8}BiO{sub 7}, was synthesized. • Single crystals of Ti{sub 8}BiO{sub 7} were grown by heating a mixture of Ti and Bi{sub 2}O{sub 3}. • Single crystal X-ray diffraction revealed that Ti{sub 8}BiO{sub 7} has a new structure type. • O atoms and Bi atoms are surrounded by Ti atoms in the structure. • Metallic conduction of Ti{sub 8}BiO{sub 7} was exhibited.

  19. Mechanism and bias considerations for design of a bi-directional pneumatic artificial muscle actuator

    International Nuclear Information System (INIS)

    Vocke III, Robert D; Wereley, Norman M; Kothera, Curt S

    2014-01-01

    Pneumatic artificial muscles (PAMs), or McKibben actuators, have received considerable attention for robotic manipulators and in aerospace applications due to their similarity to natural muscles. Like natural muscles, PAMs are a purely contractile actuator, so that, in order to produce bi-directional or rotational motion, they must be arranged in an agonist/antagonist pair, which inherently limits the deflection of the system due to the high parasitic stiffness of the antagonistic PAM. This study presents two methods for increasing the performance of an antagonistic PAM system by decreasing the passive parasitic torque, rather than increasing the active torque. The first involves selection of the kinematic mechanism geometry, and the second involves the introduction of bias into the system, both in terms of PAM contraction and passive (antagonistic) PAM pressure. It was found with the proper selection of design parameters, including mechanism geometry, PAM geometry, and bias conditions, that an ideal actuator configuration can be chosen that maximizes deflection for a given arbitrary loading. When comparing a baseline design to an improved design for a simplified case, a nearly 50% increase in maximum deflection was predicted simply by optimizing mechanism geometry and bias contraction. These results were experimentally verified with quasi-static testing that showed a 300% increase in actuator deflection over the baseline design. (paper)

  20. A generalized AKNS hierarchy and its bi-Hamiltonian structures

    International Nuclear Information System (INIS)

    Xia Tiecheng; You Fucai; Chen Dengyuan

    2005-01-01

    First we construct a new isospectral problem with 8 potentials in the present paper. And then a new Lax pair is presented. By making use of Tu scheme, a class of new soliton hierarchy of equations is derived, which is integrable in the sense of Liouville and possesses bi-Hamiltonian structures. After making some reductions, the well-known AKNS hierarchy and other hierarchies of evolution equations are obtained. Finally, in order to illustrate that soliton hierarchy obtained in the paper possesses bi-Hamiltonian structures exactly, we prove that the linear combination of two-Hamiltonian operators admitted are also a Hamiltonian operator constantly. We point out that two Hamiltonian operators obtained of the system are directly derived from a recurrence relations, not from a recurrence operator

  1. Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A.K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-05-06

    First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the order of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.

  2. High pressure synthesis of BiS2

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    crystal structures and electrical properties.1,2 Up until now, the most sulfur rich phase in the Bi-S phase diagram was Bi2S3.3 For BiS2 the Bi atoms have anisotropic charge distribution and more complex structures are expected when comparing the layered structures of transition metal dichalcogenides....... The possibilities of using high pressure synthesis to discover new phases in the Bi-S binary system were investigated as early as the 1960’s.4 The research led to discovery of a compound with BiS2 stoichiometry, but no structure solution of BiS2 was reported. A reason behind making this new phase is to study...... the physical properties since the related compound Bi2S3 is known to be a thermoelectric material.5 In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure...

  3. Internal friction behavior of liquid Bi-Sn alloys

    International Nuclear Information System (INIS)

    Wu Aiqing; Guo Lijun; Liu Changsong; Jia Erguang; Zhu Zhengang

    2005-01-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480 - bar Cand another at about 830 - bar C. Only a single internal-friction peak at about 830 - bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids

  4. Internal friction behavior of liquid Bi-Sn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu Aiqing [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Guo Lijun [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Liu Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Jia Erguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)]. E-mail: zgzhu@issp.ac.cn

    2005-12-01

    Pure Bi and Sn and four Bi-Sn alloys distributed on the entire concentration range were selected for internal-friction investigation over a wide temperature range. There exist two peaks in the plots of internal friction versus temperature for liquid Sn, Bi-Sn60 and Bi-Sn90 alloys, one peak being located at about 480{sup -}bar Cand another at about 830{sup -}bar C. Only a single internal-friction peak at about 830{sup -}bar C occurs in liquid Bi-Sn43 (eutectic composition). No internal-friction peak appears in liquid Bi-Sn20 alloy and pure Bi. The height of the internal-friction peaks depends on the content of Sn. The present finding suggests that Sn-rich Bi-Sn alloys may inherit the internal-friction behaviors of pure Sn, whereas Bi-rich Bi-Sn alloy seems to be like pure Bi. The position of the internal-friction peaks is frequency dependent, which resembles the internal-friction feature in structure transition in solids.

  5. Evolution of thermoelectric performance for (Bi,Sb)2Te3 alloys from cutting waste powders to bulks with high figure of merit

    International Nuclear Information System (INIS)

    Fan, Xi'an; Cai, Xin zhi; Han, Xue wu; Zhang, Cheng cheng

    2016-01-01

    Bi 2 Te 3 based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi 2 Te 3 based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb) 2 Te 3 alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb) 2 Te 3 alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi 0.44 Sb 1.56 Te 3 was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi 0.36 Sb 1.64 Te 3 and Bi 0.4 Sb 1.6 Te 3 alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi 2 Te 3 based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi 2 Te 3 based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed.

  6. Solvothermal modification of BiOCl nanosheets with Bi nanoparticles using ascorbic acid as reductant and the superoxide radicals dominated photocatalytic performance

    Science.gov (United States)

    Cui, Zhankui; Gao, Keke; Ge, Suxiang; Fa, Wenjun

    2017-11-01

    BiOCl nanosheets were solvothermally modified with Bi nanoparticles (NPs) using ascorbic acid as the reductant. The structures of Bi/BiOCl composites were characterized by XRD, Raman spectroscopy, FTIR spectroscopy and SEM. The light absorption properties were measured by UV-vis-NIR spectroscopy. The photocatalytic performances were evaluated by photodegrading methyl orange (MO) and the photocatalytic mechanism was investigated using trapping experiments and a fluorescent probe method. The results show that Bi NPs are uniformly distributed on the surfaces of BiOCl nanosheets and the modification amount of Bi NPs could be well controlled because of the mild property of ascorbic acid as reducing agent. The photocatalytic activities for the composites are improved obviously and the best photocatalytic performance is obtained when the weight ratio of Bi and BiOCl is1:10 and the photochemical reaction rate is 3.5 times that of pure BiOCl nanosheets and 19.7 times of Bi powders. The enhanced photocatalytic efficiency is ascribed to the favorable formation of dominant \\cdot O2- radicals caused by the increased photoinduced electrons from both Bi NPs and BiOCl nanosheets.

  7. A Markovian Approach Applied to Reliability Modeling of Bidirectional DC-DC Converters Used in PHEVs and Smart Grids

    Directory of Open Access Journals (Sweden)

    M. Khalilzadeh

    2016-12-01

    Full Text Available In this paper, a stochastic approach is proposed for reliability assessment of bidirectional DC-DC converters, including the fault-tolerant ones. This type of converters can be used in a smart DC grid, feeding DC loads such as home appliances and plug-in hybrid electric vehicles (PHEVs. The reliability of bidirectional DC-DC converters is of such an importance, due to the key role of the expected increasingly utilization of DC grids in modern Smart Grid. Markov processes are suggested for reliability modeling and consequently calculating the expected effective lifetime of bidirectional converters. A three-leg bidirectional interleaved converter using data of Toyota Prius 2012 hybrid electric vehicle is used as a case study. Besides, the influence of environment and ambient temperature on converter lifetime is studied. The impact of modeling the reliability of the converter and adding reliability constraints on the technical design procedure of the converter is also investigated. In order to investigate the effect of leg increase on the lifetime of the converter, single leg to five-leg interleave DC-DC converters are studied considering economical aspect and the results are extrapolated for six and seven-leg converters. The proposed method could be generalized so that the number of legs and input and output capacitors could be an arbitrary number.

  8. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei; Ren, Shang-Fen

    2011-01-01

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  9. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei

    2011-03-10

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  10. Effect of oxidant on resputtering of Bi from Bi--Sr--Ca--Cu--O films

    International Nuclear Information System (INIS)

    Grace, J.M.; McDonald, D.B.; Reiten, M.T.; Olson, J.; Kampwirth, R.T.; Gray, K.E.

    1992-01-01

    The type and partial pressure of oxidant mixed with argon can affect the selective sputtering of Bi in composite-target, magnetron-sputtered Bi--Sr--Ca--Cu--O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O + 2 , which interacts with the target to produce energetic O - . In contrast, ozone may form lower-energy O - by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y--Ba--Cu--O by others are comparable. Bi in Bi--Sr--Ca--Cu--O behaves as Ba in Y--Ba--Cu--O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi--Sr--Ca--Cu--O is similar to what is observed for Cu in Y--Ba--Cu--O

  11. Comparative study of phase structure and dielectric properties for K0.5Bi0.5TiO3-BiAlO3 and LaAlO3-BiAlO3

    International Nuclear Information System (INIS)

    Hou, Yudong; Zheng, Mupeng; Si, Meiju; Cui, Lei; Zhu, Mankang; Yan, Hui

    2013-01-01

    In this work, two perovskite-type compounds, K 0.5 Bi 0.5 TiO 3 and LaAlO 3 , have been selected as host material to incorporate with BiAlO 3 using a solid-state reaction route. The phase evolution and dielectric properties for both systems have been investigated in detail. For the K 0.5 Bi 0.5 TiO 3 -BiAlO 3 system, it is interesting to find that when using Bi 2 O 3 , Al 2 O 3 , K 2 CO 3 , and TiO 2 as starting materials, the formed compounds are K 0.5 Bi 0.5 TiO 3 -K 0.5 Bi 4.5 Ti 4 O 15 and Al 2 O 3 only plays a dopant role. There are two distinct dielectric peaks appearing in the patterns of temperature dependence of dielectric constant, corresponding to the phase-transition points of perovskite-type K 0.5 Bi 0.5 TiO 3 and Aurivillius-type K 0.5 Bi 4.5 Ti 4 O 15 , independently. In comparison, using Bi 2 O 3 , Al 2 O 3 , and La 2 O 3 as starting materials, the pure perovskite phase LaAlO 3 -BiAlO 3 can be obtained. Compared to the inherent paraelectric behavior in LaAlO 3 , the diffuse phase-transition phenomena can be observed in the LaAlO 3 -BiAlO 3 binary system, which corresponds well to the Vogel-Fulcher (VF) relationship. Moreover, compared to pure LaAlO 3 , the synthesized LaAlO 3 -BiAlO 3 compound shows enhanced dielectric properties, which are promising in application as gate dielectric materials. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. The Origin of the Superstructure in Bi2Sr2CaCu2O8+dgr as Revealed by Scanning Tunneling Microscopy.

    Science.gov (United States)

    Kirk, M D; Nogami, J; Baski, A A; Mitzi, D B; Kapitulnik, A; Geballe, T H; Quate, C F

    1988-12-23

    Real-space images with atomic resolution of the BiO plane of Bi(2)Sr(2)CaCu(2)O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revealing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both (110) directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  13. The origin of the superstructure in Bi2Sr2CaCu2O(8+delta) as revealed by scanning tunneling microscopy

    Science.gov (United States)

    Kirk, M. D.; Nogami, J.; Baski, A. A.; Mitzi, D. B.; Kapitulnik, A.

