WorldWideScience

Sample records for phenomenology conductance-based models

  1. Conducting phenomenological research: Rationalizing the methods and rigour of the phenomenology of practice.

    Science.gov (United States)

    Errasti-Ibarrondo, Begoña; Jordán, José Antonio; Díez-Del-Corral, Mercedes P; Arantzamendi, María

    2018-03-15

    To offer a complete outlook in a readable easy way of van Manen's hermeneutic-phenomenological method to nurses interested in undertaking phenomenological research. Phenomenology, as research methodology, involves a certain degree of complexity. It is difficult to identify a single article or author which sets out the didactic guidelines that specifically guide research of this kind. In this context, the theoretical-practical view of Max van Manen's Phenomenology of Practice may be seen as a rigorous guide and directive on which researchers may find support to undertake phenomenological research. Discussion paper. This discussion paper is based on our own experiences and supported by literature and theory. Our central sources of data have been the books and writings of Max van Manen and his website "Phenomenologyonline". The principal methods of the hermeneutic-phenomenological method are addressed and explained providing an enriching overview of phenomenology of practice. A proposal is made for the way the suggestions made by van Manen might be organized for use with the methods involved in Phenomenology of Practice: Social sciences, philosophical and philological methods. Thereby, nurse researchers interested in conducting phenomenological research may find a global outlook and support to understand and conduct this type of inquiry which draws on the art. The approach in this article may help nurse scholars and researchers reach an overall, encompassing perspective of the main methods and activities involved in doing phenomenological research. Nurses interested in doing phenomenology of practice are expected to commit with reflection and writing. © 2018 John Wiley & Sons Ltd.

  2. Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-09-01

    The second law of thermodynamics governs the direction of heat transport, which provides the foundational definition of thermodynamic Clausius entropy. The definitions of entropy are further generalized for the phenomenological heat transport models in the frameworks of classical irreversible thermodynamics and extended irreversible thermodynamics (EIT). In this work, entropic functions from mathematics are combined with phenomenological heat conduction models and connected to several information-geometrical conceptions. The long-time behaviors of these mathematical entropies exhibit a wide diversity and physical pictures in phenomenological heat conductions, including the tendency to thermal equilibrium, and exponential decay of nonequilibrium and asymptotics, which build a bridge between the macroscopic and microscopic modelings. In contrast with the EIT entropies, the mathematical entropies expressed in terms of the internal energy function can avoid singularity paired with nonpositive local absolute temperature caused by non-Fourier heat conduction models.

  3. Phenomenology beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2005-03-01

    An elementary review of models and phenomenology for physics beyond the Standard Model (excluding supersymmetry). The emphasis is on LHC physics. Based upon a talk given at the ''Physics at LHC'' conference, Vienna, 13-17 July 2004.

  4. Phenomenologies of Higgs messenger models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Sibo; Yu Yao; Wu Xinggang [Department of Physics, Chongqing University, Chongqing 401331 (China)

    2011-08-11

    In this Letter, we investigate the phenomenologies of models where the Higgs sector plays the role of messengers in gauge mediation. The minimal Higgs sector and its extension are considered respectively. We find that there exist viable models when an appropriate parity is imposed. Phenomenological features in these kind of models include three sum rules for scalar masses, light gluino as well as one-loop {mu} and two-loop B{mu} terms.

  5. Model-independent approach for dark matter phenomenology

    Indian Academy of Sciences (India)

    We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detection experiments of dark matter. Once the dark matter is discovered in the ...

  6. Model-independent approach for dark matter phenomenology ...

    Indian Academy of Sciences (India)

    Abstract. We have studied the phenomenology of dark matter at the ILC and cosmic positron experiments based on model-independent approach. We have found a strong correlation between dark matter signatures at the ILC and those in the indirect detec- tion experiments of dark matter. Once the dark matter is discovered ...

  7. Phenomenological modeling of critical heat flux: The GRAMP code and its validation

    International Nuclear Information System (INIS)

    Ahmad, M.; Chandraker, D.K.; Hewitt, G.F.; Vijayan, P.K.; Walker, S.P.

    2013-01-01

    Highlights: ► Assessment of CHF limits is vital for LWR optimization and safety analysis. ► Phenomenological modeling is a valuable adjunct to pure empiricism. ► It is based on empirical representations of the (several, competing) phenomena. ► Phenomenological modeling codes making ‘aggregate’ predictions need careful assessment against experiments. ► The physical and mathematical basis of a phenomenological modeling code GRAMP is presented. ► The GRAMP code is assessed against measurements from BARC (India) and Harwell (UK), and the Look Up Tables. - Abstract: Reliable knowledge of the critical heat flux is vital for the design of light water reactors, for both safety and optimization. The use of wholly empirical correlations, or equivalently “Look Up Tables”, can be very effective, but is generally less so in more complex cases, and in particular cases where the heat flux is axially non-uniform. Phenomenological models are in principle more able to take into account of a wider range of conditions, with a less comprehensive coverage of experimental measurements. These models themselves are in part based upon empirical correlations, albeit of the more fundamental individual phenomena occurring, rather than the aggregate behaviour, and as such they too require experimental validation. In this paper we present the basis of a general-purpose phenomenological code, GRAMP, and then use two independent ‘direct’ sets of measurement, from BARC in India and from Harwell in the United Kingdom, and the large dataset embodied in the Look Up Tables, to perform a validation exercise on it. Very good agreement between predictions and experimental measurements is observed, adding to the confidence with which the phenomenological model can be used. Remaining important uncertainties in the phenomenological modeling of CHF, namely the importance of the initial entrained fraction on entry to annular flow, and the influence of the heat flux on entrainment rate

  8. Phenomenological model of nanocluster in polymer matrix

    International Nuclear Information System (INIS)

    Oksengendler, B.L.; Turaeva, N.N.; Azimov, J.; Rashidova, S.Sh.

    2010-01-01

    The phenomenological model of matrix nanoclusters is presented based on the Wood-Saxon potential used in nuclear physics. In frame of this model the following problems have been considered: calculation of width of diffusive layer between nanocluster and matrix, definition of Tamm surface electronic state taking into account the diffusive layer width, receiving the expression for specific magnetic moment of nanoclusters taking into account the interface width. (authors)

  9. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.

    Science.gov (United States)

    Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang

    2016-10-31

    Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.

  10. Phenomenological model for coupled multi-axial piezoelectricity

    Science.gov (United States)

    Wei, Yuchen; Pellegrino, Sergio

    2018-03-01

    A quantitative calibration of an existing phenomenological model for polycrystalline ferroelectric ceramics is presented. The model relies on remnant strain and polarization as independent variables. Innovative experimental and numerical model identification procedures are developed for the characterization of the coupled electro-mechanical, multi-axial nonlinear constitutive law. Experiments were conducted on thin PZT-5A4E plates subjected to cross-thickness electric field. Unimorph structures with different thickness ratios between PZT-5A4E plate and substrate were tested, to subject the piezo plates to coupled electro-mechanical fields. Material state histories in electric field-strain-polarization space and stress-strain-polarization space were recorded. An optimization procedure is employed for the determination of the model parameters, and the calibrated constitutive law predicts both the uncoupled and coupled experimental observations accurately.

  11. Phenomenology of the innovative question when based on wonderment

    DEFF Research Database (Denmark)

    Herholdt-Lomholdt, Sine Maria; Hansen, Finn Thorbjørn

    This paper questions, how we, from a phenomenological point of view, can describe and understand the phenomenology of innovative questions and processes of questioning when based in a wonderdriven approach to innovation and entrepreneurship. Approach: In our research we take on a phenomenological...

  12. Theoretical Frameworks, Methods, and Procedures for Conducting Phenomenological Studies in Educational Settings

    Directory of Open Access Journals (Sweden)

    Pelin Yüksel

    2015-01-01

    Full Text Available The main purposes of phenomenological research are to seek reality from individuals’ narratives of their experiences and feelings, and to produce in-depth descriptions of the phenomenon. Phenomenological research studies in educational settings generally embody lived experience, perception, and feelings of participants about a phenomenon. This study aims to provide a general framework for researchers who are interested in phenomenological studies especially in educational setting. Additionally, the study provides a guide for researchers on how to conduct a phenomenological research and how to collect and analyze phenomenal data. The first part of the paper explains the underpinnings of the research methodology consisting of methodological framework and key phenomenological concepts. The second part provides guidance for a phenomenological research in education settings, focusing particularly on phenomenological data collection procedure and phenomenological data analysis methods.Keywords: Phenomenology, phenomenological inquiry, phenomenological data analysis Eğitim Ortamlarında Fenomenal Çalışmaları Yürütmek İçin Teorik Çerçeveler, Yöntemler ve ProsedürlerÖzFenomenolojik araştırmaların temel amacı, bireyin deneyimlerinden ve duygularından yola çıkarak belli bir fenomenan üzerinde yaptığı anlatılarında gerçeği aramak ve bu fenomenana yönelik derinlemesine açıklamalar üretmektir. Eğitim ortamlarında fenomenolojik araştırmalar genellikle araştırmaya katılanların belli bir fenomenan hakkında yaşantıları, deneyimleri, algıları ve duyguları somutlaştırmak için kullanılır. Bu çalışma, özellikle eğitim ortamlarında fenomenolojik çalışmalarla ilgilenen araştırmacılar için genel bir çerçeve sunmayı amaçlamaktadır. Ayrıca, çalışmada fenomenolojik araştırmalar için veri toplamak ve bu fenomenal verileri analiz yapmak için araştırmacılara yön gösterici bir k

  13. Superstring inspired models and phenomenology

    International Nuclear Information System (INIS)

    Ross, G.G.

    1987-01-01

    An investigation of the effective low-energy theory resulting from the superstring is given. The possible light gauge and chiral super-multiplet structure is considered and a specific model leading to a SU(3)xSU(2)xU(1) gauge group is presented. Phenomenological implications for such models are briefly discussed

  14. Evaluation of the Predictive Capabilities of a Phenomenological Combustion Model for Natural Gas SI Engine

    Directory of Open Access Journals (Sweden)

    Toman Rastislav

    2017-12-01

    Full Text Available The current study evaluates the predictive capabilities of a new phenomenological combustion model, available as a part of the GT-Suite software package. It is comprised of two main sub-models: 0D model of in-cylinder flow and turbulence, and turbulent SI combustion model. The 0D in-cylinder flow model (EngCylFlow uses a combined K-k-ε kinetic energy cascade approach to predict the evolution of the in-cylinder charge motion and turbulence, where K and k are the mean and turbulent kinetic energies, and ε is the turbulent dissipation rate. The subsequent turbulent combustion model (EngCylCombSITurb gives the in-cylinder burn rate; based on the calculation of flame speeds and flame kernel development. This phenomenological approach reduces significantly the overall computational effort compared to the 3D-CFD, thus allowing the computation of full engine operating map and the vehicle driving cycles. Model was calibrated using a full map measurement from a turbocharged natural gas SI engine, with swirl intake ports. Sensitivity studies on different calibration methods, and laminar flame speed sub-models were conducted. Validation process for both the calibration and sensitivity studies was concerning the in-cylinder pressure traces and burn rates for several engine operation points achieving good overall results.

  15. Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach

    DEFF Research Database (Denmark)

    Gernaey, Krist; Flores Alsina, Xavier; Rosen, Christian

    2011-01-01

    : the larger the simulated sewer network, the smoother the simulated diurnal flow rate and concentration variations. In the discussion, it is pointed out how the proposed phenomenological models can be expanded to other applications, for example to represent heavy metal or organic micro-pollutant loads......Activated Sludge Models are widely used for simulation-based evaluation of wastewater treatment plant (WWTP) performance. However, due to the high workload and cost of a measuring campaign on a full-scale WWTP, many simulation studies suffer from lack of sufficiently long influent flow rate...... and concentration time series representing realistic wastewater influent dynamics. In this paper, a simple phenomenological modelling approach is proposed as an alternative to generate dynamic influent pollutant disturbance scenarios. The presented set of models is constructed following the principles of parsimony...

  16. Phenomenological modeling of argon Z-pinch implosions

    International Nuclear Information System (INIS)

    Whitney, K.G.; Thornhill, J.W.; Deeney, C.; LePell, P.D.; Coulter, M.C.

    1992-01-01

    The authors investigate some of the effects of plasma turbulence on the K-shell emission dynamics of argon gas puff Z-pinch implosions. The increases that turbulence produces in the plasma viscosity, heat conductivity, and electrical resistivity are modeled phenomenologically using multipliers for these quantities in the MHD calculations. The choice of multipliers was made by benchmarking a 1-D MHD simulation of a Physics International Inc. argon gas puff experiment against the inferred densities and temperatures achieved in the experiment. These multipliers were then used to study the parametric dependence of the K-shell emission on the energy input to the argon plasma for a fixed mass loading. Comparisons between turbulent and non-turbulent argon implosions are made

  17. Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions

    Directory of Open Access Journals (Sweden)

    Shu-Nan Li

    2017-12-01

    Full Text Available Most existing phenomenological heat conduction models are expressed by temperature and heat flux distributions, whose definitions might be debatable in heat conductions with strong non-equilibrium. The constitutive relations of Fourier and hyperbolic heat conductions are here rewritten by the entropy and entropy flux distributions in the frameworks of classical irreversible thermodynamics (CIT and extended irreversible thermodynamics (EIT. The entropic constitutive relations are then generalized by Boltzmann–Gibbs–Shannon (BGS statistical mechanics, which can avoid the debatable definitions of thermodynamic quantities relying on local equilibrium. It shows a possibility of modeling heat conduction through entropic constitutive relations. The applicability of the generalizations by BGS statistical mechanics is also discussed based on the relaxation time approximation, and it is found that the generalizations require a sufficiently small entropy production rate.

  18. How to develop a phenomenological model of disability

    DEFF Research Database (Denmark)

    Martiny, Kristian Møller Moltke

    2015-01-01

    During recent decades various researchers from health and social sciences have been debating what it means for a person to be disabled. A rather overlooked approach has developed alongside this debate, primarily inspired by the philosophical tradition called phenomenology. This paper develops...... a phenomenological model of disability by arguing for a different methodological and conceptual framework from that used by the existing phenomenological approach. The existing approach is developed from the phenomenology of illness, but the paper illustrates how the case of congenital disabilities, looking...... at the congenital disorder called cerebral palsy (CP), presents a fundamental problem for the approach. In order to understand such congenital cases as CP, the experience of disability is described as being gradually different from, rather than a disruption of, the experience of being abled, and it is argued...

  19. Interpretive and Critical Phenomenological Crime Studies: A Model Design

    Science.gov (United States)

    Miner-Romanoff, Karen

    2012-01-01

    The critical and interpretive phenomenological approach is underutilized in the study of crime. This commentary describes this approach, guided by the question, "Why are interpretive phenomenological methods appropriate for qualitative research in criminology?" Therefore, the purpose of this paper is to describe a model of the interpretive…

  20. Phenomenological modeling of turbulence in Z-pinch implosions

    International Nuclear Information System (INIS)

    Thornhill, J.W.; Whitney, K.G.; Deeney, C.; LePell, P.D.

    1994-01-01

    A phenomenological investigation into the effects of magnetohydrodynamic (MHD) turbulence on the initial stagnation dynamics of aluminum wire array and argon gas puff Z-pinch implosions is performed. The increases that turbulence produces in the plasma viscosity, heat conductivity, and electrical resistivity are modeled by using multipliers for these quantities in one-dimensional (1-D) MHD calculations. The major effect of these increases is to soften the 1-D implosions by decreasing the densities that are achieved on axis at stagnation. As a consequence, a set of multipliers can be found that reasonably duplicates the average electron temperatures, ion densities, and mass of the K-shell emission region that were measured at stagnation for a variety of Physics International aluminum wire array and argon gas puff experiments. It is determined that the dependence of these measured quantities on the multipliers is weak once a level of enhancement is reached, where agreement between calculations and experiments is attained. The scaling of K-shell yield with load mass for a fixed implosion velocity is then reexamined, and the minimum load mass needed to efficiently produce K-shell emission by thermalization of kinetic energy is calculated for aluminum and argon using this phenomenological soft implosion modeling. The results show an upward shift in the minimum mass by a factor of 6 when compared to the original nonturbulent hard implosion calculations

  1. Phenomenological model of an electron flow with a virtual cathode

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Khramov, A.E.; Anfinogenov, V.G.

    1999-01-01

    A phenomenological model of electron flow with a virtual cathode in diode space, which is a modification of cellular automation, is suggested. The type of models, called cellular conveyer, permits making allowance for distribution and delay in a beam with a virtual cathode. A good agreement between results of numerical study of electron flow dynamics and results obtained using the phenomenological model described has been achieved [ru

  2. The theory and phenomenology of coloured quark models

    CERN Document Server

    Close, F E

    1975-01-01

    A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3)- Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for psi phenomenology-the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (40 refs).

  3. The theory and phenomenology of coloured quark models

    International Nuclear Information System (INIS)

    Close, F.E.

    1975-01-01

    A general introduction to coloured quark models is given and their phenomenology is described with particular reference to the new particles. It is shown that there are essentially three types of colour models with colour excitation when the colour group is SU(3) - Han-Nambu, Greenberg and a model which has the same charges as that of Tati and which can be thought of as the Gell-Mann colour scheme with excitation of the colour degrees of freedom. Particular attention is paid to the four problems of colour models for PSI phenomenology - the radiative decays, the G parity conservation, the lack of deep inelastic threshold phenomena and the apparent discovery of dileptons at SPEAR. (author)

  4. Phenomenology of a left-right-symmetric model inspired by the trinification model

    Energy Technology Data Exchange (ETDEWEB)

    Hetzel, Jamil

    2015-02-04

    The trinification model is an interesting extension of the Standard Model based on the gauge group SU(3){sub C} x SU(3){sub L} x SU(3){sub R}. It naturally explains parity violation as a result of spontaneous symmetry breaking, and the observed fermion masses and mixings can be reproduced using only a few parameters. We study the low-energy phenomenology of the trinification model in order to compare its predictions to experiment. To this end, we construct a low-energy effective field theory, thereby reducing the number of particles and free parameters that need to be studied. We constrain the model parameters using limits from new-particle searches as well as precision measurements. The scalar sector of the model allows for various phenomenological scenarios, such as the presence of a light fermiophobic scalar in addition to a Standard-Model-like Higgs, or a degenerate (twin) Higgs state at 126 GeV. We show how a measurement of the Higgs couplings can be used to distinguish such scenarios from the Standard Model. We find that the trinification model predicts that several new scalar particles have masses in the O(100 GeV) range. Moreover, large regions of the parameter space lead to measurable deviations from Standard-Model predictions of the Higgs couplings. Hence the trinification model awaits crucial tests at the Large Hadron Collider in the coming years.

  5. Phenomenology as research method or substantive metaphysics? An overview of phenomenology's uses in nursing.

    Science.gov (United States)

    Earle, Vicki

    2010-10-01

    In exploring phenomenological literature, it is evident that the term 'phenomenology' holds rather different meanings depending upon the context. Phenomenology has been described as both a philosophical movement and an approach to human science research. The phenomenology of Husserl, Heidegger, Gadamer, and Merleau-Ponty was philosophical in nature and not intended to provide rules or procedures for conducting research. The Canadian social scientist, van Manen, however, introduced specific guidelines for conducting human science research, which is rooted in hermeneutic phenomenology and this particular method has been employed in professional disciplines such as education, nursing, clinical psychology, and law. The purpose of this paper is to explore the difference between the phenomenological method as described by van Manen and that of other philosophers such as Husserl, Heidegger, Gadamer, and Merleau-Ponty. In so doing, the author aims to address the blurred boundaries of phenomenology as a research method and as a philosophical movement and highlight the influence of these blurred boundaries on nursing knowledge development.

  6. A phenomenological model for pre-stressed piezoelectric ceramic stack actuators

    International Nuclear Information System (INIS)

    Wang, D H; Zhu, W

    2011-01-01

    In order to characterize the hysteretic characteristics between the output displacement and applied voltage of pre-stressed piezoelectric ceramic stack actuators (PCSAs), this paper considers that a linear force and a hysteretic force will be generated by a linear extension and a hysteretic extension, respectively, due to the applied voltage to a pre-stressed PCSA and the total force will result in the forced vibration of the single-degree-of-freedom (DOF) system composed of the mass of the pre-stressed PCSA and the equivalent spring and damper of the pre-stressed mechanism, which lets the PCSA be pre-stressed to endure enough tension. On this basis, the phenomenological model to characterize the hysteretic behavior of the pre-stressed PCSA is put forward by using the Bouc–Wen hysteresis operator to model the hysteretic extension. The parameter identification method in a least-squares sense is established by identifying the parameters for the linear and hysteretic components separately with the step and periodic responses of the pre-stressed PCSA, respectively. The performance of the proposed phenomenological model with the corresponding parameter identification method is experimentally verified by the established experimental set-up. The research results show that the phenomenological model for the pre-stressed PCSA with the corresponding parameter identification method can accurately portray the hysteretic characteristics of the pre-stressed PCSA. In addition, the phenomenological model for PCSAs can be deduced from the phenomenological model for pre-stressed PCSAs by removing the terms related to the pre-stressed mechanisms

  7. LHC phenomenology of composite 2-Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    De Curtis, Stefania [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Moretti, Stefano; Yagyu, Kei; Yildirim, Emine [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom)

    2017-08-15

    We investigate the phenomenology of Composite 2-Higgs doublet models (C2HDMs) of various Yukawa types based on the global symmetry breaking SO(6) → SO(4) x SO(2). The kinetic part and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under SO(6). The scalar potential is assumed to be the same as that of the Elementary 2-Higgs doublet model (E2HDM) with a softly broken discrete Z{sub 2} symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from standard model (SM) couplings of the discovered Higgs state (h) as well as on the production cross sections and branching ratios (BRs) at the large Hadron collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the hVV (V = W,Z) coupling is assumed in the two scenarios, there appear significant differences between the E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay features of extra Higgs bosons can be used to distinguish between the two scenarios. (orig.)

  8. A comparative study of two phenomenological models of dephasing in series and parallel resistors

    International Nuclear Information System (INIS)

    Bandopadhyay, Swarnali; Chaudhuri, Debasish; Jayannavar, Arun M.

    2010-01-01

    We compare two recent phenomenological models of dephasing using a double barrier and a quantum ring geometry. While the stochastic absorption model generates controlled dephasing leading to Ohm's law for large dephasing strengths, a Gaussian random phase based statistical model shows many inconsistencies.

  9. SCADOP: Phenomenological modeling of dryout in nuclear fuel rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Arnab, E-mail: arnie@barc.gov.in; Chandraker, D.K., E-mail: dineshkc@barc.gov.in; Vijayan, P.K., E-mail: vijayanp@barc.gov.in

    2015-11-15

    Highlights: • Phenomenological model for annular flow dryout is presented. • The model evaluates initial entrained fraction using a new methodology. • The history effect in annular flow is predicted and validated. • Rod bundle dryout is predicted using subchannel methodology. • Model is validated against experimental dryout data in tubes and rod bundles. - Abstract: Analysis and prediction of dryout is of important consequence to safety of nuclear fuel clusters of boiling water type of reactors. Traditionally, experimental correlations are used for dryout predictions. Since these correlations are based on operating parameters and do not aim to model the underlying phenomena, there has been a proliferation of the correlations, each catering to some specific bundle geometry under a specific set of operating conditions. Moreover, such experiments are extremely costly. In general, changes in tested bundle geometry for improvement in thermal-hydraulic performance would require re-experimentation. Understanding and modeling the basic processes leading to dryout in flow boiling thus has great incentive. Such a model has the ability to predict dryout in any rod bundle geometry, unlike the operating parameter based correlation approach. Thus more informed experiments can be carried out. A good model can, reduce the number of experiments required during the iterations in bundle design. In this paper, a phenomenological model as indicated above is presented. The model incorporates a new methodology to estimate the Initial Entrained Fraction (IEF), i.e., entrained fraction at the onset of annular flow. The incorporation of this new methodology is important since IEF is often assumed ad-hoc and sometimes also used as a parameter to tune the model predictions to experimental data. It is highlighted that IEF may be low under certain conditions against the general perception of a high IEF due to influence of churn flow. It is shown that the same phenomenological model is

  10. Phenomenological study of in the minimal model at LHC

    Indian Academy of Sciences (India)

    K M Balasubramaniam

    2017-10-05

    Oct 5, 2017 ... Phenomenological study of Z in the minimal B − L model at LHC ... The phenomenological study of neutral heavy gauge boson (Z. B−L) of the ...... JHEP10(2015)076, arXiv:1506.06767 [hep-ph] ... [15] ATLAS Collaboration: G Aad et al, Phys. Rev. D 90(5) ... [19] C W Chiang, N D Christensen, G J Ding and T.

  11. Introducing Postphenomenological Research: A Brief and Selective Sketch of Phenomenological Research Methods

    Science.gov (United States)

    Aagaard, Jesper

    2017-01-01

    In time, phenomenology has become a viable approach to conducting qualitative studies in education. Popular and well-established methods include descriptive and hermeneutic phenomenology. Based on critiques of the essentialism and receptivity of these two methods, however, this article offers a third variation of empirical phenomenology:…

  12. A phenomenological model for the structure-composition relationship of the high Tc cuprates based on simple chemical principles

    International Nuclear Information System (INIS)

    Alarco, J.A.; Talbot, P.C.

    2012-01-01

    A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d 8 and d 9 ) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.

  13. Phenomenological three center model

    CERN Document Server

    Poenaru, D N; Gherghescu, R A; Nagame, Y; Hamilton, J H; Ramayya, A V

    2001-01-01

    Experimental results on ternary fission of sup 2 sup 5 sup 2 Cf suggest the existence of a short-lived quasi-molecular state. We present a three-center phenomenological model able to explain such a state by producing a new minimum in the deformation energy at a separation distance very close to the touching point. The shape parametrization chosen by us allows to describe the essential geometry of the systems in terms of one independent coordinate, namely, the distance between the heavy fragment centers. The shell correction (also treated phenomenologically) only produces quantitative effects; qualitatively it is not essential for the new minimum. Half-lives of some quasi-molecular states which could be formed in sup 1 sup 0 B accompanied fission of sup 2 sup 3 sup 6 U, sup 2 sup 3 sup 6 Pu, sup 2 sup 4 sup 6 Cm, sup 2 sup 5 sup 2 Cf, sup 2 sup 5 sup 2 sup , sup 2 sup 5 sup 6 Fm, sup 2 sup 5 sup 6 sup , sup 2 sup 6 sup 0 No, and sup 2 sup 6 sup 2 Rf are roughly estimated. (authors)

  14. Phenomenological aspects of heterotic orbifold models at one loop

    International Nuclear Information System (INIS)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.; Nelson, B.

    2003-01-01

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly

  15. Identification techniques for phenomenological models of hysteresis based on the conjugate gradient method

    International Nuclear Information System (INIS)

    Andrei, Petru; Oniciuc, Liviu; Stancu, Alexandru; Stoleriu, Laurentiu

    2007-01-01

    An identification technique for the parameters of phenomenological models of hysteresis is presented. The basic idea of our technique is to set up a system of equations for the parameters of the model as a function of known quantities on the major or minor hysteresis loops (e.g. coercive force, susceptibilities at various points, remanence), or other magnetization curves. This system of equations can be either over or underspecified and is solved by using the conjugate gradient method. Numerical results related to the identification of parameters in the Energetic, Jiles-Atherton, and Preisach models are presented

  16. A phenomenological model of deep-inelastic collisions between complex nuclei

    International Nuclear Information System (INIS)

    Siwek-Wilczynska, K.; Wilczynski, J.

    1976-01-01

    A simple model of heavy-ion collisions is proposed. Classical equations of motion with inclusion of a phenomenological two-body friction force are integrated numerically along trajectories. The nucleus-nucleus interaction potential which is used in the calculations includes deformation degrees of freedom in the exit channel. Both entrance and exit-channel potentials are based on the boundary conditions following the liquid-drop model. The existing data on fusion cross sections, and also the energy-angle distributions of deep-inelastic reactions are very well reproduced by the model. (author)

  17. Theoretical Frameworks, Methods, and Procedures for Conducting Phenomenological Studies in Educational Settings

    OpenAIRE

    Pelin Yüksel; Soner Yıldırım

    2015-01-01

    The main purposes of phenomenological research are to seek reality from individuals’ narratives of their experiences and feelings, and to produce in-depth descriptions of the phenomenon. Phenomenological research studies in educational settings generally embody lived experience, perception, and feelings of participants about a phenomenon. This study aims to provide a general framework for researchers who are interested in phenomenological studies especially in educational setting. Additionall...

  18. Phenomenological realism, superconductivity and quantum mechanics

    International Nuclear Information System (INIS)

    Shomar, T.L.E.

    1998-01-01

    was accepted as the fundamental theory of superconductivity, and how later failed to account for new kinds of superconductors. I contrast that with the building of the widely accepted phenomenological model of superconductivity. The other case study is a fresh look at the Bohr-Einstein debate. I think that the main difference between Bohr and Einstein was their position from how theoretical work ought to be conducted in physics. Einstein always sought the mathematical clarity and simplicity, he adopted a top-down approach toward theoretical work, while Bohr insisted on a bottom-up approach. (author)

  19. Phenomenological Hints from a Class of String Motivated Model Constructions

    Directory of Open Access Journals (Sweden)

    Hans Peter Nilles

    2015-01-01

    Full Text Available We use string theory constructions towards the generalisation of the supersymmetric standard model of strong and electroweak interactions. Properties of the models depend crucially on the location of fields in extradimensional compact space. This allows us to extract some generic lessons for the phenomenological properties of the low energy effective action. Within this scheme we present a compelling model based on local grand unification and mirage mediation of supersymmetry breakdown. We analyse the properties of the specific model towards its possible tests at the LHC and the complementarity to direct dark matter searches.

  20. Quark-flavour phenomenology of models with extended gauge symmetries

    International Nuclear Information System (INIS)

    Carlucci, Maria Valentina

    2013-01-01

    Gauge invariance is one of the fundamental principles of the Standard Model of particles and interactions, and it is reasonable to believe that it also regulates the physics beyond it. In this thesis we have studied the theory and phenomenology of two New Physics models based on gauge symmetries that are extensions of the Standard Model group. Both of them are particularly interesting because they provide some answers to the question of the origin of flavour, which is still unexplained. Moreover, the flavour sector represents a promising field for the research of indirect signatures of New Physics, since after the first run of LHC we do not have any direct hint of it yet. The first model assumes that flavour is a gauge symmetry of nature, SU(3) 3 f , spontaneously broken by the vacuum expectation values of new scalar fields; the second model is based on the gauge group SU(3) c x SU(3) L x U(1) X , the simplest non-abelian extension of the Standard Model group. We have traced the complete theoretical building of the models, from the gauge group, passing through the nonanomalous fermion contents and the appropriate symmetry breakings, up to the spectra and the Feynman rules, with a particular attention to the treatment of the flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-violating phases. In fact, these models present an interesting flavour phenomenology, and for both of them we have analytically calculated the contributions to the ΔF=2 and ΔF=1 down-type transitions, arising from new tree-level and box diagrams. Subsequently, we have performed a comprehensive numerical analysis of the phenomenology of the two models. In both cases we have found very effective the strategy of first to identify the quantities able to provide the strongest constraints to the parameter space, then to systematically scan the allowed regions of the latter in order to obtain indications about the key flavour observables, namely the mixing parameters of

  1. Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.

    Science.gov (United States)

    Transtrum, Mark K; Qiu, Peng

    2016-05-01

    The inherent complexity of biological systems gives rise to complicated mechanistic models with a large number of parameters. On the other hand, the collective behavior of these systems can often be characterized by a relatively small number of phenomenological parameters. We use the Manifold Boundary Approximation Method (MBAM) as a tool for deriving simple phenomenological models from complicated mechanistic models. The resulting models are not black boxes, but remain expressed in terms of the microscopic parameters. In this way, we explicitly connect the macroscopic and microscopic descriptions, characterize the equivalence class of distinct systems exhibiting the same range of collective behavior, and identify the combinations of components that function as tunable control knobs for the behavior. We demonstrate the procedure for adaptation behavior exhibited by the EGFR pathway. From a 48 parameter mechanistic model, the system can be effectively described by a single adaptation parameter τ characterizing the ratio of time scales for the initial response and recovery time of the system which can in turn be expressed as a combination of microscopic reaction rates, Michaelis-Menten constants, and biochemical concentrations. The situation is not unlike modeling in physics in which microscopically complex processes can often be renormalized into simple phenomenological models with only a few effective parameters. The proposed method additionally provides a mechanistic explanation for non-universal features of the behavior.

  2. Approximate deconvolution models of turbulence analysis, phenomenology and numerical analysis

    CERN Document Server

    Layton, William J

    2012-01-01

    This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.

  3. Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator

    International Nuclear Information System (INIS)

    Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.

    1984-01-01

    Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator

  4. A variable hard sphere-based phenomenological inelastic collision model for rarefied gas flow simulations by the direct simulation Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Prasanth, P S; Kakkassery, Jose K; Vijayakumar, R, E-mail: y3df07@nitc.ac.in, E-mail: josekkakkassery@nitc.ac.in, E-mail: vijay@nitc.ac.in [Department of Mechanical Engineering, National Institute of Technology Calicut, Kozhikode - 673 601, Kerala (India)

    2012-04-01

    A modified phenomenological model is constructed for the simulation of rarefied flows of polyatomic non-polar gas molecules by the direct simulation Monte Carlo (DSMC) method. This variable hard sphere-based model employs a constant rotational collision number, but all its collisions are inelastic in nature and at the same time the correct macroscopic relaxation rate is maintained. In equilibrium conditions, there is equi-partition of energy between the rotational and translational modes and it satisfies the principle of reciprocity or detailed balancing. The present model is applicable for moderate temperatures at which the molecules are in their vibrational ground state. For verification, the model is applied to the DSMC simulations of the translational and rotational energy distributions in nitrogen gas at equilibrium and the results are compared with their corresponding Maxwellian distributions. Next, the Couette flow, the temperature jump and the Rayleigh flow are simulated; the viscosity and thermal conductivity coefficients of nitrogen are numerically estimated and compared with experimentally measured values. The model is further applied to the simulation of the rotational relaxation of nitrogen through low- and high-Mach-number normal shock waves in a novel way. In all cases, the results are found to be in good agreement with theoretically expected and experimentally observed values. It is concluded that the inelastic collision of polyatomic molecules can be predicted well by employing the constructed variable hard sphere (VHS)-based collision model.

  5. Multiscale modeling of complex materials phenomenological, theoretical and computational aspects

    CERN Document Server

    Trovalusci, Patrizia

    2014-01-01

    The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.

  6. A phenomenological creep model for nickel-base single crystal superalloys at intermediate temperatures

    Science.gov (United States)

    Gao, Siwen; Wollgramm, Philip; Eggeler, Gunther; Ma, Anxin; Schreuer, Jürgen; Hartmaier, Alexander

    2018-07-01

    For the purpose of good reproduction and prediction of creep deformation of nickel-base single crystal superalloys at intermediate temperatures, a phenomenological creep model is developed, which accounts for the typical γ/γ‧ microstructure and the individual thermally activated elementary deformation processes in different phases. The internal stresses from γ/γ‧ lattice mismatch and deformation heterogeneity are introduced through an efficient method. The strain hardening, the Orowan stress, the softening effect due to dislocation climb along γ/γ‧ interfaces and the formation of dislocation ribbons, and the Kear–Wilsdorf-lock effect as key factors in the main flow rules are formulated properly. By taking the cube slip in \\{100\\} slip systems and \\{111\\} twinning mechanisms into account, the creep behavior for [110] and [111] loading directions are well captured. Without specific interaction and evolution of dislocations, the simulations of this model achieve a good agreement with experimental creep results and reproduce temperature, stress and crystallographic orientation dependences. It can also be used as the constitutive relation at material points in finite element calculations with complex boundary conditions in various components of superalloys to predict creep behavior and local stress distributions.

  7. A phenomenological model for nuclear multifragmentation

    International Nuclear Information System (INIS)

    Souza, S.R.; Leray, S.; Paula, L. de; Nemeth, J.; Ngo, C.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette; Ngo, H.

    1992-01-01

    A phenomenological model for nuclear multifragmentation is presented. It is made up of two complementary parts: molecular dynamics and restructured aggregation. It is applied to study the multifragmentation of 16 O+ 80 Br system at several bombarding energies. The results turn out to be in good agreement with available emulsion data. The production of charged particles and IMF as a function of the bombarding energy is also studied. The results seem to agree quite well with experimental observations and with previous results of other model calculations. (author) 19 refs.; 5 figs.; 1 tab

  8. Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Matthew J. [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics, University of Melbourne,Melbourne 3010 (Australia); Hewett, J.L. [SLAC National Accelerator Laboratory,Menlo Park 94025, CA (United States); Krämer, M. [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,D-52056 Aachen (Germany); Rizzo, T.G. [SLAC National Accelerator Laboratory,Menlo Park 94025, CA (United States)

    2016-07-08

    Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this work we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter content upon Higgs production and kinematics. We highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.

  9. Phenomenological modeling of long range noncontact friction in micro- and nanoresonators

    International Nuclear Information System (INIS)

    Gusso, Andre

    2011-01-01

    Motivated by the results of an experiment using atomic force microscopy performed by Gotsmann and Fuchs [Phys. Rev. Lett. 86, 2597 (2001)], where a strong energy loss due to the tip-sample interaction was measured, we investigate the potential implications of this energy loss channel to the quality factor of suspended micro- and nanoresonators. Because the observed tip-sample dissipation remains without a satisfactory theoretical explanation, two phenomenological models are proposed to generalize the experimental observations. In the minimal phenomenological model the range of validity of the power law found experimentally for the damping coefficient is assumed to be valid for larger separations. A more elaborate phenomenological model assumes that the noncontact friction is a consequence of the Casimir force acting between the closely spaced surfaces. Both models provide quantitative results for the noncontact friction between any two objects which are then used to estimate the energy loss for suspended bar micro- and nanoresonators. It is concluded that the energy loss due to the unknown mechanism has the potential to seriously restrict the quality factor of both micro- and nanoresonators.

  10. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    Science.gov (United States)

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were

  11. A regularized, model-based approach to phase-based conductivity mapping using MRI.

    Science.gov (United States)

    Ropella, Kathleen M; Noll, Douglas C

    2017-11-01

    To develop a novel regularized, model-based approach to phase-based conductivity mapping that uses structural information to improve the accuracy of conductivity maps. The inverse of the three-dimensional Laplacian operator is used to model the relationship between measured phase maps and the object conductivity in a penalized weighted least-squares optimization problem. Spatial masks based on structural information are incorporated into the problem to preserve data near boundaries. The proposed Inverse Laplacian method was compared against a restricted Gaussian filter in simulation, phantom, and human experiments. The Inverse Laplacian method resulted in lower reconstruction bias and error due to noise in simulations than the Gaussian filter. The Inverse Laplacian method also produced conductivity maps closer to the measured values in a phantom and with reduced noise in the human brain, as compared to the Gaussian filter. The Inverse Laplacian method calculates conductivity maps with less noise and more accurate values near boundaries. Improving the accuracy of conductivity maps is integral for advancing the applications of conductivity mapping. Magn Reson Med 78:2011-2021, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Neutron relativistic phenomenological and microscopic optical potential

    International Nuclear Information System (INIS)

    Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong

    1991-01-01

    In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested

  13. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  14. Electrohydromechanical analysis based on conductivity gradient in microchannel

    International Nuclear Information System (INIS)

    Jiang Hongyuan; Ren Yukun; Ao Hongrui; Ramos, Antonio

    2008-01-01

    Fluid manipulation is very important in any lab-on-a-chip system. This paper analyses phenomena which use the alternating current (AC) electric field to deflect and manipulate coflowing streams of two different electrolytes (with conductivity gradient) within a microfluidic channel. The basic theory of the electrohydrodynamics and simulation of the analytical model are used to explain the phenomena. The velocity induced for different voltages and conductivity gradient are computed. The results show that when the AC electrical signal is applied on the electrodes, the fluid with higher conductivity occupies a larger region of the channel and the interface of the two fluids is deflected. It will provide some basic reference for people who want to do more study in the control of different fluids with conductivity gradient in a microfluidic channel. (classical areas of phenomenology)

  15. On the Kubo-Greenwood model for electron conductivity

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey; Luo, Kai; Trickey, S. B.

    2018-02-01

    Currently, the most common method to calculate transport properties for materials under extreme conditions is based on the phenomenological Kubo-Greenwood method. The results of an inquiry into the justification and context of that model are summarized here. Specifically, the basis for its connection to equilibrium DFT and the assumption of static ions are discussed briefly.

  16. Phenomenological optical potentials and optical model computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)

  17. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function

    Science.gov (United States)

    Röhrle, O.; Davidson, J. B.; Pullan, A. J.

    2012-01-01

    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509

  18. A physiologically based, multi-scale model of skeletal muscle structure and function

    Directory of Open Access Journals (Sweden)

    Oliver eRöhrle

    2012-09-01

    Full Text Available Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle's response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modelling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle's response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modelling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibres and their grouping. Together with a well-established model of motor unit recruitment, the electro-physiological behaviour of single muscle fibres within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenisation. The effect of homogenisation has been investigated by varying the number of embedded skeletal muscle fibres and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the Tibialis Anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modelling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behaviour ranging from motor unit recruitment to force generation and fatigue.

  19. Phenomenological models of elastic nucleon scattering and predictions for LHC

    CERN Document Server

    Kundrat, V; Lokajicek, M; Prochazka, J

    2011-01-01

    The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering. (C) 2010 Elsevier B.V. All rights reserved.

  20. Kalman filter-based gap conductance modeling

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1983-01-01

    Geometric and thermal property uncertainties contribute greatly to the problem of determining conductance within the fuel-clad gas gap of a nuclear fuel pin. Accurate conductance values are needed for power plant licensing transient analysis and for test analyses at research facilities. Recent work by Meek, Doerner, and Adams has shown that use of Kalman filters to estimate gap conductance is a promising approach. A Kalman filter is simply a mathematical algorithm that employs available system measurements and assumed dynamic models to generate optimal system state vector estimates. This summary addresses another Kalman filter approach to gap conductance estimation and subsequent identification of an empirical conductance model

  1. An integrated approach to determine phenomenological equations in metallic systems

    Science.gov (United States)

    Ghamarian, Iman

    It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.

  2. Modeling of twisted and coiled polymer (TCP) muscle based on phenomenological approach

    Science.gov (United States)

    Karami, Farzad; Tadesse, Yonas

    2017-12-01

    Twisted and coiled polymers (TCP) muscles are linear actuators that respond to change in temperature. Exploiting high negative coefficient of thermal expansion (CTE) and helical geometry give them a significant ability to change length in a limited temperature range. Several applications and experimental data of these materials have been demonstrated in the last few years. To use these actuators in robotics and control system applications, a mathematical model for predicting their behavior is essential. In this work, a practical and accurate phenomenological model for estimating the displacement of TCP muscles, as a function of the load as well as input electrical current, is proposed. The problem is broken down into two parts, i.e. modeling of the electro-thermal and then the thermo-elastic behavior of the muscles. For the first part, a differential equation, with changing electrical resistance term, is derived. Next, by using a temperature-dependent modulus of elasticity and CTE as well as taking the geometry of the muscles into account, an expression for displacement is derived. Experimental data for different loads and actuation current levels are used for verifying the model and investigating its accuracy. The result shows a good agreement between the simulation and experimental results for all loads.

  3. A phenomenological memristor model for synaptic memory and learning behaviors

    Institute of Scientific and Technical Information of China (English)

    Nan Shao; Sheng-Bing Zhang; Shu-Yuan Shao

    2017-01-01

    Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials.These properties include the forgetting effect,the transition from short-term memory (STM) to long-term memory (LTM),learning-experience behavior,etc.The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties,we find that some behaviors of the model are inconsistent with the reported experimental observations.A phenomenological memristor model is proposed for this kind of memristor.The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors.Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors.Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model.

  4. Thermodynamics and kinetics of phase transformation in intercalation battery electrodes - phenomenological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lai Wei, E-mail: laiwei@msu.ed [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Ciucci, Francesco [Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, INF 368 D - 69120 Heidelberg (Germany)

    2010-12-15

    Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson-Nernst-Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.

  5. 3D phenomenological constitutive modeling of shape memory alloys based on microplane theory

    International Nuclear Information System (INIS)

    Mehrabi, R; Kadkhodaei, M

    2013-01-01

    This paper concerns 3D phenomenological modeling of shape memory alloys using microplane theory. In the proposed approach, transformation is assumed to be the only source of inelastic strain in 1D constitutive laws considered for any generic plane passing through a material point. 3D constitutive equations are derived by generalizing the 1D equations using a homogenization technique. In the developed model, inelastic strain is explicitly stated in terms of the martensite volume fraction. To compare this approach with incremental constitutive models, such an available model is applied in its 1D integral form to the microplane formulation, and it is shown that both the approaches produce similar results for different uniaxial loadings. A nonproportional loading is then studied, and the results are compared with those obtained from an available model in which the inelastic strain is divided into two separate portions for transformation and reorientation. A good agreement is seen between the results of the two approaches, indicating the capability of the proposed microplane formulation in predicting reorientation phenomena in shape memory alloys. The results of the model are compared with available experimental results for a nonproportional loading path, and a good agreement is seen between the findings. (paper)

  6. Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

    Science.gov (United States)

    Andronov, Ivan L.; Kim, Yonggi; Kim, Young-Hee; Yoon, Joh-Na; Chinarova, Lidia L.; Tkachenko, Mariia G.

