WorldWideScience

Sample records for phase-induced amplitude apodization

  1. Design of mirrors and apodization functions in phase-induced amplitude apodization (PIAA) systems

    OpenAIRE

    Cady, E.

    2012-01-01

    Phase-induced amplitude apodization (PIAA) coronagraphs are a promising technology for imaging exoplanets, with the potential to detect Earth-like planets around Sun-like stars. A PIAA system nominally consists of a pair of mirrors which reshape incident light without attenuation, coupled with one or more apodizers to mitigate diffraction effects or provide additional beam-shaping to produce a desired output profile. We present a set of equations that allow apodizers to be chosen for any give...

  2. DESIGN OF MIRRORS AND APODIZATION FUNCTIONS IN PHASE-INDUCED AMPLITUDE APODIZATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Cady, Eric, E-mail: eric.j.cady@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109 (United States)

    2012-08-01

    Phase-induced amplitude apodization (PIAA) coronagraphs are a promising technology for imaging exoplanets, with the potential to detect Earth-like planets around Sun-like stars. A PIAA system nominally consists of a pair of mirrors that reshape incident light without attenuation, coupled with one or more apodizers to mitigate diffraction effects or provide additional beam shaping to produce a desired output profile. We present a set of equations that allow apodizers to be chosen for any given pair of mirrors, or conversely mirror shapes chosen for given apodizers, to produce an arbitrary amplitude profile at the output of the system. We show how classical PIAA systems may be designed by this method and present the design of a novel four-mirror system with higher throughput than a standard two-mirror system. We also discuss the limitations due to diffraction and the design steps that may be taken to mitigate them.

  3. The Phase-Induced Amplitude Apodization Coronagraph (PIAAC): A High Performance Coronagraph for Exoplanet Imaging

    Science.gov (United States)

    Guyon, O.; Pluzhnik, E.; Martinache, F.; Ridgway, S.; Galicher, R.

    2004-12-01

    Using 2 aspheric mirrors, it is possible to achromatically apodize a telescope beam without losing light (Phase-Induced Amplitude Apodization, PIAA). We propose a coronagraph concept using this technique: the telescope pupil is first apodized to yield a high contrast focal plane image, on which an occulting mask is placed. The exit pupil is then de-apodized to regain a large field of view. We show that the PIAAC combines all the qualities needed for efficient exoplanet imaging: full throughput, small inner working angle (1.2 l/d), high angular resolution (l/d), low sensitivity to tip-tilt, and large field of view (more than 200 l/d in diameter). We conclude that PIAAC is well adapted for exoplanet imaging with a 4m to 6m space telescope (TPF mission). This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  4. The Phase-Induced Amplitude Apodization Coronagraph (PIAAC): Performance for Imaging of Earth-like Exoplanets.

    Science.gov (United States)

    Martinache, F.; Guyon, O.; Pluzhnik, E.; Ridgway, S.; Galicher, R.

    2004-12-01

    PIAA is one of the powerful applications of pupil remapping. A set of two aspheric mirrors changes the distribution of light and provides an apodized pupil, suitable for coronagraphy, without light loss on an absorbing mask. Deployed on to a space telescope with coronagraphic quality optics, it may allow planet detection from a 1.2 λ /d inner working distance and a full working field. We describe the performance of a PIAA version of NASA's Terrestrial Planet Finder (TPF) in terms of Signal to Noise Ratio and compare it to Classical Pupil Apodization (CPA) performance. We also discuss the necessity of using different occulting masks and give an estimate of the total exposure time for the planet detection phase of the TPF mission. This study is based on realistic Monte Carlo simulations of terrestrial planets orbiting around F, G, K stars within 30 pc around the solar system and includes planet phase and angular separation probabilities. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  5. Demonstration of Broadband Contrast at 1.2 Lambda/D for the EXCEDE Phase-Induced Amplitude Apodization Coronagraph

    Science.gov (United States)

    Sirbu, Dan; Thomas, Sandrine J.; Belikov, Ruslan; Lozi, Julien; Bendek, Eduardo; Pluzhnik, Eugene; Lynch, Dana H.; Hix, Troy; Zell, Peter; Schneider, Glenn; hide

    2015-01-01

    The proposed coronagraph instrument on the EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer) mission study uses a Phase-Induced Amplitude Apodization (PIAA) coronagraph architecture to enable high-contrast imaging of circumstellar debris disks and giant planets at angular separations as close in as the habitable zone of nearby host stars. We report on the experimental results obtained in the vacuum chamber at the Lockheed Martin Advanced Technology Center in 10 percent broadband light centered about 650 nanometers, with a median contrast of 1 x 10 (sup -5) between 1.2 and 2.0 lambda /D simultaneously with 3 x 10 (sup -7) contrast between 2 and 11 =D between 2 and 11 lambda/D for a single-sided dark hole using a deformable mirror (DM) upstream of the PIAA coronagraph. The results are stable and repeatable as demonstrated by three measurements runs with DM settings set from scratch and maintained on the best 90 percent out of the 1000 collected frames. We compare the reduced experimental data with simulation results from modeling observed experimental limits; performance is consistent with uncorrected low-order modes not estimated by the Low Order Wavefront Sensor (LOWFS). Modeled sensitivity to bandwidth and residual tip/tilt modes is well-matched to the experiment.

  6. PIZZA: a phase-induced zonal Zernike apodization designed for stellar coronagraphy

    Science.gov (United States)

    Martinache, Frantz

    2004-08-01

    I explore here the possibilities offered by the general formalism of coronagraphy for the very special case of phase contrast. This technique, invented by Zernike, is commonly used in microscopy, to see phase objects such as micro-organisms, and in strioscopy, to control the quality of optics polishing. It may find application in telescope pupil apodization with significant advantages over classical pupil apodization techniques, including high throughput and no off-axis resolution loss, which is essential for exoplanet imaging.

  7. A Millimetre-Wave Cuboid Solid Immersion Lens with Intensity-Enhanced Amplitude Mask Apodization

    Science.gov (United States)

    Yue, Liyang; Yan, Bing; Monks, James N.; Dhama, Rakesh; Wang, Zengbo; Minin, Oleg V.; Minin, Igor V.

    2018-03-01

    Photonic jet is a narrow, highly intensive, weak-diverging beam propagating into a background medium and can be produced by a cuboid solid immersion lens (SIL) in both transmission and reflection modes. Amplitude mask apodization is an optical method to further improve the spatial resolution of a SIL imaging system via reduction of waist size of photonic jet, but always leading to intensity loss due to central masking of the incoming plane wave. In this letter, we report a particularly sized millimetre-wave cuboid SIL with the intensity-enhanced amplitude mask apodization for the first time. It is able to simultaneously deliver extra intensity enhancement and waist narrowing to the produced photonic jet. Both numerical simulation and experimental verification of the intensity-enhanced apodization effect are demonstrated using a copper-masked Teflon cuboid SIL with 22-mm side length under radiation of a plane wave with 8-mm wavelength. Peak intensity enhancement and the lateral resolution of the optical system increase by about 36.0% and 36.4% in this approach, respectively.

  8. Improving the phase measurement by the apodization filter in the digital holography

    Science.gov (United States)

    Chang, Shifeng; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu

    2012-11-01

    Due to the finite size of the hologram aperture in digital holography, high frequency intensity and phase fluctuations along the edges of the images, which reduce the precision of phase measurement. In this paper, the apodization filters are applied to improve the phase measurement in the digital holography. Firstly, the experimental setup of the lensless Fourier transform digital holography is built, where the sample is a standard phase grating with the grating constant of 300μm and the depth of 150nm. Then, apodization filters are applied to phase measurement of the sample with three kinds of the window functions: Tukey window, Hanning window and Blackman window, respectively. Finally, the results were compared to the detection data given by the commercial white-light interferometer. It is shown that aperture diffraction effects can be reduced by the digital apodization, and the phase measurement with the apodization is more accurate than in the unapodized case. Meanwhile, the Blackman window function produces better effect than the other two window functions in the measurement of the standard phase grating.

  9. Laser-beam apodization with a graded random phase window

    Energy Technology Data Exchange (ETDEWEB)

    Haas, R.A.; Summers, M.A.; Linford, G.J.

    1986-10-01

    Experiments and analysis indicate that graded random phase modulation can be usesd to apodize a laser beam. In the case of an obscuration or a hard edge it can prevent the formation of Fresnel-diffraction ripples. For example, here the interaction of a 1-..mu..m-wavelength laser beam with a central obscuration of half-width a -- 100 ..mu..m is studied theoretically. It is found that if the exit surface of a window, placed immediately downstream of the obstacle, is randomly modulated with a Gaussian amplitude transverse correlation length l -- 50..mu..m and a mean-square amplitude that decreases exponentially from a peak height of --1..mu..m/sup 2/ away from the center of the obscuration with transverse scale length L -- 500 ..mu..m, then the Fresenel-diffraction ripples normally produced by the obscuration are elimated. The scaling of these results is also discussed. The calculations are in general agreement with experimental results.

  10. Laser-beam apodization with a graded random phase window

    International Nuclear Information System (INIS)

    Haas, R.A.; Summers, M.A.; Linford, G.J.

    1986-01-01

    Experiments and analysis indicate that graded random phase modulation can be usesd to apodize a laser beam. In the case of an obscuration or a hard edge it can prevent the formation of Fresnel-diffraction ripples. For example, here the interaction of a 1-μm-wavelength laser beam with a central obscuration of half-width a -- 100 μm is studied theoretically. It is found that if the exit surface of a window, placed immediately downstream of the obstacle, is randomly modulated with a Gaussian amplitude transverse correlation length l -- 50μm and a mean-square amplitude that decreases exponentially from a peak height of --1μm 2 away from the center of the obscuration with transverse scale length L -- 500 μm, then the Fresenel-diffraction ripples normally produced by the obscuration are elimated. The scaling of these results is also discussed. The calculations are in general agreement with experimental results

  11. Beyond APOD

    Science.gov (United States)

    Allen, Alice

    2017-01-01

    There is more to APOD than APOD! Beyond APOD is a far-reaching network of social media and mirror sites, discussion threads and translations, collections and alternate ways to view APOD each day. The presenter will cover what’s behind the last two links on the link bar at the bottom of every APOD page, About APOD and Discuss, the great resources available for educators, and some of the ways volunteers support APOD’s mission.

  12. Amplitude and phase control of trichromatic electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Hu Xiangming; Zou Jinhua; Li Xing; Du Dan; Cheng Guangling

    2005-01-01

    We study the dependence of absorption and dispersion spectra on amplitudes and phases of the driving fields in multiple electromagnetically induced transparency. For this purpose we consider trichromatic excitation in a three-level Λ atomic system, in which a trichromatic control laser and a monochromatic probe laser are applied to two different transitions, respectively. We numerically calculate the absorption and dispersion spectra. Two characteristic features are found. Firstly, the central transparency can be made to appear or to disappear by utilizing the amplitudes and phases of the driving components. Secondly, so long as we fix the sum of two relative phases of two sideband excitation components to the central component, the absorption and dispersion spectra keep their own lineshapes unchanged no matter how we vary the respective relative phases

  13. Performance optimization of apodized FBG-based temperature sensors in single and quasi-distributed DWDM systems with new and different apodization profiles

    International Nuclear Information System (INIS)

    Mohammed, Nazmi A.; Ali, Taha A.; Aly, Moustafa H.

    2013-01-01

    In this work, different FBG temperature sensors are designed and evaluated with various apodization profiles. Evaluation is done under a wide range of controlling design parameters like sensor length and refractive index modulation amplitude, targeting a remarkable temperature sensing performance. New judgment techniques are introduced such as apodization window roll-off rate, asymptotic sidelobe (SL) decay level, number of SLs, and average SL level (SLav). Evaluation techniques like reflectivity, Full width at Half Maximum (FWHM), and Sidelobe Suppression Ratio (SLSR) are also used. A “New” apodization function is proposed, which achieves better performance like asymptotic decay of 18.4 dB/nm, high SLSR of 60 dB, high channel isolation of 57.9 dB, and narrow FWHM less than 0.15 nm. For a single accurate temperature sensor measurement in extensive noisy environment, optimum results are obtained by the Nuttall apodization profile and the new apodization function, which have remarkable SLSR. For a quasi-distributed FBG temperature sensor the Barthann and the new apodization profiles obtain optimum results. Barthann achieves a high asymptotic decay of 40 dB/nm, a narrow FWHM (less than 25 GHZ), a very low SLav of −45.3 dB, high isolation of 44.6 dB, and a high SLSR of 35 dB. The new apodization function achieves narrow FWHM of 0.177 nm, very low SL of −60.1, very low SLav of −63.6 dB, and very high SLSR of −57.7 dB. A study is performed on including an unapodized sensor among apodized sensors in a quasi-distributed sensing system. Finally, an isolation examination is performed on all the discussed apodizations and a linear relation between temperature and the Bragg wavelength shift is observed experimentally and matched with the simulated results

  14. Improved achromatization of phase mask coronagraphs using colored apodization

    Science.gov (United States)

    N'diaye, M.; Dohlen, K.; Cuevas, S.; Soummer, R.; Sánchez-Pérez, C.; Zamkotsian, F.

    2012-02-01

    Context. For direct imaging of exoplanets, a stellar coronagraph helps to remove the image of an observed bright star by attenuating the diffraction effects caused by the telescope aperture of diameter D. The dual zone phase mask (DZPM) coronagraph constitutes a promising concept since it theoretically offers a small inner working angle (IWA ~ λ0/D where λ0 denotes the central wavelength of the spectral range Δλ), good achromaticity, and high starlight rejection, typically reaching a 106 contrast at 5 λ0/D from the star over a spectral bandwidth Δλ/λ0 of 25% (similar to H-band). This last value proves to be encouraging for broadband imaging of young and warm Jupiter-like planets. Aims: Contrast levels higher than 106 are, however, required for observing older and/or less massive companions over a finite spectral bandwidth. An achromatization improvement of the DZPM coronagraph is therefore mandatory to reach such good performance. Methods: In its design, the DZPM coronagraph uses a gray (or achromatic) apodization. We replaced it by a colored apodization to increase the performance of this coronagraphic system over a wide spectral range. This innovative concept, called colored apodizer phase mask (CAPM) coronagraph, is defined to reach the highest contrast in the exoplanet search area. Once this has been done, we study the performance of the CAPM coronagraph in the presence of different errors to evaluate the sensitivity of our concept. Results: A 2.5 contrast gain is estimated from the performance provided by the CAPM coronagraph with respect to that of the DZPM coronagraph. A 2.2 × 10-8 intensity level at 5 λ0/D separation is then theoretically achieved with the CAPM coronagraph in the presence of a clear circular aperture and a 25% bandwidth. In addition, our studies show that our concept is less sensitive to low than to high-order aberrations for a given value of rms wavefront errors.

  15. Numerical analysis of the harmonic components of the Bragg wavelength content in spectral responses of apodized fiber Bragg gratings written by means of a phase mask with a variable phase step height.

    Science.gov (United States)

    Osuch, Tomasz

    2016-02-01

    The influence of the complex interference patterns created by a phase mask with variable diffraction efficiency in apodized fiber Bragg grating (FBGs) formation on their reflectance spectra is studied. The effect of the significant contributions of the zeroth and higher (m>±1) diffraction orders on the Bragg wavelength peak and its harmonic components is analyzed numerically. The results obtained for Gaussian and tanh apodization profiles are compared with similar data calculated for a uniform grating. It is demonstrated that when an apodized FBG is written using a phase mask with variable diffraction efficiency, significant enhancement of the harmonic components and a reduction of the Bragg wavelength peak in the grating spectral response are observed. This is particularly noticeable for the Gaussian apodization profile due to the substantial contributions of phase mask sections with relatively small phase steps in the FBG formation.

  16. Influence of optical fiber location behind an apodized phase mask on Bragg grating reflection efficiencies at Bragg wavelength and its harmonics

    Science.gov (United States)

    Osuch, Tomasz; Jaroszewicz, Zbigniew

    2017-01-01

    An apodized fiber Bragg grating formation using a phase mask with variable duty cycle is numerically analyzed. In particular, an impact of position of an optical fiber behind the phase mask with Gaussian apodization profile on Bragg grating reflection efficiencies at Bragg wavelength and its harmonics is extensively studied. It is shown that reflection efficiency of each harmonic strongly depends on the optical fiber location with respect to the adjacent Talbot planes during the grating inscription. An analytical formula for calculation such periodical changes of reflection strength is proposed. It is also proved, that the smaller optical fiber diameter the higher fluctuations of reflectivity for particular harmonic occur. Results presented for such general case (i.e. phase mask with variable duty cycle with all non-zero diffraction orders) directly correspond to less complex structures, such as uniform phase masks and those with variable groove depth. They are also useful in optimization of Bragg wavelength and harmonic reflection efficiencies as well as in deep understanding of apodized FBG formation using aforementioned phase masks.

  17. Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique.

    Science.gov (United States)

    Doménech, J D; Muñoz, P; Capmany, J

    2011-01-15

    In this Letter, the amplitude and group delay characteristics of coupled resonator optical waveguides apodized through the longitudinal offset technique are presented. The devices have been fabricated in silicon-on-insulator technology employing deep ultraviolet lithography. The structures analyzed consisted of three racetracks resonators uniform (nonapodized) and apodized with the aforementioned technique, showing a delay of 5 ± 3 ps and 4 ± 0.5 ps over 1.6 and 1.4 nm bandwidths, respectively.

  18. Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control.

    Science.gov (United States)

    Chung, K M; Dong, L; Lu, C; Tam, H Y

    2011-06-20

    We proposed and demonstrated a novel practical fiber Bragg grating (FBG) fabrication setup constructed with high performance linear stages, piezoelectric translation (PZT) stages, and a highly stable continuous wave laser. The FBG fabrication system enables writing of long FBGs by a continuous translate-and-write process and allows implementation of arbitrary chirp and apodization. A key innovation is that the local Bragg wavelength is controlled by a simple movement of the phase mask by a PZT in the direction perpendicular to its surface. The focus position of the two writing beams is not changed during the Bragg wavelength change, an intrinsic feature of the design, ensuring simplicity, robustness and stability. Apodization can be achieved by vibrating the phase mask in the direction parallel to its surface by a PZT. Phase steps can also be inserted in FBGs at any desired locations by stepping the same PZT. A long uniform FBG and a linearly chirped FBG are written to demonstrate the performance of the setup.

  19. APOD Data Release of Social Network Footprint for 2015

    Science.gov (United States)

    Nemiroff, Robert J.; Russell, David; Allen, Alice; Connelly, Paul; Lowe, Stuart R.; Petz, Sydney; Haring, Ralf; Bonnell, Jerry T.; APOD Team

    2017-01-01

    APOD data for 2015 are being made freely available for download and analysis. The data includes page view statistics for the main NASA APOD website at https://apod.nasa.gov, as well as for APOD's social media sites on Facebook, Instagram, Google Plus, and Twitter. General APOD-specific demographic information for each site is included. Popularity statistics that have been archived including Page Views, Likes, Shares, Hearts, and Retweets. The downloadable Excel-type spreadsheet also includes the APOD title and (unlinked) explanation. This data is released not to highlight APOD's popularity but to encourage analyses, with potential examples involving which astronomy topics trend the best and whether popularity is social group dependent.

  20. ADVANCES IN PUPIL REMAPPING (PIAA) CORONAGRAPHY: IMPROVING BANDWIDTH, THROUGHPUT AND INNER WORKING ANGLE Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase-Induced Amplitude Apodization (PIAA) is a high performance coronagraphic technique well suited for direct imaging and spectroscopic characterization of...

  1. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    International Nuclear Information System (INIS)

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Soummer, Remi; Macintosh, Bruce; Sivaramakrishnan, Anand

    2011-01-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  2. SEARCHING FOR PLANETS IN HOLEY DEBRIS DISKS WITH THE APODIZING PHASE PLATE

    International Nuclear Information System (INIS)

    Meshkat, Tiffany; Kenworthy, Matthew A.; Bailey, Vanessa P.; Su, Kate Y. L.; Hinz, Philip M.; Smith, Paul S.; Mamajek, Eric E.

    2015-01-01

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540 ± 100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties

  3. SEARCHING FOR PLANETS IN HOLEY DEBRIS DISKS WITH THE APODIZING PHASE PLATE

    Energy Technology Data Exchange (ETDEWEB)

    Meshkat, Tiffany; Kenworthy, Matthew A. [Sterrewacht Leiden, P.O. Box 9513, Niels Bohrweg 2, 2300 RA Leiden (Netherlands); Bailey, Vanessa P.; Su, Kate Y. L.; Hinz, Philip M.; Smith, Paul S. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2015-02-10

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540 ± 100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties.

  4. High performance Lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures

    Energy Technology Data Exchange (ETDEWEB)

    Guyon, Olivier; Hinz, Philip M. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cady, Eric [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Belikov, Ruslan [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Martinache, Frantz, E-mail: guyon@naoj.org [National Astronomical Observatory of Japan, Subaru Telescope, Hilo, HI 96720 (United States)

    2014-01-10

    Two high-performance coronagraphic approaches compatible with segmented and obstructed telescope pupils are described. Both concepts use entrance pupil amplitude apodization and a combined phase and amplitude focal plane mask to achieve full coronagraphic extinction of an on-axis point source. While the first concept, called Apodized Pupil Complex Mask Lyot Coronagraph (APCMLC), relies on a transmission mask to perform the pupil apodization, the second concept, called Phase-Induced Amplitude Apodization complex mask coronagraph (PIAACMC), uses beam remapping for lossless apodization. Both concepts theoretically offer complete coronagraphic extinction (infinite contrast) of a point source in monochromatic light, with high throughput and sub-λ/D inner working angle, regardless of aperture shape. The PIAACMC offers nearly 100% throughput and approaches the fundamental coronagraph performance limit imposed by first principles. The steps toward designing the coronagraphs for arbitrary apertures are described for monochromatic light. Designs for the APCMLC and the higher performance PIAACMC are shown for several monolith and segmented apertures, such as the apertures of the Subaru Telescope, Giant Magellan Telescope, Thirty Meter Telescope, the European Extremely Large Telescope, and the Large Binocular Telescope. Performance in broadband light is also quantified, suggesting that the monochromatic designs are suitable for use in up to 20% wide spectral bands for ground-based telescopes.

  5. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating.

    Science.gov (United States)

    Mohammed, Nazmi A; El Serafy, Hatem O

    2018-01-10

    This work targets a remarkable quasi-distributed temperature sensor based on an apodized fiber Bragg grating. To achieve this, the mathematical formula for a proposed apodization function is carried out and tested. Then, an optimization parametric process required to achieve the remarkable accuracy that is based on coupled mode theory (CMT) is done. A detailed investigation for the side lobe analysis, which is a primary judgment factor, especially in quasi-distributed configuration, is investigated. A comparison between elite selection of apodization profiles (extracted from related literatures) and the proposed modified-Nuttal profile is carried out covering reflectivity peak, full width half maximum (FWHM), and side lobe analysis. The optimization process concludes that the proposed modified-Nuttal profile with a length (L) of 15 mm and refractive index modulation amplitude (Δn) of 1.4×10 -4 is the optimum choice for single-stage and quasi-distributed temperature sensor networks. At previous values, the proposed profile achieves an acceptable reflectivity peak of 10 -0.426   dB, acceptable FWHM of 0.0808 nm, lowest side lobe maximum (SL max) of 7.037×10 -12   dB, lowest side lobe average (SL avg) of 3.883×10 -12   dB, and lowest side lobe suppression ratio (SLSR) of 1.875×10 -11   dB. These optimized characteristics lead to an accurate single-stage sensor with a temperature sensitivity of 0.0136 nm/°C. For the quasi-distributed scenario, a noteworthy total isolation of 91 dB is achieved without temperature, and an isolation of 4.83 dB is achieved while applying temperature of 110°C for a five-stage temperature-sensing network. Further investigation is made proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. If the consistency condition is violated, the proposed profile still survives with a casualty of side lobe level rise of -73.2070  dB when adding uniform apodization and

  6. Defect of focus in two-line resolution with Hanning amplitude filters

    Science.gov (United States)

    Karunasagar, D.; Bhikshamaiah, G.; Keshavulu Goud, M.; Lacha Goud, S.

    In the presence of defocusing the modified Sparrow limits of resolution for two-line objects have been investigated for a diffraction-limited coherent optical system apodized by generalized Hanning amplitude filters. These limits have been studied as a function of different parameters such as intensity ratio, the order of the filter for various amounts of apodization parameter. Results reveal that in some situations the defocusing is effective in enhancing the resolution of an optical system.

  7. Longitudinal tracking with phase and amplitude modulated rf

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.

    1993-06-01

    Synchrotron motion was induced by phase shifting the rf of the Indiana University Cyclotron Facility (IUCF) cooler-synchrotron. The resulting coherent-bunch motion was tracked in longitudinal phase space for as many as 700,000 turns, or for over 350 synchrotron oscillations. Results of recent experimental studies of longitudinal motion in which the rf phase and amplitude were harmonically modulated are also presented. Comparisons of experimental data with numerical simulations, assuming independent particle motion, are made. Observed multiparticle effects are also discussed

  8. HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS

    International Nuclear Information System (INIS)

    Guyon, Olivier; Martinache, Frantz; Belikov, Ruslan; Soummer, Remi

    2010-01-01

    We describe a coronagraph approach where the performance of a Phase-Induced Amplitude Apodization (PIAA) coronagraph is improved by using a partially transmissive phase-shifting focal plane mask and a Lyot stop. This approach combines the low inner working angle offered by phase mask coronagraphy, the full throughput and uncompromized angular resolution of the PIAA approach, and the design flexibility of Apodized Pupil Lyot Coronagraph. A PIAA complex mask coronagraph (PIAACMC) is fully described by the focal plane mask size, or, equivalently, its complex transmission which ranges from 0 (opaque) to -1 (phase shifting). For all values of the transmission, the PIAACMC theoretically offers full on-axis extinction and 100% throughput at large angular separations. With a pure phase focal plane mask (complex transmission = -1), the PIAACMC offers 50% throughput at 0.64 λ/D while providing total extinction of an on-axis point source. This performance is very close to the 'fundamental performance limit' of coronagraphy derived from first principles. For very high contrast level, imaging performance with PIAACMC is in practice limited by the angular size of the on-axis target (usually a star). We show that this fundamental limitation must be taken into account when choosing the optimal value of the focal plane mask size in the PIAACMC design. We show that the PIAACMC enables visible imaging of Jupiter-like planets at ∼1.2 λ/D from the host star, and can therefore offer almost three times more targets than a PIAA coronagraph optimized for this type of observation. We find that for visible imaging of Earth-like planets, the PIAACMC gain over a PIAA is probably much smaller, as coronagraphic performance is then strongly constrained by stellar angular size. For observations at 'low' contrast (below ∼ 10 8 ), the PIAACMC offers significant performance enhancement over PIAA. This is especially relevant for ground-based high contrast imaging systems in the near-IR, where

  9. Amplitude and phase dynamics associated with acoustically paced finger tapping

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; Peper, C.E.; Beek, P.J.

    2006-01-01

    To gain insight into the brain activity associated with the performance of an acoustically paced synchronization task, we analyzed the amplitude and phase dynamics inherent in magnetoencephalographic (MEG) signals across frequency bands in order to discriminate between evoked and induced responses.

  10. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...... beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps...

  11. After APOD: From the Website to the Classroom and Beyond

    Science.gov (United States)

    Wilson, Teresa; APOD

    2017-01-01

    Astronomy Picture of the Day (APOD) images may start on the apod.nasa.gov website, but their reach goes much further than the individual sitting at their computer screen. They provoke questions that then prompts the reader to email the authors; teachers use the images in their classrooms; students use them in their projects. This presentation will take a look at some of the work done using APOD images and text, including public outreach via middle school presentations and email communications, and academic uses beyond astronomy such as lesson plans on atmospheric refraction and even plagiarism, copyright and fair use.

  12. An apodized Kepler periodogram for separating planetary and stellar activity signals

    Science.gov (United States)

    Gregory, Philip C.

    2016-01-01

    A new apodized Keplerian (AK) model is proposed for the analysis of precision radial velocity (RV) data to model both planetary and stellar activity (SA) induced RV signals. A symmetrical Gaussian apodization function with unknown width and centre can distinguish planetary signals from SA signals on the basis of the span of the apodization window. The general model for m AK signals includes a linear regression term between RV and the SA diagnostic log (R′hk), as well as an extra Gaussian noise term with unknown standard deviation. The model parameters are explored using a Bayesian fusion Markov chain Monte Carlo code. A differential version of the generalized Lomb–Scargle periodogram that employs a control diagnostic provides an additional way of distinguishing SA signals and helps guide the choice of new periods. Results are reported for a recent international RV blind challenge which included multiple state-of-the-art simulated data sets supported by a variety of SA diagnostics. In the current implementation, the AK method achieved a reduction in SA noise by a factor of approximately 6. Final parameter estimates for the planetary candidates are derived from fits that include AK signals to model the SA components and simple Keplerians to model the planetary candidates. Preliminary results are also reported for AK models augmented by a moving average component that allows for correlations in the residuals. PMID:27346979

  13. Phase and amplitude control system for Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Yoo, S.J.

    1983-01-01

    The computer controlled phase and amplitude detection system measures the instantaneous phase and amplitude of a 1 micro-second 2856 MHz rf pulse at a 180 Hz rate. This will be used for phase feedback control, and also for phase and amplitude jitter measurement. The program, which was originally written by John Fox and Keith Jobe, has been modified to improve the function of the system. The software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  14. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-12

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  15. Apodized grating coupler using fully-etched nanostructures

    International Nuclear Information System (INIS)

    Wu Hua; Li Chong; Guo Xia; Li Zhi-Yong

    2016-01-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. (paper)

  16. A Demonstration of Optimal Apodization Determination for Proper Lateral Modulation

    Science.gov (United States)

    Sumi, Chikayoshi; Komiya, Yuichi; Uga, Shinya

    2009-07-01

    We have realized effective ultrasound (US) beamformings by the steering of plural beams and apodizations for B-mode imaging with a high lateral resolution and accurate measurement of tissue or blood displacement vector and/or strain tensor using the multidimensional cross-spectrum phase gradient method (MCSPGM), or multidimensional autocorrelation or Doppler methods (MAM and MDM) using multidimensional analytic signals. For instance, the coherent superposition of the steered beams performed in the lateral cosine modulation method (LCM) has a higher potential for realizing a more accurate measurement of a displacement vector than the synthesis of the displacement vector using the accurately measured axial displacements obtained by the multidimensional synthetic aperture method (MDSAM), multidirectional transmission method (MTM) or the use of plural US transducers. Originally, the apodization function to be used for realizing a designed point spread function (PSF) was obtained by the Fraunhofer approximation (FA). However, to obtain the best approximated, designed PSF in the least-squares sense, we proposed a linear optimization (LO) method. Furthermore, on the basis of the knowledge about the losts of US energy during the propagation, we have recently developed a nonlinear optimization (NLO) method, in which the feet of the main lobes in apodization function are properly truncated. Thus, NLO also allows the decrease in the number of channels or the confinement of the effective aperture. In this study, to gain insight into the ideal shape of the PSF, the accuracies of the two-dimensional (2D) displacement vector measurements were compared for typical PSFs with distinct lateral envelope shapes, particularly, in terms of full width at half maximum (FWHM) and the length of the feet, i.e., the Gaussian function, Hanning window and parabolic function. It was confirmed that a PSF having a wide FWHM and short feet was ideal. Such a PSF yielded an echo with a high signal

  17. Fine tuning of optical signals in nanoporous anodic alumina photonic crystals by apodized sinusoidal pulse anodisation.