    1988-12-01

    Real-space images with atomic resolution of the BiO plane of Bi2Sr2CaCu2O(8+delta) were obtained with a scanning tunneling microscope. Single-crystal samples were cleaved and imaged under ultrahigh vacuum conditions at room temperature. The images clearly show the one-dimensional incommensurate superstructure along the b-axis that is common to this phase. High-resolution images show the position of the Bi atoms, revelaing the structural nature of the superlattice. A missing row of Bi atoms occurs either every nine or ten atomic sites in both 110-line directions, accounting for the measured incommensurate periodicity of the superstructure. A model is proposed that includes missing rows of atoms, as well as displacements of the atomic positions along both the a- and c-axis directions.

  14. Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.

    Science.gov (United States)

    Li, M Z; Wang, Z H; Yang, L; Pan, D S; Li, Da; Gao, Xuan; Zhang, Zhi-Dong

    2018-05-14

    Controlling the growth direction (planar vs. vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional (2D) layered materials. We report a simple method to fabricate continuous films of vertical Bi2Se3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi2Se3 nanoplate film, vertical Bi2Se3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi2Se3 nanoplates, we realized an effective tuning of the weak antilocalization (WAL) effect from topological surface states in Bi2Se3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film. © 2018 IOP Publishing Ltd.

  15. Crystalline structure and XMCD studies of Co40Fe40B20 grown on Bi2Te3, BiTeI and Bi2Se3

    OpenAIRE

    Kaveev, A. K.; Sokolov, N. S.; Suturin, S. M.; Zhiltsov, N. S.; Golyashov, V. A.; Tereshchenko, O. E.; Prosvirin, I. P.; Kokh, K. A.; Sawada, M.

    2018-01-01

    Epitaxial films of Co40Fe40B20 (further - CoFeB) were grown on Bi2Te3(001) and Bi2Se3(001) substrates by laser molecular beam epitaxy (LMBE) technique at 200-400C. Bcc-type crystalline structure of CoFeB with (111) plane parallel to (001) plane of Bi2Te3 was observed, in contrast to polycrystalline CoFeB film formed on Bi2Se3(001) at RT using high-temperature seeding layer. Therefore, structurally ordered ferromagnetic thin films were obtained on the topological insulator surface for the firs...

  16. Thermal analysis and phase diagrams of the LiF BiF{sub 3} e NaF BiF{sub 3} systems; Analise termica e diagramas de fase dos sistemas LiF-BiF{sub 3} e NaF-BiF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Gerson Hiroshi de Godoy

    2013-07-01

    Investigations of the binary systems LiF-BiF{sub 3} and NaF-BiF{sub 3} were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF{sub 3}) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF{sub 3} to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF{sub 3} were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF{sub 4}, decomposes into LiF and a liquid phase. The NaF-BiF{sub 3} system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF{sub 3}) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF{sub 4} was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF{sub 4}, NaBiF{sub 4} and a solid solution of NaF and BiF{sub 3} called {sup I.} The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  17. Physical activity and self-esteem: testing direct and indirect relationships associated with psychological and physical mechanisms

    Directory of Open Access Journals (Sweden)

    Zamani Sani SH

    2016-10-01

    Full Text Available Seyed Hojjat Zamani Sani,1 Zahra Fathirezaie,1 Serge Brand,2 Uwe Pühse,3 Edith Holsboer-Trachsler,2 Markus Gerber,3 Siavash Talepasand4 1Department of Motor Behavior, Faculty of Physical Education and Sport Science, University of Tabriz, Tabriz, Iran; 2Psychiatric Clinics of the University of Basel, Center for Affective, Stress and Sleep Disorders (ZASS, 3Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Basel, Switzerland; 4Department of Psychology and Educational Sciences, Semnan University, Semnan, Iran Abstract: In the present study, we investigated the relationship between physical activity (PA and self-esteem (SE, while introducing body mass index (BMI, perceived physical fitness (PPF, and body image (BI in adults (N =264, M =38.10 years. The findings indicated that PA was directly and indirectly associated with SE. BMI predicted SE neither directly nor indirectly, but was directly associated with PPF and both directly and indirectly with BI. Furthermore, PPF was directly related to BI and SE, and a direct association was found between BI and SE. The pattern of results suggests that among a sample of adults, PA is directly and indirectly associated with SE, PPF, and BI, but not with BMI. PA, PPF, and BI appear to play an important role in SE. Accordingly, regular PA should be promoted, in particular, among adults reporting lower SE. Keywords: physical activity, self-esteem, physical fitness, body image, adults

  18. Biting back: BiTE antibodies as a promising therapy for acute myeloid leukemia.

    Science.gov (United States)

    Walter, Roland B

    2014-06-01

    The experience with gemtuzumab ozogamicin has highlighted both the potential value and limitations of antibodies in acute myeloid leukemia (AML). Recently, bispecific T-cell engager (BiTE) antibodies have emerged as a means to harness polyclonal cytotoxic T-cells and cause highly efficient lysis of targeted tumor cells. Promising early results have been obtained with the CD19-directed BiTE antibody, blinatumomab, in patients with acute lymphoblastic leukemia. A first candidate for AML is the CD33/CD3 molecule, AMG 330, for which several recent preclinical studies demonstrated high potency and efficacy in destroying CD33(+) human AML cells. Many questions remain to be addressed, but BiTE antibodies may offer an exciting new tool in a disease for which the outcomes in many patients remain unsatisfactory.

  19. Highly efficient visible-light-induced photocatalytic activity of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chaiwichian, Saranyoo [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand); Inceesungvorn, Burapat [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wetchakun, Khatcharin [Program of Physics, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000 (Thailand); Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Kangwansupamonkon, Wiyong [National Nanotechnology Center, Thailand Science Park, Phahonyotin Road, Klong 1, Klong Luang, Phathumthani 12120 (Thailand); Wetchakun, Natda, E-mail: natda_we@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai50200 (Thailand)

    2014-06-01

    Highlights: • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were obtained using hydrothermal method. • Physicochemical properties played a significant role on photocatalytic efficiency. • Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterogeneous structures were greatly enhanced for degradation of MB. • A tentative mechanism of charge transfer process in MB degradation was proposed. - Abstract: The Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts were synthesized by hydrothermal method. Physical properties of the heterojunction photocatalyst samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD results indicated that BiVO{sub 4} retain monoclinic and tetragonal structures, while Bi{sub 2}WO{sub 6} presented as orthorhombic structure. The Brunauer, Emmett and Teller (BET) adsorption–desorption of nitrogen gas for specific surface area determination at the temperature of liquid nitrogen was performed on all samples. UV–vis diffuse reflectance spectra (UV–vis DRS) were used to identify the absorption range and band gap energy of the heterojunction photocatalysts. The photocatalytic performance of Bi{sub 2}WO{sub 6}/BiVO{sub 4} heterojunction photocatalysts was studied via the photodegradation of methylene blue (MB) under visible light irradiation. The results indicated that the heterojunction photocatalyst at 0.5:0.5 mole ratio of Bi{sub 2}WO{sub 6}:BiVO{sub 4} shows the highest photocatalytic activity.

  20. Exploratory Bi-Factor Analysis: The Oblique Case

    Science.gov (United States)

    Jennrich, Robert I.; Bentler, Peter M.

    2012-01-01

    Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford ("Psychometrika" 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler ("Psychometrika" 76:537-549, 2011) introduced an exploratory form of bi-factor…

  1. In-Situ Hydrothermal Synthesis of Bi-Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity

    Science.gov (United States)

    Kar, Prasenjit; Maji, Tuhin Kumar; Nandi, Ramesh; Lemmens, Peter; Pal, Samir Kumar

    2017-04-01

    Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

  2. Facile synthesis of BiOF/Bi{sub 2}O{sub 3}/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Limin; Dong, Shuying; Li, Qilu; Feng, Jinglan; Pi, Yunqing; Liu, Menglin [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Sun, Jingyu, E-mail: sunjy-cnc@pku.edu.cn [Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

    2015-06-05

    Highlights: • A dual Bi-based ball-shaped material BiOF/Bi{sub 2}O{sub 3} were facilely synthesized. • The composition effect of BiOF/Bi{sub 2}O{sub 3}/RGO hybrid were probed for the first time. • The photocatalytic performances were evaluated upon natural sunlight irradiation. • The composites showed a twofold augmentation in the degradation efficiency. • The hybrid photocatalyst can be easily recycled for three times. - Abstract: A facile and efficient route for the controllable synthesis of BiOF/Bi{sub 2}O{sub 3} nanostructures by hydrolysis method was reported, where the as-prepared BiOF/Bi{sub 2}O{sub 3} was subsequently incorporated with reduced graphene oxide (RGO) sheets to form BiOF/Bi{sub 2}O{sub 3}/RGO composites. The obtained BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical and optical properties. Photocatalytic capacities of the pure BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites have been investigated by the degradation of Rhodamine B (RhB)-contained wastewater under natural sunlight irradiation. A twofold augmentation of degradation efficiency was in turn observed for BiOF/Bi{sub 2}O{sub 3}/RGO composites compared with that of pure BiOF/Bi{sub 2}O{sub 3} under the natural sunlight irradiation. The optimum conditions, the effects of the active species and stabilities in photocatalytic performances of the BiOF/Bi{sub 2}O{sub 3}/RGO composites have also been probed.

  3. Potential theory for directed networks.

    Directory of Open Access Journals (Sweden)

    Qian-Ming Zhang

    Full Text Available Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i We propose a new mechanism for the local organization of directed networks; (ii We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation.

  4. Potential Theory for Directed Networks

    Science.gov (United States)

    Zhang, Qian-Ming; Lü, Linyuan; Wang, Wen-Qiang; Zhou, Tao

    2013-01-01

    Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i) We propose a new mechanism for the local organization of directed networks; (ii) We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation. PMID:23408979

  5. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis

    Science.gov (United States)

    Zhou, Yangen; Zhang, Yongfan; Lin, Mousheng; Long, Jinlin; Zhang, Zizhong; Lin, Huaxiang; Wu, Jeffrey C.-S.; Wang, Xuxu

    2015-09-01

    Two-dimensional-layered heterojunctions have attracted extensive interest recently due to their exciting behaviours in electronic/optoelectronic devices as well as solar energy conversion systems. However, layered heterojunction materials, especially those made by stacking different monolayers together by strong chemical bonds rather than by weak van der Waal interactions, are still challenging to fabricate. Here the monolayer Bi2WO6 with a sandwich substructure of [BiO]+-[WO4]2--[BiO]+ is reported. This material may be characterized as a layered heterojunction with different monolayer oxides held together by chemical bonds. Coordinatively unsaturated Bi atoms are present as active sites on the surface. On irradiation, holes are generated directly on the active surface layer and electrons in the middle layer, which leads to the outstanding performances of the monolayer material in solar energy conversion. Our work provides a general bottom-up route for designing and preparing novel monolayer materials with ultrafast charge separation and active surface.

  6. Plant Species Identification by Bi-channel Deep Convolutional Networks

    Science.gov (United States)

    He, Guiqing; Xia, Zhaoqiang; Zhang, Qiqi; Zhang, Haixi; Fan, Jianping

    2018-04-01

    Plant species identification achieves much attention recently as it has potential application in the environmental protection and human life. Although deep learning techniques can be directly applied for plant species identification, it still needs to be designed for this specific task to obtain the state-of-art performance. In this paper, a bi-channel deep learning framework is developed for identifying plant species. In the framework, two different sub-networks are fine-tuned over their pretrained models respectively. And then a stacking layer is used to fuse the output of two different sub-networks. We construct a plant dataset of Orchidaceae family for algorithm evaluation. Our experimental results have demonstrated that our bi-channel deep network can achieve very competitive performance on accuracy rates compared to the existing deep learning algorithm.