    2015-06-01

    We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" ("New Algol Variable") using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M⊙, M2=0.854M⊙, M=M1+M2=1.599M⊙, the orbital separation a=1.65°109m=2.37R⊙ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions

  7. [Social actors and phenomenologic modelling].

    Science.gov (United States)

    Laflamme, Simon

    2012-05-01

    The phenomenological approach has a quasi-monopoly in the individual and subjectivity analyses in social sciences. However, the conceptual apparatus associated with this approach is very restrictive. The human being has to be understood as rational, conscious, intentional, interested, and autonomous. Because of this, a large dimension of human activity cannot be taken into consideration: all that does not fit into the analytical categories (nonrational, nonconscious, etc.). Moreover, this approach cannot really move toward a relational analysis unless it is between individuals predefined by its conceptual apparatus. This lack of complexity makes difficult the establishment of links between phenomenology and systemic analysis in which relation (and its derivatives such as recursiveness, dialectic, correlation) plays an essential role. This article intends to propose a way for systemic analysis to apprehend the individual with respect to his complexity.

  8. A phenomenological memristor model for short-term/long-term memory

    International Nuclear Information System (INIS)

    Chen, Ling; Li, Chuandong; Huang, Tingwen; Ahmad, Hafiz Gulfam; Chen, Yiran

    2014-01-01

    Memristor is considered to be a natural electrical synapse because of its distinct memory property and nanoscale. In recent years, more and more similar behaviors are observed between memristors and biological synapse, e.g., short-term memory (STM) and long-term memory (LTM). The traditional mathematical models are unable to capture the new emerging behaviors. In this article, an updated phenomenological model based on the model of the Hewlett–Packard (HP) Labs has been proposed to capture such new behaviors. The new dynamical memristor model with an improved ion diffusion term can emulate the synapse behavior with forgetting effect, and exhibit the transformation between the STM and the LTM. Further, this model can be used in building new type of neural networks with forgetting ability like biological systems, and it is verified by our experiment with Hopfield neural network. - Highlights: • We take the Fick diffusion and the Soret diffusion into account in the ion drift theory. • We develop a new model based on the old HP model. • The new model can describe the forgetting effect and the spike-rate-dependent property of memristor. • The new model can solve the boundary effect of all window functions discussed in [13]. • A new Hopfield neural network with the forgetting ability is built by the new memristor model

  9. String phenomenology

    CERN Document Server

    Ibáñez, Luis E

    2015-01-01

    This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.

  10. CONSTRUCCIÓN DE MODELOS SEMIFÍSICOS DE BASE FENOMENOLÓGICA: CASO PROCESO DE FERMENTACIÓN BUILDING PHENOMENOLOGICAL BASED SEMI-PHYSICAL MODELS: FERMENTATION PROCESS CASE

    Directory of Open Access Journals (Sweden)

    CÉSAR AUGUSTO GÓMEZ

    2008-12-01

    Full Text Available Este trabajo presenta un método para la construcción de Modelos Semifisicos de Base Fenomenológica (MSBF. El método se basa en los fenómenos de transporte, tránsito, transmisión o transferencia, y en el principio de conservación. Se da una descripción detallada de los pasos del método propuesto. Luego se aplica el método en la construcción de un modelo que describe el comportamiento de cinco dinámicas (volumen, biomasa, sustrato, producto y temperatura en un proceso de fermentación en continuo. La simulación muestra que el modelo obtenido puede predecir de forma adecuada el comportamiento dinámico de dicho bioproceso.This work presents a method for building Phenomenological Based Semiphysical Models (PBSM. The method is based on transport, transfer, transmission or transit phenomena and conservation principle. A detailed description of proposed method steps is given. Next, the method is applied to attaining a model for describing the behavior of five dynamics (volume, biomass, substrate, product and temperature of a continuous fermentation process. Model simulation shows that obtained model can predict dynamic performance of real process adequately.

  11. Phenomenological aspects of D-branes

    International Nuclear Information System (INIS)

    Quevedo, F.

    2003-01-01

    A general overview is presented on string phenomenology, emphasizing the role played by D-branes. A general discussion of the main challenges for string phenomenology is followed by recent progress made in constructing realistic models from D-branes and anti-branes at singularities and also from intersecting D-branes. Some possible cosmological implications of these classes of string models are also mentioned. (author)

  12. Phenomenological aspects of D-branes

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, F [Centre for Mathematical Sciences, DAMTP, University of Cambridge, Cambridge (United Kingdom)

    2003-08-15

    A general overview is presented on string phenomenology, emphasizing the role played by D-branes. A general discussion of the main challenges for string phenomenology is followed by recent progress made in constructing realistic models from D-branes and anti-branes at singularities and also from intersecting D-branes. Some possible cosmological implications of these classes of string models are also mentioned. (author)

  13. Low-energy phenomenological chiral Lagrangians

    International Nuclear Information System (INIS)

    Cavopol, A.V.

    1987-01-01

    We develop a phenomenological Lagrangian that satisfies the requirements of the so called alternative schemes designed to model low energy meson phenomenology. Linear and nonlinear σ type Lagrangians and symmetry breaking schemes are used to describe pions that exhibit masses proportional to the square of the symmetry breaking term's coefficient, ε. (m π 2 ∼ 0(ε 2 )). The invariance of the theory under coordinate dependent transformations is achieved by introducing gauge fields for both linear and nonlinear Lagrangians. Finally, analogies between the minimal symmetry breaking terms in Quantum Electrodynamics and in our phenomenological lagrangians are used to generate a discussion of the quark-pion mass dependence indicated by the model

  14. Energetics of glucose metabolism: a phenomenological approach to metabolic network modeling.

    Science.gov (United States)

    Diederichs, Frank

    2010-08-12

    A new formalism to describe metabolic fluxes as well as membrane transport processes was developed. The new flux equations are comparable to other phenomenological laws. Michaelis-Menten like expressions, as well as flux equations of nonequilibrium thermodynamics, can be regarded as special cases of these new equations. For metabolic network modeling, variable conductances and driving forces are required to enable pathway control and to allow a rapid response to perturbations. When applied to oxidative phosphorylation, results of simulations show that whole oxidative phosphorylation cannot be described as a two-flux-system according to nonequilibrium thermodynamics, although all coupled reactions per se fulfill the equations of this theory. Simulations show that activation of ATP-coupled load reactions plus glucose oxidation is brought about by an increase of only two different conductances: a [Ca(2+)] dependent increase of cytosolic load conductances, and an increase of phosphofructokinase conductance by [AMP], which in turn becomes increased through [ADP] generation by those load reactions. In ventricular myocytes, this feedback mechanism is sufficient to increase cellular power output and O(2) consumption several fold, without any appreciable impairment of energetic parameters. Glucose oxidation proceeds near maximal power output, since transformed input and output conductances are nearly equal, yielding an efficiency of about 0.5. This conductance matching is fulfilled also by glucose oxidation of β-cells. But, as a price for the metabolic mechanism of glucose recognition, β-cells have only a limited capability to increase their power output.

  15. Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

    Directory of Open Access Journals (Sweden)

    Ivan L. Andronov

    2015-06-01

    Full Text Available We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O’Connell effect. The periodogram analysis confirms the cycle numbering of Andronov et al. (2012 and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method “NAV” (“New Algol Variable” using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M◉, M2=0.854M◉, M=M1+M2=1.599M◉, the orbital separation a=1.65·109m=2.37R◉ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971 code and it's extensions

  16. Defining Campus Violence: A Phenomenological Analysis of Community Stakeholder Perspectives

    Science.gov (United States)

    Mayhew, Matthew J.; Caldwell, Rebecca J.; Goldman, Emily Grey

    2011-01-01

    The purpose of this study was to derive an empirically based understanding of campus violence. Grounded in a communication paradigm offered by sociolinguistic scholars, we adopted a phenomenological approach for conducting and analyzing 23 interviews from campus community stakeholders, including students, staff, faculty, administrators, and…

  17. Phenomenological scattering-rate model for the simulation of the current density and emission power in mid-infrared quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kurlov, S. S. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine); Flores, Y. V.; Elagin, M.; Semtsiv, M. P.; Masselink, W. T. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Tarasov, G. G. [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine)

    2016-04-07

    A phenomenological scattering-rate model introduced for terahertz quantum cascade lasers (QCLs) [Schrottke et al., Semicond. Sci. Technol. 25, 045025 (2010)] is extended to mid-infrared (MIR) QCLs by including the energy dependence of the intersubband scattering rates for energies higher than the longitudinal optical phonon energy. This energy dependence is obtained from a phenomenological fit of the intersubband scattering rates based on published lifetimes of a number of MIR QCLs. In our approach, the total intersubband scattering rate is written as the product of the exchange integral for the squared moduli of the envelope functions and a phenomenological factor that depends only on the transition energy. Using the model to calculate scattering rates and imposing periodical boundary conditions on the current density, we find a good agreement with low-temperature data for current-voltage, power-current, and energy-photon flux characteristics for a QCL emitting at 5.2 μm.

  18. Phenomenological aspects of the cognitive rumination construct.

    Science.gov (United States)

    Meyer, Leonardo Fernandez; Taborda, José Geraldo Vernet; da Costa, Fábio Antônio; Soares, Ana Luiza Alfaya Galego; Mecler, Kátia; Valença, Alexandre Martins

    2015-01-01

    To evaluate the importance of phenomenological aspects of the cognitive rumination (CR) construct in current empirical psychiatric research. We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE), SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology. Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models. Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.

  19. Resonant diphoton phenomenology simplified

    International Nuclear Information System (INIS)

    Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea

    2016-01-01

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.

  20. Phenomenological modeling of abradable wear in turbomachines

    Science.gov (United States)

    Berthoul, Bérenger; Batailly, Alain; Stainier, Laurent; Legrand, Mathias; Cartraud, Patrice

    2018-01-01

    Abradable materials are widely used as coatings within compressor and turbine stages of modern aircraft engines in order to reduce operating blade-tip/casing clearances and thus maximize energy efficiency. However, rubbing occurrences between blade tips and coating liners may lead to high blade vibratory levels and endanger their structural integrity through fatigue mechanisms. Accordingly, there is a need for a better comprehension of the physical phenomena at play and for an accurate modeling of the interaction, in order to predict potentially unsafe events. To this end, this work introduces a phenomenological model of the abradable coating removal based on phenomena reported in the literature and accounting for key frictional and wear mechanisms including plasticity at junctions, ploughing, micro-rupture and machining. It is implemented within an in-house software solution dedicated to the prediction of full three-dimensional blade/abradable coating interactions within an aircraft engine low pressure compressor. Two case studies are considered. The first one compares the results of an experimental abradable test rig and its simulation. The second one deals with the simulation of interactions in a complete low-pressure compressor. The consistency of the model with experimental observations is underlined, and the impact of material parameter variations on the interaction and wear behavior of the blade is discussed. It is found that even though wear patterns are remarkably robust, results are significantly influenced by abradable coating material properties.

  1. Fluctuational phenomenological model for the magnetodissipation in high-Tc superconductors

    International Nuclear Information System (INIS)

    Sarti, S.; Fastampa, R.; Giura, M.; Silva, E.; Marcon, R.

    1995-01-01

    We develop a phenomenological model for the magnetoresistivity in high-T c superconductors that includes the contribution of the fluctuation excess conductivity and the effects of the phase slip due to thermal motion of vortices above the irreversibility line over local depressions of the order parameter. The fluctuation conductivity in the proximity of the mean-field transition is inserted into the final expression for the resistivity through a scaling function, obtained theoretically by Ullah and Dorsey. The behavior of the system of vortices is taken into account assuming that below the irreversibility line the solid phase is a glass phase. Crossing the irreversibility line, the vortex system becomes a viscous fluid and, finally, a liquid. It is possible to fully describe the resistivity by recalling some of the main concepts of the conventional glass transitions. We obtain a compact expression for the resistivity that we compare to previously reported experimental data in twinned and untwinned Y-Ba-Cu-O single crystals. With very few parameters we can fit extremely well the resistive transitions in the full temperature and field range. Also, the transitions in very pure, untwinned crystals can be entirely fitted, including the ''kink' at the so-called melting transition. Moreover, the resistivity is shown to be heavily influenced by fluctuations

  2. Postmodernism, phenomenology and afriphenomenology | Francis ...

    African Journals Online (AJOL)

    In this paper, I aimed to study the relationship between postmodernism and phenomenology. In the study, I established that postmodernism and phenomenology bear similar ontological marking, which base their concepts and methodologies on an individualistic framework. On the basis of such ontological framework, ...

  3. Phenomenological aspects of the cognitive rumination construct

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandez Meyer

    2015-03-01

    Full Text Available Objective: To evaluate the importance of phenomenological aspects of the cognitive rumination (CR construct in current empirical psychiatric research.Method: We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE, SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology.Results: Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models.Conclusion: Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.

  4. Higgs-radion phenomenology in stabilized RS models

    Directory of Open Access Journals (Sweden)

    Boos Eduard

    2016-01-01

    Full Text Available An important general prediction of stabilized brane world models is the existence of a bulk scalar radion field, whose lowest Kaluza-Klein (KK mode is the scalar particle called the radion. This field comes from the fluctuations of the metric in the extra dimension and the radion mass can be smaller than that of all the massive KK modes of the other particles propagating in the multidimensional bulk. Due to its origin, the radion and its KK tower couple to the trace of the energy-momentum tensor of the Standard Model. These fields have the same quantum numbers as the neutral Higgs field and can mix with the latter, if they are coupled. We present a short review of some aspects of Higgs-radion phenomenology in stabilized brane-world models. In particular, we discuss the possibility of explaining the 750 GeV excess by the production of a radion-dominated state.

  5. Phenomenology of non-minimal supersymmetric models at linear colliders

    International Nuclear Information System (INIS)

    Porto, Stefano

    2015-06-01

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  6. Phenomenology of stochastic exponential growth

    Science.gov (United States)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  7. Understanding the Key Tenets of Heidegger’s Philosophy for Interpretive Phenomenological Research

    OpenAIRE

    Marcella Horrigan-Kelly; Michelle Millar; Maura Dowling

    2016-01-01

    Martin Heidegger’s phenomenology provides methodological guidance for qualitative researchers seeking to explicate the lived experience of study participants. However, most phenomenological researchers apply his philosophy loosely. This is not surprising because Heidegger’s phenomenological philosophy is challenging and the influence of his philosophy in shaping the conduct of interpretive phenomenological research is broadly debated. This article presents an exploration of Dasein, a key tene...

  8. A phenomenological model for the chemo-responsive shape memory effect in amorphous polymers undergoing viscoelastic transition

    International Nuclear Information System (INIS)

    Lu, Haibao; Huang, Wei Min

    2013-01-01

    We present a phenomenological approach to study the viscoelastic transition and working mechanism of the chemo-responsive shape memory effect (SME) in amorphous shape memory polymers (SMPs). Both the copolymerization viscosity model and Doolittle equation are initially applied to quantitatively identify the influential factors behind the chemo-responsive SME in the SMPs exposure to a right solvent. After this, the Williams–Landel–Ferry (WLF) equation is employed to couple the viscosity (η), time–temperature shift factor (α τ ) and glass transition temperature (T g ) in amorphous polymers. By means of combining the WLF and Arrhenius equations together, the inductively decreased transition temperature is confirmed as the driving force for the chemo-responsive SME. Finally, a phenomenological viscoelastic model is proposed and then verified by the available experimental data reported in the literature and then compared with the simulation results of a semi-empirical model. This phenomenological model is expected to provide a powerful simulation tool for theoretical prediction and experimental substantiation of the chemo-responsive SME in amorphous SMPs by viscoelastic transition. (paper)

  9. Higgs phenomenology in the minimal S U (3 )L×U (1 )X model

    Science.gov (United States)

    Okada, Hiroshi; Okada, Nobuchika; Orikasa, Yuta; Yagyu, Kei

    2016-07-01

    We investigate the phenomenology of a model based on the S U (3 )c×S U (3 )L×U (1 )X gauge theory, the so-called 331 model. In particular, we focus on the Higgs sector of the model which is composed of three S U (3 )L triplet Higgs fields and is the minimal form for realizing a phenomenologically acceptable scenario. After the spontaneous symmetry breaking S U (3 )L×U (1 )X→S U (2 )L×U (1 )Y , our Higgs sector effectively becomes that with two S U (2 )L doublet scalar fields, in which the first- and the second-generation quarks couple to a different Higgs doublet from that which couples to the third-generation quarks. This structure causes the flavor-changing neutral current mediated by Higgs bosons at the tree level. By taking an alignment limit of the mass matrix for the C P -even Higgs bosons, which is naturally realized in the case with the breaking scale of S U (3 )L×U (1 )X much larger than that of S U (2 )L×U (1 )Y, we can avoid current constraints from flavor experiments such as the B0-B¯ 0 mixing even for the Higgs bosons masses that are O (100 ) GeV . In this allowed parameter space, we clarify that a characteristic deviation in quark Yukawa couplings of the Standard Model-like Higgs boson is predicted, which has a different pattern from that seen in two Higgs doublet models with a softly broken Z2 symmetry. We also find that the flavor-violating decay modes of the extra Higgs boson, e.g., H /A →t c and H±→t s , can be dominant, and they yield the important signature to distinguish our model from the two Higgs doublet models.

  10. Understanding the Key Tenets of Heidegger’s Philosophy for Interpretive Phenomenological Research

    Directory of Open Access Journals (Sweden)

    Marcella Horrigan-Kelly

    2016-11-01

    Full Text Available Martin Heidegger’s phenomenology provides methodological guidance for qualitative researchers seeking to explicate the lived experience of study participants. However, most phenomenological researchers apply his philosophy loosely. This is not surprising because Heidegger’s phenomenological philosophy is challenging and the influence of his philosophy in shaping the conduct of interpretive phenomenological research is broadly debated. This article presents an exploration of Dasein, a key tenet of Martin Heidegger’s interpretive phenomenology and explicates its usefulness for phenomenological research. From this perspective, we present guidance for researchers planning to utilize Heidegger’s philosophy underpinning their research.

  11. Effect of recent popularity on heat-conduction based recommendation models

    Science.gov (United States)

    Li, Wen-Jun; Dong, Qiang; Shi, Yang-Bo; Fu, Yan; He, Jia-Lin

    2017-05-01

    Accuracy and diversity are two important measures in evaluating the performance of recommender systems. It has been demonstrated that the recommendation model inspired by the heat conduction process has high diversity yet low accuracy. Many variants have been introduced to improve the accuracy while keeping high diversity, most of which regard the current node-degree of an item as its popularity. However in this way, a few outdated items of large degree may be recommended to an enormous number of users. In this paper, we take the recent popularity (recently increased item degrees) into account in the heat-conduction based methods, and propose accordingly the improved recommendation models. Experimental results on two benchmark data sets show that the accuracy can be largely improved while keeping the high diversity compared with the original models.

  12. Embodiment and psychopathology: a phenomenological perspective.

    Science.gov (United States)

    Fuchs, Thomas; Schlimme, Jann E

    2009-11-01

    To survey recent developments in phenomenological psychopathology. We present the concept of embodiment as a key paradigm of recent interdisciplinary approaches from the areas of philosophy, psychology, psychiatry and neuroscience. This requires a short overview on the phenomenological concept of embodiment; in particular, on the distinction of subject and object body. A psychopathology of embodiment may be based on these and other distinctions, in particular on a polarity of disembodiment and hyperembodiment, which is illustrated by the examples of schizophrenia and depression. Recent contributions to phenomenological accounts of these disorders are presented. Finally, the study discusses the relationship of phenomenological and neuropsychiatric perspectives on embodiment. A phenomenology of embodiment may be combined with enactive approaches to cognitive neuroscience in order to overcome dualist concepts of the mind as an inner realm of representations that mirror the outside world. Phenomenological and ecological concepts of embodiment should also be conjoined to enable a new, advanced understanding of mental illness.

  13. A phenomenological calculus of Wiener description space.

    Science.gov (United States)

    Richardson, I W; Louie, A H

    2007-10-01

    The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium.

  14. Understanding phenomenology.

    LENUS (Irish Health Repository)

    Flood, Anne

    2012-01-31

    Phenomenology is a philosophic attitude and research approach. Its primary position is that the most basic human truths are accessible only through inner subjectivity, and that the person is integral to the environment. This paper discusses the theoretical perspectives related to phenomenology, and includes a discussion of the methods adopted in phenomenological research.

  15. Superstring inspired phenomenology

    International Nuclear Information System (INIS)

    Binetruy, P.

    1988-01-01

    Recent progress in superstring model building is reviewed with an emphasis on the general features of the models obtained. The problems associated with supersymmetry breaking and intermediate gauge symmetry breaking (M W I GUT ) are described. Finally, the phenomenology of these models is summarized, with a discussion of the role that new experimental results could play to help clearing up the above difficulties

  16. Phenomenological model for H-mode

    International Nuclear Information System (INIS)

    Ohyabu, N.

    1985-08-01

    A phenomenological model has been developed to clarify the role of the boundary configuration in the heat transport of the H-mode regime. We assume that the dominant mechanism of heat loss at the edge of the plasma is convection and that the diffusion coefficient (D/sub edge/) at the edge of the plasma increases rapidly with plasma pressure, but drops to a low value when the temperature exceeds a certain threshold value. When particle refueling takes place without time delay, as in the case of a limiter discharge, the unfavorable temperature dependence of the D/sub edge/ prohibits even a modest rise of the edge temperature. In a divertor discharge, the particles lost from the closed surface are kept away from the edge region for a time comparable to or longer than the energy transport time in the edge region. Thus, rapid increase in the heat flux allows an excursion of the edge temperature to a higher value thereby reaching the threshold value of the H-transition

  17. A template bank to search for gravitational waves from inspiralling compact binaries: II. Phenomenological model

    International Nuclear Information System (INIS)

    Cokelaer, T

    2007-01-01

    Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from ground-based interferometers. One of the key aspects of the detection process is the deployment of a set of templates, also called a template bank, to cover the astrophysically interesting region of the parameter space. In a companion paper, we described the template bank algorithm used in the analysis of Laser Interferometer Gravitational-Wave Observatory (LIGO) data to search for signals from non-spinning binaries made of neutron star and/or stellar-mass black holes; this template bank is based upon physical template families. In this paper, we describe the phenomenological template bank that was used to search for gravitational waves from non-spinning black hole binaries (from stellar mass formation) in the second, third and fourth LIGO science runs. We briefly explain the design of the bank, whose templates are based on a phenomenological detection template family. We show that this template bank gives matches greater than 95% with the physical template families that are expected to be captured by the phenomenological templates

  18. A general phenomenological model for work function

    Science.gov (United States)

    Brodie, I.; Chou, S. H.; Yuan, H.

    2014-07-01

    A general phenomenological model is presented for obtaining the zero Kelvin work function of any crystal facet of metals and semiconductors, both clean and covered with a monolayer of electropositive atoms. It utilizes the known physical structure of the crystal and the Fermi energy of the two-dimensional electron gas assumed to form on the surface. A key parameter is the number of electrons donated to the surface electron gas per surface lattice site or adsorbed atom, which is taken to be an integer. Initially this is found by trial and later justified by examining the state of the valence electrons of the relevant atoms. In the case of adsorbed monolayers of electropositive atoms a satisfactory justification could not always be found, particularly for cesium, but a trial value always predicted work functions close to the experimental values. The model can also predict the variation of work function with temperature for clean crystal facets. The model is applied to various crystal faces of tungsten, aluminium, silver, and select metal oxides, and most demonstrate good fits compared to available experimental values.

  19. Stochastic E2F activation and reconciliation of phenomenological cell-cycle models.

    Science.gov (United States)

    Lee, Tae J; Yao, Guang; Bennett, Dorothy C; Nevins, Joseph R; You, Lingchong

    2010-09-21

    The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.

  20. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    Directory of Open Access Journals (Sweden)

    N. Sakatani

    2017-01-01

    Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.

  1. Phenomenological modelling of CHF in annular flow in annuli using new models of droplet deposition and entrainment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibin, E-mail: hb-zhang@xjtu.edu.cn [School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom); Hewitt, G.F., E-mail: g.hewitt@imperial.ac.uk [Department of Chemical Engineering, Imperial College, London SW7 2BY (United Kingdom)

    2016-08-15

    Highlights: • A phenomenological model to predict the CHF for flows in annuli is described. • New correlations of droplet entrainment and deposition are used. • The present model has good predictive capability in predicting CHF in annuli. - Abstract: In this paper, we present a phenomenological model to predict the CHF (critical heat flux) for upward annular flow in heated vertical annuli. In present model, a new set of correlations of droplet deposition and entrainment in annuli was used which were verified by comparison with the data of Moeck (1970) for developing liquid films in adiabatic annuli. In the results presented here, these new correlations have been used to predict 2249 independent data on critical heat flux (CHF) obtained both regarding internal heating of the rod as well as simultaneous heating of the rod and the outer tube in six heated vertical annuli under various mass flow rate, pressure and inlet quality and where the conditions were such that (as is most common) the CHF condition occurred in the annular flow regime. The comparisons between the calculated and measured CHFs showed that the present model has good predictive capability in predicting CHF.

  2. Dual topological unitarization -- phenomenological aspect

    International Nuclear Information System (INIS)

    Tan, C.I.

    1978-01-01

    An assessment is provided on the viability of dual topological unitarization as a practical scheme for organizing and interpreting hadronic phenomena at current machine energies. Previous detailed reviews are complemented, with emphasis on phenomenological aspects and more recent developments. Diffraction scattering, a test of P--f identity hypothesis, the flavor model, the P--f identity versus the Veneziano two-jet picture, and an illustration of the new phenomenology are included. 24 references

  3. Phenomenological viability of orbifold models with three Higgs families

    International Nuclear Information System (INIS)

    Escudero, Nicolas; Munoz, Carlos; Teixeira, Ana M.

    2006-01-01

    We discuss the phenomenological viability of string multi-Higgs doublet models, namely a scenario of heterotic Z 3 orbifolds with two Wilson lines, which naturally predicts three supersymmetric families of matter and Higgs fields. We study the orbifold parameter space, and discuss the compatibility of the predicted Yukawa couplings with current experimental data. We address the implications of tree-level flavour changing neutral processes in constraining the Higgs sector of the model, finding that viable scenarios can be obtained for a reasonably light Higgs spectrum. We also take into account the tree-level contributions to indirect CP violation, showing that the experimental value of ε K can be accommodated in the present framework

  4. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  5. [Driving modes of the interview in phenomenological research: experience report].

    Science.gov (United States)

    de Paula, Cristiane Cardoso; Padoin, Stela Maris de Mello; Terra, Marlene Gomes; Souza, Ivis Emília de Oliveira; Cabral, Ivone Evangelista

    2014-01-01

    This paper aimed to report the experience of driving modes of an interview on data production in phenomenological research. The proposed study is an experience report of a phenomenological investigation in which the researchers present their experience with children, considering the interview as an existential encounter. It describes ways of conducting the interview in its ontic and ontological dimensions. The ontic dimension refers to the facts related to the interview, presented in the researcher, in the researched subject and in the environment; both in its planning and its development. The ontological dimension is based on empathy and intersubjectivity. The interview enables the access to meaningful structures to comprehend the being, as a way of building investigative/assistance possibilities that enable to reveal the being of the human.

  6. Pathological gambling: a review of phenomenological models and treatment modalities for an underrecognized psychiatric disorder.

    Science.gov (United States)

    Dannon, Pinhas N; Lowengrub, Katherine; Gonopolski, Yehudit; Musin, Ernest; Kotler, Moshe

    2006-01-01

    Pathological gambling (PG) is a prevalent and highly disabling impulse-control disorder. Two dominant phenomenological models for PG have been presented in the literature. According to one model, PG is included as an obsessive-compulsive spectrum disorder, while according to the second model, PG represents a form of nonpharmacologic addiction. In this article, we present an expanded conceptualization of the phenomenology of PG. On the basis of our clinical research experience and a review of data in the field, we propose 3 subtypes of pathological gamblers: the "impulsive" subtype, the "obsessive-compulsive" subtype, and the "addictive" subtype. We also review the current pharmacologic and nonpharmacologic treatment strategies for PG. A further aim of this article is to encourage awareness of the importance of improved screening procedures for the early detection of PG.

  7. Correspondence between phenomenological and IBM-1 models of even isotopes of Yb

    Science.gov (United States)

    A. Okhunov, A.; I. Sharrad, F.; Anwer, A. Al-Sammarraie; U. Khandaker, M.

    2015-08-01

    Energy levels and the reduced probability of E2- transitions for ytterbium isotopes with proton number Z = 70 and neutron numbers between 100 and 106 have been calculated through phenomenological (PhM) and interacting boson (IBM-1) models. The predicted low-lying levels (energies, spins and parities) and the reduced probability for E2- transitions results are reasonably consistent with the available experimental data. The predicted low-lying levels (gr-, β1- and γ1- band) produced in the PhM are in good agreement with the experimental data compared with those by IBM-1 for all nuclei of interest. In addition, the phenomenological model was successful in predicting the β2-, β3-, β4-, γ2- and 1+ - band while it was a failure with IBM-1. Also, the 3+- band is predicted by the IBM-1 model for 172Yb and 174Yb nuclei. All calculations are compared with the available experimental data. Supported by Fundamental Research Grant Scheme (FRGS) of Ministry of Higher Education of Malaysia (FRGS13-074-0315), Islamic Development Bank (IDB) (36/11201905/35/IRQ/D31, 37/IRQ/P30)

  8. Hermeneutic phenomenological analysis: the 'possibility' beyond 'actuality' in thematic analysis.

    Science.gov (United States)

    Ho, Ken H M; Chiang, Vico C L; Leung, Doris

    2017-07-01

    This article discusses the ways researchers may become open to manifold interpretations of lived experience through thematic analysis that follows the tradition of hermeneutic phenomenology. Martin Heidegger's thinking about historical contexts of understandings and the notions of 'alētheia' and 'techne' disclose what he called meaning of lived experience, as the 'unchanging Being of changing beings'. While these notions remain central to hermeneutic phenomenological research, novice phenomenologists usually face the problem of how to incorporate these philosophical tenets into thematic analysis. Discussion paper. This discussion paper is based on our experiences of hermeneutic analysis supported by the writings of Heidegger. Literature reviewed for this paper ranges from 1927 - 2014. We draw on data from a study of foreign domestic helpers in Hong Kong to demonstrate how 'dwelling' in the language of participants' 'ek-sistence' supported us in a process of thematic analysis. Data were collected from December 2013 - February 2016. Nurses doing hermeneutic phenomenology have to develop self-awareness of one's own 'taken-for-granted' thinking to disclose the unspoken meanings hidden in the language of participants. Understanding the philosophical tenets of hermeneutic phenomenology allows nurses to preserve possibilities of interpretations in thinking. In so doing, methods of thematic analysis can uncover and present the structure of the meaning of lived experience. We provide our readers with vicarious experience of how to begin cultivating thinking that is aligned with hermeneutic phenomenological philosophical tenets to conduct thematic analysis. © 2017 John Wiley & Sons Ltd.

  9. Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, E., E-mail: enrique.miranda@uab.cat; Suñé, J. [Departament d' Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona (Spain); Mehonic, A.; Kenyon, A. J. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-11-25

    A simple analytic model for the electron transport through filamentary-type structures in Si-rich silica (SiO{sub x})-based resistive switches is proposed. The model is based on a mesoscopic description and is able to account for the linear and nonlinear components of conductance that arise from both fully and partially formed conductive channels spanning the dielectric film. Channels are represented by arrays of identical scatterers whose number and quantum transmission properties determine the current magnitude in the low and high resistance states. We show that the proposed model not only reproduces the experimental current-voltage (I-V) characteristics but also the normalized differential conductance (dln(I)/dln(V)-V) curves of devices under test.

  10. Phenomenology & Sociality

    DEFF Research Database (Denmark)

    Gahrn-Andersen, Rasmus; Cowley, Stephen

    2017-01-01

    Although cognitive science has recently asked how human sociality is constituted, there is no clear and consistent account of the emergence of human style social agency. Previously, we have critiqued views based on 'participatory sense-making' by arguing that agency requires a distinctive kind...... of phenomenology that enables a diachronic social experience. In advancing the positive argument, we link developmental psychology to phenomenological insights by focusing on child-caregiver dynamics around the middle of the second year. Having developed very basic social skills, an infant comes to feel normative....... Developmental events thus transform the child's experience and drive the emergence of social agency. Once the child has successfully dealt with the environment’s normative perturbations she is able to develop the skills of a fully-fledged human social agent....

  11. Brane vector phenomenology

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.; Nitta, Muneto; Veldhuis, T. ter; Xiong, C.

    2009-01-01

    Local oscillations of the brane world are manifested as massive vector fields. Their coupling to the Standard Model can be obtained using the method of nonlinear realizations of the spontaneously broken higher-dimensional space-time symmetries, and to an extent, are model independent. Phenomenological limits on these vector field parameters are obtained using LEP collider data and dark matter constraints

  12. Choosing phenomenology as a guiding philosophy for nursing research.

    Science.gov (United States)

    Matua, Gerald Amandu

    2015-03-01

    To provide an overview of important methodological considerations that nurse researchers need to adhere to when choosing phenomenology as a guiding philosophy and research method. Phenomenology is a major philosophy and research method in the humanities, human sciences and arts disciplines with a central goal of describing people's experiences. However, many nurse researchers continue to grapple with methodological issues related to their choice of phenomenological method. The author conducted online and manual searches of relevant research books and electronic databases. Using an integrative method, peer-reviewed research and discussion papers published between January 1990 and December 2011 and listed in the CINAHL, Science Direct, PubMed and Google Scholar databases were reviewed. In addition, textbooks that addressed research methodologies such as phenomenology were used. Although phenomenology is widely used today to broaden understanding of human phenomena relevant to nursing practice, nurse researchers often fail to adhere to acceptable scientific and phenomenological standards. Cognisant of these challenges, researchers are expected to indicate in their work the focus of their investigations, designs, and approaches to collecting and analysing data. They are also expected to present their findings in an evocative and expressive manner. Choosing phenomenology requires researchers to understand it as a philosophy, including basic assumptions and tenets of phenomenology as a research method. This awareness enables researchers, especially novices, to make important methodological decisions, particularly those necessary to indicate the study's scientific rigour and phenomenological validity. This paper adds to the discussion of phenomenology as a guiding philosophy for nursing research. It aims to guide new researchers on important methodological decisions they need to make to safeguard their study's scientific rigour and phenomenological validity.

  13. A phenomenological model for cross-field plasma transport in non-ambipolar scrape-off layers

    International Nuclear Information System (INIS)

    LaBombard, B.; Grossman, A.A.; Conn, R.W.

    1990-01-01

    A simplified two-fluid transport model which includes phenomenological coefficients of particle diffusion, mobility, and thermal diffusivity is used to investigate the effects of nonambipolar particle transport on scrape-off layer (SOL) plasma profiles. A computer code (BSOLRAD3) has been written to iteratively solve for 2-D cross-field density, potential, and electron temperature profiles for arbitrary boundary conditions, including segments of 'limiters' that are electrically conducting or non-conducting. Numerical results are presented for two test cases: (1) a 1-D slab geometry showing the interdependency of the density, potential, and temperature gradient scale lengths on particle diffusion, mobility, and thermal diffusivity coefficients and limiter bias conditions, and (2) a 2-D geometry illustrating ExB plasma flow effects. It is shown that the SOL profiles can be quite sensitive to non-ambipolarity conditions imposed by the limiter and, in particular, whether the limiter surfaces are biased. Such effects, if overlooked in SOL transport analysis, can lead to erroreous conclusions about the magnitude of the local ambipolar diffusion coefficient. (orig.)

  14. Bi-national cross-validation of an evidence-based conduct problem prevention model.

    Science.gov (United States)

    Porta, Carolyn M; Bloomquist, Michael L; Garcia-Huidobro, Diego; Gutiérrez, Rafael; Vega, Leticia; Balch, Rosita; Yu, Xiaohui; Cooper, Daniel K

    2018-04-01

    To (a) explore the preferences of Mexican parents and Spanish-speaking professionals working with migrant Latino families in Minnesota regarding the Mexican-adapted brief model versus the original conduct problems intervention and (b) identifying the potential challenges, and preferred solutions, to implementation of a conduct problems preventive intervention. The core practice elements of a conduct problems prevention program originating in the United States were adapted for prevention efforts in Mexico. Three focus groups were conducted in the United States, with Latino parents (n = 24; 2 focus groups) and professionals serving Latino families (n = 9; 1 focus group), to compare and discuss the Mexican-adapted model and the original conduct problems prevention program. Thematic analysis was conducted on the verbatim focus group transcripts in the original language spoken. Participants preferred the Mexican-adapted model. The following key areas were identified for cultural adaptation when delivering a conduct problems prevention program with Latino families: recruitment/enrollment strategies, program delivery format, and program content (i.e., child skills training, parent skills training, child-parent activities, and child-parent support). For both models, strengths, concerns, barriers, and strategies for overcoming concerns and barriers were identified. We summarize recommendations offered by participants to strengthen the effective implementation of a conduct problems prevention model with Latino families in the United States. This project demonstrates the strength in binational collaboration to critically examine cultural adaptations of evidence-based prevention programs that could be useful to diverse communities, families, and youth in other settings. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. A phenomenological model of muscle fatigue and the power-endurance relationship.

    Science.gov (United States)

    James, A; Green, S

    2012-11-01

    The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.

  16. Phenomenology of a nonstandard Higgs boson in WLWL scattering

    International Nuclear Information System (INIS)

    Koulovassilopoulos, V.; Chivukula, R.S.

    1994-01-01

    In this paper we consider the phenomenology of a nonstandard Higgs boson in longitudinal gauge boson scattering. First, we present a composite Higgs model [based on an SU(4)/Sp(4) chiral-symmetry breaking pattern] in which there is a nonstandard Higgs boson. Then we explore, in a model-independent way, the phenomenology of such a nonstandard Higgs boson by calculating the leading one-loop logarithmic corrections to longitudinal gauge boson scattering. This calculation is done using the equivalence theorem and the Higgs boson is treated as a scalar-isoscalar resonance coupled to the Goldstone bosons of the SU(2) L xSu(2) R /SU(2) V chiral symmetry breaking. We show that the most important deviation from the one-Higgs-doublet standard model is parametrized by one unknown coefficient which is related to the Higgs-boson width. The implications for future hadron colliders are discussed

  17. Automated adaptive inference of phenomenological dynamical models

    Science.gov (United States)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  18. Identification and communication of uncertainties of phenomenological models in PSA

    International Nuclear Information System (INIS)

    Pulkkinen, U.; Simola, K.

    2001-11-01

    This report aims at presenting a view upon uncertainty analysis of phenomenological models with an emphasis on the identification and documentation of various types of uncertainties and assumptions in the modelling of the phenomena. In an uncertainty analysis, it is essential to include and document all unclear issues, in order to obtain a maximal coverage of unresolved issues. This holds independently on their nature or type of the issues. The classification of uncertainties is needed in the decomposition of the problem and it helps in the identification of means for uncertainty reduction. Further, an enhanced documentation serves to evaluate the applicability of the results to various risk-informed applications. (au)

  19. Supersymmetry and supergravity: Phenomenology and grand unification

    International Nuclear Information System (INIS)

    Arnowitt, R.; Nath, P.

    1993-01-01

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field

  20. Phenomenological BRDF modeling for engineering applications

    Science.gov (United States)

    Jafolla, James C.; Stokes, Jeffrey A.; Sullivan, Robert J.

    1997-09-01

    The application of analytical light scattering techniques for virtual prototyping the optical performance of paint coatings provides an effective tool for optimizing paint design for specific optical requirements. This paper describes the phenomenological basis for the scattering coatings computer aided design (ScatCad) code. The ScatCad code predicts the bidirectional reflectance distribution function (BRDF) and the hemispherical directional reflectance (HDR) of pigmented paint coatings for the purpose of coating design optimization. The code uses techniques for computing the pigment single scattering phase function, multiple scattering radiative transfer, and rough surface scattering to calculate the BRDF and HDR based on the fundamental optical properties of the pigment(s) and binder, pigment number density and size distribution, and surface roughness of the binder-interface and substrate. This is a significant enhancement to the two- flux, Kubelka-Munk analysis that has traditionally been used in the coatings industry. Example calculations and comparison with measurements are also presented.

  1. A phenomenological model for improving understanding of the ammonium nitrate agglomeration process

    Directory of Open Access Journals (Sweden)

    Videla Leiva Alvaro

    2016-01-01

    Full Text Available Ammonium nitrate is intensively used as explosive in the mining industry as the main component of ANFO. The ammonium nitrate is known to be a strong hygroscopic crystal matter which generates problems due to the creation of water bridges between crystals leading later to nucleation and crystallization forming an agglomerated solid cake. The agglomeration process damages the ammonium nitrate performance and is undesirable. Usually either organic or inorganic coatings are used to control agglomeration. In the present work a characterization method of humidity adsorption of the ammonium nitrate crystal was performed under laboratory conditions. Several samples were exposed into a defined humidity in a controlled chamber during 5 hours after which the samples were tested to measure agglomeration as the resistance force to compression. A clear relation was found between coating protection level, humidity and agglomeration. Agglomeration can be then predicted by a phenomenological model based of combination of the mono-layer BET adsorption and CNT nucleation models.

  2. Deep inelastic processes. Phenomenology. Quark-parton model

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Lipatov, L.N.; Khoze, V.A.

    1983-01-01

    Main theoretical approaches and experimental results related to deep inelastic processes are systematically outlined: electroproduction, neutrino scattering on nucleon, electron-positron pairs annihilation into hadron γγ collisions, production of lepton pairs in hadron collisions with a large effective mass or hadrons with large transverse momenta. Kinematics and phenomenology, space-time description of deep inelastic processes, sum rules, parton and quark-parton models are considered. The experiment is briefly discussed in the book. It is performed from the stand point of comparing it with the theory, experimental data are given as of June, 1982. Since the time of accomplishing the study on the manuscript a number of new experimental results not changing however the statements made in the book appeared. Principal consists in experiments with colliding proton-antiproton beams in CERN, which resulted in discovery of intermediate W-bozon

  3. A phenomenological retention tank model using settling velocity distributions.

    Science.gov (United States)

    Maruejouls, T; Vanrolleghem, P A; Pelletier, G; Lessard, P

    2012-12-15

    Many authors have observed the influence of the settling velocity distribution on the sedimentation process in retention tanks. However, the pollutants' behaviour in such tanks is not well characterized, especially with respect to their settling velocity distribution. This paper presents a phenomenological modelling study dealing with the way by which the settling velocity distribution of particles in combined sewage changes between entering and leaving an off-line retention tank. The work starts from a previously published model (Lessard and Beck, 1991) which is first implemented in a wastewater management modelling software, to be then tested with full-scale field data for the first time. Next, its performance is improved by integrating the particle settling velocity distribution and adding a description of the resuspension due to pumping for emptying the tank. Finally, the potential of the improved model is demonstrated by comparing the results for one more rain event. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Phenomenology is not Phenomenalism. Is there such a thing as phenomenology of sport?

    Directory of Open Access Journals (Sweden)

    Jan Halák

    2014-06-01

    Full Text Available Background: The application of the philosophical mode of investigation called "phenomenology" in the context of sport. Objective: The goal is to show how and why the phenomenological method is very often misused in sport-related research. Methods: Interpretation of the key texts, explanation of their meaning. Results: The confrontation of concrete sport-related texts with the original meaning of the key phenomenological notions shows mainly three types of misuse - the confusion of phenomenology with immediacy, with an epistemologically subjectivist stance (phenomenalism, and with empirical research oriented towards objects in the world. Conclusions: Many of the discussed authors try to take over the epistemological validity of phenomenology for their research, which itself is not phenomenological, and it seems that this is because they are lacking such a methodological foundation. We believe that an authentically phenomenological analysis of sport is possible, but it must respect the basic distinctions that differentiate phenomenology from other styles of thinking.

  5. Phenomenological Lagrangians

    International Nuclear Information System (INIS)

    Weinberg, S.

    1979-01-01

    The author presents an argument that phenomenological Lagrangians can be used not only to reproduce the soft pion results of current algebra, but also to justify these results, without any use of operator algebra, and shows how phenomenological Lagrangians can be used to calculate corrections to the leading soft pion results to any desired order in external momenta. The renormalization group is used to elucidate the structure of these corrections. Corrections due to the finite mass of the pion are treated and speculations are made about another possible application of phenomenological Lagrangians. (Auth.)