    Science.gov (United States)

    Santos, Abel; Law, Cheryl Suwen; Chin Lei, Dominique Wong; Pereira, Taj; Losic, Dusan

    2016-11-03

    In this study, we present an advanced nanofabrication approach to produce gradient-index photonic crystal structures based on nanoporous anodic alumina. An apodization strategy is for the first time applied to a sinusoidal pulse anodisation process in order to engineer the photonic stop band of nanoporous anodic alumina (NAA) in depth. Four apodization functions are explored, including linear positive, linear negative, logarithmic positive and logarithmic negative, with the aim of finely tuning the characteristic photonic stop band of these photonic crystal structures. We systematically analyse the effect of the amplitude difference (from 0.105 to 0.840 mA cm -2 ), the pore widening time (from 0 to 6 min), the anodisation period (from 650 to 950 s) and the anodisation time (from 15 to 30 h) on the quality and the position of the characteristic photonic stop band and the interferometric colour of these photonic crystal structures using the aforementioned apodization functions. Our results reveal that a logarithmic negative apodisation function is the most optimal approach to obtain unprecedented well-resolved and narrow photonic stop bands across the UV-visible-NIR spectrum of NAA-based gradient-index photonic crystals. Our study establishes a fully comprehensive rationale towards the development of unique NAA-based photonic crystal structures with finely engineered optical properties for advanced photonic devices such as ultra-sensitive optical sensors, selective optical filters and all-optical platforms for quantum computing.

  18. Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference

    Science.gov (United States)

    Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-06-01

    Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.

  19. Improving the reconstruction quality with extension and apodization of the digital hologram

    International Nuclear Information System (INIS)

    Zhang Yancao; Zhao Jianlin; Fan Qi; Zhang Wei; Yang Sheng

    2009-01-01

    To suppress the aperture diffraction and spectral leakage effects in the reconstruction process of the digital hologram and to maintain the original information recorded in the hologram, a novel reconstruction method based on extension and apodization of the digital hologram is presented, by which the original hologram can be extended by filling the average intensity values of the boundary, and the extended hologram is apodized by use of the constructed window function. As a sample, the digital hologram of the static particle field is recorded and numerically extended and then apodized with the appointed window. Finally, an unabridged and clear digital holographic image is reconstructed from the extended and apodized hologram. The experimental results confirm that this method cannot only eliminate the black-and-white diffraction fringes in the reconstructed image, but also attain the unabridged image with high quality.

  20. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  1. Apodization of Spurs in Radar Receivers Using Multi-Channel Processing

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). ISR Mission Engineering; Bickel, Douglas Lloyd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). ISR Analysis and Applications

    2014-03-01

    Spurious energy in received radar data is a consequence of nonideal component and circuit behavior. This might be due to I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), or other sources. The manifestation of the spurious energy in a range-Doppler map or image can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images having been processed with the same data but different signal paths and modulations allows identifying undesired spurs and then cropping or apodizing them.

  2. Apodized RFI filtering of synthetic aperture radar images

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    Fine resolution Synthetic Aperture Radar (SAR) systems necessarily require wide bandwidths that often overlap spectrum utilized by other wireless services. These other emitters pose a source of Radio Frequency Interference (RFI) to the SAR echo signals that degrades SAR image quality. Filtering, or excising, the offending spectral contaminants will mitigate the interference, but at a cost of often degrading the SAR image in other ways, notably by raising offensive sidelobe levels. This report proposes borrowing an idea from nonlinear sidelobe apodization techniques to suppress interference without the attendant increase in sidelobe levels. The simple post-processing technique is termed Apodized RFI Filtering (ARF).

  3. Optimization Of The Efficiency Of A Pre And Post Apodized Piaa Coronagraph Using A Numerical Propagator.

    Science.gov (United States)

    Carlotti, Alexis; Pueyo, L.; Kasdin, N. J.

    2011-01-01

    Using a numerical propagator based on the Huygens integral, we study the apodization profiles (and PSFs) provided by a set of two PIAA mirrors that follow a square geometry. This choice is made as deformable mirrors could potentially be used as pupil mappers. A pre-apodizer and a post-apodizer are needed to improve the contrast and relax the manufacturing constraints of the mirrors. The stroke, minimum radius of curvature and diameter of the mirrors altogether with the parameters that define the pre and post apodizers’ properties are connected to the performances of the coronagraph in term of contrast, throughput and inner working angle. Characterizing these relations allows us to invert some of them. For example, we are able to set a specific value for the final throughput and to find out, for a particular mirror's diameter and stroke, the distance between the mirrors as well as the characteristics of the pre and post apodizers that need to be used. Contrast maps are given as functions of the stroke, the diameter, the radius of curvature and the throughput. All these numerical tools help us to understand the trade-offs that exist behind the design of a PIAA system. There is a direct relation between the diameter, stroke, maximum radius of curvature of the mirrors and the strength of the post-apodizer. Increasing the diameter improves the contrast but asks for a higher stroke and bigger distance. For a given set of mirrors, a better contrast can then be obtained by strengthening the pre and post apodizers at the expense of the throughput and the inner working angle. The post-apodizer could either be a transmittive, continuous apodizer or a binary apodizer. The latter case is explored and optimized binary apodizers are found for several PIAA cases. This work is supported by a NASA APRA grant.

  4. Phase-space spinor amplitudes for spin-1/2 systems

    International Nuclear Information System (INIS)

    Watson, P.; Bracken, A. J.

    2011-01-01

    The concept of phase-space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-(1/2) is treated in detail, and it is shown that phase-space amplitudes on the sphere transform correctly as spinors under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-(1/2) magnetic dipole in a time-dependent magnetic field.

  5. Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications

    Directory of Open Access Journals (Sweden)

    Fahd Chaoui

    2016-01-01

    Full Text Available A novel optimized apodization of Fiber Bragg Grating Sensor (FBGS for quasi-distributed strain sensing applications is developed and introduced in this paper. The main objective of the proposed optimization is to obtain a reflectivity level higher than 90% and a side lobe level around −40 dB, which is suitable for use in quasi-distributed strain sensing application. For this purpose, different design parameters as apodization profile, grating length, and refractive index have been investigated to enhance and optimize the FBGS design. The performance of the proposed apodization has then been compared in terms of reflectivity, side lobe level (SLL, and full width at half maximum (FWHM with apodization profiles proposed by other authors. The optimized sensor is integrated on quasi-distributed sensing system of 8 sensors demonstrating high reliability. Wide strain sensitivity range for each channel has also been achieved in the quasi-distributed system. Results prove the efficiency of the proposed optimization which can be further implemented for any quasi-distributed sensing application.

  6. Application of CRAFT (complete reduction to amplitude frequency table) in nonuniformly sampled (NUS) 2D NMR data processing.

    Science.gov (United States)

    Krishnamurthy, Krish; Hari, Natarajan

    2017-09-15

    The recently published CRAFT (complete reduction to amplitude frequency table) technique converts the raw FID data (i.e., time domain data) into a table of frequencies, amplitudes, decay rate constants, and phases. It offers an alternate approach to decimate time-domain data, with minimal preprocessing step. It has been shown that application of CRAFT technique to process the t 1 dimension of the 2D data significantly improved the detectable resolution by its ability to analyze without the use of ubiquitous apodization of extensively zero-filled data. It was noted earlier that CRAFT did not resolve sinusoids that were not already resolvable in time-domain (i.e., t 1 max dependent resolution). We present a combined NUS-IST-CRAFT approach wherein the NUS acquisition technique (sparse sampling technique) increases the intrinsic resolution in time-domain (by increasing t 1 max), IST fills the gap in the sparse sampling, and CRAFT processing extracts the information without loss due to any severe apodization. NUS and CRAFT are thus complementary techniques to improve intrinsic and usable resolution. We show that significant improvement can be achieved with this combination over conventional NUS-IST processing. With reasonable sensitivity, the models can be extended to significantly higher t 1 max to generate an indirect-DEPT spectrum that rivals the direct observe counterpart. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  8. Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2013-01-01

    We present an efficient method to design apodized grating couplers with Gaussian output profiles for efficient coupling between standard single mode fibers and silicon chips. An apodized grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform is designed......, and fabricated in a single step of lithography and etching. An ultralow coupling loss of x2212;1.74x2009;x2009;dB (67% coupling efficiency) with a 3xA0;dB bandwidth of 60xA0;nm is experimentally measured....

  9. Scruncher phase and amplitude control

    International Nuclear Information System (INIS)

    DeHaven, R.A.; Morris, C.L.; Johnson, R.; Davis, J.; O'Donnell, J.M.

    1992-01-01

    The analog controller for phase and amplitude control of a 402.5 MHz super conducting cavity is described in this paper. The cavity is a single cell with niobium explosively bonded to a copper cavity. It is used as an energy compressor for pions at the Clinton P. Anderson Meson Physics Facility (LAMPF). The controller maintains cavity frequency to within 4 degrees in phase of the LAMPF beam frequency. Field amplitude is maintained to within 2 percent. This control is accomplished at critical coupling (Q load of 1 x 10 9 ) with the use of only a 30 watt rf amplifier for accelerating fields of 6 MV/m. The design includes the use of piezoelectric crystals for fast resonance control. Three types of control, self excited, VCO, and a reference frequency driven, were tried on this cavity and we present a comparison of their performance. (Author) 4 figs., ref

  10. SCRUNCHER phase and amplitude control

    International Nuclear Information System (INIS)

    DeHaven, R.A.; Morris, C.L.; Johnson, R.; Davis, J.; O'Donnell, J.M.

    1992-01-01

    The analog controller for phase and amplitude control of a 402.5 MHz super conducting cavity is described in this paper. The cavity is a single cell with niobium explosively bonded to a copper cavity. It is used as an energy compressor for pions at the Clinton P. Anderson Meson Physics Facility (LAMPF). The controller maintains cavity frequency to within 4 degrees in phase of the LAMPF beam frequency. Field amplitude is maintained to within 2 percent. This control is accomplished at critical coupling (Q loaded of 1 x 10 9 ) with the use of only a 30 watt rf amplifier for accelerating fields of 6 MV/m. The design includes the use of piezoelectric crystals for fast resonance control. Three types of control, self excited VCO, and a reference frequency driven, were tried on this cavity and we present a comparison of their performance

  11. Controlling quantum interference in phase space with amplitude

    OpenAIRE

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-01-01

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n?=?2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space a...

  12. The PIAA Coronagraph: Optical design and Diffraction Effects

    Science.gov (United States)

    Pluzhnik, E. A.; Guyon, O.; Ridgway, S.; Martinache, F.; Woodruff, R.; Blain, C.; Galicher, R.

    2005-12-01

    Properly apodized pupils are suitable for high dynamical range imaging of extrasolar terrestrial planets. Phase-induced amplitude apodization (PIAA) of the telescope pupil (Guyon 2003) combines the advantages of classical pupil apodization with full throughput, no loss of angular resolution and low chromaticity. Diffraction propagation effects can decrease both the achieved contrast and the spectral bandwidth of the coronagraph. We show here how the diffraction effects in the PIAA optics can be corrected by an appropriate optical design. The proposed hybrid coronagraph design preserves the 10-10 PSF contrast at ≈ 1.5 λ /d required for efficient exoplanet imaging over the whole visible spectrum. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  13. Phase-enhanced defect sensitivity for EUV mask inspection

    Science.gov (United States)

    Wang, Yow-Gwo; Miyakawa, Ryan; Chao, Weilun; Goldberg, Kenneth; Neureuther, Andy; Naulleau, Patrick

    2014-10-01

    In this paper, we present a complete study on mask blank and patterned mask inspection utilizing the Zernike phase contrast method. The Zernike phase contrast method provides in-focus inspection ability to study phase defects with enhanced defect sensitivity. However, the 90 degree phase shift in the pupil will significantly reduce the amplitude defect signal at focus. In order to detect both types of defects with a single scan, an optimized phase shift instead of 90 degree on the pupil plane is proposed to achieve an acceptable trade-off on their signal strengths. We can get a 70% of its maximum signal strength at focus for both amplitude and phase defects with a 47 degree phase shift. For SNR, the tradeoff between speckle noise and signal strength has to be considered. The SNR of phase and amplitude defects at focus can both reach 11 with 13 degree phase shift and 50% apodization. Moreover, the simulation results on patterned mask inspection of partially hidden phase defects with die-to-database inspection approach on the blank inspection tool show that the improvement of the Zernike phase method is more limited. A 40% enhancement of peak signal strength can be achieved with the Zernike phase contrast method when the defect is centered in the space, while the enhancement drops to less than 10% when it is beneath the line.

  14. Bilateral preictal signature of phase-amplitude coupling in canine epilepsy.

    Science.gov (United States)

    Gagliano, Laura; Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad

    2018-01-01

    Seizure forecasting would improve the quality of life of patients with refractory epilepsy. Although early findings were optimistic, no single feature has been found capable of individually characterizing brain dynamics during transition to seizure. Cross-frequency phase amplitude coupling has been recently proposed as a precursor of seizure activity. This work evaluates the existence of a statistically significant difference in mean phase amplitude coupling distribution between the preictal and interictal states of seizures in dogs with bilaterally implanted intracranial electrodes. Results show a statistically significant change (p<0.05) of phase amplitude coupling during the preictal phase. This change is correlated with the position of implanted electrodes and is more significant within high-gamma frequency bands. These findings highlight the potential benefit of bilateral iEEG analysis and the feasibility of seizure forecasting based on slow modulation of high frequency amplitude. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 3-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamforming

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Christiansen, Thomas Lehrmann; Thomsen, Erik Vilain

    2015-01-01

    -integrated apodization increased the apparent diameter of the vessel from 2.0 mm to 2.4 mm, corresponding to an increase from 67% to 80% of the true vessel diameter. The line element beamforming approach is shown to be essential for achieving correct time-of-flight calculations, and hence avoid geometrical distortions...

  16. Apodized grating coupler using fully-etched nanostructures

    Science.gov (United States)

    Wu, Hua; Li, Chong; Li, Zhi-Yong; Guo, Xia

    2016-08-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501, 61335004, and 61505003), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019), the Postdoctoral Science Foundation of Beijing Funded Project, China (Grant No. Q6002012201502), and the Science and Technology Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ150998).

  17. Ultra-High-Efficiency Apodized Grating Coupler Using a Fully Etched Photonic Crystal

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2013-01-01

    We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated.......We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated....

  18. High quality 3D shape reconstruction via digital refocusing and pupil apodization in multi-wavelength holographic interferometry

    Science.gov (United States)

    Xu, Li

    Multi-wavelength holographic interferometry (MWHI) has good potential for evolving into a high quality 3D shape reconstruction technique. There are several remaining challenges, including I) depth-of-field limitation, leading to axial dimension inaccuracy of out-of-focus objects; and 2) smearing from shiny smooth objects to their dark dull neighbors, generating fake measurements within the dark area. This research is motivated by the goal of developing an advanced optical metrology system that provides accurate 3D profiles for target object or objects of axial dimension larger than the depth-of-field, and for objects with dramatically different surface conditions. The idea of employing digital refocusing in MWHI has been proposed as a solution to the depth-of-field limitation. One the one hand, traditional single wavelength refocusing formula is revised to reduce sensitivity to wavelength error. Investigation over real example demonstrates promising accuracy and repeatability of reconstructed 3D profiles. On the other hand, a phase contrast based focus detection criterion is developed especially for MWHI, which overcomes the problem of phase unwrapping. The combination for these two innovations gives birth to a systematic strategy of acquiring high quality 3D profiles. Following the first phase contrast based focus detection step, interferometric distance measurement by MWHI is implemented as a next step to conduct relative focus detection with high accuracy. This strategy results in +/-100mm 3D profile with micron level axial accuracy, which is not available in traditional extended focus image (EFI) solutions. Pupil apodization has been implemented to address the second challenge of smearing. The process of reflective rough surface inspection has been mathematically modeled, which explains the origin of stray light and the necessity of replacing hard-edged pupil with one of gradually attenuating transmission (apodization). Metrics to optimize pupil types and

  19. Supersymmetric curvatons and phase-induced curvaton fluctuations

    International Nuclear Information System (INIS)

    McDonald, John

    2004-01-01

    We consider the curvaton scenario in the context of supersymmetry (SUSY) with gravity-mediated SUSY breaking. In the case of a large initial curvaton amplitude during inflation and a negative order H 2 correction to the mass squared term after inflation, the curvaton will be close to the minimum of its potential at the end of inflation. In this case the curvaton amplitude fluctuations will be damped due to oscillations around the effective minimum of the curvaton potential, requiring a large expansion rate during inflation in order to account for the observed energy density perturbations, in conflict with cosmic microwave background constraints. Here we introduce a new curvaton scenario, the phase-induced curvaton scenario, in which de Sitter fluctuations of the phase of a complex SUSY curvaton field induce an amplitude fluctuation that is unsuppressed even in the presence of a negative order H 2 correction and large initial curvaton amplitude. This scenario is closely related to the Affleck-Dine mechanism and a curvaton asymmetry is naturally generated in conjunction with the energy density perturbations. Cosmological energy density perturbations can be explained with an expansion rate H≅10 12 GeV during inflation

  20. Detection of cardiac wall motion defects with combined amplitude/phase analysis

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Pace, L.; Brunetti, A.; Larson, S.M.

    1985-01-01

    Fourier phase images have been used with some success to detect and quantify left ventricular (LV) wall motion defects. In abnormal regions of the LV, wall motion asynchronies often cause the time activity curve (TAC) to be shifted in phase. Such regional shifts are detected by analysis of the distribution function of phase values over the LV. However, not all wall motion defects result in detectable regional phase abnormalities. Such abnormalities may cause a reduction in the magnitude of contraction (and hence TAC amplitude) without any appreciable change in TAC shape(and hence phase). In an attempt to improve the sensitivity of the Fourier phase method for the detection of wall motion defects the authors analyzed the distribution function of Fourier amplitude as well as phase. 26 individuals with normal cardiac function and no history of cardiac disease served as controls. The goal was to detect and quantify wall motion as compared to the consensus of 3 independent observers viewing the scintigraphic cines. 26 subjects with coronary artery disease and mild wall motion defects (22 with normal EF) were studied ate rest. They found that analysis of the skew of thew amplitude distribution function improved the sensitivity for the detection of wall motion abnormalities at rest in the group from 65% to 85% (17/26 detected by phase alone, 22/26 by combined phase and amplitude analysis) while retaining a 0 false positive rate in the normal group. The authors conclude that analysis of Fourier amplitude distribution functions can significantly increase the sensitivity of phase imaging for detection of wall motion abnormalities

  1. Ultra-low coupling loss fully-etched apodized grating coupler with bonded metal mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2014-01-01

    A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm.......A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm....

  2. PASTA - An RF Phase and Amplitude Scan and Tuning Application

    CERN Document Server

    Galambos, J; Deibele, C; Henderson, S

    2005-01-01

    To assist the beam commissioning in the Spallation Neutron Source (SNS) linac, a general purpose RF tuning application has been written to help set RF phase and amplitude. It follows the signature matching procedure described in Ref.* The method involves varying an upstream Rf cavity amplitude and phase settings and comparing the measured downstream beam phase responses to model predictions. The model input for cavity phase and amplitude calibration and for the beam energy are varied to best match observations. This scheme has advantages over other RF tuning techniques of not requiring intercepting devices (e.g. Faraday Cups), and not being restricted to a small linear response regime near the design values. The application developed here is general and can be applied to different RF structure types in the SNS linac. Example applications in the SNS Drift Tube Linac (DTL) and Coupled Cavity Linac (CCL) structures will be shown.

  3. Prototype phase and amplitude feedback-control systems for the FMIT accelerator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Patton, R.D.

    1983-01-01

    The phase and amplitude feedback-control systems for the Fusion Materials irradiation Test (FMIT) accelerator have been successfully prototyped and tested. The testing was performed at low power with two 100-W rf systems driving a high-Q resonant cavity at 80 MHz. The control systems can maintain the cavity field amplitude to within +-1% and the phase to within +-1 0 of the set-point values. When there are multiple rf systems independently driving a resonant cavity through individual drive loops, amplitude matching and proper phasing between the outputs of each rf system are essential for proper system operation. Experimental results are presented

  4. Numerical construction of 'optimal' nonoscillating amplitude and phase functions

    International Nuclear Information System (INIS)

    Matzkin, A.; Lombardi, M.

    2002-01-01

    A numerical recipe for the construction of nonoscillating amplitude and phase functions for potentials with a single minimum is given. We give different examples illustrating the recipe, showing the usefulness of the procedure for the construction of basis functions in bound-state scattering processes, such as those described by quantum defect theory. The resulting amplitude and accumulated phase functions are coined as 'optimal' nonoscillating (as a function of the space and energy variables) because they are the counterpart for the quantum problem of the classical action for the analog semiclassical problem

  5. High amplitude phase resetting in rev-erbalpha/per1 double mutant mice.

    Directory of Open Access Journals (Sweden)

    Corinne Jud

    Full Text Available Over time, organisms developed various strategies to adapt to their environment. Circadian clocks are thought to have evolved to adjust to the predictable rhythms of the light-dark cycle caused by the rotation of the Earth around its own axis. The rhythms these clocks generate persist even in the absence of environmental cues with a period of about 24 hours. To tick in time, they continuously synchronize themselves to the prevailing photoperiod by appropriate phase shifts. In this study, we disrupted two molecular components of the mammalian circadian oscillator, Rev-Erbalpha and Period1 (Per1. We found that mice lacking these genes displayed robust circadian rhythms with significantly shorter periods under constant darkness conditions. Strikingly, they showed high amplitude resetting in response to a brief light pulse at the end of their subjective night phase, which is rare in mammals. Surprisingly, Cry1, a clock component not inducible by light in mammals, became slightly inducible in these mice. Taken together, Rev-Erbalpha and Per1 may be part of a mechanism preventing drastic phase shifts in mammals.

  6. Application of CRAFT in two-dimensional NMR data processing.

    Science.gov (United States)

    Krishnamurthy, Krish; Sefler, Andrea M; Russell, David J

    2017-03-01

    Two-dimensional (2D) data are typically truncated in both dimensions, but invariably and severely so in the indirect dimension. These truncated FIDs and/or interferograms are extensively zero filled, and Fourier transformation of such zero-filled data is always preceded by a rapidly decaying apodization function. Hence, the frequency line width in the spectrum (at least parallel to the evolution dimension) is almost always dominated by the apodization function. Such apodization-driven line broadening in the indirect (t 1 ) dimension leads to the lack of clear resolution of cross peaks in the 2D spectrum. Time-domain analysis (i.e. extraction of frequency, amplitudes, line width, and phase parameters directly from the FID, in this case via Bayesian modeling into a tabular format) of NMR data is another approach for spectral resonance characterization and quantification. The recently published complete reduction to amplitude frequency table (CRAFT) technique converts the raw FID data (i.e. time-domain data) into a table of frequencies, amplitudes, decay rate constants, and phases. CRAFT analyses of time-domain data require minimal or no apodization prior to extraction of the four parameters. We used the CRAFT processing approach for the decimation of the interferograms and compared the results from a variety of 2D spectra against conventional processing with and without linear prediction. The results show that use of the CRAFT technique to decimate the t 1 interferograms yields much narrower spectral line width of the resonances, circumventing the loss of resolution due to apodization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Complex-based OCT angiography algorithm recovers microvascular information better than amplitude- or phase-based algorithms in phase-stable systems.

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K

    2017-12-19

    Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is  algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.

  8. All-optical Hilbert transformer based on a single phase-shifted fiber Bragg grating: design and analysis.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2009-02-01

    A simple all-fiber design for implementing an all-optical temporal Hilbert transformer is proposed and numerically demonstrated. We show that an all-optical Hilbert transformer can be implemented using a uniform-period fiber Bragg grating (FBG) with a properly designed amplitude-only grating apodization profile incorporating a single pi phase shift in the middle of the grating length. All-optical Hilbert transformers capable of processing arbitrary optical waveforms with bandwidths up to a few hundreds of gigahertz can be implemented using feasible FBGs.

  9. Phase-amplitude coupling supports phase coding in human ECoG

    Science.gov (United States)

    Watrous, Andrew J; Deuker, Lorena; Fell, Juergen; Axmacher, Nikolai

    2015-01-01

    Prior studies have shown that high-frequency activity (HFA) is modulated by the phase of low-frequency activity. This phenomenon of phase-amplitude coupling (PAC) is often interpreted as reflecting phase coding of neural representations, although evidence for this link is still lacking in humans. Here, we show that PAC indeed supports phase-dependent stimulus representations for categories. Six patients with medication-resistant epilepsy viewed images of faces, tools, houses, and scenes during simultaneous acquisition of intracranial recordings. Analyzing 167 electrodes, we observed PAC at 43% of electrodes. Further inspection of PAC revealed that category specific HFA modulations occurred at different phases and frequencies of the underlying low-frequency rhythm, permitting decoding of categorical information using the phase at which HFA events occurred. These results provide evidence for categorical phase-coded neural representations and are the first to show that PAC coincides with phase-dependent coding in the human brain. DOI: http://dx.doi.org/10.7554/eLife.07886.001 PMID:26308582

  10. Parametric resonances in the amplitude-modulated probe-field absorption spectrum of a two-level atom driven by a resonance amplitude- and phase-modulated pumping field

    International Nuclear Information System (INIS)

    Sushilov, N.V.; Kholodkevich, E.D.

    1995-01-01

    An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field

  11. Apodization of spurs in radar receivers using multi-channel processing

    Science.gov (United States)

    Doerry, Armin W.; Bickel, Douglas L.

    2017-11-21

    The various technologies presented herein relate to identification and mitigation of spurious energies or signals (aka "spurs") in radar imaging. Spurious energy in received radar data can be a consequence of non-ideal component and circuit behavior. Such behavior can result from I/Q imbalance, nonlinear component behavior, additive interference (e.g. cross-talk, etc.), etc. The manifestation of the spurious energy in a radar image (e.g., a range-Doppler map) can be influenced by appropriate pulse-to-pulse phase modulation. Comparing multiple images which have been processed using the same data but of different signal paths and modulations enables identification of undesired spurs, with subsequent cropping or apodization of the undesired spurs from a radar image. Spurs can be identified by comparison with a threshold energy. Removal of an undesired spur enables enhanced identification of true targets in a radar image.

  12. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  13. VLF group delay of lightning-induced electron precipitation echoes from measurement of phase and amplitude perturbations at two frequencies

    International Nuclear Information System (INIS)

    Adams, C.D.D.; Dowden, R.L.

    1990-01-01

    Measurement of phase and amplitude perturbations (trimpis) of the NWC signal at Dunedin at both the NWC frequencies, 22,250 Hz and 22,350 Hz, enables measurement of the received phase of the echo signal (phasor difference of the perturbed and unperturbed signals) at each frequency and so the rate of decrease of phase with frequency. This, of course, is the group delay. The 100-Hz difference implies that measurement of echo group delays of up to 5 ms could be made without ambiguity, though other factors limit this to about 2.5 ms. Some 38 difference trimpis during May and June 1988 showed echo delays up to 2 ms corresponding to reflection from points displaced more than 1,000 km from the NWC-Dunedin great circle path. The echo amplitudes observed at such large displacements are much greater than expected from smooth circular depressions of the ionosphere modifying the waveguide phase velocity and so imply sharper discontinuities in the waveguide

  14. Fabrication of advanced Bragg gratings with complex apodization profiles by use of the polarization control method

    DEFF Research Database (Denmark)

    Deyerl, Hans-Jürgen; Plougmann, Nikolai; Jensen, Jesper Bo Damm

    2004-01-01

    The polarization control method offers a flexible, robust, and low-cost route for the parallel fabrication of gratings with complex apodization profiles including several discrete phase shifts and chirp. The performance of several test gratings is evaluated in terms of their spectral response...... and compared with theoretical predictions. Short gratings with sidelobe-suppression levels in excess of 32 dB and transmission dips lower than 80 dB have been realized. Finally, most of the devices fabricated by the polarization control method show comparable quality to gratings manufactured by far more...

  15. Teaching Astronomy with Podcasts of the APOD

    Science.gov (United States)

    Wagner, Robert M.

    2017-01-01

    The APOD website provides many excellent astronomy photos that are used to enhance introductory astronomy classes. For nearly six years, podcasts have been used to enhance learning in introductory astronomy classes at Harrisburg Area Community College. Daily 3-5 minute podcasts have been created and made available through iTunes to students in these classes at no charge. Students are asked to subscribe to the podcast collections and are quizzed on the images discussed throughout the semester. Because the images often focus on current findings in astronomy, the students are given instruction on findings that will not appear in their textbooks for several years. The students also receive a taste of some topics that may not be covered or that are just touched upon because of time limits in the classes. The podcasts have been used successfully with both traditional and fully online classes. The use of the podcasts enhances mobile learning as students can download and listen to the podcasts on their smartphones or tablets at their convenience. The student response to the podcasts has been excellent with some students noting that they continue to follow the website and podcasts even after they have completed the class. With mobile learning expanding, this is an excellent way to reach students and encourage them to further research the various topics in astronomy that are covered in the APOD images.

  16. Fully etched apodized grating coupler on the SOI platform with −058 dB coupling efficiency

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2014-01-01

    We design and fabricate an ultrahigh coupling efficiency (CE) fully etched apodized grating coupler on the silicon- on-insulator (SOI) platform using subwavelength photonic crystals and bonded aluminum mirror. Fabrication error sensitivity andcoupling angle dependence are experimentally investiga......We design and fabricate an ultrahigh coupling efficiency (CE) fully etched apodized grating coupler on the silicon- on-insulator (SOI) platform using subwavelength photonic crystals and bonded aluminum mirror. Fabrication error sensitivity andcoupling angle dependence are experimentally...

  17. The PIAA Coronagraph Prototype: First Laboratory Results.

    Science.gov (United States)

    Pluzhnik, Eugene; Guyon, O.; Colley, S.; Gallet, B.; Ridgway, S.; Woodruff, R.; Tanaka, S.; Warren, M.

    2006-12-01

    The phase-induced amplitude apodization (PIAA) coronagraph combines the main advantages of classical pupil apodization with high throughput ( 100%), high angular resolution ( 2λ/D) and low chromaticity. These advantages can allow direct imaging of nearby extrasolar planets with a 4-meter telescope. The PIAA coronagraph laboratory prototype has been successfully manufactured and starts to operate at the Subary Telescope facility. We present here our first laboratory results with this prototype where we have achieved 2x10-6 contrast within 2 λ/D. We also discuss the main constrains limiting the contrast and describe our future efforts. This work was carried out under JPL contract numbers 1254445 and 1257767 for Development of Technologies for the Terrestrial Planet Finder Mission, with the support and hospitality of the National Astronomical Observatory of Japan.

  18. Perceptual and statistical analysis of cardiac phase and amplitude images

    International Nuclear Information System (INIS)

    Houston, A.; Craig, A.

    1991-01-01

    A perceptual experiment was conducted using cardiac phase and amplitude images. Estimates of statistical parameters were derived from the images and the diagnostic potential of human and statistical decisions compared. Five methods were used to generate the images from 75 gated cardiac studies, 39 of which were classified as pathological. The images were presented to 12 observers experienced in nuclear medicine. The observers rated the images using a five-category scale based on their confidence of an abnormality presenting. Circular and linear statistics were used to analyse phase and amplitude image data, respectively. Estimates of mean, standard deviation (SD), skewness, kurtosis and the first term of the spatial correlation function were evaluated in the region of the left ventricle. A receiver operating characteristic analysis was performed on both sets of data and the human and statistical decisions compared. For phase images, circular SD was shown to discriminate better between normal and abnormal than experienced observers, but no single statistic discriminated as well as the human observer for amplitude images. (orig.)

  19. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.