  7. Tl, Bi, and Pb doping in Ba4BiPb2TlO12-δ

    International Nuclear Information System (INIS)

    Sutto, T.E.; Averill, B.A.

    1992-01-01

    To determine the effects of different 6s metal concentrations on the superconducting nature of Ba 4 BiPb 2 TlO 12-δ , materials produced via four doping schemes were examined: Ba 4 Bi(Pb, Tl) 3 O 12-δ , Ba 4 -(BiPb) 3 TlO 12-δ , Ba 4 (Bi,Tl) 2 Pb 2 O 12-δ , and Ba 4 Bi x Pb 4-2x Tl x O 12-δ . For the parent compound a value of δ = 0.91 was observed, indicating that approximately 1/4 oxygen atom was missing per cubic subsection of the unit cell. For all samples, the symmetry of the parent compound changed from orthorhombic to tetragonal as the system moved away from the ideal composition. This was usually accompanied by the loss of superconductivity, which exhibited a maximum T c of 10.5 K for the parent compound Ba 4 BiPb 2 TlO 12-δ . Also reported are high-temperature magnetic susceptibility results, which are used to determine the effect of metal substitution on the density of states at the Fermi level. For each set of variants on the parent composition, the onset of superconductivity was accompanied by a significant decrease in the size of the Pauli paramagnetic signal. 16 refs., 6 figs

  8. Considerations about using OLAP Cubes and Self-Service BI Tools for BI Systems’ Development

    Directory of Open Access Journals (Sweden)

    Gianina MIHAI

    2017-12-01

    Full Text Available Nowadays, the decision-making process must be an extremely fast one. This is why any decision-maker in a company must obtain information from the multiple available data source used in its transactional systems as easily and as quickly as possible. Business Intelligence (BI systems are the ones that provide the tools necessary for obtaining this information. In this article, we shall present the strengths and weaknesses regarding data analyses in a BI system using OLAP cubes and self-service BI tools.

  9. Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight

    Science.gov (United States)

    Hao, Lin; Huang, Hongwei; Guo, Yuxi; Du, Xin; Zhang, Yihe

    2017-10-01

    Fabrication of homo/hetero-junctions by coupling of wide-band gap semiconductor and narrow-band gap semiconductor is desirable as they can achieve a decent balance between photoabsorption and photo-redox ability. Herein, a n-n type bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 was developed by facilely manipulating the basicity in a one-pot hydrothermal process. Compared with BiOCl which only responds to UV light, the photo-responsive range is remarkably extended to visible region. The BiOCl/Bi12O17Cl2 phasejunctions show much higher photocatalytic activity than the single BiOCl and Bi12O17Cl2 toward degradation of methyl orange (MO) under simulated solar light. In particular, it presented a high photo-oxidation ability in degrading diverse industrial contaminants including 2,4-dichlorophenol (2,4-DCP), phenol, bisphenol A (BPA) and tetracycline hydrochloride. Based on a series of photoelectrochemical and photoluminescence measurements, the fortified photocatalytic performance of BiOCl/Bi12O17Cl2 phasejunctions was manifested to be attributed to the efficient separation and transfer efficiencies of photoinduced electron-hole pairs because of the junctional interface formed between BiOCl and Bi12O17Cl2. The study may not only furnish a high-effective photocatalyst in the application of environment purification, but also pave a path to fabricate agnate phase-junctional photocatalyst.

  10. Thermal analysis and phase diagrams of the LiF BiF3 e NaF BiF3 systems

    International Nuclear Information System (INIS)

    Nakamura, Gerson Hiroshi de Godoy

    2013-01-01

    Investigations of the binary systems LiF-BiF 3 and NaF-BiF 3 were performed with the objective of clarifying the thermal behavior and phase equilibria of these systems and their intermediary phases, an important requisite for high-quality crystal growth. Several samples in the entire range of compositions (0 to 100 mol% BiF 3 ) of both systems were subjected to experiments of differential thermal analysis (DTA) and thermogravimetry (TG), and also of differential scanning calorimetry (DSC). A few specific compositions were selected for X-ray diffraction to supplement the experimental data. Due to the high vulnerability of BiF 3 to oxygen contamination, its volatility and propensity to destroy metal parts upon heating, it was necessary to determine the optimal conditions for thermal analysis before investigating the systems themselves. Phase relations in the system LiF-BiF 3 were completely clarified and a phase diagram was calculated and evaluated via the commercial software Factsage. The diagram itself consists in a simple peritectic system in which the only intermediary compound, LiBiF 4 , decomposes into LiF and a liquid phase. The NaF-BiF 3 system could not be completely elucidated and the phase relations in the NaF poor side (> 50% BiF 3 ) are still unknown. In the NaF rich side, however, the possible peritectoid decomposition of the compound NaBiF 4 was identified. In both systems X-ray diffraction yielded crystal structures discrepant with the literature for the intermediary phases, LiBiF 4 , NaBiF 4 and a solid solution of NaF and BiF 3 called I. The observed structures remain unknown and explanations for the discrepancies were proposed. (author)

  11. Experimental infection of calves, sheep, goats and pigs with HoBi-like viruses by direct inoculation or exposure to persistently infected calves

    Science.gov (United States)

    HoBi-like viruses are an emerging species of pestiviruses associated with respiratory and reproductive disease in cattle and in water buffaloes. Although cattle appear to be the main natural hosts, little is know about the potential for HoBi-like viruses to be transmitted to other livestock. In t...

  12. Annealing-Induced Bi Bilayer on Bi2Te3 Investigated via Quasi-Particle-Interference Mapping.

    Science.gov (United States)

    Schouteden, Koen; Govaerts, Kirsten; Debehets, Jolien; Thupakula, Umamahesh; Chen, Taishi; Li, Zhe; Netsou, Asteriona; Song, Fengqi; Lamoen, Dirk; Van Haesendonck, Chris; Partoens, Bart; Park, Kyungwha

    2016-09-27

    Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a "second" cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.

  13. Effect of post-sintering treatment on properties of Bi-based high Tc superconductors

    International Nuclear Information System (INIS)

    Nagai, Masayuki; Kozuka, Akira; Morishita, Ken; Nishino, Tadashi; Hattori, Takeo; Takata, Masasuke

    1989-01-01

    A new method to obtain the pure 110K phase in the system Bi-Sr-Ca-Cu-O was examined employing post-sintering treatment. The mixture of Bi 2 O 3 , SrCO 3 , CaCO 3 and CuO with the basic composition of Bi/Sr/Ca/Cu=2/2/1/2 was calcined. The resulting powder was soaked in ethanol containing copper acetate and calcium acetate, the amounts of which were determined to give the composition of Bi/Sr/Ca/Cu=2/2/2/3 after sintering. The resistivity was measured by the d.c. four probe method in a cryostat. The current level was maintained at 50 mA and the voltage drop was determined by averaging the values in the forward and reverse directions. The zero T c ranged from 65 to 69K for the samples after sintering, while that ranged from 69 to 71K for those with post-sintering treatment. The effect of the treatment was not drastic but significant. Modified post-sintering treatment is being examined and the results are reported in the symposium

  14. Phase relations and crystal structures in the systems (Bi,Ln)2WO6 and (Bi,Ln)2MoO6 (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Berdonosov, Peter S.; Charkin, Dmitri O.; Knight, Kevin S.; Johnston, Karen E.; Goff, Richard J.; Dolgikh, Valeriy A.; Lightfoot, Philip

    2006-01-01

    Several outstanding aspects of phase behaviour in the systems (Bi,Ln) 2 WO 6 and (Bi,Ln) 2 MoO 6 (Ln=lanthanide) have been clarified. Detailed crystal structures, from Rietveld refinement of powder neutron diffraction data, are provided for Bi 1.8 La 0.2 WO 6 (L-Bi 2 WO 6 type) and BiLaWO 6 , BiNdWO 6 , Bi 0.7 Yb 1.3 WO 6 and Bi 0.7 Yb 1.3 WO 6 (all H-Bi 2 WO 6 type). Phase evolution within the solid solution Bi 2- x La x MoO 6 has been re-examined, and a crossover from γ(H)-Bi 2 MoO 6 type to γ-R 2 MoO 6 type is observed at x∼1.2. A preliminary X-ray Rietveld refinement of the line phase BiNdMoO 6 has confirmed the α-R 2 MoO 6 type structure, with a possible partial ordering of Bi/Nd over the three crystallographically distinct R sites. - Graphical abstract: A summary of phase relations in the lanthanide-doped bismuth tungstate and bismuth molybdate systems is presented, together with some additional structural data on several of these phases

  15. Analysis Of Power Characteristics Of Model Thermoelectric Generator TEG Small Modular

    Directory of Open Access Journals (Sweden)

    Kisman H. Mahmud

    2017-04-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this research was conducted to determine the potential of the electric energy of the two peltier modules which would be an alternative source for mobile charger using heat from source of methylated. The focus in this research is the testing of the model TEG Thermoelectric Generator Small Modular to generate power with a variety of different materials of 4 namely Bi2Te3 Bismuth Telluride PbTe-Bite CMO and CMO Cascade-32-62S-32-62S Calcium Mangan oxide to use the cold side heat sink and a fan to simulate heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Test results on the TEG Small Modular Model for mobile charger output voltage obtained from 2 pieces Bi2Te3 module Bismuth Telluride Peltier strung together a series of 3.01 Volt with amp916T of 22.7 C which produce power of 0.091 Watt.

  16. Using super-capacitors in combination with Bi-directional DC/DC converters for active load management in residential fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Cacciato, M.; Giulii Capponi, F. [Rome Univ., ' La Sapienza' , Dept. of Electrical Engineering (Italy)

    2004-07-01

    Among innovative conversion systems for alternative energy, Fuel Cells (FCs) are ideal in applications as distributed power generation or automotive. The connection of FCs to domestic or industrial loads requires a DC/AC converter also acting as a energy buffer to match the different dynamics of FCs and loads. In the last years, a new type of electrolytic capacitors called Super- Capacitors (SCs), has been designed using double layers technology. Such components are able to store more energy than electrolytic capacitors maintaining the capability to swap it at high power levels. Firstly, different solution used to connect SCs to a FC based conversion system are considered. Then, a comparison of bi-directional DC/DC converters designed to manage SCs energy is performed. Finally, the converter design and a laboratory prototype of the adopted solution are reported. (authors)

  17. DIALIGN: multiple DNA and protein sequence alignment at BiBiServ.

    OpenAIRE

    Morgenstern, Burkhard

    2004-01-01

    DIALIGN is a widely used software tool for multiple DNA and protein sequence alignment. The program combines local and global alignment features and can therefore be applied to sequence data that cannot be correctly aligned by more traditional approaches. DIALIGN is available online through Bielefeld Bioinformatics Server (BiBiServ). The downloadable version of the program offers several new program features. To compare the output of different alignment programs, we developed the program AltA...

  18. [sup 205]Bi/[sup 206]Bi cyclotron production from Pb-isotopes for absorption studies in humans

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.; Dresow, B.; Heinrich, H.C. (Universitaetskrankenhaus Eppendorf, Hamburg (Germany). Abt. Medizinische Biochemie); Wendel, J.; Bechtold, V. (Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Kernphysik)

    1993-12-01

    Pb(p,xn) thick target excitation functions were measured in the energy range 10-38 MeV in order to optimize the production of isotopically pure radiobismuth from [sup nat]Pb, [sup 206]Pb, and [sup 207]Pb. Additionally, the decay of Po-isotopes from deuteron irradiation of natural bismuth ([sup 209]Bi) was exploited for radiobismuth production. [sup 205]Bi was produced from [sup 206]Pb at 20 MeV with only 2% of [sup 206]Bi at 4 weeks post irradiation. Bismuth compounds as used in the treatment of peptic ulcer were labeled with [sup 205]Bi for absorption studies in animals and subjects. (Author).