  6. Critical appraisal of rigour in interpretive phenomenological nursing research.

    Science.gov (United States)

    de Witt, Lorna; Ploeg, Jenny

    2006-07-01

    This paper reports a critical review of published nursing research for expressions of rigour in interpretive phenomenology, and a new framework of rigour specific to this methodology is proposed. The rigour of interpretive phenomenology is an important nursing research methods issue that has direct implications for the legitimacy of nursing science. The use of a generic set of qualitative criteria of rigour for interpretive phenomenological studies is problematic because it is philosophically inconsistent with the methodology and creates obstacles to full expression of rigour in such studies. A critical review was conducted of the published theoretical interpretive phenomenological nursing literature from 1994 to 2004 and the expressions of rigour in this literature identified. We used three sources to inform the derivation of a proposed framework of expressions of rigour for interpretive phenomenology: the phenomenological scholar van Manen, the theoretical interpretive phenomenological nursing literature, and Madison's criteria of rigour for hermeneutic phenomenology. The nursing literature reveals a broad range of criteria for judging the rigour of interpretive phenomenological research. The proposed framework for evaluating rigour in this kind of research contains the following five expressions: balanced integration, openness, concreteness, resonance, and actualization. Balanced integration refers to the intertwining of philosophical concepts in the study methods and findings and a balance between the voices of study participants and the philosophical explanation. Openness is related to a systematic, explicit process of accounting for the multiple decisions made throughout the study process. Concreteness relates to usefulness for practice of study findings. Resonance encompasses the experiential or felt effect of reading study findings upon the reader. Finally, actualization refers to the future realization of the resonance of study findings. Adoption of this

  7. Supersymmetry and Superstring Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K; Gaillard, Mary K.; Zumino, Bruno

    2008-05-05

    We briefly cover the early history of supersymmetry, describe the relation of SUSY quantum field theories to superstring theories and explain why they are considered a likely tool to describe the phenomenology of high energy particle theory beyond the Standard Model.

  8. R-parity breaking phenomenology

    International Nuclear Information System (INIS)

    Vissani, F.

    1996-02-01

    We review various features of the R-parity breaking phenomenology, with particular attention to the low energy observables, and to the patterns of the R-parity breaking interactions that arise in Grand Unified models. (author). 22 refs, 1 fig., 3 tabs

  9. FANSY 1.0: a phenomenological model for simulation of coplanar particle generation in superhigh-energy hadron interactions

    International Nuclear Information System (INIS)

    Mukhamedshin, Rauf

    2009-01-01

    Simulations show that a phenomenon of coplanarity of most energetic subcores of γ-ray-hadron families found in mountain-based and stratospheric X-ray-emulsion chamber experiments requires to introduce a coplanar particle generation with large transverse momenta in hadron interactions at superhigh energies. Some physical mechanisms are considered. A phenomenological model, which makes it possible to simulate the coplanar particle generation, is presented. Different versions of this model are considered, their features are described and compared with those of models applied by the CORSIKA package. Cosmic-ray experimental data and simulated results are compared. Conclusion on features of hadron interactions at superhigh energies and some predictions with respect to LHC experiments are made. (orig.) 3

  10. The Classification of Hysteria and Related Disorders: Historical and Phenomenological Considerations

    Science.gov (United States)

    North, Carol S.

    2015-01-01

    This article examines the history of the conceptualization of dissociative, conversion, and somatoform syndromes in relation to one another, chronicles efforts to classify these and other phenomenologically-related psychopathology in the American diagnostic system for mental disorders, and traces the subsequent divergence in opinions of dissenting sectors on classification of these disorders. This article then considers the extensive phenomenological overlap across these disorders in empirical research, and from this foundation presents a new model for the conceptualization of these disorders. The classification of disorders formerly known as hysteria and phenomenologically-related syndromes has long been contentious and unsettled. Examination of the long history of the conceptual difficulties, which remain inherent in existing classification schemes for these disorders, can help to address the continuing controversy. This review clarifies the need for a major conceptual revision of the current classification of these disorders. A new phenomenologically-based classification scheme for these disorders is proposed that is more compatible with the agnostic and atheoretical approach to diagnosis of mental disorders used by the current classification system. PMID:26561836

  11. The Classification of Hysteria and Related Disorders: Historical and Phenomenological Considerations

    Directory of Open Access Journals (Sweden)

    Carol S. North

    2015-11-01

    Full Text Available This article examines the history of the conceptualization of dissociative, conversion, and somatoform syndromes in relation to one another, chronicles efforts to classify these and other phenomenologically-related psychopathology in the American diagnostic system for mental disorders, and traces the subsequent divergence in opinions of dissenting sectors on classification of these disorders. This article then considers the extensive phenomenological overlap across these disorders in empirical research, and from this foundation presents a new model for the conceptualization of these disorders. The classification of disorders formerly known as hysteria and phenomenologically-related syndromes has long been contentious and unsettled. Examination of the long history of the conceptual difficulties, which remain inherent in existing classification schemes for these disorders, can help to address the continuing controversy. This review clarifies the need for a major conceptual revision of the current classification of these disorders. A new phenomenologically-based classification scheme for these disorders is proposed that is more compatible with the agnostic and atheoretical approach to diagnosis of mental disorders used by the current classification system.

  12. Application of a phenomenological model for the surface impedance in high temperature superconducting films

    International Nuclear Information System (INIS)

    Mosquera, A.S.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    We report the application of a phenomenological model for the microwave surface impedance in high temperature superconducting films. This model is based on the modified two-fluid model, in which the real and imaginary parts of the surface impedance use the modelling parameter γ. This is responsible for the superconducting and normal charge carrier density and is used for the description of the temperature dependence of the London penetration depth λ L (T) including λ L (0). The relaxation time model also uses the γ parameter in combination with the residual resistance parameter α. The parameter δ 1 1 , γ, α, and δ 2 . The parameter δ 2 n (T) is a result of the competition between the increase of the relaxation time and the decrease of the normal charge-carrier density. We applied this model to analyze experimental results of MgB 2 , YBa 2 Cu 3 O 7-δ and GdBa 2 Cu 3 O 7-δ superconducting material. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Salva Phaenomenis. Phenomenological Dimension of Subjectivity in the Frame of the Reductionist Paradigm of the Cognitive Sciences

    Directory of Open Access Journals (Sweden)

    Kobiela Filip

    2015-06-01

    Full Text Available The paper addresses the family of questions that arose from the field of interactions between phenomenology and the cognitive sciences. On the one hand, apparently partial coextensivity of research domain of phenomenology and the cognitive sciences sets the goal of their cooperation and mutual inspiration. On the other hand, there are some obstacles on the path to achieve this goal: phenomenology and the cognitive sciences have different traditions, they speak different languages, they have adopted different methodological approaches, and last but not least, their prominent exponents exhibits different styles of thinking. In order to clarify this complicated area of tensions, the paper presents the results of philosophical reflections of such topics as: 1 philosophical presuppositions and postulates of the cognitive sciences 2 abstraction of some phenomena during idealisation and the dialectical model of science's development 3 argumentation based on prediction of future development of the cognitive sciences. This finally leads to the formulation of a phenomenology-based postulate for adequate model of mind and the discussion of humanistic dimension of cognitive sciences.

  14. Dreaming Consciousness: A Contribution from Phenomenology

    Directory of Open Access Journals (Sweden)

    Nicola Zippel

    2016-08-01

    Full Text Available The central aim of this paper is to offer a historical reconstruction of phenomenological studies on dreaming and to put forward a draft for a phenomenological theory of the dream state. Prominent phenomenologists have offered an extremely valuable interpretation of the dream as an intentional process, stressing its relevance in understanding the complexity of the mental life of subject, the continuous interplay between reality and unreality, and the possibility of building parallel spheres of experience influencing the development of personal identity. Taking into consideration the main characteristics of dream experience emphasized by these scholars, in the final part of the paper I propose to elaborate a new phenomenology of dreaming, which should be able to offer a theoretical description of dream states. My sketched proposal is based on Eugen Fink’s notion of the dream as “presentification”. By combining the past and the present of phenomenological investigation, I aim at suggesting a philosophical framework to explain the intentional features of dreaming as Erlebnis.

  15. Generalized uncertainty principle and quantum gravity phenomenology

    Science.gov (United States)

    Bosso, Pasquale

    The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.

  16. Exceptional phenomenology

    DEFF Research Database (Denmark)

    Aggerholm, Kenneth; Moltke Martiny, Kristian

    Phenomenological research is in traditional terms a matter of going 'back to the things themselves', as Husserl famously stated. But if phenomenology is to renew itself in creative ways and reveal new aspects of human experience it is of value to look for a certain kind of phenomena: exceptions. ...

  17. Ceramic coatings: A phenomenological modeling for damping behavior related to microstructural features

    International Nuclear Information System (INIS)

    Tassini, N.; Patsias, S.; Lambrinou, K.

    2006-01-01

    Recent research has shown that both stiffness and damping of ceramic coatings exhibit different non-linearities. These properties strongly depend on the microstructure, which is characterized by heterogeneous sets of elastic elements with mesoscopic sizes and shapes, as in non-linear mesoscopic elastic materials. To predict the damping properties of this class of materials, we have implemented a phenomenological model that characterizes their elastic properties. The model is capable of reproducing the basic features of the observed damping behavior for zirconia coatings prepared by air plasma spraying and electron-beam physical-vapor-deposition

  18. A phenomenological approach of solidification of polymeric phase change materials

    Science.gov (United States)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  19. Gyrofluid modeling and phenomenology of low-βe Alfvén wave turbulence

    Science.gov (United States)

    Passot, T.; Sulem, P. L.; Tassi, E.

    2018-04-01

    A two-field reduced gyrofluid model including electron inertia, ion finite Larmor radius corrections, and parallel magnetic field fluctuations is derived from the model of Brizard [Brizard, Phys. Fluids B 4, 1213 (1992)]. It assumes low βe, where βe indicates the ratio between the equilibrium electron pressure and the magnetic pressure exerted by a strong uniform magnetic guide field, but permits an arbitrary ion-to-electron equilibrium temperature ratio. It is shown to have a noncanonical Hamiltonian structure and provides a convenient framework for studying kinetic Alfvén wave turbulence, from magnetohydrodynamics to sub-de scales (where de holds for the electron skin depth). Magnetic energy spectra are phenomenologically determined within energy and generalized cross-helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion range, the generalized cross-helicity could display an inverse cascade if injected at small scales, for example by reconnection processes.

  20. Model-Based Prediction of Pulsed Eddy Current Testing Signals from Stratified Conductive Structures

    International Nuclear Information System (INIS)

    Zhang, Jian Hai; Song, Sung Jin; Kim, Woong Ji; Kim, Hak Joon; Chung, Jong Duk

    2011-01-01

    Excitation and propagation of electromagnetic field of a cylindrical coil above an arbitrary number of conductive plates for pulsed eddy current testing(PECT) are very complex problems due to their complicated physical properties. In this paper, analytical modeling of PECT is established by Fourier series based on truncated region eigenfunction expansion(TREE) method for a single air-cored coil above stratified conductive structures(SCS) to investigate their integrity. From the presented expression of PECT, the coil impedance due to SCS is calculated based on analytical approach using the generalized reflection coefficient in series form. Then the multilayered structures manufactured by non-ferromagnetic (STS301L) and ferromagnetic materials (SS400) are investigated by the developed PECT model. Good prediction of analytical model of PECT not only contributes to the development of an efficient solver but also can be applied to optimize the conditions of experimental setup in PECT

  1. Phenomenology and its application in medicine.

    Science.gov (United States)

    Carel, Havi

    2011-02-01

    Phenomenology is a useful methodology for describing and ordering experience. As such, phenomenology can be specifically applied to the first person experience of illness in order to illuminate this experience and enable health care providers to enhance their understanding of it. However, this approach has been underutilized in the philosophy of medicine as well as in medical training and practice. This paper demonstrates the usefulness of phenomenology to clinical medicine. In order to describe the experience of illness, we need a phenomenological approach that gives the body a central role and acknowledges the primacy of perception. I present such a phenomenological method and show how it could usefully illuminate the experience of illness through a set of concepts taken from Merleau-Ponty. His distinction between the biological body and the body as lived, analysis of the habitual body, and the notions of motor intentionality and intentional arc are used to capture the experience of illness. I then discuss the applications this approach could have in medicine. These include narrowing the gap between objective assessments of well-being in illness and subjective experiences which are varied and diverse; developing a more attuned dialogue between physicians and patients based on a thick understanding of illness; developing research methods that are informed by phenomenology and thus go beyond existing qualitative methods; and providing medical staff with a concrete understanding of the impact of illness on the life-world of patients.

  2. Phenomenological aspects of no-scale inflation models

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King' s College London, WC2R 2LS London (United Kingdom); Garcia, Marcos A.G.; Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Nanopoulos, Dimitri V., E-mail: john.ellis@cern.ch, E-mail: garciagarcia@physics.umn.edu, E-mail: dimitri@physics.tamu.edu, E-mail: olive@physics.umn.edu [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, 77843 Texas (United States)

    2015-10-01

    We discuss phenomenological aspects of inflationary models wiith a no-scale supergravity Kähler potential motivated by compactified string models, in which the inflaton may be identified either as a Kähler modulus or an untwisted matter field, focusing on models that make predictions for the scalar spectral index n{sub s} and the tensor-to-scalar ratio r that are similar to the Starobinsky model. We discuss possible patterns of soft supersymmetry breaking, exhibiting examples of the pure no-scale type m{sub 0} = B{sub 0} = A{sub 0} = 0, of the CMSSM type with universal A{sub 0} and m{sub 0} ≠ 0 at a high scale, and of the mSUGRA type with A{sub 0} = B{sub 0} + m{sub 0} boundary conditions at the high input scale. These may be combined with a non-trivial gauge kinetic function that generates gaugino masses m{sub 1/2} ≠ 0, or one may have a pure gravity mediation scenario where trilinear terms and gaugino masses are generated through anomalies. We also discuss inflaton decays and reheating, showing possible decay channels for the inflaton when it is either an untwisted matter field or a Kähler modulus. Reheating is very efficient if a matter field inflaton is directly coupled to MSSM fields, and both candidates lead to sufficient reheating in the presence of a non-trivial gauge kinetic function.

  3. Phenomenological aspects of no-scale inflation models

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics,King’s College London,WC2R 2LS London (United Kingdom); Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Garcia, Marcos A.G. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy,University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics andAstronomy, Texas A& M University,College Station, 77843 Texas (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, 77381 Texas (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, 10679 Athens (Greece); Olive, Keith A. [William I. Fine Theoretical Physics Institute, School of Physics and Astronomy,University of Minnesota,116 Church Street SE, Minneapolis, MN 55455 (United States)

    2015-10-01

    We discuss phenomenological aspects of inflationary models wiith a no-scale supergravity Kähler potential motivated by compactified string models, in which the inflaton may be identified either as a Kähler modulus or an untwisted matter field, focusing on models that make predictions for the scalar spectral index n{sub s} and the tensor-to-scalar ratio r that are similar to the Starobinsky model. We discuss possible patterns of soft supersymmetry breaking, exhibiting examples of the pure no-scale type m{sub 0}=B{sub 0}=A{sub 0}=0, of the CMSSM type with universal A{sub 0} and m{sub 0}≠0 at a high scale, and of the mSUGRA type with A{sub 0}=B{sub 0}+m{sub 0} boundary conditions at the high input scale. These may be combined with a non-trivial gauge kinetic function that generates gaugino masses m{sub 1/2}≠0, or one may have a pure gravity mediation scenario where trilinear terms and gaugino masses are generated through anomalies. We also discuss inflaton decays and reheating, showing possible decay channels for the inflaton when it is either an untwisted matter field or a Kähler modulus. Reheating is very efficient if a matter field inflaton is directly coupled to MSSM fields, and both candidates lead to sufficient reheating in the presence of a non-trivial gauge kinetic function.

  4. Phenomenology tools on cloud infrastructures using OpenStack

    International Nuclear Information System (INIS)

    Campos, I.; Fernandez-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.

    2013-01-01

    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage ''virtual'' machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on ''virtual'' machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations. (orig.)

  5. Phenomenology tools on cloud infrastructures using OpenStack

    Science.gov (United States)

    Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.

    2013-04-01

    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.

  6. Model building and phenomenology in supersymmetry

    International Nuclear Information System (INIS)

    Kim, Jong Soo

    2008-09-01

    Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)

  7. Model building and phenomenology in supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim Jong Soo

    2008-09-15

    Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)

  8. Particle Phenomenology of Compact Extra Dimensions

    International Nuclear Information System (INIS)

    Melbeus, Henrik

    2012-01-01

    This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza-Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models

  9. Statistical modeling in phenomenological description of electromagnetic cascade processes produced by high-energy gamma quanta

    International Nuclear Information System (INIS)

    Slowinski, B.

    1987-01-01

    A description of a simple phenomenological model of electromagnetic cascade process (ECP) initiated by high-energy gamma quanta in heavy absorbents is given. Within this model spatial structure and fluctuations of ionization losses of shower electrons and positrons are described. Concrete formulae have been obtained as a result of statistical analysis of experimental data from the xenon bubble chamber of ITEP (Moscow)

  10. Fractal growth of tumors and other cellular populations: Linking the mechanistic to the phenomenological modeling and vice versa

    International Nuclear Information System (INIS)

    D'Onofrio, Alberto

    2009-01-01

    In this paper we study and extend the mechanistic mean field theory of growth of cellular populations proposed by Mombach et al. [Mombach JCM, Lemke N, Bodmann BEJ, Idiart MAP. A mean-field theory of cellular growth. Europhys Lett 2002;59:923-928] (MLBI model), and we demonstrate that the original model and our generalizations lead to inferences of biological interest. In the first part of this paper, we show that the model in study is widely general since it admits, as particular cases, the main phenomenological models of cellular growth. In the second part of this work, we generalize the MLBI model to a wider family of models by allowing the cells to have a generic unspecified biologically plausible interaction. Then, we derive a relationship between this generic microscopic interaction function and the growth rate of the corresponding macroscopic model. Finally, we propose to use this relationship in order to help the investigation of the biological plausibility of phenomenological models of cancer growth.

  11. Phenomenology tools on cloud infrastructures using OpenStack

    Energy Technology Data Exchange (ETDEWEB)

    Campos, I.; Fernandez-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Pahlen, F. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); University of Zaragoza, Instituto de Biocomputacion y Fisica de Sistemas Complejos - BIFI, Zaragoza (Spain); Borges, G. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisbon (Portugal)

    2013-04-15

    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage ''virtual'' machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on ''virtual'' machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations. (orig.)

  12. Phenomenological and mechanistic modeling of melt-structure-water interactions in a light water reactor severe accident

    International Nuclear Information System (INIS)

    Bui, V.A.

    1998-01-01

    The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance

  13. Phenomenology and homeopathy.

    Science.gov (United States)

    Whitmarsh, Tom

    2013-07-01

    There is a great overlap between the way of seeing the world in clinical homeopathy and in the technical philosophical system known as phenomenology. A knowledge of phenomenologic principles reveals Hahnemann to have been an unwitting phenomenologist. The ideas of phenomenology as applied to medicine show that homeopathy is the ideal medical system to fulfill the goals of coming ever closer to true patient concerns and experience of illness. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  14. Phenomenology in Its Original Sense.

    Science.gov (United States)

    van Manen, Max

    2017-05-01

    In this article, I try to think through the question, "What distinguishes phenomenology in its original sense?" My intent is to focus on the project and methodology of phenomenology in a manner that is not overly technical and that may help others to further elaborate on or question the singular features that make phenomenology into a unique qualitative form of inquiry. I pay special attention to the notion of "lived" in the phenomenological term "lived experience" to demonstrate its critical role and significance for understanding phenomenological reflection, meaning, analysis, and insights. I also attend to the kind of experiential material that is needed to focus on a genuine phenomenological question that should guide any specific research project. Heidegger, van den Berg, and Marion provide some poignant exemplars of the use of narrative "examples" in phenomenological explorations of the phenomena of "boredom," "conversation," and "the meaningful look in eye-contact." Only what is given or what gives itself in lived experience (or conscious awareness) are proper phenomenological "data" or "givens," but these givens are not to be confused with data material that can be coded, sorted, abstracted, and accordingly analyzed in some "systematic" manner. The latter approach to experiential research may be appropriate and worthwhile for various types of qualitative inquiry but not for phenomenology in its original sense. Finally, I use the mythical figure of Kairos to show that the famous phenomenological couplet of the epoché-reduction aims for phenomenological insights that require experiential analysis and attentive (but serendipitous) methodical inquiry practices.

  15. Phenomenology of unified gauge theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1983-01-01

    Part I of these lectures treats the standard Glashow-Weinberg-Salam model of weak and electromagnetic interactions, discussing in turn its basic structure and weak neutral currents, charged currents, mixing angles and CP violation, and the phenomenology of weak vector and Higgs bosons. Part II of the lectures discusses the structure of theories of dynamical symmetry breaking such as technicolour, phenomenological consequences, frustrations and alternatives. The third part of these lectures offers the standard menu of grand unified theories (GUTs) of the strong, weak and electromagnetic interactions, including an hors d'oeuvre of constraints on the parameters of the standard model, a main course of baryon number violating processes, and desserts which violate lepton number and CP. The fourth and final part goes through different attempts to remedy the inadequacies of previous theories by invoking supersymmetry and reaching out towards gravitation. (orig./HSI)

  16. The Phenomenology of Emotion Experience in First-Episode Psychosis

    DEFF Research Database (Denmark)

    Vodušek, V V; Parnas, J; Tomori, M

    2014-01-01

    -depth interviews were conducted twice with each of the 20 participants (firstly at admission and secondly 6 months later). Data collection and analysis were guided by the principles of phenomenological study of lived experience. RESULTS: The emotion experiences described by our participants vary greatly in both......BACKGROUND: Although it has been suggested that disturbances in emotion experience and regulation play a central role in the aetiology and psychopathology of schizophrenia spectrum disorders, the phenomenology of emotion experience in schizophrenia remains under-researched. SAMPLING AND METHODS: In...... quality and intensity, but appear to have a common phenomenology. Anxiety is reported as the basic emotion which buffers, transforms and sometimes supplants all others. Emotions in general are experienced as foreign, unstable and perturbing, thereby contributing greatly to feelings of ambivalence...

  17. Global phenomenological optical model potential for nucleon-actinide reactions at energies up to 300 MeV

    International Nuclear Information System (INIS)

    Han Yinlu; Liang Haiying; Guo Hairui; Shen Qingbiao; Xu Yongli

    2010-01-01

    A set of new global phenomenological optical model potential parameters for the actinide region with incident nucleon energies from 1 keV up to 300 MeV is obtained. They are based on a smooth, unique functional form for the energy dependence of the potential depths and on physically constrained geometry parameters. The available experimental data including the neutron total cross sections, nonelastic cross sections, elastic scattering cross sections, elastic scattering angular distributions, and proton reaction cross sections and elastic scattering angular distributions of 232 Th and 238 U are used. The new nucleon global optical model potential parameters obtained are analyzed and used to analyze the experimental data of nucleon-actinide reactions. It is found that the present form of the global optical model potential could reproduce both the neutron and the proton experimental data.

  18. Credible Phenomenological Research: A Mixed-Methods Study

    Science.gov (United States)

    Flynn, Stephen V.; Korcuska, James S.

    2018-01-01

    The authors conducted a 3-phase investigation into the credible standards for phenomenological research practices identified in the literature and endorsed by a sample of counselor education qualitative research experts. Utilizing a mixed-methods approach, the findings offer evidence that professional counseling has a distinctive format in which…

  19. Phenomenological and mechanistic modeling of melt-structure-water interactions in a light water reactor severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Bui, V.A

    1998-10-01

    The objective of this work is to address the modeling of the thermal hydrodynamic phenomena and interactions occurring during the progression of reactor severe accidents. Integrated phenomenological models are developed to describe the accident scenarios, which consist of many processes, while mechanistic modeling, including direct numerical simulation, is carried out to describe separate effects and selected physical phenomena of particular importance 88 refs, 54 figs, 7 tabs

  20. Potential constitutive models for salt: Survey of phenomenology, micromechanisms, and equations

    International Nuclear Information System (INIS)

    Senseny, P.E.; Hansen, F.D.

    1987-12-01

    Results are given of a literature survey performed to document the thermomechanical phenomena and micromechanical processes observed for salt over the ranges of stress and temperature of interest for a high-level nuclear repository. The elastic and thermal expansion behavior of salt can be readily modeled by the generalized Duhamel Neumann form of Hooke's law with temperature-dependent elastic constants and coefficient of thermal expansion. Inelastic deformation is primarily viscoplastic, but also has a brittle component. The observed phenomenological behavior of salt occurs because of micromechanical processes. To the extent that these processes have been studied, a summary of deformation mechanisms in natural salt is included in this report. Eight constitutive models that appear to be capable of modeling the viscoplastic deformation have been selected from the literature. Two models have been selected to model brittle deformation. Insufficient data are available to develop a model for failure. 92 refs., 39 figs., 6 tabs

  1. Electric conductivity of alkali metal vapors in the region of critical point

    International Nuclear Information System (INIS)

    Likal'ter, A.A.

    1982-01-01

    A behaviour of alkali metal conductivity in the vicinity of a critical point has been analyzed on the base of deVeloped representations on a vapor state. A phenomenological conductivity theory has been developed, which is in a good agreement with experimental data obtained

  2. Phenomenological study of extended seesaw model for light sterile neutrino

    International Nuclear Information System (INIS)

    Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani

    2017-01-01

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix (M D ), Majorana neutrino mass matrix (M R ) and the mass matrix (M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of (M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν (m eτ =0 and m ττ =0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 ×Z 2 .

  3. Melanie Klein's metapsychology: phenomenological and mechanistic perspective.

    Science.gov (United States)

    Mackay, N

    1981-01-01

    Freud's metapsychology is the subject of an important debate. This is over whether psychoanalysis is best construed as a science of the natural science type or as a special human science. The same debate applies to Melanie Klein's work. In Klein's metapsychology are two different and incompatible models of explanation. One is taken over from Freud's structural theory and appears to be similarly mechanistic. The other is clinically based and phenomenological. These two are discussed with special reference to the concepts of "phantasy" and "internal object".

  4. USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY

    International Nuclear Information System (INIS)

    Chen Yun; Zhu Zonghong; Alcaniz, J. S.; Gong Yungui

    2010-01-01

    By assuming a phenomenological form for the ratio of the dark energy and matter densities ρ X ∝ ρ m a ξ , we discuss the cosmic coincidence problem in light of current observational data. Here, ξ is a key parameter to denote the severity of the coincidence problem. In this scenario, ξ = 3 and ξ = 0 correspond to ΛCDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 X = 0, where ω X is the equation of state of the dark energy component, whereas the inequality ξ + 3ω X ≠ 0 represents non-standard cosmology. We place observational constraints on the parameters (Ω X,0 , ω X , ξ) of this model, where Ω X,0 is the present value of density parameter of dark energy Ω X , by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get Ω X,0 = 0.72 ± 0.02, ω X = -0.98 ± 0.07, and ξ = 3.06 ± 0.35 at 68.3% confidence level. The result shows that the ΛCDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.

  5. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  6. Phenomenological model for non-equilibrium deuteron emission in nucleon induced reactions

    International Nuclear Information System (INIS)

    Broeders, C.H.M.; Konobeyev, A.Yu.

    2005-01-01

    A new approach is proposed for the calculation of non-equilibrium deuteron energy distributions in nuclear reactions induced by nucleons of intermediate energies. It combines the model of the nucleon pick-up, the coalescence and the deuteron knock-out. Emission and absorption rates for excited particles are described by the pre-equilibrium hybrid model. The model of Sato, Iwamoto, Harada is used to describe the nucleon pick-up and the coalescence of nucleons from the exciton configurations starting from (2p, 1h). The model of deuteron knock-out is formulated taking into account the Pauli principle for the nucleon-deuteron interaction inside a nucleus. The contribution of the direct nucleon pick-up is described phenomenologically. The multiple pre-equilibrium emission of particles is taken into account. The calculated deuteron energy distributions are compared with experimental data from 12 C to 209 Bi. (orig.)

  7. The use of phenomenology in mental health nursing research.

    Science.gov (United States)

    Picton, Caroline Jane; Moxham, Lorna; Patterson, Christopher

    2017-12-18

    Historically, mental health research has been strongly influenced by the underlying positivism of the quantitative paradigm. Quantitative research dominates scientific enquiry and contributes significantly to understanding our natural world. It has also greatly benefitted the medical model of healthcare. However, the more literary, silent, qualitative approach is gaining prominence in human sciences research, particularly mental healthcare research. To examine the qualitative methodological assumptions of phenomenology to illustrate the benefits to mental health research of studying the experiences of people with mental illness. Phenomenology is well positioned to ask how people with mental illness reflect on their experiences. Phenomenological research is congruent with the principles of contemporary mental healthcare, as person-centred care is favoured at all levels of mental healthcare, treatment, service and research. Phenomenology is a highly appropriate and suitable methodology for mental health research, given it includes people's experiences and enables silent voices to be heard. This overview of the development of phenomenology informs researchers new to phenomenological enquiry. ©2017 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  8. Thermal conduction in classical low-dimensional lattices

    International Nuclear Information System (INIS)

    Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2003-01-01

    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable non-linear systems is briefly discussed. Finally, possible future research themes are outlined

  9. Interpretive Hermeneutic Phenomenology: Clarifying Understanding ...

    African Journals Online (AJOL)

    The philosophical orientation of Gadamerian hermeneutic phenomenology is explored in this paper. Gadamer offers a hermeneutics of the humanities that differs significantly from models of the human sciences historically rooted in scientific methodologies. In particular, Gadamer proposes that understanding is first a mode ...

  10. Direct Observation of the Phenomenology of a Solid Thermal Explosion Using Time-Resolved Proton Radiography

    International Nuclear Information System (INIS)

    Smilowitz, L.; Henson, B. F.; Romero, J. J.; Asay, B. W.; Schwartz, C. L.; Saunders, A.; Merrill, F. E.; Morris, C. L.; Kwiatkowski, K.; Hogan, G.; Nedrow, P.; Murray, M. M.; Thompson, T. N.; McNeil, W.; Rightley, P.; Marr-Lyon, M.

    2008-01-01

    We present a new phenomenology for burn propagation inside a thermal explosion based on dynamic radiography. Radiographic images were obtained of an aluminum cased solid cylindrical sample of a plastic bonded formulation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. The phenomenology observed is ignition followed by cracking in the solid accompanied by the propagation of a radially symmetric front of increasing proton transmission. This is followed by a further increase in transmission through the sample, ending after approximately 100 μs. We show that these processes are consistent with the propagation of a convective burn front followed by consumption of the remaining solid by conductive particle burning

  11. Putting phenomenology in its place: some limits of a phenomenology of medicine.

    Science.gov (United States)

    Sholl, Jonathan

    2015-12-01

    Several philosophers have recently argued that phenomenology is well-suited to help understand the concepts of health, disease, and illness. The general claim is that by better analysing how illness appears to or is experienced by ill individuals--incorporating the first-person perspective--some limitations of what is seen as the currently dominant third-person or 'naturalistic' approaches to understand health and disease can be overcome. In this article, after discussing some of the main insights and benefits of the phenomenological approach, I develop three general critiques of it. First, I show that what is often referred to as naturalism tends to be misunderstood and/or misrepresented, resulting in straw-man arguments. Second, the concept of normality is often problematically employed such that some aspects of naturalism are actually presupposed by many phenomenologists of medicine. Third, several of the key phenomenological insights and concepts, e.g. having vs. being a body, the alienation of illness, the epistemic role of the first-person perspective, and the idea of health within illness, each bring with them new problems that limit their utility. While acknowledging the possible contributions of phenomenology, these criticisms point to some severe limitations of bringing phenomenological insights to bear on the problems facing philosophy of medicine that should be addressed if phenomenology is to add anything substantially new to its debates.

  12. Phenomenological Study of Business Models Used to Scale Online Enrollment at Institutions of Higher Education

    Science.gov (United States)

    Williams, Dana E.

    2012-01-01

    The purpose of this qualitative phenomenological study was to explore factors for selecting a business model for scaling online enrollment by institutions of higher education. The goal was to explore the lived experiences of academic industry experts involved in the selection process. The research question for this study was: What were the lived…

  13. The application of a phenomenological model to inelastic nucleus-nucleus interactions for laboratory momenta below 5 GeV/c per nucleon of the incident nucleus

    International Nuclear Information System (INIS)

    Grishin, V.G.; Kladnitskaya, E.N.

    1985-01-01

    A phenomenological model for inelastic nucleus-nucleus interactions at momenta below 5 GeV/c per nucleon is described. Particle interactions inside the interacting nuclei are described by phenomenological models of hadron-nucleus and hadron-nucleon interactions. The Monte-Carlo model provides the kinematic variables for a set of events under study. The comparison of the model inclusive distri-- butions for different particles and nucleus-nucleus interactions agrees well with the experimental data

  14. Stop, look, listen: the need for philosophical phenomenological perspectives on auditory verbal hallucinations

    Science.gov (United States)

    McCarthy-Jones, Simon; Krueger, Joel; Larøi, Frank; Broome, Matthew; Fernyhough, Charles

    2013-01-01

    One of the leading cognitive models of auditory verbal hallucinations (AVHs) proposes such experiences result from a disturbance in the process by which inner speech is attributed to the self. Research in this area has, however, proceeded in the absence of thorough cognitive and phenomenological investigations of the nature of inner speech, against which AVHs are implicitly or explicitly defined. In this paper we begin by introducing philosophical phenomenology and highlighting its relevance to AVHs, before briefly examining the evolving literature on the relation between inner experiences and AVHs. We then argue for the need for philosophical phenomenology (Phenomenology) and the traditional empirical methods of psychology for studying inner experience (phenomenology) to mutually inform each other to provide a richer and more nuanced picture of both inner experience and AVHs than either could on its own. A critical examination is undertaken of the leading model of AVHs derived from phenomenological philosophy, the ipseity disturbance model. From this we suggest issues that future work in this vein will need to consider, and examine how interdisciplinary methodologies may contribute to advances in our understanding of AVHs. Detailed suggestions are made for the direction and methodology of future work into AVHs, which we suggest should be undertaken in a context where phenomenology and physiology are both necessary, but neither sufficient. PMID:23576974

  15. Baryon and meson phenomenology in the extended Linear Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Giacosa, Francesco; Habersetzer, Anja; Teilab, Khaled; Eshraim, Walaa; Divotgey, Florian; Olbrich, Lisa; Gallas, Susanna; Wolkanowski, Thomas; Janowski, Stanislaus; Heinz, Achim; Deinet, Werner; Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Kovacs, Peter; Wolf, Gyuri [Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest (Hungary); Parganlija, Denis [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2014-07-01

    The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.

  16. Internally consistent gamma ray burst time history phenomenology

    International Nuclear Information System (INIS)

    Cline, T.L.

    1985-01-01

    A phenomenology for gamma ray burst time histories is outlined. Order of their generally chaotic appearance is attempted, based on the speculation that any one burst event can be represented above 150 keV as a superposition of similarly shaped increases of varying intensity. The increases can generally overlap, however, confusing the picture, but a given event must at least exhibit its own limiting characteristic rise and decay times if the measurements are made with instruments having adequate temporal resolution. Most catalogued observations may be of doubtful or marginal utility to test this hypothesis, but some time histories from Helios-2, Pioneer Venus Orbiter and other instruments having one-to several-millisecond capabilities appear to provide consistency. Also, recent studies of temporally resolved Solar Maximum Mission burst energy spectra are entirely compatible with this picture. The phenomenology suggested here, if correct, may assist as an analytic tool for modelling of burst processes and possibly in the definition of burst source populations

  17. Simple phenomenological model for phase transitions in confined geometry. 2. Capillary condensation/evaporation in cylindrical mesopores.

    Science.gov (United States)

    Pellenq, Roland J-M; Coasne, Benoit; Denoyel, Renaud O; Coussy, O

    2009-02-03

    A simple phenomenological model that describes capillary condensation and evaporation of pure fluids confined in cylindrical mesopores is presented. Following the work of Celestini (Celestini, F. Phys. Lett. A 1997, 228, 84), the free energy density of the system is derived using interfacial tensions and a corrective term that accounts for the interaction coupling between the vapor/adsorbed liquid and the adsorbed liquid/adsorbent interfaces. This corrective term is shown to be consistent with the Gibbs adsorption isotherm and assessed by standard adsorption tests. This model reveals that capillary condensation and evaporation are metastable and equilibrium processes, respectively, hence exhibiting the existence of a hysteresis loop inadsorption/desorption isotherm that is well-known in experiment. We extend the phenomenological model of Celestini to give a quantitative description of adsorption on the pore wall and hysteresis width evolution with temperature and confinement. Direct quantitative comparison is made with experimental data for confined argon. Used as a characterizing tool, this integrated model allows in a single fit of an experimental adsorption/desorption isotherm assessing essential characterization data such as the specific surface area, pore volume, and mean pore size.

  18. Estimating Phenomenological Parameters in Multi-Assets Markets

    Science.gov (United States)

    Raffaelli, Giacomo; Marsili, Matteo

    Financial correlations exhibit a non-trivial dynamic behavior. This is reproduced by a simple phenomenological model of a multi-asset financial market, which takes into account the impact of portfolio investment on price dynamics. This captures the fact that correlations determine the optimal portfolio but are affected by investment based on it. Such a feedback on correlations gives rise to an instability when the volume of investment exceeds a critical value. Close to the critical point the model exhibits dynamical correlations very similar to those observed in real markets. We discuss how the model's parameter can be estimated in real market data with a maximum likelihood principle. This confirms the main conclusion that real markets operate close to a dynamically unstable point.

  19. Phenomenon-Based Teaching and Learning through the Pedagogical Lenses of Phenomenology: The Recent Curriculum Reform in Finland

    Directory of Open Access Journals (Sweden)

    Vasileios Symeonidis

    2016-12-01

    Full Text Available This paper aims to explore the phenomenon-based approach in teaching and learning, through the pedagogical lenses of phenomenology, the philosophy of phenomena. The phenomenon-based approach has informed the new core curriculum for basic education in Finland, which has officially introduced multidisciplinary learning modules as periods of phenomenon-based project studies. In this paper, we discuss how the specific approach is integrated into the curriculum, its theoretical grounding and its connections to constructivism. We also explore its implications for teaching and learning from a phenomenological perspective. The paper concludes that the responsive relation between teaching and learning is essential when our purpose is educational. Students are part of the learning process, but they do not necessarily initiate it; similarly, teachers cannot fully instruct it. Thus, we need to make meaning of the space between teaching and learning, in an effort to reclaim learning for pedagogy.

  20. Low energy phenomenology

    CERN Document Server

    Schmid, C

    1972-01-01

    The following topics are discussed: theoretical tools; models; Pade approximants; theoretical predictions of pi pi S-waves; pi pi phase shifts from K/sub e4/; Chew Low extrapolation in pi p to pi /sup -/ pi /sup +/n; the KK cusp in pi pi to pi pi ; K pi phase shifts. (25 refs) . For pt. I see ibid., 265. The following topics are discussed: patterns of resonance couplings from exchange degeneracy; Reggeon couplings; clash of t and s channel structure in pole model; B/sub 4/ phenomenology; Odorico zeros; Barrelet zeros and phase shift ambiguities. (29 refs).

  1. Four Generations in Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Kribs, Graham D. [Department of Physics, University of Oregon, Eugene, OR 97403 (United States); Plehn, Tilman [SUPA, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (HCP speaker) (United Kingdom); Spannowsky, Michael [ASC, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, 80333 Muenchen (Germany); Tait, Tim M.P. [HEP Division, Argonne National Laboratory, 9700 Cass Ave., Argonne, IL 60439 (United States)

    2008-03-15

    In four-generation models Higgs masses of 115-315 GeV are perfectly allowed by electroweak precision data. In this mass range we find dramatic effects on Higgs phenomenology at hadron colliders: production rates are enhanced, weak-boson-fusion channels are suppressed, angular distributions are modified, Higgs pairs can be observed, and Higgs decays to Majorana neutrinos can lead to exotic signals.

  2. Development and Analysis of Patient-Based Complete Conducting Airways Models.

    Directory of Open Access Journals (Sweden)

    Rafel Bordas

    Full Text Available The analysis of high-resolution computed tomography (CT images of the lung is dependent on inter-subject differences in airway geometry. The application of computational models in understanding the significance of these differences has previously been shown to be a useful tool in biomedical research. Studies using image-based geometries alone are limited to the analysis of the central airways, down to generation 6-10, as other airways are not visible on high-resolution CT. However, airways distal to this, often termed the small airways, are known to play a crucial role in common airway diseases such as asthma and chronic obstructive pulmonary disease (COPD. Other studies have incorporated an algorithmic approach to extrapolate CT segmented airways in order to obtain a complete conducting airway tree down to the level of the acinus. These models have typically been used for mechanistic studies, but also have the potential to be used in a patient-specific setting. In the current study, an image analysis and modelling pipeline was developed and applied to a number of healthy (n = 11 and asthmatic (n = 24 CT patient scans to produce complete patient-based airway models to the acinar level (mean terminal generation 15.8 ± 0.47. The resulting models are analysed in terms of morphometric properties and seen to be consistent with previous work. A number of global clinical lung function measures are compared to resistance predictions in the models to assess their suitability for use in a patient-specific setting. We show a significant difference (p < 0.01 in airways resistance at all tested flow rates in complete airway trees built using CT data from severe asthmatics (GINA 3-5 versus healthy subjects. Further, model predictions of airways resistance at all flow rates are shown to correlate with patient forced expiratory volume in one second (FEV1 (Spearman ρ = -0.65, p < 0.001 and, at low flow rates (0.00017 L/s, FEV1 over forced vital capacity (FEV1

  3. A new approach to the theory of heat conduction with finite wave speeds

    Directory of Open Access Journals (Sweden)

    Vito Antonio Cimmelli

    1991-05-01

    Full Text Available Relations between the physical models describing the heat conduction in solids and a phenomenological model leading to quasi-linear hyperbolic equations and systems of conservation laws are presented. A new semi-empirical temperature scale is introduced in terms of which a modified Fourier law is formulated. The hyperbolicity of the heat conduction equation is discussed together with some wave propagation problems.

  4. Light Higgs bosons in phenomenological NMSSM

    International Nuclear Information System (INIS)

    Mahmoudi, F.; Rathsman, J.; Zeune, L.; Goettingen Univ.

    2010-12-01

    We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)

  5. Light Higgs bosons in phenomenological NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, F. [CERN, Geneva (Switzerland); Clermont Univ., CNRS/IN2P3, LPC, Clermont-Ferrand (France); Rathsman, J. [Uppsala Univ. (Sweden). High-Energy Physics; Lund Univ. (Sweden). Theoretical High Energy Physics; Staal, O. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goettingen Univ. (Germany). II. Physikalisches Inst.

    2010-12-15

    We consider scenarios in the next-to-minimal supersymmetric model (NMSSM) where the CP-odd and charged Higgs bosons are very light. As we demonstrate, these can be obtained as simple deformations of existing phenomenological MSSM benchmarks scenarios with parameters defined at the weak scale. This offers a direct and meaningful comparison to the MSSM case. Applying a wide set of up-to-date constraints from both high-energy collider and flavour physics, the Higgs boson masses and couplings are studied in viable parts of parameter space. The LHC phenomenology of the light Higgs scenario for neutral and charged Higgs boson searches is discussed. (orig.)

  6. Phenomenological comparison of models with extended Higgs sectors

    International Nuclear Information System (INIS)

    Muehlleitner, Margarete

    2017-01-01

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  7. Phenomenological comparison of models with extended Higgs sectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlleitner, Margarete [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Sampaio, Marco O.P. [Aveiro Univ. e CIDMA (Portugal). Dept. de Fisica; Santos, Rui [Instituto Politecnico de Lisboa (Portugal). ISEL - Instituto Superior de Engenharia de Lisboa; Lisboa Univ. (Portugal). Centro de Fisica Teorica e Computacional; Univ. do Minho, Braga (Portugal). LIP, Dept. de Fisica; Wittbrodt, Jonas [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-03-22

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  8. Educator-on-Educator Workplace Bullying: A Phenomenological Study

    Science.gov (United States)

    de Wet, N. C.

    2011-01-01

    Husserlian phenomenology was used as the philosophical underpinning for this study, since its purpose is to describe human experience as it is lived by educators who have experienced workplace bullying. In-depth interviews were conducted with participants identified by means of the snowball sampling technique. Colaizzi's method for descriptive…

  9. Phenomenological modeling of the thermal dynamics of a rotating cylinder heated by electromagnetic induction; Modelisation phenomenologique de la dynamique thermique d'un cylindre rotatoire chauffe par induction electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Perez, S. [Universidad de Carabobo, Facultad de Ingenieria, Valencia (Venezuela); Therien, N.; Broadbent, A.D. [Sherbrooke Univ., Faculte de Genie, Quebec (Canada)

    2001-07-01

    This work concerns the development of a phenomenological model describing the temperature dynamics of a metal cylinder heated by electric induction. The model used takes into consideration in an explicit way the different mechanisms of energy transfer from the cylinder towards the environment, in particular the convection and radiant heat transfers. The conduction process, which takes place inside the cylinder as a response to the temperature gradient at the periphery of the cylinder, has been characterized too. The process of energy induction inside the cylinder has been characterized in a precise way. The experiments show that the induction is localized in the part of the cylinder facing the inductors and that the induction presents a distributed feature in the induction section. The model proposed is based on the concept of substantial derivative. It calculates the response of the process with respect to these disturbances and with respect to the rotation speed of the cylinder and to the electric power supplied to the system. (J.S.)