    Science.gov (United States)

    Daume, Jonathan; Gruber, Thomas; Engel, Andreas K; Friese, Uwe

    2017-01-11

    It has been suggested that cross-frequency phase-amplitude coupling (PAC), particularly in temporal brain structures, serves as a neural mechanism for coordinated working memory storage. In this magnetoencephalography study, we show that during visual working memory maintenance, temporal cortex regions, which exhibit enhanced PAC, interact with prefrontal cortex via enhanced low-frequency phase synchronization. Healthy human participants were engaged in a visual delayed match-to-sample task with pictures of natural objects. During the delay period, we observed increased spectral power of beta (20-28 Hz) and gamma (40-94 Hz) bands as well as decreased power of theta/alpha band (7-9 Hz) oscillations in visual sensory areas. Enhanced PAC between the phases of theta/alpha and the amplitudes of beta oscillations was found in the left inferior temporal cortex (IT), an area known to be involved in visual object memory. Furthermore, the IT was functionally connected to the prefrontal cortex by increased low-frequency phase synchronization within the theta/alpha band. Together, these results point to a mechanism in which the combination of PAC and long-range phase synchronization subserves enhanced large-scale brain communication. They suggest that distant brain regions might coordinate their activity in the low-frequency range to engage local stimulus-related processing in higher frequencies via the combination of long-range, within-frequency phase synchronization and local cross-frequency PAC. Working memory maintenance, like other cognitive functions, requires the coordinated engagement of brain areas in local and large-scale networks. However, the mechanisms by which spatially distributed brain regions share and combine information remain primarily unknown. We show that the combination of long-range, low-frequency phase synchronization and local cross-frequency phase-amplitude coupling might serve as a mechanism to coordinate memory processes across distant brain areas

  20. Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle

    Science.gov (United States)

    Hamada, K.; Yoshizawa, K.

    2015-12-01

    For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.

  1. Broadband homonuclear TOCSY with amplitude and phase-modulated RF mixing schemes

    International Nuclear Information System (INIS)

    Kirschstein, Anika; Herbst, Christian; Riedel, Kerstin; Carella, Michela; Leppert, Joerg; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai

    2008-01-01

    We have explored the design of broadband scalar coupling mediated 13 C- 13 C and cross-relaxation suppressed 1 H- 1 H TOCSY sequences employing phase/amplitude modulated inversion pulses. Considering a variety of supercycles, pulsewidths and a RF field strength of 10 kHz, the Fourier coefficients defining the amplitude and phase modulation profiles of the 180 deg. pulses were optimised numerically so as to obtain efficient magnetisation transfer within the desired range of resonance offsets. The coherence transfer characteristics of the mixing schemes were assessed via numerical simulations and experimental measurements and were compared with commonly used sequences based on rectangular RF pulses. The efficacies of the clean 1 H- 1 H TOCSY sequences were also examined via numerical simulations for application to weakly oriented systems and sequences with efficient, broadband and clean dipolar transfer characteristics were identified. In general, the amplitude and phase modulated TOCSY sequences presented here have moderately better performance characteristics than the sequences currently employed in biomolecular NMR spectroscopy

  2. Non-imaging ray-tracing for sputtering simulation with apodization

    Science.gov (United States)

    Ou, Chung-Jen

    2018-04-01

    Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.

  3. Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy.

    Science.gov (United States)

    Zhang, Ruihua; Ren, Ye; Liu, Chunyan; Xu, Na; Li, Xiaoli; Cong, Fengyu; Ristaniemi, Tapani; Wang, YuPing

    2017-09-01

    Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between the phase of low-frequency oscillations (0.2-10Hz) and the amplitude of high-frequency oscillations (11-400Hz) in different seizure epochs. The time-varying phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the entire period from pre-seizure to post-seizure in both the left and right temporal lobe and hippocampus. Channels with strong modulation index were compared with the seizure onset channels identified by the neurosurgeons and the resection channels in the clinical surgery. The phase-amplitude coupling strength (modulation index) increased significantly in the mid-seizure epoch and decrease significantly in seizure termination and post-seizure epochs (ptemporal cortex and hippocampus. The "fall-max" phase-amplitude modulation pattern, i.e., high-frequency amplitudes were largest in the low-frequency phase range [-π, 0], which corresponded to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at epileptic focus channels. Channels with strong modulation index appeared on the corresponding left or right temporal cortex of surgical resection and overlapped with the clinical resection zones in all patients. The "fall-max" pattern between the phase of low-frequency oscillation and amplitude of high

  4. Ambiguities of the phase analysis of the proton-proton scattering amplitude

    International Nuclear Information System (INIS)

    Grebenyuk, O.G.; Shklyarevskij, G.M.

    1980-01-01

    Ambiguities of the phase analysis of the proton-proton scattering amplitude are analysed. It is shown that for five measurements of polarization parameters sets there are ambiguities similar to the Gersten ambiguities in the phase analysis of πN scattering. A problem on additional experiments needed to eliminate these ambiguities is investigated. It is shown that for this purpose it suffices to measure three total cross sections with polarized and nonpolarized protons, thus determining the imaginary parts of amplitudes at THETA=0 and polarization parameters

  5. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    Science.gov (United States)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  6. Dynamic Characterization and Impulse Response Modeling of Amplitude and Phase Response of Silicon Nanowires

    DEFF Research Database (Denmark)

    Cleary, Ciaran S.; Ji, Hua; Dailey, James M.

    2013-01-01

    Amplitude and phase dynamics of silicon nanowires were measured using time-resolved spectroscopy. Time shifts of the maximum phase change and minimum amplitude as a function of pump power due to saturation of the free-carrier density were observed. A phenomenological impulse response model used t...

  7. Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization

    DEFF Research Database (Denmark)

    Zibar, Darko; de Carvalho, Luis Henrique Hecker; Piels, Molly

    2015-01-01

    In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms...

  8. Effects of caffeine on circadian phase, amplitude and period evaluated in cells in vitro and peripheral organs in vivo in PER2::LUCIFERASE mice

    Science.gov (United States)

    Narishige, Seira; Kuwahara, Mari; Shinozaki, Ayako; Okada, Satoshi; Ikeda, Yuko; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu

    2014-01-01

    Background and Purpose Caffeine is one of the most commonly used psychoactive substances. Circadian rhythms consist of the main suprachiasmatic nucleus (SCN) clocks and peripheral clocks. Although caffeine lengthens circadian rhythms and modifies phase changes in SCN-operated rhythms, the effects on caffeine on the phase, period and amplitude of peripheral organ clocks are not known. In addition, the role of cAMP/Ca2+ signalling in effects of caffeine on rhythm has not been fully elucidated. Experimental Approach We examined whether chronic or transient application of caffeine affects circadian period/amplitude and phase by evaluating bioluminescence rhythm in PER2::LUCIFERASE knock-in mice. Circadian rhythms were monitored in vitro using fibroblasts and ex vivo and in vivo for monitoring of peripheral clocks. Key Results Chronic application of caffeine (0.1–10 mM) increased period and amplitude in vitro. Transient application of caffeine (10 mM) near the bottom of the decreasing phase of bioluminescence rhythm caused phase advance in vitro. Caffeine (0.1%) intake caused a phase delay under light–dark or constant dark conditions, suggesting a period-lengthening effect in vivo. Caffeine (20 mg·kg−1) at daytime or at late night-time caused phase advance or delay in bioluminescence rhythm in the liver and kidney respectively. The complicated roles of cAMP/Ca2+ signalling may be involved in the caffeine-induced increase of period and amplitude in vitro. Conclusions and Implications Caffeine affects circadian rhythm in mice by lengthening the period and causing a phase shift of peripheral clocks. These results suggest that caffeine intake with food/drink may help with food-induced resetting of peripheral circadian clocks. PMID:25160990

  9. A General Method to Estimate Earthquake Moment and Magnitude using Regional Phase Amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Pasyanos, M E

    2009-11-19

    This paper presents a general method of estimating earthquake magnitude using regional phase amplitudes, called regional M{sub o} or regional M{sub w}. Conceptually, this method uses an earthquake source model along with an attenuation model and geometrical spreading which accounts for the propagation to utilize regional phase amplitudes of any phase and frequency. Amplitudes are corrected to yield a source term from which one can estimate the seismic moment. Moment magnitudes can then be reliably determined with sets of observed phase amplitudes rather than predetermined ones, and afterwards averaged to robustly determine this parameter. We first examine in detail several events to demonstrate the methodology. We then look at various ensembles of phases and frequencies, and compare results to existing regional methods. We find regional M{sub o} to be a stable estimator of earthquake size that has several advantages over other methods. Because of its versatility, it is applicable to many more events, particularly smaller events. We make moment estimates for earthquakes ranging from magnitude 2 to as large as 7. Even with diverse input amplitude sources, we find magnitude estimates to be more robust than typical magnitudes and existing regional methods and might be tuned further to improve upon them. The method yields a more meaningful quantity of seismic moment, which can be recast as M{sub w}. Lastly, it is applied here to the Middle East region using an existing calibration model, but it would be easy to transport to any region with suitable attenuation calibration.

  10. Design and performance investigation of a highly accurate apodized fiber Bragg grating-based strain sensor in single and quasi-distributed systems.

    Science.gov (United States)

    Ali, Taha A; Shehata, Mohamed I; Mohamed, Nazmi A

    2015-06-01

    In this work, fiber Bragg grating (FBG) strain sensors in single and quasi-distributed systems are investigated, seeking high-accuracy measurement. Since FBG-based strain sensors of small lengths are preferred in medical applications, and that causes the full width at half-maximum (FWHM) to be larger, a new apodization profile is introduced for the first time, to the best of our knowledge, with a remarkable FWHM at small sensor lengths compared to the Gaussian and Nuttall profiles, in addition to a higher mainlobe slope at these lengths. A careful selection of apodization profiles with detailed investigation is performed-using sidelobe analysis and the FWHM, which are primary judgment factors especially in a quasi-distributed configuration. A comparison between the elite selection of apodization profiles (extracted from related literature) and the proposed new profile is carried out covering the reflectivity peak, FWHM, and sidelobe analysis. The optimization process concludes that the proposed new profile with a chosen small length (L) of 10 mm and Δnac of 1.4×10-4 is the optimum choice for single stage and quasi-distributed strain-sensor networks, even better than the Gaussian profile at small sensor lengths. The proposed profile achieves the smallest FWHM of 15 GHz (suitable for UDWDM), and the highest mainlobe slope of 130 dB/nm. For the quasi-distributed scenario, a noteworthy high isolation of 6.953 dB is achieved while applying a high strain value of 1500 μstrain (με) for a five-stage strain-sensing network. Further investigation was undertaken, proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. A test was made of the inclusion of a uniform apodized sensor among other apodized sensors with the proposed profile in an FBG strain-sensor network.

  11. Analytical approximations for stick-slip vibration amplitudes

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, A.

    2003-01-01

    , the amplitudes, and the base frequencies of friction-induced stick¿slip and pure-slip oscillations. For stick¿slip oscillations, this is accomplished by using perturbation analysis for the finite time interval of the stick phase, which is linked to the subsequent slip phase through conditions of continuity...

  12. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite

    Science.gov (United States)

    Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie

    2017-12-01

    An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.

  13. Phase Coherence of Large Amplitude MHD Waves in the Earth's Foreshock: Geotail Observations

    International Nuclear Information System (INIS)

    Hada, Tohru; Koga, Daiki; Yamamoto, Eiko

    2003-01-01

    Large amplitude MHD turbulence is commonly found in the earth's foreshock region. It can be represented as a superposition of Fourier modes with characteristic frequency, amplitude, and phase. Nonlinear interactions between the Fourier modes are likely to produce finite correlation among the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in quasi-linear theories) or they have a finite coherence. However, naive inspection of wave phases does not reveal anything, as the wave phase is sensitively related to the choice of origin of the coordinate, which should be arbitrary. Using a method based on a surrogate data technique and a fractal analysis, we analyzed Geotail magnetic field data to evaluate the phase coherence among the MHD waves in the earth's foreshock region. We show that the correlation of wave phases does exist, indicating that the nonlinear interactions between the waves is in progress. Furthermore, by introducing an index to represent the degree of the phase coherence, we discuss that the wave phases become more coherent as the turbulence amplitude increases, and also as the propagation angle of the most dominant wave mode becomes oblique. Details of the analysis as well as implications of the present results to transport processes of energetic particles will be discussed

  14. Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2016-03-21

    We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm.

  15. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes

    Science.gov (United States)

    Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh

    2018-04-01

    Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.

  16. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    Science.gov (United States)

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  17. Exact solution to the Coulomb wave using the linearized phase-amplitude method

    Directory of Open Access Journals (Sweden)

    Shuji Kiyokawa

    2015-08-01

    Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.

  18. Verification of Fourier phase and amplitude values from simulated heart motion using a hydrodynamic cardiac model

    Energy Technology Data Exchange (ETDEWEB)

    Yiannikas, J; Underwood, D A; Takatani, Setsuo; Nose, Yukihiko; MacIntyre, W J; Cook, S A; Go, R T; Golding, L; Loop, F D

    1986-02-01

    Using pusher-plate-type artificial hearts, changes in the degree of synchrony and stroke volume were compared to phase and amplitude calculations from the first Fourier component of individual-pixel time-activity curves generated from gated radionuclide images (RNA) of these hearts. In addition, the ability of Fourier analysis to quantify paradoxical volume shifts was tested using a ventricular aneurysm model by which the Fourier amplitude was correlated to known increments of paradoxical volume. Predetermined phase-angle differences (incremental increases in asynchrony) and the mean phase-angle difference calculated from RNAs showed an agreement of -7/sup 0/ +- 4.4/sup 0/ (mean +- SD). A strong correlation was noted between stroke volume and Fourier amplitude as well as between the paradoxical volume accepted by the 'aneurysm' and the Fourier amplitude. The degree of asynchrony and changes in stroke volume were accurately reflected by the Fourier phase and amplitude values, respectively. In the specific case of ventricular aneurysms, the data demonstrate that using this method, the paradoxically moving areas may be localized, and the expansile volume within these regions can be quantified. (orig.).

  19. Compact implementation of dynamic receive apodization in ultrasound scanners

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2004-01-01

    The image quality in medical ultrasound scanners is determined by several factors, one of which is the ability of the receive beamformer to change the aperture weighting function with depth and beam angle. In digital beamformers, precise dynamic apodization can be achieved by representing the fun...... operate at 129.82 MHz and occupies 1.28 million gates. Simulated in Matlab, a 64-channel beamformer provides gray scale image with around 55 dB dynamic range. The beamformed data can also be used for flow estimation....

  20. Utilizing time-frequency amplitude and phase synchrony measure to assess feedback processing in a gambling task.

    Science.gov (United States)

    Watts, Adreanna T M; Tootell, Anne V; Fix, Spencer T; Aviyente, Selin; Bernat, Edward M

    2018-04-29

    The neurophysiological mechanisms involved in the evaluation of performance feedback have been widely studied in the ERP literature over the past twenty years, but understanding has been limited by the use of traditional time-domain amplitude analytic approaches. Gambling outcome valence has been identified as an important factor modulating event-related potential (ERP) components, most notably the feedback negativity (FN). Recent work employing time-frequency analysis has shown that processes indexed by the FN are confounded in the time-domain and can be better represented as separable feedback-related processes in the theta (3-7 Hz) and delta (0-3 Hz) frequency bands. In addition to time-frequency amplitude analysis, phase synchrony measures have begun to further our understanding of performance evaluation by revealing how feedback information is processed within and between various brain regions. The current study aimed to provide an integrative assessment of time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony changes following monetary feedback in a gambling task. Results revealed that time-frequency amplitude activity explained separable loss and gain processes confounded in the time-domain. Furthermore, phase synchrony measures explained unique variance above and beyond amplitude measures and demonstrated enhanced functional integration between medial prefrontal and bilateral frontal, motor, and occipital regions for loss relative to gain feedback. These findings demonstrate the utility of assessing time-frequency amplitude, inter-trial phase synchrony, and inter-channel phase synchrony together to better elucidate the neurophysiology of feedback processing. Copyright © 2017. Published by Elsevier B.V.

  1. Phase and amplitude perturbations on the NWC signal at Dunedin from lightning-induced electron precipitation

    International Nuclear Information System (INIS)

    Dowden, R.L.; Adams, C.D.D.

    1989-01-01

    Localized ionospheric depressions near the NWC-Dunedin great circle path diffract echoes which interfere with the direct signal at the Dunedin receiver to produce perturbations in phase and amplitude. The statistics both of these perturbations and of the echo phasors (echo magnitude and echo phase) which can be deduced from them are studied here. From these statistics it is deduced that echo paths must be frequently more than a wavelength (14 km) longer than the direct path so that many of the diffracting centers (electron precipitation beams) must be laterally displaced up to 200 km from the direct path. Since echo signals from these must be diffracted through angles of ∼10 0 , ionization enhancements produced by electron precipitation must frequently have lateral (cross-path) dimensions of less than 50 km, with some as narrow as 25 km. The largest perturbation magnitudes seem to require ionization enhancement of longitudinal (parallel to path) dimensions of ∼300 km. Electron precipitation confined to thin L-shells could produce such enhancements for the NWC-Dunedin path. copyright American Geophysical Union 1989

  2. Amplitude and phase modulation with waveguide optics

    International Nuclear Information System (INIS)

    Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.

    1996-01-01

    We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high-speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz

  3. The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings

    Science.gov (United States)

    Culler, Ethan; Farnsworth, John

    2017-11-01

    From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.

  4. Verification of Fourier phase and amplitude values from simulated heart motion using a hydrodynamic cardiac model

    International Nuclear Information System (INIS)

    Yiannikas, J.; Underwood, D.A.; Takatani, Setsuo; Nose, Yukihiko; MacIntyre, W.J.; Cook, S.A.; Go, R.T.; Golding, L.; Loop, F.D.

    1986-01-01

    Using pusher-plate-type artificial hearts, changes in the degree of synchrony and stroke volume were compared to phase and amplitude calculations from the first Fourier component of individual-pixel time-activity curves generated from gated radionuclide images (RNA) of these hearts. In addition, the ability of Fourier analysis to quantify paradoxical volume shifts was tested using a ventricular aneurysm model by which the Fourier amplitude was correlated to known increments of paradoxical volume. Predetermined phase-angle differences (incremental increases in asynchrony) and the mean phase-angle difference calculated from RNAs showed an agreement of -7 0 +-4.4 0 (mean +-SD). A strong correlation was noted between stroke volume and Fourier amplitude (r=0.98; P<0.0001) as well as between the paradoxical volume accepted by the 'aneurysm' and the Fourier amplitude (r=0.97; P<0.0001). The degree of asynchrony and changes in stroke volume were accurately reflected by the Fourier phase and amplitude values, respectively. In the specific case of ventricular aneurysms, the data demonstrate that using this method, the paradoxically moving areas may be localized, and the expansile volume within these regions can be quantified. (orig.)

  5. Mapping the upper mantle beneath North American continent with joint inversion of surface-wave phase and amplitude

    Science.gov (United States)

    Yoshizawa, K.; Hamada, K.

    2017-12-01

    A new 3-D S-wave model of the North American upper mantle is constructed from a large number of inter-station phase and amplitude measurements of surface waves. A fully nonlinear waveform fitting method by Hamada and Yoshizawa (2015, GJI) is applied to USArray for measuring inter-station phase speeds and amplitude ratios of the fundamental-mode Rayleigh and Love waves. We employed the seismic events from 2007 - 2014 with Mw 6.0 or greater, and collected a large-number of inter-station phase speed data (about 130,000 for Rayleigh and 85,000 for Love waves) and amplitude ratio data (about 75,000 for Rayleigh waves) in a period range from 30 to 130 s for fundamental-mode surface waves. Typical inter-station distances are mostly in a range between 300 and 800 km, which can be of help in enhancing the lateral resolution of a regional tomography model. We first invert Rayleigh-wave phase speeds and amplitudes simultaneously for phase speed maps as well as local amplification factors at receiver locations. The isotropic 3-D S-wave model constructed from these phase speed maps incorporating both phase and amplitude data exhibits better recovery of the strength of velocity perturbations. In particular, local tectonic features characterized by strong velocity gradients, such as Rio Grande Rift, Colorado Plateau and New Madrid Seismic Zone, are more enhanced than conventional models derived from phase information only. The results indicate that surface-wave amplitude, which is sensitive to the second derivative of phase speeds, can be of great help in retrieving small-scale heterogeneity in the upper mantle. We also obtain a radial anisotropy model from the simultaneous inversions of Rayleigh and Love waves (without amplitude information). The model has shown faster SH wave speed anomalies than SV above the depth of 100 km, particularly in tectonically active regions in the western and central U.S., representing the effects of current and former tectonic processes on

  6. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  7. Super-resolving random-Gaussian apodized photon sieve.

    Science.gov (United States)

    Sabatyan, Arash; Roshaninejad, Parisa

    2012-09-10

    A novel apodized photon sieve is presented in which random dense Gaussian distribution is implemented to modulate the pinhole density in each zone. The random distribution in dense Gaussian distribution causes intrazone discontinuities. Also, the dense Gaussian distribution generates a substantial number of pinholes in order to form a large degree of overlap between the holes in a few innermost zones of the photon sieve; thereby, clear zones are formed. The role of the discontinuities on the focusing properties of the photon sieve is examined as well. Analysis shows that secondary maxima have evidently been suppressed, transmission has increased enormously, and the central maxima width is approximately unchanged in comparison to the dense Gaussian distribution. Theoretical results have been completely verified by experiment.

  8. Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System

    Directory of Open Access Journals (Sweden)

    Changhoon Lee

    2010-06-01

    Full Text Available In this paper, we developed a local oscillator (LO system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI receiver and single dish radio astronomy receiver at the 3 mm frequency band.

  9. Measurement of the betatron phase advance and betatron amplitude ratio at the SPP-barS collider

    International Nuclear Information System (INIS)

    Bossart, R.; Scandale, W.

    1987-01-01

    A technique for the precise measurement of lattice functions in a hadron collider has been developed. The betatron functions on either side of the two low beta insertions of the SPS collider have been determined from the measured amplitude and phase of horizontal beam oscillations with a peak amplitude of 40 μm. Four directional couplers and four synchronous receivers working at 200 MHz monitor the betatron oscillations of the beam excited by the fast deflectors of the damper. A fast Fourier transform of the signals provides the phase and amplitude ratio of the beam oscillations between any pair of monitors. The relative amplitude and phase of the beam oscillations can be measured with an accuracy of 0 in phase. For achieving such an accuracy a special calibration method has been implemented to determine the propagation times and amplification factors of the measuring equipment, using the intensity signals of the beam itself. The same equipment can be used also for measuring the beam transfer function by injecting white noise into the beam deflectors

  10. Practical use of the amplitude and phase modulation of a high-power RF pulse via feed-forward control

    International Nuclear Information System (INIS)

    Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Isoyama, Goro; Kashiwagi, Shigeru

    2013-01-01

    A new feed-forward control system to precisely control the amplitude and phase of the pulsed RF power in an electron linear accelerator (linac) is developed to make the accelerating field constant. Fast variations and ripples in the amplitude and phase in the RF pulses are compensated by modulating the amplitude and phase in the low-level system with a variable attenuator and phase shifter. The system is innovated the overdrive technique, which is commonly used in analog circuits, to speed up the slow response of the phase shifter, while the control signals are digitally processed; thus, the method is a hybrid of analog and digital techniques. By using the new control system, we find that the peak-to-peak variations in the amplitude and phase are reduced from 11.6% to 0.4% and from 6.1 degrees to 0.3 degrees, respectively, in 7.6-μs-long RF pulses for the L-band electron linac at Osaka University. (author)

  11. Lente intra-ocular multifocal difrativa apodizada: resultados Diffractive apodized multifocal intraocular lens: results

    Directory of Open Access Journals (Sweden)

    Virgilio Centurion

    2007-12-01

    Full Text Available OBJETIVO: Mostrar os resultados visuais e refracionais com lente intra-ocular multifocal difrativa apodizada. MÉTODOS: Estudo de 100 olhos de 50 pacientes com catarata, submetidos à facoemulsificação com implante bilateral de lente intra-ocular (LIO multifocal difrativa apodizada. Foi avaliada a acuidade visual binocular sem e com correção para longe e perto, a previsibilidade refracional e a freqüência de uso de óculos. RESULTADOS: A acuidade visual sem correção para longe foi de e " 20/30 em 97,56% dos olhos operados e e" J2 em 100%, sendo que 82% dos pacientes nunca usam óculos e 16% usam de forma esporádica. CONCLUSÃO: A LIO multifocal difrativa apodizada mostrou ser uma opção previsível, reproduzível e segura na correção dos vícios de refração para longe e perto durante a cirurgia da catarata, permitindo elevado índice de independência ao uso de óculos.OBJECTIVE: To show visual and refraction results using multifocal diffractive apodized intraocular lens. METHODS: The study of 100 eyes of 50 patients with cataract, submitted to phacoemulsification with bilateral implant of multifocal diffractive apodized intraocular lens (IOL. Binocular visual acuity was evaluated with and without correction for near and distance, and refraction previsibility and frequency of wearing glasses. RESULTS: Visual acuity without correction for distance was e" 20/30 in 97.56% of eyes operated on and e" J2 in 100%, of these 82% of patients never wear glasses and 16% wear glasses sporadically. CONCLUSION: Multifocal diffractive apodized IOL proved to be a foreseeable option, reproducible and safe in the correction of refraction errors for distance and near during cataract surgery, enabling a high rate of independence from the use of glasses.

  12. Casimir amplitudes in topological quantum phase transitions.

    Science.gov (United States)

    Griffith, M A; Continentino, M A

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  13. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    Science.gov (United States)

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  14. Latitudinal amplitude-phase structure of MHD waves: STARE radar observations and modeling

    Directory of Open Access Journals (Sweden)

    Pilipenko V.

    2016-09-01

    Full Text Available We have developed a numerical model that yields a steady-state distribution of field components of MHD wave in an inhomogeneous plasma box simulating the realistic magnetosphere. The problem of adequate boundary condition at the ionosphere–magnetosphere interface for coupled MHD mode is considered. To justify the model’s assumptions, we have derived the explicit inequality showing when the ionospheric inductive Hall effect can be neglected upon the consideration of Alfven wave reflection from the ionospheric boundaries. The model predicts a feature of the ULF spatial amplitude/phase distribution that has not been noticed by the field line resonance theory: the existence of a region with opposite phase delays on the source side of the resonance. This theoretical prediction is supported by the amplitude-phase latitudinal structures of Pc5 waves observed by STARE radar and IMAGE magnetometers. A gradual decrease in azimuthal wave number m at smaller L-shells was observed at longitudinally separated radar beams.

  15. Measurement of the amplitude and phase transfer functions of an optical modulator using a heterodyne technique

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2001-01-01

    We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....

  16. Ripples on spikes show increased phase-amplitude coupling in mesial temporal lobe epilepsy seizure onset zones

    Science.gov (United States)

    Weiss, Shennan A; Orosz, Iren; Salamon, Noriko; Moy, Stephanie; Wei, Linqing; Van ’t Klooster, Maryse A; Knight, Robert T; Harper, Ronald M; Bragin, Anatol; Fried, Itzhak; Engel, Jerome; Staba, Richard J

    2016-01-01

    Objective Ripples (80–150 Hz) recorded from clinical macroelectrodes have been shown to be an accurate biomarker of epileptogenic brain tissue. We investigated coupling between epileptiform spike phase and ripple amplitude to better understand the mechanisms that generate this type of pathological ripple (pRipple) event. Methods We quantified phase amplitude coupling (PAC) between epileptiform EEG spike phase and ripple amplitude recorded from intracranial depth macroelectrodes during episodes of sleep in 12 patients with mesial temporal lobe epilepsy. PAC was determined by 1) a phasor transform that corresponds to the strength and rate of ripples coupled with spikes, and a 2) ripple-triggered average to measure the strength, morphology, and spectral frequency of the modulating and modulated signals. Coupling strength was evaluated in relation to recording sites within and outside the seizure onset zone (SOZ). Results Both the phasor transform and ripple-triggered averaging methods showed ripple amplitude was often robustly coupled with epileptiform EEG spike phase. Coupling was more regularly found inside than outside the SOZ, and coupling strength correlated with the likelihood a macroelectrode’s location was within the SOZ (pripples coupled with EEG spikes inside the SOZ to rates of coupled ripples in non-SOZ was greater than the ratio of rates of ripples on spikes detected irrespective of coupling (pripple amplitude (pripple spectral frequency (pripple amplitude. The changes in excitability reflected as epileptiform spikes may also cause clusters of pathologically interconnected bursting neurons to grow and synchronize into aberrantly large neuronal assemblies. PMID:27723936

  17. An amplitude and phase control system for the TFTR rf heating sources

    International Nuclear Information System (INIS)

    Cutsogeorge, G.

    1989-04-01

    Feedback loops that control the amplitude and phase of the rf heating sources on TFTR are described. The method for providing arc protection is also discussed. Block diagrams and Bode plots are included. 6 figs

  18. Acoustic analog computing based on a reflective metasurface with decoupled modulation of phase and amplitude

    Science.gov (United States)

    Zuo, Shu-Yu; Tian, Ye; Wei, Qi; Cheng, Ying; Liu, Xiao-Jun

    2018-03-01

    The use of metasurfaces has allowed the provision of a variety of functionalities by ultrathin structures, paving the way toward novel highly compact analog computing devices. Here, we conceptually realize analog computing using an acoustic reflective computational metasurface (RCM) that can independently manipulate the reflection phase and amplitude of an incident acoustic signal. This RCM is composed of coating unit cells and perforated panels, where the first can tune the transmission phase within the full range of 2π and the second can adjust the reflection amplitude in the range of 0-1. We show that this RCM can achieve arbitrary reflection phase and amplitude and can be used to realize a unique linear spatially invariant transfer function. Using the spatial Fourier transform (FT), an acoustic analog computing (AAC) system is proposed based on the RCM together with a focusing lens. Based on numerical simulations, we demonstrate that this AAC system can perform mathematical operations such as spatial differentiation, integration, and convolution on an incident acoustic signal. The proposed system has low complexity and reduced size because the RCM is able to individually adjust the reflection phase and amplitude and because only one block is involved in performing the spatial FT. Our work may offer a practical, efficient, and flexible approach to the design of compact devices for acoustic computing applications, signal processing, equation solving, and acoustic wave manipulations.

  19. Linearity of amplitude and phase in tapping-mode atomic force microscopy

    International Nuclear Information System (INIS)

    Salapaka, M.V.; Chen, D.J.; Cleveland, J.P.

    2000-01-01

    In this article tapping-mode atomic force microscope dynamics is studied. The existence of a periodic orbit at the forcing frequency is shown under unrestrictive conditions. The dynamics is further analyzed using the impact model for the tip-sample interaction and a spring-mass-damper model of the cantilever. Stability of the periodic orbit is established. Closed-form expressions for various variables important in tapping-mode imaging are obtained. The linear relationship of the amplitude and the sine of the phase of the first harmonic of the periodic orbit with respect to cantilever-sample offset is shown. The study reinforces gentleness of the tapping-mode on the sample. Experimental results are in excellent qualitative agreement with the theoretical predictions. The linear relationship of the sine of the phase and the amplitude can be used to infer sample properties. The comparison between the theory and the experiments indicates essential features that are needed in a more refined model

  20. Strong phase shifts and color-suppressed tree amplitudes in B->DK(*) and B->Dπ, Dρ decays

    International Nuclear Information System (INIS)

    Kim, C.S.; Oh, Sechul; Yu, Chaehyun

    2005-01-01

    We analyze the decay processes B->DK, DK*, Dπ, and Dρ in a model-independent way. Using the quark diagram approach, we determine the magnitudes of the relevant amplitudes and the relative strong phase shifts. In order to find the most likely values of the magnitudes and the relative strong phases of the amplitudes in a statistically reliable way, we use the χ 2 minimization technique. We find that the strong phase difference between the color-allowed and the color-suppressed tree amplitude can be large and is non-zero at 1σ level with the present data. The color-suppressed tree contributions are found to be sizably enhanced. We also examine the validity of factorization and estimate the breaking effects of flavor SU(3) symmetry in B->DK, Dπ and in B->DK*, Dρ

  1. Amplitude and Phase Characteristics of Signals at the Output of Spatially Separated Antennas for Paths with Scattering

    Science.gov (United States)

    Anikin, A. S.

    2018-06-01

    Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.

  2. All-optical phase-preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Galili, Michael; Mulvad, Hans Christian Hansen

    2013-01-01

    Phase-preserving amplitude regeneration based on optical parametric amplification has been experimentally demonstrated for a 640 Gbit/s RZ-DPSK signal. Improvement of 2.2 dB in receiver sensitivity at a BER of 10-9 together with 13.3 dB net gain have been successfully achieved.......Phase-preserving amplitude regeneration based on optical parametric amplification has been experimentally demonstrated for a 640 Gbit/s RZ-DPSK signal. Improvement of 2.2 dB in receiver sensitivity at a BER of 10-9 together with 13.3 dB net gain have been successfully achieved....