  19. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xi' an, E-mail: groupfxa@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Cai, Xin zhi, E-mail: xzcwust@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Han, Xue wu, E-mail: hanxuewu1990@163.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); Zhang, Cheng cheng, E-mail: zcc516990418@live.com [The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081 (China); School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081 (China); and others

    2016-01-15

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used in this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials

  20. Calorimetric investigation of Pb-Bi system

    International Nuclear Information System (INIS)

    Agarwal, Renu; Jat, Ram Avtar; Sen, B.K.

    2008-01-01

    Enthalpy increment of Pb 0.71 Bi 0.29 compound was determined using high temperature Calvet calorimeter. The data was fit into the following polynomial equation. ΔH(T-298.15 K) J/mol = -10384.96 + 39.23 T - 0.014T 2 - 18970/T. By precipitation method, the enthalpy of formation of the compound of composition Pb 0.68 Bi 0.32 at 448 K, from Pb(l) and Bi(l) was determined to be -2450± 50 J/mol and from Pb(s) and Bi(s) at 298.15 K was calculated to be 4047 J/mol. (author)

  1. Optical and Electrical Properties of Al/(p)Bi2S3 Schottky Junction

    International Nuclear Information System (INIS)

    Kachari, T.; Wary, G.; Rahman, A.

    2010-01-01

    Thin film Al/(p)Bi 2 S 3 Schottky junctions were prepared by vacuum evaporation under pressure 10 -6 Torr. The p-type Bi 2 S 3 thin films with acceptor concentration (3.36-7.33)x10 16 /cm 3 were obtained by evaporating 'In' along with Bi 2 S 3 powder and then annealing the films at 453K for 5 hours. Different junction-parameters such as ideality factor, barrier height, effective Richardson's constant, short-circuit current, etc. were determined from I-V characteristics. The junctions exhibited rectifying I-V characteristics and also photovoltaic effect. Ideality factor was found to decrease with the increase of temperature. Proper doping, annealing, and hydrogenation are necessary to reduce the series resistance so as to achieve high carrier efficiency. More works are being carried out in this direction.

  2. Performance Assessment of Bi-Directional Knotless Tissue-Closure Devices in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters, 2009 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, Christa M.; Wagner, Katie A.; Bryson, Amanda J.

    2012-11-09

    The purpose of this report is to assess the performance of bi-directional knotless tissue-closure devices for use in tagging juvenile salmon. This study is part of an ongoing effort at Pacific Northwest National Laboratory (PNNL) to reduce unwanted effects of tags and tagging procedures on the survival and behavior of juvenile salmonids, by assessing and refining suturing techniques, suture materials, and tag burdens. The objective of this study was to compare the performance of the knotless (barbed) suture, using three different suture patterns (treatments: 6-point, Wide “N”, Wide “N” Knot), to the current method of suturing (MonocrylTM monofilament, discontinuous sutures with a 2×2×2×2 knot) used in monitoring and research programs with a novel antiseptic barrier on the wound (“Second Skin”).

  3. X-ray standing wave study of the Bi/GaAs and Bi/GaP interfaces

    International Nuclear Information System (INIS)

    Herrera-Gomez, A.

    1994-04-01

    Interfaces are one of the most important elements determining the characteristics of electronic devices. Composite semiconductors, specifically the III-V family, are technologically attractive because of their mobility and optical properties, and also because they offer the possibility of engineering such properties as the size of the band gap. Nevertheless, Si has remained the most utilized semiconductor material, primarily because the fabrication of practical MOSFETs with III-V semiconductors remains elusive. Examples of such complex interfaces are the structures formed by one monolayer of Bi on the (110) surface of GaAs and GaP. While better matched Column V elements form epitaxial continuous monolayers on III-V semiconductor (110) surfaces, Bi is too large to accommodate on GaAs and GaP surfaces with long range order, and vacancies appear to allow relaxation. For the ideal systems, symmetry imposes the presence of only two nonequivalent adatom sites. However, for Bi/GaAs and Bi/GaP, more than two different sites are present because the position of Bi atoms next to a vacancy is not necessarily equivalent to that between other Bi atoms. The geometry of the Bi/GaAs and Bi/GaP systems was determined here by triangulating XSW results from three Bragg planes. A methodology was developed that provides an intrinsic check of the validity of assuming two sites for the overlayer structures. An experimental method was developed that allows the three reflections to be measured on the same sample, thus reducing the number of experimental variables, such as the degree of disorder. The traditional method of analysis was not accurate enough for this data, so a more reliable and faster method of data fitting was developed. A configuration used in the present work, which previously has been widely used, presents an intrinsic multireflection problem. This issue is discussed in depth, and the appropriate method is determined for analyzing the data obtained with this configuration

  4. submitter Comparison of microstructure, second phases and texture formation during melt processing of Bi-2212 mono- and multifilament wires

    CERN Document Server

    Kadar, J; Rikel, MO; Di Michiel, M; Huang, Y

    2016-01-01

    Based on simultaneous in situ high energy synchrotron micro-tomography and x-ray diffraction (XRD) measurements we compare the microstructural changes and the formation of second phases and texture during the processing of Bi-2212 round wires with 15 μm filament diameter (multifilament) and 650 μm filament diameter (monofilament) fabricated using identical Bi-2212 precursor. The monofilament tomograms show in unprecedented detail how the distributed porosity agglomerates well before Bi-2212 melting decomposition to form lenticular voids that completely interrupt the filament connectivity along the wire axis. When the Bi-2212 phase completely melts connectivity in the axial wire direction is established via the changes in the void morphology from the lenticular voids to bubbles that remain when Bi-2212 crystallises out of the melt. By measuring the attenuation of the monochromatic x-ray beam, the associated Bi-2212 mass density changes have been monitored during the entire heat cycle. The XRD results reveal ...

  5. Direct Quantification of Cd2+ in the Presence of Cu2+ by a Combination of Anodic Stripping Voltammetry Using a Bi-Film-Modified Glassy Carbon Electrode and an Artificial Neural Network.

    Science.gov (United States)

    Zhao, Guo; Wang, Hui; Liu, Gang

    2017-07-03

    Abstract : In this study, a novel method based on a Bi/glassy carbon electrode (Bi/GCE) for quantitatively and directly detecting Cd 2+ in the presence of Cu 2+ without further electrode modifications by combining square-wave anodic stripping voltammetry (SWASV) and a back-propagation artificial neural network (BP-ANN) has been proposed. The influence of the Cu 2+ concentration on the stripping response to Cd 2+ was studied. In addition, the effect of the ferrocyanide concentration on the SWASV detection of Cd 2+ in the presence of Cu 2+ was investigated. A BP-ANN with two inputs and one output was used to establish the nonlinear relationship between the concentration of Cd 2+ and the stripping peak currents of Cu 2+ and Cd 2+ . The factors affecting the SWASV detection of Cd 2+ and the key parameters of the BP-ANN were optimized. Moreover, the direct calibration model (i.e., adding 0.1 mM ferrocyanide before detection), the BP-ANN model and other prediction models were compared to verify the prediction performance of these models in terms of their mean absolute errors (MAEs), root mean square errors (RMSEs) and correlation coefficients. The BP-ANN model exhibited higher prediction accuracy than the direct calibration model and the other prediction models. Finally, the proposed method was used to detect Cd 2+ in soil samples with satisfactory results.

  6. Quantum interference effects in [Co/Bi]n thin films

    Directory of Open Access Journals (Sweden)

    Athanasopoulos P.

    2014-07-01

    Full Text Available Magnetoconductivity (MC, Δσ(Β, and Hall coefficient, RH(B, measurements have been performed in polycrystalline thin films of Bi(15nm, Bi(10nm/Co(1nm/Bi(10nm trilayer and [Co(0.7nm/Bi(2nm]10 multilayer, grown by magnetron scattering. The temperature dependence of RH(B curves reveal the existence of a second conduction channel below 250K, that can be assigned to surface states. MC measurements between ±0.4T show at 5K an interplay between weak-antilocalization (WAL in Bi and Bi/Co/Bi films and weal-localization (WL in [Co/Bi]10 multilayer.

  7. Attempting to realize n-type BiCuSeO

    Science.gov (United States)

    Zhang, Xiaoxuan; Feng, Dan; He, Jiaqing; Zhao, Li-Dong

    2018-02-01

    As an intrinsic p-type semiconductor, BiCuSeO has been widely researched in the thermoelectric community, however, n-type BiCuSeO has not been reported so far. In this work, we successfully realized n-type BiCuSeO through carrying out several successive efforts. Seebeck coefficient of BiCuSeO was increased through introducing extra Bi/Cu to fill the Bi/Cu vacancies that may produce holes, and the maximum Seebeck coefficient was increase from +447 μVK-1 for undoped BiCuSeO to +638 μVK-1 for Bi1.04Cu1.05SeO. The Seebeck coefficient of Bi1.04Cu1.05SeO was changed from p-type to n-type through electron doping through introducing Br/I in Se sites, the maximum negative Seebeck coefficient can reach ∼ -465 μVK-1 and -543 μVK-1 for Bi1.04Cu1.05Se1-xIxO and Bi1.04Cu1.05Se1-xBrxO, respectively. Then, after compositing Bi1.04Cu1.05Se0.99Br0.01O with Ag, n-type BiCuSeO can be absolutely obtained in the whole temperature range of 300-873 K, the maximum ZT 0.05 was achieved at 475 K in the Bi1.04Cu1.05Se0.99Br0.01O+15% Ag. Our report indicates that it is possible to realize n-type conducting behaviors in BiCuSeO system.

  8. Facile growth and composition-dependent photocatalytic activity of flowerlike BiOCl{sub 1−x}Br{sub x} hierarchical microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qin; Guo, Yingna [School of Chemistry, Northeast Normal University, Changchun 130024 (China); Zhou, Dandan; Yang, Yuxin [School of Environment, Northeast Normal University, Changchun, 130117 (China); Guo, Yihang, E-mail: guoyh@nenu.edu.cn [School of Environment, Northeast Normal University, Changchun, 130117 (China)

    2016-12-30

    Highlights: • Flowerlike BiOCl{sub 1−x}Br{sub x} hierarchical microspheres were prepared by solvothermal route. • BiOCl{sub 1−x}Br{sub x} microspheres exhibited composition-dependent photocatalytic activity. • Band gap and potential of valence band dominated the photoactivity of BiOCl{sub 1−x}Br{sub x}. • BiOCl{sub 1−x}Br{sub x} microspheres can be reused at least four times without obvious activity loss. - Abstract: A group of nanosheet-assembled three-dimensional BiOCl{sub 1−x}Br{sub x} hierarchical microspheres (x = 0, 0.3, 0.4, 0.5, 0.7, 0.8 and 1.0) with layered tetragonal crystal phase were prepared by 2-methoxyethanol-assisted solvothermal route and using ionic liquids as both halogen sources and structure-directing agent. By the combination of the results including XRD, XPS and UV–vis/DR spectra, lattice substitution of halogen atoms each other and then formation of BiOCl{sub 1−x}Br{sub x} solid solution was evidenced. Additionally, the BiOCl{sub 1−x}Br{sub x} microspheres exhibited interesting composition-dependent band gaps. The simulated sunlight and visible-light photocatalytic properties including degradation, mineralization and reusability of the BiOCl{sub 1−x}Br{sub x} microspheres were evaluated by selecting p-nitrophenol (PNP) and tetrabromobisphenol-A (TBBPA) as the target pollutant compounds, finding that the balance between the suitable band gap and adequate potential of the valence band in BiOCl{sub 1−x}Br{sub x} crystals dominated their photocatalytic activity. Additionally, the BiOCl{sub 1−x}Br{sub x} microspheres with advantages such as enhanced photon utilization efficiency, larger BET surface area and favorable (110) exposed reactive surface gave the positive influence on their photocatalytic activity. Based on the results of photoelectrochemistry experiment and indirect chemical probe testing, direct {sup •} O{sub 2}{sup −} and h{sub VB}{sup +} photooxidation for the decomposition of PNP or TBBPA was

  9. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  10. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet

    International Nuclear Information System (INIS)

    Jiang, Yu-Rou; Lin, Ho-Pan; Chung, Wen-Hsin; Dai, Yong-Ming; Lin, Wan-Yu; Chen, Chiing-Chang

    2015-01-01

    Highlights: • This is the first report on a series of BiO x Cl y /BiO m I n heterojunctions. • The BiO x Cl y /BiO m I n composition was controlled by adjusting the growth parameters. • The BiO x Cl y /BiO m I n were indirect semiconductors with a 1.78–2.95-eV bandgap. • The new photocatalysts removed CV at a much faster rate than TiO 2 . • Mechanisms were determined by separating the intermediates using HPLC-MS. - Abstract: A series of BiO x Cl y /BiO m I n composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiO x Cl y /BiO m I n composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV–vis diffuse reflectance spectroscopy, Brunauer–Emmett–Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O 2 · − played a major role, and OH· or h + played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism

  11. Classical gluon and graviton radiation from the bi-adjoint scalar double copy

    Science.gov (United States)

    Goldberger, Walter D.; Prabhu, Siddharth G.; Thompson, Jedidiah O.