  10. Phenomenology of the SU(3)cxSU(3)LxU(1)X model with exotic charged leptons

    International Nuclear Information System (INIS)

    Salazar, Juan C.; Ponce, William A.; Gutierrez, Diego A.

    2007-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c xSU(3) L xU(1) X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model

  11. Studies on phenomenological hadron models with chiral symmetry

    International Nuclear Information System (INIS)

    Rathske, E.

    1991-12-01

    In this report we consider, in the context of phenomenological models for hadrons, several aspects of Skyrme-type and hybrid bag models. In the first of the two central parts we discuss two qualitatively different generalizations of the minimal SU(2) Skyrme model. One of these consists in adding to the Lagrangian density a symmetric term of fourth order in the field derivatives. Its consequences are determined for solutions and observables by analytical and numerical investigations. In the other we propose a contribution for explicit isospin symmetry breaking in the mesonic as well as the baryonic sector. Together with the standard nonlinear σ-model term it allows for exact time-dependent classical soliton solutions. Their quantization leads to a quantitative connection between the hadronic isospin mass differenced of pions and nucleons. The second main part of this report is devoted to the generalization of SU(2) bag models under the aspect of chiral symmetry. We first show that the construction of appropriate surface terms in the Lagrangian density necessitates the introduction of dynamical bosonic degrees of freedom. This allows for a variety of bag scenarios (including the 'endopionic' bag). We then consider explicit isospin symmetry breaking for hybrid bag models with a nonlinear mesonic sector. An intimate relationship is revealed between the effects of a quark mass difference and the time-dependent bosonic solutions found for the purely mesonic case. It is reflected in a nontrivial interdependence between quark and meson masses, bag radius and chiral angle. We provide an especially extensive list of references for the topics discussed in this report. (orig.) [de

  12. Toward a Phenomenological-Longitudinal Model of Media Gratification Processes.

    Science.gov (United States)

    Kielwasser, Alfred P.; And Others

    While not dismissing the "uses and gratifications" approach to research, this paper attempts to increase the theoretical and practical utility of gratifications measures by approaching them through a more phenomenological and longitudinal tack. The paper suggests that any "gratification unit" is given a unique meaning by the…

  13. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    Directory of Open Access Journals (Sweden)

    R R Poznanski

    Full Text Available A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage' have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by

  14. Philosophy of phenomenology: how understanding aids research.

    Science.gov (United States)

    Converse, Mary

    2012-01-01

    To assist the researcher in understanding the similarities and differences between the Husserlian and Heideggerian philosophies of phenomenology, and how that philosophy can inform nursing research as a useful methodology. Nurse researchers using phenomenology as a methodology need to understand the philosophy of phenomenology to produce a research design that is philosophically congruent. However, phenomenology has a long and complex history of development, and may be difficult to understand and apply. The author draws from Heidegger (1962), Gadamer (2004), and nurse scholars and methodologists. To give the reader a sense of the development of the philosophy of phenomenology, the author briefly recounts its historical origins and interpretations, specifically related to Husserl, Heidegger and Gadamer. The author outlines the ontological and epistemological assumptions of Husserlian and Heideggerian phenomenology and guidance for methodology inspired by these philosophers. Difficulties with engaging in phenomenological research are addressed, especially the processes of phenomenological reduction and bracketing, and the lack of clarity about the methods of interpretation. Despite its complexity, phenomenology can provide the nurse researcher with indepth insight into nursing practice. An understanding of phenomenology can guide nurse researchers to produce results that have meaning in nursing patient care.

  15. Impact of semi-annihilations on dark matter phenomenology - an example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Belanger, G.; Kannike, K.; Pukhov, A.; Raidal, M.

    2012-01-01

    We study the impact of semi-annihilations χχ ↔ χX; where χ is dark matter and X is any standard model particle, on dark matter phenomenology. We formulate scalar dark matter models with minimal field content that predict non-trivial dark matter phenomenology for different discrete Abelian symmetries Z N , N > 2, and contain semi-annihilation processes. We implement such an example model in micrOMEGAs and show that semi-annihilations modify the phenomenology of this type of models. (authors)

  16. Phenomenological study of extended seesaw model for light sterile neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Newton [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Indian Institute of Technology,Gandhinagar, Ahmedabad-382424 (India); Ghosh, Monojit [Department of Physics, Tokyo Metropolitan University,Hachioji, Tokyo 192-0397 (Japan); Goswami, Srubabati [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Gupta, Shivani [Center of Excellence for Particle Physics (CoEPP), University of Adelaide,Adelaide SA 5005 (Australia)

    2017-03-14

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m{sub ν}, depends on the Dirac neutrino mass matrix (M{sub D}), Majorana neutrino mass matrix (M{sub R}) and the mass matrix (M{sub S}) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M{sub D} and observe that maximum five zeros in M{sub D} can lead to viable zero textures in m{sub ν}. For this study we consider four different forms for M{sub R} (one diagonal and three off diagonal) and two different forms of (M{sub S}) containing one zero. Remarkably we obtain only two allowed forms of m{sub ν} (m{sub eτ}=0 and m{sub ττ}=0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m{sub ν} in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m{sub ν}. We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z{sub 8}×Z{sub 2}.

  17. Physics on smallest scales. An introduction to minimal length phenomenology

    International Nuclear Information System (INIS)

    Sprenger, Martin; Goethe Univ., Frankfurt am Main; Nicolini, Piero; Bleicher, Marcus

    2012-02-01

    Many modern theories which try to unite gravity with the Standard Model of particle physics, as e.g. string theory, propose two key modifications to the commonly known physical theories: - the existence of additional space dimensions - the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the LHC), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010 we have explored some phenomenological implications of the potential existence of a minimal length. In this paper we review the idea and formalism of a quantum gravity induced minimal length in the generalised uncertainty principle framework as well as in the coherent state approach to non- commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity induced minimal length. (orig.)

  18. Using Transcendental Phenomenology to Explore the “Ripple Effect” in a Leadership Mentoring Program

    OpenAIRE

    Tammy Moerer-Urdahl; John W. Creswell

    2004-01-01

    Several approaches exist for organizing and analyzing data in a phenomenological qualitative study. Transcendental phenomenology, based on principles identified by Husserl (1931) and translated into a qualitative method by Moustakas (1994), holds promise as a viable procedure for phenomenological research. However, to best understand the approach to transcendental phenomenology, the procedures need to be illustrated by a qualitative study that employs this approach. This article first discuss...

  19. Phenomenological aspects of unified theories

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1987-01-01

    The author briefly discusses two new phenomena of recent interest, the 5/sup th/ force and variant axions. The former, for its elucidation, will require further gravitational experiments, but the author concludes that variant axions are now definitely rules out experimentally. Various aspects of superstring phenomenology are then addressed, including some of the generic predictions of superstrings and some of its generic problems. In particular, he discusses some of the phenomenological consequences of having an extra Z 0 boson and the circumstances under which this excitation is a genuine prediction of superstrings. Since it is likely that a more reliable relic of superstrings will be provided by the presence of superpartners at low energy (≤ TeV), he discusses some of the bounds for squarks and gluinos obtained at the SppS collider and the expectations for their production at the Tevatron. As a final topic, he touches upon some of the consequences that result from having the Fermi scale arise from an underlying theory. Some aspects of the composite Higgs model and of the strongly coupled standard model are briefly reviewed

  20. Direct Detection Phenomenology in Models Where the Products of Dark Matter Annihilation Interact with Nuclei

    DEFF Research Database (Denmark)

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.

    2015-01-01

    We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window.......We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...

  1. van Manen's method and reduction in a phenomenological hermeneutic study.

    Science.gov (United States)

    Heinonen, Kristiina

    2015-03-01

    To describe van Manen's method and concept of reduction in a study that used a phenomenological hermeneutic approach. Nurse researchers have used van Manen's method in different ways. Participants' lifeworlds are described in depth, but descriptions of reduction have been brief. The literature and knowledge review and manual search of research articles. Databases Web Science, PubMed, CINAHL and PsycINFO, without applying a time period, to identify uses of van Manen's method. This paper shows how van Manen's method has been used in nursing research and gives some examples of van Manen's reduction. Reduction enables us to conduct in-depth phenomenological hermeneutic research and understand people's lifeworlds. As there are many variations in adapting reduction, it is complex and confusing. This paper contributes to the discussion of phenomenology, hermeneutic study and reduction. It opens up reduction as a method for researchers to exploit.

  2. Process modeling of conductivity in nanocomposites based on reticulated polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Dolgoshej, V.B.; Korskanov, V.V.; Karpova, I.L.; Bardash, L.V.

    2012-01-01

    The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties

  3. Phenomenology and Meaning Attribution

    African Journals Online (AJOL)

    John Paley. (2017). Phenomenology as Qualitative Research: A Critical Analysis of Meaning Attribution. ... basic philosophical nature of phenomenological meaning and inquiry, and that he not ... In keeping with the title of my book, Researching. Lived Experience ...... a quantitative social science that can make generalizing.

  4. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling

    OpenAIRE

    Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H.

    2017-01-01

    Fused deposition modeling (FDM) is limited by the availability of application specific functional materials. Here we illustrate printing of non-conventional polymer nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially available desktop 3D printer leading toward printing of electrically conductive structures. The printability, electrical conductivity and mechanical stability of the polymer nanocomposites before and after 3D printing was evaluated. The res...

  5. A phenomenological model of the electrically stimulated auditory nerve fiber: temporal and biphasic response properties

    Directory of Open Access Journals (Sweden)

    Colin eHorne

    2016-02-01

    Full Text Available We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs. The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability under both monophasic and cathodic-anodic biphasic stimulation, without changing the model’s parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions.Our work extends the stochastic leaky integrate and fire (SLIF neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.

  6. Phenomenological aspects of mirage mediation

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Valeri

    2009-07-15

    We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)

  7. Phenomenological aspects of mirage mediation

    International Nuclear Information System (INIS)

    Loewen, Valeri

    2009-07-01

    We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)

  8. A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging.

    Science.gov (United States)

    Wu, Zhanxiong; Liu, Yang; Hong, Ming; Yu, Xiaohui

    2018-06-01

    The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.

  9. A PHENOMENOLOGICAL RESEARCH ON MORAL PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    CIPRIAN IULIAN ŞOPTICĂ

    2011-05-01

    Full Text Available The subject of this article concerns the what, the how and the whyof moral phenomenology. The first question we take into consideration is „What is moral phenomenology”? The second question which arises is „How to pursue moral phenomenology”? The third question is „Why pursue moral phenomenology”? We will analyze the study Moral phenomenology:foundation issues1, by which the American phenomenologist Uriah Kriegel aims three lines of research: the definition of moral phenomenology and the description of field research within the phenomenological tradition; the establishment of a method of moral phenomenology research; the emphasis of the purpose of such research and its importance for moral philosophy in general.

  10. What Is Film Phenomenology?

    NARCIS (Netherlands)

    Hanich, Julian; Ferencz-Flatz, Christian

    2016-01-01

    In this article Christian Ferencz-Flatz and I try to give an answer to the question what film phenomenology actually is. We proceed in three steps. First, we provide a survey of five different research practices within current film phenomenological writing: We call them excavation, explanation,

  11. New phenomenological and differential model for hot working of metallic polycrystalline materials

    International Nuclear Information System (INIS)

    Castellanos, J.; Munoz, J.; Gutierrez, V.; Rieiro, I.; Ruano, O. A.; Carsi, M.

    2012-01-01

    This paper presents a new phenomenological and differential model (that use differential equations) to predict the flow stress of a metallic polycrystalline material under hot working. The model, called MCC, depends on six parameters and uses two internal variables to consider the strain hardening, dynamic recovery and dynamic recrystallization processes that occur under hot working. The experimental validation of the MCC model has been carried out by means of stress-strain curves from torsion tests at high temperature (900 degree centigrade a 1200 degree centigrade) and moderate high strain rate (0.005 s-1 to 5 s-1) in a high nitrogen steel. The results reveal the very good agreement between experimental and predicted stresses. Furthermore, the Garofalo a-parameter and the strain to reach 50 % of recrystallized volume fraction have been employed as a control check being a first step to the physical interpretation of variables and parameters of the MCC model. (Author) 26 refs.

  12. A hybrid agent-based approach for modeling microbiological systems.

    Science.gov (United States)

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  13. Indo-Pacific Journal of Phenomenology

    African Journals Online (AJOL)

    The journal is an initiative of the Phenomenology Research Group based at Edith ... The journal is published by NISC SA (IPJP on NISC) and has its own website online here: http://www.ipjp.org/ ... Beyond support: Exploring support as existential phenomenon in the context of young people and mental health · EMAIL FREE ...

  14. Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca; Racioppi, Antonio; Vaskonen, Ville [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)

    2017-07-15

    Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal. (orig.)

  15. Phenomenological analysis of supersymmetric σ-models on coset spaces SO(10)/U(5) and E6/[SO(10)xU(1)

    International Nuclear Information System (INIS)

    Nyawelo, T.S.

    2004-12-01

    We discuss some phenomenological aspects of gauged supersymmetric σ-models on homogeneous coset-spaces E 6 /[SO(10)xU(1)] and SO(10)/U(5) which are some of the most interesting for phenomenology. We investigate in detail the vacuum configurations of these models, and study the resulting consequences for supersymmetry breaking and breaking of the internal symmetry. Some supersymmetric minima for both models with gauged full isometry groups E 6 and SO(10) are physically problematic as the Kaehler metric becomes singular ad hence the kinetic terms of the Goldstone boson multiplets vanish. This leads us to introduce recently proposed soft supersymmetry-breaking mass terms which displace the minimum away from the singulax point. A non-singular Kaehler metric breaks the linear subgroup SO(10)xU(1) of the E 6 model spontaneously. The particle spectrum of all these different models is computed. (author)

  16. Diffusion and reaction within porous packing media: a phenomenological model.

    Science.gov (United States)

    Jones, W L; Dockery, J D; Vogel, C R; Sturman, P J

    1993-04-25

    A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion.

  17. Using Phenomenological Models to Characterize Transmissibility and Forecast Patterns and Final Burden of Zika Epidemics

    DEFF Research Database (Denmark)

    Chowell, Gerardo; Hincapie-Palacio, Doracelly; Ospina, Juan

    2016-01-01

    BACKGROUND: The World Health Organization declared the ongoing Zika virus (ZIKV) epidemic in the Americas a Public Health Emergency of International Concern on February 1, 2016. ZIKV disease in humans is characterized by a "dengue-like" syndrome including febrile illness and rash. However, ZIKV...... impact. METHODS: We obtained daily counts of suspected Zika cases by date of symptoms onset from the Secretary of Health of Antioquia, Colombia during January-April 2016. We calibrated the generalized Richards model, a phenomenological model that accommodates a variety of early exponential and sub...

  18. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    Science.gov (United States)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  19. A Phenomenological and Narrative Approach to the “Journals” of the writer Alejandra Pizarnik

    Directory of Open Access Journals (Sweden)

    Dante Gabriel Duero

    2015-03-01

    Full Text Available We carried out a phenomenological and narrative analysis of the journals of writer Alejandra Pizarnik. We analyzed descriptions of her experiences as a psychiatric patient, and the changes reported in her physical experiences as well as existential orientation. This is an inductive enquiry based on the phenomenological and narrative analysis of a historic case study. Based on our results, we suggest some phenomenological categories which might be vital to our understanding of certain mental illness pathologies.

  20. Moral Education: Its Historical and Phenomenological Foundations.

    Science.gov (United States)

    Skorpen, Erling

    1984-01-01

    Presents a historically based outline of six stages of human normative development. Elucidates this outline phenomenologically and derives a hierarchical scheme of normative behavior from which to develop programs of moral education. (SK)

  1. Lyapunov-based decentralized control of a rougher flotation phenomenological simulator

    International Nuclear Information System (INIS)

    Benaskeur, A.R.; Desbiens, A.

    1999-01-01

    In this paper a new approach to decentralized control of linear two-by-two plants is presented. The novelty lies in the use of a modified control function of Lyapunov and the introduction of an integral action in each manipulated variable, to ensure zero tracking errors. An appropriate choice of the regulated errors, allows the elimination of the cross terms in the obtained backstepping-based multivariable controller. It will be proven that if the H ∞ -norm of the plant interaction quotient is less than one, the centralized controller can be split up into two independent scalar output feedback regulators. Under these conditions, the global stability and zero tracking errors will still be guaranteed. The developed scheme is successfully applied to the control of a rougher flotation phenomenological simulator. (author)

  2. The problem of arriving at a phenomenological description of memory loss.

    Science.gov (United States)

    Moyle, W; Clinton, M

    1997-07-01

    This paper discusses a methodological difficulty that arose when uncovering the conscious experience of being nurtured as an in-patient with depression on a psychiatric ward. It considers the problem of arriving at a phenomenological description of memory loss in a patient who had undergone electroconvulsive therapy (ECT). The paper begins by describing the prevalence of depression and its significance for nurses working in in-patient settings. Examples of empirical research into memory loss in depression are used to show what researchers must set aside if they are to arrive at a phenomenological description of memory loss. The choice of a phenomenological approach to the wider study from which the methodological problem discussed here arose is then justified. The phenomena of memory is introduced to show the methodological significance of attempting to arrive at a phenomenological description of the statement made by one of the participants, a woman being treated as an in-patient for major depression. A possible description of the phenomena of memory loss based on the existential phenomenology of Sartre is offered to call into question the ability of researchers to bracket their assumptions. The significance for nurses of the wider study from which our example is taken is then described. Finally it is argued that despite the methodological difficulty described, a phenomenological perspective based on the philosophy of Husserl can point nurses in the direction of meeting the human needs of their patients.

  3. Effective one-dimensionality of universal ac hopping conduction in the extreme disorder limit

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    1996-01-01

    A phenomenological picture of ac hopping in the symmetric hopping model (regular lattice, equal site energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is dominated by essentially one-dimensional "percolation paths." Modeling a percolation path...... as strictly one dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits computer simulations in two and three dimensions better than the effective medium approximation....

  4. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    Yang, X H; Kuang, J J; Lu, T J; Han, F S; Kim, T

    2013-01-01

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  5. Phenomenological modelling of second cancer incidence for radiation treatment planning

    International Nuclear Information System (INIS)

    Pfaffenberger, Asja; Oelfke, Uwe; Schneider, Uwe; Poppe, Bjoern

    2009-01-01

    It is still an unanswered question whether a relatively low dose of radiation to a large volume or a higher dose to a small volume produces the higher cancer incidence. This is of interest in view of modalities like IMRT or rotation therapy where high conformity to the target volume is achieved at the cost of a large volume of normal tissue exposed to radiation. Knowledge of the shape of the dose response for radiation-induced cancer is essential to answer the question of what risk of second cancer incidence is implied by which treatment modality. This study therefore models the dose response for radiation-induced second cancer after radiation therapy of which the exact mechanisms are still unknown. A second cancer risk estimation tool for treatment planning is presented which has the potential to be used for comparison of different treatment modalities, and risk is estimated on a voxel basis for different organs in two case studies. The presented phenomenological model summarises the impact of microscopic biological processes into effective parameters of mutation and cell sterilisation. In contrast to other models, the effective radiosensitivities of mutated and non-mutated cells are allowed to differ. Based on the number of mutated cells present after irradiation, the model is then linked to macroscopic incidence by summarising model parameters and modifying factors into natural cancer incidence and the dose response in the lower-dose region. It was found that all principal dose-response functions discussed in the literature can be derived from the model. However, from the investigation and due to scarcity of adequate data, rather vague statements about likelihood of dose-response functions can be made than a definite decision for one response. Based on the predicted model parameters, the linear response can probably be rejected using the dynamics described, but both a flattening response and a decrease appear likely, depending strongly on the effective cell

  6. Scanning the phenomenological MSSM

    CERN Document Server

    Wuerzinger, Jonas

    2017-01-01

    A framework to perform scans in the 19-dimensional phenomenological MSSM is developed and used to re-evaluate the ATLAS experiments' sensitivity to R-parity-conserving supersymmetry with LHC Run 2 data ($\\sqrt{s}=13$ TeV), using results from 14 separate ATLAS searches. We perform a $\\tilde{t}_1$ dedicated scan, only considering models with $m_{\\tilde{t}_1}<1$ TeV, while allowing both a neutralino ($\\tilde{\\chi}_1^0$) and a sneutrino ($\\tilde{\

  7. The Role of Phenomenology of Merleau- ponty in Medicine

    Directory of Open Access Journals (Sweden)

    Somayeh Rafighi

    2017-07-01

    Full Text Available Today, phenomenology, with an emphasis on direct explanations with regard to the lived experience of people is interest of different areas. With emphasis on body, Merleau- Ponty's phenomenology is considered in medical science. In his phenomenology, Merleau- Ponty gives new definition of body and names it lived body. Lived body is against of mechanical body and is the central of subjectivity and being- in- the – world and included all of existential aspects of man. Such definition enable doctors to consider all of existential aspects of man besides his physiological and same understanding of the disease based on the patient lived experience. This paper attempts to examine the implications of this new concept of the body as it is described in the medical field.

  8. Beyond a code of ethics: phenomenological ethics for everyday practice.

    Science.gov (United States)

    Greenfield, Bruce; Jensen, Gail M

    2010-06-01

    Physical therapy, like all health-care professions, governs itself through a code of ethics that defines its obligations of professional behaviours. The code of ethics provides professions with a consistent and common moral language and principled guidelines for ethical actions. Yet, and as argued in this paper, professional codes of ethics have limits applied to ethical decision-making in the presence of ethical dilemmas. Part of the limitations of the codes of ethics is that there is no particular hierarchy of principles that govern in all situations. Instead, the exigencies of clinical practice, the particularities of individual patient's illness experiences and the transformative nature of chronic illnesses and disabilities often obscure the ethical concerns and issues embedded in concrete situations. Consistent with models of expert practice, and with contemporary models of patient-centred care, we advocate and describe in this paper a type of interpretative and narrative approach to moral practice and ethical decision-making based on phenomenology. The tools of phenomenology that are well defined in research are applied and examined in a case that illustrates their use in uncovering the values and ethical concerns of a patient. Based on the deconstruction of this case on a phenomenologist approach, we illustrate how such approaches for ethical understanding can help assist clinicians and educators in applying principles within the context and needs of each patient. (c) 2010 John Wiley & Sons, Ltd.

  9. In the Intimacy of My "Enactlon": Modeling Kohut's "Bipolar Self" as an Autopoietic System: A Dialectic Approach to Phenomenological Research in Contemporary Psychoanalytic Self Psychology.

    Science.gov (United States)

    Prendergast, Claire Nicole

    2016-06-01

    This paper demonstrates that Kohut's definitional system of the "bipolar self" within psychoanalytic self psychology can be modeled as a biological autopoietic system, both in terms of its structure and dynamics, in a way that accounts for the phenomenological aspects of experiential living. Based on this finding, the author argues that a nonreductionist definitional system of this type is an integral component of any pragmatic methodology, such as Kohut's "empathic-introspective" method of treatment, which aims to enable the analyst, as observer, to gain access to the phenomenological world of the analysand within the analytic setting. The dialectic approach undertaken in this preliminary exploration of the "bipolar self" as an autopoietic system has proven fruitful in excavating some of the theoretical features of psychoanalytic self psychology, the weighted importance of which can now be reevaluated in contemporary practice.

  10. Phenomenological perspectives of self-care in healthcare professionals' continuing education

    Directory of Open Access Journals (Sweden)

    Daniele Bruzzone

    2014-12-01

    Full Text Available Healthcare professionals, daily confronted with existential failty, feel themselves emotionally vulnerable too. For this reason, they need knowledge and tools in order to take care for themselves. Phenomenology provides an epistemological model that includes subjective and affective dimensions and legitimates lived experience as a source of cognition. In the undergraduate and continuing education of healthcare professionals, the phenomenological approach can represent a way of promoting self-care through personal narrative and reflection.

  11. A phenomenological attempt at understanding otherness

    Directory of Open Access Journals (Sweden)

    A. KOVÁCS

    2017-12-01

    Full Text Available The phenomenology of otherness is not satisfied with the reductionist definitions of the classical anthropological conceptions. The latter have identified the essence of man in his rationality, morality, createdness, or the possibility of moral and aesthetic self-perfection. The monolithic definition of human essence, based on uniform criteria, seems today one-sided and outdated. The parallel effects of cultural diversification, the pluralized political and social system, and multilingualism have directly and inevitably confronted us with otherness and strangeness. We could even say that we can understand our identity primarily through the experience of otherness. We will reach our conclusions related to the phenomenological constitutive of otherness by way of the interpretation of the relevant ideas of Baudrillad, Guillaume and Lévinas.

  12. Phenomenology of the SU(3)c x SU(3)L x U(1)X model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Gutierrez, D.A.; Ponce, W.A.; Sanchez, L.A.

    2006-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c x SU(3) L x U(1) X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model. (orig.)

  13. Phenomenology of neutral current interactions

    International Nuclear Information System (INIS)

    Sakurai, J.J.

    1978-01-01

    Neutral-current interactions are discussed within a rather general phenomenological framework without commitment to any particular theoretical model. Three points are kept in mind: what various experiments really measure; the performing of complete experiments to determine the neutral-current couplings; and the testing of models in an objective, emotionally uninvolved manner. The following topics are considered: neutrino-electron scattering, hadronic currents and models, neutrino-induced inclusive hadronic reactions, neutrino-induced exclusive hadronic reactions, and neutral-current phenomena without neutrinos. In conclusion, what has actually been learned about neutral-current interactions is summarized. 9 figures, 2 tables

  14. Development of irradiated UO2 thermal conductivity model

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Bang Je-Geon; Kim Dae Ho; Jung Youn Ho

    2001-01-01

    Thermal conductivity model of the irradiated UO 2 pellet was developed, based upon the thermal diffusivity data of the irradiated UO 2 pellet measured during thermal cycling. The model predicts the thermal conductivity by multiplying such separate correction factors as solid fission products, gaseous fission products, radiation damage and porosity. The developed model was validated by comparison with the variation of the measured thermal diffusivity data during thermal cycling and prediction of other UO 2 thermal conductivity models. Since the developed model considers the effect of gaseous fission products as a separate factor, it can predict variation of thermal conductivity in the rim region of high burnup UO 2 pellet where the fission gases in the matrix are precipitated into bubbles, indicating that decrease of thermal conductivity by bubble precipitation in rim region would be significantly compensated by the enhancing effect of fission gas depletion in the UO 2 matrix. (author)

  15. The Teacher as Co-Creator of Drama: A Phenomenological Study of the Experiences and Reflections of Irish Primary School Teachers

    Science.gov (United States)

    McDonagh, Fiona; Finneran, Michael

    2017-01-01

    Classroom drama in the Irish primary school context remains a relatively new endeavour and is largely under-researched. The knowledge base for all aspects of teacher education should be informed by rigorous reflection on teachers' experiences in the classroom. This paper reports on a phenomenological study conducted with seven Irish primary school…

  16. The Struggling Adolescent: A Social-Phenomenological Study of Adolescent Substance Abuse.

    Science.gov (United States)

    Wolf, Barry M.

    1981-01-01

    A phenomenological investigation was conducted to examine the causal factors of adolescent substance abuse. Results indicated the adolescent substance abuser sees life as a struggle, sees self as an outsider, feels powerless and uses drugs to cope with anxiety. (RC)

  17. Finite size scaling and phenomenological renormalization

    International Nuclear Information System (INIS)

    Derrida, B.; Seze, L. de; Vannimenus, J.

    1981-05-01

    The basic equations of the phenomenological renormalization method are recalled. A simple derivation using finite-size scaling is presented. The convergence of the method is studied analytically for the Ising model. Using this method we give predictions for the 2d bond percolation. Finally we discuss how the method can be applied to random systems

  18. A study on phenomenology of Dhat syndrome in men in a general medical setting.

    Science.gov (United States)

    Prakash, Sathya; Sharan, Pratap; Sood, Mamta

    2016-01-01

    "Dhat syndrome" is believed to be a culture-bound syndrome of the Indian subcontinent. Although many studies have been performed, many have methodological limitations and there is a lack of agreement in many areas. The aim is to study the phenomenology of "Dhat syndrome" in men and to explore the possibility of subtypes within this entity. It is a cross-sectional descriptive study conducted at a sex and marriage counseling clinic of a tertiary care teaching hospital in Northern India. An operational definition and assessment instrument for "Dhat syndrome" was developed after taking all concerned stakeholders into account and review of literature. It was applied on 100 patients along with socio-demographic profile, Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Mini International Neuropsychiatric Interview, and Postgraduate Institute Neuroticism Scale. For statistical analysis, descriptive statistics, group comparisons, and Pearson's product moment correlations were carried out. Factor analysis and cluster analysis were done to determine the factor structure and subtypes of "Dhat syndrome." A diagnostic and assessment instrument for "Dhat syndrome" has been developed and the phenomenology in 100 patients has been described. Both the health beliefs scale and associated symptoms scale demonstrated a three-factor structure. The patients with "Dhat syndrome" could be categorized into three clusters based on severity. There appears to be a significant agreement among various stakeholders on the phenomenology of "Dhat syndrome" although some differences exist. "Dhat syndrome" could be subtyped into three clusters based on severity.

  19. Being Mindful as a Phenomenological Attitude.

    Science.gov (United States)

    Gustin, Lena Wiklund

    2017-08-01

    The purpose of this article is to reflect on being mindful as a phenomenological attitude rather than on describing mindfulness as a therapeutic intervention. I will also explore the possibilities that being mindful might open up in relation to nursing research and holistic nursing. I will describe and interpret mindfulness as a state of being by means of van Manen's phenomenological method, using the language of phenomenology rather than the language of reductionist science. Thus, this article can be considered a reflective narrative, describing both the process of orienting to the phenomenon, making preunderstandings-including own experiences of mindfulness-visible, and a thematic analysis of nine scientific articles describing the phenomenon. Being mindful as a phenomenological attitude can be described as a deliberate intentionality, where the person is present in the moment and open to what is going on, bridling personal values and accepting the unfamiliar, thus achieving a sense of being peacefully situated in the world, and able to apprehend one's being-in-the-world. Being mindful as a phenomenological attitude can contribute not only to phenomenological nursing research but also support nurses' presence and awareness.

  20. Collider phenomenology of technihadrons in the technicolor straw man model

    International Nuclear Information System (INIS)

    Lane, Kenneth; Mrenna, Stephen

    2003-01-01

    We discuss the phenomenology of the lightest SU(3) C singlet and nonsinglet technihadrons in the straw man model of low-scale technicolor (TCSM). The technihadrons are assumed to be those arising in top-color-assisted technicolor models in which top-color is broken by technifermion condensates. We improve upon the description of the color-singlet sector presented in our earlier paper introducing the TCSM [K. Lane, Phys. Rev. D 60, 075007 (1999)]. These improvements are most important for subprocess energies well below the masses of the ρ T and ω T vector technihadrons and, therefore, apply especially to e + e - colliders such as CERN LEP and a low-energy linear collider. In the color-octet sector, we consider mixing of the gluon, the coloron V 8 from top-color breaking, and four isosinglet color-octet technirho mesons ρ T8 . We assume, as expected in walking technicolor, that these ρ T8 decay into q-barq, gg, and gπ T final states, but not into π T π T , where π T is a technipion. All the TCSM production and decay processes discussed here are included in the event generator PYTHIA. We present several simulations appropriate for the Fermilab Tevatron collider, and suggest benchmark model lines for further experimental investigation

  1. The phenomenology of lucid dreaming: an online survey.

    Science.gov (United States)

    Stumbrys, Tadas; Erlacher, Daniel; Johnson, Miriam; Schredl, Michael

    2014-01-01

    In lucid dreams the dreamer is aware that he or she is dreaming. Although such dreams are not that uncommon, many aspects of lucid dream phenomenology are still unclear. An online survey was conducted to gather data about lucid dream origination, duration, active or passive participation in the dream, planned actions for lucid dreams, and other phenomenological aspects. Among the 684 respondents who filled out the questionnaire, there were 571 lucid dreamers (83.5%). According to their reports, lucid dreams most often originate spontaneously in adolescence. The average lucid dream duration is about 14 minutes. Lucid dreamers are likely to be active in their lucid dreams and plan to accomplish different actions (e.g., flying, talking with dream characters, or having sex), yet they are not always able to remember or successfully execute their intentions (most often because of awakening or hindrances in the dream environment). The frequency of lucid dream experience was the strongest predictor of lucid dream phenomenology, but some differences were also observed in relation to age, gender, or whether the person is a natural or self-trained lucid dreamer. The findings are discussed in light of lucid dream research, and suggestions for future studies are provided.

  2. Characterisation of a phenomenological model for commercial pneumatic muscle actuators.

    Science.gov (United States)

    Serres, J L; Reynolds, D B; Phillips, C A; Gerschutz, M J; Repperger, D W

    2009-08-01

    This study focuses on the parameter characterisation of a three-element phenomenological model for commercially available pneumatic muscle actuators (PMAs). This model consists of a spring, damping and contractile element arranged in parallel. Data collected from static loading, contraction and relaxation experiments were fitted to theoretical solutions of the governing equation for the three-element model resulting in prediction profiles for the spring, damping and contractile force coefficient. For the spring coefficient, K N/mm, the following relationships were found: K = 32.7 - 0.0321P for 150 < or = P < or = 314 kPa and K = 17 + 0.0179P for 314 < or = P < or = 550 kPa. For the damping coefficient, B Ns/mm, the following relationship was found during contraction: B = 2.90 for 150 < or = P < or = 550 kPa. During relaxation, B = 1.57 for 150 < or = P < or = 372 kPa and B = 0.311 + 0.00338P for 372 < or = P < or = 550. The following relationship for the contractile force coefficient, F(ce) N, was also determined: F(ce) = 2.91P+44.6 for 150 < or = P < or = 550 kPa. The model was then validated by reasonably predicting the response of the PMA to a triangular wave input in pressure under a constant load on a dynamic test station.

  3. Nurse faculty experiences in problem-based learning: an interpretive phenomenologic analysis.

    Science.gov (United States)

    Paige, Jane B; Smith, Regina O

    2013-01-01

    This study explored the nurse faculty experience of participating in a problem-based learning (PBL) faculty development program. Utilizing PBL as a pedagogical method requires a paradigm shift in the way faculty think about teaching, learning, and the teacher-student relationship. An interpretive phenomenological analysis approach was used to explore the faculty experience in a PBL development program. Four themes emerged: change in perception of the teacher-student relationship, struggle in letting go, uncertainty, and valuing PBL as a developmental process. Epistemic doubt happens when action and intent toward the PBL teaching perspective do not match underlying beliefs. Findings from this study call for ongoing administrative support for education on PBL while faculty take time to uncover hidden epistemological beliefs.

  4. Bentonite electrical conductivity: a model based on series–parallel transport

    KAUST Repository

    Lima, Ana T.

    2010-01-30

    Bentonite has significant applications nowadays, among them as landfill liners, in concrete industry as a repairing material, and as drilling mud in oil well construction. The application of an electric field to such perimeters is under wide discussion, and subject of many studies. However, to understand the behaviour of such an expansive and plastic material under the influence of an electric field, the perception of its electrical properties is essential. This work serves to compare existing data of such electrical behaviour with new laboratorial results. Electrical conductivity is a pertinent parameter since it indicates how much a material is prone to conduct electricity. In the current study, total conductivity of a compacted porous medium was established to be dependent upon density of the bentonite plug. Therefore, surface conductivity was addressed and a series-parallel transport model used to quantify/predict the total conductivity of the system. © The Author(s) 2010.

  5. Physics on the smallest scales: an introduction to minimal length phenomenology

    International Nuclear Information System (INIS)

    Sprenger, Martin; Nicolini, Piero; Bleicher, Marcus

    2012-01-01

    Many modern theories which try to unify gravity with the Standard Model of particle physics, such as e.g. string theory, propose two key modifications to the commonly known physical theories: the existence of additional space dimensions; the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide coverage in publications over the last ten years (especially due to the prediction of micro black hole production at the Large Hadron Collider), the phenomenology of models with a minimal length is still less investigated. In a summer study project for bachelor students in 2010, we have explored some phenomenological implications of the potential existence of a minimal length. In this paper, we review the idea and formalism of a quantum gravity-induced minimal length in the generalized uncertainty principle framework as well as in the coherent state approach to non-commutative geometry. These approaches are effective models which can make model-independent predictions for experiments and are ideally suited for phenomenological studies. Pedagogical examples are provided to grasp the effects of a quantum gravity-induced minimal length. This paper is intended for graduate students and non-specialists interested in quantum gravity. (paper)

  6. Phenomenology and Neuroaesthetics

    Directory of Open Access Journals (Sweden)

    Elio Franzini

    2015-05-01

    Full Text Available Phenomenology is not the simple description of a fact, but rather the description of an intentional immanent moment, and it presents itself as a science of essences, and not of matter of facts. The Leib, the lived body of the phenomenological tradition, is not a generic corporeal reality, but rather an intentional subject, a transcendental reference point, on the base of which the connections between physical body and psychic body should be grasped. So, the reduction of empathy to mirror neurons amounts to an “objectivisation”, with the consequent absolutisation of a process that is a function of the Leib as intentional subject, not as a physical reality. The main task of the philosophical research, bracketed by the new “neuro” researches, thus emphasizing their theoretical limits as soon as they depart from experimental enquiries, is then to understand the conditions of possibility of cognitive procedures, that is to say, in other words, the genesis of consciousness, that in aesthetics becomes “the genesis of aesthetic consciousness”. Interdisciplinarity is already an ancient and out of fashion word, now it is the time of “dialogue”, being aware however that the “logoi” not always require synthesis, and that the unity of the corporeal reality implies, as Husserl emphasizes, very different descriptive behaviours.

  7. A simple model for conduction band states of nitride-based double heteroestructures

    Energy Technology Data Exchange (ETDEWEB)

    Gaggero-Sager, L M; Mora-Ramos, M E, E-mail: lgaggero@uaem.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)

    2009-05-01

    In this work we propose an analytical expression for the approximate modeling of the potential energy function describing conduction band bending in III-V nitride quantum wells. It is an alternative approach to the self-consistent Poisson-Schoedinger calculation. The model considers the influence of the many electron system and the built-in electric field inside the well. Hartree and exchange contributions are included along the lines of a local-density Thomas-Fermi-based theory. The effects due to the modulated doping in the barriers is also considered. We report the calculation of the energy spectrum as a function of several input parameters: alloy composition in the barriers, barrier doping concentration, and quantum well width. Our results could be of usefulness in the study of optoelectronic properties in this kind of systems.

  8. Learning from Twentieth Century Hermeneutic Phenomenology for ...

    African Journals Online (AJOL)

    The implications of commonalities in the contributions of five key thinkers in twentieth century phenomenology are discussed in relation to both original aims and contemporary projects. It is argued that, contrary to the claims of Husserl, phenomenology can only operate as hermeneutic phenomenology. Hermeneutics arose ...

  9. Contribution to the phenomenological study of meson-baryon reactions at high energy

    International Nuclear Information System (INIS)

    Girardi, Georges.

    The report is divided into two sections corresponding to the two approaches used in the study of 2-body reactions. Part one is devoted to the building of a new phenomenological model, calling on a wide range of theoretical concepts such as duality, quark diagrams, SU(3) symmetry etc... The model thus established is compared with experimental results and seems to resolve certain difficulties which other models cannot avoid. In part two the approach adopted is more typically phenomenological, involving analyses in amplitudes which amounts to the consultation of experience, avoiding, as far as possible, the use of over-specific theoretical concepts. The various results obtained certain regularities in the amplitudes, evidence of underlaying physical laws as yet little understood. From this study an empirical relationship is proposed for two-body scattering amplitudes. This relationship, which considerably simplifies the formulation of phenomenological models, has already been used successfully to study certain processes. The results of these two approaches are shown to agree, which points up the relevance of the physical images used and helps in the understanding of high-energy hadron interactions [fr

  10. 'Living' sacrifice and shame: Phenomenological insights into ...

    African Journals Online (AJOL)

    This article is contextualised within the field of post-graduate, continuing teacher education in South Africa, through an essentially 'distanced', that is, part-time, mixedmode teaching and learning model. It draws on a broader phenomenological research study into the experiences of students taking a one semester module, ...

  11. Modeling liver electrical conductivity during hypertonic injection.

    Science.gov (United States)

    Castellví, Quim; Sánchez-Velázquez, Patricia; Moll, Xavier; Berjano, Enrique; Andaluz, Anna; Burdío, Fernando; Bijnens, Bart; Ivorra, Antoni

    2018-01-01

    Metastases in the liver frequently grow as scattered tumor nodules that neither can be removed by surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible electroporation that may be able to simultaneously treat all nodules in the liver while sparing healthy tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global conductivity of the liver by means of hypersaline fluids, here, it is presented a mathematical model that estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-established compartmental pharmacokinetic models of the organ with saline injection models used for resuscitation treatments, and it considers changes in sinusoidal blood viscosity because of the hypertonicity of the solution. Here, it is also described a pilot experimental study in pigs in which different volumes of NaCl 20% (from 100 to 200 mL) were injected through the portal vein at different flow rates (from 53 to 171 mL/minute). The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity value was 0.44 second/m, which corresponds to increasing 4 times the mean basal conductivity (0.11 second/m). The results suggest that the presented model is well suited for predicting on liver conductivity changes during hypertonic saline injection. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Persistent Monitoring of Urban Infrasound Phenomenology. Report 1: Modeling an Urban Environment for Acoustical Analyses using the 3-D Finite-Difference Time-Domain Program PSTOP3D

    Science.gov (United States)

    2015-08-01

    ER D C TR -1 5- 5 Remote Assessment of Critical Infrastructure Persistent Monitoring of Urban Infrasound Phenomenology Report 1...ERDC TR-15-5 August 2015 Persistent Monitoring of Urban Infrasound Phenomenology Report 1: Modeling an Urban Environment for Acoustical Analyses...Figure 5.1. Main spreadsheet containing problem setup. ..................................................................... 74 Figure 5.2. Definition

  13. A phenomenological study into the experience of their sexuality by ...

    African Journals Online (AJOL)

    On reviewing the literature on spinal cord injury (SCI) and sexuality in males, there was found to be a plethora of research in physical domains. Sadly, the psychological aspect of sexuality for men who experience SCI has been largely neglected. For this reason a phenomenological study was conducted to understand the ...

  14. Exploring the Phenomenology of Whiteness in a Swedish Preschool Class

    Science.gov (United States)

    Schwarz, Eva; Lindqvist, Beatriz

    2018-01-01

    This article explores how constructions of identity, race and difference permeate and are challenged in a Swedish preschool class. The study is informed by theories of phenomenology and critical whiteness. Data are drawn from a larger ethnographic study conducted in an ethnically diverse preschool. The purpose of the study was to explore how…

  15. A new electron gas model for lattice vibrations in metals I : development of the model

    International Nuclear Information System (INIS)

    Ramamurthy, V.; Neelkandan, K.

    1978-01-01

    The theoretical study of the lattice dynamics of metals is generally based on either the phenomenological force constant method or the pseudopotential method. However, it has been found that all the existing phenomenological models are inconsistent. Hence a new model based on the deformation potential approximation has been developed. By comparing this model with the existing models, its salient features and limitations are discussed. (author)

  16. Using Transcendental Phenomenology to Explore the “Ripple Effect” in a Leadership Mentoring Program

    Directory of Open Access Journals (Sweden)

    Tammy Moerer-Urdahl

    2004-06-01

    Full Text Available Several approaches exist for organizing and analyzing data in a phenomenological qualitative study. Transcendental phenomenology, based on principles identified by Husserl (1931 and translated into a qualitative method by Moustakas (1994, holds promise as a viable procedure for phenomenological research. However, to best understand the approach to transcendental phenomenology, the procedures need to be illustrated by a qualitative study that employs this approach. This article first discusses the procedures for organizing and analyzing data according to Moustakas (1994. Then it illustrates each step in the data analysis procedure of transcendental phenomenology using a study of reinvestment or the “ripple effect” for nine individuals who have participated in a youth leadership mentoring program from the 1970s to the present. Transcendental phenomenology works well for this study as this methodology provides logical, systematic, and coherent design elements that lead to an essential description of the experience.

  17. Flavour violation in gauge-mediated supersymmetry breaking models: Experimental constraints and phenomenology at the LHC

    International Nuclear Information System (INIS)

    Fuks, Benjamin; Herrmann, Bjoern; Klasen, Michael

    2009-01-01

    We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large 'collider-friendly' regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied

  18. A PHENOMENOLOGICAL RESEARCH ON MORAL PHILOSOPHY

    OpenAIRE

    CIPRIAN IULIAN ŞOPTICĂ

    2011-01-01

    The subject of this article concerns the what, the how and the whyof moral phenomenology. The first question we take into consideration is „What is moral phenomenology”? The second question which arises is „How to pursue moral phenomenology”? The third question is „Why pursue moral phenomenology”? We will analyze the study Moral phenomenology:foundation issues1, by which the American phenomenologist Uriah Kriegel aims three lines of research: the definition of moral phenomenology and the desc...

  19. Selected topics in phenomenology of the standard model

    International Nuclear Information System (INIS)

    Roberts, R.G.