  3. Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering

    International Nuclear Information System (INIS)

    Deng Yibing; Wang Shilai; Yin Gaofang

    2006-01-01

    Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)

  4. Influence of mantle anelasticity on the phase and amplitude of earth tides

    Science.gov (United States)

    Bodri, B.; Pedersen, G. P. H.

    1980-05-01

    The effect of the anelasticity of the mantle on the phase and amplitude of earth tides is calculated for recent models of the internal structure of the earth and its rheological characteristics. The anelastic properties of the mantle are modeled by the Maxwell and Knopoff-Lomnitz rheological bodies. For numerical calculations two different methods of solution are used. Results indicate that the effect of mantle anelasticity on tidal amplitudes is practically zero. For both types of rheological models the phase shifts of the functions characterizing solid tides are small, none of them exceeding values of some minutes of arc. These phase shifts have a very weak dependence on the variation of attenuation and viscosity within the mantle. The present study is closely related to an important problem: what proportion of the observed tidal friction arises not in the ocean but is due to the anelasticity of the mantle. The results suggest that dissipation by solid friction at present is an insignificant, almost negligible component of tidal energy sink.

  5. Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting: application to USArray

    Science.gov (United States)

    Hamada, K.; Yoshizawa, K.

    2015-09-01

    A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit

  6. The amplitude and phase control of the ALS Storage Ring RF System

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Baptiste, K.

    1995-03-01

    A 500MHz, 300KW Klystron power amplifier provides RF power to the ALS Storage Ring. In order to accommodate the amplitude and phase changes during beam stacking and decay, which demand continuously varying power levels from the Klystron, four loops are used to keep the system operating properly, with two of those loops dedicated to keeping the two cavity tuners on tune. Description of the control loops and their performance data will be given. Using the modulation anode of the Klystron in the amplitude loop will be discussed

  7. Modal effects on amplitude perturbations on subionospheric signals (trimpis) deduced from two-frequency measurements

    International Nuclear Information System (INIS)

    Dowden, R.L.; Adams, C.D.D.

    1989-01-01

    Interference between the first two modes of Earth-ionosphere waveguide propagation at the high end of the VLF band (> 18 kHz) increases with distance from the transmitter out to very large distances and can add amplitude perturbations to the phase perturbations (trimpis) produced by lightning-induced electron precipitation (LEP) on the great circle path. Since the two modes have slightly different phase velocities, an interference pattern or standing wave is formed which is shifted slightly along the propagation path by the LEP-induced change in differential phase velocity. The model effect at the receiver depends on the local gradient (along the great circle path) of amplitude with respect to the differential phase. Since this differential or mode beat phase varies with frequency, measurement of the resultant amplitude at two close frequencies enables an estimation of the modal effects. In this study, measurements were made at Dunedin at the two MSK frequencies, 22,250 Hz and 22,350 Hz, of the transmitter NWC, during a night of frequent one-dimensional trimpis (i.e., those produced by large-area LEP occurring close to the great circle path) and of strong and varying modal interference. Modal generation or modification of trimpi amplitude was related to the local gradient of amplitude as expected. From these results it was deduced that modal modification of echo trimpis (those produced by small area LEP occurring well off the great circle path), even under extreme conditions, is insignificant

  8. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From the measure...... the measurements we derive the small-signal alpha-parameter and the time-dependent chirp for different operation conditions.......In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  9. Validation of measurements of Fourier phase and amplitude analysis of technetium99 gated cardiac scans using artificial hearts

    International Nuclear Information System (INIS)

    Yiannikas, J.; Takatani, S.; MacIntyre, W.J.; Underwood, D.A.; Cook, S.A.; Go, R.T.; Napoli, C.; Nose, Y.

    1982-01-01

    The use of artificial hearts, developed for total heart replacement programs, allows assessment of the accuracy of measuring the first Fourier component phase and amplitude when applied to gated cardiac technetium 99 scans. In the extreme example of asynchrony of ventricular contraction in coronary artery disease that of ventricular aneurysms, the first Fourier component measurements of amplitude were highly correlated to volume increases suggesting that the calculated amplitude accurately reflects volume changes. The calculated asynchrony using Fourier analysis of the gated technetium 99 studies of two artificial hearts was highly accurate when compared to the predetermined calculation of phase angle difference and hence degree of asynchrony. The studies suggest that measurement of phase and amplitude using the first Fourier component of time-activity waves of gated cardiac technetium 99 studies accurately measure degree of asynchrony and volume changes respectively

  10. An amplitude and phase hybrid modulation Fresnel diffractive optical element

    Science.gov (United States)

    Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi

    2018-04-01

    An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.

  11. Travelling-wave amplitudes as solutions of the phase-field crystal equation

    Science.gov (United States)

    Nizovtseva, I. G.; Galenko, P. K.

    2018-01-01

    The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the method (Malfliet & Hereman 1996 Phys. Scr. 15, 563-568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713-723 (doi:10.1016/S0096-3003(03)00745-8)). The general solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1-10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  12. Quadratic grating apodized photon sieves for simultaneous multiplane microscopy

    Science.gov (United States)

    Cheng, Yiguang; Zhu, Jiangping; He, Yu; Tang, Yan; Hu, Song; Zhao, Lixin

    2017-10-01

    We present a new type of imaging device, named quadratic grating apodized photon sieve (QGPS), used as the objective for simultaneous multiplane imaging in X-rays. The proposed QGPS is structured based on the combination of two concepts: photon sieves and quadratic gratings. Its design principles are also expounded in detail. Analysis of imaging properties of QGPS in terms of point-spread function shows that QGPS can image multiple layers within an object field onto a single image plane. Simulated and experimental results in visible light both demonstrate the feasibility of QGPS for simultaneous multiplane imaging, which is extremely promising to detect dynamic specimens by X-ray microscopy in the physical and life sciences.

  13. Amplitude and phase control of attosecond light pulses

    International Nuclear Information System (INIS)

    Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan; Persson, Anders; Svanberg, Sune; Wahlstroem, Claes-Goeran; L'Huillier, Anne; Mairesse, Yann; Salieres, Pascal; Gaarde, Mette B.; Schafer, Kenneth J.

    2005-01-01

    We report the generation, compression, and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. Broadband harmonic radiation is first generated by focusing an infrared laser with a carefully chosen intensity into a gas cell containing argon atoms. The emitted light then goes through a hard aperture and a thin aluminum filter that selects a 30-eV bandwidth around a 30-eV photon energy and synchronizes all of the components, thereby enabling the formation of a train of almost Fourier-transform-limited single-cycle 170 attosecond pulses. Our experiment demonstrates a practical method for synthesizing and controlling attosecond waveforms

  14. Variability of phase and amplitude fronts due to horizontal refraction in shallow water.

    Science.gov (United States)

    Katsnelson, Boris G; Grigorev, Valery A; Lynch, James F

    2018-01-01

    The variability of the interference pattern of a narrow-band sound signal in a shallow water waveguide in the horizontal plane in the presence of horizontal stratification, in particular due to linear internal waves, is studied. It is shown that lines of constant phase (a phase front) and lines of constant amplitude/envelope (an amplitude front) for each waveguide mode may have different directions in the spatial vicinity of the point of reception. The angle between them depends on the waveguide's parameters, the mode number, and the sound frequency. Theoretical estimates and data processing methodology for obtaining these angles from experimental data recorded by a horizontal line array are proposed. The behavior of the angles, which are obtained for two episodes from the Shallow Water 2006 (SW06) experiment, show agreement with the theory presented.

  15. Reconstruction of fiber grating refractive-index profiles from complex bragg reflection spectra.

    Science.gov (United States)

    Huang, D W; Yang, C C

    1999-07-20

    Reconstruction of the refractive-index profiles of fiber gratings from their complex Bragg reflection spectra is experimentally demonstrated. The amplitude and phase of the complex reflection spectrum were measured with a balanced Michelson interferometer. By integrating the coupled-mode equations, we built the relationship between the complex coupling coefficient and the complex reflection spectrum as an iterative algorithm for reconstructing the index profile. This method is expected to be useful for reconstructing the index profiles of fiber gratings with any apodization, chirp, or dc structures. An apodized chirped grating and a uniform grating with a depression of index modulation were used to demonstrate the technique.

  16. An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance

    International Nuclear Information System (INIS)

    Hua Li-Li; Xu Ning; Yang Geng

    2014-01-01

    In this paper, we propose an encryption scheme based on phase-shifting digital interferometry. According to the original system framework, we add a random amplitude mask and replace the Fourier transform by the Fresnel transform. We develop a mathematical model and give a discrete formula based on the scheme, which makes it easy to implement the scheme in computer programming. The experimental results show that the improved system has a better performance in security than the original encryption method. Moreover, it demonstrates a good capability of anti-noise and anti-shear robustness

  17. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Svendsen, Niels Bruun

    1992-01-01

    A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...

  18. Apodized Pupil Lyot Coronagraphs designs for future segmented space telescopes

    Science.gov (United States)

    St. Laurent, Kathryn; Fogarty, Kevin; Zimmerman, Neil; N’Diaye, Mamadou; Stark, Chris; Sivaramakrishnan, Anand; Pueyo, Laurent; Vanderbei, Robert; Soummer, Remi

    2018-01-01

    A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multi-wavelength suite of instruments.In support of the community’s assessment of the scientific capability of a LUVOIR mission, the Exoplanet Exploration Program (ExEP) has launched a multi-team technical study: Segmented Coronagraph Design and Analysis (SCDA). The goal of this study is to develop viable coronagraph instrument concepts for a LUVOIR-type mission. Results of the SCDA effort will directly inform the mission concept evaluation being carried out by the LUVOIR Science and Technology Definition Team. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the SCDA study is assessing. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. In the course of exploring this parameter space we have established relationships between APLC throughput and telescope aperture geometry, Lyot stop, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors and integrated a Design Reference Mission framework to evaluate designs with scientific yield metrics.

  19. Photonic Hilbert transformers based on laterally apodized integrated waveguide Bragg gratings on a SOI wafer.

    Science.gov (United States)

    Bazargani, Hamed Pishvai; Burla, Maurizio; Chrostowski, Lukas; Azaña, José

    2016-11-01

    We experimentally demonstrate high-performance integer and fractional-order photonic Hilbert transformers based on laterally apodized Bragg gratings in a silicon-on-insulator technology platform. The sub-millimeter-long gratings have been fabricated using single-etch electron beam lithography, and the resulting HT devices offer operation bandwidths approaching the THz range, with time-bandwidth products between 10 and 20.

  20. A Delta-Sigma beamformer with integrated apodization

    DEFF Research Database (Denmark)

    Tomov, Borislav Gueorguiev; Stuart, Matthias Bo; Hemmsen, Martin Christian

    2013-01-01

    This paper presents a new design of a discrete time Delta-Sigma (ΔΣ) oversampled ultrasound beamformer which integrates individual channel apodization by means of variable feedback voltage in the Delta-Sigma analog to digital (A/D) converters. The output bit-width of each oversampled A/D converter...... remains the same as in an unmodified one. The outputs of all receiving channels are delayed and summed, and the resulting multi-bit sample stream is filtered and decimated to become an image line. The simplicity of this beamformer allows the production of high-channel-count or very compact beamformers....... The data are acquired using 12-bit flash A/D converters at a sampling rate of 70 MHz, and are then upsampled off-line to 560 MHz for input to the simulated ΔΣ beamformer. The latter generates a B-mode image which is compared to that produced by a digital beamformer that uses 10-bit A/D converters...

  1. Daytime tropical D region parameters from short path VLF phase and amplitude

    Science.gov (United States)

    Thomson, Neil R.

    2010-09-01

    Observed phases and amplitudes of VLF radio signals, propagating on a short (˜300-km) path, are used to find improved parameters for the lowest edge of the (D region of the) Earth's ionosphere. The phases, relative to GPS 1-s pulses, and the amplitudes were measured both near (˜100 km from) the transmitter, where the direct ground wave is very dominant, and at distances of ˜300 km near where the ionospherically reflected waves form a (modal) minimum with the (direct) ground wave. The signals came from the 19.8 kHz, 1 MW transmitter, NWC, on the North West Cape of Australia, propagating ˜300 km ENE, mainly over the sea, to the vicinity of Karratha/Dampier on the N.W. coast of Australia. The bottom edge of the mid-day tropical/equatorial ionosphere was thus found to be well-modeled by H‧ = 70.5 ± 0.5 km and β = 0.47 ± 0.03 km-1 where H‧ and β are the traditional height and sharpness parameters as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. U.S. Navy modal waveguide code calculations are also compared with those from the wave hop code of Berry and Herman (1971). At least for the vertical electric fields on the path studied here, the resulting phase and amplitude differences (between the ˜100-km and ˜300-km sites) agree very well after just a small adjustment of ˜0.2 km in H‧ between the two codes. Such short paths also allow more localization than the usual long paths; here this localization is to low latitudes.

  2. Multiple-image authentication with a cascaded multilevel architecture based on amplitude field random sampling and phase information multiplexing.

    Science.gov (United States)

    Fan, Desheng; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Pan, Xuemei; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2015-04-10

    A multiple-image authentication method with a cascaded multilevel architecture in the Fresnel domain is proposed, in which a synthetic encoded complex amplitude is first fabricated, and its real amplitude component is generated by iterative amplitude encoding, random sampling, and space multiplexing for the low-level certification images, while the phase component of the synthetic encoded complex amplitude is constructed by iterative phase information encoding and multiplexing for the high-level certification images. Then the synthetic encoded complex amplitude is iteratively encoded into two phase-type ciphertexts located in two different transform planes. During high-level authentication, when the two phase-type ciphertexts and the high-level decryption key are presented to the system and then the Fresnel transform is carried out, a meaningful image with good quality and a high correlation coefficient with the original certification image can be recovered in the output plane. Similar to the procedure of high-level authentication, in the case of low-level authentication with the aid of a low-level decryption key, no significant or meaningful information is retrieved, but it can result in a remarkable peak output in the nonlinear correlation coefficient of the output image and the corresponding original certification image. Therefore, the method realizes different levels of accessibility to the original certification image for different authority levels with the same cascaded multilevel architecture.

  3. Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Galili, Michael; Mulvad, Hans Christian Hansen

    2013-01-01

    We report the first experimental demonstration of parametric amplification and all-optical phase-preserving amplitude regeneration for a 640 Gbit/s return-to-zero (RZ) differential phase-shift keying (DPSK) optical time division multiplexed (OTDM) signal. In the designed gain-flattened single......-pump fiber optical parametric amplifier (FOPA), 620 fs short optical pulses are successfully amplified with 15 dB gain with error-free performance and less than 1 dB power penalty. Phase-preserving amplitude regeneration based on gain saturation in the FOPA is carried out for optical signals with degraded...... optical signal-to-noise ratio. An improvement of 2.2 dB in receiver sensitivity at a bit-error-ratio of 10−9 has been successfully achieved after regeneration, together with 13.3 dB net gain....

  4. The effect of solar and lunar currents on simultaneous phase path, group path and amplitude measurements

    International Nuclear Information System (INIS)

    Baulch, R.N.E.; Butcher, E.C.

    1984-01-01

    The solar and lunar variations in the phase path, group path and amplitude of a fixed frequency transmission were obtained at the September equinox over a slightly oblique path. The phase of the lunar semi-diurnal tide in the phase path and amplitude were similar, the maxima occurring near 0200 lunar time, whereas the group path had a maximum near 0800 lunar time. These results were compared with other results obtained near the same location. The results suggest a complex situation in the E-region, where the height of the lunar current depends on season, and also suggest that the location and distribution of the solar and lunar currents may be different. (author)

  5. Progress of the Moscow Meson Factory linac RF phase and amplitude control system

    International Nuclear Information System (INIS)

    Sharamentov, S.I.; Edachev, V.V.; Kvasha, A.I.; Belov, A.D.; Kuznetsov, V.V.

    1992-01-01

    The updated configuration of the MMF linac rf phase and amplitude control systems are presented. The structure of systems, controlling devices and specific feedback controller with Smith compensation and simulated feed-forward control loop are described. (Author) 2 refs., 5 figs

  6. A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications

    KAUST Repository

    Ghaffar, Farhan Abdul

    2012-09-30

    A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.

  7. A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications

    KAUST Repository

    Ghaffar, Farhan Abdul; Al-Naffouri, Tareq Y.; Mobeen, M. Kashan; Salama, Khaled N.; Shamim, Atif

    2012-01-01

    A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.

  8. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power...

  9. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    Science.gov (United States)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  10. The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Hendriks, A

    2012-08-01

    Full Text Available amplitude modulation of the light, i.e., in amplitude and phase. We outline the theoretical concept, and then illustrate its use with the example of the laser beam shaping of Gaussian beams into flat-top beams. We quantify the performance of this approach...

  11. Performance evaluation of annular arrays in practice: The measurement of phase and amplitude patterns of radio-frequency deep body applicators

    NARCIS (Netherlands)

    Schneider, C.J.; Kuijer, J.P.A.; Colussi, L.C.; Schepp, C.J.; Dijk, J.D.P. van

    1995-01-01

    An approach to a solution of two major problems in operating Annular Phased Arrays in deep body hyperthermia is presented: an E-field sensor capable of measuring phase and amplitude at 70 MHz and the concept of a power transmission factor to determine the effective amplitude of each applicator. In

  12. The amplitude of fluid-induced vibration of cylinders in axial flow

    Energy Technology Data Exchange (ETDEWEB)

    Paidoussis, M. P.

    1965-03-15

    This report describes a new empirical expression of the amplitude of transverse vibration of cylindrical beams and clusters of cylinders in axial flow, for application to reactor fuel. The expression is based on reported experimental observations covering a variety of geometries, cylinder materials and types of support in water, superheated steam and two-phase mixture flows. (author)

  13. The amplitude of fluid-induced vibration of cylinders in axial flow

    International Nuclear Information System (INIS)

    Paidoussis, M.P.

    1965-03-01

    This report describes a new empirical expression of the amplitude of transverse vibration of cylindrical beams and clusters of cylinders in axial flow, for application to reactor fuel. The expression is based on reported experimental observations covering a variety of geometries, cylinder materials and types of support in water, superheated steam and two-phase mixture flows. (author)

  14. Phase retrieval via incremental truncated amplitude flow algorithm

    Science.gov (United States)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  15. Fully-etched apodized fiber-to-chip grating coupler on the SOI platform with -0.78 dB coupling efficiency using photonic crystals and bonded Al mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Peucheret, Christophe

    2014-01-01

    We design and fabricate an ultra-high coupling efficiency fully-etched apodized grating coupler on the SOI platform using photonic crystals and bonded aluminum mirror. Ultra-high coupling efficiency of -0.78 dB with a 3 dB bandwidth of 74 nm are demonstrated.......We design and fabricate an ultra-high coupling efficiency fully-etched apodized grating coupler on the SOI platform using photonic crystals and bonded aluminum mirror. Ultra-high coupling efficiency of -0.78 dB with a 3 dB bandwidth of 74 nm are demonstrated....

  16. Two-shot fringe pattern phase-amplitude demodulation using Gram-Schmidt orthonormalization with Hilbert-Huang pre-filtering.

    Science.gov (United States)

    Trusiak, Maciej; Patorski, Krzysztof

    2015-02-23

    Gram-Schmidt orthonormalization is a very fast and efficient method for the fringe pattern phase demodulation. It requires only two arbitrarily phase-shifted frames. Images are treated as vectors and upon orthogonal projection of one fringe vector onto another the quadrature fringe pattern pair is obtained. Orthonormalization process is very susceptible, however, to noise, uneven background and amplitude modulation fluctuations. The Hilbert-Huang transform based preprocessing is proposed to enhance fringe pattern phase demodulation by filtering out the spurious noise and background illumination and performing fringe normalization. The Gram-Schmidt orthonormalization process error analysis is provided and its filtering-expanded capabilities are corroborated analyzing DSPI fringes and performing amplitude demodulation of Bessel fringes. Synthetic and experimental fringe pattern analyses presented to validate the proposed technique show that it compares favorably with other pre-filtering schemes, i.e., Gaussian filtering and continuous wavelet transform.

  17. Phases and amplitudes for a modified repulsive Coulomb field

    International Nuclear Information System (INIS)

    Chidichimo, M.C.; Davison, T.S.

    1990-01-01

    The asymptotic form of the radial wave function for positive-energy states is calculated for the case of a repulsive Coulomb field. The cases of a pure Coulomb potential and a modified Coulomb potential are considered. Second-order analytic solutions for the amplitudes and phases are obtained when the modifications to the pure Coulombic potential take the form αr -2 +βr -3 +γr -4 , using the Jeffreys or WKB method. For the case of a pure Coulomb field, numerical results obtained from this method were compared with ''exact'' numerical results that were obtained using the analytic properties of the Coulomb wave functions. Tables are presented to show the conditions under which the method is accurate

  18. Phase and amplitude inversion of crosswell radar data

    Science.gov (United States)

    Ellefsen, Karl J.; Mazzella, Aldo T.; Horton, Robert J.; McKenna, Jason R.

    2011-01-01

    Phase and amplitude inversion of crosswell radar data estimates the logarithm of complex slowness for a 2.5D heterogeneous model. The inversion is formulated in the frequency domain using the vector Helmholtz equation. The objective function is minimized using a back-propagation method that is suitable for a 2.5D model and that accounts for the near-, intermediate-, and far-field regions of the antennas. The inversion is tested with crosswell radar data collected in a laboratory tank. The model anomalies are consistent with the known heterogeneity in the tank; the model’s relative dielectric permittivity, which is calculated from the real part of the estimated complex slowness, is consistent with independent laboratory measurements. The methodologies developed for this inversion can be adapted readily to inversions of seismic data (e.g., crosswell seismic and vertical seismic profiling data).

  19. Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase

    Directory of Open Access Journals (Sweden)

    Robert Keil

    2016-11-01

    Full Text Available We design and realise a hybrid interferometer consisting of three paths based on integrated as well as on bulk optical components. This hybrid construction offers a good compromise between stability and footprint on one side and means of intervention on the other. As experimentally verified by the absence of higher-order interferences, amplitude and phase can be manipulated in all paths independently. In conjunction with single photons, the setup can, therefore, be applied for fundamental investigations on quantum mechanics.

  20. Probing the phase of the elastic pp scattering amplitude with vortex proton beams

    International Nuclear Information System (INIS)

    Ivanov, I. P.

    2013-01-01

    We show that colliding vortex proton beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. In elastic pp scattering, this will open a novel way to measure the parameter ρ(t) and probe the real part of the Pomeron.

  1. Probing the phase of the elastic pp scattering amplitude with vortex proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. P. [IFPA, Universite de Liege, Allee du 6 Aout 17, batiment B5a, 4000 Liege, Belgium Sobolev Institute of Mathematics, Koptyug avenue 4, 630090, Novosibirsk (Russian Federation)

    2013-04-15

    We show that colliding vortex proton beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. In elastic pp scattering, this will open a novel way to measure the parameter {rho}(t) and probe the real part of the Pomeron.

  2. The amplitude and phase precision of 40 Hz auditory steady-state response depend on the level of arousal

    DEFF Research Database (Denmark)

    Griskova, Inga; Mørup, Morten; Parnas, Josef

    2007-01-01

    The aim of this study was to investigate, in healthy subjects, the modulation of amplitude and phase precision of the auditory steady-state response (ASSR) to 40 Hz stimulation in two resting conditions varying in the level of arousal. Previously, ASSR measures have shown to be affected......-negative multi-way factorization (NMWF) (Morup et al. in J Neurosci Methods 161:361-368, 2007). The estimates of these measures were subjected to statistical analysis. The amplitude and phase precision of the ASSR were significantly larger during the low arousal state compared to the high arousal condition...

  3. High-fidelity phase and amplitude control of phase-only computer generated holograms using conjugate gradient minimisation.

    Science.gov (United States)

    Bowman, D; Harte, T L; Chardonnet, V; De Groot, C; Denny, S J; Le Goc, G; Anderson, M; Ireland, P; Cassettari, D; Bruce, G D

    2017-05-15

    We demonstrate simultaneous control of both the phase and amplitude of light using a conjugate gradient minimisation-based hologram calculation technique and a single phase-only spatial light modulator (SLM). A cost function, which incorporates the inner product of the light field with a chosen target field within a defined measure region, is efficiently minimised to create high fidelity patterns in the Fourier plane of the SLM. A fidelity of F = 0.999997 is achieved for a pattern resembling an LG10 mode with a calculated light-usage efficiency of 41.5%. Possible applications of our method in optical trapping and ultracold atoms are presented and we show uncorrected experimental realisation of our patterns with F = 0.97 and 7.8% light efficiency.

  4. Reply to the comment on 'Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate |η)'

    International Nuclear Information System (INIS)

    Fan, Hongyi; Hu, Haipeng

    2003-01-01

    We compare and contrast our amplitude-phase entanglement with that of Luis in his comment. Luis's entangled state is defined in a finite Fock space. His comment on the operational phase operator seems to be contradicting the original meaning of Mandel et al. (reply)

  5. Mixed phase-amplitude holographic gratings recorded in bleached silver halide materials

    International Nuclear Information System (INIS)

    Neipp, C.; Pascual, C.; Belendez, A.

    2002-01-01

    The coupled wave theory of Kogelnik has given a well-established basis for the comprehension of how light propagates inside a volume hologram. This theory gives a good approximation for the diffraction efficiency of both volume phase holograms and volume absorption holograms. Mixed holograms (phase and absorption) have also been dealt with from the point of view of the coupled wave theory. In this paper we use Kogelnik's coupled wave theory to give quantitative information about the mechanisms which produce mixed gratings in photographic emulsions. In particular, we demonstrate that mixed amplitude-phase gratings are recorded on photographic emulsions when fixation-free bleaching techniques are used to obtain volume holograms. We will prove that the oxidation products of the bleach can give rise to an absorption modulation at high values of exposure and high concentrations of potassium bromide in the bleach bath. We will also give quantitative data regarding the absorption created by these oxidation products. (author)

  6. Main results on the RF amplitude and phase regulation systems in operation at GANIL

    International Nuclear Information System (INIS)

    Joubert, A.; Ducoudret, B.; Labiche, J.C.; Loyant, J.M.

    1984-06-01

    The general features of the amplitude and phase regulations and their control systems are briefly reviewed. These feedback control systems are fully under the control of the main computer aided by dedicated CAMAC microprocessors for actions such as starting, parameters tuning or phase stability surveying. Numerous results obtained with spectrum analysis method give the actual RF purity and the residual modulation and crossmodulation noise level for all RF signals picked up in the RF resonators. A typical value for the noise immunity is 80 dB below the carrier at 100 Hz deviation. Another set of results gives the actual long term phase drift between resonators (< 0.2 RF degree within 6 hours). The stability of the RF phases is confirmed by on line beam phase measurements

  7. Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase.

    Science.gov (United States)

    Katkovnik, V; Shevkunov, I A; Petrov, N V; Egiazarian, K

    2015-05-15

    This work presents the new method for wavefront reconstruction from a digital hologram recorded in off-axis configuration. The main feature of the proposed algorithm is a good ability for noise filtration due to the original formulation of the problem taking into account the presence of noise in the recorded intensity distribution and the sparse phase and amplitude reconstruction approach with the data-adaptive block-matching 3D technique. Basically, the sparsity assumes that low dimensional models can be used for phase and amplitude approximations. This low dimensionality enables strong suppression of noisy components and accurate revealing of the main features of the signals of interest. The principal point is that dictionaries of these sparse models are not known in advance and reconstructed from given noisy observations in a multiobjective optimization procedure. We show experimental results demonstrating the effectiveness of our approach.

  8. Fringe image analysis based on the amplitude modulation method.

    Science.gov (United States)

    Gai, Shaoyan; Da, Feipeng

    2010-05-10

    A novel phase-analysis method is proposed. To get the fringe order of a fringe image, the amplitude-modulation fringe pattern is carried out, which is combined with the phase-shift method. The primary phase value is obtained by a phase-shift algorithm, and the fringe-order information is encoded in the amplitude-modulation fringe pattern. Different from other methods, the amplitude-modulation fringe identifies the fringe order by the amplitude of the fringe pattern. In an amplitude-modulation fringe pattern, each fringe has its own amplitude; thus, the order information is integrated in one fringe pattern, and the absolute fringe phase can be calculated correctly and quickly with the amplitude-modulation fringe image. The detailed algorithm is given, and the error analysis of this method is also discussed. Experimental results are presented by a full-field shape measurement system where the data has been processed using the proposed algorithm. (c) 2010 Optical Society of America.

  9. Analysis of amplitude-phase disturbances of Wolf's numbers rhythmic structure

    International Nuclear Information System (INIS)

    Vojchishin, K.S.

    1978-01-01

    Statistical analysis of Wolf's number rhythmic structure has been carried out. Wolf's number time series is considered as a stochastic signal with irregular disturbances of rhythmic structure appearing because of random variability of single cycle parameters. A method and an algorythm for transforming the signal, to reduce all quasi-eleven-year cycles of mean-monthly Wolf's numbers to a signal mean duration, to find out and to eliminate rhythmic phase disturbances, are proposed. An estimate of the accuracy of the procedure is given. The results of calculations (on the mean duration range of cycles) of estimates of their mathematical expectation, dispersion and correlation function depending on time and its shift are given. The conclusion that Wolf's number time series may be treated as a sequence of stochastic cycles with randomly varying amplitude, duration and phase is grounded. A possibility for reducing the forecast of smoothed mean-monthly Wolf's numbers for one or more cycles ahead to the forecast of only three abovementioned parameters is pointed out

  10. Atom localization via phase and amplitude control of the driving field

    International Nuclear Information System (INIS)

    Ghafoor, Fazal; Qamar, Sajid; Zubairy, M. Suhail

    2002-01-01

    Control of amplitude and phase of the driving field in an atom-field interaction leads towards the strong line narrowing and quenching in the spontaneous emission spectrum. We exploit this fact for the atom localization scheme and achieve a much better spatial resolution in the conditional position probability distribution of the atom. Most importantly the quenching in the spontaneous emission manifests itself in reducing the periodicity in the conditional position probability distribution and hence the uncertainty in a particular position measurement of the single atom by a factor of 2

  11. Amplitude Analysis and Modeling of Regional Phases in PNE Profiles in Northern Eurasia and Seismic Regionalization

    Science.gov (United States)

    2006-06-30

    ratios (Lg/Pn, Lg/Pg, Lg/Sn, and Lg/ Pcod ,), a constant window length was used to measure the phase amplitudes. The phases were identified by correlating...log(ýo-) = (Yp + yp,,o-dLg)(log( 2) -log ))+Q( + p.o-71Lg)(x 2 - (2.9) ’ 4 pcod ,2 APCoda Therefore, the difference of log(ALg/Apcoda) between

  12. Improved detection of chronic myocardial infarction with Fourier amplitude and phase imaging in two projections

    International Nuclear Information System (INIS)

    Akins, E.W.; Scott, E.A.; Williams, C.M.

    1987-01-01

    Twenty-seven patients with 33 chronic myocaridal infarctions underwent MR imaging and radionuclide ventriculography at rest. The radionuclide ventriculographs, in left anterior oblique (LAO) and left posterior oblique (LPO) projections, were analyzed by two independent observers by visual inspection and combined Fourier-transformed amplitude and phase imaging. Only 15 (45%) of the 33 infarctions were detected by visual inspection, but 21 (64%) were detected on the LAO Fourier-transformed images along. Thirty (91%) were detected by using both LAO and LPO Fourier-transformed images. On MR imaging, 28 (85%) of the myocardial infarctions appeared as areas of focal wall thinning. Combined Fourier-transformed amplitude and phase imaging in both LAO and LPO views discloses more myocardial infarctions than visual inspection or LAO Fourier-transformed images alone because inferior infarctions, which are frequently missed in the LAO view, are easily seen in the LPO view

  13. Modeling solar flare induced lower ionosphere changes using VLF/LF transmitter amplitude and phase observations at a midlatitude site

    Science.gov (United States)

    Schmitter, E. D.