    2017-09-01

    We find double-copy relations between classical radiating solutions in Yang-Mills theory coupled to dynamical color charges and their counterparts in a cubic bi-adjoint scalar field theory which interacts linearly with particles carrying bi-adjoint charge. The particular color-to-kinematics replacements we employ are motivated by the Bern-Carrasco-Johansson double-copy correspondence for on-shell amplitudes in gauge and gravity theories. They are identical to those recently used to establish relations between classical radiating solutions in gauge theory and in dilaton gravity. Our explicit bi-adjoint solutions are constructed to second order in a perturbative expansion, and map under the double copy onto gauge theory solutions which involve at most cubic gluon self-interactions. If the correspondence is found to persist to higher orders in perturbation theory, our results suggest the possibility of calculating gravitational radiation from colliding compact objects, directly from a scalar field with vastly simpler (purely cubic) Feynman vertices.

  12. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    Science.gov (United States)

    Zhang, Min; Wei, Zhan-Tao

    2018-03-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  13. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    Science.gov (United States)

    Zhang, Min; Wei, Zhan-Tao

    2018-05-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  14. Reduction in thermal conductivity of BiSbTe lump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Kaleem [King Saud University, Sustainable Energy Technologies Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia); Wan, C. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing (China); Al-Eshaikh, M.A.; Kadachi, A.N. [King Saud University, Research Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia)

    2017-03-15

    In this work, systematic investigations on the thermal conductivities of BiSbTe lump, microstructured pristine BiSbTe bulk and single wall carbon nanotubes (SWCNTs)/BiSbTe bulk nanocomposites were performed. BiSbTe lumps were crushed to form a coarse powder (200 μm) and effect of particle size reduction on the effective thermal conductivity of BiSbTe (200 μm) bulk were analyzed. For further reduction in the conductivity, a two pronged strategy has been employed. First, additional refinement of BiSbTe (200 μm) were performed through ball milling in an inert environment. Second, SWCNTs in 0.75, and 1.0 vol% were distributed uniformly in the fine BiSbTe ball milled powder. The results showed that the effective thermal conductivities decrease with the reduction in the particle size from lump to BiSbTe (200 μm) bulk as well as with the addition of SWCNTs accompanied by further refinement of BiSbTe particles. The significant reduction in thermal conductivities of the lump was achieved for pure BiSbTe (200 μm) bulk and 0.75 vol% of SWCNTs/BiSbTe composite. This can be ascribed to the enhanced phonon scattering by the grain boundaries between the nanostructured BiSbTe particles as well as the interfaces between BiSbTe and the low dimensional carbon nanotubes. (orig.)

  15. Observation of antiphase coherent phonons in the warped Dirac cone of Bi2Te3

    Science.gov (United States)

    Golias, E.; Sánchez-Barriga, J.

    2016-10-01

    In this Rapid Communication we investigate the coupling between excited electrons and phonons in the highly anisotropic electronic structure of the prototypical topological insulator Bi2Te3 . Using time- and angle-resolved photoemission spectroscopy we are able to identify the emergence and ultrafast temporal evolution of the longitudinal-optical A1 g coherent-phonon mode in Bi2Te3 . We observe an antiphase behavior in the onset of the coherent-phonon oscillations between the Γ K ¯ and the Γ M ¯ high-symmetry directions that is consistent with warping. The qualitative agreement between our density-functional theory calculations and the experimental results reveals the critical role of the anisotropic coupling between Dirac fermions and phonon modes in the topological insulator Bi2Te3 .

  16. Hydrothermal Synthesis, Characterization, and Optical Properties of Ce Doped Bi2MoO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available Undoped and Ce doped Bi2MoO6 samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Raman spectrophotometry, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6 nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6 samples show a strong absorption in the UV region.

  17. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  18. The effect of oxidant on resputtering of Bi from Bi-Sr-Ca-Cu-O films

    Science.gov (United States)

    Grace, J. M.; McDonald, D. B.; Reiten, M. T.; Olson, J.; Kampwirth, R. T.; Gray, K. E.

    1991-09-01

    The type and partial pressure of oxidant mixed with argon can affect the selective resputtering of Bi in composite-target, magnetron-sputtered Bi-Sr-Ca-Cu-O films. Comparative studies using oxygen and ozone show that ozone is a more potent oxidant, as well as a more potent source of resputterers, than is oxygen. Severe resputtering from ozone is significantly reduced by a -40 V potential on the sample block. We suggest that oxygen causes resputtering by forming O2(+)p , which interacts with the target to produce energetic O(-). In contrast, ozone may form lower-energy O(-) by electron impact in the dark space. Negative oxygen ions from the target itself may be responsible for a background resputtering effect. Our results and those found for Y-Ba-Cu-O by others are comparable. Bi in Bi-Sr-Ca-Cu-O behaves as Ba in Y-Ba-Cu-O, with regard to selective resputtering; furthermore, the response of Sr, Ca, and Cu to oxygen in sputtered Bi-Sr-Ca-Cu-O is similar to what is observed for Cu in Y-Ba-Cu-O.

  19. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    Science.gov (United States)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, Min-Soo; Song, Jae-Sung

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi0.5(Na0.425K0.075) TiO3 (BNKT) ceramic material with platelike Bi4Ti3O12 (BiT) were investigated. The platelike Bi4Ti3O12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 °C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  20. Electric properties of a textured BiNaKTiO3 ceramic for energy harvesting system

    International Nuclear Information System (INIS)

    Lim, D. H.; Song, T. K.; Lee, D. S.; Jeong, S. J.; Kim, M. S.; Song, J. S.

    2012-01-01

    Piezoelectric ceramics with microstructural texturing were fabricated and evaluated to investigate their possibility for use in piezoelectric energy harvest devices in response to external mechanical impact. The microstructural evolution and properties of a Bi 0.5 (Na 0.425 K 0.075 ) TiO 3 (BNKT) ceramic material with platelike Bi 4 Ti 3 O 12 (BiT) were investigated. The platelike Bi 4 Ti 3 O 12 (BiT) was used as a template to induce grain growth under a proper heat treatment. The textured BNKTs were fabricated and heated at 1150 .deg. C for 10 h. They exhibited -oriented large grains and improved of ferroelectric properties. The textured microstructure was due to the occurrence of grain growth around the templates. When subjected to a low stress of 0.8 MPa, the textured BNKT had a slightly larger voltage and power than the randomly-oriented BNKT. Meanwhile, when high stresses over 2 MPa were applied, the voltage and the power of the textured specimen were larger than those of the randomly-oriented specimen. The microstructure textured along the direction may contribute to the improved power generation.

  1. Preparation and Faraday rotation of Bi-YIG/PMMA nanocomposite

    Science.gov (United States)

    Fu, H. P.; Hong, R. Y.; Wu, Y. J.; Di, G. Q.; Xu, B.; Zheng, Y.; Wei, D. G.

    Bismuth-substituted yttrium iron garnet (Bi-YIG) nanoparticles (NPs) were prepared by coprecipitation and subsequent heating treatment. Thermal gravity-differential thermal analysis was performed to investigate the thermal behavior of the Bi-YIG precursors and to decide the best annealing temperature. Phase formation of garnet NPs was investigated by X-ray powder diffraction. The size of Bi-YIG NPs was investigated by transmission electron microscopy, and the magnetic properties of Bi-YIG NPs were measured using a vibrating sample magnetometer. The results show that the temperature needed for the transformation of Bi-YIG from the amorphous phase to the garnet phase decreases with increasing Bi content, and Bi-YIG NPs with sizes of 28-78 nm are obtained after heating treatment at 650-1000 °C. The saturation magnetization of Bi-YIG NPs increases as the Bi content increases. Moreover, the Faraday rotation of polymethyl methacrylate (PMMA) slices doped with Bi-YIG NPs was investigated. The results indicate that the angle of Faraday rotation increases with increasing Bi content in PMMA composites, and the maximum value of the figure of merit is 1.46°, which is comparable to the value of a sputtered film. The Bi-YIG NPs-doped PMMA slices are new promising materials for magneto-optical devices.

  2. Facile synthesis of AgI/BiOI-Bi{sub 2}O{sub 3} multi-heterojunctions with high visible light activity for Cr(VI) reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); The Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Shi, Xiaodong; Liu, Enqin [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Crittenden, John C. [The Brook Byer Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Ma, Xiangjuan; Zhang, Yi [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China)

    2016-11-05

    Graphical abstract: Highly visible-light-active AgI/BiOI-Bi{sub 2}O{sub 3} with multi-heterojunctions was developed. - Highlights: • Visible-light-active AgI/BiOI-Bi{sub 2}O{sub 3} with multi-heterojunctions was prepared. • Highly enhanced photocatalytic reduction of Cr(VI) was observed. • k{sub Cr(VI)} on AgI/BiOI-Bi{sub 2}O{sub 3} increased by ca.16 times relative to Bi{sub 2}O{sub 3}. • Decreased E{sub g}, shifted E{sub fb} and reduced charge transfer resistance were observed. • Simultaneous reduction of Cr(VI) and degradation of organics were achieved. - Abstract: AgI sensitized BiOI-Bi{sub 2}O{sub 3} composite (AgI/BiOI-Bi{sub 2}O{sub 3}) with multi-heterojunctions was prepared using simple etching-deposition process. Different characterization techniques were performed to investigate the structural, optical and electrical properties of the as-prepared photocatalysts. It was found that the ternary AgI/BiOI-Bi{sub 2}O{sub 3} composite exhibited: (1) improved photocurrent response, (2) smaller band gap, (3) greatly reduced charge transfer resistance and (4) negative shift of flat band potential, which finally led to easier generation and more efficient separation of photo-generated electron-hole pairs at the hetero-interfaces. Thus, for the reduction of Cr(VI), AgI/BiOI-Bi{sub 2}O{sub 3} exhibited excellent photocatalytic activity under visible light irradiation at near neutral pH. AgI/BiOI-Bi{sub 2}O{sub 3} was optimized when the initial molar ratio of KI to Bi{sub 2}O{sub 3} and AgNO{sub 3} to Bi{sub 2}O{sub 3} was 1:1 and 10%, respectively. The estimated k{sub Cr(VI)} on optimized AgI/BiOI-Bi{sub 2}O{sub 3} was about 16 times that on pure Bi{sub 2}O{sub 3}. Good stability was also observed in cyclic runs, indicating that the current multi-heterostructured photocatalyst is highly desirable for the remediation of Cr(VI)-containing wastewater.