    1991-01-01

    These lectures cover some aspects of phenomenology of topics in high energy physics which advertise the success of the standard model in dealing with a wide variety of experimental data. First we begin with a look at deep inelastic scattering. This tells us about the structure of the nucleon, which is understood in terms of the SU(3) gauge theory of QCD, which then allows the information on quark and gluon distributions to be carried over to other 'hard' processes such as hadronic production of jets. Recent data on electroweak processes can estimate the value of Sin 2 θw to a precision where the inclusion of radiative corrections allow bounds to be made on the mass of the top quark. Electroweak effects arise in e + e - collisions, but we first present a review of the recent history of this topic within the context of QCD. We bring the subject up to date with a look at the physics at (or near) the Z pole where the measurement of asymmetries can give more information. We look at the conventional description of quark mixing by the CKM matrix and see how the mixing parameters are systematically being extracted from a variety of reactions and decays. In turn, the values can be used to set bounds on the top quark mass. The matter of CP violation in weak interactions is addressed within the context of the standard model, recent data on ε'/ε being the source of current excitement. Finally, we at the theoretical description and experimental efforts to search for the top quark. (author)

  20. Phenomenological approach to describe logistic growth and ...

    Indian Academy of Sciences (India)

    In this communication, different classes of phenomenological universalities of carrying capacity dependent growth processes have been proposed. The logistic as well as carrying capacity-dependent West-type allometry-based biological growths can be explained in this proposed framework. It is shown that logistic and ...

  1. Phenomenology of induced electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Chang, Spencer; Galloway, Jamison; Luty, Markus A.; Salvioni, Ennio; Tsai, Yuhsin

    2015-01-01

    We study the phenomenology of models of electroweak symmetry breaking where the Higgs potential is destabilized by a tadpole arising from the coupling to an “auxiliary” Higgs sector. The auxiliary Higgs sector can be either perturbative or strongly coupled, similar to technicolor models. Since electroweak symmetry breaking is driven by a tadpole, the cubic and quartic Higgs couplings can naturally be significantly smaller than their values in the standard model. The theoretical motivation for these models is that they can explain the 125 GeV Higgs mass in supersymmetry without fine-tuning. The auxiliary Higgs sector contains additional Higgs states that cannot decouple from standard model particles, so these models predict a rich phenomenology of Higgs physics beyond the standard model. In this paper we analyze a large number of direct and indirect constraints on these models. We present the current constraints after the 8 TeV run of the LHC, and give projections for the sensitivity of the upcoming 14 TeV run. We find that the strongest constraints come from the direct searches A 0 →Zh, A 0 →tt-bar, with weaker constraints from Higgs coupling fits. For strongly-coupled models, additional constraints come from ρ + →WZ where ρ + is a vector resonance. Our overall conclusion is that a significant parameter space for such models is currently open, allowing values of the Higgs cubic coupling down to 0.4 times the standard model value for weakly coupled models and vanishing cubic coupling for strongly coupled models. The upcoming 14 TeV run of the LHC will stringently test this scenario and we identify several new searches with discovery potential for this class of models.

  2. Husserlian phenomenology and nursing in a unitary-transformative paradigm

    DEFF Research Database (Denmark)

    Hall, Elisabeth

    1996-01-01

    . The phenomenological methodology according to Spiegelberg is described, and exemplified through the author's ongoing study. Different critiques of phenomenology and phenomenological reports are mentioned, and the phenomenological description is illustrated as the metaphor «using a handful of colors». The metaphor...... is used to give phenomenological researchers and readers an expanding reality picturing, including memories and hopes and not only a reality of the five senses. It is concluded that phenomenology as a world view and methodology can contribute to nursing research and strengthen the identity of nursing...

  3. Phenomenology of the spontaneous C P violation in SU(3)L x U(1)Y electroweak models

    International Nuclear Information System (INIS)

    Epele, Luis N.; Gomez Dumm, Daniel A.

    1994-01-01

    This work studies the phenomenological consequence of the spontaneous C P violation in a SU(3) L x U(1) Y model with three Higgs triplets and one sextuplet, which has been recently proposed. Since this C P-violating effects are due to the presence of complex vacuum expectation values in the Higgs sector, our analysis requires a detailed study of the enlarged potential

  4. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  5. Idols of the psychologist: Johannes Linschoten and the demise of phenomenological psychology in the Netherlands.

    Science.gov (United States)

    van Hezewijk, René; Stam, Henderikus J

    2008-08-01

    Before and after World War II, a loose movement within Dutch psychology solidified as a nascent phenomenological psychology. Dutch phenomenological psychologists attempted to generate an understanding of psychology that was based on Husserlian interpretations of phenomenological philosophy. This movement came to a halt in the 1960s, even though it had been exported to North America and elsewhere as "phenomenological psychology." Frequently referred to as the "Utrecht school," most of the activity of the group was centered at Utrecht University. In this article, the authors examine the role played by Johannes Linschoten in both aspects of the development of a phenomenological psychology: its rise in North America and Europe, and its institutional demise. By the time of his early death in 1964, Linschoten had cast considerable doubt on the possibilities of a purely phenomenological psychology. Nonetheless, his own empirical work, especially his 1956 dissertation published in German, can be seen to be a form of empiricism inspired by phenomenology but that clearly distanced itself from the more elitist and esoteric aspects of Dutch phenomenological psychology.

  6. Outsourcing within aerospace manufacturing enterprises: A phenomenological study and outsourcing leadership model

    Science.gov (United States)

    Sampson, Enrique, Jr.

    Many aerospace workers believe transferring work projects abroad has an erosive effect on the U.S. aerospace industry (Pritchard, 2002). This qualitative phenomenological study examines factors for outsourcing decisions and the perceived effects of outsourcing on U.S. aerospace workers. The research sample consists of aerospace industry leaders and nonleaders from the East Coast, Midwest, and West Coast of the United States. Moustakas' modified van Kaam methods of analysis (1994) and Decision Explorer analysis software were applied to the interview transcripts. Resultant data identified five core themes: communication, best value, opportunities, cost, and offset consideration. The themes provided the framework for a model designed to assist leaders in making effective decisions and communicating the benefits of those decisions when considering outsourcing of work projects.

  7. A study on the 0D phenomenological model for diesel engine simulation: Application to combustion of Neem methyl esther biodiesel

    International Nuclear Information System (INIS)

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi; Ayissi, Zacharie Merlin; Obonou, Marcel

    2015-01-01

    Highlights: • We elaborate a 0D model for prediction of diesel engine operating parameters. • We implement the model for Neem methyl ester biodiesel combustion. • We show methyl butanoate and butyrate can be used as surrogates for biodiesel. • The model predicts fuel spray, in cylinder gaseous state and NOx emissions. • We show the model can be effective both in accuracy and computational speed. - Abstract: The design and monitoring of modern diesel engines running on alternative fuels require reliable models that can validly substitute experimental tests and predict their operating characteristics under different load conditions. Although there exists a multitude of models for diesel engines, 0D phenomenological models present the advantages of giving fast and accurate computed results. These models are useful for predicting fuel spray characteristics and instantaneous gas state. However, there are few reported studies on the application of 0D phenomenological models on biodiesel fuel combustion in diesel engines. This work reports the elaboration, validation and application on Neem methyl ester biodiesel (NMEB) combustion of a 0D phenomenological model for diesel engine simulation. The model addresses some specific aspects of diesel engine modeling found in previous studies such as the compromise between computers cost, accurateness and model simplicity, the reduction of the number of empirical fitting constant, the prediction of combustion kinetics with reduction of the need of experimental curve fitting, the ability to simultaneously predict under various loads engine thermodynamic and spray parameters as well as emission characteristics and finally the ability to simulate diesel engine parameters when fueled by alternative fuels. The proposed model predicts fuel spray behavior, in cylinder combustion and nitric oxides (NOx) emissions. The model is implemented through a Matlab code. The model is mainly based on Razlejtsev’s spray evaporation model

  8. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  9. Phenomenology of Baryon Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Doring, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Landay, Justin [George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Molina, Raquel [Univ. of Sao Paulo (Brazil); Ronchen, Deborah [Univ. of Bonn (Germany)

    2018-04-01

    Results for light baryon spectroscopy by different collaborations and the state of the art in the subfield is reviewed. Highlights contain common efforts of different phenomenology groups and the impact of recent high-precision data from ELSA, JLab, MAMI, and other facilities. Questions will be addressed, on one side, of how to proceed to reach conclusive answers in baryon spectroscopy, and, on the other side, how phenomenology can be connected to theory in a meaningful way.

  10. Experiences and Outcomes of a Women's Leadership Development Program: A Phenomenological Investigation

    Science.gov (United States)

    Brue, Krystal L.; Brue, Shawn A.

    2016-01-01

    Women's leadership training programs provide organizations opportunities to value women leaders as organizational resources. This qualitative research utilized phenomenological methodology to examine lived experiences of seven alumni of a women's-only leadership program. We conducted semi-structured interviews to clarify what learning elements…

  11. Geometric model for softwood transverse thermal conductivity. Part I

    Science.gov (United States)

    Hong-mei Gu; Audrey Zink-Sharp

    2005-01-01

    Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...

  12. Social Phenomenological Analysis as a Research Method in Art Education: Developing an Empirical Model for Understanding Gallery Talks

    Science.gov (United States)

    Hofmann, Fabian

    2016-01-01

    Social phenomenological analysis is presented as a research method to study gallery talks or guided tours in art museums. The research method is based on the philosophical considerations of Edmund Husserl and sociological/social science concepts put forward by Max Weber and Alfred Schuetz. Its starting point is the everyday lifeworld; the…

  13. LHC phenomenology and higher order electroweak corrections in supersymmetric models with and without R-parity

    Energy Technology Data Exchange (ETDEWEB)

    Liebler, Stefan Rainer

    2011-09-15

    The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and

  14. LHC phenomenology and higher order electroweak corrections in supersymmetric models with and without R-parity

    International Nuclear Information System (INIS)

    Liebler, Stefan Rainer

    2011-09-01

    The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the μνSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in

  15. Molecular modeling of the conductivity changes of the emeraldine base polyaniline due to protonic acid doping

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Zhang, G.

    2012-01-01

    We propose a molecular modeling strategy, which is capable of predicting the conductivity change of emeraldine base polyaniline polymer due to different degree of protonic acid doping. The method is comprised of two key steps: (1) generating the amorphous unit cells with given number of polymer

  16. Women's Access to Higher Education in Afghanistan: A Qualitative Phenomenological Study

    Science.gov (United States)

    Mashriqi, Khalida

    2013-01-01

    This qualitative, phenomenological study was conducted to explore the lived experiences of 12 Afghan women enrolled in higher education institutions in Afghanistan. The objective was to develop an understanding of the participants' perceptions of the factors that led to their enrollment in higher education and the factors that inhibit Afghan women…

  17. Phenomenology of MaVaN’s Models in Reactor Neutrino Data

    Directory of Open Access Journals (Sweden)

    M. F. Carneiro

    2013-01-01

    Full Text Available Mass Varying Neutrinos (MaVaN’s mechanisms were proposed to link the neutrino mass scale with the dark energy density, addressing the coincidence problem. In some scenarios, this mass can present a dependence on the baryonic density felt by neutrinos, creating an effective neutrino mass that depends both on the neutrino and baryonic densities. In this work, we study the phenomenological consequence of MaVaN’s scenarios in which the matter density dependence is induced by Yukawa interactions of a light neutral scalar particle which couples to neutrinos and matter. Under the assumption of one mass scale dominance, we perform an analysis of KamLAND neutrino data which depends on 4 parameters: the two standard oscillation parameters, Δm0,212 and tan2θ12, and two new coefficients which parameterize the environment dependence of neutrino mass. We introduce an Earth’s crust model to compute precisely the density in each point along the neutrino trajectory. We show that this new description of density does not affect the analysis with the standard model case. With the MaVaN model, we observe a first order effect in lower density, which leads to an improvement on the data description.

  18. A new magnetorheological fluid–elastomer mount: phenomenological modeling and experimental study

    International Nuclear Information System (INIS)

    Wang, Xiaojie; Gordaninejad, Faramarz

    2009-01-01

    A new magnetorheological (MR) mount consisting of an MR fluid encapsulated in a polymeric solid is presented. The mechanical properties of the proposed mount are controllable through an externally applied magnetic field. The dynamic behavior of this system under various magnetic fields has been investigated by means of oscillatory compression cycles over a frequency range of 0.1–10 Hz for various deformations (less than 1 mm). The energy dissipation in the material is analyzed as related to strain amplitude, strain frequency and magnetic field strength. The field induced damping mechanism is discussed in terms of the damping exponent. A phenomenological model is presented to account for the dynamic behavior of the MR fluid–elastomer mount's vibration isolators under oscillatory compressive deformations. This model is a two-element system comprised of a variable friction damper and a nonlinear spring. The parameters of the model have been identified by a series of harmonic loading tests. The theoretical and experimental results are in excellent agreement. Both experimental and theoretical results have demonstrated that the proposed MR fluid–elastomer mounts show promise in applications where tuning vibration characteristics of a system are desired, such as altering natural frequencies, mode shapes, and damping properties

  19. Low-energy neutral current phenomenology and grand unified theories

    International Nuclear Information System (INIS)

    Del Aguila, F.; Mendez, A.

    1981-01-01

    We derive necessary and sufficient conditions to be satisfied by any expanded electroweak gauge model in order to reproduce the standard model low-energy neutral current predictions. These conditions imply several constraints on the neutral gauge boson masses and the quantum number assignments for the ordinary fermions. Using these conditions, we prove that the popular grand unified theories based on the gauge groups SO(10) and E6 can only accommodate trivial extensions of the standard model. As a consequence, if any of these grand unified models works at some energy scale, present low-energy neutral current phenomenology implies that the Z-boson must be produced with the expected mass and couplings to the ordinary fermions. Any additional neutral gauge boson (with the possible exception of very heavy ones) could only be produced in hadronic collisions and it would not decay in e + e - . (orig.)

  20. Phenomenological theory of size effects in ultrafine ferroelectric particles (PbTiO3-type)

    International Nuclear Information System (INIS)

    Jiang, B.; Bursill, L.A.

    1998-01-01

    A new phenomenological model is proposed and discussed to study the size effects on phase transitions in PbTiO 3 -type ferroelectric particles. This model, by taking size effects on the phenomenological Landau-Ginzburg-Devonshire coefficients into consideration, can successfully explain the size effects on Curie temperature, c/a ratio, thermal and dielectric properties of lead-titanate-type ferroelectric particles. Theoretical and experimental results for PbTiO 3 fine particles are also compared and discussed. The relationship between the current model and the model of Zhong et al (Phys. Rev. B 50, 698 (1994)) is also presented. (authors)

  1. Enhanced confinement phenomenology in magnetic fusion plasmas: Is it unique in physics?

    International Nuclear Information System (INIS)

    Dendy, R.O.

    2002-01-01

    There is substantial experimental evidence that simple diffusive models for turbulent transport are insufficient to produce all the confinement phenomena observed in tokamaks. This paper reports on the emerging linkage between rapid, nonlocal, nondiffusive transport and overall confinement phenomenology including edge pedestals, enhanced confinement, ELMs, and internal transport barriers. Modern statistical physics techniques are used to construct simple models that generate many of the distinctive elements of global tokamak confinement phenomenology. The similarities are deep and are quantified. These results imply that current observations of avalanching transport in tokamaks may be deeply linked to the fundamental global features of tokamak plasma confinement. (author)

  2. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  3. Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons.

    Science.gov (United States)

    Angelescu, Andrei; Arcadi, Giorgio

    2017-01-01

    We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.

  4. Phenomenology of the standard model under conditions of spontaneously broken mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dyatlov, I. T., E-mail: dyatlov@thd.pnpi.spb.ru [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)

    2017-03-15

    Spontaneously broken mirror symmetry is able to reproduce observed qualitative properties of weak mixing for quark and leptons. Under conditions of broken mirror symmetry, the phenomenology of leptons—that is, small neutrino masses and a mixing character other than that in the case of quarks—requires the Dirac character of the neutrinos and the existence of processes violating the total lepton number. Such processes involve heavy mirror neutrinos; that is, they proceed at very high energies. Here, CP violation implies that a P-even mirror-symmetric Lagrangian must simultaneously be T-odd and, according to the CPT theorem, C-odd. All these properties create preconditions for the occurrence of leptogenesis, which is a mechanism of the emergence of the baryon–lepton asymmetry of the universe in models featuring broken mirror symmetry.

  5. Phenomenological Characteristics of Future Thinking in Alzheimer's Disease.

    Science.gov (United States)

    Moustafa, Ahmed A; El Haj, Mohamad

    2018-05-11

    This study investigates phenomenological reliving of future thinking in Alzheimer's disease (AD) patients and matched controls. All participants were asked to imagine in detail a future event, and afterward, were asked to rate phenomenological characteristics of their future thinking. As compared to controls, AD participants showed poor rating for reliving, travel in time, visual imagery, auditory imagery, language, and spatiotemporal specificity. However, no significant differences were observed between both groups in emotion and importance of future thinking. Results also showed lower rating for visual imagery relative to remaining phenomenological features in AD participants compared to controls; conversely, these participants showed higher ratings for emotion and importance of future thinking. AD seems to compromise some phenomenological characteristics of future thinking, especially, visual imagery; however, other phenomenological characteristics, such as emotion, seem to be relatively preserved in these populations. By highlighting the phenomenological experience of future thinking in AD, our paper opens a unique window into the conscious experience of the future in AD patients.

  6. Report of the Beyond the Standard Model Working Group of the 1999 UK Phenomenology Workshop on Collider Physics (Durham)

    CERN Document Server

    Allanach, Benjamin C; Dedes, A; Djouadi, Abdelhak; Grosse-Knetter, J; Hetherington, J; Heinemeyer, S; Holt, J; Hutchcroft, D E; Kalinowski, Jan; Kane, G; Kartvelishvili, V G; King, S F; Lola, S; McNulty, R; Parker, M A; Patel, G D; Ross, Graham G; Spira, Michael; Teixeira-Dias, P; Weiglein, Georg; Wilson, G; Womersley, J; Walker, P; Webber, Bryan R; Wyatt, T R

    2000-01-01

    The Beyond the Standard Model Working Group discussed a variety of topics relating to exotic searches at current and future colliders, and the phenomenology of current models beyond the Standard Model. For example, various supersymmetric (SUSY) and extra dimensions search possibilities and constraints are presented. Fine-tuning implications of SUSY searches are derived. The implications of Higgs (non)-discovery are discussed, as well as the program HDECAY. The individual contributions are included seperately. Much of the enclosed work is original, although some is reviewed.

  7. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    Science.gov (United States)

    Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience. PMID:22076123

  8. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup

    Directory of Open Access Journals (Sweden)

    Annelise Norlyk

    2011-11-01

    Full Text Available The creative processes of understanding patients’ experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905–1981, this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients’ experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an “flash of insight” is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients’ experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients’ experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  9. Understanding the creative processes of phenomenological research: The life philosophy of Løgstrup.

    Science.gov (United States)

    Norlyk, Annelise; Dreyer, Pia; Haahr, Anita; Martinsen, Bente

    2011-01-01

    The creative processes of understanding patients' experiences in phenomenological research are difficult to articulate. Drawing on life philosophy as represented by the Danish philosopher K.E. Løgstrup (1905-1981), this article aims to illustrate Løgstrup's thinking as a way to elaborate the creation of cognition and understanding of patients' experiences. We suggest that Løgstrup's thoughts on sensation can add new dimensions to an increased understanding of the creative process of phenomenological research, and that his thinking can be seen as an epistemological ground for these processes. We argue with Løgstrup that sense-based impressions can facilitate an flash of insight, i.e., the spontaneous, intuitive flash of an idea. Løgstrup stresses that an "flash of insight" is an important source in the creation of cognition and understanding. Relating to three empirical phenomenological studies of patients' experiences, we illustrate how the notions of impression and flash of insight can add new dimensions to increased understanding of the creative processes in phenomenological research that have previously not been discussed. We illustrate that sense-based impressions can facilitate creative flash of insights that open for understanding of patients' experiences in the research process as well as in the communication of the findings. The nature of impression and flash of insight and their relevance in the creation of cognition and understanding contributes to the sparse descriptions in the methodological phenomenological research literature of the creative processes of this research. An elaboration of the creative processes in phenomenological research can help researchers to articulate these processes. Thus, Løgstrup's life philosophy has proven to be valuable in adding new dimensions to phenomenological empirical research as well as embracing lived experience.

  10. Phenomenological consequences of supersymmetry

    International Nuclear Information System (INIS)

    Hinchliffe, I.; Littenberg, L.

    1982-01-01

    This paper deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. The paper represents the work of a subgroup at the meeting. The authors are concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/K-bar/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed

  11. Phenomenology and adapted physical activity: philosophy and professional practice.

    Science.gov (United States)

    Standal, Øyvind F

    2014-01-01

    Through the increased use of qualitative research methods, the term phenomenology has become a quite familiar notion for researchers in adapted physical activity (APA). In contrast to this increasing interest in phenomenology as methodology, relatively little work has focused on phenomenology as philosophy or as an approach to professional practice. Therefore, the purpose of this article is to examine the relevance of phenomenology as philosophy and as pedagogy to the field of APA. First, phenomenology as philosophy is introduced through three key notions, namely the first-person perspective, embodiment, and life-world. The relevance of these terms to APA is then outlined. Second, the concept of phenomenological pedagogy is introduced, and its application and potential for APA are discussed. In conclusion, it is argued that phenomenology can help theorize ways of understanding human difference in movement contexts and form a basis of action-oriented research aiming at developing professional practice.

  12. Phenomenological studies of hadronic collisions

    International Nuclear Information System (INIS)

    van Zijl, M.

    1987-04-01

    Several aspects of hadronic collisions are studied in a phenomenological framework. A Monte Carlo model for initial state parton showers, using a backwards evolution scheme, is presented. Comparisons with experimental data and analytical calculations are made. The consequence of using different fragmentation model on the determination of α s is also investigated. It is found that the different fragmentation models lead to the reconstruction of significantly α s values. Finally the possibility of having several independent parton-parton interactions in a hadron-hadron collision is studied. A model is developed, which takes into account the effects of variable impact parameters. This is implemented in a Monte Carlo computer program and extensive comparisons with experimental data are carried out. There is clear evidence in favour of multiple interactions with variable impact parameters. (author)

  13. MYSTICAL ASPECT OF EDITH STEIN'S ANTHROPOLOGY: FROM PHENOMENOLOGY TO THOMISM

    Directory of Open Access Journals (Sweden)

    J. A. Shabanova

    2016-12-01

    Full Text Available The aim of the study is to find mystical elements in Edith Stein's anthropology as a connecting principle between phenomenology and Thomism. Relying on methodological definition of philosophical mystic, as a matching of theological and philosophical doctrines, based upon reflection on experience of ecstatic unity with the Absolute, it was shown that phenomenology is implicitly directed towards research of real structure of immediate experience which in all its limits approaches to mystical experience. Not the mind and not the faith, but will (that directs knowledge to mystical unity of immanent subject and transcendental object in finding the truth is defining for the mystical character of Stein's creative method. Stein, being a bright representative of phenomenology, gradually disagrees with Husserl at some points: 1. Stein considers the world as an immediate contemplation on the entity that transcends the identity of being and thinking; 2. In her opinion, phenomenology neglects the ontological Absolute. As a result, there is misplace of the Absolute by structural-cognitive aims, that, in its turn, was a reason for amalgamation of onthology and epistemology, according to Stein's views. 3. Stein strives to overcome epistemological rationality and achieve a sphere of philosophical mystic where ontological object and epistemological subject are identical in the act of mystical contemplation. 4. Lack of metaphysical elements in phenomenology leads Stein to Thomism in which she potentially seeks a way out of metaphysical limits and the way which leads to the level of transpersonal states of mind. 5. Stein reproaches transcendentalism in loss of the world and she ignores the changes in Husserl's world outlook, his transcendental turn and genealogy of the trustworthy acquaintance with the world. An empathy, as a model of extrapolation of the principle (of to be get used to the experience of the Other onto mystical act of overcoming of subject

  14. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    International Nuclear Information System (INIS)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David

    2017-01-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  15. LHC Phenomenology and Cosmology of String-Inspired Intersecting D-Brane Models

    CERN Document Server

    Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian

    2012-01-01

    We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions. The energy scale associated with string physics is assumed to be near the Planck mass. To develop our program in the simplest way, we work within the construct of a minimal model with gauge-extended sector U (3)_B \\times Sp (1)_L \\times U (1)_{I_R} \\times U (1)_L. The resulting U (1) content gauges the baryon number B, the lepton number L, and a third additional abelian charge I_R which acts as the third isospin component of an SU(2)_R. All mixing angles and gauge couplings are fixed by rotation of the U(1) gauge fields to a basis diagonal in hypercharge Y and in an anomaly free linear combination of I_R and B-L. The anomalous $Z'$ gauge boson obtains a string scale St\\"uckelberg mass via a 4D version of the Green-Schwarz mechanism. To keep the realizatio...

  16. Phenomenology with F-theory S U (5 )

    Science.gov (United States)

    Leontaris, George K.; Shafi, Qaisar

    2017-09-01

    We explore the low-energy phenomenology of an F-theory-based S U (5 ) model which, in addition to the known quarks and leptons, contains Standard Model (SM) singlets and vectorlike color triplets and S U (2 ) doublets. Depending on their masses and couplings, some of these new particles may be observed at the LHC and future colliders. We discuss the restrictions by Cabibbo-Kobayashi-Maskawa matrix constraints on their mixing with the ordinary down quarks of the three chiral families. The model is consistent with gauge coupling unification at the usual supersymmetric GUT scale; dimension-five proton decay is adequately suppressed, while dimension-six decay mediated by the superheavy gauge bosons is enhanced by a factor of 5-7. The third generation charged fermion Yukawa couplings yield the corresponding low-energy masses in reasonable agreement with observations. The hierarchical nature of the masses of lighter generations is accounted for via nonrenormalizable interactions, with the perturbative vacuum expectation values (VEVs) of the SM singlet fields playing an essential role.

  17. A Phenomenology of Expert Musicianship

    DEFF Research Database (Denmark)

    Høffding, Simon

    This dissertation develops a phenomenology of expert musicianship through an interdisciplinary approach that integrates qualitative interviews with the Danish String Quartet with philosophical analyses drawing on ideas and theses found in phenomenology, philosophy of mind, cognitive science...... and psychology of music. The dissertation is structured through the asking, analyzing and answering of three primary questions, namely: 1) What is it like to be an expert? 2) What is the general phenomenology of expert musicianship? 3) What happens to the self in deep musical absorption? The first question...... targets a central debate in philosophy and psychology on whether reflection is conducive for, or detrimental to, skillful performance. My analyses show that the concepts assumed in the literature on this question are poorly defined and gloss over more important features of expertise. The second question...

  18. Phenomenological Research Method, Design and Procedure: A ...

    African Journals Online (AJOL)

    Phenomenological Research Method, Design and Procedure: A Phenomenological Investigation of the Phenomenon of Being-in-Community as Experienced by Two Individuals Who Have Participated in a Community Building Workshop.

  19. Empirical Phenomenology: A Qualitative Research Approach (The ...

    African Journals Online (AJOL)

    Empirical Phenomenology: A Qualitative Research Approach (The Cologne Seminars) ... and practical application of empirical phenomenology in social research. ... and considers its implications for qualitative methods such as interviewing ...

  20. Impact of semi-annihilations on dark matter phenomenology. An example of ZN symmetric scalar dark matter

    International Nuclear Information System (INIS)

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti

    2012-01-01

    We study the impact of semi-annihilations x i x j ↔x k X and dark matter conversion x i x j ↔x k x l , where x i is any dark matter and X is any standard model particle, on dark matter phenomenology. We formulate minimal scalar dark matter models with an extra doublet and a complex singlet that predict non-trivial dark matter phenomenology with semi-annihilation processes for different discrete Abelian symmetries Z N , N > 2. We implement two such example models with Z 3 and Z 4 symmetry in micrOMEGAs and work out their phenomenology. We show that both semi-annihilations and dark matter conversion significantly modify the dark matter relic abundance in this type of models. In the Z 4 model, there are two stable neutral particles and therefore multi-component dark matter. We also study the possibility of dark matter direct detection in XENON100 in those models

  1. Building Connections: An Interpretative Phenomenological Analysis of Qualitative Research Students' Learning Experiences

    Science.gov (United States)

    Cooper, Robin; Fleischer, Anne; Cotton, Fatima A.

    2012-01-01

    This paper describes a phenomenological study in which the authors explored students' experiences learning qualitative research in a variety of academic fields. Semi-structured in-depth interviews were conducted with six participants from various academic fields who had completed at least one post-secondary-school-level qualitative research course…

  2. time-consciuosness: a presentation and critique of Husserl's phenomenology on the consciousness of internal time

    OpenAIRE

    Nissen Løje, Kamille; Mommer, Trine Kirstine; Sørensen, Emma Amalie Forum; Rasmussen, Nina Randrup; Lundkvist, Silas

    2009-01-01

    The project is based on Edmund Husserl’s lectures from 1905, On the Phenomenology of the Consciousness of Internal Time (1893-1917). The project is twofold; the first part is an account of Husserl’s branch of phenomenology. The second part consists of a discussion- and critique of some of the concepts in his phenomenology, which was needed to answer our problem definition. Discussions were among others, a distinction between recollection and retention, and protention and anticipation. Further...

  3. Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons

    Energy Technology Data Exchange (ETDEWEB)

    Angelescu, Andrei [Universite Paris-Saclay, CNRS, Laboratoire de Physique Theorique, Orsay (France); Arcadi, Giorgio [Max Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2017-07-15

    We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the ''portal'' for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology. (orig.)

  4. The method for determination of parameters of the phenomenological continual model of soil organic matter transformation

    Directory of Open Access Journals (Sweden)

    S. I. Bartsev

    2015-06-01

    Full Text Available A possible method for experimental determination of parameters of the previously proposed continual mathematical model of soil organic matter transformation is theoretically considered in this paper. The previously proposed by the authors continual model of soil organic matter transformation, based on using the rate of matter transformation as a continual scale of its recalcitrance, describes the transformation process phenomenologically without going into detail of microbiological mechanisms of transformation. Thereby simplicity of the model is achieved. The model is represented in form of one differential equation in first­order partial derivatives, which has an analytical solution in elementary functions. The model equation contains a small number of empirical parameters which generally characterize environmental conditions where the matter transformation process occurs and initial properties of the plant litter. Given the values of these parameters, it is possible to calculate dynamics of soil organic matter stocks and its distribution over transformation rate. In the present study, possible approaches for determination of the model parameters are considered and a simple method of their experimental measurement is proposed. An experiment of an incubation of chemically homogeneous samples in soil and multiple sequential measurement of the sample mass loss with time is proposed. An equation of time dynamics of mass loss of incubated homogeneous sample is derived from the basic assumption of the presented soil organic matter transformation model. Thus, fitting by the least squares method the parameters of sample mass loss curve calculated according the proposed mass loss dynamics equation allows to determine the parameters of the general equation of soil organic transformation model.

  5. The phenomenology of a small break LOCA in a complex thermal hydraulic loop

    International Nuclear Information System (INIS)

    Di Marzo, M.; Almenas, K.K.; Hsu, Y.Y.; Wang, Z.

    1988-01-01

    A phenomenological description of the thermal hydraulics events that take place during a simulated Small Break Loss of Coolant Accident (SB-LOCA) is presented. The SB-LOCA transient is described in detail and the various mass and energy transport modes are identified. Similar behavior is observed in other facilities designed for the simulation of this type of accidents. Previous investigations suggest a simple modelling of the phenomena based on fluid mechanic considerations. An extensive experimental program conducted at the experimental facility of the University of Maryland reveals that condensation is a dominant driving force for this type of transients. This finding has significant implications in the modelling of enthalpy transport for some of the flow modes which occur during the transient. In particular it affects the Interruption and Resumption Mode (IRM) during which enthalpy is transported by periodic flow of a two phase mixture. The efforts to predict the flow interruption based on fluid mechanic criteria of phase separation in the hot leg are shown to be misdirected since thermodynamic phenomena taking place in the horizontal portion of the cold legs and in the reactor vessel downcomer are mostly responsible for that transition. For flow resumption to occur the liquid-vapor mixture swelling in the vertical portion of the hot leg determines the occurrence of the liquid spill over the top of the candy cane. (orig.)

  6. A model of spontaneous CP violation and neutrino phenomenology with approximate LμLτ symmetry

    International Nuclear Information System (INIS)

    Adhikary, Biswajit

    2013-01-01

    We introduce a model where CP and Z 2 symmetry violate spontaneously. CP and Z 2 violate spontaneously through a singlet complex scalar S which obtains vacuum expectation value with phase S = Ve iα /2 and this is the only source of CP violation in this model. Low energy CP violation in the leptonic sector is connected to the large scale phase by three generations of left and right handed singlet fermions in the inverse see-saw like structure of model. We have considered approximate LμL τ symmetry to study neutrino phenomenology. Considering two mass square differences and three mixing angles including non zero θ 13 to their experimental 3σ limit, we have restricted the Lagrangian parameters for reasonably small value of L μ L τ symmetry breaking parameters. We have predicted the three masses, Dirac phase and two Majorana phases. We also evaluate CP violating parameter J CP , sum-mass and effective mass parameter involved in neutrino less double beta decay. (author)

  7. Problems of phenomenological simulation of the Dst variation

    International Nuclear Information System (INIS)

    Gul'el'mi, A.V.

    1988-01-01

    Stochastic generalization of RBM model, describing the D st -variation is suggested. The corresponding Fokker-Planck equation contains a new phenomenological parameter enabling to obtain the interval estimation of D st forecast. The structure of sources and sinks forming the D st -variation is considered from the viewpoint of critical phenomenon theory

  8. Building bridges: an interpretive phenomenological analysis of nurse educators' clinical experience using the T.R.U.S.T. Model for inclusive spiritual care.

    Science.gov (United States)

    Scott Barss, Karen

    2012-04-30

    Educating nurses to provide evidence-based, non-intrusive spiritual care in today's pluralistic context is both daunting and essential. Qualitative research is needed to investigate what helps nurse educators feel more prepared to meet this challenge. This paper presents findings from an interpretive phenomenological analysis of the experience of nurse educators who used the T.R.U.S.T. Model for Inclusive Spiritual Care in their clinical teaching. The T.R.U.S.T. Model is an evidence-based, non-linear resource developed by the author and piloted in the undergraduate nursing program in which she teaches. Three themes are presented: "The T.R.U.S.T. Model as a bridge to spiritual exploration"; "blockades to the bridge"; and "unblocking the bridge". T.R.U.S.T. was found to have a positive influence on nurse educators' comfort and confidence in the teaching of spiritual care. Recommendations for maximizing the model's positive impact are provided, along with "embodied" resources to support holistic teaching and learning about spiritual care.

  9. A Method for Developing Enterprise Architecture Frameworks: An Interpretive Phenomenology Study

    Directory of Open Access Journals (Sweden)

    Ali Moeini

    2015-03-01

    Full Text Available Nowadays, many of organizations, who are involved in enterprise architecting, make their own architecture framework or customize existing frameworks. These endeavors are based on the knowledge and the experience of each organization, and there is no defined method for developing the enterprise architecture framework. Therefore, a method for developing architecture framework is presented in this qualitative research. For this reason, 15 versions of 5 most used architecture frameworks are analyzed based on the interpretive phenomenology. Based on this analysis, a method for developing architecture frameworks is introduced which contains 8 disciplines and 6 phases. Analyzing the qualitative data of the research and also the validation of the research are carried out using the guidelines of Van Manen in the interpretive phenomenology.

  10. From Husserl to van Manen. A review of different phenomenological approaches.

    Science.gov (United States)

    Dowling, Maura

    2007-01-01

    This paper traces the development of phenomenology as a philosophy originating from the writings of Husserl to its use in phenomenological research and theory development in nursing. The key issues of phenomenological reduction and bracketing are also discussed as they play a pivotal role in the how phenomenological research studies are approached. What has become to be known as "new" phenomenology is also explored and the key differences between it and "traditional" phenomenology are discussed. van Manen's phenomenology is also considered in light of its contemporary popularity among nurse researchers.

  11. On Evidence and Argument in Phenomenological Research | Walsh ...

    African Journals Online (AJOL)

    Set against a background of calls for evidence-based practice, this paper explores the role of evidence and argument in phenomenological research. Drawing on Smith's (1998) analysis of original argument, the author considers how evidence can be discerned, understood, and communicated, and the resulting kinds and ...

  12. Phenomenological applications of perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Zahir, M.S.Z.

    1981-01-01

    In this thesis, three diffrent topics in high energy particle physics are investigated each of which is a case of theoretical and phenomenological application of perturbative Quantum Chromodynamics. The first topic is addressed to the structure of nucleons as probed in deep-inelastic lepton-nucleon scattering. Since, at present, meaningful calculations in Quantum Chromodynamics (QCD) can be done only for short distances or large momentum transfers, phenomenological applications of QCD to the full hadronic processes many a time require additional model dependent procedures. In this thesis, the structure functions of the nucleon in the framework of the valon model in which a nucleon is assumed to be a bound state of three valence quark clusters (valons) are analyzed. In the second topic the production of massive dimuons at large transverse momentum in Drell-Yan process is analyzed where it is believed that the dimuons acquire large transverse momentum through the emission or absorption of hard gluons. Following a model independent formalism, in this thesis, the lowest order QCD contributions to the structure functions in lepton-pair production are calculated and it is shown that there exist sum rules connecting the four sructure functions to be satisfied at zero rapidity and large transverse momentum of the muon-pair for similar interacting hadrons. In the third topic a discussion is given on how high energy photons can replace hadrons in new lepton-pair production process

  13. Phenomenological Model Describing the Formation of Peeling Defects on Hot-Rolled Duplex Stainless Steel 2205

    Science.gov (United States)

    Yong-jun, Zhang; Hui, Zhang; Jing-tao, Han

    2017-05-01

    The chemical composition, morphology, and microstructure of peeling defects formed on the surface of sheets from steel 2205 under hot rolling are studied. The microstructure of the surface is analyzed using scanning electron and light microscopy. The zones affected are shown to contain nonmetallic inclusions of types Al2O3 and CaO - SiO2 - Al2O3 - MgO in the form of streak precipitates and to have an unfavorable content of austenite, which causes decrease in the ductility of the area. The results obtained are used to derive a five-stage phenomenological model of formation of such defects.

  14. Type IIA string theory on T"6/(Z_2 x Z_6 x ΩR). Model building and string phenomenology with intersecting D6-branes

    International Nuclear Information System (INIS)

    Ecker, Jill

    2016-01-01

    In this doctoral thesis, various aspects of string model building and phenomenology are investigated within the framework of Type IIA string theory on the T"6/(Z_2 x Z_6 x ΩR) orbifold with discrete torsion. The aim is the reproduction of supersymmetric versions of well-known particle physics models using intersecting rigid D6-branes wrapped on fractional three-cycles. The models analyzed include the minimal supersymmetric Standard Model as well as supersymmetric Pati-Salam models, left-right symmetric models and SU(5) models. Systematic computer scans test numerous combinations of intersecting D6-branes in order to detect those that give rise to the correct chiral particle content of the considered models. For each type of the afore mentioned models, concrete examples will be found which satisfy the constraints on the particle spectrum and fulfill all consistency conditions. Finally, the thesis focuses on phenomenological aspects of the particle physics models found, including the detection of massless U(1) combinations, discrete Z_n-symmetries and cubic couplings such as the Yukawa couplings.

  15. Estimation of lymphatic conductance. A model based on protein-kinetic studies and haemodynamic measurements in patients with cirrhosis of the liver and in pigs

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1985-01-01

    A model of lymphatic conductivity (i.e. flow rate per unit pressure difference = conductance) based on protein-kinetic and haemodynamic measurements is described. The model is applied to data from patients with cirrhosis and from pigs with different haemodynamic abnormalities in the hepatosplanch......A model of lymphatic conductivity (i.e. flow rate per unit pressure difference = conductance) based on protein-kinetic and haemodynamic measurements is described. The model is applied to data from patients with cirrhosis and from pigs with different haemodynamic abnormalities...... compatible with increased sinusoidal wall tightening and fibrosis in the interstitial space of the liver. The model presented supports the so-called 'lymph-imbalance' theory of ascites formation according to which a relatively insufficient lymph drainage is important in the pathogenesis of hepatic ascites....

  16. Z(prime) Phenomenology and the LHC

    International Nuclear Information System (INIS)

    Rizzo, Thomas G.

    2006-01-01

    A brief pedagogical overview of the phenomenology of Z(prime) gauge bosons is ILC in determining Z(prime) properties is also discussed. and explore in detail how the LHC may discover and help elucidate the models, review the current constraints on the possible properties of a Z(prime) nature of these new particles. We provide an overview of the Z(prime) studies presented. Such particles can arise in various electroweak extensions of that have been performed by both ATLAS and CMS. The role of the the Standard Model (SM). We provide a quick survey of a number of Z(prime)

  17. Creativity in phenomenological methodology

    DEFF Research Database (Denmark)

    Dreyer, Pia; Martinsen, Bente; Norlyk, Annelise

    2014-01-01

    on the methodologies of van Manen, Dahlberg, Lindseth & Norberg, the aim of this paper is to argue that the increased focus on creativity and arts in research methodology is valuable to gain a deeper insight into lived experiences. We illustrate this point through examples from empirical nursing studies, and discuss......Nursing research is often concerned with lived experiences in human life using phenomenological and hermeneutic approaches. These empirical studies may use different creative expressions and art-forms to describe and enhance an embodied and personalised understanding of lived experiences. Drawing...... may support a respectful renewal of phenomenological research traditions in nursing research....

  18. Strong moduli stabilization and phenomenology

    CERN Document Server

    Dudas, Emilian; Mambrini, Yann; Mustafayev, Azar; Olive, Keith A

    2013-01-01

    We describe the resulting phenomenology of string theory/supergravity models with strong moduli stabilization. The KL model with F-term uplifting, is one such example. Models of this type predict universal scalar masses equal to the gravitino mass. In contrast, A-terms receive highly suppressed gravity mediated contributions. Under certain conditions, the same conclusion is valid for gaugino masses, which like A-terms, are then determined by anomalies. In such models, we are forced to relatively large gravitino masses (30-1000 TeV). We compute the low energy spectrum as a function of m_{3/2}. We see that the Higgs masses naturally takes values between 125-130 GeV. The lower limit is obtained from the requirement of chargino masses greater than 104 GeV, while the upper limit is determined by the relic density of dark matter (wino-like).

  19. Point kinetics model with one-dimensional (radial) heat conduction formalism

    International Nuclear Information System (INIS)

    Jain, V.K.

    1989-01-01

    A point-kinetics model with one-dimensional (radial) heat conduction formalism has been developed. The heat conduction formalism is based on corner-mesh finite difference method. To get average temperatures in various conducting regions, a novel weighting scheme has been devised. The heat conduction model has been incorporated in the point-kinetics code MRTF-FUEL. The point-kinetics equations are solved using the method of real integrating factors. It has been shown by analysing the simulation of hypothetical loss of regulation accident in NAPP reactor that the model is superior to the conventional one in accuracy and speed of computation. (author). 3 refs., 3 tabs

  20. Phenomenology dependent timescales

    International Nuclear Information System (INIS)

    Ouzounian, G.

    2002-01-01

    As required by the French act, Dec. 1991, construction projects for disposing of radioactive wastes have to be submitted to the Parliament by 2006. One of the most important points to allow for a decision at this time will be to gain confidence. The major difficulty in such a technical and societal project is to be able to carry out a demonstration of the safety ver timescales which are out of the scope of any experiment. Among the arguments involved for the safety case are a series of simulations which objective is to assess the level of safety which can be reached, and its robustness to various internal defects (construction of the drifts, welding of canisters...) or external events (intrusion with deep boreholes, climate change, faulting...). Confidence in the simulations can be achieved if they are transparent, based on well understood processes. However, the complexity of the disposal system is such that temptation was great by the past to simplify the models, with a poor level of reporting on justifications, thus leading to what has been described as black-box models. In the frame of the demonstration to be brought out for 2006, ANDRA has developed an approach consisting first to describe and analyse all the processes occurring over time and space in the repository. Once this type of information has been gathered in a structured way, then further analyses leading to abstractions, simplifications can be performed in order to facilitate simulations as required for the safety demonstration. The first stage of the approach has been called the phenomenological analysis of the repository situations PARS). This work gives rise to a reference book in which our knowledge has been reported before being used for the safety demonstration. If also represent a reference for all technical and scientific knowledge based applications, such as digital modeling which is the basis for simulations, the repository design, the reversibility study, including the definition of a

  1. Phenomenological analysis of angular correlations in 7 TeV proton-proton collisions from the CMS experiment

    International Nuclear Information System (INIS)

    Ray, R. L.