    2013-04-01

    Remote sensing of the ionosphere bottom using long wave radio signal propagation is a still going strong and inexpensive method for continuous monitoring purposes. We present a propagation model describing the time development of solar flare effects. Based on monitored amplitude and phase data from VLF/LF transmitters gained at a mid-latitude site during the currently increasing solar cycle no. 24 a parameterized electron density profile is calculated as a function of time and fed into propagation calculations using the LWPC (Long Wave Propagation Capability). The model allows to include lower ionosphere recombination and attachment coefficients, as well as to identify the relevant forcing X-ray wavelength band, and is intended to be a small step forward to a better understanding of the solar-lower ionosphere interaction mechanisms within a consistent framework.

  14. Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography

    International Nuclear Information System (INIS)

    Nissilae, Ilkka; Noponen, Tommi; Kotilahti, Kalle; Katila, Toivo; Lipiaeinen, Lauri; Tarvainen, Tanja; Schweiger, Martin; Arridge, Simon

    2005-01-01

    In this article, we describe the multichannel implementation of an intensity modulated optical tomography system developed at Helsinki University of Technology. The system has two time-multiplexed wavelengths, 16 time-multiplexed source fibers and 16 parallel detection channels. The gain of the photomultiplier tubes (PMTs) is individually adjusted during the measurement sequence to increase the dynamic range of the system by 10 4 . The PMT used has a high quantum efficiency in the near infrared (8% at 800 nm), a fast settling time, and low hysteresis. The gain of the PMT is set so that the dc anode current is below 80 nA, which allows the measurement of phase independently of the intensity. The system allows measurements of amplitude at detected intensities down to 1 fW, which is sufficient for transmittance measurements of the female breast, the forearm, and the brain of early pre-term infants. The mean repeatability of phase and the logarithm of amplitude (ln A) at 100 MHz were found to be 0.08 deg. and 0.004, respectively, in a measurement of a 7 cm phantom with an imaging time of 5 s per source and source optical power of 8 mW. We describe a three-step method of calibrating the phase and amplitude measurements so that the absolute absorption and scatter in tissue may be measured. A phantom with two small cylindrical targets and a second phantom with three rods are measured and reconstructions made from the calibrated data are shown and compared with reconstructions from simulated data

  15. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Igor V. [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kuzmin, Dmitry A., E-mail: kuzminda@csu.ru [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G. [Kotelnikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya Street 11-7, Moscow 125009 (Russian Federation)

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii–Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii–Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications. - Highlights: • Magnetostrictive ultrasound generation by spiral magnets at phase transition (PT) is studied. • Spiral magnets during PT may generate transverse sound with wavelength equal to spiral period. • Amplitude of the sound is strictly depends on the phase transition speed. • Microwave-to-sound transformation in the vicinity of PT is investigated as well.

  16. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems

    Science.gov (United States)

    Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.

    2017-02-01

    We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.

  17. Altered energy intake and the amplitude of the body temperature rhythm are associated with changes in phase, but not amplitude, of clock gene expression in the rat suprachiasmatic nucleus in vivo.

    Science.gov (United States)

    Goh, Grace H; Mark, Peter J; Maloney, Shane K

    2016-01-01

    Circadian rhythms in mammals are driven by a central clock in the suprachiasmatic nucleus (SCN). In vitro, temperature cycles within the physiological range can act as potent entraining cues for biological clocks. We altered the body temperature (Tc) rhythm in rats by manipulating energy intake (EI) to determine whether EI-induced changes in Tc oscillations are associated with changes in SCN clock gene rhythms in vivo. Male Wistar rats (n = 16 per diet) were maintained on either an ad libitum diet (CON), a high energy cafeteria diet (CAF), or a calorie restricted diet (CR), and Tc was recorded every 30 min for 6-7 weeks. SCN tissue was harvested from rats at zeitgeber time (ZT) 0, ZT6, ZT12, or ZT18. Expression of the clock genes Bmal1, Per2, Cry1, and Rev-erbα, the heat shock transcription factor Hsf1, and the heat shock protein Hsp90aa1, were determined using qPCR. The circadian profile of gene expression for each gene was characterized using cosinor analysis. Compared to the CON rats, the amplitude of Tc was decreased in CAF rats by 0.1 °C (p  0.25). Compared to CON, phase advances of the Tc, Bmal1, and Per2 rhythms were observed with CR feeding (p < 0.05), but CAF feeding elicited no significant changes in phase. The present results indicate that in vivo, the SCN is largely resistant to entrainment by EI-induced changes in the Tc rhythm, although some phase entrainment may occur.

  18. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    Energy Technology Data Exchange (ETDEWEB)

    Dell, Z.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com, E-mail: sabarji@andrew.cmu.edu [Mellon College of Science and Carnegie Mellon University – Qatar, Carnegie Mellon University, Pittsburgh, Pennsylvania 15231 (United States); Stellingwerf, R. F. [Stellingwerf Consulting, Huntsville, Alabama 35803 (United States)

    2015-09-15

    We systematically study the effect of the initial perturbation on Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. A broad range of shock strengths and density ratios is considered. The amplitude of the initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. The simulations results are compared, wherever possible, with four rigorous theories, and with other experiments and simulations, achieving good quantitative and qualitative agreement. Our study is focused on early time dynamics of the Richtmyer-Meshkov instability (RMI). We analyze the initial growth-rate of RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. For the first time, to the authors' knowledge, we find that the initial growth-rate of RMI is a non-monotone function of the initial perturbation amplitude, thus restraining the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends on the shock strength and the density ratio, whereas the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio.

  19. Noise-induced phase space transport in two-dimensional Hamiltonian systems.

    Science.gov (United States)

    Pogorelov, I V; Kandrup, H E

    1999-08-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.

  20. High accuracy amplitude and phase measurements based on a double heterodyne architecture

    International Nuclear Information System (INIS)

    Zhao Danyang; Wang Guangwei; Pan Weimin

    2015-01-01

    In the digital low level RF (LLRF) system of a circular (particle) accelerator, the RF field signal is usually down converted to a fixed intermediate frequency (IF). The ratio of IF and sampling frequency determines the processing required, and differs in various LLRF systems. It is generally desirable to design a universally compatible architecture for different IFs with no change to the sampling frequency and algorithm. A new RF detection method based on a double heterodyne architecture for wide IF range has been developed, which achieves the high accuracy requirement of modern LLRF. In this paper, the relation of IF and phase error is systematically analyzed for the first time and verified by experiments. The effects of temperature drift for 16 h IF detection are inhibited by the amplitude and phase calibrations. (authors)

  1. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality.

    Directory of Open Access Journals (Sweden)

    Diego Lozano-Soldevilla

    2016-08-01

    Full Text Available Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (> 40 Hz occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC. However, the CFC patterns be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 mg or 1.5 mg of lorazepam (LZP; GABAergic enhancer in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM, we were able to demonstrate that posterior alpha (8 – 12 Hz phase was coupled to beta-low gamma band (20 – 45 Hz amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD. Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs

  2. Formation region and amplitude of colour superconductivity in an instanton-induced model

    CERN Document Server

    Liao Jin Feng

    2002-01-01

    Colour superconductivity is investigated in the frame of a two flavour instanton-induced model. The ratio of diquark to quark-antiquark coupling constants is restricted to be c/(N sub c -1) with 1 <=c <=2.87 and controls the formation region and amplitude of colour superconductivity. While the finite current quark mass changes the chiral transition significantly, it does not considerably change the colour superconductivity

  3. Nanostructure Secondary-Mirror Apodizing Mask for Transmitter Signal Suppression in a Duplex Telescope

    Science.gov (United States)

    Hagopian, John; Livas, Jeffrey; Shiri, Shahram; Getty, Stephanie; Tveekrem, June; Butler, James

    2012-01-01

    A document discusses a nanostructure apodizing mask, made of multi-walled carbon nanotubes, that is applied to the centers (or in and around the holes) of the secondary mirrors of telescopes that are used to interferometrically measure the strain of space-time in response to gravitational waves. The shape of this ultra-black mask can be adjusted to provide a smooth transition to the clear aperture of the secondary mirror to minimize diffracted light. Carbon nanotubes grown on silicon are a viable telescope mirror substrate, and can absorb significantly more light than other black treatments. The hemispherical reflectance of multi-walled carbon nanotubes grown at GSFC is approximately 3 to 10 times better than a standard aerospace paint used for stray light control. At the LISA (Laser Interferometer Space Antenna) wavelength of 1 micron, the advantage over paint is a factor of 10. Primarily, in the center of the secondary mirror (in the region of central obscuration, where no received light is lost) a black mask is applied to absorb transmitted light that could be reflected back into the receiver. In the LISA telescope, this is in the center couple of millimeters. The shape of this absorber is critical to suppress diffraction at the edge. By using the correct shape, the stray light can be reduced by approximately 10 to the 9 orders of magnitude versus no center mask. The effect of the nanotubes has been simulated in a stray-light model. The effect of the apodizing mask has been simulated in a near-field diffraction model. Specifications are geometry-dependent, but the baseline design for the LISA telescope has been modeled as well. The coatings are somewhat fragile, but work is continuing to enhance adhesion.

  4. The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay

    Science.gov (United States)

    Lohe, M. A.

    2017-12-01

    We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.

  5. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  6. Noise-induced phase space transport in two-dimensional Hamiltonian systems

    International Nuclear Information System (INIS)

    Pogorelov, I.V.; Kandrup, H.E.

    1999-01-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which open-quotes stickyclose quotes chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become open-quotes unstuckclose quotes much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation. copyright 1999 The American Physical Society

  7. Selection of a LGp0-shaped fundamental mode in a laser cavity: Phase versus amplitude masks

    CSIR Research Space (South Africa)

    Hasnaoui, A

    2012-01-01

    Full Text Available Laser beams of a single high-order transverse mode have been of interest to the laser community for several years now. In order to achieve such a mode as the fundamental mode of the cavity, mode selecting elements in the form of a phase or amplitude...

  8. Nonorthogonal multiple access and carrierless amplitude phase modulation for flexible multiuser provisioning in 5G mobile networks

    NARCIS (Netherlands)

    Altabas, J.A.; Rommel, S.; Puerta, R.; Izquierdo, D.; Ignacio Garces, J.; Antonio Lazaro, J.; Vegas Olmos, J.J.; Tafur Monroy, I.

    2017-01-01

    In this paper, a combined nonorthogonal multiple access (NOMA) and multiband carrierless amplitude phase modulation (multiCAP) scheme is proposed for capacity enhancement of and flexible resource provisioning in 5G mobile networks. The proposed scheme is experimentally evaluated over a W-band

  9. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain

    Science.gov (United States)

    Kou, Na; Yu, Shixing; Li, Long

    2017-01-01

    A high-order Bessel vortex beam carrying orbital angular momentum (OAM) is generated by using multilayer amplitude-phase-modulated surfaces (APMSs) at 10 GHz. The APMS transmitarray is composed of four-layer conformal square-loop (FCSL) surfaces with both amplitude and phase modulation. The APMS can transform a quasi-spherical wave emitted from the feeding source into a pseudo non-diffractive high-order Bessel vortex beam with OAM. The APMS for a second-order Bessel beam carrying OAM in the n = 2 mode is designed, fabricated, and measured. Full-wave simulation and measurement results confirm that Bessel vortex beams with OAM can be effectively generated using the proposed APMS transmitarray.

  10. Examining the time dependence of DAMA's modulation amplitude

    Science.gov (United States)

    Kelso, Chris; Savage, Christopher; Sandick, Pearl; Freese, Katherine; Gondolo, Paolo

    2018-03-01

    If dark matter is composed of weakly interacting particles, Earth's orbital motion may induce a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with ˜ 7 years of observations. This data is well fit by a constant modulation amplitude for the two iterations of the experiment. We statistically examine the time dependence of the modulation amplitudes, which "by eye" appear to be decreasing with time in certain energy ranges. We perform a chi-squared goodness of fit test of the average modulation amplitudes measured by the two detector iterations which rejects the hypothesis of a consistent modulation amplitude at greater than 80, 96, and 99.6% for the 2-4, 2-5 and 2-6 keVee energy ranges, respectively. We also find that among the 14 annual cycles there are three ≳ 3σ departures from the average in our estimated data in the 5-6 keVee energy range. In addition, we examined several phenomenological models for the time dependence of the modulation amplitude. Using a maximum likelihood test, we find that descriptions of the modulation amplitude as decreasing with time are preferred over a constant modulation amplitude at anywhere between 1σ and 3σ , depending on the phenomenological model for the time dependence and the signal energy range considered. A time dependent modulation amplitude is not expected for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. New data from DAMA/LIBRA-phase2 will certainly aid in determining whether any apparent time dependence is a real effect or a statistical fluctuation.

  11. Laser-induced grating in ZnO

    DEFF Research Database (Denmark)

    Ravn, Jesper N.

    1992-01-01

    A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self-diffracti......A simple approach for the calculation of self-diffraction in a thin combined phase and amplitude grating is presented. The third order nonlinearity, the electron-hole recombination time, and the ambipolar diffusion coefficient in a ZnO crystal are measured by means of laser-induced self...

  12. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    Science.gov (United States)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  13. Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study

    International Nuclear Information System (INIS)

    Bhadelia, R.A.; Bogdan, A.R.; Kaplan, R.F.; Wolpert, S.M.

    1997-01-01

    Our purpose in this investigation was to explain the heterogeneity in the cerebrospinal fluid (CSF) flow pulsation amplitudes. To this end, we determined the contributions of the cerebral arterial and jugular venous flow pulsations to the amplitude of the CSF pulsation. We examined 21 healthy subjects by cine phase-contrast MRI at the C2-3 disc level to demonstrate the CSF and vascular flows as waveforms. Multiple regression analysis was performed to calculate the contributions of (a) the arterial and venous waveform amplitudes and (b) the delay between the maximum systolic slopes of the arterial and venous waveforms (AV delay), in order to predict the amplitude of the CSF waveform. The contribution of the arterial waveform amplitude was positive (r = 0.61; p 0.003) to the CSF waveform amplitude and that of the venous waveform amplitude was negative (r = -0.50; p = 0.006). Both in combination accounted for 56 % of the variance in predicting the CSF waveform amplitude (p < 0.0006). The contribution of AV delay was not significant. The results show that the variance in the CSF flow pulsation amplitudes can be explained by concurrent evaluation of the CSF and vascular flows. Improvement in the techniques, and controlled experiments, may allow use of CSF flow pulsation amplitudes for clinical applications in the non-invasive assessment of intracranial dynamics by MRI. (orig.). With 3 figs., 2 tabs

  14. Thermally induced high frequency random amplitude fatigue damage at sharp notches

    International Nuclear Information System (INIS)

    Lewis, M.W.J.

    1992-01-01

    Experiments have been performed using the SUPERSOMITE facility to investigate the initiation and growth of fatigue cracks at the tips of sharp surface notches subjected to random thermally-induced stress. The experimental situation is complex involving plasticity, random amplitude loading and heat transfer medium/surface coupling. Crack initiation and growth prediction have been considered using the Creager and Neuber methods to compute the strain ranges in the vicinity of the notch root. Good agreement has been obtained between the experimental results and theoretical predictions. The paper reports the results of the analysis of the notch behavior

  15. Low drive field amplitude for improved image resolution in magnetic particle imaging.

    Science.gov (United States)

    Croft, Laura R; Goodwill, Patrick W; Konkle, Justin J; Arami, Hamed; Price, Daniel A; Li, Ada X; Saritas, Emine U; Conolly, Steven M

    2016-01-01

    Magnetic particle imaging (MPI) is a new imaging technology that directly detects superparamagnetic iron oxide nanoparticles. The technique has potential medical applications in angiography, cell tracking, and cancer detection. In this paper, the authors explore how nanoparticle relaxation affects image resolution. Historically, researchers have analyzed nanoparticle behavior by studying the time constant of the nanoparticle physical rotation. In contrast, in this paper, the authors focus instead on how the time constant of nanoparticle rotation affects the final image resolution, and this reveals nonobvious conclusions for tailoring MPI imaging parameters for optimal spatial resolution. The authors first extend x-space systems theory to include nanoparticle relaxation. The authors then measure the spatial resolution and relative signal levels in an MPI relaxometer and a 3D MPI imager at multiple drive field amplitudes and frequencies. Finally, these image measurements are used to estimate relaxation times and nanoparticle phase lags. The authors demonstrate that spatial resolution, as measured by full-width at half-maximum, improves at lower drive field amplitudes. The authors further determine that relaxation in MPI can be approximated as a frequency-independent phase lag. These results enable the authors to accurately predict MPI resolution and sensitivity across a wide range of drive field amplitudes and frequencies. To balance resolution, signal-to-noise ratio, specific absorption rate, and magnetostimulation requirements, the drive field can be a low amplitude and high frequency. Continued research into how the MPI drive field affects relaxation and its adverse effects will be crucial for developing new nanoparticles tailored to the unique physics of MPI. Moreover, this theory informs researchers how to design scanning sequences to minimize relaxation-induced blurring for better spatial resolution or to exploit relaxation-induced blurring for MPI with

  16. Measurements of stimulated-Raman-scattering-induced tilt in spectral-amplitude-coding optical code-division multiple-access systems

    Science.gov (United States)

    Al-Qazwini, Zaineb A. T.; Abdullah, Mohamad K.; Mokhtar, Makhfudzah B.

    2009-01-01

    We measure the stimulated Raman scattering (SRS)-induced tilt in spectral-amplitude-coding optical code-division multiple-access (SAC-OCDMA) systems as a function of system main parameters (transmission distance, power per chip, and number of users) via computer simulations. The results show that SRS-induced tilt significantly increases as transmission distance, power per chip, or number of users grows.

  17. Analysis of Peak-to-Peak Current Ripple Amplitude in Seven-Phase PWM Voltage Source Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2013-08-01

    Full Text Available Multiphase systems are nowadays considered for various industrial applications. Numerous pulse width modulation (PWM schemes for multiphase voltage source inverters with sinusoidal outputs have been developed, but no detailed analysis of the impact of these modulation schemes on the output peak-to-peak current ripple amplitude has been reported. Determination of current ripple in multiphase PWM voltage source inverters is important for both design and control purposes. This paper gives the complete analysis of the peak-to-peak current ripple distribution over a fundamental period for multiphase inverters, with particular reference to seven-phase VSIs. In particular, peak-to-peak current ripple amplitude is analytically determined as a function of the modulation index, and a simplified expression to get its maximum value is carried out. Although reference is made to the centered symmetrical PWM, being the most simple and effective solution to maximize the DC bus utilization, leading to a nearly-optimal modulation to minimize the RMS of the current ripple, the analysis can be readily extended to either discontinuous or asymmetrical modulations, both carrier-based and space vector PWM. A similar approach can be usefully applied to any phase number. The analytical developments for all different sub-cases are verified by numerical simulations.

  18. Observing APOD with the AuScope VLBI Array

    Science.gov (United States)

    Sun, Jing; Cao, Jianfeng

    2018-01-01

    The possibility to observe satellites with the geodetic Very Long Baseline Interferometry (VLBI) technique is vividly discussed in the geodetic community, particularly with regard to future co-location satellite missions. The Chinese APOD-A nano satellite can be considered as a first prototype—suitable for practical observation tests—combining the techniques Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and VLBI on a single platform in a Low Earth Orbit (LEO). Unfortunately, it has hardly been observed by VLBI, so major studies towards actual frame ties could not be performed. The main reason for the lack of observations was that VLBI observations of satellites are non-standard, and suitable observing strategies were not in place for this mission. This work now presents the first serious attempt to observe the satellite with a VLBI network over multiple passes. We introduce a series of experiments with the AuScope geodetic VLBI array which were carried out in November 2016, and describe all steps integrated in the established process chain: the experiment design and observation planning, the antenna tracking and control scheme, correlation and derivation of baseline-delays, and the data analysis yielding delay residuals on the level of 10 ns. The developed procedure chain can now serve as reference for future experiments, hopefully enabling the global VLBI network to be prepared for the next co-location satellite mission. PMID:29772732

  19. Phase and amplitude Variation of Weddell Sea Anomaly at King Sejong Station in Antarctic between 2005 and 2009

    Science.gov (United States)

    Chung, J.; Lee, C.; Jee, G.

    2011-12-01

    The Weddell Sea Anomaly (WSA) in ionosphere has been defined by higher electron density at nighttime than during the daytime on summer season near the region of the Weddell Sea.Recent studies show the WSA is an extreme case of longitudinal variation and occurrs all of season except for winter when F10.7 is high. We examine the temporal variation of the WSA using the ground-based GPS TEC measured King Sejong station (geographic latitude 62.2°S, longitude 58.5°W, corrected geomagnetic latitude 48°S) in Antarctic between 2005 and 2009 in condition of solar minimum. We analyze the characteristics of diurnal and semi-diurnal variation for all of years and examine the yearly and seasonal variation of phase and amplitude of the WSA. Our results of local time GPS TEC variation show the amplitudes of the WSA are significant in the summer and its phases appear to be changed according to the season.

  20. Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms

    International Nuclear Information System (INIS)

    Arun, K. G.; Buonanno, Alessandra; Ochsner, Evan; Faye, Guillaume

    2009-01-01

    We provide ready-to-use time-domain gravitational waveforms for spinning compact binaries with precession effects through 1.5 post-Newtonian (PN) order in amplitude, and compute their mode decomposition using spin-weighted -2 spherical harmonics. In the presence of precession, the gravitational-wave modes (l,m) contain harmonics originating from combinations of the orbital frequency and precession frequencies. We find that the gravitational radiation from binary systems with large mass asymmetry and large inclination angle can be distributed among several modes. For example, during the last stages of inspiral, for some maximally spinning configurations, the amplitude of the (2, 0) and (2, 1) modes can be comparable to the amplitude of the (2, 2) mode. If the mass ratio is not too extreme, the l=3 and l=4 modes are generally 1 or 2 orders of magnitude smaller than the l=2 modes. Restricting ourselves to spinning, nonprecessing compact binaries, we apply the stationary-phase approximation and derive the frequency-domain gravitational waveforms including spin-orbit and spin(1)-spin(2) effects through 1.5PN and 2PN order, respectively, in amplitude, and 2.5PN order in phase. Since spin effects in the amplitude through 2PN order affect only the first and second harmonics of the orbital phase, they do not extend the mass reach of gravitational-wave detectors. However, they can interfere with other harmonics and lower or raise the signal-to-noise ratio depending on the spin orientation. These ready-to-use waveforms could be employed in the data analysis of the spinning, inspiraling binaries as well as in comparison studies at the interface between analytical and numerical relativity.

  1. Method for conducting nonlinear electrochemical impedance spectroscopy

    Science.gov (United States)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  2. A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion

    International Nuclear Information System (INIS)

    Jani, Shyam S.; Robinson, Clifford G.; Dahlbom, Magnus; White, Benjamin M.; Thomas, David H.; Gaudio, Sergio; Low, Daniel A.; Lamb, James M.

    2013-01-01

    Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). Methods and Materials: List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Results: Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Conclusions: Target volumes in images generated

  3. Relationship between the Amplitude and Phase of a Signal Scattered by a Point-Like Acoustic Inhomogeneity

    Science.gov (United States)

    Burov, V. A.; Morozov, S. A.

    2001-11-01

    Wave scattering by a point-like inhomogeneity, i.e., a strong inhomogeneity with infinitesimal dimensions, is described. This type of inhomogeneity model is used in investigating the point-spread functions of different algorithms and systems. Two approaches are used to derive the rigorous relationship between the amplitude and phase of a signal scattered by a point-like acoustic inhomogeneity. The first approach is based on a Marchenko-type equation. The second approach uses the scattering by a scatterer whose size decreases simultaneously with an increase in its contrast. It is shown that the retarded and advanced waves are scattered differently despite the relationship between the phases of the corresponding scattered waves.

  4. Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing

    Science.gov (United States)

    Singh, Aman K.; Yadava, R. D. S.

    2018-05-01

    The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.

  5. Phase and amplitude feedback control system for the Los Alamos free-electron laser

    International Nuclear Information System (INIS)

    Lynch, M.T.; Tallerico, P.J.; Higgins, E.F.

    1985-01-01

    Phase and amplitude feedback control systems for the Los Alamos free-electron laser (FEL) are described. Beam-driven voltages are very high in the buncher cavity because the electron gun is pulsed at the fifth subharmonic of the buncher resonant frequency. The high beam loading necessitated a novel feedback and drive configuration for the buncher. A compensation cirucit has been added to the gun/driver system to reduce observed drift. Extremely small variations in the accelerator gradients had dramatic effects on the laser output power. These problems and how they were solved are described and plans for improvements in the feedback control system are discussed. 5 refs., 7 figs

  6. Optimization of coronagraph design for segmented aperture telescopes

    Science.gov (United States)

    Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave

    2017-09-01

    The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end

  7. Amplitude-Mode Dynamics of Polariton Condensates

    International Nuclear Information System (INIS)

    Brierley, R. T.; Littlewood, P. B.; Eastham, P. R.

    2011-01-01

    We study the stability of collective amplitude excitations in nonequilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wave vectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.

  8. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Science.gov (United States)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  9. K/sup 0//sub L/ interactions at 550 MeV/c. [Phase shift, scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y; Derrick, M; Miller, R J; Smith, R P [Argonne National Lab., Ill. (USA); Engler, A; Keyes, G; Kraemer, R W; Schlereth, J; Tanaka, M [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-01-19

    Differential and channel cross sections and hyperon polarizations are presented for the reactions K/sub L//sup 0/p..-->..K/sub S//sup 0/p, ..pi../sup +/..lambda../sup 0/, and ..pi../sup +/..sigma../sup 0/ at an average beam momentum of 550 MeV/c. These data provide constraints on KN and anti KN amplitudes obtained from charged kaon reactions and reject one of the S=+1,I=0 and one of the S=-1,I=1 phase shift solutions.

  10. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity

    Science.gov (United States)

    Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix

    2016-01-01

    Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the

  11. Epileptic seizure detection from EEG signals with phase-amplitude cross-frequency coupling and support vector machine

    Science.gov (United States)

    Liu, Yang; Wang, Jiang; Cai, Lihui; Chen, Yingyuan; Qin, Yingmei

    2018-03-01

    As a pattern of cross-frequency coupling (CFC), phase-amplitude coupling (PAC) depicts the interaction between the phase and amplitude of distinct frequency bands from the same signal, and has been proved to be closely related to the brain’s cognitive and memory activities. This work utilized PAC and support vector machine (SVM) classifier to identify the epileptic seizures from electroencephalogram (EEG) data. The entropy-based modulation index (MI) matrixes are used to express the strength of PAC, from which we extracted features as the input for classifier. Based on the Bonn database, which contains five datasets of EEG segments obtained from healthy volunteers and epileptic subjects, a 100% classification accuracy is achieved for identifying seizure ictal from healthy data, and an accuracy of 97.67% is reached in the classification of ictal EEG signals from inter-ictal EEGs. Based on the CHB-MIT database which is a group of continuously recorded epileptic EEGs by scalp electrodes, a 97.50% classification accuracy is obtained and a raising sign of MI value is found at 6s before seizure onset. The classification performance in this work is effective, and PAC can be considered as a useful tool for detecting and predicting the epileptic seizures and providing reference for clinical diagnosis.

  12. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi

    2010-01-01

    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  13. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  14. Two-phase flow induced vibrations in CANDU steam generators

    International Nuclear Information System (INIS)

    Gidi, A.

    2009-01-01

    The U-Bend region of nuclear steam generators tube bundles have suffered from two-phase cross flow induced vibrations. Tubes in this region have experienced high amplitude vibrations leading to catastrophic failures. Turbulent buffeting and fluid-elastic instability has been identified as the main causes. Previous investigations have focused on flow regime and two-phase flow damping ratio. However, tube bundles in steam generators have vapour generated on the surface of the tubes, which might affect the flow regime, void fraction distribution, turbulent intensity levels and tube-flow interaction, all of which have the potential to change the tube vibration response. A cantilevered tube bundle made of electric cartridges heaters was built and tested in a Freon-11 flow loop at McMaster University. Tubes were arranged in a parallel triangular configuration. The bundle was exposed to two-phase cross flows consisting of different combinations of void from two sources, void generated upstream of the bundle and void generated at the surface of the tubes. Tube tip vibration response was measured optically and void fraction was measured by gamma densitometry technique. It was found that tube vibration amplitude in the transverse direction was reduced by a factor of eight for void fraction generated at the tube surfaces only, when compared to the upstream only void generation case. The main explanation for this effect is a reduction in the correlation length of the turbulent buffeting forcing function. Theoretical calculations of the tube vibration response due to turbulent buffeting under the same experimental conditions predicted a similar reduction in tube amplitude. The void fraction for the fluid-elastic instability threshold in the presence of tube bundle void fraction generation was higher than that for the upstream void fraction generation case. The first explanation of this difference is the level of turbulent buffeting forces the tube bundle was exposed to

  15. Amplitude Modulation in the δ Sct star KIC 7106205

    Directory of Open Access Journals (Sweden)

    Bowman Dominic. M.

    2015-01-01

    Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.

  16. Model-independent determination of the strong phase difference between D 0 and {\\overline{D}}^0\\to {π}+{π}-{π}+{π}- amplitudes

    Science.gov (United States)

    Harnew, Samuel; Naik, Paras; Prouve, Claire; Rademacker, Jonas; Asner, David

    2018-01-01

    For the first time, the strong phase difference between D 0 and {\\overline{D}}^0\\to {π}+{π}-{π}+{π}- amplitudes is determined in bins of the decay phase space. The measurement uses 818 pb-1 of e + e - collision data that is taken at the ψ(3770) resonance and collected by the CLEO-c experiment. The measurement is important for the determination of the CP -violating phase γ in B ± → DK ± (and similar) decays, where the D meson (which represents a superposition of D 0 and {\\overline{D}}^0 ) subsequently decays to π + π - π + π -. To obtain optimal sensitivity to γ, the phase space of the D → π + π - π + π - decay is divided into bins based on a recent amplitude model of the decay. Although an amplitude model is used to define the bins, the measurements obtained are model-independent. The CP -even fraction of the D → π + π - π + π - decay is determined to be F + 4 π = 0.769 ± 0.021 ± 0.010, where the uncertainties are statistical and systematic, respectively. Using simulated B ± → DK ±, D → π + π - π + π - decays, it is estimated that by the end of the current LHC run, the LHCb experiment could determine γ from this decay mode with an uncertainty of (±10 ± 7)°, where the first uncertainty is statistical based on estimated LHCb event yields, and the second is due to the uncertainties on the parameters determined in this paper.

  17. Relaxation oscillations induced by amplitude-dependent frequency in dissipative trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Ware, A.S.; Newman, D.E.

    1994-01-01

    A nonlinear frequency shift in dissipative trapped electron mode turbulence is shown to give rise to a relaxation oscillation in the saturated power density spectrum. A simple non-Markovian closure for the coupled evolution of ion momentum and electron density response is developed to describe the oscillations. From solutions of a nonlinear oscillator model based on the closure, it is found that the oscillation is driven by the growth rate, as modified by the amplitude-dependent frequency shift, with inertia provided by the memory of the growth rate of prior amplitudes. This memory arises from time-history integrals common to statistical closures. The memory associated with a finite time of energy transfer between coupled spectrum components does not sustain the oscillation in the simple model. Solutions of the model agree qualitatively with the time-dependent numerical solutions of the original dissipative trapped electron model, yielding oscillations with the proper phase relationship between the fluctuation energy and the frequency shift, the proper evolution of the wave number spectrum shape and particle flux, and a realistic period

  18. 10Gb/s Ultra-Wideband Wireless Transmission Based on Multi-Band Carrierless Amplitude Phase Modulation

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    In this paper, for the first time, a record UWB transmission of 10Gb/s is experimentally demonstrated employing a multi-band approach of carrierless amplitude phase modulation (MultiCAP). The proposed solution complies with the restrictions on the effective radiated power established by both...... the United States Federal Communications Commission and the European Electronic Communications Committee, achieving a BER below the limit for a 7% overhead FEC of 3.8 · 10−3 up to respective wireless distances of 3.5m and 2m....