  3. Correlation between modulation structure and electronic inhomogeneity on Pb-doped Bi-2212 single crystals

    International Nuclear Information System (INIS)

    Sugimoto, A.; Kashiwaya, S.; Eisaki, H.; Yamaguchi, H.; Oka, K.; Kashiwaya, H.; Tsuchiura, H.; Tanaka, Y.

    2005-01-01

    The correlation between nanometer-size electronic states and surface structure is investigated by scanning tunneling microscopy/spectroscopy (STM/S) on Pb-doped Bi 2-x Pb x Sr 2 CaCu2O 8+y (Pb-Bi-2212) single crystals. The advantage of the Pb-Bi-2212 samples is that the modulation structure can be totally or locally suppressed depending on the Pb contents and annealing conditions. The superconducting gap (Δ) distribution on modulated Pb-Bi-2212 samples showed the lack of correlation with modulation structure except a slight reduction of superconducting island size for the b-axis direction. On the other hand, the optimal doped Pb-Bi-2212 (x = 0.6) samples obtained by reduced-annealing showed totally non-modulated structure in topography, however, the spatial distribution of Δ still showed inhomogeneity of which features were quite similar to those of modulated samples. These results suggest that the modulation structure is not the dominant origin of inhomogeneity although it modifies the streaky Δ structure sub-dominantly. From the gap structure variation around the border of narrow gap and broad gap regions, a trend of the coexistence of two separated phases i.e., superconducting phase and pseudogap like phase, is detected

  4. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance

    Science.gov (United States)

    Qiu, Yongfu; Fan, Hongbo; Chang, Xueyi; Dang, Haifeng; Luo, Qun; Cheng, Zhiyu

    2018-03-01

    In this paper, the ultrathin Bi2O3 nanowires are synthesized by an oxidative metal vapor transport deposition technique. Their diameters and length are about 10 nm and several tens of micrometers, the growth direction is along [101] and the specific surface area is about 7.34 m2 g-1. The galvanostatic charge-discharge measurement results show that the specific capacitances of the Bi2O3 nanowires-based electrodes increase with the decrease of the current densities. The maximum capacitance is 691.3 F g-1 at the current density of 2.0 A g-1. The Ragone plot shows that the Bi2O3 nanowires has excellent supercapacitive performance. Moreover, the cyclic stability is measured by the galvanostatic charge/discharge technique at a constant current density of 10.0 A g-1 in 6.0 M KOH electrolyte. The results show the excellent capacitance retention of 75.5% over 3000 cycles. In a word, the Bi2O3 nanowires should be the ideal potential electrode materials for low-costing and effective electrochemical supercapacitors.

  5. Texturing of superconducting Bi-Pb-Sr-Ca-Cu-O ceramics by combining the effect of a magnetic field and hot pressing in one direction; Texturation des ceramiques supraconductrices Bi-Pb-Sr-Ca-Cu-O par combinaison des effets du champ magnetique et de la contrainte uniaxiale a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Noudem, J G

    1995-10-27

    Superconducting Bi-(Pb)-Sr-Ca-Cu-O (Bi:2223) ceramics have a weak 77 K transport critical current density (Jc) due to porosity and the presence of misaligned platelets. In order to obtain higher critical current densities in these materials, it is necessary to increase their density and induce a preferential crystallographic orientation. We have developed a texturing process using solidification in a magnetic field combined with hot pressing. The experimental set-up provides a uniaxial pressure of 60 MPa and temperature up to 1100 deg C in a magnetic field of 8 T. Magnetic melt texturing (MMT) proved to be very effective in producing bulk oriented samples of polycrystalline Bi:2223 (crystallite c-axis oriented parallel to the field direction). These samples have Jc values of up to 1450 A/cm{sup 2} and a density of 5.1 g/cm{sup 3}. The texturing by hot pressing (HP) gives homogeneous, dense ({approx} 6 g/cm{sup 3}; 95 % of the theoretical limit) ceramics with a Jc of 2500 A/cm{sup 2}. Tapes of Ag/Bi:2223 provided by Alcatel Alsthom were also successful textured using HP. Finally we have demonstrated that the combination of solidification in a magnetic field with hot pressing (MMHPT) improves both the texture and density of the samples. Moreover the samples are very homogeneous and mechanically resistant. The 77 K transport critical current densities have values up to 3800 A/cm{sup 2} and 1100 A/cm{sup 2} along the (ab) and c-axis respectively. We have demonstrated that these samples are of potential use a current limiters. (author) 146 refs.

  6. Giant magnetostriction effect near onset of spin reorientation in MnBi

    Science.gov (United States)

    Choi, Y.; Ryan, P. J.; McGuire, M. A.; Sales, B. C.; Kim, J.-W.

    2018-05-01

    In materials undergoing spontaneous symmetry breaking transitions, the emergence of multiple competing order parameters is pervasive. Employing in-field x-ray diffraction, we investigate the temperature and magnetic field dependence of the crystallographic structure of MnBi, elucidating the microscopic interplay between lattices and spin. The hexagonal phase of MnBi undergoes a spin reorientation transition (TSR), whereby the easy axis direction changes from the c axis to the basal plane. Across TSR, an abrupt symmetry change is accompanied by a clear sign change in the magnetostrictive coefficient, revealing that this transition corresponds to the onset of the spin reorientation. In the vicinity of TSR, a significantly larger in-plane magnetostrictive effect is observed, presenting the emergence of an intermediate phase that is highly susceptible to an applied magnetic field. X-ray linear dichroism shows that asymmetric Bi and Mn p orbitals do not play a role in the spin reorientation. This work suggests that the spin reorientation is caused by structural modification rather than changes in the local electronic configuration, providing a strategy for manipulating the magnetic anisotropy by external strain.

  7. alpha-decay spectroscopy of light odd-odd Bi isotopes - II sup 1 sup 8 sup 6 Bi and the new nuclide sup 1 sup 8 sup 4 Bi

    CERN Document Server

    Andreyev, A N; Ackermann, D; Münzenberg, G; Hessberger, F P; Hofmann, S; Kojouharov, I; Kindler, B; Lommel, B; Huyse, M; Vel, K V D; Duppen, P V; Heyde, Kris L G

    2003-01-01

    Alpha-decay of the new nuclide sup 1 sup 8 sup 4 Bi has been studied in the complete-fusion reaction sup 9 sup 3 Nb( sup 9 sup 4 Mo, 3n) sup 1 sup 8 sup 4 Bi at the velocity filter SHIP. The evaporation residues were separated in-flight and subsequently identified on the basis of recoil-alpha, recoil-alpha-gamma analysis and excitation functions measurements. Two alpha-decaying isomeric states in sup 1 sup 8 sup 4 Bi with half-life values of 13(2) ms and 6.6(1.5) ms were identified. The alpha-branching ratio of sup 1 sup 8 sup 0 Tl was deduced for the first time as b subalpha = (2-12)%. Improved data on the fine-structure alpha-decay of sup 1 sup 8 sup 6 Bi were obtained in the sup 9 sup 3 Nb( sup 9 sup 5 Mo, 2n) sup 1 sup 8 sup 6 Bi reaction. A similarity of the decay energies and half-life values of sup 1 sup 8 sup 4 sup , sup 1 sup 8 sup 6 Bi is pointed out and a possible explanation for this effect is suggested.

  8. Predicting Protein-Protein Interactions Using BiGGER: Case Studies

    Directory of Open Access Journals (Sweden)

    Rui M. Almeida

    2016-08-01

    Full Text Available The importance of understanding interactomes makes preeminent the study of protein interactions and protein complexes. Traditionally, protein interactions have been elucidated by experimental methods or, with lower impact, by simulation with protein docking algorithms. This article describes features and applications of the BiGGER docking algorithm, which stands at the interface of these two approaches. BiGGER is a user-friendly docking algorithm that was specifically designed to incorporate experimental data at different stages of the simulation, to either guide the search for correct structures or help evaluate the results, in order to combine the reliability of hard data with the convenience of simulations. Herein, the applications of BiGGER are described by illustrative applications divided in three Case Studies: (Case Study A in which no specific contact data is available; (Case Study B when different experimental data (e.g., site-directed mutagenesis, properties of the complex, NMR chemical shift perturbation mapping, electron tunneling on one of the partners is available; and (Case Study C when experimental data are available for both interacting surfaces, which are used during the search and/or evaluation stage of the docking. This algorithm has been extensively used, evidencing its usefulness in a wide range of different biological research fields.

  9. A 10-bit 100 MSamples/s BiCMOS D/A Converter

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger; Tunheim, Svein Anders

    1997-01-01

    This paper presents a 10-bit Digital-to-Analogue Converter (DAC) based on the current steering principle. The DAC is processed in a 0.8 micron BiCMOS process and is designed to operate at a sampling rate of 100MSamples/s. The DAC is intended for applications using direct digital synthesis...

  10. First principles study of AlBi

    International Nuclear Information System (INIS)

    Amrani, B.; Achour, H.; Louhibi, S.; Tebboune, A.; Sekkal, N.

    2008-05-01

    Using the first principles method of the full potential linear augmented plane waves (FPLAPW), the structural and the electronic properties of AlBi are investigated. It is found that this compound has a small and direct semiconducting gap at Γ. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature θ D and the heat capacity C v are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. (author)

  11. Superstrengthening Bi2Te3 through Nanotwinning

    Science.gov (United States)

    Li, Guodong; Aydemir, Umut; Morozov, Sergey I.; Wood, Max; An, Qi; Zhai, Pengcheng; Zhang, Qingjie; Goddard, William A.; Snyder, G. Jeffrey

    2017-08-01

    Bismuth telluride (Bi2Te3 ) based thermoelectric (TE) materials have been commercialized successfully as solid-state power generators, but their low mechanical strength suggests that these materials may not be reliable for long-term use in TE devices. Here we use density functional theory to show that the ideal shear strength of Bi2Te3 can be significantly enhanced up to 215% by imposing nanoscale twins. We reveal that the origin of the low strength in single crystalline Bi2Te3 is the weak van der Waals interaction between the Te1 coupling two Te 1 - Bi - Te 2 - Bi - Te 1 five-layer quint substructures. However, we demonstrate here a surprising result that forming twin boundaries between the Te1 atoms of adjacent quints greatly strengthens the interaction between them, leading to a tripling of the ideal shear strength in nanotwinned Bi2Te3 (0.6 GPa) compared to that in the single crystalline material (0.19 GPa). This grain boundary engineering strategy opens a new pathway for designing robust Bi2Te3 TE semiconductors for high-performance TE devices.

  12. Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development

    OpenAIRE

    Kametani, F.; Jiang, J.; Matras, M.; Abraimov, D.; Hellstrom, E. E.; Larbalestier, D. C.