    2011-01-01

    A phenomenological analysis is presented of recent two-particle angular correlation data on relative pseudorapidity (η) and azimuth reported by the Compact Muon Solenoid (CMS) Collaboration for √(s)=7 TeV proton-proton collisions. The data are described with an empirical jetlike model developed for similar angular correlation measurements obtained from heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC). The sameside (small relative azimuth), η-extended correlation structure, referred to as the ridge, is compared with three phenomenological correlation structures suggested by theoretical analysis. These include additional angular correlations due to soft gluon radiation in 2→3 partonic processes, a one-dimensional sameside correlation ridge on azimuth motivated, for example, by color-glass condensate models, and an azimuth quadrupole similar to that required to describe heavy-ion angular correlations. The quadrupole model provides the best overall description of the CMS data, including the ridge, based on χ 2 minimization in agreement with previous studies. Implications of these results with respect to possible mechanisms for producing the CMS sameside correlation ridge are discussed.

  2. LHC phenomenology of the three-site Higgsless model

    Energy Technology Data Exchange (ETDEWEB)

    Speckner, Christian

    2009-07-01

    In the last years, extra dimensional models have been proposed which can evade these constraints by delocalizing the Standard Model fermions within the extra dimension, thus allowing to tune the couplings to the new resonances in order to avoid these constraints. This way, such models are a viable method of breaking the electroweak symmetry and retaining perturbative TeV scale unitarity without introducing a fundamental Higgs field. However, extra dimensional models (excluding trivial cases) are intrinsically nonrenormalizable and valid only below a cutoff scale, with most of the new resonances lying in fact above the cutoff. Conceptionally, a honest extension of the Standard Model should only contain the structure below this cutoff, incorporating the extra dimensional mechanism of breaking the symmetry and delaying unitarity violation without making assumptions on the high energy physics above the cutoff scale. The Three-Site Higgsless Model is a minimal implementation of this idea. While it can be motivated by extra dimensional Higgsless models of electroweak symmetry breaking, it in fact contains only one set of extra resonances which lies below the cutoff, delaying unitarity violation to {approx}2-3 TeV. The non-Standard Model part of the spectrum consists of a set of heavy partners for all Standard Model particles with the exception of photon and gluon. The analysis of the experimental constraints reveals that, while the model is consistent with the precision observables, the couplings between the new heavy gauge bosons and the Standard Model fermions have to be exceedingly small ({approx}1% of the isospin gauge coupling) while the new fermions are constrained to be rather heavy with masses above 1.8 TeV. In this thesis, we explored the LHC phenomenology of this scenario. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo event generator and WHIZARD / O'Mega. With this implementation

  3. LHC phenomenology of the three-site Higgsless model

    International Nuclear Information System (INIS)

    Speckner, Christian

    2009-01-01

    In the last years, extra dimensional models have been proposed which can evade these constraints by delocalizing the Standard Model fermions within the extra dimension, thus allowing to tune the couplings to the new resonances in order to avoid these constraints. This way, such models are a viable method of breaking the electroweak symmetry and retaining perturbative TeV scale unitarity without introducing a fundamental Higgs field. However, extra dimensional models (excluding trivial cases) are intrinsically nonrenormalizable and valid only below a cutoff scale, with most of the new resonances lying in fact above the cutoff. Conceptionally, a honest extension of the Standard Model should only contain the structure below this cutoff, incorporating the extra dimensional mechanism of breaking the symmetry and delaying unitarity violation without making assumptions on the high energy physics above the cutoff scale. The Three-Site Higgsless Model is a minimal implementation of this idea. While it can be motivated by extra dimensional Higgsless models of electroweak symmetry breaking, it in fact contains only one set of extra resonances which lies below the cutoff, delaying unitarity violation to ∼2-3 TeV. The non-Standard Model part of the spectrum consists of a set of heavy partners for all Standard Model particles with the exception of photon and gluon. The analysis of the experimental constraints reveals that, while the model is consistent with the precision observables, the couplings between the new heavy gauge bosons and the Standard Model fermions have to be exceedingly small (∼1% of the isospin gauge coupling) while the new fermions are constrained to be rather heavy with masses above 1.8 TeV. In this thesis, we explored the LHC phenomenology of this scenario. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo event generator and WHIZARD / O'Mega. With this implementation, we simulated

  4. Magnetotelluric Forward Modeling and Inversion In 3 -d Conductivity Model of The Vesuvio Volcano

    Science.gov (United States)

    Spichak, V.; Patella, D.

    Three-dimensional forward modeling of MT fields in the simplified conductivity model of the Vesuvio volcano (T=0.1, 1, 10, 100 and 1000s) indicates that the best image of the magma chamber could be obtained basing on the pseudo-section of the determinant apparent resitivity phase as well as on the real and imaginary components of the electric field. Another important result of the studies conducted is that it was demonstrated the principal opportunity of detection and contouring the magma chamber by 2-D pseudo-sections constructed basing on the data transforms mentioned above. Bayesian three-dimensional inversion of synthetic MT data in the volcano model indicates that it is possible to determine the depth and vertical size of the magma chamber, however, simultaneous detection of the conductivity distribution inside the domain of search is of pure quality. However, if the geometrical parameters of the magma chamber are determined in advance, it becomes quite realistic to find out the conductivity distribution inside. The accuracy of such estimation strongly depends on the uncertainty in its prior value: the more narrow is the prior conductivity palette the closer could be the posterior conductivity distribution to the true one.

  5. Conductive solar wind models in rapidly diverging flow geometries

    International Nuclear Information System (INIS)

    Holzer, T.E.; Leer, E.

    1980-01-01

    A detailed parameter study of conductive models of the solar wind has been carried out, extending the previous similar studies of Durney (1972) and Durney and Hundhausen (1974) by considering collisionless inhibition of thermal conduction, rapidly diverging flow geometries, and the structure of solutions for the entire n 0 -T 0 plane (n 0 and T 0 are the coronal base density and temperature). Primary emphasis is placed on understanding the complex effects of the physical processes operative in conductive solar wind models. There are five points of particular interest that have arisen from the study: (1) neither collisionless inhibition of thermal conduction nor rapidly diverging flow geometries can significantly increase the solar wind speed at 1 AU; (2) there exists a firm upper limit on the coronal base temperature consistent with observed values of the coronal base pressure and solar wind mass flux density; (3) the principal effect of rapidly diverging flow geometries is a decrease in the solar wind mass flux density at 1 AU and an increase in the mass flux density at the coronal base; (4) collisionless inhibition of thermal conduction can lead to a solar wind flow speed that either increases or decreases with increasing coronal base density (n 0 ) and temperature (T 0 , depending on the region of the n 0 -T 0 plane considered; (5) there is a region of the n 0 -T/sub o/ plane at high coronal base densities where low-speed, high-mass-flux, transonic solar wind flows exist: a region not previously considered

  6. Highlights on SUSY phenomenology

    International Nuclear Information System (INIS)

    Masiero, Antonio

    2004-01-01

    In spite of the extraordinary success of the Standard Model (SM) supplemented with massive neutrinos in accounting for the whole huge bulk of phenomenology which has been accumulating in the last three decades, there exist strong theoretical reasons in particle physics and significant 'observational' hints in astroparticle physics for new physics beyond it. My lecture is devoted to a critical assessment of our belief in such new physics at the electroweak scale, in particular identifying it with low-energy supersymmetric extensions of the SM. I'll explain why we have concrete hopes that this decade will shed definite light on what stands behind the phenomenon of electroweak symmetry breaking

  7. Applicability of cable theory to vascular conducted responses

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Jensen, Lars Jørn; Sørensen, Preben Graae

    2012-01-01

    Conduction processes in the vasculature have traditionally been described using cable theory, i.e., locally induced signals decaying passively along the arteriolar wall. The decay is typically quantified using the steady-state length-constant, ¿, derived from cable theory. However......, the applicability of cable theory to blood vessels depends on assumptions that are not necessarily fulfilled in small arteries and arterioles. We have employed a morphologically and electrophysiologically detailed mathematical model of a rat mesenteric arteriole to investigate if the assumptions hold and whether...... ¿ adequately describes simulated conduction profiles. We find that several important cable theory assumptions are violated when applied to small blood vessels. However, the phenomenological use of a length-constant from a single exponential function is a good measure of conduction length. Hence, ¿ should...

  8. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  9. More Wounding Than Wounds: Hysterectomy, Phenomenology, and the Pain(s of Excorporation

    Directory of Open Access Journals (Sweden)

    Heather Hill-Vásquez

    2016-06-01

    Full Text Available Focusing on the pain experience of hysterectomy, this article applies and interrogates the foundational descriptive process on which phenomenology is based and suggests that feminism and phenomenology are more compatible than previously asserted. Building upon the work of feminist philosophers who have also explored how feminist and phenomenological approaches share similar methods and intentions—especially in connection with the former’s significant attention to lived experience as a source for the theory feminism employs—the article engages with the philosophies of Maurice Merleau-Ponty and Samuel Mallin who maintain a consistent attention to the body in their phenomenological approaches. Arguing that Mallin’s method of “body hermeneutics” is especially valuable for constructing a feminist phenomenological approach, the article applies Mallin’s theories to the hysterectomy experience, thus revealing how other female-coded experiences of pain, intrusion, shame, and vulnerability are intertwined with hysterectomy. Moreover, the article posits the pain experience of hysterectomy as a particularly emphatic form of phenomenological excorporation in which hidden and habituated assumptions—in this case, the previously unnoticed and unexamined association of a woman’s womb with what it means to be a woman—are painfully brought to light. As the womb becomes more present in the notion and reality of its absence, what does this mean for the many women who experience the shared phenomenon of hysterectomy—including feminist women who enter the experience with a more explicit understanding of themselves as gendered subjects?

  10. Ethics in Husserl’s Phenomenology

    OpenAIRE

    Hasan FathZadeh

    2013-01-01

    Starting with the ego's consciousness and emphasizing on staying at this realm, Husserl is accused of ignoring the absolute alterity of the other and reducing it to the presence of consciousness. By reducing the other he misses ethics and so embeds the violence at the heart of phenomenological discourse. Here we discuss on this criticism and then we try to defend Husserl against it. By putting phenomenology in its eidetic realm, we will try to answer these criticisms.

  11. Phenomenology of Freedom and Responsibility in Sartre’s Existentialist Ethics

    Directory of Open Access Journals (Sweden)

    Mindaugas Briedis

    2011-03-01

    Full Text Available Freedom and responsibility in one way or another were discussed by all exorcists of non-perspective thinking, i.e., existentialists. However, the phenomenological roots of existentialist ethics still did not receive proper academic attention. In this article I explore J. P. Sartre’s conception of freedom and responsibility uncovering how phenomenological insights can be subordinated and sometimes guide intentions of existentialism. On the other hand, Sartre’s view delivers perfect opportunity to analyse conflation of phenomenological ontology and existentialist ethics. Although Sartre interprets key notions of Husserl and Heidegger primarily in phenomenological manner, the analysis leads away from classical phenomenology and opens up a new outlook at classical ethical dilemmas. Thirdly, the lack of clear ethical claims in phenomenology could be reduced by showing that the ethical potential of phenomenology was partly actualized in existentialism. Besides these primary goals the article opens up a possibility to critically compare the conception of Sartre’s phenomenological-existentialist ethics with other ethical and ontological perspectives, i.e., stoicism, Christianity, psychoanalysis, Marxism, Kant and etc.  

  12. A new thermal conductivity model for nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Junemoo; Kleinstreuer, Clement [Department of Mechanical and Aerospace Engineering (United States)], E-mail: ck@eos.ncsu.edu

    2004-12-15

    In a quiescent suspension, nanoparticles move randomly and thereby carry relatively large volumes of surrounding liquid with them. This micro-scale interaction may occur between hot and cold regions, resulting in a lower local temperature gradient for a given heat flux compared with the pure liquid case. Thus, as a result of Brownian motion, the effective thermal conductivity, k{sub eff}, which is composed of the particles' conventional static part and the Brownian motion part, increases to result in a lower temperature gradient for a given heat flux. To capture these transport phenomena, a new thermal conductivity model for nanofluids has been developed, which takes the effects of particle size, particle volume fraction and temperature dependence as well as properties of base liquid and particle phase into consideration by considering surrounding liquid traveling with randomly moving nanoparticles.The strong dependence of the effective thermal conductivity on temperature and material properties of both particle and carrier fluid was attributed to the long impact range of the interparticle potential, which influences the particle motion. In the new model, the impact of Brownian motion is more effective at higher temperatures, as also observed experimentally. Specifically, the new model was tested with simple thermal conduction cases, and demonstrated that for a given heat flux, the temperature gradient changes significantly due to a variable thermal conductivity which mainly depends on particle volume fraction, particle size, particle material and temperature. To improve the accuracy and versatility of the k{sub eff}model, more experimental data sets are needed.

  13. Phenomenology as a resource for patients.

    Science.gov (United States)

    Carel, Havi

    2012-04-01

    Patient support tools have drawn on a variety of disciplines, including psychotherapy, social psychology, and social care. One discipline that has not so far been used to support patients is philosophy. This paper proposes that a particular philosophical approach, phenomenology, could prove useful for patients, giving them tools to reflect on and expand their understanding of their illness. I present a framework for a resource that could help patients to philosophically examine their illness, its impact on their life, and its meaning. I explain the need for such a resource, provide philosophical grounding for it, and outline the epistemic and existential gains philosophy offers. Illness often begins as an intrusion on one's life but with time becomes a way of being. I argue that this transition impacts on core human features such as the experience of space and time, human abilities, and adaptability. It therefore requires philosophical analysis and response. The paper uses ideas from Husserl and Merleau-Ponty to present such a response in the form of a phenomenological toolkit for patients. The toolkit includes viewing illness as a form of phenomenological reduction, thematizing illness, and examining illness as altering the ill person's being in the world. I suggest that this toolkit could be offered to patients as a workshop, using phenomenological concepts, texts, and film clips to reflect on illness. I conclude by arguing that examining illness as a limit case of embodied existence deepens our understanding of phenomenology.

  14. The Domain-Specificity of Creativity: Insights from New Phenomenology

    Science.gov (United States)

    Julmi, Christian; Scherm, Ewald

    2015-01-01

    The question of the domain-specificity of creativity represents one of the key questions in creativity research. This article contributes to the discussion by applying insights from "new phenomenology," which is a phenomenological movement from Germany initiated by philosopher Hermann Schmitz. The findings of new phenomenology suggest…

  15. QCD phenomenology

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1979-01-01

    Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)

  16. Avoiding vacuum arcs in high gradient normal conducting RF structures

    CERN Document Server

    Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter

    In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...

  17. Narcissism, self-esteem, and the phenomenology of autobiographical memories.

    Science.gov (United States)

    Jones, Lara L; Norville, Gregory A; Wright, A Michelle

    2017-07-01

    Across two studies, we investigated the influence of narcissism and self-esteem along with gender on phenomenological ratings across the four subscales of the Autobiographical Memory Questionnaire (AMQ; impact, recollection, rehearsal, and belief). Memory cues varied in valence (positive vs. negative) and agency (agentic vs. communal). In Study 2, we used different memory cues reflecting these four Valence by Agency conditions and additionally investigated retrieval times for the autobiographical memories (AMs). Results were consistent with the agency model of narcissism [Campbell, W. K., Brunell, A. B., & Finkel, E. J. (2006). Narcissism, interpersonal self-regulation, and romantic relationships: An agency model approach. In E. J. Finkel & K. D. Vohs (Eds.), Self and relationships: Connecting intrapersonal and interpersonal processes. New York, NY: Guilford], which characterises narcissists as being more concerned with agentic (self-focused) rather than communal (other-focused) positive self-relevant information. Narcissism predicted greater phenomenology across the four subscales for the positive-agentic memories (Study 1: clever; Study 2: attractive, talented) as well as faster memory retrieval times. Narcissism also predicted greater recollection and faster retrieval times for the negative-communal AMs (Study 1: rude; Study 2: annoying, dishonest). In contrast, self-esteem predicted greater phenomenology and faster retrieval times for the positive-communal AMs (Study 1: cooperative; Study 2: romantic, sympathetic). In both studies, results of LIWC analyses further differentiated between narcissism and self-esteem in the content (word usage) of the AMs.

  18. Toward a Conceptualization of Mixed Methods Phenomenological Research

    OpenAIRE

    Mayoh, Joanne; Onwuegbuzie, A.J.

    2015-01-01

    Increasingly, researchers are recognizing the benefits of expanding research designs that are rooted in one tradition (i.e., monomethod design) into a design that incorporates or interfaces with the other tradition. The flexibility of phenomenologically driven methods provides one such example. Indeed, phenomenological research methods work extremely well as a component of mixed methods research approaches. However, to date, a mixed methods version of phenomenological research has not been fo...

  19. Modified Higgs boson phenomenology from gauge or gaugino mediation in the next-to-minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Morrissey, David E.; Pierce, Aaron

    2008-01-01

    In the next-to-minimal supersymmetric standard model (NMSSM), the presence of light pseudoscalars can have a dramatic effect on the decays of the standard model-like Higgs boson. These pseudoscalars are naturally light if supersymmetry breaking preserves an approximate U(1) R symmetry, spontaneously broken when the Higgs bosons take on their expectation values. We investigate two classes of theories that possess such an approximate U(1) R at the mediation scale: modifications of gauge and gaugino mediation. In the models we consider, we find two disjoint classes of phenomenologically allowed parameter regions. One of these regions corresponds to a limit where the singlet of the NMSSM largely decouples. The other can give rise to a standard model-like Higgs boson with dominant branching into light pseudoscalars.

  20. Fractional single-phase-lagging heat conduction model for describing anomalous diffusion

    Directory of Open Access Journals (Sweden)

    T.N. Mishra

    2016-03-01

    Full Text Available The fractional single-phase-lagging (FSPL heat conduction model is obtained by combining scalar time fractional conservation equation to the single-phase-lagging (SPL heat conduction model. Based on the FSPL heat conduction model, anomalous diffusion within a finite thin film is investigated. The effect of different parameters on solution has been observed and studied the asymptotic behavior of the FSPL model. The analytical solution is obtained using Laplace transform method. The whole analysis is presented in dimensionless form. Numerical examples of particular interest have been studied and discussed in details.

  1. Collective learning modeling based on the kinetic theory of active particles

    Science.gov (United States)

    Burini, D.; De Lillo, S.; Gibelli, L.

    2016-03-01

    This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.

  2. On "being inspired" by Husserl's Phenomenology: reflections on Omery's exposition of phenomenology as a method of nursing research.

    Science.gov (United States)

    Porter, E J

    1998-09-01

    The impact of Omery's article, "Phenomenology: A Method for Nursing Research," on nursing science is appraised. In particular, the influence of her emphasis on "being inspired" was compared with that of her detailed reviews of psychological phenomenologic methods. The author's experience of "being inspired" by Husserl's book, Ideas, is described. The author also discusses the tapping of this resource during three phases of her development as a researcher: (1) appraising methods derived from Husserl's phenomenology; (2) spelling out an approach, with help; and (3) "making clearer while glancing-toward." Omery's proposed linkage between philosophic inspiration and methodologic development is highlighted as a challenge to nurse researchers.

  3. ZnO based transparent conductive oxide films with controlled type of conduction

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, M., E-mail: mzaharescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Mihaiu, S., E-mail: smihaiu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Toader, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Atkinson, I., E-mail: irinaatkinson@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Calderon-Moreno, J.; Anastasescu, M.; Nicolescu, M.; Duta, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vojisavljevic, K.; Malic, B. [Institute Jožef Stefan, Ljubljana (Slovenia); Ivanov, V.A.; Zaretskaya, E.P. [State Scientific and Production Association “Scientific-Practical Materials Research Center of the National Academy of Science Belarus, P. Brovska str.19, 220072, Minsk (Belarus)

    2014-11-28

    The transparent conductive oxide films with controlled type of conduction are of great importance and their preparation is intensively studied. In our work, the preparation of such films based on doped ZnO was realized in order to achieve controlled type of conduction and high concentration of the charge carriers. Sol–gel method was used for films preparation and several dopants were tested (Sn, Li, Ni). Multilayer deposition was performed on several substrates: SiO{sub 2}/Si wafers, silica-soda-lime and/or silica glasses. The structural and morphological characterization of the obtained films were done by scanning electron microscopy, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and atomic force microscopy respectively, while spectroscopic ellipsometry and transmittance measurements were done for determination of optical properties. The selected samples with the best structural, morphological and optical properties were subjected to electrical measurement (Hall and Seebeck effect). In all studied cases, samples with good adherence and homogeneous morphology as well as monophasic wurtzite type structure were obtained. The optical constants (refractive index and extinction coefficient) were calculated from spectroscopic ellipsometry data using Cauchy model. Films with n- or p-type conduction were obtained depending on the composition, number of deposition and thermal treatment temperature. - Highlights: • Transparent conductive ZnO based thin films were prepared by the sol–gel method. • Controlled type of conduction is obtained in (Sn, Li) doped and Li-Ni co-doped ZnO films. • Hall and Seebeck measurements proved the p-type conductivity for Li-Ni co-doped ZnO films. • The p-type conductivity was maintained even after 4-months of storage. • Influence of dopant- and substrate-type on the ZnO films properties was established.

  4. Post-traumatic Growth in Breast Cancer Patients: A Qualitative Phenomenological Study

    Directory of Open Access Journals (Sweden)

    Rahele Fallah

    2012-04-01

    Full Text Available Background: Studies about cancer-related trauma have shown that psychological reactions to the disease are not exclusively negative but most patients also report positive experiences. These positive perceptions are also called post-traumatic growth and benefit patients psychologically, spiritually, and physically. Therefore,we have conducted a study about how women with breast cancer perceive posttraumatic growth and the recognition of its dimensions in Iran.Methods: This qualitative study was conducted by using Interpretative Phenomenological Analysis. A total of 23 women with breast cancer who met the inclusion criteria were selected after which patients completed a researcher-generated open-ended questionnaire. Data were analyzed according to the guidelines for the Interpretative Phenomenological Analysis and Smith method.Results: Participants’ perceptions in this study about post-traumatic growth included three themes: spiritual growth, appreciation of life, and increased personal strengths.Conclusion: Themes found in this study conformed to dimensions according to the Tedeschi and Calhoun theory of post-traumatic growth. However, relations with others were not found in the present study. We propose that interventions should be designed and implemented in order to facilitate and enhance post-traumatic growth.

  5. A phenomenological SMA model for combined axial–torsional proportional/non-proportional loading conditions

    International Nuclear Information System (INIS)

    Bodaghi, M.; Damanpack, A.R.; Aghdam, M.M.; Shakeri, M.

    2013-01-01

    In this paper, a simple and robust phenomenological model for shape memory alloys (SMAs) is proposed to simulate main features of SMAs under uniaxial as well as biaxial combined axial–torsional proportional/non-proportional loadings. The constitutive model for polycrystalline SMAs is developed within the framework of continuum thermodynamics of irreversible processes. The model nominates the volume fractions of self-accommodated and oriented martensite as scalar internal variables and the preferred direction of oriented martensitic variants as directional internal variable. An algorithm is introduced to develop explicit relationships for the thermo-mechanical behavior of SMAs under uniaxial and biaxial combined axial–torsional proportional/non-proportional loading conditions and also thermal loading. It is shown that the model is able to simulate main aspects of SMAs including self-accommodation, martensitic transformation, orientation and reorientation of martensite, shape memory effect, ferro-elasticity and pseudo-elasticity. A description of the time-discrete counterpart of the proposed SMA model is presented. Experimental results of uniaxial tension and biaxial combined tension–torsion non-proportional tests are simulated and a good qualitative correlation between numerical and experimental responses is achieved. Due to simplicity and accuracy, the model is expected to be used in the future studies dealing with the analysis of SMA devices in which two stress components including one normal and one shear stress are dominant

  6. Evidence for polaron conduction in nanostructured manganese ferrite

    International Nuclear Information System (INIS)

    Gopalan, E Veena; Anantharaman, M R; Malini, K A; Saravanan, S; Kumar, D Sakthi; Yoshida, Yasuhiko

    2008-01-01

    Nanoparticles of manganese ferrite were prepared by the chemical co-precipitation technique. The dielectric parameters, namely, real and imaginary dielectric permittivity (ε' and ε-prime), ac conductivity (σ ac ) and dielectric loss tangent (tanδ), were measured in the frequency range of 100 kHz-8 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε-prime) with frequency and temperature were also investigated. The variation of dielectric permittivity with frequency and temperature followed the Maxwell-Wagner model based on interfacial polarization in consonance with Koops phenomenological theory. The dielectric loss tangent and hence ε-prime exhibited a relaxation at certain frequencies and at relatively higher temperatures. The dispersion of dielectric permittivity and broadening of the dielectric absorption suggest the possibility of a distribution of relaxation time and the existence of multiple equilibrium states in manganese ferrite. The activation energy estimated from the dielectric relaxation is found to be high and is characteristic of polaron conduction in the nanosized manganese ferrite. The ac conductivity followed a power law dependence σ ac = Bω n typical of charge transport assisted by a hopping or tunnelling process. The observed minimum in the temperature dependence of the frequency exponent n strongly suggests that tunnelling of the large polarons is the dominant transport process

  7. Phenomenology of the hierarchical lepton mass spectrum in the flipped SU(5)xU(1) string model

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K.; Nanopoulos, D.V.

    1988-09-29

    A detailed phenomenological analysis of the lepton mass matrices and their implications in the low energy theory are discussed, within the recently proposed SU(5)xU(1) string model. The unification scale is highly constrained while the Yukawa couplings lie in a natural region. The flavour changing decays ..mu.. -> e..gamma.., ..mu.. -> 3e, ..mu.. -> e are highly suppressed while the depletion in the flux of muon neutrinos reported by the Kamiokande is explained through ..nu../sub ..mu../ reversible ..nu../sub tau/ oscillations.

  8. Self-Injurious Behaviour in Cornelia De Lange Syndrome: 1. Prevalence and Phenomenology

    Science.gov (United States)

    Oliver, C.; Sloneem, J.; Hall, S.; Arron, K.

    2009-01-01

    Background: Self-injurious behaviour is frequently identified as part of the behavioural phenotype of Cornelia de Lange syndrome (CdLS). We conducted a case-control study of the prevalence and phenomenology of self-injurious behaviour (SIB) in CdLS. Methods: A total of 54 participants with CdLS were compared with 46 individuals who were comparable…

  9. Thermal conductivity model of vibro-packed fuel

    International Nuclear Information System (INIS)

    Yeon Soo, Kim

    2001-01-01

    In an effort to dispose of excess weapons grade plutonium accumulated in the cold war era in the United States and the Russian Federation, one method currently under investigation is the conversion of the plutonium into mixed oxide (MOX) reactor fuel for LWRs and fast reactors in the Russian Federation. A fuel option already partly developed at the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad is that of vibro-packed MOX. Fuel rod fabrication using powder vibro-packing is attractive because it includes neither a process too complex to operate in glove boxes (or remotely), nor a waste-producing step necessary for the conventional pellet rod fabrication. However, because of its loose bonding between fuel particles at the beginning of life, vibro-packed MOX fuel has a somewhat less effective thermal conductivity than fully sintered pellet fuel, and undergoes more restructuring. Helium would also likely be pressurized in vibro-packed MOX fuel rods for LWRs to enhance initial fuel thermal conductivity. The combination of these two factors complicates development of an accurate thermal conductivity model. But clearly in order to predict fuel thermomechanical responses during irradiation of vibro-packed MOX fuel, fuel thermal conductivity must be known. The Vibropac fuel of interest in this study refers the fuel that is compacted with irregular fragments of mixed oxide fuel. In this paper, the thermal-conductivity models in the literature that dealt with relatively similar situations to the present case are examined. Then, the best model is selected based on accuracy of prediction and applicability. Then, the selected model is expanded to fit the various situations of interest. (author)

  10. Model of electrical conductivity of skeletal muscle based on tissue structure

    NARCIS (Netherlands)

    Gielen, F.L.H.; Cruts, H.E.P.; Alberts, B.A.; Boon, K.L.; Wallinga, W.; Boom, H.B.K.

    1986-01-01

    Recent experiments carried out in our laboratory with the four-electrode method showed that the electrical conductivity of skeletal muscle tissue depends on the frequency of the injected current and the distance between the current electrodes. A model is proposed in order to study these effects. The

  11. [Phenomenology of dreams].

    Science.gov (United States)

    Pringuey, Dominique

    2011-10-01

    A phenomenology of dreams searches for meaning, with the aim not only of explaining but also of understanding the experience. What and who is it for? And what about the nearly forgotten dream among the moderns, the banal returning to the nightmare, sleepiness, or dreamlike reverie. Nostalgia for the dream, where we saw a very early state of light, not a ordinaire qu duel. Regret for the dreamlike splendor exceeded by the modeling power of modern aesthetics--film and the explosion of virtual imaging technologies. Disappointment at the discovery of a cognitive permanence throughout sleep and a unique fit with the real upon awaking? An excess of methodological rigor where we validate the logic of the dream, correlating the clinical improvement in psychotherapy and the ability to interpret one's own dreams. The dangerous psychological access when the dream primarily is mine, viewed as a veiled expression of an unspoken desire, or when the dream reveals to me, in an existential conception of man, through time and space, my daily life, my freedom beyond my needs. Might its ultimate sense also mean its abolition? From the story of a famous forgotten dream, based on unexpected scientific data emerges the question: do we dream to forget? The main thing would not be consciousness but confidence, when " the sleeping man, his regard extinguished, dead to himself seizes the light in the night " (Heraclitus).

  12. Adjusting to bodily change following stoma formation: a phenomenological study

    OpenAIRE

    Thorpe, Gabrielle; Arthur, Antony; McArthur, Maggie

    2016-01-01

    Purpose: Scant research has been undertaken to explore in-depth the meaning of bodily change for individuals following stoma formation. The aim of this study was to understand the experience of living with a new stoma, with a focus on bodily change. Method: The study adopted a longitudinal phenomenological approach. Purposeful sampling was used to recruit twelve participants who had undergone faecal stoma-forming surgery. Indepth, unstructured interviews were conducted at three, nine and fift...

  13. Temperature-dependent ionic conductivity and transport properties ...

    Indian Academy of Sciences (India)

    Administrator

    A conductivity cell containing two stainless-steel block- ing electrodes ... tions by matching the device impedance to the cable .... reveals that the presence of large negative value in the ... site exhibits VTF phenomenological relationship. 1/2 dc.

  14. Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nailong; Wang, Weizhe; Jiang, Jishen; Liu, Yingzheng [School of Mechanical Engineering, Shanghai (China)

    2017-02-15

    In this study, the phenomenological lifetime model was applied to part of an ultra-supercritical steam turbine rotor model to predict its lifetime as a post processing of the finite element method. To validate the accuracy and adaptation of the post processing program, stress strain hysteresis loops of a cylinderal model under service-like load cycle conditions in cycle N = 1 and 300 were constructed, and the comparison of the results with experimental data on the same cylinderal specimen showed them to be satisfactory. The temperature and von Mises stress distributions of the rotor during a startup-running-shutdown-natural cool process were numerically studied using ABAQUS and the damage caused by the interaction of creep and fatigue was subsequently computed and discussed. It was found that the maximum damage appeared at the inlet notch zone, with the blade groove areas and the front notch areas also suffering a large damage amplitude.

  15. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    Science.gov (United States)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential

  16. Book Review Psychotherapy and Phenomenology By Ian Rory ...

    African Journals Online (AJOL)

    Book Review Psychotherapy and Phenomenology By Ian Rory Owen (2006) ... Psychotherapy and Phenomenology: On Freud, Husserl and Heidegger. New York: iUniverse. Soft Cover (352 ... AJOL African Journals Online. HOW TO USE ...

  17. Perceptions of Psychological and Physical Safety Environments of Information Technology Employees: A Phenomenological Study

    Science.gov (United States)

    Payne, Sheila C.

    2012-01-01

    A qualitative phenomenological study was conducted to gain a deeper understanding of psychological and safety environments of an oil and gas multinational enterprise. Twenty information technology professionals were interviewed to explore their feelings, perceptions, beliefs, and values of the phenomenon. The interviews elicited data about facets…

  18. Experiences of employed women with attention deficit hyperactive disorder: A phenomenological study.

    Science.gov (United States)

    Schreuer, N; Dorot, R

    2017-01-01

    Employees with attention-deficit/hyperactivity disorder (ADHD) face various risks in the workplace. Little is known of the specific challenges women with ADHD experience. To explore the experiences of working women with ADHD and learn the strategies and accommodations that facilitate their maintaining employment. Qualitative phenomenological approach was used to echo women's subjective perceptions and experiences representing their daily interactions in their workplace. In-depth interviews were conducted with eleven tertiary-educated employed women (M = 33.5; SD = 6.61 years), diagnosed with ADHD and the transcripts were analyzed by three researchers, using the qualitative phenomenological approach. Most interviewed women with ADHD described interactions with their workplace as confusing, overwhelming, and chaotic. They perceived their ADHD as a significant obstacle to success in employment that also conferred some advantages. Three interview themes are explored here (1) challenges in coping with job demands and the workplace, including the disclosure dilemma; (2) personal coping strategies; (3) useful accommodations. For the women interviewed, employment was important for their self-identity, beyond simply making a living. Their experiences indicate impaired executive functioning and inhibition and sensory sensitivity, consistently with theoretical models for ADHD. They identified gender-specific issues, such as using medication during pregnancy, which led them to seek for non-pharmacological coping mechanisms. They contributed practical knowledge regarding employee-led adaptations and employer-provided workplace accommodations.

  19. Phenomenological structure functions and Gribov-Lipatov relation

    International Nuclear Information System (INIS)

    Choudhary, D.K.; Misra, A.K.

    1987-01-01

    An analysis of the Giribov-Lipatov relation using the phenomenological forms of the structure function F 2 ep is made. The analysis indicate breakdown of the relation at PETRA energies. Plausible reasons of the breakdown of Gribov-Lipatov relation are discussed together with its phenomenological form. 33 refs., 6 figures. (author)

  20. The promise of 'sporting bodies' in phenomenological thinking

    DEFF Research Database (Denmark)

    Ravn, Susanne; Høffding, Simon

    2017-01-01

    phenomenology to empirically investigate the domain of sport and exercise, phenomenologists employ empirical data to substantiate their claims concerning foundational conditions of our being-in-the-world. In this article, we suggest a way to enhance the collaboration between the two fields by pointing out......For decades, qualitative researchers have used phenomenological thinking to advance reflections on particular kinds of lifeworlds. As emphasised by Allen-Collinson phenomenology offers a continuing promise of ‘bringing the body back in’ to theories on sport and physical activity. Turning...... and giving examples of the resource of ‘the factual variation.’ Coined by Shaun Gallagher and developed from the Husserlian eidetic variation, the factual variation uses exceptional cases, normally from pathology, to shed new light on foundational phenomenological concepts. Drawing on our research of sports...

  1. Phenomenology of left-right symmetric dark matter

    International Nuclear Information System (INIS)

    Garcia-Cely, Camilo; Heeck, Julian

    2016-01-01

    We present a detailed study of dark matter phenomenology in low-scale left-right symmetric models. Stability of new fermion or scalar multiplets is ensured by an accidental matter parity that survives the spontaneous symmetry breaking of the gauge group by scalar triplets. The relic abundance of these particles is set by gauge interactions and gives rise to dark matter candidates with masses above the electroweak scale. Dark matter annihilations are thus modified by the Sommerfeld effect, not only in the early Universe, but also today, for instance, in the Center of the Galaxy. Majorana candidates—triplet, quintuplet, bi-doublet, and bi-triplet—bring only one new parameter to the model, their mass, and are hence highly testable at colliders and through astrophysical observations. Scalar candidates—doublet and 7-plet, the latter being only stable at the renormalizable level—have additional scalar-scalar interactions that give rise to rich phenomenology. The particles under discussion share many features with the well-known candidates wino, Higgsino, inert doublet scalar, sneutrino, and Minimal Dark Matter. In particular, they all predict a large gamma-ray flux from dark matter annihilations, which can be searched for with Cherenkov telescopes. We furthermore discuss models with unequal left-right gauge couplings, g R  ≠ g L , taking the recent experimental hints for a charged gauge boson with 2 TeV mass as a benchmark point. In this case, the dark matter mass is determined by the observed relic density

  2. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    Energy Technology Data Exchange (ETDEWEB)

    Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu. [Faculty of Physics, Moscow State M.V. Lomonosov University, 119991 Moscow (Russian Federation)

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, which depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.

  3. Phenomenology and theory of confinement

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1987-01-01

    Phenomenological and theoretical arguments of the separation of the hadronization dynamics from confinement and the idea of the ''kinematic'' confinement are discussed. The recent theory contains results which point out that the Wilson criterion and the confinement potentials are not sufficient for explaining the phenomenological confinement in the sense of zero color amplitudes or Green functions. However, these potentials well explain the hadron spectrum and spontaneous breaking of chiral symmetry, i.e., the hadronization dynamics. The ''kinematic'' confinement can be explained by the topological degeneration of all color-particle physical states in QCD. This degeneration arises if the theory is quantized by explicitly solving the gauge and dynamic constraints: all color states are defined up to gauge(phase) factors describing the map of the three-dimensional space onto SU(3) c -group (π 3 (SU(3) c =Z). The total probability of the color particle generation is equal to zero due to the destructive interference of these phase factors. As a result, in QCD there remains only a hadron sector used in the phenomenology

  4. Phenomenology as first philosophy | Allsobrook | South African ...

    African Journals Online (AJOL)

    The paper interprets phenomenology as a mode of inquiry that addresses fundamental questions of first philosophy, beyond the limitation of the practice by its leading theorists to the study of mere appearances. I draw on Adorno's critique of phenomenology to show that it has typically functioned as a mode of first ...

  5. Heidegger’s phenomenology of the invisible

    Directory of Open Access Journals (Sweden)

    Andrzej SERAFIN

    2016-12-01

    Full Text Available Martin Heidegger has retrospectively characterized his philosophy as “phenomenology of the invisible”. This paradoxical formula suggests that the aim of his thinking was to examine the origin of the phenomena. Furthermore, Heidegger has also stated that his philosophy is ultimately motivated by a theological interest, namely the question of God’s absence. Following the guiding thread of those remarks, this essay analyzes the essential traits of Heidegger’s thought by interpreting them as an attempt to develop a phenomenology of the invisible. Heidegger’s attitude towards physics and metaphysics, his theory of truth, his reading of Aristotle, his concept of Dasein, his understanding of nothingness are all situated within the problematic context of the relation between the invisible and the revealed. Heidegger’s thought is thereby posited at the point of intersection of phenomenology, ontology, and theology.

  6. Investigating Relational Aggression and Bullying for Girls' of Color in Oklahoma: A Phenomenological Study

    Science.gov (United States)

    Flynn, Gayle L.

    2016-01-01

    This qualitative research study, applying aspects of van Manen's framework for hermeneutic phenomenological research, was conducted to investigate the narratives of relationally aggressive girls of color. The study focused on nine adolescent girls of color who were ages 14-17 years old and exhibited aggressive/bullying behaviors representing the…

  7. From the History of Islamic Studies: A.-M. Schimmel and Phenomenological Approach to Religion

    Directory of Open Access Journals (Sweden)

    Samarina Tat’iana

    2017-06-01

    Full Text Available This article analyses key works of the well-known classic of Islamic studies A.-M. Schimmel and demonstrates that in her legacy the methodology of classical phenomenology of religion has found its fresh application to the study of Islam. The article focuses on essential points of A.-M. Schimmel’s biography that had infl uenced her academic career, and then analyses her phenomenological approach showing how she builds a system of description of Islam by means of systematising religious phenomena that proceeds from external forms (material objects to the centre of religion, God. Phenomenological analysis of Islam provides a base for comprehensive understanding and description of religious phenomena, starting from the perception of stone, holiday, clothes, myth in minds of ordinary Muslims. Schimmel’s phenomenological approach to Islam takes into account the specifi city of lived religion prior to the emergence of this trend. A.-M. Schimmel’s legacy therefore fits in the context of contemporary religious studies. The second part of the article examines the influence of leading scholars in phenomenology of religion (Mircea Eliade, Gerardus van der Leeuw, Friedrich Heiler on A.-M. Schimmel. It is concluded that the positive reception of her work among scholars of Islam and among Muslims themselves suggests that the language of the phenomenological description is the language of religious dialogue.

  8. Study of theory and phenomenology of some classes of family symmetry and unification models

    International Nuclear Information System (INIS)

    Kane, Gordon L.; King, Steve F.; Peddie, Iain N.R.; Velasco-Sevilla, Liliana

    2005-01-01

    We review and compare theoretically and phenomenologically a number of possible family symmetries, which when combined with unification, could be important in explaining quark, lepton and neutrino masses and mixings, providing new results in several cases. Theoretical possibilities include abelian or non-abelian, symmetric or non symmetric Yukawa matrices, Grand Unification or not. Our main focus is on anomaly-free U(1) family symmetry combined with SU(5) unification, although we also discuss other possibilities. We provide a detailed phenomenological fit of the fermion masses and mixings for several examples, and discuss the supersymmetric flavour issues in such theories, including a detailed analysis of lepton flavour violation. We show that it is not possible to quantitatively and decisively discriminate between these different theoretical possibilities at the present time

  9. Palatini actions and quantum gravity phenomenology

    International Nuclear Information System (INIS)

    Olmo, Gonzalo J.

    2011-01-01

    We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce

  10. Palatini actions and quantum gravity phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia - CSIC, Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain)

    2011-10-01

    We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.

  11. Phenomenological study of the nucleon structure functions; Etude phenomenologique des fonctions de structure du nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, M

    1995-05-12

    This thesis is devoted to the study of the deep inelastic scattering. Its purpose is the development of phenomenological models describing experimental results on unpolarized (F{sub 2}) and polarized (g{sub 1}) nucleon structure functions in the wide range of the kinematical domain. Special attention is paid to the small-x behaviour of F{sub 2} and to the link between deep inelastic scattering and photoproduction process. The investigation of the Pomeron in deep inelastic scattering shows that one single Pomeron compatible with the Froissard-Martin limit can account for all the present HERA data. A phenomenological model of the proton structure function is developed, based on a two-component structure including various features expected from both perturbative quantum chromodynamics and non perturbative Regge theory. A link with the photoproduction process is provided. A detailed analysis of the perturbative components, based on the Gribov-Lipatov-Altarelli-Parisi evolution equations is presented. Taking into account the different parton distribution, this approach allows to describe data on proton and neutron structure functions, on deep inelastic neutrino scattering, and to reproduce the gluons distribution extracted by the ZEUS collaboration. The model is applied to the polarized deep inelastic scattering and the axial anomaly effect appearing both in the description of results on the spin dependent structure functions g{sup p,n,d} and in the interpretation of the nucleon spin structure is discussed. (J.S.). 260 refs., 34 figs., 8 tabs., 6 appends.

  12. Feeling and time: the phenomenology of mood disorders, depressive realism, and existential psychotherapy.

    Science.gov (United States)

    Ghaemi, S Nassir

    2007-01-01

    Phenomenological research suggests that pure manic and depressive states are less common than mixtures of the two and that the two poles of mood are characterized by opposite ways of experiencing time. In mania, the subjective experience of time is sped up and in depression it is slowed down, perhaps reflecting differences in circadian pathophysiology. The two classic mood states are also quite different in their effect on subjective awareness: manic patients lack insight into their excitation, while depressed patients are quite insightful into their unhappiness. Consequently, insight plays a major role in overdiagnosis of unipolar depression and misdiagnosis of bipolar disorder. The phenomenology of depression also is relevant to types of psychotherapies used to treat it. The depressive realism (DR) model, in contrast to the cognitive distortion model, appears to better apply to many persons with mild to moderate depressive syndromes. I suggest that existential psychotherapy is the necessary corollary of the DR model in those cases. Further, some depressive morbidities may in fact prove, after phenomenological study, to involve other mental states instead of depression. The chronic sub-syndromal depression that is often the long-term consequence of treated bipolar disorder may in fact represent existential despair, rather than depression proper, again suggesting intervention with existential psychotherapeutic methods.

  13. Feeling and Time: The Phenomenology of Mood Disorders, Depressive Realism, and Existential Psychotherapy

    Science.gov (United States)

    Ghaemi, S. Nassir

    2007-01-01

    Phenomenological research suggests that pure manic and depressive states are less common than mixtures of the two and that the two poles of mood are characterized by opposite ways of experiencing time. In mania, the subjective experience of time is sped up and in depression it is slowed down, perhaps reflecting differences in circadian pathophysiology. The two classic mood states are also quite different in their effect on subjective awareness: manic patients lack insight into their excitation, while depressed patients are quite insightful into their unhappiness. Consequently, insight plays a major role in overdiagnosis of unipolar depression and misdiagnosis of bipolar disorder. The phenomenology of depression also is relevant to types of psychotherapies used to treat it. The depressive realism (DR) model, in contrast to the cognitive distortion model, appears to better apply to many persons with mild to moderate depressive syndromes. I suggest that existential psychotherapy is the necessary corollary of the DR model in those cases. Further, some depressive morbidities may in fact prove, after phenomenological study, to involve other mental states instead of depression. The chronic subsyndromal depression that is often the long-term consequence of treated bipolar disorder may in fact represent existential despair, rather than depression proper, again suggesting intervention with existential psychotherapeutic methods. PMID:17122410

  14. Testing a phenomenologically extended DGP model with upcoming weak lensing surveys

    Energy Technology Data Exchange (ETDEWEB)

    Camera, Stefano; Diaferio, Antonaldo [Dipartimento di Fisica Generale ' ' A. Avogadro' ' , Università di Torino, via P. Giuria 1, 10125 Torino (Italy); Cardone, Vincenzo F., E-mail: camera@ph.unito.it, E-mail: diaferio@ph.unito.it, E-mail: winnyenodrac@gmail.com [Dipartimento di Scienze e Tecnologie per l' Ambiente e il Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (Italy)

    2011-01-01

    A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r{sub c}, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼models differ at most by the 1σ uncertainty over the range 500∼

  15. Testing a phenomenologically extended DGP model with upcoming weak lensing surveys

    International Nuclear Information System (INIS)

    Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F.