  19. Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.

    Science.gov (United States)

    Petrinović, Davor; Brezović, Marko

    2011-04-01

    We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE

  20. Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation

    Directory of Open Access Journals (Sweden)

    Nadia eGarcía-Mateo

    2014-11-01

    Full Text Available Management of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood.Apolipoprotein D (ApoD is an extracellular lipid binding protein of the Lipocalin family induced upon nervous system injury. Our previous study shows that axon regeneration is delayed without ApoD, and suggests its participation in early events during Wallerian degeneration. Here we demonstrate that ApoD is expressed by myelinating and non-myelinating Schwann cells and is induced early upon nerve injury. We show that ApoD, known to bind arachidonic acid (AA, also interacts with lysophosphatidylcholine (LPC in vitro. We use an in vivo model of nerve crush injury, a nerve explant injury model, and cultured macrophages exposed to purified myelin, to uncover that: (i ApoD regulates denervated Schwann cell-macrophage signaling, dampening MCP1- and Tnf-dependent macrophage recruitment and activation upon injury; (ii ApoD controls the over-expression of the phagocytosis activator Galectin-3 by infiltrated macrophages; (iii ApoD controls the basal and injury-triggered levels of LPC and AA; (iv ApoD modifies the dynamics of myelin-macrophage interaction, favoring the initiation of phagocytosis and promoting myelin degradation.Regulation of macrophage behaviour by Schwann-derived ApoD is therefore a key mechanism conditioning nerve injury resolution. These results place ApoD as a lipid binding protein controlling the signals exchanged between glia, neurons and blood-borne cells during nerve recovery after injury, and open the possibility for a therapeutic use of ApoD as a regeneration

  1. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  2. Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping

    International Nuclear Information System (INIS)

    Wang Jialong; Zong Weiguo; Le Guiming; Zhao Haijuan; Tang Yunqiu; Zhang Yang

    2009-01-01

    We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle. Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2 ± 7.5 to appear during the period from May to October 2012. (letters)

  3. The Cepheid bump progression and amplitude equations

    International Nuclear Information System (INIS)

    Kovacs, G.; Buchler, J.R.

    1989-01-01

    It is shown that the characteristic and systematic behavior of the low-order Fourier amplitudes and phases of hydrodynamically generated radial velocity and light curves of Cepheid model sequences is very well captured not only qualitatively but also quantitatively by the amplitude equation formalism. The 2:1 resonance between the fundamental and the second overtone plays an essential role in the behavior of the models 8 refs

  4. Discreteness-induced resonances and ac voltage amplitudes in long one-dimensional Josephson junction arrays

    International Nuclear Information System (INIS)

    Duwel, A.E.; Watanabe, S.; Trias, E.; Orlando, T.P.; van der Zant, H.S.; Strogatz, S.H.

    1997-01-01

    New resonance steps are found in the experimental current-voltage characteristics of long, discrete, one-dimensional Josephson junction arrays with open boundaries and in an external magnetic field. The junctions are underdamped, connected in parallel, and dc biased. Numerical simulations based on the discrete sine-Gordon model are carried out, and show that the solutions on the steps are periodic trains of fluxons, phase locked by a finite amplitude radiation. Power spectra of the voltages consist of a small number of harmonic peaks, which may be exploited for possible oscillator applications. The steps form a family that can be numbered by the harmonic content of the radiation, the first member corresponding to the Eck step. Discreteness of the arrays is shown to be essential for appearance of the higher order steps. We use a multimode extension of the harmonic balance analysis, and estimate the resonance frequencies, the ac voltage amplitudes, and the theoretical limit on the output power on the first two steps. copyright 1997 American Institute of Physics

  5. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  6. Changes in the phase and amplitude images in the rehabilitation phase after myocardial infarction

    International Nuclear Information System (INIS)

    Csernay, L.; Mester, J.; Vidakovich, T.; Rajtar, M.; Pavics, L.; Szasz, K.

    1984-01-01

    A studing involving patients with completed myocardial infarction, who underwent a 3-week exercise program at a cardiocirculatory rehabilitation center in Southern Hungary, is described. Infarctions were confirmed by the typical clinical and ECG signs and symptoms as well as by 201-T1 imaging at rest. Patients with normal 201-T1 activity distribution were excluded. Three ECG-gated equilibrium radionuclide studies were performed in each case: The first was done on the first day of rehabilitation (at a mean post-infarction interval of 1.5 months); the second study was scheduled 3 weeks after the first on completion of the exercise program and the last 9 weeks after the first (on an outpatient basis). From April 25, 1983 to September 9, 1983 a total of 25 patients were investigated. Of these, 9 had normal 201-T1 images. Of the remaining 16, 9 showed no significant changes of the phase and amplitude images. In 2 cases dyskinesia was found to have been replaced by akinesia, and in another 3 akinesia was replaced by hypokinesia. By contrast, 2 previously akinetic patients became dyskinetic. We expect to increase our patient material to at least 50 cases by the end of 1983 and would like to present our results, illustrating them by some typical examples. (Author)

  7. Measurement of the phase difference between short- and long-distance amplitudes in the [Formula: see text] decay.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    A measurement of the phase difference between the short- and long-distance contributions to the [Formula: see text] decay is performed by analysing the dimuon mass distribution. The analysis is based on pp collision data corresponding to an integrated luminosity of 3[Formula: see text] collected by the LHCb experiment in 2011 and 2012. The long-distance contribution to the [Formula: see text] decay is modelled as a sum of relativistic Breit-Wigner amplitudes representing different vector meson resonances decaying to muon pairs, each with their own magnitude and phase. The measured phases of the [Formula: see text] and [Formula: see text] resonances are such that the interference with the short-distance component in dimuon mass regions far from their pole masses is small. In addition, constraints are placed on the Wilson coefficients, [Formula: see text] and [Formula: see text], and the branching fraction of the short-distance component is measured.

  8. Amplitude and phase of distortion product otoacoustic emissions in the guinea pig in an (f1,f2) area study

    Science.gov (United States)

    Schneider, Sandra; Prijs, Vera F.; Schoonhoven, Ruurd

    2003-06-01

    Lower sideband distortion product otoacoustic emissions (DPOAEs), measured in the ear canal upon stimulation with two continuous pure tones, are the result of interfering contributions from two different mechanisms, the nonlinear distortion component and the linear reflection component. The two contributors have been shown to have a different amplitude and, in particular, a different phase behavior as a function of the stimulus frequencies. The dominance of either component was investigated in an extensive (f1,f2) area study of DPOAE amplitude and phase in the guinea pig, which allows for both qualitative and quantitative analysis of isophase contours. Making a minimum of additional assumptions, simple relations between the direction of constant phase in the (f1,f2) plane and the group delays in f1-sweep, f2-sweep, and fixed f2/f1 paradigms can be derived, both for distortion (wave-fixed) and reflection (place-fixed) components. The experimental data indicate the presence of both components in the lower sideband DPOAEs, with the reflection component as the dominant contributor for low f2/f1 ratios and the distortion component for intermediate ratios. At high ratios the behavior cannot be explained by dominance of either component.

  9. Eikonal representation of N-body Coulomb scattering amplitudes

    International Nuclear Information System (INIS)

    Fried, H.M.; Kang, K.; McKellar, B.H.J.

    1983-01-01

    A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3→(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2) 2 distinct integrands

  10. Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude

    Science.gov (United States)

    Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian

    2018-01-01

    We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.

  11. Complex Pupil Masks for Aberrated Imaging of Closely Spaced Objects

    Science.gov (United States)

    Reddy, A. N. K.; Sagar, D. K.; Khonina, S. N.

    2017-12-01

    Current approach demonstrates the suppression of optical side-lobes and the contraction of the main lobe in the composite image of two object points of the optical system under the influence of defocusing effect when an asymmetric phase edges are imposed over the apodized circular aperture. The resolution of two point sources having different intensity ratio is discussed in terms of the modified Sparrow criterion, functions of the degree of coherence of the illumination, the intensity difference and the degree of asymmetric phase masking. Here we have introduced and explored the effects of focus aberration (defect-of-focus) on the two-point resolution of the optical systems. Results on the aberrated composite image of closely spaced objects with amplitude mask and asymmetric phase masks forms a significant contribution in astronomical and microscopic observations.

  12. GaAs mixed signal multi-function X-band MMIC with 7 bit phase and amplitude control and integrated serial to parallel converter

    NARCIS (Netherlands)

    Boer, A. de; Mouthaan, K.

    2000-01-01

    The design and measured performance of a GaAs multi-function X-band MMIC for spacebased synthetic aperture radar (SAR) applications with 7-bit phase and amplitude control and integrated serial to parallel converter (including level conversion) is presented. The main application for the

  13. Slow oscillation amplitudes and up-state lengths relate to memory improvement.

    Directory of Open Access Journals (Sweden)

    Dominik P J Heib

    Full Text Available There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks.

  14. Comparison of the visual and intraocular optical performance of a refractive multifocal IOL with rotational asymmetry and an apodized diffractive multifocal IOL.

    Science.gov (United States)

    Alió, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José

    2012-02-01

    To compare the visual outcomes and intraocular optical quality observed postoperatively in patients implanted with a rotationally asymmetric multifocal intraocular lens (IOL) and an apodized diffractive multifocal IOL. Seventy-four consecutive eyes of 40 cataract patients (age range: 36 to 79 years) were divided into two groups: zonal refractive group, 39 eyes implanted with a rotationally asymmetric multifocal IOL (Lentis Mplus LS-312 IOL, Oculentis GmbH); and diffractive group, 35 eyes implanted with an apodized diffractive multifocal IOL (ReSTOR SN6AD3, Alcon Laboratories Inc). Distance and near visual acuity outcomes, contrast sensitivity, intraocular optical quality, and defocus curves were evaluated during 3-month follow-up. Calculation of the intraocular aberrations was performed by subtracting corneal aberrations from total ocular aberrations. Uncorrected near visual acuity and distance-corrected near visual acuity were better in the diffractive group than in the zonal refractive group (P=.01), whereas intermediate visual acuity (defocus +1.00 and +1.50 diopters) was better in the zonal refractive group. Photopic contrast sensitivity was significantly better in the zonal refractive group (P=.04). Wavefront aberrations (total, higher order, tilt, primary coma) were significantly higher in the zonal refractive group than in the diffractive group (P=.02). Both multifocal IOLs are able to successfully restore visual function after cataract surgery. The zonal refractive multifocal IOL provides better results in contrast sensitivity and intermediate vision, whereas the diffractive multifocal IOL provides better near vision at a closer distance. Copyright 2012, SLACK Incorporated.

  15. Unambiguous amplitude analysis of NN {yields} {Delta}N transition from asymmetry measurements

    Energy Technology Data Exchange (ETDEWEB)

    Auger, J.P. [Universite d`Orleans (France). Lab. de Physique Theorique; Lazard, C. [Paris-11 Univ., 91 - Orsay (France). Div. de Physique Theorique

    1997-12-31

    For particular {Delta}-production angles, an unambiguous determination of the NN {yields} {Delta}N transition amplitudes is performed, from NN {yields} (N{pi})N experiments, in which the polarization states are measured in the entrance channel, only. A three-step method is developed, which determines, firstly, the magnitudes of the amplitudes, secondly, independent relative phases, and thirdly, some dependent relative phases for resolving the remaining discrete ambiguities. A rule of ambiguity elimination is applied, which is based on the closure of a chain of consecutive independent relative phases, by means of the ad-hoc dependent one. A generalization of this rule is given, for the case of a non-diagonal matrix connecting observables and bilinear combinations of amplitudes. (author) 18 refs.

  16. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    Science.gov (United States)

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  17. Amplitude death and spatiotemporal bifurcations in nonlocally delay-coupled oscillators

    International Nuclear Information System (INIS)

    Guo, Yuxiao; Niu, Ben

    2015-01-01

    Amplitude death and spatiotemporal oscillations are remarkable patterns in coupled systems. We consider a ring of n identical oscillators with distance-dependent couplings and time delay. The amplitude death region is the intersection of three stable regions. Employing the method of multiple scales and normal form theory, the stability and criticality of spatiotemporal oscillations are determined. Around the amplitude death boundary there exist one branch of synchronized oscillations, n − 3 branches of co-existing phase-locked oscillations, n branches of mirror-reflecting oscillations, n branches of standing-wave oscillations, one branch of quasiperiodic oscillations and two branches of co-existing synchronized oscillations. It is proved that amplitude death is robust to small inhomogeneity of couplings, and the stability of synchronized or phase-locked oscillations inherits that of the individual decoupled oscillator. For the arbitrary form of coupling functions, some general results are also obtained for the thermodynamic limit. Finally, two examples are given to support the main results. (paper)

  18. Singularities in four-body final-state amplitudes

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1978-01-01

    Like three-body amplitudes, four-body amplitudes have subenergy threshold singularities over and above total-energy singularities. In the four-body problem we encounter a new type of subenergy singularity besides the usual two- and three-body subenergy threshold singularities. This singularity will be referred to as ''independent-pair threshold singularity'' and involves pair-subenergy threshold singularities in each of the two independent pair subenergies in four-body final states. We also study the particularly interesting case of resonant two- and three-body interactions in the four-body isobar model and the rapid (singular) dependence of the isobar amplitudes they generate in the four-body phase space. All these singularities are analyzed in the multiple-scattering formalism and it is shown that they arise from the ''next-to-last'' rescattering and hence may be represented correctly by an approximate amplitude which has that rescattering

  19. Changes in the Amplitude and Phase of the Annual Cycle: quantifying from surface wind series in China

    Science.gov (United States)

    Feng, Tao

    2013-04-01

    Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. Changes in the timing of seasons, especially the wind season, have gained much attention worldwide in recent decade or so. We introduce long-range correlated surrogate data to Ensemble Empirical Mode Decomposition method, which represent the statistic characteristics of data better than white noise. The new method we named Ensemble Empirical Mode Decomposition with Long-range Correlated noise (EEMD-LRC) and applied to 600 station wind speed records. This new method is applied to investigate the trend in the amplitude of the annual cycle of China's daily mean surface wind speed for the period 1971-2005. The amplitude of seasonal variation decrease significantly in the past half century over China, which can be well explained by Annual Cycle component from EEMD-LRC. Furthermore, the phase change of annual cycle lead to strongly shorten of wind season in spring, and corresponding with strong windy day frequency change over Northern China.

  20. Small--radiation-amplitude dynamical voltage model of an irradiated, externally unbiased Josephson tunnel junction

    International Nuclear Information System (INIS)

    McAdory, R.T. Jr.

    1988-01-01

    A theory is presented for the nonequilibrium voltage states of an irradiated Josephson junction shunted by an external resistor but with no external current or voltage biasing. This device, referred to as a free-running Josephson junction, is modeled in a small--radiation-amplitude, deterministic regime extending the previous work of Shenoy and Agarwal. The time-averaged induced voltage is treated as a dynamical variable, the external radiation is modeled as a current source, and the induced junction-radiation vector potential, with and without a mode structure, is treated to first order in the driving currents. A dynamical equation for the time-averaged induced voltage yields a (nonequilibrium) steady-state relation between the time-averaged induced voltage and the incident radiation amplitude valid for a wide range of voltages, including zero. Regions of bistability occur in the voltage--versus--incident-amplitude curves, some of which are dependent on the external resistor. The zero-voltage state breaks down, as the external radiation amplitude is increased, at a critical value of the incident-radiation amplitude inversely proportional to the external resistance

  1. Amplitude chimeras and chimera death in dynamical networks

    International Nuclear Information System (INIS)

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2016-01-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions. (paper)

  2. Research proposal on : amplitude modulated reflectometry system for JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, T.; Estrada, T.; Luna, E. de la.

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps' in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  3. Compensating amplitude-dependent tune-shift without driving fourth-order resonances

    Science.gov (United States)

    Ögren, J.; Ziemann, V.

    2017-10-01

    If octupoles are used in a ring to correct the amplitude-dependent tune-shift one normally tries to avoid that the octupoles drive additional resonances. Here we consider the optimum placement of octupoles that only affects the amplitude-dependent tune-shift, but does not drive fourth-order resonances. The simplest way turns out to place three equally powered octupoles with 60 ° phase advance between adjacent magnets. Using two such octupole triplets separated by a suitable phase advance cancels all fourth-order resonance driving terms and forms a double triplet we call a six-pack. Using three six-packs at places with different ratios of the beta functions allows to independently control all amplitude-dependent tune-shift terms without exciting additional fourth-order resonances in first order of the octupole excitation.

  4. A study on the flow induced vibration in two phase flow under heating and non-heating conditions

    International Nuclear Information System (INIS)

    Kim, Dae Hun

    2007-02-01

    Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and

  5. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  6. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    Science.gov (United States)

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  7. Individualized Low-Amplitude Seizure Therapy: Minimizing Current for Electroconvulsive Therapy and Magnetic Seizure Therapy

    Science.gov (United States)

    Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H

    2015-01-01

    Electroconvulsive therapy (ECT) at conventional current amplitudes (800–900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112–174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST. PMID:25920013

  8. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  9. Amplitude control of the track-induced self-excited vibration for a maglev system.

    Science.gov (United States)

    Zhou, Danfeng; Li, Jie; Zhang, Kun

    2014-09-01

    The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Dynamics of a nonlinear oscillator and a low-amplitude frequency-modulated wave

    International Nuclear Information System (INIS)

    White, R.C.; McNamara, B.

    1987-01-01

    When the frequency of a small amplitude plane wave is varied slowly over a large enough bandwidth and this wave is incident upon a nonlinear oscillator, the resulting perturbed motion can exhibit stochastic behavior. Applications for the study of this system are wide and varied. We apply Lie-transform perturbation theory and mapping techniques in the analysis of the stochastic transition and the consequent induced diffusion in the oscillator phase space. A constant of the motion to the first order in a peturbation parameter is calculated, a mapping approximation is derived, and diffusion calculations from the mapping are given. Copyright 1987 Academic Press, Inc

  11. Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond.

    Science.gov (United States)

    Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting

    2010-06-21

    In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).

  12. The zerology of kaon-nucleon forward scattering amplitudes

    International Nuclear Information System (INIS)

    Dumbrajs, O.

    1981-01-01

    It has been realized for a long time that zeros of the forward kaon-nucleon scattering amplitudes are useful in correlating different low and high-energy scattering parameters and in providing a consistency test of available data. The simplest possibility of exploring zeros is to evaluate the ordinary dispersion relations in the complex energy plane. The more natural way of bringing zeros of amplitudes into play is to consider either one of the more sophisticated forms of dispersion relations: i) phase dispersion relations, ii) inverse-amplitude dispersion relations, iii) logarithmic dispersion relations, or to apply the maximum modulus theorem and a factorization theorem. The author concentrates on the use of logarithmic dispersion relations because this approach seems to be the most convenient one for future extensions to nonforward scattering data analyses based on the zeros of the amplitude. (Auth.)

  13. Shear induced phase transitions induced in edible fats

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  14. Simple analytical expressions for the analysis of the phase-dependent electromagnetically induced transparency in a double-Λ atomic scheme

    International Nuclear Information System (INIS)

    Dimitrijević, J; Arsenović, D

    2012-01-01

    We study a double-Λ atomic scheme that interacts with four laser light beams so that a closed loop of radiation-induced transitions is formed. When specific relations for field phases, frequencies and amplitudes are satisfied, coherent superpositions (the so-called ‘dark states’) can be formed in a double-Λ, which leads to the well-known effect of electromagnetically induced transparency (EIT). If the interaction scheme in a double-Λ system is such that a closed loop is formed, the relative phase of the laser light fields becomes very important. We analyze here the effect of the lasers' relative phase on the EIT in double-Λ configuration of levels. The theoretical study of interactions of lasers with a double-Λ atomic scheme is commonly conducted by solving the optical Bloch equations (OBEs). We use here a perturbative method for solving OBEs, where the interaction of lasers with double-Λ is considered a perturbation. An advantage of the perturbative method is that it generally produces simpler solutions, and analytical expressions can be obtained. We present analytical expressions for the lower-order corrections of the EIT signal. Our results show that the EIT by the perturbative method can be approximated by the sum of products of complex Lorentzians. Through these expressions, we see in what way the relative phase affects the overall EIT profile. (paper)

  15. The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks.

    Science.gov (United States)

    Flanagan, Sheila; Goswami, Usha

    2018-03-01

    Recent models of the neural encoding of speech suggest a core role for amplitude modulation (AM) structure, particularly regarding AM phase alignment. Accordingly, speech tasks that measure linguistic development in children may exhibit systematic properties regarding AM structure. Here, the acoustic structure of spoken items in child phonological and morphological tasks, phoneme deletion and plural elicitation, was investigated. The phase synchronisation index (PSI), reflecting the degree of phase alignment between pairs of AMs, was computed for 3 AM bands (delta, theta, beta/low gamma; 0.9-2.5 Hz, 2.5-12 Hz, 12-40 Hz, respectively), for five spectral bands covering 100-7250 Hz. For phoneme deletion, data from 94 child participants with and without dyslexia was used to relate AM structure to behavioural performance. Results revealed that a significant change in magnitude of the phase synchronisation index (ΔPSI) of slower AMs (delta-theta) systematically accompanied both phoneme deletion and plural elicitation. Further, children with dyslexia made more linguistic errors as the delta-theta ΔPSI increased. Accordingly, ΔPSI between slower temporal modulations in the speech signal systematically distinguished test items from accurate responses and predicted task performance. This may suggest that sensitivity to slower AM information in speech is a core aspect of phonological and morphological development.

  16. Transversity Amplitudes in Hypercharge Exchange Processes; Amplitudes de transversidad en procesos de intercambio de hipercarga

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Benitez de Lugo, M.

    1979-07-01

    In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.

  17. Amplitude analysis of $D^0\\rightarrow K^+K^-\\pi^+\\pi^-$ and its subsequent use in measuring the CKM phase $\\gamma$ through $B^{\\pm}\\rightarrow D(\\rightarrow K^+K^-\\pi^+\\pi^-)K^{\\pm}$ decays at LHCb

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00392618

    An amplitude analysis of the 4-body charmed decay $D^0\\rightarrow K^+K^-\\pi^+\\pi^-$ has been performed using data collected from symmetric electron-positron collisions at the CLEO experiment. Both flavour tagged and CP tagged data are utilised in the analysis, making it unique among amplitude analyses performed at other experiments and providing extra sensitivity to the phases of the amplitude components. This analysis uses a data driven regularisation method to determine which of the multitude of possible amplitude components to include in the amplitude model. The dominant contributions are found to be $D^0 \\to \\phi(1020) \\, \\rho^0(770)$, $D^0 \\to K^- \\, K_{1}(1270)^{+}$ and $D^0 \\to K^- \\, K_{1}(1400)^{+}$. Tests for CP violation in the $D$ system are performed using the amplitude model; no evidence for CP violation is found. The amplitude model obtained is crucial input for a model-dependent measurement of the CP-violating phase $\\gamma$ using $B^\\pm \\to D(\\to K^+K^-\\pi^+\\pi^-)K^\\pm$ decays, which remains...

  18. The influence of stimulus phase duration on discomfort and electrically induced torque of quadriceps femoris

    Directory of Open Access Journals (Sweden)

    Richard E. Liebano

    2013-10-01

    Full Text Available BACKGROUND: Although a number of studies have compared the influence of different electrical pulse parameters on maximum electrically induced torque (MEIT and discomfort, the role of phase duration has been poorly investigated. OBJECTIVE: To examine the variation in muscle torque and discomfort produced when electrically stimulating quadriceps femoris using pulsed current with three different phase durations in order to establish whether there are any advantages or disadvantages in varying the phase duration over the range examined. METHOD: This is a two repeated-measures, within-subject study conducted in a research laboratory. The study was divided into 2 parts with 19 healthy young adults in each part.In part 1, MEIT was determined for each phase duration (400, 700, and 1000 µs, using a biphasic pulsed current at a frequency of 50 Hz. In part 2, stimulus amplitude was increased until the contractions reached 40% of maximum voluntary isometric contraction (MVIC and the associated discomfort produced by each phase duration was measured. RESULTS: In part 1 of the study, we found that the average MEITs generated with each phase duration (400, 700, and 1000 µs were 55.0, 56.3, and 58.0% of MVIC respectively, but the differences were not statistically significant (p=.45. In part 2, we found a statistically significant increase in discomfort over the same range of phase durations. The results indicate that, for a given level of torque production, discomfort increases with increasing phase duration (p=.008. CONCLUSIONS: Greater muscle torque cannot be produced by increasing the stimulus phase duration over the range examined. Greater discomfort is produced by increasing the stimulus phase duration.

  19. Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter.

    Science.gov (United States)

    Yuan, Wenjia; Shen, Weidong; Zhang, Yueguang; Liu, Xu

    2014-05-05

    Dielectric multilayer beam splitter with differential phase shift on transmission and reflection for division-of-amplitude photopolarimeter (DOAP) was presented for the first time to our knowledge. The optimal parameters for the beam splitter are Tp = 78.9%, Ts = 21.1% and Δr - Δt = π/2 at 532nm at an angle of incidence of 45°. Multilayer anti-reflection coating with low phase shift was applied to reduce the backside reflection. Different design strategies that can achieve all optimal targets at the wavelength were tested. Two design methods were presented to optimize the differential phase shift. The samples were prepared by ion beam sputtering (IBS). The experimental results show good agreement with those of the design. The ellipsometric parameters of samples were measured in reflection (ψr, Δr) = (26.5°, 135.1°) and (28.2°, 133.5°), as well as in transmission (ψt, Δt) = (62.5°, 46.1°) and (63.5°, 46°) at 532.6nm. The normalized determinant of instrument matrix to evaluate the performance of samples is respectively 0.998 and 0.991 at 532.6nm.

  20. Diagnostic value of amplitude-phase analysis in myocardial infarct. Comparison with thallium perfusion scintigraphy and contrast ventrilography

    International Nuclear Information System (INIS)

    Garcheva, M.; Trindev, P.; Shejretova, E.; Stoyanova, N.; Kaloyanova, P.; Khadzhikostova, Kh.

    1990-01-01

    The evaluation is based on the results of investigation of 34 patients who have had myocardial infarct without rhythm disturbances. Compared to contrast ventrilography, the amplitude-phase analysis (APA) of 'rest' radionuclide ventrilography show 80% sensitivity and 100% specificity, as well as high accuracy in determination of the type and localization of the kinetic disturbances. The comparison with the thallium perfusion scintigraphy demonstrates the possibility of APA to vizualize abnormal kinetic area of the myocardial wall and shows its independent significance in the cases of doubtful findings. APA is a powerful tool for unambigious differentiating of hypokinetic from akinetic and diskinetic areas. 1 tab., 1 fig., 4 refs

  1. Phorbol-ester-induced down-regulation of protein kinase C in mouse pancreatic islets. Potentiation of phase 1 and inhibition of phase 2 of glucose-induced insulin secretion

    DEFF Research Database (Denmark)

    Thams, P; Capito, K; Hedeskov, C J

    1990-01-01

    and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1...

  2. Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography.

    Science.gov (United States)

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-09-05

    A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.

  3. Simulation of a circular phased array for a portable ultrasonic polar scan

    Science.gov (United States)

    Daemen, Jannes; Kersemans, Mathias; Martens, Arvid; Verboven, Erik; Delrue, Steven; Van Paepegem, Wim; Degrieck, Joris; Van Den Abeele, Koen

    2018-04-01

    The development of new composite materials, often anisotropic in nature, requires intricate approaches to characterize these materials and to detect internal defects. The Ultrasonic Polar Scan (UPS) is able to achieve both goals. During an UPS experiment, a material spot is insonified at several angles Ψ(θ,ϕ), after which the reflected or transmitted signal is recorded. While excellent results have been obtained using an in-house developed 5-axis scanner, UPS measurements with the current set-up are too lengthy and cumbersome for in-situ industrial application. Therefore, we propose to replace the complex mechanical steering of the transducers by a hemispherical phased array consisting of small PZT elements. This allows to create a compact and portable setup without compromising the current data quality. By successively activating a specific set of elements of the array and choosing appropriate inter-element time delays, the beam can be electronically steered from any angle to a fixed position on the targeted sample. Consequently, UPS reflection measurements can be performed at this position from a wide range of angles in a timeframe of seconds. Additionally, by using apodization windows, it is possible to efficiently reduce the intensity of unwanted side lobes and to create a phase profile which closely resembles that of a bounded plane wave, leading to an easier interpretation of the recorded data. The appropriate time delays and apodization parameters can be found though a multi-objective inverse problem in which both the phase profile and the side lobe reduction are optimized. This approach enables the creation of an effective beam profile to be used during UPS experiments for the characterization and inspection of composite materials. Our simulation approach is a crucial step towards a next-generation UPS device for industrial applications and in-field measurements.

  4. Phase-controlled coherent population trapping in superconducting quantum circuits

    International Nuclear Information System (INIS)

    Cheng Guang-Ling; Wang Yi-Ping; Chen Ai-Xi

    2015-01-01

    We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. (paper)

  5. Fabrication of fiber optic long period gratings operating at the phase matching turning point using an amplitude mask

    Science.gov (United States)

    Hromadka, J.; Correia, R.; Korposh, S.

    2016-05-01

    A fast method for the fabrication of the long period gratings (LPG) optical fibres operating at or near the phase matching turning point (PMTP) with the period of 109.0, 109.5 and 110.0 μm based on an amplitude mask writing system is described. The proposed system allows fabricating 3 cm long LPG sensors operating at PMPT within 20 min that is approximately 8 times faster than point-by-point approach. The reproducibility of the fabrication process was thoroughly studied. The response of the fabricated LPGs to the external change of the refractive index was investigated using water and methanol.

  6. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  7. Subwavelength atom localization via amplitude and phase control of the absorption spectrum-II

    OpenAIRE

    Kapale, Kishore T.; Zubairy, M. Suhail

    2005-01-01

    Interaction of the internal states of an atom with spatially dependent standing-wave cavity field can impart position information of the atom passing through it leading to subwavelength atom localization. We recently demonstrated a new regime of atom localization [Sahrai {\\it et al.}, Phys. Rev. A {\\bf 72}, 013820 (2005)], namely sub-half-wavelength localization through phase control of electromagnetically induced transparency. This regime corresponds to extreme localization of atoms within a...

  8. Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States); Wang, Qun [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China)

    2014-06-15

    We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N−1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N − 1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.

  9. Frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency for gravitational-wave interferometers

    International Nuclear Information System (INIS)

    Mikhailov, Eugeniy E.; Goda, Keisuke; Corbitt, Thomas; Mavalvala, Nergis

    2006-01-01

    We study the effects of frequency-dependent squeeze-amplitude attenuation and squeeze-angle rotation by electromagnetically induced transparency (EIT) on gravitational-wave (GW) interferometers. We propose the use of low-pass, bandpass, and high-pass EIT filters, an S-shaped EIT filter, and an intracavity EIT filter to generate frequency-dependent squeezing for injection into the antisymmetric port of GW interferometers. We find that the EIT filters have several advantages over the previous filter designs with regard to optical losses, compactness, and the tunability of the filter linewidth

  10. Magnitude and Peak Amplitude Relationship for Microseismicity Induced by a Hydraulic Fracture Experiment

    Science.gov (United States)

    Smith, T.; Arce, A. C.; Ji, C.