    2015-01-01

    Why Bi2Sr2CaCu2Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)2Sr2Ca2Cu3O10), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM

  13. Light alkane (mixed feed selective dehydrogenation using bi-metallic zeolite supported catalyst

    Directory of Open Access Journals (Sweden)

    Zeeshan Nawaz

    2009-12-01

    Full Text Available Light alkanes are the important intermediates of many refinery processes and their catalytic dehydrogenation gives corresponding alkenes. The aim behind this experimentation is to investigate reaction behavior of mixed alkanes during direct catalytic dehydrogenation and emphasis has been given to enhance propene. Bi-metallic zeolite supported catalyst Pt-Sn/ZSM-5 was prepared by sequentional impregnation method and characterized by BET, EDS and XRD. Direct dehydrogenation reaction is highly endothermic and its conversion is thermodynamically limited. Results showed that the increase in temperature increases the conversion to some extent but there is no overall effect on selectivity of propene. Increase in time-on-stream (TOS remarkably improves propene selectivity at the expense of lower conversion. The performances of bi-metallic zeolite based catalyst largely affected by coke deposition. The presence of butane and ethane adversely affected propane conversion. Optimum propene selectivity is about 48 %, obtained at 600 oC and time-on-stream 10 h.

  14. Bi2Se3/CdS/TiO2 hybrid photoelectrode and its band-edge levels

    International Nuclear Information System (INIS)

    Zhang, Qi; Su, Jun; Zhang, Xianghui; Li, Jian; Zhang, Aiqing; Gao, Yihua

    2012-01-01

    Highlights: ► CVD synthesis of Bi 2 Se 3 nanoparticles. ► Bi 2 Se 3 and CdS co-sensitized TiO 2 nanorod arrays electrode was assembled by CVD. ► Direct physical contact heterojunctions were formed at the interfaces of electrode. ► Cascade structure of band-edge levels was formed in Bi 2 Se 3 /CdS/TiO 2 electrode. - Abstract: Bismuth selenide (Bi 2 Se 3 ) was chosen as the sensitizer to TiO 2 nanorod (NR) arrays photoelectrode to harvest infrared (IR) light for its narrow band gap. For utilizing more amount of IR solar energy, Bi 2 Se 3 nanoparticles (NPs) were grown up to a relative larger grain size. And, a cadmium sulfide (CdS) NPs intermediate layer was introduced to help, to coordinate, the structure of band-edge levels in Bi 2 Se 3 /CdS/TiO 2 electrode. Here, a chemical vapor deposition (CVD) strategy was introduced to assemble this kind of composite photoelectrode. And a cascade structure of band-edge levels constructed in it when achieving electrostatic equilibrium in Na 2 S/Na 2 SO 3 aqueous solution electrolyte revealed by electrochemical analysis method, which will facilitate the hydrogen generation.

  15. Estudio de la región rica en Bi2O3 en el sistema binario ZnO-Bi2O3

    Directory of Open Access Journals (Sweden)

    Caballero, A. C.

    2004-08-01

    Full Text Available Ceramic materials based in the ZnO- Bi2O3 system have their principal application as varistors. The binary system ZnO-Bi2O3 is specially relevant to the formation of the microstructure responsable of the varistor behaviour. The study of the different equilibrium phases at high temperatures at the Bi2O3-rich region of the ZnO-Bi2O3 will allow a correct understanding of the microstructural development. Equilibrium phases have been analyzed by XRD, SEM and DTA. Different temperature treatments of samples formulated in the Bi2O3 rich region of the ZnO-Bi2O3 binary system have allowed to determine the phase 19Bi2O3•ZnO as the equilibrium one instead of the 24Bi2O3•ZnO phase.Los materiales cerámicos basados en el sistema binario ZnO-Bi2O3 tienen su principal aplicación en el campo de los varistores. El sistema binario ZnO-Bi2O3 resulta especialmente relevante para la formación de la microestructura funcional de varistores. La determinación de las diferentes fases en equilibrio a alta temperatura en la región rica en Bi2O3 en el sistema binario ZnO-Bi2O3 permitirá interpretar correctamente el desarrollo microestructural. El estudio de las fases en equilibrio se ha llevado a cabo mediante difracción de rayos X, microscopía electrónica de barrido (MEB y análisis térmico diferencial (ATD. Tratamientos a diferentes temperaturas, en la zona rica en Bi2O3 del sistema, han permitido determinar la presencia del compuesto 19Bi2O3•ZnO como fase estable en equilibrio, en lugar del compuesto 24Bi2O3•ZnO.

  16. TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    International Nuclear Information System (INIS)

    Zhou, Shu-Mei; Ma, De-Kun; Cai, Ping; Chen, Wei; Huang, Shao-Ming

    2014-01-01

    Graphical abstract: TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO 2 . • TiO 2 /Bi 2 (BDC) 3 /BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO 2 /Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO 2 /Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO 2 . With increasing the amount of TiO 2 , the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO 2 /Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The

  17. Thermoelectric power of Bi and Bi{sub 1{minus}x}Sb{sub x} alloy thin films and superlattices grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; DiVenere, A; Wong, G K; Ketterson, J B; Meyer, J R; Hoffman, C A

    1997-07-01

    The authors have measured the thermoelectric power (TEP) of MBE-grown epitaxial Bi and Bi{sub 1{minus}x} alloy thin films and superlattices as a function of temperature in the range 20--300 K. They have observed that the TEP of a Bi thin film of 1 {micro}m thickness is in good agreement with the bulk single crystal value and that the TEPs for superlattices with 400 {angstrom} and 800 {angstrom} Bi well thicknesses are enhanced over the bulk values. For x = 0.072 and 0.088 in Bi{sub 1{minus}x}Sb{sub x} thin films showing semiconducting behavior, TEP enhancement was observed by a factor of two. However as Bi or Bi{sub 1{minus}x}Sb{sub x} well thickness decreases in superlattice geometry, the TEP decreases, which may be due to unintentional p-type doping.

  18. CERES BiDirectional Scans (BDS) data in HDF (CER_BDS_TRMM-PFM_Edition1)

    Science.gov (United States)

    Wielicki, Bruce A. (Principal Investigator)

    Each BiDirectional Scans (BDS) data product contains twenty-four hours of Level-1b data for each CERES scanner instrument mounted on each spacecraft. The BDS includes samples taken in normal and short Earth scan elevation profiles in both fixed and rotating azimuth scan modes (including space, internal calibration, and solar calibration views). The BDS contains Level-0 raw (unconverted) science and instrument data as well as the geolocated converted science and instrument data. The BDS contains additional data not found in the Level-0 input file, including converted satellite position and velocity data, celestial data, converted digital status data, and parameters used in the radiance count conversion equations. The following CERES BDS data sets are currently available: CER_BDS_TRMM-PFM_Edition1 CER_BDS_Terra-FM1_Edition1 CER_BDS_Terra-FM2_Edition1 CER_BDS_Terra-FM1_Edition2 CER_BDS_Terra-FM2_Edition2 CER_BDS_Aqua-FM3_Edition1 CER_BDS_Aqua-FM4_Edition1 CER_BDS_Aqua-FM3_Edition2 CER_BDS_Aqua-FM4_Edition2 CER_BDS_Aqua-FM3_Edition1-CV CER_BDS_Aqua-FM4_Edition1-CV CER_BDS_Terra-FM1_Edition1-CV CER_BDS_Terra-FM2_Edition1-CV. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1997-12-27; Stop_Date=2000-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 day; Temporal_Resolution_Range=Daily - < Weekly].

  19. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  20. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Lemoine, D M; Kammen, D M; Farrell, A E

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream

  1. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    Science.gov (United States)

    Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.

  2. BiP Negatively Affects Ricin Transport

    Directory of Open Access Journals (Sweden)

    Kirsten Sandvig

    2013-05-01

    Full Text Available The AB plant toxin ricin binds both glycoproteins and glycolipids at the cell surface via its B subunit. After binding, ricin is endocytosed and then transported retrogradely through the Golgi to the endoplasmic reticulum (ER. In the ER, the A subunit is retrotranslocated to the cytosol in a chaperone-dependent process, which is not fully explored. Recently two separate siRNA screens have demonstrated that ER chaperones have implications for ricin toxicity. ER associated degradation (ERAD involves translocation of misfolded proteins from ER to cytosol and it is conceivable that protein toxins exploit this pathway. The ER chaperone BiP is an important ER regulator and has been implicated in toxicity mediated by cholera and Shiga toxin. In this study, we have investigated the role of BiP in ricin translocation to the cytosol. We first show that overexpression of BiP inhibited ricin translocation and protected cells against the toxin. Furthermore, shRNA-mediated depletion of BiP enhanced toxin translocation resulting in increased cytotoxicity. BiP-dependent inhibition of ricin toxicity was independent of ER stress. Our findings suggest that in contrast to what was shown with the Shiga toxin, the presence of BiP does not facilitate, but rather inhibits the entry of ricin into the cytosol.

  3. Conformance Testing of SGSF-064-1 Using CANoe

    Directory of Open Access Journals (Sweden)

    Intaek Kim

    2015-11-01

    Full Text Available In this paper, the authors describe a conformance testing system for SGSF-064-1, the communication protocol between electric vehicles and conductive DC (direct current chargers in Korea. Since the SGSF-064-1 is based on CAN (controller area network, the testing system was developed by CANoe. The DC charger known as EVSE (electric vehicle supply equipment is the system being tested and the developed system implemented in PC (personal computer. The developed system performs as a tester to ensure that the DC chargers from various manufactures can conform to the communication protocol in SGSF-064-1. The testing system contains four testing modes which also consist of several test cases.

  4. Thermoelectric properties of Bi2Te3 base solid solutions in the Bi2Te3-InS system

    International Nuclear Information System (INIS)

    Safarov, M.G.; Rustamov, P.G.; Alidzhanov, M.A.

    1979-01-01

    The rich Bi 2 Te 3 part ot the Bi 2 Te 3 -InS constitutional diagram has been studied with a view to produce new Bi 2 Te 3 -based solid solutions and to establish the maximum solubility of InS in Bi 2 Te 3 . The methods of differential-thermal, X-ray phase and microstructural analysis have been used. The alloys microhardness, density and thermal electric properties have been measured. A large region of Bi 2 Te 3 -based restricted solid solutions has been detected; it reaches 14.0 mol.% InS at room temperature. Studied have been the thermoelectromotive forces, electric and thermal conductivity of the alloys, containing up to 5 mol.% InS in the 300-700 K temperature range

  5. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI

    Science.gov (United States)

    Brashers-Krug, Tom; Jorge, Ricardo

    2015-01-01

    Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The

  6. Optical spectroscopy and Fermi surface studies of BiTeCl and BiTeBr

    Science.gov (United States)

    Martin, Catalin; Suslov, A. V.; Buvaev, S.; Hebard, A. F.; Bugnon, Philippe; Berger, Helmuth; Magrez, Arnaud; Tanner, D. B.

    2014-03-01

    The observation of a large bulk Rashba effect in the non-centrosymmetric semiconductors BiTeX(X=Cl, Br, I) has stimulated the interest in these sys- tems, as promising candidates for studying spin related phenomena and for the realization of spin devices. Here we present a comparative study of the electronic properties of BiTeCl and BiTeBr, determined from temperature dependent infrared spectroscopy and Shubnikov-de Haas oscillations. In par- ticular, we compare the angle dependence of quantum oscillations between the two compounds and discuss possible differences between the topology of their Fermi surfaces. Supported by NSF Cooperative Agreement DMR-1157490 to the National High Magnetic Field Laboratory.

  7. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  8. Development of a hysteresis model for R/C columns subjected to bi-axial lateral loading

    International Nuclear Information System (INIS)

    Dutta, Sekhar Chandra; Chowdhury, Rajib; Roy, Raghupati; Reddy, G. Rami

    2003-01-01

    Recent investigations on dynamic response of reinforced concrete (R/C) structures have confirmed that the R/C structural members undergo much more inelastic deformation in each of the two mutually perpendicular directions under bi-directional seismic loading, than that observed only under unidirectional ground motion. To predict the seismic response of R/C structure with fair accuracy demands, a faithful model that can incorporate the effect of biaxial bending interaction in column. This model should not have high computational demand but should adequately reflect the stiffness degrading and strength deterioration characteristics of R/C structural members. Present study is an effort to develop such a bi-directional hysteresis model accounting the effect of interaction between lateral loadings in two orthogonal directions. The development of the present model is based on the yield surface approach and it can incorporate both strength and stiffness degradation characteristics, which is unavoidable in R/C structures during cyclic loading. The performance of the proposed model/ is demonstrated through the prediction of available experimental results of a reinforced concrete column, subjected to biaxial loading. (author)

  9. Various methods of numerical estimation of generalized stress intensity factors of bi-material notches

    Directory of Open Access Journals (Sweden)

    Klusák J.