    2011-01-01

    A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r c , the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼< l∼<3000; on the contrary, the two models differ at most by the 1σ uncertainty over the range 500∼< l∼<3000 in the DES experiment and they are virtually indistinguishable

  16. An exploration of role model influence on adult nursing students' professional development: A phenomenological research study.

    Science.gov (United States)

    Felstead, Ian S; Springett, Kate

    2016-02-01

    Patients' expectations of being cared for by a nurse who is caring, competent, and professional are particularly pertinent in current health and social care practice. The current drive for NHS values-based recruitment serves to strengthen this. How nursing students' development of professionalism is shaped is not fully known, though it is acknowledged that their practice experience strongly shapes behaviour. This study (in 2013-14) explored twelve adult nursing students' lived experiences of role modelling through an interpretive phenomenological analysis approach, aiming to understand the impact on their development as professional practitioners. Clinical nurses influenced student development consistently. Some students reported that their experiences allowed them to learn how not to behave in practice; a productive learning experience despite content. Students also felt senior staff influence on their development to be strong, citing 'leading by example.' The impact of patients on student professional development was also a key finding. Through analysing information gained, identifying and educating practice-based mentors who are ready, willing, and able to role model professional attributes appear crucial to developing professionalism in nursing students. Those involved in nurse education, whether service providers or universities, may wish to acknowledge the influence of clinical nurse behaviour observed by students both independent of and in direct relation to care delivery and the impact on student nurse professional development. A corollary relates to how students should be guided and briefed/debriefed to work with a staff to ensure their exposure to a variety of practice behaviours. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Phenomenological consequences of supersymmetry

    International Nuclear Information System (INIS)

    Hinchliffe, I.; Littenberg, L.

    1982-01-01

    This report deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. It is concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/anti K/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed. The report is organized as follows. Section I consists of a brief review of supersymmetry and the salient features of existing supersymmetric models; this section can be ignored by those familiar with such models since it contains nothing new. Section 2 deals with the consequences for nucleon decay of SUSY. The remaining sections then discuss the physics possibilities of various machines; e anti e in Section 3, ep in Section 4, pp (or anti pp) colliders in Section 5 and fixed target hadron machines in Section 6

  18. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  19. Conducting qualitative research in audiology: a tutorial.

    Science.gov (United States)

    Knudsen, Line V; Laplante-Lévesque, Ariane; Jones, Lesley; Preminger, Jill E; Nielsen, Claus; Lunner, Thomas; Hickson, Louise; Naylor, Graham; Kramer, Sophia E

    2012-02-01

    Qualitative research methodologies are being used more frequently in audiology as it allows for a better understanding of the perspectives of people with hearing impairment. This article describes why and how international interdisciplinary qualitative research can be conducted. This paper is based on a literature review and our recent experience with the conduction of an international interdisciplinary qualitative study in audiology. We describe some available qualitative methods for sampling, data collection, and analysis and we discuss the rationale for choosing particular methods. The focus is on four approaches which have all previously been applied to audiologic research: grounded theory, interpretative phenomenological analysis, conversational analysis, and qualitative content analysis. This article provides a review of methodological issues useful for those designing qualitative research projects in audiology or needing assistance in the interpretation of qualitative literature.

  20. Phenomenological uncertainty analysis of containment building pressure load caused by severe accident sequences

    International Nuclear Information System (INIS)

    Park, S.Y.; Ahn, K.I.

    2014-01-01

    Highlights: • Phenomenological uncertainty analysis has been applied to level 2 PSA. • The methodology provides an alternative to simple deterministic analyses and sensitivity studies. • A realistic evaluation provides a more complete characterization of risks. • Uncertain parameters of MAAP code for the early containment failure were identified. - Abstract: This paper illustrates an application of a severe accident analysis code, MAAP, to the uncertainty evaluation of early containment failure scenarios employed in the containment event tree (CET) model of a reference plant. An uncertainty analysis of containment pressure behavior during severe accidents has been performed for an optimum assessment of an early containment failure model. The present application is mainly focused on determining an estimate of the containment building pressure load caused by severe accident sequences of a nuclear power plant. Key modeling parameters and phenomenological models employed for the present uncertainty analysis are closely related to the in-vessel hydrogen generation, direct containment heating, and gas combustion. The basic approach of this methodology is to (1) develop severe accident scenarios for which containment pressure loads should be performed based on a level 2 PSA, (2) identify severe accident phenomena relevant to an early containment failure, (3) identify the MAAP input parameters, sensitivity coefficients, and modeling options that describe or influence the early containment failure phenomena, (4) prescribe the likelihood descriptions of the potential range of these parameters, and (5) evaluate the code predictions using a number of random combinations of parameter inputs sampled from the likelihood distributions

  1. Collective learning modeling based on the kinetic theory of active particles.

    Science.gov (United States)

    Burini, D; De Lillo, S; Gibelli, L

    2016-03-01

    This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model

    International Nuclear Information System (INIS)

    Ling, Ziye; Chen, Jiajie; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2015-01-01

    Highlights: • Expanded graphite can improve thermal conductivity of RT44HC by 20–60 times. • Thermal conductivity of PCM/EG composites keeps constant before/after melting. • Thermal conductivity of PCMs nearly doubled during phase changing. • Thermal conductivity of composite PCM increases with density and percentage of EG. • The simple model predicts thermal conductivity of EG-based composites accurately. - Abstract: This work studies factors that affect the thermal conductivity of an organic phase change material (PCM), RT44HC/expanded graphite (EG) composite, which include: EG mass fraction, composite PCM density and temperature. The increase of EG mass fraction and bulk density will both enhance thermal conductivity of composite PCMs, by up to 60 times. Thermal conductivity of RT44HC/EG composites remains independent on temperature outside the phase change range (40–45 °C), but nearly doubles during the phase change. The narrow temperature change during the phase change allows the maximum heat flux or minimum temperature for heat source if attaching PCMs to a first (constant temperature) or second (constant heat flux) thermal boundary. At last, a simple thermal conductivity model for EG-based composites is put forward, based on only two parameters: mass fraction of EG and bulk density of the composite. This model is validated with experiment data presented in this paper and in literature, showing this model has general applicability to any composite of EG and poor thermal conductive materials

  3. Perspectives on string phenomenology

    CERN Document Server

    Kane, Gordon; Kumar, Piyush

    2015-01-01

    The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...

  4. Fitting the Phenomenological MSSM

    CERN Document Server

    AbdusSalam, S S; Quevedo, F; Feroz, F; Hobson, M

    2010-01-01

    We perform a global Bayesian fit of the phenomenological minimal supersymmetric standard model (pMSSM) to current indirect collider and dark matter data. The pMSSM contains the most relevant 25 weak-scale MSSM parameters, which are simultaneously fit using `nested sampling' Monte Carlo techniques in more than 15 years of CPU time. We calculate the Bayesian evidence for the pMSSM and constrain its parameters and observables in the context of two widely different, but reasonable, priors to determine which inferences are robust. We make inferences about sparticle masses, the sign of the $\\mu$ parameter, the amount of fine tuning, dark matter properties and the prospects for direct dark matter detection without assuming a restrictive high-scale supersymmetry breaking model. We find the inferred lightest CP-even Higgs boson mass as an example of an approximately prior independent observable. This analysis constitutes the first statistically convergent pMSSM global fit to all current data.

  5. Optimizing a gap conductance model applicable to VVER-1000 thermal–hydraulic model

    International Nuclear Information System (INIS)

    Rahgoshay, M.; Hashemi-Tilehnoee, M.

    2012-01-01

    Highlights: ► Two known conductance models for application in VVER-1000 thermal–hydraulic code are examined. ► An optimized gap conductance model is developed which can predict the gap conductance in good agreement with FSAR data. ► The licensed thermal–hydraulic code is coupled with the gap conductance model predictor externally. -- Abstract: The modeling of gap conductance for application in VVER-1000 thermal–hydraulic codes is addressed. Two known models, namely CALZA-BINI and RELAP5 gap conductance models, are examined. By externally linking of gap conductance models and COBRA-EN thermal hydraulic code, the acceptable range of each model is specified. The result of each gap conductance model versus linear heat rate has been compared with FSAR data. A linear heat rate of about 9 kW/m is the boundary for optimization process. Since each gap conductance model has its advantages and limitation, the optimized gap conductance model can predict the gap conductance better than each of the two other models individually.

  6. The role of supersymmetry phenomenology in particle physics

    International Nuclear Information System (INIS)

    Wells, James D.

    2000-01-01

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute

  7. The role of supersymmetry phenomenology in particle physics

    OpenAIRE

    Wells, James D.

    2000-01-01

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute.

  8. Deuteron stripping reactions using dirac phenomenology

    Science.gov (United States)

    Hawk, E. A.; McNeil, J. A.

    2001-04-01

    In this work deuteron stripping reactions are studied using the distorted wave born approximation employing dirac phenomenological potentials. In 1982 Shepard and Rost performed zero-range dirac phenomenological stripping calculations and found a dramatic reduction in the predicted cross sections when compared with similar nonrelativistic calculations. We extend the earlier work by including full finite range effects as well as the deuteron's internal D-state. Results will be compared with traditional nonrelativistic approaches and experimental data at low energy.

  9. The Phenomenological Pomeron. What is it?

    International Nuclear Information System (INIS)

    Donnachie, A.

    1994-01-01

    The standard phenomenology of the soft pomeron is recalled. The evidence for the soft pomeron having a well-defined Parton content is outlined. The role of the pomeron in deep inelastic scattering at small x is discussed, and it is suggested that the standard phenomenology is incompatible with the HERA data. It is shown how minijets can be included naturally as part of the soft pomeron, and that they do not contribute separately to total cross sections

  10. Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi

    2005-01-01

    In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can arise also in brane models to stabilize the radion by nonperturbative effects. We examine some phenomenological consequences of this mixed modulus-anomaly mediation, including the pattern of low energy sparticle spectrum and the possibility of electroweak symmetry breaking. It is noted that adding the anomaly-mediated contributions at M GUT amounts to replacing the messenger scale of the modulus mediation by a mirage messenger scale (m 3/2 /M Pl ) α/2 M GUT where α = m 3/2 /[M 0 ln (M Pl /m 3/2 )] for M 0 denoting the modulus-mediated contribution to the gaugino mass at M GUT . The minimal KKLT set-up predicts α = 1. As a consequence, for α = O(1), the model can lead to a highly distinctive pattern of sparticle masses at TeV scale, particularly when α = 2

  11. EVOLUTION OF TRANSCENDENTAL PHILOSOPHY IN PHENOMENOLOGY: TRANSITION FROM «CONSTRUCTION» TO «DESCRIPTION»

    OpenAIRE

    A. S. PERTSEV

    2015-01-01

    At the turn of the XIX – XX centuries, two most significant branches of transcendental philosophy, neokantianism and phenomenology, formulated the outwardly similar projects of philosophy based on polar approaches. Neo-kantianism was seeking a field of philosophy competence in constructing a universal system of knowledge known as a theory of cognition, but phenomenology moved on further to the formation of a new language and a new subject universum inwhich any secular scientific knowledge got...

  12. Research Method and Phenomenological Pedagogy. Reflections from Piero Bertolini

    Directory of Open Access Journals (Sweden)

    Luca Ghirotto

    2016-10-01

    Full Text Available Inspired by Husserlian phenomenology, Piero Bertolini defined the phenomenological pedagogy and education as a scientific discipline (Bertolini, 2005. This project remains an undetermined one as there is still room for defining its research methods. This article intends to propose a contribution to the discussion of research methodology, in line with the assumptions of Piero Bertolini (1988 phenomenological pedagogy. In particular, starting from the definition of phenomenological pedagogy and education, it aims to answer the question: what are the research strategies through which to build a viable and rigorous educational knowledge, able to grasp the personal transformation and development in a context of inter-subjectivity? Accordingly, I shall discuss data collection and analysis strategies.

  13. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Mascarade, Jeremy

    2015-01-01

    particle bed but reaches a maximum with the variation of heavy water content in the feed stream. According to these observations, a phenomenological 2D model, describing momentum and mass transfers, was developed. Simulations results are in good agreement with the general behavior observed experimentally. Results show that modeling of the permeation of heteronuclear species should account for crossed-interactions of the hydrogen isotopologues on the mass transfer of one specie. Nevertheless, thanks to the modeling approach used and the similitude rules existing between isotopologues' physical and chemical properties (Graham's law), this model can be easily extrapolated to the processing of tritium containing mixtures. (author)

  14. Nurses' Lived Experience of Working with Nursing Students in Clinical Wards: a Phenomenological Study

    Directory of Open Access Journals (Sweden)

    Kobra Parvan

    2018-03-01

    Full Text Available Introduction: Despite being aware of the importance of nurses’ role in providing clinical training to nursing students, studies show that sufficient research has not yet been conducted on the experience of clinical nurses who are engaged in training nursing students outside their normal working hours. The present study aim to describe the experience of these nurses who are training outside their routine working hours. Methods: This study was conducted using descriptive-phenomenology method. Twelve nurses was participated in this research. Data were collected using purposive sampling method and face to face interviews based on nurses’ real life experience of students’ learning in clinical settings through answering open-ended questions. Spiegel burg analysis method was used to analyze the data. Results: The result of data analysis was the derivation of four themes and eight sub-themes. Themes included "nurses as teaching sources", "changes in the balance of doing routine tasks", "professional enthusiasm", and "nurses as students' professional socialization source of inspiration". Sub-themes included "efficient education", "poor education", "support", "interference in the role," "self-efficacy development", "inner satisfaction", "positive imaging" and "being a model". Conclusion: It is necessary that academic centers plan for teaching nurses working on a contractual basis in the field of the evaluation method and various methods of teaching. The findings also suggested the development of individual self-efficacy in clinical nurses who train students.

  15. Modeling conductive cooling for thermally stressed dairy cows.

    Science.gov (United States)

    Gebremedhin, Kifle G; Wu, Binxin; Perano, K

    2016-02-01

    Conductive cooling, which is based on direct contact between a cow lying down and a cooled surface (water mattress, or any other heat exchanger embedded under the bedding), allows heat transfer from the cow to the cooled surface, and thus alleviate heat stress of the cow. Conductive cooling is a novel technology that has the potential to reduce the consumption of energy and water in cooling dairy cows compared to some current practices. A three-dimensional conduction model that simulates cooling thermally-stressed dairy cows was developed. The model used a computational fluid dynamics (CFD) method to characterize the air-flow field surrounding the animal model. The flow field was obtained by solving the continuity and the momentum equations. The heat exchange between the animal and the cooled water mattress as well as between the animal and ambient air was determined by solving the energy equation. The relative humidity was characterized using the species transport equation. The conduction 3-D model was validated against experimental temperature data and the agreement was very good (average error is 4.4% and the range is 1.9-8.3%) for a mesh size of 1117202. Sensitivity analyses were conducted between heat losses (sensible and latent) with respect to air temperature, relative humidity, air velocity, and level of wetness of skin surface to determine which of the parameters affect heat flux more than others. Heat flux was more sensitive to air temperature and level of wetness of the skin surface and less sensitive to relative humidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Modeling of thermal conductivity of nanofluids by modifying Maxwell’s equation using cell model approach

    International Nuclear Information System (INIS)

    Mehta, Siddharth; Chauhan, K. Prashanth; Kanagaraj, S.

    2011-01-01

    Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Though many attempts have been made to investigate the abnormal high thermal conductivity of nanofluids, the existing models cannot precisely predict the same. An attempt has been made to develop a model for predicting the thermal conductivity of different types of nanofluids. The model presented here is derived based on the fact that thermal conductivity of nanofluids depends on thermal conductivity of particle and fluid as well as micro-convective heat transfer due to Brownian motion of nanoparticles. Novelty of the article lies in giving a unique equation which predicts thermal conductivity of nanofluids for different concentrations and particle sizes which also correctly predicts the trends observed in experimental data over a wide range of particle sizes, temperatures, and particle concentrations.

  17. Levels of reduction in van Manen's phenomenological hermeneutic method: an empirical example.

    Science.gov (United States)

    Heinonen, Kristiina

    2015-05-01

    To describe reduction as a method using van Manen's phenomenological hermeneutic research approach. Reduction involves several levels that can be distinguished for their methodological usefulness. Researchers can use reduction in different ways and dimensions for their methodological needs. A study of Finnish multiple-birth families in which open interviews (n=38) were conducted with public health nurses, family care workers and parents of twins. A systematic literature and knowledge review showed there were no articles on multiple-birth families that used van Manen's method. Discussion The phenomena of the 'lifeworlds' of multiple-birth families consist of three core essential themes as told by parents: 'a state of constant vigilance', 'ensuring that they can continue to cope' and 'opportunities to share with other people'. Reduction provides the opportunity to carry out in-depth phenomenological hermeneutic research and understand people's lives. It helps to keep research stages separate but also enables a consolidated view. Social care and healthcare professionals have to hear parents' voices better to comprehensively understand their situation; they need further tools and training to be able to empower parents of twins. This paper adds an empirical example to the discussion of phenomenology, hermeneutic study and reduction as a method. It opens up reduction for researchers to exploit.

  18. Relativistic phenomenological equations and transformation laws of relative coefficients

    Directory of Open Access Journals (Sweden)

    Patrizia Rogolino

    2017-06-01

    Full Text Available The aim of this paper is to derive the phenomenological equations in the context of special relativistic non-equilibrium thermodynamics with internal variables. In particular, after introducing some results developed in our previous paper, by means of classical non-equilibrium thermodynamic procedure and under suitable assumptions on the entropy density production, the phenomenological equations and transformation laws of phenomenological coefficients are derived. Finally, some symmetries of aforementioned coefficients are obtained.

  19. Visual Arts as a Tool for Phenomenology

    Directory of Open Access Journals (Sweden)

    Anna S. CohenMiller

    2017-12-01

    Full Text Available In this article I explain the process and benefits of using visual arts as a tool within a transcendental phenomenological study. I present and discuss drawings created and described by four participants over the course of twelve interviews. Findings suggest the utility of visual arts methods within the phenomenological toolset to encourage participant voice through easing communication and facilitating understanding.

  20. Same-sex partner bereavement in older women:an interpretative phenomenological analysis

    OpenAIRE

    Ingham, Charlotte; Eccles, Fiona Juliet Rosalind; Armitage, Jocelyn Rebecca; Murray, Craig David

    2017-01-01

    Objectives: Due to the lack of existing literature, the current research explored experiences of same-sex partner bereavement in women over the age of 60. Method: Semi-structured interviews were conducted with eight women. Transcripts were analysed using interpretative phenomenological analysis. Results: Three themes were identified which elaborated the experiences of older women who had lost a same-sex partner: (1) being left alone encapsulated feelings of isolation and exclusion; (2) naviga...

  1. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  2. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  3. The cruel and unusual phenomenology of solitary confinement.

    Science.gov (United States)

    Gallagher, Shaun

    2014-01-01

    What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a "cruel and unusual punishment," there is no consensus on the definition of the term "cruel" in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of "cruelty" by looking specifically at the phenomenology and psychology of solitary confinement.

  4. Implementation of a phenomenological DNB prediction model based on macroscale boiling flow processes in PWR fuel bundles

    International Nuclear Information System (INIS)

    Mohitpour, Maryam; Jahanfarnia, Gholamreza; Shams, Mehrzad

    2014-01-01

    Highlights: • A numerical framework was developed to mechanistically predict DNB in PWR bundles. • The DNB evaluation module was incorporated into the two-phase flow solver module. • Three-dimensional two-fluid model was the basis of two-phase flow solver module. • Liquid sublayer dryout model was adapted as CHF-triggering mechanism in DNB module. • Ability of DNB modeling approach was studied based on PSBT DNB tests in rod bundle. - Abstract: In this study, a numerical framework, comprising of a two-phase flow subchannel solver module and a Departure from Nucleate Boiling (DNB) evaluation module, was developed to mechanistically predict DNB in rod bundles of Pressurized Water Reactor (PWR). In this regard, the liquid sublayer dryout model was adapted as the Critical Heat Flux (CHF) triggering mechanism to reduce the dependency of the model on empirical correlations in the DNB evaluation module. To predict local flow boiling processes, a three-dimensional two-fluid formalism coupled with heat conduction was selected as the basic tool for the development of the two-phase flow subchannel analysis solver. Evaluation of the DNB modeling approach was performed against OECD/NRC NUPEC PWR Bundle tests (PSBT Benchmark) which supplied an extensive database for the development of truly mechanistic and consistent models for boiling transition and CHF. The results of the analyses demonstrated the need for additional assessment of the subcooled boiling model and the bulk condensation model implemented in the two-phase flow solver module. The proposed model slightly under-predicts the DNB power in comparison with the ones obtained from steady-state benchmark measurements. However, this prediction is acceptable compared with other codes. Another point about the DNB prediction model is that it has a conservative behavior. Examination of the axial and radial position of the first detected DNB using code-to-code comparisons on the basis of PSBT data indicated that the our

  5. Relating Schizotypy and Personality to the Phenomenology of Creativity

    Science.gov (United States)

    Nelson, B.; Rawlings, D.

    2010-01-01

    Introduction: Although a considerable amount of research has addressed psychopathological and personality correlates of creativity, the relationship between these characteristics and the phenomenology of creativity has been neglected. Relating these characteristics to the phenomenology of creativity may assist in clarifying the precise nature of the relationship between psychopathology and creativity. The current article reports on an empirical study of the relationship between the phenomenology of the creative process and psychopathological and personality characteristics in a sample of artists. Method: A total of 100 artists (43 males, 57 females, mean age = 34.69 years) from a range of disciplines completed the Experience of Creativity Questionnaire and measures of “positive” schizotypy, affective disturbance, mental boundaries, and normal personality. Results: The sample of artists was found to be elevated on “positive” schizotypy, unipolar affective disturbance, thin boundaries, and the personality dimensions of Openness to Experience and Neuroticism, compared with norm data. Schizotypy was found to be the strongest predictor of a range of creative experience scales (Distinct Experience, Anxiety, Absorption, Power/Pleasure), suggesting a strong overlap of schizotypal and creative experience. Discussion: These findings indicate that “positive” schizotypy is associated with central features of “flow”-type experience, including distinct shift in phenomenological experience, deep absorption, focus on present experience, and sense of pleasure. The neurologically based construct of latent inhibition may be a mechanism that facilitates entry into flow-type states for schizotypal individuals. This may occur by reduced latent inhibition providing a “fresh” awareness and therefore a greater absorption in present experience, thus leading to flow-type states. PMID:18682376

  6. Phenomenological theory of synergistic effects in plasma-wall interaction

    International Nuclear Information System (INIS)

    Itoh, N.; Hasebe, Y.

    1986-01-01

    A phenomenological theory for synergistic effects under multi-species particle bombardement has been developed. The theory is based on a model in which two free-energy minima are assumed to be overcome under actions of radiation for a process to be completed. The synergistic factor, the ratio of the yield of the process under irradiation with two species of particles to the summation of the yields of the process under irradiation with each of two component species, is obtained as a function of the beam flux for several parameters relevant to thermodynamic and radiation-enhanced processes. The criterion for the synergistic effect is obtained. The theory has been shown to be able to explain the yield-flux relation obtained by Haasz et al. for hydrogen-induced methane formation from graphite. (orig.)

  7. Finite element model for heat conduction in jointed rock masses

    International Nuclear Information System (INIS)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points

  8. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  9. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  10. Quark-model study of the hadron structure and the hadron-hadron interaction

    International Nuclear Information System (INIS)

    Valcarce, A; Caramés, T F; Vijande, J; Garcilazo, H

    2011-01-01

    Recent results of hadron spectroscopy and hadron-hadron interaction within a quark model framework are reviewed. Higher order Fock space components are considered based on new experimental data on low-energy hadron phenomenology. The purpose of this study is to obtain a coherent description of the low-energy hadron phenomenology to constrain QCD phenomenological models and try to learn about low-energy realizations of the theory.

  11. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy.

    Science.gov (United States)

    Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei

    2012-04-07

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

  12. Glueball phenomenology within a nonlocal approach

    International Nuclear Information System (INIS)

    Giacosa, F.

    2005-01-01

    In this thesis we describe the properties of glueball phenomenology within a nonlocal covariant constituent approach. The search for glueballs, their theoretical description and the mixing with quarkonia mesons is an active and unsolved issue of hadronic QCD. Different models and assignments have been proposed, but up to now no certain statement about their existence can be done. After introducing the theoretical framework in which we will work in, the attention will be focused on the problem of the scalar glueball, which lattice QCD predicts to be the lightest gluonic state with a mass between 1.4-1.8 GeV. In the same mass region one encounters many scalar resonances; mixing between the bare glueball and quarkonia states is therefore likely. In a covariant constituent approach one cannot define rigorously a mixing matrix connecting the bare to physical fields. However, we propose a definition which satisfies the correct requirements and which can be compared to other phenomenological studies. The two-photon decay of isoscalar-scalar states is believed to be crucial to pin down the flavor content of the resonances between 1 and 2 GeV. We discuss and calculate the two-photon decay rates of the mixed states glueball-quarkonia, getting results which are consistent with the current experimental upper limits

  13. Developing the Model of "Pedagogical Art Communication" Using Social Phenomenological Analysis: An Introduction to a Research Method and an Example for Its Outcome

    Science.gov (United States)

    Hofmann, Fabian

    2016-01-01

    Social phenomenological analysis is presented as a research method for museum and art education. After explaining its methodological background, it is shown how this method has been applied in a study of gallery talks or guided tours in art museums: Analyzing the situation by description and interpretation, a model for understanding gallery talks…

  14. The Role of Phenomenology of Merleau- ponty in Medicine

    OpenAIRE

    Somayeh Rafighi; Mohammad Asghari

    2017-01-01

    Today, phenomenology, with an emphasis on direct explanations with regard to the lived experience of people is interest of different areas. With emphasis on body, Merleau- Ponty's phenomenology is considered in medical science. In his phenomenology, Merleau- Ponty gives new definition of body and names it lived body. Lived body is against of mechanical body and is the central of subjectivity and being- in- the – world and included all of existential aspects of man. Such definition enable doct...

  15. Phenomenological Intentionality meets an Ego-less State | Barnes ...

    African Journals Online (AJOL)

    When using the phenomenological method, one aims to capture the essential structures of lived experiences. It has been my experience that phenomenology does this well, when researching experiences that are lived through our bodily senses and understood with our minds. When trying to capture and describe ...

  16. Using Phenomenology to Study how Junior and Senior High School Students in Japan Perceive their Volunteer Efforts

    Directory of Open Access Journals (Sweden)

    Kayoko Ueda

    2009-06-01

    Full Text Available The purpose of this paper is to describe the methods used in a phenomenological study aimed at understanding students' perceptions of volunteer experiences from the viewpoint of their existential meanings. In Japan, as volunteer activities have just been recently introduced to youth education, it is necessary to verify the effect of the activity on the students. The authors present phenomenological reduction, which is a fundamental concept in phenomenology, as a health care research method to elucidate the essence of people's lived experiences. The 22 statements presented from volunteer students' group discussion after their practices were redescribed by phenomenological reduction, a method of valid interpretation based on their embodiment and desire. The phenomenological approach allows us to understand the essence of students' perceptions in terms of their purpose in life, which suggests that educators could inspire the students to realize existential growth by participating in volunteer activities through practical communications with others.

  17. Applicability of cable theory to vascular conducted responses.

    Science.gov (United States)

    Hald, Bjørn Olav; Jensen, Lars Jørn; Sørensen, Preben Graae; Holstein-Rathlou, Niels-Henrik; Jacobsen, Jens Christian Brings

    2012-03-21

    Conduction processes in the vasculature have traditionally been described using cable theory, i.e., locally induced signals decaying passively along the arteriolar wall. The decay is typically quantified using the steady-state length-constant, λ, derived from cable theory. However, the applicability of cable theory to blood vessels depends on assumptions that are not necessarily fulfilled in small arteries and arterioles. We have employed a morphologically and electrophysiologically detailed mathematical model of a rat mesenteric arteriole to investigate if the assumptions hold and whether λ adequately describes simulated conduction profiles. We find that several important cable theory assumptions are violated when applied to small blood vessels. However, the phenomenological use of a length-constant from a single exponential function is a good measure of conduction length. Hence, λ should be interpreted as a descriptive measure and not in light of cable theory. Determination of λ using cable theory assumes steady-state conditions. In contrast, using the model it is possible to probe how conduction behaves before steady state is achieved. As ion channels have time-dependent activation and inactivation, the conduction profile changes considerably during this dynamic period with an initially longer spread of current. This may have implications in relation to explaining why different agonists have different conduction properties. Also, it illustrates the necessity of using and developing models that handle the nonlinearity of ion channels. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico City: A Simple Phenomenological Model.

    Science.gov (United States)

    Ballinas, Mónica; Barradas, Víctor L

    2016-01-01

    The urban heat island (UHI) is mainly a nocturnal phenomenon, but it also appears during the day in Mexico City. The UHI may affect human thermal comfort, which can influence human productivity and morbidity in the spring/summer period. A simple phenomenological model based on the energy balance was developed to generate theoretical support of UHI mitigation in Mexico City focused on the latent heat flux change by increasing tree coverage to reduce sensible heat flux and air temperature. Half-hourly data of the urban energy balance components were generated in a typical residential/commercial neighborhood of Mexico City and then parameterized using easily measured variables (air temperature, humidity, pressure, and visibility). Canopy conductance was estimated every hour in four tree species, and transpiration was estimated using sap flow technique and parameterized by the envelope function method. Averaged values of net radiation, energy storage, and sensible and latent heat flux were around 449, 224, 153, and 72 W m, respectively. Daily tree transpiration ranged from 3.64 to 4.35 Ld. To reduce air temperature by 1°C in the studied area, 63 large would be required per hectare, whereas to reduce the air temperature by 2°C only 24 large trees would be required. This study suggests increasing tree canopy cover in the city cannot mitigate UHI adequately but requires choosing the most appropriate tree species to solve this problem. It is imperative to include these types of studies in tree selection and urban development planning to adequately mitigate UHI. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. SLED phenomenology: curvature vs. volume

    International Nuclear Information System (INIS)

    Niedermann, Florian; Schneider, Robert

    2016-01-01

    We assess the question whether the SLED (Supersymmetric Large Extra Dimensions) model admits phenomenologically viable solutions with 4D maximal symmetry. We take into account a finite brane width and a scale invariance (SI) breaking dilaton-brane coupling, both of which should be included in a realistic setup. Provided that the brane tension and the microscopic size of the brane take generic values set by the fundamental bulk Planck scale, we find that either the 4D curvature or the size of the extra dimensions is unacceptably large. Since this result is independent of the dilaton-brane couplings, it provides the biggest challenge to the SLED program. In addition, to quantify its potential with respect to the cosmological constant problem, we infer the amount of tuning on model parameters required to obtain a sufficiently small 4D curvature. A first answer was recently given in http://dx.doi.org/10.1007/JHEP02(2016)025, showing that 4D flat solutions are only ensured in the SI case by imposing a tuning relation, even if a brane-localized flux is included. In this companion paper, we find that the tuning can in fact be avoided for certain SI breaking brane-dilaton couplings, but only at the price of worsening the phenomenological problem. Our results are obtained by solving the full coupled Einstein-dilaton system in a completely consistent way. The brane width is implemented using a well-known ring regularization. In passing, we note that for the couplings considered here the results of http://dx.doi.org/10.1007/JHEP02(2016)025 (which only treated infinitely thin branes) are all consistently recovered in the thin brane limit, and how this can be reconciled with the concerns about their correctness, recently brought up in http://dx.doi.org/10.1007/JHEP01(2016)017.

  20. Women, Anger, and Aggression: An Interpretative Phenomenological Analysis

    Science.gov (United States)

    Eatough, Virginia; Smith, Jonathan A.; Shaw, Rachel

    2008-01-01

    This study reports a qualitative phenomenological investigation of anger and anger-related aggression in the context of the lives of individual women. Semistructured interviews with five women are analyzed using interpretative phenomenological analysis. This inductive approach aims to capture the richness and complexity of the lived experience of…

  1. Origin and phenomenology of weak-doublet spin-1 bosons

    International Nuclear Information System (INIS)

    Chizhov, M.V.; Dvali, Gia

    2011-01-01

    We study phenomenological consequences of the Standard Model extension by the new spin-1 fields with the internal quantum numbers of the electroweak Higgs doublets. We show, that there are at least three different classes of theories, all motivated by the hierarchy problem, which predict appearance of such vector weak-doublets not far from the weak scale. The common feature for all the models is the existence of an SU(3) W gauge extension of the weak SU(2) W group, which is broken down to the latter at some energy scale around TeV. The Higgs doublet then emerges as either a pseudo-Nambu-Goldstone boson of a global remnant of SU(3) W , or as a symmetry partner of the true eaten-up Goldstone boson. In the third class, the Higgs is a scalar component of a high-dimensional SU(3) W gauge field. The common phenomenological feature of these theories is the existence of the electroweak doublet vectors (Z * ,W * ), which in contrast to well-known Z ' and W ' bosons posses only anomalous (magnetic moment type) couplings with ordinary light fermions. This fact leads to some unique signatures for their detection at the hadron colliders.

  2. Continuity of phenomenology and (in)consistency of content of meaningful autobiographical memories.

    Science.gov (United States)

    Luchetti, Martina; Rossi, Nicolino; Montebarocci, Ornella; Sutin, Angelina R

    2016-05-01

    Phenomenology is a critical component of autobiographical memory retrieval; it reflects both (a) memory-specific features and (b) stable individual differences. Few studies have tested phenomenology longitudinally. The present work examined the continuity of memory phenomenology in a sample of Italians adults (N=105) over a 4-week period. Participants retrieved two 'key' personal memories, a Turning Point and an Early Childhood Memory, rated the phenomenology of each memory, and completed measures of personality, psychological distress and subjective well-being. Phenomenological ratings were moderately stable over time (median correlation >.40), regardless of memory content. Personality traits, psychological distress and well-being were associated with phenomenology cross-sectionally and with changes in phenomenology over time. These results suggest that how individuals re-experience their most important personal memories is relatively consistent over time and shaped by both trait and state aspects of psychological functioning. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The cruel and unusual phenomenology of solitary confinement

    Directory of Open Access Journals (Sweden)

    Shaun eGallagher

    2014-06-01

    Full Text Available What happens when subjects are deprived of intersubjective contact? This paper looks closely at the phenomenology and psychology of one example of that deprivation: solitary confinement. It also puts the phenomenology and psychology of solitary confinement to use in the legal context. Not only is there no consensus on whether solitary confinement is a cruel and unusual punishment, there is no consensus on the definition of the term ‘cruel’ in the use of that legal phrase. I argue that we can find a moral consensus on the meaning of ‘cruelty’ by looking specifically at the phenomenology and psychology of solitary confinement.

  4. Modeling of the effective thermal conductivity of sintered porous pastes

    NARCIS (Netherlands)

    Ordonez-Miranda, J.; Hermens, M.; Nikitin, I.; Kouznetsova, V.G.; Volz, S.

    2014-01-01

    The thermal conductivity of sintered porous pastes of metals is modelled, based on an analytical and a numerical approach. The first method arises from the differential effective medium theory and considers the air voids as ellipsoidal pores of different sizes, while second one is based on the

  5. Merleau-Ponty's Phenomenology of Language and General Semantics.

    Science.gov (United States)

    Lapointe, Francois H.

    A survey of Maurice Merleau-Ponty's views on the phenomenology of language yields insight into the basic semiotic nature of language. Merleau-ponty's conceptions stand in opposition to Saussure's linguistic postulations and Korzybski's scientism. That is, if language is studied phenomenologically, the acts of speech and gesture take on greater…

  6. Optical conductivity of the Hubbard model

    International Nuclear Information System (INIS)

    Vicente Alvarez, J.J.; Balseiro, C.A.; Ceccatto, H.A.

    1996-07-01

    We study the response to a static electric field (charge stiffness) and the frequency-dependent conductivity of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the original strongly correlated electrons. We found that the Mott transition at half filling is well described by the charge stiffness behaviour, and that the values for this quantity off half filling agree reasonably well with numerical results. Furthermore, for the frequency-dependent conductivity we trace back the origin of the band which appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of midinfrared band in high-T c compounds, with no relation to superconductivity. (author). 12 refs, 2 tabs

  7. Making Cross-Racial Therapy Work: A Phenomenological Study of Clients' Experiences of Cross-Racial Therapy

    Science.gov (United States)

    Chang, Doris F.; Berk, Alexandra

    2009-01-01

    A phenomenological and consensual qualitative study of clients' lived experiences of cross-racial therapy was conducted to enhance the understanding of whether, how, and under what conditions race matters in the therapy relationship. The sample consisted of 16 racial and/or ethnic minority clients who received treatment from 16 White, European…

  8. A Phenomenological Examination of Middle School African American Adolescent Men's Experiences with Professional School Counselors

    Science.gov (United States)

    Washington, Ahmad Rashad

    2013-01-01

    This qualitative study was conducted with a sample of five (5) middle school African American adolescent men from two different schools in the same school district to explore their perceptions of and experiences with their professional school counselors. Phenomenological qualitative methodology was used to complete this study. To gather research…

  9. BWR Mark III containment analyses using a GOTHIC 8.0 3D model

    International Nuclear Information System (INIS)

    Jimenez, Gonzalo; Serrano, César; Lopez-Alonso, Emma; Molina, M del Carmen; Calvo, Daniel; García, Javier; Queral, César; Zuriaga, J. Vicente; González, Montserrat

    2015-01-01

    Highlights: • The development of a 3D GOTHIC code model of BWR Mark-III containment is described. • Suppression pool modelling based on the POOLEX STB-20 and STB-16 experimental tests. • LOCA and SBO transient simulated to verify the behaviour of the 3D GOTHIC model. • Comparison between the 3D GOTHIC model and MAAP4.07 model is conducted. • Accurate reproduction of pre severe accident conditions with the 3D GOTHIC model. - Abstract: The purpose of this study is to establish a detailed three-dimensional model of Cofrentes NPP BWR/6 Mark III containment building using the containment code GOTHIC 8.0. This paper presents the model construction, the phenomenology tests conducted and the selected transient for the model evaluation. In order to study the proper settings for the model in the suppression pool, two experiments conducted with the experimental installation POOLEX have been simulated, allowing to obtain a proper behaviour of the model under different suppression pool phenomenology. In the transient analyses, a Loss of Coolant Accident (LOCA) and a Station Blackout (SBO) transient have been performed. The main results of the simulations of those transients were qualitative compared with the results obtained from simulations with MAAP 4.07 Cofrentes NPP model, used by the plant for simulating severe accidents. From this comparison, a verification of the model in terms of pressurization, asymmetric discharges and high pressure release were obtained. The completeness of this model has proved to adequately simulate the thermal hydraulic phenomena which occur in the containment during accidental sequences

  10. Kantian Feeling: Empirical Psychology, Transcendental Critique, and Phenomenology

    Directory of Open Access Journals (Sweden)

    Patrick Frierson

    2016-06-01

    Full Text Available This paper explores the relationship between empirical psychology, transcendental critique, and phenomenology in Kant’s discussion of respect for the moral law, particularly as that is found in the Critique of Practical Reason. I first offer an empirical-psychological reading of moral respect, in the context of which I distinguish transcendental and empirical perspectives on moral action and defend H. J. Paton’s claim that moral motivation can be seen from two points of view, where “from one point of view, [respect] is the cause of our action, but from another point of view the moral law is its ground.” Then, after a discussion of a distinction between first- and second-order transcendental/practical perspectives where reasons for action are first-order practical judgments while the conditions of possibility for those reasons’ authority are expressed in second-order judgments, I turn to a third kind of perspective: the properly phenomenological one. I explain the general notion of Kantian phenomenology with an example of the experience of time from Kant’s Anthropology before applying this to a phenomenological reading of the discussion of respect in the Critique of Practical Reason. I end by noting that on my account, in contrast to that of Jeanine Grenberg, the distinctive phenomenology of respect is not systematically important for grounding claims in moral philosophy.

  11. Phenomenology and hermeneutics - poles apart?

    DEFF Research Database (Denmark)

    Keller, Kurt Dauer; Feilberg, Casper

    A key dispute within qualitative methodology is the choice between top-down (deductive) and bottom-up (inductive) research approaches. Abduction, on the other hand, has received little attention, even though it would often seem to be a more promising methodology. The phenomenological tradition is...... to qualitative methodology. Thus, like abductive approaches, Ricoeur argues for the necessity of an interplay between explanatory theory and description of the lived understanding of the informant in the development of interpretation....... is marked by a similar dichotomy, whereas hermeneutical phenomenologists argue for the necessity of preunderstanding and theorethical perspectives (van Manen), Husserlian phenomenologists insist on the importance of the epoché together with reduction. The existential phenomenology of Heidegger and Merleau...

  12. Researching Embodiment in Movement Contexts: A Phenomenological Approach

    Science.gov (United States)

    Standal, Oyvind F.; Engelsrud, Gunn

    2013-01-01

    This article takes a phenomenological approach to understanding embodiment in relation to teaching and learning taking place in movement contexts. Recently a number of studies have pointed to the potential that phenomenology has to understand the meanings and experiences of moving subjects. By presenting two examples of our own work on embodied…

  13. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  14. Hydrodynamic model research in Waseda group

    International Nuclear Information System (INIS)

    Muroya, Shin

    2010-01-01

    Constructing 'High Energy Material Science' had been proposed by Namiki as the guiding principle for the scientists of the high energy physics group lead by himself in Waseda University when the author started to study multiple particle production in 1980s toward the semi-phenomenological model for the quark gluon plasma (QGP). Their strategy was based on three stages to build an intermediate one between the fundamental theory of QCD and the phenomenological model. The quantum theoretical Langevin equation was taken up as the semi-phenomenological model at the intermediate stage and the Landau hydrodynamic model was chosen as the phenomenological model to focus on the 'phase transition' of QGP. A review is given here over the quantum theoretical Langevin equation formalism developed there and followed by the further progress with the 1+1 dimensional viscous fluid model as well as the hydrodynamic model with cylindrical symmetry. The developments of the baryon fluid model and Hanbury-Brown Twiss effect are also reviewed. After 1995 younger generation physicists came to the group to develop those models further. Activities by Hirano, Nonaka and Morita beyond the past generation's hydrodynamic model are picked up briefly. (S. Funahashi)

  15. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    Science.gov (United States)

    Shukur, M. F.; Yusof, Y. M.; Zawawi, S. M. M.; Illias, H. A.; Kadir, M. F. Z.

    2013-11-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH4SCN). The sample containing 40 wt% NH4SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10-4 S cm-1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10-3 S cm-1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (Ea) was calculated for both systems and it is found that the sample with 40 wt% NH4SCN in the salted system obtained an Ea value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH4SCN salt. Changes in the C-O stretching vibration band intensity are observed at 1067 cm-1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.

  16. "Shape function + memory mechanism"-based hysteresis modeling of magnetorheological fluid actuators

    Science.gov (United States)

    Qian, Li-Jun; Chen, Peng; Cai, Fei-Long; Bai, Xian-Xu

    2018-03-01

    A hysteresis model based on "shape function + memory mechanism" is presented and its feasibility is verified through modeling the hysteresis behavior of a magnetorheological (MR) damper. A hysteresis phenomenon in resistor-capacitor (RC) circuit is first presented and analyzed. In the hysteresis model, the "memory mechanism" originating from the charging and discharging processes of the RC circuit is constructed by adopting a virtual displacement variable and updating laws for the reference points. The "shape function" is achieved and generalized from analytical solutions of the simple semi-linear Duhem model. Using the approach, the memory mechanism reveals the essence of specific Duhem model and the general shape function provides a direct and clear means to fit the hysteresis loop. In the frame of the structure of a "Restructured phenomenological model", the original hysteresis operator, i.e., the Bouc-Wen operator, is replaced with the new hysteresis operator. The comparative work with the Bouc-Wen operator based model demonstrates superior performances of high computational efficiency and comparable accuracy of the new hysteresis operator-based model.