    2016-12-01

    Waveform cross-correlation technique is widely used to improve the detection of small magnitude events induced by hydraulic fracturing. However, when events are detected, assigning a reliable magnitude is a challenging task, especially considering their small signal amplitude and high background noise during injections. In this study, we adopt the Match & Locate algorithm (M&L, Zhang and Wen, 2015) to analyze seven hours of continuous seismic observations from a hydraulic fracturing experiment in Central California. The site of the stimulated region is only 300-400m away from a 16-receiver vertical-borehole array which spans 230 m. The sampling rate is 4000 Hz. Both the injection sites and borehole array are more than 1.7 km below the surface. This dataset has previously been studied by an industry group, producing a catalog of 1134 events with moment magnitudes (Mw) ranging from -3.1 to -0.9. In this study, we select 202 events from this catalog with high signal to noise ratios to use as templates. Our M&L analysis produces a new catalog that contains 2119 events, which is 10 times more detections than the number of templates and about two times the original catalog. Using these two catalogs, we investigate the relationship of moment magnitude difference (ΔMW) and local magnitude difference (ΔML) between the detected event and corresponding template event. ΔML is computed using the peak amplitude ratio between the detected and template event for each channel. Our analysis yields an empirical relationship of ΔMW=0.64-0.65ΔML with an R2 of 0.99. The coefficient of 2/3 suggests that the information of the event's corner frequency is entirely lost (Hanks and Boore, 1984). The cause might not be unique, which implies that Earth's attenuation at this depth range (>1.7 km) is significant; or the 4000 Hz sampling rate is not sufficient. This relationship is crucial to estimate the b-value of the microseismicity induced by hydraulic fracture experiments. The analysis

  11. Transversity Amplitudes in Hypercharge Exchange Processes

    International Nuclear Information System (INIS)

    Aguilar Benitez de Lugo, M.

    1979-01-01

    ' In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used in processes having a pure spin configuration, as well as the more relevant results obtained with data from K p and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs

  12. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2π The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( ∼ 2π ). (Author) 2 refs

  13. Amplitude extraction in pseudoscalar-meson photoproduction: towards a situation of complete information

    International Nuclear Information System (INIS)

    Nys, Jannes; Vrancx, Tom; Ryckebusch, Jan

    2015-01-01

    A complete set for pseudoscalar-meson photoproduction is a minimum set of observables from which one can determine the underlying reaction amplitudes unambiguously. The complete sets considered in this work involve single- and double-polarization observables. It is argued that for extracting amplitudes from data, the transversity representation of the reaction amplitudes offers advantages over alternate representations. It is shown that with the available single-polarization data for the p(γ,K + )Λ reaction, the energy and angular dependence of the moduli of the normalized transversity amplitudes in the resonance region can be determined to a fair accuracy. Determining the relative phases of the amplitudes from double-polarization observables is far less evident. (paper)

  14. Periodic instantons and scattering amplitudes

    International Nuclear Information System (INIS)

    Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.

    1991-04-01

    We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)

  15. Injection-locked single-mode VCSEL for orthogonal multiplexing and amplitude noise suppression

    DEFF Research Database (Denmark)

    Chipouline, Arkadi; Lyubopytov, Vladimir S.; Malekizandi, Mohammadreza

    2017-01-01

    It has been shown earlier, that the injection locked semiconductor lasers enable effective amplitude noise suppression [1] and makes possible an extra level of signal multiplexing-orthogonal modulation [2], where DPSK and ASK NRZ channels propagate at the same wavelength [3]. In our work we use...... an injection-locked 1550 nm VCSEL as a slave laser providing separation of amplitude and phase modulations, carrying independent information flows. To validate the possibility of phase modulation extraction by an injection-locked VCSEL, an experimental setup shown in Fig. 1 has been built....

  16. Amplitude-cyclic frequency decomposition of vibration signals for bearing fault diagnosis based on phase editing

    Science.gov (United States)

    Barbini, L.; Eltabach, M.; Hillis, A. J.; du Bois, J. L.

    2018-03-01

    In rotating machine diagnosis different spectral tools are used to analyse vibration signals. Despite the good diagnostic performance such tools are usually refined, computationally complex to implement and require oversight of an expert user. This paper introduces an intuitive and easy to implement method for vibration analysis: amplitude cyclic frequency decomposition. This method firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The intuitive idea is that in a rotating machine different components contribute vibrations at different amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears. This paper also introduces a new quantity, the decomposition squared envelope spectrum, which enables separation between the components of a rotating machine. The amplitude cyclic frequency decomposition and the decomposition squared envelope spectrum are tested on real word signals, both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft engine. In addition a benchmark comparison to the spectral correlation method is presented.

  17. Responses of Medullary Lateral Line Units of the Goldfish, Carassius auratus, to Amplitude-Modulated Sinusoidal Wave Stimuli

    Directory of Open Access Journals (Sweden)

    Ramadan Ali

    2010-01-01

    Full Text Available This paper describes the responses of brainstem lateral line units in goldfish, Carassius auratus, to constant-amplitude and to amplitude-modulated sinusoidal water motions. If stimulated with constant-amplitude sinusoidal water motions, units responded with phasic (50% or with sustained (50% increases in dicharge rate. Based on isodisplacement curves, units preferred low (33 Hz, 12.5%, mid (50 Hz, 10% and 100 Hz, 30% or high (200 Hz, 47.5% frequencies. In most units, responses were weakly phase locked to the carrier frequency. However, at a carrier frequency of 50 Hz or 100 Hz, a substantial proportion of the units exhibited strong phase locking. If stimulated with amplitude-modulated water motions, units responded with a burst of discharge to each modulation cycle, that is, units phase locked to the amplitude modulation frequency. Response properties of brainstem units were in many respects comparable to those of midbrain units, suggesting that they emerge first in the lateral line brainstem.

  18. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  19. Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress.

    Science.gov (United States)

    Pascua-Maestro, Raquel; Diez-Hermano, Sergio; Lillo, Concepción; Ganfornina, Maria D; Sanchez, Diego

    2017-02-01

    Environmental insults such as oxidative stress can damage cell membranes. Lysosomes are particularly sensitive to membrane permeabilization since their function depends on intraluminal acidic pH and requires stable membrane-dependent proton gradients. Among the catalog of oxidative stress-responsive genes is the Lipocalin Apolipoprotein D (ApoD), an extracellular lipid binding protein endowed with antioxidant capacity. Within the nervous system, cell types in the defense frontline, such as astrocytes, secrete ApoD to help neurons cope with the challenge. The protecting role of ApoD is known from cellular to organism level, and many of its downstream effects, including optimization of autophagy upon neurodegeneration, have been described. However, we still cannot assign a cellular mechanism to ApoD gene that explains how this protection is accomplished. Here we perform a comprehensive analysis of ApoD intracellular traffic and demonstrate its role in lysosomal pH homeostasis upon paraquat-induced oxidative stress. By combining single-lysosome in vivo pH measurements with immunodetection, we demonstrate that ApoD is endocytosed and targeted to a subset of vulnerable lysosomes in a stress-dependent manner. ApoD is functionally stable in this acidic environment, and its presence is sufficient and necessary for lysosomes to recover from oxidation-induced alkalinization, both in astrocytes and neurons. This function is accomplished by preventing lysosomal membrane permeabilization. Two lysosomal-dependent biological processes, myelin phagocytosis by astrocytes and optimization of neurodegeneration-triggered autophagy in a Drosophila in vivo model, require ApoD-related Lipocalins. Our results uncover a previously unknown biological function of ApoD, member of the finely regulated and evolutionary conserved gene family of extracellular Lipocalins. They set a lipoprotein-mediated regulation of lysosomal membrane integrity as a new mechanism at the hub of many cellular

  20. Optimized phase gradient measurements and phase-amplitude interplay in optical coherence elastography

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Matveyev, Alexander L.; Matveev, Lev A.; Gelikonov, Grigory V.; Sovetsky, Aleksandr A.; Vitkin, Alex

    2016-11-01

    In compressional optical coherence elastography, phase-variation gradients are used for estimating quasistatic strains created in tissue. Using reference and deformed optical coherence tomography (OCT) scans, one typically compares phases from pixels with the same coordinates in both scans. Usually, this limits the allowable strains to fairly small values advantages of the proposed optimized phase-variation methodology.

  1. Study of the pion photoproduction amplitudes in the boundary of the physical region

    International Nuclear Information System (INIS)

    Mellado, I.

    1980-01-01

    The γsub(p) → π + n and γsub(n) → π - n amplitudes are determined in the resonance energy region for cos theta - +-1, by using modulus-phase dispersion relations and experimental differential cross section data. Numerical values for these amplitudes and for the corresponding isoscalar and isovector components are given. The isoscalar and isovector couplings of some resonances appearing in the amplitudes are also determined. (author)

  2. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    Science.gov (United States)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  3. l-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans.

    Science.gov (United States)

    Yasuo, Shinobu; Iwamoto, Ayaka; Lee, Sang-Il; Ochiai, Shotaro; Hitachi, Rina; Shibata, Satomi; Uotsu, Nobuo; Tarumizu, Chie; Matsuoka, Sayuri; Furuse, Mitsuhiro; Higuchi, Shigekazu

    2017-12-01

    Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood. Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans. Methods: Male CBA/N mice were orally administered 1 of 20 l-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before l-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of l-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase. Results: l-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P light-dark cycle by 6 h, l-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, l-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs-l-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances. © 2017 American Society for Nutrition.

  4. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    Science.gov (United States)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and

  5. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB.

    Science.gov (United States)

    Liu, S; Cai, H; DeRose, C T; Davids, P; Pomerene, A; Starbuck, A L; Trotter, D C; Camacho, R; Urayama, J; Lentine, A

    2017-05-15

    We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 - 1640 nm and 95 nm from 1280 - 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.

  6. Effects of Relaxing Music on Mental Fatigue Induced by a Continuous Performance Task: Behavioral and ERPs Evidence.

    Science.gov (United States)

    Guo, Wei; Ren, Jie; Wang, Biye; Zhu, Qin

    2015-01-01

    The purpose of this study was to investigate whether listening to relaxing music would help reduce mental fatigue and to maintain performance after a continuous performance task. The experiment involved two fatigue evaluation phases carried out before and after a fatigue inducing phase. A 1-hour AX-continuous performance test was used to induce mental fatigue in the fatigue-inducing phase, and participants' subjective evaluation on the mental fatigue, as well as their neurobehavioral performance in a Go/NoGo task, were measured before and after the fatigue-inducing phase. A total of 36 undergraduate students (18-22 years) participated in the study and were randomly assigned to the music group and control group. The music group performed the fatigue-inducing task while listening to relaxing music, and the control group performed the same task without any music. Our results revealed that after the fatigue-inducing phase, (a) the music group demonstrated significantly less mental fatigue than control group, (b) reaction time significantly increased for the control group but not for the music group, (c) larger Go-P3 and NoGo-P3 amplitudes were observed in the music group, although larger NoGo-N2 amplitudes were detected for both groups. These results combined to suggest that listening to relaxing music alleviated the mental fatigue associated with performing an enduring cognitive-motor task.

  7. Quantum model for electro-optical amplitude modulation.

    Science.gov (United States)

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  8. Phase-locked flux-flow Josephson oscillator

    DEFF Research Database (Denmark)

    Ustinov, A. V.; Mygind, Jesper; Oboznov, V. A.

    1992-01-01

    We report on the observation of large rf induced steps due to phase-locking of unidirectional flux-flow motion in long quasi-one-dimensional Josephson junctions. The external microwave irradiation in the frequency range 62–77 GHz was applied from the edge of the junction at which the fluxons enter....... The dependence of the amplitude of the phase-locked step on external magnetic field and microwave power has been measured. The observed zero-crossing steps have potential application in Josephson voltage standards. A simple model for the flux-flow as determined by the microwave driven boundary gate at the edge...

  9. Amplitude modulation reflectometer for FTU

    International Nuclear Information System (INIS)

    Zerbini, M.; Buratti, P.; Centioli, C.; Amadeo, P.

    1995-06-01

    Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed

  10. Terahertz bandwidth all-optical Hilbert transformers based on long-period gratings.

    Science.gov (United States)

    Ashrafi, Reza; Azaña, José

    2012-07-01

    A novel, all-optical design for implementing terahertz (THz) bandwidth real-time Hilbert transformers is proposed and numerically demonstrated. An all-optical Hilbert transformer can be implemented using a uniform-period long-period grating (LPG) with a properly designed amplitude-only grating apodization profile, incorporating a single π-phase shift in the middle of the grating length. The designed LPG-based Hilbert transformers can be practically implemented using either fiber-optic or integrated-waveguide technologies. As a generalization, photonic fractional Hilbert transformers are also designed based on the same optical platform. In this general case, the resulting LPGs have multiple π-phase shifts along the grating length. Our numerical simulations confirm that all-optical Hilbert transformers capable of processing arbitrary optical signals with bandwidths well in the THz range can be implemented using feasible fiber/waveguide LPG designs.

  11. There is a continuum ambiguity for elastic πN amplitudes

    International Nuclear Information System (INIS)

    Atkinson, D.; Roo, M. de; Polman, T.J.T.M.

    1984-01-01

    The implicit-function method of constructing phase-factor continuum ambiguities in phase-shift analysis is briefly reviewed, and new numerical examples are given of ambiguities in πN phase shifts at 1997 MeV. Since the ambiguous amplitudes differ by more than 5%, while the corresponding cross sections and polarizations are equal, to better than a computational accuracy of 0.007%, numerical credence is given to the theoretical claim that the continuum ambiguity exists. (orig.)

  12. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex

    Science.gov (United States)

    Raymond, J. L.; Lisberger, S. G.

    1996-01-01

    We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.

  13. Monodromy relations in higher-loop string amplitudes

    Directory of Open Access Journals (Sweden)

    S. Hohenegger

    2017-12-01

    Full Text Available New monodromy relations of loop amplitudes are derived in open string theory. We particularly study N-point (planar and non-planar one-loop amplitudes described by a world-sheet cylinder and derive a set of relations between subamplitudes of different color orderings. Various consistency checks are performed by matching α′-expansions of planar and non-planar amplitudes involving elliptic iterated integrals with the resulting periods giving rise to two sets of multiple elliptic zeta values. The latter refer to the two homology cycles on the once-punctured complex elliptic curve and the monodromy equations provide relations between these two sets of multiple elliptic zeta values. Furthermore, our monodromy relations involve new objects for which we present a tentative interpretation in terms of open string scattering amplitudes in the presence of a non-trivial gauge field flux. Finally, we provide an outlook on how to generalize the new monodromy relations to the non-oriented case and beyond the one-loop level. Comparing a subset of our results with recent findings in the literature we find therein several serious issues related to the structure and significance of monodromy phases and the relevance of missed contributions from contour integrations.

  14. Entanglement and Teleportation of Pair Cat States in Amplitude Decoherence Channel

    International Nuclear Information System (INIS)

    Xu Hangshi; Xu Jingbo

    2009-01-01

    The dynamic behavior of the entanglement for the pair cat states in the amplitude decoherence channel is studied by adopting the entanglement of formation determined by the concurrence. Then, we consider the teleportation by using joint measurements of the photon-number sum and phase difference with the pair cat states as an entangle resource and discuss the influence of amplitude decoherence on the mean fidelity of the teleportation.

  15. All-fibre source of amplitude squeezed light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Markus; Marquardt, Christoph; Heersink, Joel; Gaber, Tobias; Wietfeld, Andre; Leuchs, Gerd; Andersen, Ulrik L [Institut fuer Optik, Information und Photonik, Max-Planck Forschungsgruppe Universitaet Erlangen-Nuernberg, Staudtstrasse 7/B2, 91058, Erlangen (Germany)

    2004-08-01

    An all-fibre source of amplitude squeezed solitons utilizing the self-phase modulation in an asymmetric Sagnac interferometer is experimentally demonstrated. The asymmetry of the interferometer is passively controlled by an integrated fibre coupler, allowing for the optimization of the noise reduction. We have carefully studied the dependence of the amplitude noise on the asymmetry and the power launched into the Sagnac interferometer. Qualitatively, we find good agreement between the experimental results, a semi-classical theory and earlier numerical calculations (Schmitt et al 1998 Phys. Rev. Lett. 81 2446). The stability and flexibility of this all-fibre source makes it particularly well suited to applications in quantum information science.

  16. Fermionic phase transition induced by the effective impurity in holography

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Li-Qing [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); School of Physics and Electronic Information, Shangrao Normal University,Shangrao 334000 (China); Kuang, Xiao-Mei [Department of Physics, National Technical University of Athens,GR-15780 Athens (Greece); Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Jian-Pin [Institute of Gravitation and Cosmology, Department of Physics,School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-20

    We investigate the holographic fermionic phase transition induced by the effective impurity in holography, which is introduced by massless scalar fields in Einstein-Maxwell-massless scalar gravity. We obtain a phase diagram in (α,T) plane separating the Fermi liquid phase and the non-Fermi liquid phase.

  17. Adjoint method provides phase response functions for delay-induced oscillations.

    Science.gov (United States)

    Kotani, Kiyoshi; Yamaguchi, Ikuhiro; Ogawa, Yutaro; Jimbo, Yasuhiko; Nakao, Hiroya; Ermentrout, G Bard

    2012-07-27

    Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.

  18. How to calculate the Coulomb scattering amplitude

    International Nuclear Information System (INIS)

    Grosse, H.; Narnhofer, H.; Thirring, W.

    1974-01-01

    The derivation of scattering amplitudes for Coulomb scattering is discussed. A derivation of the S-matrix elements for a dense set of states in momentum space is given in the framework of time dependent scattering theory. The convergence of the S-matrix is studied. A purely algebraic derivation of the S-matrix elements and phase shifts is also presented. (HFdV)

  19. BWR stability: analysis of cladding temperature for high amplitude oscillations - 146

    International Nuclear Information System (INIS)

    Pohl, P.; Wehle, F.

    2010-01-01

    Power oscillations associated with density waves in boiling water reactors (BWRs) have been studied widely. Industrial research in this area is active since the invention of the first BWR. Stability measurements have been performed in various plants during commissioning phase but especially the magnitude and divergent nature of the oscillations during the LaSalle Unit 2 nuclear power plant event on March 9, 1988, renewed concern about the state of knowledge on BWR instabilities and possible consequences to fuel rod integrity. The objective of this paper is to present a simplified stability tool, applicable for stability analysis in the non-linear regime, which extends to high amplitude oscillations where inlet reverse flow occurs. In case of high amplitude oscillations a cyclical dryout and rewetting process at the fuel rod may take place, which leads in turn to rapid changes of the heat transfer from the fuel rod to the coolant. The application of this stability tool allows for a conservative determination of the fuel rod cladding temperature in case of high amplitude oscillations during the dryout / re-wet phase. Moreover, it reveals in good agreement to experimental findings the stabilizing effect of the reverse bundle inlet flow, which might be obtained for large oscillation amplitudes. (authors)

  20. Task-induced frequency modulation features for brain-computer interfacing.

    Science.gov (United States)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  1. Task-induced frequency modulation features for brain-computer interfacing

    Science.gov (United States)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  2. Experimental evidence for amplitude death induced by a time-varying interaction

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, K. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Shrimali, M.D. [Department of Physics, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer 305 801 (India); Prasad, Awadhesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Thamilmaran, K., E-mail: maran.cnld@gmail.com [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2014-08-01

    In this paper, we study the time-varying interaction in coupled oscillatory systems. For this purpose, we have designed a novel time-varying resistive network using an analog switch and inverter circuits. We have applied this time-varying resistive network to mutually coupled identical Chua's oscillators. When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators. This has been observed numerically as well as verified through hardware experiments. - Highlights: • We have implemented the time-varying interaction in coupled oscillatory systems. • We have designed a novel time-varying resistive network using an analog switch and inverter circuits. • When the resistances are varied in time, we find that amplitude death arises in coupled identical oscillators.

  3. Frequency-domain inversion using the amplitude of the derivative wavefield with respect to the angular frequency

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    The instantaneous traveltime based inversion was developed to solve the phase wrapping problem, thus generating long-wavelength structures even for a high single-frequency. However, it required aggressive damping to insure proper convergence. A reason for that is the potential for unstable division in the calculation of the instantaneous traveltime for low damping factors. Thus, we propose an inversion algorithm using the amplitude of the derivative wavefield to avoid the unstable division process. Since the amplitude of the derivative wavefield contains the unwrapped-phase information, its inversion has the potential to provide robust inversion results. On the other hand, the damping term rapidly diminishes the amplitude of the derivative wavefield at far source-receiver offsets. As an alternative, we suggest using the logarithmic amplitude of the derivative wavefield. The gradient of this inversion algorithm is obtained by the back-propagation approach, based on the adjoint-state technique. Numerical examples show that the logarithmic-amplitude approach yields better convergent results than the instantaneous traveltime inversion, whereas the pure-amplitude approach does not show much convergence.

  4. 2-vertex Lorentzian spin foam amplitudes for dipole transitions

    Science.gov (United States)

    Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.

    2018-04-01

    We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.

  5. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    Science.gov (United States)

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  6. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    Science.gov (United States)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-06-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  7. Real-Time Amplitude and Phase Imaging of Optically Opaque Objects by Combining Full-Field Off-Axis Terahertz Digital Holography with Angular Spectrum Reconstruction

    Science.gov (United States)

    Yamagiwa, Masatomo; Ogawa, Takayuki; Minamikawa, Takeo; Abdelsalam, Dahi Ghareab; Okabe, Kyosuke; Tsurumachi, Noriaki; Mizutani, Yasuhiro; Iwata, Testuo; Yamamoto, Hirotsugu; Yasui, Takeshi

    2018-04-01

    Terahertz digital holography (THz-DH) has the potential to be used for non-destructive inspection of visibly opaque soft materials due to its good immunity to optical scattering and absorption. Although previous research on full-field off-axis THz-DH has usually been performed using Fresnel diffraction reconstruction, its minimum reconstruction distance occasionally prevents a sample from being placed near a THz imager to increase the signal-to-noise ratio in the hologram. In this article, we apply the angular spectrum method (ASM) for wavefront reconstruction in full-filed off-axis THz-DH because ASM is more accurate at short reconstruction distances. We demonstrate real-time phase imaging of a visibly opaque plastic sample with a phase resolution power of λ/49 at a frame rate of 3.5 Hz in addition to real-time amplitude imaging. We also perform digital focusing of the amplitude image for the same object with a depth selectivity of 447 μm. Furthermore, 3D imaging of visibly opaque silicon objects was achieved with a depth precision of 1.7 μm. The demonstrated results indicate the high potential of the proposed method for in-line or in-process non-destructive inspection of soft materials.

  8. Improving the phase stability of the SLAC rf driveline network for SLC operation

    International Nuclear Information System (INIS)

    Weaver, J.N.; Hogg, H.A.

    1983-01-01

    Successful operation of the Stanford Linear Collider (SLC) will require greater phase stability from the two-mile long rf drive network than previous linac operation did. This paper discusses four proposed modifications of the present system that should help achieve the general objective to reduce all long term temperature and atmospheric pressure induced phase variations to less than 20 0 at 2856 MHz, so that the phase/amplitude detector subsystems, which will control the network output phases relative to a beam reference, will operate within their most accurate ranges

  9. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    Science.gov (United States)

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  10. Thermodynamics aspects of noise-induced phase synchronization.

    Science.gov (United States)

    Pinto, Pedro D; Oliveira, Fernando A; Penna, André L A

    2016-05-01

    In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.

  11. Thermodynamics aspects of noise-induced phase synchronization

    Science.gov (United States)

    Pinto, Pedro D.; Oliveira, Fernando A.; Penna, André L. A.

    2016-05-01

    In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.

  12. Shear-induced phase changes in mixtures

    International Nuclear Information System (INIS)

    Romig, K.D.; Hanley, H.J.M.

    1986-01-01

    A thermodynamic theory to account for the behavior of liquid mixtures exposed to a shear is developed. One consequence of the theory is that shear-induced phase changes are predicted. The theory is based on a thermodynamics that includes specifically the shear rate in the formalism and is applied to mixtures by a straightforward modification of the corresponding states, conformalsolution approach. The approach is general but is used here for a mixture of Lennard-Jones particles with a Lennard-Jones equation of state as a reference fluid. The results are discussed in the context of the Scott and Van Konynenberg phase classification. It is shown that the influence of a shear does affect substantially the type of the phase behavior. Results from the model mixture are equated loosely with those from real polymeric liquids

  13. Flow-induced vibration of steam generator helical tubes subjected to external liquid cross flow and internal two-phase flow

    International Nuclear Information System (INIS)

    Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim

    2005-01-01

    Full text of publication follows: This paper addresses the potential flow-induced vibration problems in a helically-coiled tube steam generator of integral-type nuclear reactor, of which the tubes are subjected to liquid cross flow externally and multi-phase flow externally. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted using a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency and corresponding mode shape of the helical type tubes with various conditions, a finite element analysis code is used. Based on the results of both helical coiled tube steam generator thermal-hydraulic and coiled tube modal analyses, turbulence-induced vibration and fluid-elastic instability analyses are performed. And then the potential for damages on the tubes due to either turbulence-induced vibration or fluid-elastic instability is assessed. In the assessment, special emphases are put on the detailed investigation for the effects of support conditions, coil diameter, and helix pitch on the modal, vibration amplitude and instability characteristics of tubes, from which a technical information and basis needed for designers and regulatory reviewers can be derived. (authors)

  14. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    Science.gov (United States)

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  15. On the low-energy limit of one-loop photon-graviton amplitudes

    International Nuclear Information System (INIS)

    Bastianelli, F.; Corradini, O.; Dávila, J.M.; Schubert, C.

    2012-01-01

    We present first results of a systematic study of the structure of the low-energy limit of the one-loop photon-graviton amplitudes induced by massive scalars and spinors. Our main objective is the search of KLT-type relations where effectively two photons merge into a graviton. We find such a relation at the graviton-photon-photon level. We also derive the diffeomorphism Ward identity for the 1PI one-graviton-N-photon amplitudes.

  16. Multi-phase-field method for surface tension induced elasticity

    Science.gov (United States)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  17. Pressure Induced Phase Transformations in Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Reimanis, Ivar [Colorado School of Mines, Golden, CO (United States); Cioabanu, Cristian [Colorado School of Mines, Golden, CO (United States)

    2017-10-15

    The study of materials with unusual properties offers new insight into structure-property relations as well as promise for the design of novel composites. In this spirit, the PIs seek to (1) understand fundamental mechanical phenomena in ceramics that exhibit pressure-induced phase transitions, negative coefficient of thermal expansion (CTE), and negative compressibility, and (2) explore the effect of these phenomena on the mechanical behavior of composites designed with such ceramics. The broad and long-term goal is to learn how to utilize these unusual behaviors to obtain desired mechanical responses. While the results are expected to be widely applicable to many ceramics, most of the present focus is on silicates, as they exhibit remarkable diversity in structure and properties. Eucryptite, a lithium aluminum silicate (LiAlSiO4), is specifically targeted because it exhibits a pressure-induced phase transition at a sufficiently low pressure to be accessible during conventional materials processing. Thus, composites with eucryptite may be designed to exhibit a novel type of transformation toughening. The PIs have performed a combination of activities that encompass synthesis and processing to control structures, atomistic modeling to predict and understand structures, and characterization to study mechanical behavior. Several materials behavior discoveries were made. It was discovered that small amounts of Zn (as small as 0.1 percent by mol) reverse the sign of the coefficient of thermal expansion of beta-eucryptite from negative to slightly positive. The presence of Zn also significantly mitigates microcracking that occurs during thermal cycling of eucryptite. It is hypothesized that Zn disrupts the Li ordering in beta-eucryptite, thereby altering the thermal expansion behavior. A nanoindentation technique developed to characterize incipient plasticity was applied to examine the initial stages of the pressure induced phase transformation from beta to

  18. Using HERA data to determine the infrared behaviour of the BFKL amplitude

    International Nuclear Information System (INIS)

    Kowalski, H.; Lipatov, L.N.; Hamburg Univ.; Ross, D.A.; Watt, G.

    2010-11-01

    We determine the infrared behaviour of the BFKL forward amplitude for gluon-gluon scattering. Our approach, based on the discrete pomeron solution, leads to an excellent description of the new combined inclusive HERA data at low values of x ( 2 . The phases of this amplitude are sensitive to the non-perturbative gluonic dynamics and could be sensitive to the presence of Beyond-the- Standard-Model particles at very high energies. (orig.)

  19. Analytic properties of high energy production amplitudes in N=4 SUSY

    International Nuclear Information System (INIS)

    Lipatov, L.N.; Hamburg Univ.

    2010-08-01

    We investigate analytic properties of the six point planar amplitude in N=4 SUSY at the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann relations play an important role because they give a possibility to fix the phase structure of the Regge pole and Mandelstam cut contributions. The analyticity and factorization constraints allow us to reproduce the two-loop correction to the 6- point BDS amplitude in N=4 SUSY obtained earlier in the leading logarithmic approximation with the use of the s-channel unitarity. The cut contribution has the Moebius invariant form in the transverse momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge kinematics is also investigated in LLA. (orig.)

  20. Analytic properties of high energy production amplitudes in N=4 SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, L.N. [St. Petersburg Inst. of Nuclear Physics, Gatchina (Russian Federation); Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik

    2010-08-15

    We investigate analytic properties of the six point planar amplitude in N=4 SUSY at the multi-Regge kinematics for final state particles. For inelastic processes the Steinmann relations play an important role because they give a possibility to fix the phase structure of the Regge pole and Mandelstam cut contributions. The analyticity and factorization constraints allow us to reproduce the two-loop correction to the 6- point BDS amplitude in N=4 SUSY obtained earlier in the leading logarithmic approximation with the use of the s-channel unitarity. The cut contribution has the Moebius invariant form in the transverse momentum subspace. The exponentiation hypothesis for the amplitude in the multi-Regge kinematics is also investigated in LLA. (orig.)

  1. A description of phases with induced hybridisation at finite temperatures

    Science.gov (United States)

    Golosov, D. I.

    2018-05-01

    In an extended Falicov-Kimball model, an excitonic insulator phase can be stabilised at zero temperature. With increasing temperature, the excitonic order parameter (interaction-induced hybridisation on-site, characterised by the absolute value and phase) eventually becomes disordered, which involves fluctuations of both its phase and (at higher T) its absolute value. In order to build an adequate mean field description, it is important to clarify the nature of degrees of freedom associated with the phase and absolute value of the induced hybridisation, and the corresponding phase space volume. We show that a possible description is provided by the SU(4) parametrisation on-site. In principle, this allows to describe both the lower-temperature regime where phase fluctuations destroy the long-range order, and the higher temperature crossover corresponding to a decrease of absolute value of the hybridisation relative to the fluctuations level. This picture is also expected to be relevant in other contexts, including the Kondo lattice model.

  2. Solid-solid phase transitions in Fe nanowires induced by axial strain

    International Nuclear Information System (INIS)

    Sandoval, Luis; Urbassek, Herbert M

    2009-01-01

    By means of classical molecular-dynamics simulations we investigate the solid-solid phase transition from a bcc to a close-packed crystal structure in cylindrical iron nanowires, induced by axial strain. The interatomic potential employed has been shown to be capable of describing the martensite-austenite phase transition in iron. We study the stress versus strain curves for different temperatures and show that for a range of temperatures it is possible to induce a solid-solid phase transition by axial strain before the elasticity is lost; these transition temperatures are below the bulk transition temperature. The two phases have different (non-linear) elastic behavior: the bcc phase softens, while the close-packed phase stiffens with temperature. We also consider the reversibility of the transformation in the elastic regimes, and the role of the strain rate on the critical strain necessary for phase transition.

  3. Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Yi Yuan

    2016-07-01

    Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.

  4. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy

    Science.gov (United States)

    Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng

    2016-12-01

    Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.

  5. Does platelet count in platelet-rich plasma influence slope, maximal amplitude and lag phase in healthy individuals? Results of light transmission aggregometry.

    Science.gov (United States)

    Chandrashekar, Vani

    2015-01-01

    Light transmission aggregometry lacks in standardisation and normal reference values are not widely available. The aims of our study were to establish reference ranges for aggregation, slope and lag phase in healthy controls with platelet counts between 150 and 450 × 10(9)/l in platelet-rich plasma (PRP) as well as evaluate the influence of platelet count. Ninety-nine subjects were evaluated with four agonists and divided into two groups based on platelet count and the groups were compared by Student's t-test. There was no difference between the means of the two groups for amplitude and slope barring the lag phase for collagen. Platelet counts between 150 and 450 × 10(9)/l have no effects on light transmission aggregometry and hence adjustment of platelet count is not necessary.