    2009-12-01

    Full Text Available The study of bi-material notches becomes a topical problem as they can model efficiently geometrical or material discontinuities. When assessing crack initiation conditions in the bi-material notches, the generalized stress intensity factors H have to be calculated. Contrary to the determination of the K-factor for a crack in an isotropic homogeneous medium, for the ascertainment of the H-factor there is no procedure incorporated in the calculation systems. The calculation of these fracture parameters requires experience. Direct methods of estimation of H-factors need choosing usually length parameter entering into calculation. On the other hand the method combining the application of the reciprocal theorem (Ψ-integral and FEM does not require entering any length parameter and is capable to extract the near-tip information directly from the far-field deformation.

  10. Bi-cooperative games in bipolar fuzzy settings

    Science.gov (United States)

    Hazarika, Pankaj; Borkotokey, Surajit; Mesiar, Radko

    2018-01-01

    In this paper, we introduce the notion of a bi-cooperative game with Bipolar Fuzzy Bi-coalitions and discuss the related properties. In many decision-making situations, players show bipolar motives while cooperating among themselves. This is modelled in both crisp and fuzzy environments. Bi-cooperative games with fuzzy bi-coalitions have already been proposed under the product order of bi-coalitions where one had memberships in [0, 1]. In the present paper, we adopt the alternative ordering: ordering by monotonicity and account for players' memberships in ?, a break from the previous formulation. This simplifies the model to a great extent. The corresponding Shapley axioms are proposed. An explicit form of the Shapley value to a particular class of such games is also obtained. Our study is supplemented with an illustrative example.

  11. Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Davies, Jamie; Kurani, Kenneth S.

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) are currently for sale in most parts of the United States, Canada, Europe and Japan. These vehicles are promoted as providing distinct consumer and public benefits at the expense of grid electricity. However, the specific benefits or impacts of PHEVs ultimately relies on consumers purchase and vehicle use patterns. While considerable effort has been dedicated to understanding PHEV impacts on a per mile basis few studies have assessed the impacts of PHEV given actual consumer use patterns or operating conditions. Instead, simplifying assumptions have been made about the types of cars individual consumers will choose to purchase and how they will drive and charge them. Here, we highlight some of these consumer purchase and use assumptions, studies which have employed these assumptions and compare these assumptions to actual consumer data recorded in a PHEV demonstration project. Using simulation and hypothetical scenarios we discuss the implication for PHEV impact analyses and policy if assumptions about key PHEV consumer use variables such as vehicle choice, home charging frequency, distribution of driving distances, and access to workplace charging were to change. -- Highlights: •The specific benefits or impacts of PHEVs ultimately relies on consumers purchase and vehicle use patterns. •Simplifying, untested, assumptions have been made by prior studies about PHEV consumer driving, charging and vehicle purchase behaviors. •Some simplifying assumptions do not match observed data from a PHEV demonstration project. •Changing the assumptions about PHEV consumer driving, charging, and vehicle purchase behaviors affects estimates of PHEV impacts. •Premature simplification may have lasting consequences for standard setting and performance based incentive programs which rely on these estimates

  12. Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system

    International Nuclear Information System (INIS)

    Goeransson, Lisa; Karlsson, Sten; Johnsson, Filip

    2010-01-01

    This study investigates consequences of integrating plug-in hybrid electric vehicles (PHEVs) in a wind-thermal power system supplied by one quarter of wind power and three quarters of thermal generation. Four different PHEV integration strategies, with different impacts on the total electric load profile, have been investigated. The study shows that PHEVs can reduce the CO 2 -emissions from the power system if actively integrated, whereas a passive approach to PHEV integration (i.e. letting people charge the car at will) is likely to result in an increase in emissions compared to a power system without PHEV load. The reduction in emissions under active PHEV integration strategies is due to a reduction in emissions related to thermal plant start-ups and part load operation. Emissions of the power sector are reduced with up to 4.7% compared to a system without PHEVs, according to the simulations. Allocating this emission reduction to the PHEV electricity consumption only, and assuming that the vehicles in electric mode is about 3 times as energy efficient as standard gasoline operation, total emissions from PHEVs would be less than half the emissions of a standard car, when running in electric mode.

  13. Modification to an Auger Electron Spectroscopy system for measuring segregation in a bi-crystal

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-03-01

    Full Text Available . Parameters like temperature measurement, crystal history and spectrometer variables are all adding to the complexity of directly comparing the segregation behaviour from one crystal to another. This investigation makes use of a Cu bi-crystal, modifications...

  14. Study of the circular photo-galvanic effect in electrically gated (Bi,Sb)2Te3 thin films

    Science.gov (United States)

    Pan, Yu; Pillsbury, Timothy; Richardella, Anthony; Flanagan, Thomas; Samarth, Nitin

    Illumination with circularly polarized light is known to produce a helicity dependent photocurrent in topological insulators such as Bi2Se3 [Nature Nanotech. 7, 96 (2012)]. Symmetry considerations suggest that this ``circular photo-galvanic effect'' (CPGE) arises purely from the surface. However, whether or not the CPGE is directly related to optical excitations from the helical surface states is still under debate. To clarify the origin of the CPGE, we first compare the helicity dependent photocurrent in intrinsic (Bi,Sb)2Te3 to Cr doped (Bi,Sb)2Te3 thin films in which the Dirac surface states are perturbed by magnetic coupling. Secondly, we discuss the tunable CPGE in electrically gated (Bi,Sb)2Te3 thin films excited by optical excitations at different wavelengths. The dependence on the chemical potential and the photon energy of the excitation unveils the origin of the CPGE. Funded by ONR.

  15. Magnetic properties of nearly stoichiometric CeAuBi2 heavy fermion compound

    International Nuclear Information System (INIS)

    Adriano, C.; Jesus, C. B. R.; Pagliuso, P. G.; Rosa, P. F. S.; Grant, T.; Fisk, Z.; Garcia, D. J.

    2015-01-01

    Motivated by the interesting magnetic anisotropy found in the heavy fermion family CeTX 2 (T = transition metal and X = pnictogen), here, we study the novel parent compound CeAu 1−x Bi 2−y by combining magnetization, pressure dependent electrical resistivity, and heat-capacity measurements. The magnetic properties of our nearly stoichiometric single crystal sample of CeAu 1−x Bi 2−y (x = 0.92 and y = 1.6) revealed an antiferromagnetic ordering at T N  = 12 K with an easy axis along the c-direction. The field dependent magnetization data at low temperatures reveal the existence of a spin-flop transition when the field is applied along the c-axis (H c  ∼ 7.5 T and T = 5 K). The heat capacity and pressure dependent resistivity data suggest that CeAu 0.92 Bi 1.6 exhibits a weak heavy fermion behavior with strongly localized Ce 3+ 4f electrons. Furthermore, the systematic analysis using a mean field model including anisotropic nearest-neighbors interactions and the tetragonal crystalline electric field (CEF) Hamiltonian allows us to extract a CEF scheme and two different values for the anisotropic J RKKY exchange parameters between the Ce 3+ ions in this compound. Thus, we discuss a scenario, considering both the anisotropic magnetic interactions and the tetragonal CEF effects, in the CeAu 1−x Bi 2−y compounds, and we compare our results with the isostructural compound CeCuBi 2

  16. The future of antibody therapeutics: ADCs bi-specifics and RIT

    International Nuclear Information System (INIS)

    Reichert, J.

    2015-01-01

    Full text of publication follows. Antibodies are widely accepted as remarkably versatile therapeutic agents. As evidence of this, the ∼ 30 antibody products marketed worldwide had total global sales of more than 50 billion dollars in 2012, and the commercial clinical pipeline currently comprises over 350 antibody-based product candidates. In a testament to scientific ingenuity, the investigational molecules (clinical and preclinical) are notably diverse in their composition of matter and include antibodies conjugated to a variety of agents (drugs, radioisotopes), bi-specific antibodies, and fragments or domains of antibodies. The concepts that form the basis of these agents were established decades ago, but advances in technology are now allowing new opportunities for their development. In this presentation, future directions in antibody therapeutics development will be discussed, with a focus on antibody-drug conjugates, bi-specific antibodies and radioimmunotherapy. (author)

  17. Quantized accumulation layer at the Bi/InAs interface

    International Nuclear Information System (INIS)

    Djukic, U.; Gafoor, M. A.; Richter, C.; Heckmann, O.; Hricovini, K.; Andok, R.

    2015-01-01

    Here we present studies by the Angle Resolved Photoemission Spectroscopy (ARPES) on the Bi/InAs(111) interface. ARPES is a major technique to characterize the electronic structure of solids. It allows direct measurement of the electronic structure of a surface 2DEG. The small effective electron mass in bismuth makes it an interesting candidate for electron confinement. This may offer a potential for density-controlled band engineering schemes in electronic devices. (authors)

  18. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate.

    Science.gov (United States)

    Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

    2016-07-15

    An amperometric sensor based on a bi-enzyme modified electrode was fabricated to detect methyl salicylate, a volatile organic compound released by pathogen-infected plants via systemic response. The detection is based on cascadic conversion reactions that result in an amperometric electrochemical signal. The bi-enzyme electrode is made of alcohol oxidase and horseradish peroxidase enzymes immobilized on to a carbon nanotube matrix through a molecular tethering method. Methyl salicylate undergoes hydrolysis to form methanol, which is consumed by alcohol oxidase to form formaldehyde while simultaneously reducing oxygen to hydrogen peroxide. The hydrogen peroxide will be further reduced to water by horseradish peroxidase, which results in an amperometric signal via direct electron transfer. The bi-enzyme biosensor was evaluated by cyclic voltammetry and constant potential amperometry using hydrolyzed methyl salicylate as the analyte. The sensitivity of the bi-enzyme biosensor as determined by cyclic voltammetry and constant potential amperometry were 112.37 and 282.82μAcm(-2)mM(-1) respectively, and the corresponding limits of detection were 22.95 and 0.98μM respectively. Constant potential amperometry was also used to evaluate durability, repeatability and interference from other compounds. Wintergreen oil was used for real sample study to establish the application of the bi-enzyme sensor for selective determination of plant pathogen infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors

    Science.gov (United States)

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-02-01

    In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  20. Enhanced photosensitization process induced by the p–n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B

    International Nuclear Information System (INIS)

    Lu, Haijing; Xu, Lingling; Wei, Bo; Zhang, Mingyi; Gao, Hong; Sun, Wenjun

    2014-01-01

    Herein, we report the enhanced photosensitization process in the nanosheet Bi 2 O 2 CO 3 /BiOCl heterojunctions photocatalyst. The combined XRD, FT-IR and Raman results have confirmed the co-existence of Bi 2 O 2 CO 3 and BiOCl phases in the composites. Although both Bi 2 O 2 CO 3 and BiOCl are wide bandgap semiconductors, the composites showed an unexpectedly high catalytic activity in decomposing RhB (rhodamine B) aqueous solution under visible light irradiation. The mechanism of enhanced photocatalytic activity was ascribed to the inner electric field formed in the Bi 2 O 2 CO 3 /BiOCl p–n junction.