  17. Valve-specific, analytic-phenomenological modelling of spray dispersion in zero-dimensional simulation; Ventilspezifische, analytisch-phaenomenologische Modellierung der Sprayausbreitung fuer die nulldimensionale Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schuerg, F.; Arndt, S. [Robert Bosch GmbH, Stuttgart (Germany); Weigand, B. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik der Luft- und Raumfahrt

    2007-07-01

    Spray-guided combustion processes for gasoline direct injection offer a great fuel saving potential. The quality of mixture formation has direct impact on combustion and emissions and ultimately on the technical feasibility of the consumption advantage. Therefore, it is very important to select the optimal mixture formation strategy. A systematic optimization of the mixture formation process based on experiments or three-dimensional computational fluid dynamics requires tremendous effort. An efficient alternative is the application-oriented, zero-dimensional numerical simulation of mixture formation. With a systemic model formulation in terms of global thermodynamic and fluid mechanical balance equations, the presented simulation model considers all relevant aspects of the mixture formation process. A comparison with measurements in a pressure/temperature chamber using laser-induced exciplex fluorescence tomography revealed a very satisfactory agreement between simulation and experiment. The newly developed, analytic-phenomenological spray propagation model precisely captures the injector-specific mixture formation characteristics of an annular-orifice injector in terms of penetration and volume. Vaporization rate and mean air/fuel ratio as the key quantities of mixture formation are correctly reproduced. Thus, the simulation model is suited to numerically assess the quality and to optimize the strategy of mixture formation. (orig.)

  18. Re-orientating time in product design : a phenomenology-inspired perspective

    NARCIS (Netherlands)

    Stienstra, J.T.; Hengeveld, B.J.; Hummels, C.C.M.

    2015-01-01

    This paper presents a work in progress design case that is used to exemplify how a phenomenology-inspired perspective on time can impact the design of highly interactive systems and products. The design presents a calendar with a re-orientated layout that is based on a bodily relationship with time,

  19. One-dimensional map-based neuron model: A logistic modification

    International Nuclear Information System (INIS)

    Mesbah, Samineh; Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Towhidkhah, Farzad

    2014-01-01

    A one-dimensional map is proposed for modeling some of the neuronal activities, including different spiking and bursting behaviors. The model is obtained by applying some modifications on the well-known Logistic map and is named the Modified and Confined Logistic (MCL) model. Map-based neuron models are known as phenomenological models and recently, they are widely applied in modeling tasks due to their computational efficacy. Most of discrete map-based models involve two variables representing the slow-fast prototype. There are also some one-dimensional maps, which can replicate some of the neuronal activities. However, the existence of four bifurcation parameters in the MCL model gives rise to reproduction of spiking behavior with control over the frequency of the spikes, and imitation of chaotic and regular bursting responses concurrently. It is also shown that the proposed model has the potential to reproduce more realistic bursting activity by adding a second variable. Moreover the MCL model is able to replicate considerable number of experimentally observed neuronal responses introduced in Izhikevich (2004) [23]. Some analytical and numerical analyses of the MCL model dynamics are presented to explain the emersion of complex dynamics from this one-dimensional map

  20. Electron conductivity model for dense plasmas

    International Nuclear Information System (INIS)

    Lee, Y.T.; More, R.M.

    1984-01-01

    An electron conductivity model for dense plasmas is described which gives a consistent and complete set of transport coefficients including not only electrical conductivity and thermal conductivity, but also thermoelectric power, and Hall, Nernst, Ettinghausen, and Leduc--Righi coefficients. The model is useful for simulating plasma experiments with strong magnetic fields. The coefficients apply over a wide range of plasma temperature and density and are expressed in a computationally simple form. Different formulas are used for the electron relaxation time in plasma, liquid, and solid phases. Comparisons with recent calculations and available experimental measurement show the model gives results which are sufficiently accurate for many practical applications

  1. The bodily experience of apraxia in everyday activities: a phenomenological study.

    Science.gov (United States)

    Arntzen, Cathrine; Elstad, Ingunn

    2013-01-01

    The aim of this study is to explore apraxia as a phenomenon in everyday activities, as experienced by a group of stroke patients. Some consequences for clinical practice are suggested. In this phenomenological hermeneutical study, six persons with apraxia were followed from 2 to 6 months, from the early phase of stroke rehabilitation. ADL-situations and interactions with therapists were observed and videotaped repeatedly during the rehabilitation trajectory, to provide access to and familiarity with the participant's apractic difficulties over time. Two in-depth interviews were conducted with each participant. Interviews and video observations were analyzed together, taking Merleau-Ponty's concept of bodily intentionality as basis for analysis and his phenomenology as the main theoretical perspective of the study. Five types of altered bodily intentionality were described by the participants [ 1 ]: Gap between intention and bodily action [ 2 ], Fragmented awareness in action [ 3 ], Peculiar actions and odd bodies [ 4 ], Intentionality on the loose, and [ 5 ] Fighting against tools. These were recognized as characteristics typical of the apraxia experience. The phenomenology of Merleau-Ponty, and his concept of bodily intentionality in particular, elucidate the way specific apractic difficulties come into being and may thus render apraxia less incomprehensible. The apraxia phenomenon appears as characteristic fragmentations of anticipation inherent in action performance, thereby "slackening" the bodily intentionality. Identifying apractic changes of intentionality may help health professionals to adjust and individualize therapy, and facilitate patients' acting competence in everyday life.

  2. Homogenized thermal conduction model for particulate foods

    OpenAIRE

    Chinesta , Francisco; Torres , Rafael; Ramón , Antonio; Rodrigo , Mari Carmen; Rodrigo , Miguel

    2002-01-01

    International audience; This paper deals with the definition of an equivalent thermal conductivity for particulate foods. An homogenized thermal model is used to asses the effect of particulate spatial distribution and differences in thermal conductivities. We prove that the spatial average of the conductivity can be used in an homogenized heat transfer model if the conductivity differences among the food components are not very large, usually the highest conductivity ratio between the foods ...

  3. Phenomenological Analysis of Teachers' Organizational Deviance Experiences in a Rural Primary School in Turkey

    Science.gov (United States)

    Anasiz, Burcu Türkkas; Püsküllüoglu, Elif Iliman

    2018-01-01

    The purpose of this study was to analyze organizational deviance experiences of teachers. The study was in phenomenological design among qualitative research methods. In the research convenience sampling technique was used. The research was conducted in a rural primary school in Mugla province in Turkey. Nine teachers participated in the study,…

  4. Spiral field inhibition of thermal conduction in two-fluid solar wind models

    International Nuclear Information System (INIS)

    Nerney, S.; Barnes, A.

    1978-01-01

    The two-fluid solar wind equations, including inhibition of heat conduction by the spiral magnetic field, have been solved for steady radial flow, and the results are compared with those of our previous study of two-fluid models with straight interplanetary field lines. The main effects of the spiral field conduction cutoff are to bottle up electron heat inside 1 AU and to produce adiabatic electron (an proton) temperature profiles at large heliocentric distances. Otherwise, the spiral field models are nearly identical with straight field models with the same temperatures and velocity at 1 AU, except for models associated with very low coronal base densities (n 0 approx.10 6 cm -3 at 1R/sub s/). Low base density spiral models give a nearly isothermal electron temperature profile over 50--100 AU together with high velocities and temperatures at 1 AU. In general, high-velocity models do not agree well with observed high-velocity streams: lower-velocity states can be represented reasonably well at 1 AU, but only for very high proton temperatures (T/sub p/approx.2T/sub e/) at the coronal base. For spherically symmetric base conditions the straight field and spiral field models can be regarded, in lowest order, as approximations to the polar and equatorial three-dimensional flows, respectively. This viewpoint suggests a pole to equator electron temperature gradient in the region 1-10 AU, which would be associated with a meridional velocity of approx.0.5-1.0 km/s, diverging away from the equatorial plane. The formalism developed in this paper shows rather stringent limits to the mass loss rate for conductively driven winds and, in particular, illustrates that putative T Tauri outflows could not be conductively driven

  5. Phenomenology and Qualitative Data Analysis Software (QDAS): A Careful Reconciliation

    OpenAIRE

    Brian Kelleher Sohn

    2017-01-01

    An oft-cited phenomenological methodologist, Max VAN MANEN (2014), claims that qualitative data analysis software (QDAS) is not an appropriate tool for phenomenological research. Yet phenomenologists rarely describe how phenomenology is to be done: pencil, paper, computer? DAVIDSON and DI GREGORIO (2011) urge QDAS contrarians such as VAN MANEN to get over their methodological loyalties and join the digital world, claiming that all qualitative researchers, whatever their methodology, perform p...

  6. Modeling and inverse feedforward control for conducting polymer actuators with hysteresis

    International Nuclear Information System (INIS)

    Wang, Xiangjiang; Alici, Gursel; Tan, Xiaobo

    2014-01-01

    Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators. (paper)

  7. Δ(54) flavor phenomenology and strings

    Energy Technology Data Exchange (ETDEWEB)

    Carballo-Pérez, Brenda [Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-364, Ciudad de México 01000 (Mexico); HEBA Ideas S.A. de C.V.,Calculistas 37, Cd. Mx. 09400 (Mexico); Peinado, Eduardo; Ramos-Sánchez, Saúl [Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-364, Ciudad de México 01000 (Mexico)

    2016-12-23

    Δ(54) can serve as a flavor symmetry in particle physics, but remains almost unexplored. We show that in a classification of semi-realistic ℤ{sub 3}×ℤ{sub 3} heterotic string orbifolds, Δ(54) turns out to be the most natural flavor symmetry, providing additional motivation for its study. We revisit its phenomenological potential from a low-energy perspective and subject to the constraints of string models. We find a model with Δ(54) arising from heterotic orbifolds that leads to the Gatto-Sartori-Tonin relation for quarks and charged-leptons. Additionally, in the neutrino sector, it leads to a normal hierarchy for neutrino masses and a correlation between the reactor and the atmospheric mixing angles, the latter taking values in the second octant and being compatible at three sigmas with experimental data.

  8. Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation

    Science.gov (United States)

    Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob

    2016-08-01

    Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different

  9. "But I'm Not a Racist!" Phenomenology, Racism, and the Body Schema in White, Pre-Service Teacher Education

    Science.gov (United States)

    Lewis, Tyson E.

    2018-01-01

    In this article, I call for a phenomenological turn in educating white, pre-service teachers. As opposed to dominant pedagogical models which focus on changing one's beliefs about race, phenomenology points toward the importance of pre-conceptual, pre-critical forms of racial embodiment. Here I draw upon recent work on the different between body…

  10. Quantum hall conductivity in a Landau type model with a realistic geometry II

    International Nuclear Information System (INIS)

    Chandelier, F.; Georgelin, Y.; Masson, T.; Wallet, J.-C.

    2004-01-01

    We use a mathematical framework that we introduced in a previous paper to study geometrical and quantum mechanical aspects of a Hall system with finite size and general boundary conditions. Geometrical structures control possibly the integral or fractional quantization of the Hall conductivity depending on the value of NB/2π (N is the number of charge carriers and B is the magnetic field). When NB/2π is irrational, we show that monovaluated wave functions can be constructed only on the graph of a free group with two generators. When NB/2π is rational, the relevant space becomes a punctured Riemann surface. We finally discuss our results from a phenomenological viewpoint

  11. Development of Multidimensional Gap Conductance model using Virtual Link Gap Element

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The gap conductance that determines temperature gradient between pellet and cladding can be quite sensitive to gap thickness. For instance, once the gap size increases up to several micrometers in certain region, difference of pellet surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Recently, multidimensional fuel performance codes have been being developed in the advanced countries to evaluate thermal behavior of fuel for off normal conditions and DBA(design based accident) conditions using the Finite Element Method (FEM). FRAPCON-FRAPTRAN code system, which is well known as the verified and reliable code, incorporates 1D thermal module and multidimensional mechanical module. In this code, multidimensional gap conductance model is not applied. ALCYONE developed by CEA introduces equivalent heat convection coefficient that represents multidimensional gap conductance as a function of gap thickness. BISON, which is multidimensional fuel performance code developed by INL, owns multidimensional gap conductance model using projected thermal contact. In general, thermal contact algorithm is nonlinear calculation which is expensive approach numerically. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap (VLG) element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model was evaluated. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and

  12. A Phenomenological Exploration of Self-Directed Learning among Successful Minority Entrepreneurs

    Science.gov (United States)

    Alexander, Nancy Hope

    2013-01-01

    This transcendental, phenomenological study explored the Self-directed learning (SDL) of 10 successful minority entrepreneurs. Two SDL theories serve as lenses for the study, Spear and Mocker's (1984) Organizing Circumstance and Brockett and Heimstra's (1991) Personal Responsibility Orientation model. Five themes emerged from the data:…

  13. Difficulties Encountered in the Application of the Phenomenological ...

    African Journals Online (AJOL)

    While it is heartening to see that more researchers in the field of the social sciences are using some version of the phenomenological method, it is also disappointing to see that very often some of the steps employed do not follow phenomenological logic. In this paper, several dissertations are reviewed in order to point out ...

  14. Exploitation and alienation of the body of the nurse: a phenomenological study

    OpenAIRE

    Albini,Leomar; Labronici,Liliana Maria

    2007-01-01

    OBJECTIVE: To understand the experience of being woman, mother, and nurse. METHODS: This phenomenological study was conducted in a teaching hospital in Curitiba, Brazil from June 2005 to March 2006. The sample consisted of seven nurses. Data were collected through semi-structured interviews. RESULTS: The main emerged theme was "Exploitation and alienation of the body of the nurse until its exhaustation." CONCLUSION: Nurses have difficulties in assuming other roles in professional organization...

  15. Why natural science needs phenomenological philosophy.

    Science.gov (United States)

    Rosen, Steven M

    2015-12-01

    Through an exploration of theoretical physics, this paper suggests the need for regrounding natural science in phenomenological philosophy. To begin, the philosophical roots of the prevailing scientific paradigm are traced to the thinking of Plato, Descartes, and Newton. The crisis in modern science is then investigated, tracking developments in physics, science's premier discipline. Einsteinian special relativity is interpreted as a response to the threat of discontinuity implied by the Michelson-Morley experiment, a challenge to classical objectivism that Einstein sought to counteract. We see that Einstein's efforts to banish discontinuity ultimately fall into the "black hole" predicted in his general theory of relativity. The unavoidable discontinuity that haunts Einstein's theory is also central to quantum mechanics. Here too the attempt has been made to manage discontinuity, only to have this strategy thwarted in the end by the intractable problem of quantum gravity. The irrepressible discontinuity manifested in the phenomena of modern physics proves to be linked to a merging of subject and object that flies in the face of Cartesian philosophy. To accommodate these radically non-classical phenomena, a new philosophical foundation is called for: phenomenology. Phenomenological philosophy is elaborated through Merleau-Ponty's concept of depth and is then brought into focus for use in theoretical physics via qualitative work with topology and hypercomplex numbers. In the final part of this paper, a detailed summary is offered of the specific application of topological phenomenology to quantum gravity that was systematically articulated in The Self-Evolving Cosmos (Rosen, 2008a). Copyright © 2015. Published by Elsevier Ltd.

  16. Horizontal unification as the phenomenology of the theory of 'everything'

    International Nuclear Information System (INIS)

    Sakharov, A.S.; Khlopov, M.Yu.

    1994-01-01

    It is shown that the extension of the standard electroweak model and QCD, which contains the spontaneously broken horizontal local gauge symmetry, provides quantatively definite phenomenological descriprion for all the phenomena of particle physics and cosmology. The model connects the predictions of the standard model with the description of the mass spectrum and mixing of quarks and leptons, with the predictions of neutrino mass spectrum and with parameters of invisible axion. It provides quantatively definite physical basis for the theory of inflation, baryosynthesis and dark matter of the Universe. 34 refs

  17. Electrical conductivity and shear viscosity of quark gluon plasma in a quasiparticle model

    International Nuclear Information System (INIS)

    Srivastava, P.K.; Mohanty, B.

    2014-01-01

    Relativistic heavy-ion collisions (HIC) have reported the formation of a strongly coupled quark gluon plasma (sQGP). To study the properties of this sQGP is the main focus nowadays. Among these the shear viscosity (η) and electrical conductivity (σ el ) could reflect the transport properties of the medium. By studying the shear viscosity or more specifically shear viscosity to entropy density ratio (η/s), one can understand the nature of interactions among the constituents of the produced medium, it gives a measure of the fluidity. Electrical conductivity represents the linear response of the system to an applied external electric field. The basic question one could ask is that whether the matter created at heavy ion collision experiment is an electrical conductor or an insulator. Recent lattice QCD as well as phenomenological studies have shown that these transport quantities show some kind of minimum in its variation with respect to temperature near the temperature corresponding to the transition from hadronic phase to quark-gluon phase

  18. Leadership Perceptions of Information Technology (IT) Employee Career Development: A Phenomenological Study

    Science.gov (United States)

    Clayton, Timothy Michael

    2009-01-01

    The offshoring movement has had a profound effect on U.S. based IT employee career development and growth opportunities. This phenomenological study included an analysis of the central phenomenon through observations and lived experiences of 10 HR managers and 10 IT operational managers equally distributed between two U.S. based IT services…

  19. [An existential-phenomenological approach to consciousness].

    Science.gov (United States)

    Langle, A

    2014-01-01

    The human beings are characterized as subjects. Their essence is understood as Person. A treatment which does not consider the subjective and the Person would not correspond their essence. For a feeling and autonomous being, consciousness plays a role but cannot fully correspond the being a person. This has a therapeutic impact on the treatment of unconscious patients and gives the treatment a specific access. Some instructions for the therapeutic application of the phenomenological-existential concept and the phenomenological attitude towards unconscious or brain traumatized patients are given. The role of consciousness for being human is briefly reflected from an existential perspective.

  20. Organic matter linked radionuclide transport in Boom clay - Phenomenological understanding and abstraction to PA

    International Nuclear Information System (INIS)

    Maes, N.; Bruggeman, C.; Liu, D.J.; Salah, S.; Van Laer, L.; Wang, L.; Weetjens, E.; Govaerts, J.; Marivoet, J.; Brassinnes, S.

    2012-01-01

    conducted transport studies, performed both under controlled conditions in the lab and in in-situ environment. Transport experiments were conducted to study on one hand the behaviour of DOM itself using natural DOM as well as 14 C- labelled DOM fractions of different sizes separated from Boom Clay pore water. Transport of DOM is investigated at large time- and spatial scale in an in-situ experiment in the HADES URL. These experiments enable us to obtain general migration parameters for DOM as well as some information on filtration processes. The behaviour of RN, from di- to pentavalent, with the affinity to from DOM complexes is investigated in long-term running column migration experiments either as single tracer or complexed with 14 C- labelled DOM, in so-called double-tracer experiments. The use of two radionuclide labels allows the migration behaviour of both the DOM and the RN to be investigated. From these experiments we were able to obtain information on the kinetic dissociation behaviour that influences the transport of the RN. Based on these and other detailed studies, a consistent phenomenological model was put forward and tested which describes the transport behaviour of the RN-DOM linked species. The model considers the radionuclide to be transported as an organic matter complex/colloid that slowly dissociates, and both the RN-DOM and the RN sorb to the solid phase. It was observed that the transport of a suite of RN with different chemical behaviour, but which all show strong affinity to DOM, (tri-, tetra-, pentavalent La/Ac as well as some fission products) can be described by this model and even with parameter ranges that are quite narrow. This model shows several advantages as a first step towards PA abstraction use i) it is process based, ii) it is easy to implement without oversimplification (limited number of parameters which are determined or verified independently), iii) seems applicable for all RN that associate with DOM with a rather narrow range of

  1. Conductivity of graphene in the framework of Dirac model: Interplay between nonzero mass gap and chemical potential

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.; Petrov, V. M.

    2017-12-01

    The complete theory of electrical conductivity of graphene at arbitrary temperature is developed with taking into account mass-gap parameter and chemical potential. Both the in-plane and out-of-plane conductivities of graphene are expressed via the components of the polarization tensor in (2+1)-dimensional space-time analytically continued to the real frequency axis. Simple analytic expressions for both the real and imaginary parts of the conductivity of graphene are obtained at zero and nonzero temperature. They demonstrate an interesting interplay depending on the values of mass gap and chemical potential. In the local limit, several results obtained earlier using various approximate and phenomenological approaches are reproduced, refined, and generalized. The numerical computations of both the real and imaginary parts of the conductivity of graphene are performed to illustrate the obtained results. The analytic expressions for the conductivity of graphene obtained in this paper can serve as a guide in the comparison between different theoretical approaches and between experiment and theory.

  2. A phenomenological force model of Li-ion battery packs for enhanced performance and health management

    Science.gov (United States)

    Oh, Ki-Yong; Epureanu, Bogdan I.

    2017-10-01

    A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.

  3. Time-dependent fatigue--phenomenology and life prediction

    International Nuclear Information System (INIS)

    Coffin, L.F.

    1979-01-01

    The time-dependent fatigue behavior of materials used or considered for use in present and advanced systems for power generation is outlined. A picture is first presented to show how basic mechanisms and phenomenological information relate to the performance of the component under consideration through the so-called local strain approach. By this means life prediction criteria and design rules can be formulated utilizing laboratory test information which is directly translated to predicting the performance of a component. The body of phenomenological information relative to time-dependent fatigue is reviewed. Included are effects of strain range, strain rate and frequency, environment and wave shape, all of which are shown to be important in developing both an understanding and design base for time dependent fatigue. Using this information, some of the current methods being considered for the life prediction of components are reviewed. These include the current ASME code case, frequency-modified fatigue equations, strain range partitioning, the damage function method, frequency separation and damage rate equations. From this review, it is hoped that a better perspective on future directions for basic material science at high temperature can be achieved

  4. A reconstruction of Maxwell model for effective thermal conductivity of composite materials

    International Nuclear Information System (INIS)

    Xu, J.Z.; Gao, B.Z.; Kang, F.Y.

    2016-01-01

    Highlights: • Deficiencies were found in classical Maxwell model for effective thermal conductivity. • Maxwell model was reconstructed based on potential mean-field theory. • Reconstructed Maxwell model was extended with particle–particle contact resistance. • Predictions by reconstructed Maxwell model agree excellently with experimental data. - Abstract: Composite materials consisting of high thermal conductive fillers and polymer matrix are often used as thermal interface materials to dissipate heat generated from mechanical and electronic devices. The prediction of effective thermal conductivity of composites remains as a critical issue due to its dependence on considerably factors. Most models for prediction are based on the analog between electric potential and temperature that satisfy the Laplace equation under steady condition. Maxwell was the first to derive the effective electric resistivity of composites by examining the far-field spherical harmonic solution of Laplace equation perturbed by a sphere of different resistivity, and his model was considered as classical. However, a close review of Maxwell’s derivation reveals that there exist several controversial issues (deficiencies) inherent in his model. In this study, we reconstruct the Maxwell model based on a potential mean-field theory to resolve these issues. For composites made of continuum matrix and particle fillers, the contact resistance among particles was introduced in the reconstruction of Maxwell model. The newly reconstructed Maxwell model with contact resistivity as a fitting parameter is shown to fit excellently to experimental data over wide ranges of particle concentration and mean particle diameter. The scope of applicability of the reconstructed Maxwell model is also discussed using the contact resistivity as a parameter.

  5. Maternal experiences of embodied emotional sensations during breast feeding: An Interpretative Phenomenological Analysis.

    Science.gov (United States)

    Watkinson, Marcelina; Murray, Craig; Simpson, Jane

    2016-05-01

    the purpose of this study was to explore mothers׳ experiences of embodied emotional sensations during breast feeding and to understand the meaning and consequences that such experiences may have on mothers' sense of self and the relationships they form with their children. a qualitative design was applied to this study as it was judged as the most appropriate approach to this novel field of enquiry. the study was conducted in United Kingdom using a sample of mothers drawn from five different countries from Europe, America and Australia. the sample consisted of 11 mothers who reported experiencing or having experienced negative embodied emotional sensations associated with breast feeding in the past five years. semi-structured interviews were conducted with the mothers and interviews were transcribed to enable the process of data analysis. Interpretative Phenomenological Analysis (IPA; Smith et al., 2009a, 2009b) was chosen as a method of data analysis, enabling in depth understanding and interpretation of the meaning of mothers' experiences. IPA was chosen due to its idiographic commitment and particular interest in sense-making, phenomenology and hermeneutics. three themes were generated reflecting the multifaceted nature of breast feeding experiences (i) 'Breast feeding: An unexpected trigger of intense embodied emotional sensations incongruent with view of self', (ii) 'Fulfilling maternal expectations and maintaining closeness with the child', (iii) 'Making sense of embodied emotional sensations essential to acceptance and coping'. breast feeding has the potential to trigger a range of conflicting cognitions and emotions in mothers that may impact on how mothers view themselves and relate to their children. increasing awareness about emotional breast feeding experiences and recognising the multifaceted, individual nature of difficulties around breast feeding enables professionals to offer mothers person-centred care and avoid making clinical decisions and

  6. Phenomenological and ratio bifurcations of a class of discrete time stochastic processes

    NARCIS (Netherlands)

    Diks, C.G.H.; Wagener, F.O.O.

    2011-01-01

    Zeeman proposed a classification of stochastic dynamical systems based on the Morse classification of their invariant probability densities; the associated bifurcations are the ‘phenomenological bifurcations’ of L. Arnold. The classification is however not invariant under diffeomorphisms of the

  7. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  8. Modeling and Simulation of the Direct Methanol Fuel Cell

    Science.gov (United States)

    Wohr, M.; Narayanan, S. R.; Halpert, G.

    1996-01-01

    From intro.: The direct methanol liquid feed fuel cell uses aqueous solutions of methanol as fuel and oxygen or air as the oxidant and uses an ionically conducting polymer membrane such as Nafion(sup r)117 and the electrolyte. This type of direct oxidation cell is fuel versatile and offers significant advantages in terms of simplicity of design and operation...The present study focuses on the results of a phenomenological model based on current understanding of the various processed operating in these cells.

  9. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  10. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles

    International Nuclear Information System (INIS)

    Xu Jie; Yu Boming; Zou Mingqing; Xu Peng

    2006-01-01

    In this paper we report a new model for predicting the thermal conductivity of nanofluids by taking into account the fractal distribution of nanoparticle sizes and heat convection between nanoparticles and liquids due to the Brownian motion of nanoparticles in fluids. The proposed model is expressed as a function of the average size of nanoparticles, fractal dimension, concentration of nanoparticles, temperature and properties of fluids. The model shows the reasonable dependences of the thermal conductivity on the temperature of nanofluids, nanoparticle size and concentration. The parameter c introduced in thermal boundary layer depends on fluids, but is independent of nanoparticles added in the fluids. The model predictions are in good agreement with the available experimental data. The model also reveals that there is a critical concentration of 12.6% of nanoparticles at which the contribution from heat convection due to the Brownian movement of nanoparticles reaches the maximum value, below which the contribution from heat convection decreases with the decrease in concentration and above which the contribution from heat convection decreases with the increase in concentration

  11. A model for gap conductance in nuclear fuel rods

    International Nuclear Information System (INIS)

    Loyalka, S.K.

    1982-01-01

    Computation of nuclear reactor fuel behavior under normal and off-normal conditions is influenced by gap conductance models. These models should provide accurate results for heat transfer for arbitrary gap widths and gas mixtures and should be based on considerations of the kinetic theory of gases. There has been considerable progress in the study of heat transfer in a simple gas for arbitrary Knudsen numbers (Kn = l/similar to d, where l is a meanfree-path and similar d is the gap width) in recent years. Using these recent results, a simple expression for heat transfer in a gas mixture (enclosed between parallel plates) for an arbitrary Knudsen number has been constructed, and a new model for gap conductance has been proposed. The latter reproduces the free molecular (small gap, Kn >> 1) and the jump limits (large gaps, Kn << 1) correctly, and it provides fairly accurate results for arbitrary gap widths. The new model is suitable for use in large fuel behavior computer programs

  12. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    International Nuclear Information System (INIS)

    Shukur, M F; Yusof, Y M; Zawawi, S M M; Illias, H A; Kadir, M F Z

    2013-01-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH 4 SCN). The sample containing 40 wt% NH 4 SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10 −4  S cm −1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10 −3  S cm −1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (E a ) was calculated for both systems and it is found that the sample with 40 wt% NH 4 SCN in the salted system obtained an E a value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH 4 SCN salt. Changes in the C–O stretching vibration band intensity are observed at 1067 cm −1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems. (paper)

  13. LHC collider phenomenology of minimal universal extra dimensions

    Science.gov (United States)

    Beuria, Jyotiranjan; Datta, AseshKrishna; Debnath, Dipsikha; Matchev, Konstantin T.

    2018-05-01

    We discuss the collider phenomenology of the model of Minimal Universal Extra Dimensions (MUED) at the Large hadron Collider (LHC). We derive analytical results for all relevant strong pair-production processes of two level 1 Kaluza-Klein partners and use them to validate and correct the existing MUED implementation in the fortran version of the PYTHIA event generator. We also develop a new implementation of the model in the C++ version of PYTHIA. We use our implementations in conjunction with the CHECKMATE package to derive the LHC bounds on MUED from a large number of published experimental analyses from Run 1 at the LHC.

  14. Aging in the Shadow of Violence: A Phenomenological Conceptual Framework for Understanding Elderly Women Who Experienced Lifelong IPV.

    Science.gov (United States)

    Band-Winterstein, Tova

    2015-01-01

    This article suggests a heuristic framework for understanding elderly women's "lived experience" of lifelong intimate partner violence (IPV). This framework is based on the phenomenological qualitative studies of 31 women, aged 60-83, using a semistructured interview guide. From the results, a matrix emerged built on two axes. The first axis consists of three phenomenological dimensions: suffering, a "ticking clock," and life wisdom. The second axis consists of four themes that emerged from the content analysis: loneliness, regret, being in a state of waiting, and being a living monument to perpetual victimhood. The practical implications of these phenomenological findings are then discussed.

  15. Out of School Learning Environments in Social Studies Education: A Phenomenological Research with Teacher Candidates

    Science.gov (United States)

    Topçu, Ersin

    2017-01-01

    In this study, it was aimed to determine the remarks of teacher candidates on the place and importance of out of school learning environments in Social Studies education. Phenomenological method, which is one of the qualitative research designs, was used in this study. The work group of the study consists of 73 teacher candidates who conduct out…

  16. Edmund Husserl's Phenomenology of Habituality and Habitus

    OpenAIRE

    Moran, Dermot

    2011-01-01

    Habit is a key concept in Husserl’s genetic phenomenology. In this paper, I want to flesh out Husserl’s conception of habit (for which he employs a wide variety of terms including: Habitus, Habitualität, Gewohnheit, das Habituelle, Habe, Besitz, Sitte, Tradition) to illustrate the complexity, range and depth of the phenomenological treatment of habit. I shall show that Husserl was by no means offering a limited Cartesian intellectualist explication of habitual action, rather he attempted to c...

  17. Descriptive psychopathology, phenomenology, and the legacy of Karl Jaspers.

    Science.gov (United States)

    Häfner, Heinz

    2015-03-01

    With his early publications (1910-1913), Karl Jaspers created a comprehensive methodological arsenal for psychiatry, thus laying the foundation for descriptive psychopathology. Following Edmund Husserl, the founder of philosophical phenomenology, Jaspers introduced phenomenology into psychopathology as "static understanding," ie, the unprejudiced intuitive reproduction (Vergegenwärtigung) and description of conscious phenomena. In a longitudinal perspective, "genetic understanding" based on empathy reveals how mental phenomena arise from mental phenomena. Severance in understanding of, or alienation from, meaningful connections is seen as indicating illness or transition of a natural development into a somatic process. Jaspers opted for philosophy early. After three terms of law, he switched to studying medicine, came to psychopathology after very little training in psychiatry; to psychology without ever studying psychology; and to a chair in philosophy without ever studying philosophy. In the fourth and subsequent editions of his General Psychopathology, imbued by his existential philosophy, Jaspers partly abandoned the descriptive method.

  18. Modelling the effect of hydration on skin conductivity.

    Science.gov (United States)

    Davies, L; Chappell, P; Melvin, T

    2017-08-01

    Electrical signals are recorded from and sent into the body via the skin in a number of applications. In practice, skin is often hydrated with liquids having different conductivities so a model was produced in order to determine the relationship between skin impedance and conductivity. A model representing the skin was subjected to a variety of electrical signals. The parts of the model representing the stratum corneum were given different conductivities to represent different levels of hydration. The overall impedance and conductivity of the cells did not vary at frequencies below 40 kHz. Above 40 kHz, levels of increased conductivity caused the overall impedance to decrease. The variation in impedance with conductivity between 5 and 50 mSm -1 can be modelled quadratically while variation in impedance with conductivity between 5 and 5000 mSm -1 can be modelled with a double exponential decay. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Combinatory Models for Predicting the Effective Thermal Conductivity of Frozen and Unfrozen Food Materials

    OpenAIRE

    K. S. Reddy; P Karthikeyan

    2010-01-01

    A model to predict the effective thermal conductivity of heterogeneous materials is proposed based on unit cell approach. The model is combined with four fundamental effective thermal conductivity models (Parallel, Series, Maxwell-Eucken-I, and Maxwell-Eucken-II) to evolve a unifying equation for the estimation of effective thermal conductivity of porous and nonporous food materials. The effect of volume fraction (ν) on the structure composition factor (ψ) of the food materials is studied. Th...

  20. Phenomenology of BWR fuel assembly degradation

    Science.gov (United States)

    Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin

    2018-03-01

    Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.

  1. The end of what? Phenomenology vs. speculative realism

    DEFF Research Database (Denmark)

    Zahavi, Dan

    2016-01-01

    Phenomenology has recently come under attack from proponents of speculative realism. In this paper, I present and assess the criticism, and argue that it is either superficial and simplistic or lacks novelty.......Phenomenology has recently come under attack from proponents of speculative realism. In this paper, I present and assess the criticism, and argue that it is either superficial and simplistic or lacks novelty....

  2. Looking Inward: Philosophical and Methodological Perspectives on Phenomenological Self-Reflection.

    Science.gov (United States)

    Pool, Natalie M

    2018-07-01

    Engaging in early and ongoing self-reflection during interpretive phenomenological research is critical for ensuring trustworthiness or rigor. However, the lack of guidelines and clarity about the role of self-reflection in this methodology creates both theoretical and procedural confusion. The purpose of this article is to describe key philosophical underpinnings, characteristics, and hallmarks of the process of self-reflection in interpretive phenomenological investigation and to provide a list of guidelines that facilitate this process. Excerpts from an interpretive phenomenological study are used to illustrate characteristics of quality self-reflection. The guidelines are intended to be particularly beneficial for novice researchers who may find self-reflective writing to be daunting and unclear. Facilitating use of self-reflection may strengthen both the interpretive phenomenological body of work as well as that of all qualitative research.

  3. Modeling of the Dissolution Kinetics of Arbutus Wild Berries-Based Tablets as Evaluated by Electric Conductivity

    International Nuclear Information System (INIS)

    Abbas-Aksil, T.; Benamara, S.

    2015-01-01

    Lyophilized powder (LP) from Algerian arbutus wild berries (Arbutus unedo L.) was obtained. This present paper reports about the dissolution (releasing) properties of LP-based tablets, evaluated through the electric conductivity (EC) of distilled water which is employed as surrounding medium, at three different temperatures (291, 298 and 309 K). In addition to this, secondary physicochemical characteristics such as elementary analysis, color and compressibility were evaluated. Regarding the modeling of ionic transfer, among the three tested models, namely Peleg, Singh et al. and Singh and Kulshestha, the latter seems to be the most appropriate (R2 = 0.99), particularly in the case of compacted tablets under 2000 Pa. The temperature dependence of the dissolution process was also studied applying Arrhenius equation (R2>0.8) which allowed to deduce the activation energy, ranging from 18.7 to 21.4 kJ.mol -1 according to the model and compression force employed. (author)

  4. Towards a Relational Phenomenology of Violence.

    Science.gov (United States)

    Staudigl, Michael

    This article elaborates a relational phenomenology of violence. Firstly, it explores the constitution of all sense in its intrinsic relation with our embodiment and intercorporality. Secondly, it shows how this relational conception of sense and constitution paves the path for an integrative understanding of the bodily and symbolic constituents of violence. Thirdly, the author addresses the overall consequences of these reflections, thereby identifying the main characteristics of a relational phenomenology of violence. In the final part, the paper provides an exemplification of the outlined conception with regard to a concrete phenomenon of violence, i.e., slapping, and a concluding reflection upon its overall significance for research on violence.

  5. Singlet Higgs phenomenology and the electroweak phase transition

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Shaughnessy, Gabe

    2007-01-01

    We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. For models that satisfy these constraints and that produce a strong first order phase transition, we discuss the prospective signatures in future Higgs studies at the Large Hadron Collider and a Linear Collider. We argue that such studies will provide powerful probes of phase transition dynamics in models with an extended scalar sector

  6. Thermal behavior for a nanoscale two ferromagnetic phase system based on random anisotropy model

    International Nuclear Information System (INIS)

    Muraca, D.; Sanchez, F.H.; Pampillo, L.G.; Saccone, F.D.

    2010-01-01

    Advances in theory that explain the magnetic behavior as function of temperature for two phase nanocrystalline soft magnetic materials are presented. The theory developed is based on the well known random anisotropy model, which includes the crystalline exchange stiffness and anisotropy energies in both amorphous and crystalline phases. The phenomenological behavior of the coercivity was obtained in the temperature range between the amorphous phase Curie temperature and the crystalline phase one.

  7. Multiple nano elements of SCC--transition from phenomenology to predictive mechanistics

    International Nuclear Information System (INIS)

    Staehle, R.W.

    2009-01-01

    Full text of publication follows: Predicting the occurrence and rate of stress corrosion cracking in materials of construction is one of the most critical pathways for assuring the reliability of light water nuclear reactor plants. It is the general intention of operators of nuclear plants that they continue performing satisfactorily for times of 60 to 80 years at least. Such times are beyond existing experience, and there are no bases for choosing credible predictions. Present bases for predicting SCC rely on anecdotal experience for predicting what materials sustain SCC in specified environments and on phenomenological correlations using such parameters as K (stress intensity), 1/T (temperature), E(corr) (corrosion potential), pH, [x] a (concentration), other established quantities, and statistical correlations. While these phenomenological correlations have served the industry well in the past, they have also allowed grievous mistakes. Further, such correlations are flawed in their fundamental credibility. Predicting SCC in aqueous solutions means to predict its dependence upon the seven primary variables: potential, pH, species, alloy composition, alloy structure, stress and temperature. A serious prediction of SCC upon these seven primary variables can only be achieved by moving to fundamental nano elements. Unfortunately, useful predictability from the nano approach cannot be achieved quickly or easily; thus, it will continue to be necessary to rely on existing phenomenology. However, as the nano approach evolves, it can contribute increasingly to the quantitative capacity of the phenomenological approach. The nano approach will require quite different talents and thinking than are now applied to the prediction of SCC; while some of the boundary conditions of phenomenology must continue to be applied, elements of the nano approach will include accounting for at least, typically, the following multiple elements as they apply at the sites of initiation and at

  8. Study on models for gap conductance between fuel and sheath for CANDU reactors

    International Nuclear Information System (INIS)

    Lee, K.M.; Ohn, M.Y.; Lim, H.S.; Choi, J.H.; Hwang, S.T.

    1995-01-01

    The gap conductance between the fuel and the sheath depends strongly on the gap width and has a significant influence on the amount of initial stored energy. The modified Ross and Stoute gap conductance model in ELESTRES is based on a simplified thermal deformation model for steady-state fuel temperature calculations. A review on a series of experiments reveals that fuel pellets crack, relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this paper, the two recently-proposed gap conductance models (offset gap model and relocated gap model) are described and are applied to calculate the fuel-sheath gap conductances under experimental conditions and normal operating conditions in CANDU reactors. The good agreement between the experimentally-inferred and calculated gap conductance values demonstrates that the modified Ross and Stoute model was implemented correctly in ELESTRES. The predictions of the modified Ross and Stoute model provide conservative values for gap heat transfer and fuel surface temperature compared to the offset gap and relocated gap models for a limiting power envelope. (author)

  9. Sarnet lecture notes on nuclear reactor severe accident phenomenology

    International Nuclear Information System (INIS)

    Trambauer, K.; Adroguer, B.; Fichot, F.; Muller, C.; Meyer, L.; Breitung, W.; Magallon, D.; Journeau, C.; Alsmeyer, H.; Housiadas, C.; Clement, B.; Ang, M.L.; Chaumont, B.; Ivanov, I.; Marguet, S.; Van Dorsselaere, J.P.; Fleurot, J.; Giordano, P.; Cranga, M.

    2008-01-01

    The 'Severe Accident Phenomenology Short Course' is part of the Excellence Spreading activities of the European Severe Accident Research NETwork of Excellence SARNET (project of the EURATOM 6. Framework programme). It was held at Cadarache, 9-13 January 2006. The course was divided in 14 lectures covering all aspects of severe accident phenomena that occur during a scenario. It also included lectures on PSA-2, Safety Assessment and design measures in new LWR plants for severe accident mitigation (SAM). This book presents the lecture notes of the Severe Accident Phenomenology Short Course and condenses the essential knowledge on severe accident phenomenology in 2008. (authors)

  10. Phenomenological Treatment of the Inductive Hysteresis in the Cathode Reaction on YSZ Electrolytes

    DEFF Research Database (Denmark)

    Bay, Lasse; Zachau-Christiansen, Birgit; Jacobsen, Torben

    1999-01-01

    The cathode reaction on YSZ electrolytes shows inductive hysteresis behavior with an activation/deactivation process of the cell. This is described by a phenomenological model, where the rate of activation is proportional to the current density and the rate of deactivation is proportional...

  11. Evaluation and optimisation of phenomenological multi-step soot model for spray combustion under diesel engine-like operating conditions

    Science.gov (United States)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song; Schramm, Jesper

    2015-05-01

    In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.

  12. Radiation-induced conductivity of polynaphthoyl benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Tiutnev, A P; Berlin, A M; Saenko, V S; Rusanov, A L; Korshak, V V

    1985-01-01

    The nonstationary radiation-induced conductivity of polynaphthoyl benzimidazole, synthesized by single-stage high-temperature catalytic polycondensation, is investigated experimentally. It is shown that the radiation-induced conductivity of this material is characterized by an anomalous (non-Gaussian) transfer of excess charge carriers. The activation energy of the delayed component (0.1 ms after pulse termination) is determined to be 0.12 eV; the volt-ampere characteristic of this component is nonlinear, with the coefficient of nonlinearity increasing with the intensity of the external electric field. Experimental results are interpreted on the basis of the phenomenological theory of jump conductivity proposed by Zviagin. 15 references.

  13. Hopping models for ion conduction in noncrystals

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2007-01-01

    semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...

  14. PHENOMENOLOGICAL INTERPRETATION OF BIOETHICAL REALITY (THE SOCIOLOGICAL ANALYSIS)

    OpenAIRE

    Nikulina Marina Alekseevna

    2012-01-01

    The interpretation of social reality is a classical problem of sociology, which solution helps perception and understanding of social phenomena. In the article phenomenological interpretation of bioethical reality is shown. Phenomenological sociology, being one of the perspective directions of development of social knowledge, it is characterized by aspiration to show «artificial», that is designed, nature of bioethical reality, its semantic structure, and thus, to «humanize» bioethical realit...

  15. Examining the Lived World: The Place of Phenomenology in ...

    African Journals Online (AJOL)

    This paper aims to explore the validity of phenomenology in the psychiatric setting. The phenomenological method - as a mode of research, a method of engagement between self and other, and a framework for approaching what it means to know - has found a legitimate home in therapeutic practice. Over the last century, ...

  16. The Phenomenology of Democracy

    Science.gov (United States)

    Shaw, Robert

    2009-01-01

    Human beings originate votes, and democracy constitutes decisions. This is the essence of democracy. A phenomenological analysis of the vote and of the decision reveals for us the inherent strength of democracy and its deficiencies. Alexis de Tocqueville pioneered this form of enquiry into democracy and produced positive results from it.…

  17. Phenomenology of the gauge symmetry for right-handed fermions

    Science.gov (United States)

    Chao, Wei

    2018-02-01

    In this paper we investigate the phenomenology of the U(1) gauge symmetry for right-handed fermions, where three right-handed neutrinos are introduced for anomalies cancellations. Constraints on the new gauge boson Z_{R} from Z-Z^' mixing as well as the upper bound of Z^' production cross section in di-lepton channel at the LHC are presented. We further study the neutrino mass and the phenomenology of Z_{R}-portal dark matter in this model. The lightest right-handed neutrino can be the cold dark matter candidate stabilized by a Z_2 flavor symmetry. Our study shows that active neutrino masses can be generated via the modified type-II seesaw mechanism; right-handed neutrino is available dark matter candidate for its mass being very heavy, or for its mass at near the resonant regime of the SM Higgs and(or) the new bosons; constraint from the dilepton search at the LHC is stronger than that from the Z-Z^' mixing only for g_{R}<0.121, where g_{R} is the new gauge coupling.

  18. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...

  19. Dreaming and the brain: from phenomenology to neurophysiology.

    Science.gov (United States)

    Nir, Yuval; Tononi, Giulio

    2010-02-01

    Dreams are a remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that the human brain, disconnected from the environment, can generate an entire world of conscious experiences by itself. Content analysis and developmental studies have promoted understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging and neurophysiology have advanced current knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research to address fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. Published by Elsevier Ltd.

  20. Dreaming and the brain: from phenomenology to neurophysiology

    Science.gov (United States)

    Nir, Yuval; Tononi, Giulio

    2009-01-01

    Dreams are a most remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that our brain, disconnected from the environment, can generate by itself an entire world of conscious experiences. Content analysis and developmental studies have furthered our understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging, and neurophysiology have advanced our knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research in order to address some fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. PMID:20079677