  6. Color guided amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Broedel, Johannes [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA (United States); Dixon, Lance J. [SLAC National Accelerator Laboratory, Stanford University, Stanford, CA (United States)

    2012-07-01

    Amplitudes in gauge thoeries obtain contributions from color and kinematics. While these two parts of the amplitude seem to exhibit different symmetry structures, it turns out that they can be reorganized in a way to behave equally, which leads to the so-called color-kinematic dual representations of amplitudes. Astonishingly, the existence of those representations allows squaring to related gravitational theories right away. Contrary to the Kawaii-Levellen-Tye relations, which have been used to relate gauge theories and gravity previously, this method is applicable not only to tree amplitudes but also at loop level. In this talk, the basic technique is introduced followed by a discussion of the existence of color-kinematic dual representations for amplitudes derived from gauge theory actions which are deformed by higher-operator insertions. In addition, it is commented on the implications for deformed gravitational theories.

  7. Amplitudes and observables in pp elastic scattering at {radical}(s)=7 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, A.K.; Ferreira, E. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, C.P. 68528, Rio de Janeiro, RJ (Brazil); Kodama, T. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, C.P. 68528, Rio de Janeiro, RJ (Brazil); EMMI at FIAS-Frankfurt Institute for Advanced Study, Frankfurt am Main (Germany)

    2013-02-15

    A precise analysis of the pp elastic scattering data at 7 TeV in terms of its amplitudes is performed as an extension of previous studies for lower energies. Slopes B{sub R} and B{sub I} of the real and imaginary amplitudes are independent quantities, and a proper expression for the Coulomb phase is used. The real and imaginary amplitudes are fully disentangled, consistently with forward dispersion relations for amplitudes and for slopes. We present analytic expressions for the amplitudes that cover all t range completely, while values of total cross section {sigma}, ratio {rho}, B{sub I}, and B{sub R} enter consistently to describe forward scattering. It is stressed that the identification of the amplitudes is an essential step for the description of elastic scattering, and pointed out the importance of the experimental investigation of the transition range from non-perturbative to perturbative dynamics, which may confirm the three gluon exchange mechanism observed at lower energies. (orig.)

  8. Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.

  9. Kepler observations of the high-amplitude δ Scuti star V2367 Cyg

    DEFF Research Database (Denmark)

    Balona, L. A.; Lenz, P.; Antoci, V.

    2012-01-01

    We analyse Kepler observations of the high-amplitude δ Scuti (HADS) star V2367 Cyg (KIC 9408694). The variations are dominated by a mode with frequency f1= 5.6611 d−1. Two other independent modes with f2= 7.1490 d−1 and f3= 7.7756 d−1 have amplitudes an order of magnitude smaller than f1. Nearly...... all the light variation is due to these three modes and their combination frequencies, but several hundred other frequencies of very low amplitude are also present. The amplitudes of the principal modes may vary slightly with time. The star has twice the projected rotational velocity of any other HADS...... star, which makes it unusual. We find a correlation between the phases of the combination frequencies and their pulsation frequencies, which is not understood. Since modes of highest amplitude in HADS stars are normally radial modes, we assumed that this would also be true in this star. However...

  10. Large-amplitude dust acoustic shocklets in non-Maxwellian dusty plasmas

    Science.gov (United States)

    Ali, S.; Naeem, Ismat; Mirza, Arshad M.

    2017-10-01

    The formation and propagation of fully nonlinear dust-acoustic (DA) waves and shocks are studied in a non-Maxwellian thermal dusty plasma which is composed of Maxwellian electrons and nonthermal energetic ions with a neutralizing background of negatively charged dust grains. For this purpose, we have solved dust dynamical equations along with quasineutrality equation by using a diagonalization matrix technique. A set of two characteristic wave equations is obtained, which admits both analytical and numerical solutions. Taylor expansion in the small-amplitude limit ( Φ ≪ 1 ) leads to nonlinear effective phase and shock speeds accounting for nonthermal energetic ions. It is numerically shown that DA pulses can be developed into DA shocklets involving the negative electrostatic potential, dust fluid velocity, and dust number density. These structures are significantly influenced by the ion-nonthermality, dust thermal correction, and temporal variations. However, the amplitudes of solitary and shock waves are found smaller in case of Cairns-distributed ions as compared to Kappa-distributed ions due to smaller linear and nonlinear effective phase speeds that cause smaller nonlinearity effects. The present results should be useful for understanding the nonlinear characteristics of large-amplitude DA excitations and nonstationary shocklets in a laboratory non-Maxwellian dusty plasma, where nonthermal energetic ions are present in addition to Maxwellian electrons.

  11. Large amplitude waves and fields in plasmas

    International Nuclear Information System (INIS)

    Angelis, U. de; Naples Univ.

    1990-02-01

    In this review, based mostly on the results of the recent workshop on ''Large Amplitude Waves and Fields in Plasmas'' held at ICTP (Trieste, Italy) in May 1989 during the Spring College on Plasma Physics, I will mostly concentrate on underdense, cold, homogeneous plasmas, discussing some of the alternative (to fusion) uses of laser-plasma interaction. In Part I an outline of some basic non-linear processes is given, together with some recent experimental results. The processes are chosen because of their relevance to the applications or because new interesting developments have been reported at the ICTP workshop (or both). In Part II the excitation mechanisms and uses of large amplitude plasma waves are presented: these include phase-conjugation in plasmas, plasma based accelerators (beat-wave, plasma wake-field and laser wake-field), plasma lenses and plasma wigglers for Free Electron Lasers. (author)

  12. Polymorphism of a lipid extract from Pseudomonas fluorescens: Structure analysis of a hexagonal phase and of a novel cubic phase of extinction symbol Fd--

    International Nuclear Information System (INIS)

    Mariani, P.; Rivas, E.; Delacroix, H.; Luzzati, V.

    1990-01-01

    The phase diagram of the Pseudomonas fluorescens lipid extract is unusual, in the sense that it displays a cubic phase straddled by a hexagonal phase. The hexagonal phase was studied over an extended concentration range, and the reflections were phased on the assumption that the structure contains circular cylinders of known radius. The cubic phase, whose extinction symbol is Fd--, was analyzed by reference to space group No. 227 (Fd3m). The phases of the reflections were determined by using a novel pattern recognition approach, based upon the notion that the average fourth power of the electron density contrast 4 > is dependent on chemical composition but not on physical structure, provided that the function Δr(r) satisfies the constraints = 0 and 2 > = 1. The authors analyzed two cubic samples of different composition: for each of them they generated all the phase combinations compatible with the X-ray scattering data and they searched for those whose 4 > best agrees with the hexagonal phase. They concluded that the chemical composition of the phases being compared must be identical, that the X-ray scattering data should not be truncated artificially, and that the apodization must be mild so that the curvature takes a value intermediate between those corresponding to the raw data of the two phases. The structure may be visualized as a 3D generalization of the lipid monolayer. The structure, moreover, does not belong to the class of the infinite periodic surfaces without intersections

  13. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2017-01-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication

  14. Changes in ENSO amplitude under climate warming and cooling

    Science.gov (United States)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  15. Monocular deprivation of Fourier phase information boosts the deprived eye's dominance during interocular competition but not interocular phase combination.

    Science.gov (United States)

    Bai, Jianying; Dong, Xue; He, Sheng; Bao, Min

    2017-06-03

    Ocular dominance has been extensively studied, often with the goal to understand neuroplasticity, which is a key characteristic within the critical period. Recent work on monocular deprivation, however, demonstrates residual neuroplasticity in the adult visual cortex. After deprivation of patterned inputs by monocular patching, the patched eye becomes more dominant. Since patching blocks both the Fourier amplitude and phase information of the input image, it remains unclear whether deprivation of the Fourier phase information alone is able to reshape eye dominance. Here, for the first time, we show that removing of the phase regularity without changing the amplitude spectra of the input image induced a shift of eye dominance toward the deprived eye, but only if the eye dominance was measured with a binocular rivalry task rather than an interocular phase combination task. These different results indicate that the two measurements are supported by different mechanisms. Phase integration requires the fusion of monocular images. The fused percept highly relies on the weights of the phase-sensitive monocular neurons that respond to the two monocular images. However, binocular rivalry reflects the result of direct interocular competition that strongly weights the contour information transmitted along each monocular pathway. Monocular phase deprivation may not change the weights in the integration (fusion) mechanism much, but alters the balance in the rivalry (competition) mechanism. Our work suggests that ocular dominance plasticity may occur at different stages of visual processing, and that homeostatic compensation also occurs for the lack of phase regularity in natural scenes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  17. Out-of-phase flashing induced instabilities in CIRCUS facility

    Energy Technology Data Exchange (ETDEWEB)

    Christian Pablo Marcel; Van der Hagen, T.H.J.J. [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2005-07-01

    Full text of publication follows: Flashing-induced instabilities are very important during the startup phase of natural-circulation boiling water reactors. To study this type of instability an axial fully scaled facility named CIRCUS was constructed. Experiments at low power and low pressure (typical startup conditions) are carried out on this steam/water natural circulation loop with two parallel risers. A detailed measurement of the void-fraction profile is possible by using needle-probes and the use of glass tubes for the riser and core sections allow to use optical techniques for velocity measurements. The flashing and the mechanism of flashing-induced instabilities are analyzed paying special attention on the strong coupling effect between the two riser channels. It is clear from the experiments that the out-of-phase instability is much more susceptible to occur than the in-phase instability in a system with two parallel risers. The instability region is found as soon as the operational boundary between single-phase and two-phase operation is crossed. The relation between the period of the oscillations and the fluid transient time is also investigated. The stability map constructed using this experimental data is also discussed. (authors)

  18. Relationship between hydrogen-induced phase transformations and pitting nucleation sites in duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liqiu; Yang, Binjie; Qin, Sixiao [University of Science and Technology Beijing (China). Corrosion and Protection Center

    2016-02-15

    This paper demonstrates the hydrogen-induced phase transformation and the associated pitting nucleation sites of 2507 duplex stainless steel using scanning Kelvin probe force microscopy and magnetic force microscopy. The low potential sites in Volta potential images, which are considered as the pitting nucleation sites, are strongly dependent on the hydrogen-induced phase transformation. They firstly initiate on the magnetic martensite laths in the austenite phase or at the ferrite/austenite boundaries, and then appear near the needle-shaped microtwins in the ferrite phase, because of the difference in physicochemical properties of hydrogen-induced phase transformation microstructures.

  19. Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model

    International Nuclear Information System (INIS)

    Zeng Chunhua; Wang Hua

    2012-01-01

    Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.

  20. Electron backscatter diffraction studies of focused ion beam induced phase transformation in cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.G., E-mail: helen.jones@npl.co.uk [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Day, A.P. [Aunt Daisy Scientific Ltd, Claremont House, High St, Lydney GL15 5DX (United Kingdom); Cox, D.C. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2016-10-15

    A focused ion beam microscope was used to induce cubic to hexagonal phase transformation in a cobalt alloy, of similar composition to that of the binder phase in a hardmetal, in a controlled manner at 0°, 45° and 80° ion incident angles. The cobalt had an average grain size of ~ 20 μm, allowing multiple orientations to be studied, exposed to a range of doses between 6 × 10{sup 7} and 2 × 10{sup 10} ions/μm{sup 2}. Electron backscatter diffraction (EBSD) was used to determine the original and induced phase orientations, and area fractions, before and after the ion beam exposure. On average, less phase transformation was observed at higher incident angles and after lower ion doses. However there was an orientation effect where grains with an orientation close to (111) planes were most susceptible to phase transformation, and (101) the least, where grains partially and fully transformed at varying ion doses. - Highlights: •Ion-induced phase change in FCC cobalt was observed at multiple incidence angles. •EBSD was used to study the relationship between grain orientation and transformation. •Custom software analysed ion dose and phase change with respect to grain orientation. •A predictive capability of ion-induced phase change in cobalt was enabled.

  1. Design, fabrication, and testing of stellar coronagraphs for exoplanet imaging

    Science.gov (United States)

    Knight, Justin M.; Brewer, John; Hamilton, Ryan; Ward, Karen; Milster, Tom D.; Guyon, Olivier

    2017-09-01

    Complex-mask coronagraphs destructively interfere unwanted starlight with itself to enable direct imaging of exoplanets. This is accomplished using a focal plane mask (FPM); a FPM can be a simple occulter mask, or in the case of a complex-mask, is a multi-zoned device designed to phase-shift starlight over multiple wavelengths to create a deep achromatic null in the stellar point spread function. Creating these masks requires microfabrication techniques, yet many such methods remain largely unexplored in this context. We explore methods of fabrication of complex FPMs for a Phased-Induced Amplitude Apodization Complex-Mask Coronagraph (PIAACMC). Previous FPM fabrication efforts for PIAACMC have concentrated on mask manufacturability while modeling science yield, as well as assessing broadband wavelength operation. Moreover current fabrication efforts are concentrated on assessing coronagraph performance given a single approach. We present FPMs fabricated using several process paths, including deep reactive ion etching and focused ion beam etching using a silicon substrate. The characteristic size of the mask features is 5μm with depths ranging over 1μm. The masks are characterized for manufacturing quality using an optical interferometer and a scanning electron microscope. Initial testing is performed at the Subaru Extreme Adaptive Optics testbed, providing a baseline for future experiments to determine and improve coronagraph performance within fabrication tolerances.

  2. Variable amplitude fatigue crack growth behavior - a short overview

    International Nuclear Information System (INIS)

    Singh, Konjengbam Darunkumar; Parry, Matthew Roger; Sinclair, Ian

    2011-01-01

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented

  3. Variable amplitude fatigue crack growth behavior - a short overview

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol (United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-03-15

    A short overview concerning variable amplitude (VA) fatigue crack growth behavior is presented in this paper. The topics covered in this review encompass important issues pertaining to both single and repeated overload transients. Reviews on transient post overload effects such as plasticity induced crack closure, crack tip blunting, residual stresses, crack deflection and branching, activation of near threshold mechanisms, strain hardening are highlighted. A brief summary on experimental trends and finite element modelling of overload induced crack closure is also presented.

  4. Amplitude analysis of the anomalous decay η'→π+π-γ

    Science.gov (United States)

    Dai, Ling-Yun; Kang, Xian-Wei; Meißner, Ulf-G.; Song, Xin-Ying; Yao, De-Liang

    2018-02-01

    In this paper we perform an amplitude analysis of η'→π+π-γ and confront it with the latest BESIII data. Based on the final-state interaction theorem, we represent the amplitude in terms of an Omnés function multiplied by a form factor that corresponds to the contributions from left-hand cuts and right-hand cuts in the inelastic channels. We also take into account the isospin violation effect induced by ρ -ω mixing. Our results show that the anomaly contribution is mandatory in order to explain the data. Its contribution to the decay width of Γ (η'→π π γ ) is larger than that induced by isospin violation. Finally we extract the pole positions of the ρ and ω as well as their corresponding residues.

  5. Drive frequency dependent phase imaging in piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Bo Huifeng; Kan Yi; Lu Xiaomei; Liu Yunfei; Peng Song; Wang Xiaofei; Cai Wei; Xue Ruoshi; Zhu Jinsong

    2010-01-01

    The drive frequency dependent piezoresponse (PR) phase signal in near-stoichiometric lithium niobate crystals is studied by piezoresponse force microscopy. It is clearly shown that the local and nonlocal electrostatic forces have a great contribution to the PR phase signal. The significant PR phase difference of the antiparallel domains are observed at the contact resonances, which is related to the electrostatic dominated electromechanical interactions of the cantilever and tip-sample system. Moreover, the modulation voltage induced frequency shift at higher eigenmodes could be attributed to the change of indention force depending on the modulation amplitude with a piezoelectric origin. The PR phase of the silicon wafer is also measured for comparison. It is certificated that the electrostatic interactions are universal in voltage modulated scanning probe microscopy and could be extended to other phase imaging techniques.

  6. Control of one- and two-photon absorption in a four-level atomic system by changing the amplitude and phase of a driving microwave field

    International Nuclear Information System (INIS)

    Hou, B P; Wang, S J; Yu, W L; Sun, W L

    2005-01-01

    We consider the one- and two-photon absorption spectra of a four-level Y-type atom with the two highest lying levels driven by a microwave field. We found that in the one-photon absorption case, the microwave field can lead to the probe gain, and the absorption and gain spectral structures depend strongly on the microwave field amplitude. For the two-photon absorption case, the strong microwave field can enhance the absorption. When the microwave field amplitude is reduced to a certain value, the single absorption peak in the two-photon spectrum changes into a structure of two-peak structure with different magnitudes. Moreover, the one- and two-photon absorption spectra can be modulated by the phase of the microwave field which produces a closed-loop configuration. Finally, we use the analytic solutions in terms of dressed-state basis to explain the results from our numerical calculation

  7. Cylindrical-confinement-induced phase behaviours of diblock copolymer melts

    International Nuclear Information System (INIS)

    Mei-Jiao, Liu; Shi-Ben, Li; Lin-Xi, Zhang; Xiang-Hong, Wang

    2010-01-01

    The phase behaviours of diblock copolymers under cylindrical confinement are studied in two-dimensional space by using the self-consistent field theory. Several phase parameters are adjusted to investigate the cylindrical-confinement-induced phase behaviours of diblock copolymers. A series of lamella-cylinder mixture phases, such as the mixture of broken-lamellae and cylinders and the mixture of square-lamellae and cylinders, are observed by varying the phase parameters, in which the behaviours of these mixture phases are discussed in the corresponding phase diagrams. Furthermore, the free energies of these mixture phases are investigated to illustrate their evolution processes. Our results are compared with the available observations from the experiments and simulations respectively, and they are in good agreement and provide an insight into the phase behaviours under cylindrical confinement. (cross-disciplinary physics and related areas of science and technology)

  8. Nth-powered amplitude squeezing in fan-states

    CERN Document Server

    Duc, T M

    2002-01-01

    Squeezing properties of the Hillery-type N-powered amplitude are investigated in the fan-state vertical bar xi; 2k, f> sub F which is linearly superposed by 2k 2k-quantum nonlinear coherent states in the phase-locked manner. The general expression of squeezing is derived analytically for arbitrary xi, k, N and f showing a multi-directional character of squeezing. For a given k, squeezing may appear to the even power N=2k if f ident to 1 and N>=2k if f not =1 and the number of directions along with the Nth-powered amplitude is squeezed is exactly equal to N, for both f ident to 1 (the light field) and f not =1 (the vibrational motion of the trapped ion). Discussions are also given elucidating the qualitative difference between the cases of f ident to 1 and f not =1.

  9. Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yu.S.

    1997-01-01

    We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the g......We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog...

  10. Separation of S-wave pseudoscalar and pseudovector amplitudes in π-p→π+π-n reaction on polarized target

    International Nuclear Information System (INIS)

    Kaminski, R.; Lesniak, L.; Rybicki, K.

    1996-06-01

    A new analysis of S-wave production amplitudes for the reaction π - p→π + π - n on a transversely polarized target is performed. It is based on the results obtained by CERN-Cracow-Munich collaboration in the ππ energy range from 600 MeV to 1600 MeV at 17.2 GeV/c π - momentum. Energy-independent separation of the S-wave pseudoscalar amplitude (π exchange) from the pseudovector amplitude (a 1 exchange) is carried out using assumptions much weaker than those in all previous analyses. We show that, especially around 1000 MeV and around 1500 MeV, the a 1 exchange amplitude cannot be neglected. The scalar-isoscalar ππ phase shift are calculated using fairly weak assumptions. Our results are consistent both with the so called ''up'' and the well-known ''down'' solution, provided we choose those in which the S-wave phases increase slower with the effective ππ mass than the P-wave phases. Above 1420 MeV both sets of phase shifts increase with energy faster than in the experiment on an unpolarized target. This fact can be related to the presence of scalar resonance f o (1500). (author). 41 refs, 9 figs, 1 tab

  11. Remarks on a technique of measuring CP phase α

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Oh, S.; He, X.G.

    1996-02-01

    We present a method to measure the CKM phase α and the tree and penguin (strong and electroweak) amplitudes in B→ π π decays, based on isospin consideration and the weak assumption that all tree amplitudes have a common strong phase and all penguin amplitudes have a different common phase. The method needs only the time-independent measurements of the relevant decay rates in B→ π π. We also propose a method to experimentally examine the validity of the assumption that all penguin amplitudes have the same strong phases, and to extract detailed information about the hadronic matrix elements. (authors). 14 refs., 1 fig

  12. Effect of heat-induced pain stimuli on pulse transit time and pulse wave amplitude in healthy volunteers.

    Science.gov (United States)

    van Velzen, Marit H N; Loeve, Arjo J; Kortekaas, Minke C; Niehof, Sjoerd P; Mik, Egbert G; Stolker, Robert J

    2016-01-01

    Pain is commonly assessed subjectively by interpretations of patient behaviour and/or reports from patients. When this is impossible the availability of a quantitative objective pain assessment tool based on objective physiological parameters would greatly benefit clinical practice and research beside the standard self-report tests. Vasoconstriction is one of the physiological responses to pain. The aim of this study was to investigate whether pulse transit time (PTT) and pulse wave amplitude (PWA) decrease in response to this vasoconstriction when caused by heat-induced pain. The PTT and PWA were measured in healthy volunteers, on both index fingers using photoplethysmography and electrocardiography. Each subject received 3 heat-induced pain stimuli using a Temperature-Sensory Analyzer thermode block to apply a controlled, increasing temperature from 32.0 °C to 50.0 °C to the skin. After reaching 50.0 °C, the thermode was immediately cooled down to 32.0 °C. The study population was divided into 2 groups with a time-interval between the stimuli 20s or 60s. The results showed a significant (p  Heat-induced pain causes a decrease of PTT and PWA. Consequently, it is expected that, in the future, PTT and PWA may be applied as objective indicators of pain, either beside the standard self-report test, or when self-report testing is impossible.

  13. Pressure induced phase transition behaviour in -electron based ...

    Indian Academy of Sciences (India)

    The present review on the high pressure phase transition behaviour of ... For instance, closing of energy gaps lead to metal–insulator transitions [4], shift in energy ... systematic study of the pressure induced structural sequences has become ...

  14. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer's disease.

    Science.gov (United States)

    Bazzigaluppi, Paolo; Beckett, Tina L; Koletar, Margaret M; Lai, Aaron Y; Joo, Illsung L; Brown, Mary E; Carlen, Peter L; McLaurin, JoAnne; Stefanovic, Bojana

    2018-03-01

    Alzheimer's disease (AD) is pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration. Preclinical studies on neuronal impairments associated with progressive amyloidosis have demonstrated some Aβ-dependent neuronal dysfunction including modulation of gamma-aminobutyric acid-ergic signaling. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broad repertoire of AD-like pathologies to investigate the neuronal network functioning using simultaneous intracranial recordings from the hippocampus (HPC) and the medial prefrontal cortex (mPFC), followed by pathological analyses of gamma-aminobutyric acid (GABA A ) receptor subunits α1 , α5, and δ, and glutamic acid decarboxylases (GAD65 and GAD67). Concomitant to amyloid deposition and tau hyperphosphorylation, low-gamma band power was strongly attenuated in the HPC and mPFC of TgF344-AD rats in comparison to those in non-transgenic littermates. In addition, the phase-amplitude coupling of the neuronal networks in both areas was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude in TgF344-AD animals. Finally, the gamma coherence between HPC and mPFC was attenuated as well. These results demonstrate significant neuronal network dysfunction at an early stage of AD-like pathology. This network dysfunction precedes the onset of cognitive deficits and is likely driven by Aβ and tau pathologies. This article is part of the Special Issue "Vascular Dementia". © 2017 Her Majesty the Queen in Right of Canada Journal of Neurochemistry © 2017 International Society for Neurochemistry.

  15. Fourier ventricular amplitude ratio to evaluate atrial septal defect

    International Nuclear Information System (INIS)

    Makler, P.T. Jr.; McCarthy, D.M.; Adler, L.; Alavi, A.

    1985-01-01

    First harmonic Fourier analysis of gated blood pool scans results in the formation of two functional images, a phase and amplitude image. The authors have previously shown that the total amplitude values of the two ventricles can be used to quantitate valvular insufficiency. The ventricular amplitude ratio (VAR, left/right) in normals is 1.14 0.11 and patients with valvular insufficiency is elevated (0.3 0.77). In patients with atrial septal defect (ASD), the right ventricle has a larger stroke volume than the left ventricle, and the VAR should be less than unity. To evaluate whether the amplitude image would permit quantification of shunt flow in ASD, the authors compared the VAR to the OP/QS ratio determined by cardiac catheterization (cath) in 3 groups of patients; group I (n=9) had ASD without valvular insufficiency (one patient had right-to-left shunting due to tricuspid stenosis; group II (n=4) had ventricular septal defect; and group III (n=2) had ASD plus valvular insufficiency. QP/QS shunt flow is also determined in group I using standard first-pass radionuclide angiography (rna). The data suggest that the VAR technique accurately determines the magnitude of shunt flow in ASD patients without concomitant valvular insufficiency

  16. Amplitude oscillations in a non-equilibrium polariton condensate

    Science.gov (United States)

    Brierley, Richard; Littlewood, Peter; Eastham, Paul

    2011-03-01

    Like cold atomic gases, semiconductor nanostructures provide new opportunities for exploring non-equilibrium quantum dynamics. In semiconductor microcavities the strong coupling between trapped photons and excitons produces new quasiparticles, polaritons, which can undergo Bose-Einstein condensation. Quantum quenches can be realised by rapidly creating cold exciton populations with a laser [Eastham and Phillips, PRB 79 165303 (2009)]. The mean field theory of non-equilibrium polariton condensates predicts oscillations in the condensate amplitude due to the excitation of a Higgs mode. These oscillations are the analogs of those predicted in quenched cold atomic gases and may occur in the polariton system after performing a quench or by direct excitation of the amplitude mode. We have studied the stability of these oscillations beyond mean field theory. We show that homogeneous amplitude oscillations are unstable to decay into lower energy phase modes at finite wavevectors, suggesting the onset of chaotic behaviour. The resulting hierarchy of decay processes can be understood by analogy to optical parametric oscillators in microcavities. Polariton systems thus provide an interesting opportunity to study the dynamics of Higgs-like modes in a solid state system.

  17. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique

    Science.gov (United States)

    Al-Khafaji, H. M. R.; Aljunid, S. A.; Amphawan, A.; Fadhil, H. A.; Safar, A. M.

    2013-03-01

    In this paper, we present a single photodiode detection (SPD) technique for spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems. The proposed technique eliminates both phase-induced intensity noise (PIIN) and multiple-access interference (MAI) in the optical domain. Analytical results show that for 35 simultaneous users transmitting at data rate of 622 Mbps, the bit-error rate (BER) = 1.4x10^-28 for SPD technique is much better compared to 9.3x10^-6 and 9.6x10^-3 for the modified-AND as well as the AND detection techniques, respectively. Moreover, we verified the improved performance afforded by the proposed technique using data transmission simulations.

  18. Impurity Induced Phase Competition and Supersolidity

    Science.gov (United States)

    Karmakar, Madhuparna; Ganesh, R.

    2017-12-01

    Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.

  19. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  20. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  1. Green functions and scattering amplitudes in many-dimensional space

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1993-01-01

    Methods for solving scattering are studied in many-dimensional space. Green function and scattering amplitudes are given in terms of the required asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many-dimensional space. Phase-shift analyses are performed for hypercentral potentials and for non-hypercentral potentials by use of the hyperspherical adiabatic approximation. (author)

  2. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC.

    Directory of Open Access Journals (Sweden)

    Zachary F Phillips

    Full Text Available We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC, is a single-shot variant of Differential Phase Contrast (DPC, which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  3. Amplitude-dependent topological edge states in nonlinear phononic lattices

    Science.gov (United States)

    Pal, Raj Kumar; Vila, Javier; Leamy, Michael; Ruzzene, Massimo

    2018-03-01

    This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.

  4. Protein-energy malnutrition induces an aberrant acute-phase response and modifies the circadian rhythm of core temperature.

    Science.gov (United States)

    Smith, Shari E; Ramos, Rafaela Andrade; Refinetti, Roberto; Farthing, Jonathan P; Paterson, Phyllis G

    2013-08-01

    Protein-energy malnutrition (PEM), present in 12%-19% of stroke patients upon hospital admission, appears to be a detrimental comorbidity factor that impairs functional outcome, but the mechanisms are not fully elucidated. Because ischemic brain injury is highly temperature-sensitive, the objectives of this study were to investigate whether PEM causes sustained changes in temperature that are associated with an inflammatory response. Activity levels were recorded as a possible explanation for the immediate elevation in temperature upon introduction to a low protein diet. Male, Sprague-Dawley rats (7 weeks old) were fed a control diet (18% protein) or a low protein diet (PEM, 2% protein) for either 7 or 28 days. Continuous core temperature recordings from bioelectrical sensor transmitters demonstrated a rapid increase in temperature amplitude, sustained over 28 days, in response to a low protein diet. Daily mean temperature rose transiently by day 2 (p = 0.01), falling to normal by day 4 (p = 0.08), after which mean temperature continually declined as malnutrition progressed. There were no alterations in activity mean (p = 0.3) or amplitude (p = 0.2) that were associated with the early rise in mean temperature. Increased serum alpha-2-macroglobulin (p protein diet had no effect on the signaling pathway of the pro-inflammatory transcription factor, NFκB, in the hippocampus. In conclusion, PEM induces an aberrant and sustained acute-phase response coupled with long-lasting effects on body temperature.

  5. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access

    Science.gov (United States)

    Ahmed, Hassan Yousif; Nisar, K. S.

    2013-08-01

    Code with ideal in-phase cross correlation (CC) and practical code length to support high number of users are required in spectral amplitude coding-optical code division multiple access (SAC-OCDMA) systems. SAC systems are getting more attractive in the field of OCDMA because of its ability to eliminate the influence of multiple access interference (MAI) and also suppress the effect of phase induced intensity noise (PIIN). In this paper, we have proposed new Diagonal Eigenvalue Unity (DEU) code families with ideal in-phase CC based on Jordan block matrix with simple algebraic ways. Four sets of DEU code families based on the code weight W and number of users N for the combination (even, even), (even, odd), (odd, odd) and (odd, even) are constructed. This combination gives DEU code more flexibility in selection of code weight and number of users. These features made this code a compelling candidate for future optical communication systems. Numerical results show that the proposed DEU system outperforms reported codes. In addition, simulation results taken from a commercial optical systems simulator, Virtual Photonic Instrument (VPI™) shown that, using point to multipoint transmission in passive optical network (PON), DEU has better performance and could support long span with high data rate.

  6. Pressure-induced phase transitions of multiferroic BiFeO3

    OpenAIRE

    XiaoLi, Zhang; Ye, Wu; Qian, Zhang; JunCai, Dong; Xiang, Wu; Jing, Liu; ZiYu, Wu; DongLiang, Chen

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2{\\theta}=7{\\deg} in the pressure ...

  7. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  8. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    International Nuclear Information System (INIS)

    Nigam, R.; Kosovichev, A. G.

    2010-01-01

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  9. Effects of Depilation-Induced Skin Pigmentation and Diet-Induced Fluorescence on In Vivo Fluorescence Imaging

    OpenAIRE

    Kwon, Sunkuk; Sevick-Muraca, Eva M.

    2017-01-01

    Near-infrared fluorescence imaging (NIRFI) and far-red fluorescence imaging (FRFI) were used to investigate effects of depilation-induced skin pigmentation and diet-induced background fluorescence on fluorescent signal amplitude and lymphatic contraction frequency in C57BL6 mice. Far-red fluorescent signal amplitude, but not frequency, was affected by diet-induced fluorescence, which was removed by feeding the mice an alfalfa-free diet, and skin pigmentation further impacted the amplitude mea...

  10. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  11. Getting superstring amplitudes by degenerating Riemann surfaces

    International Nuclear Information System (INIS)

    Matone, Marco; Volpato, Roberto

    2010-01-01

    We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly simplifies the computations. As a first application, starting from recent ansaetze for the chiral measure up to genus five, we compute the chiral two-point function for massless Neveu-Schwarz states at genus two, three and four. For genus higher than three, these computations include some new corrections to the conjectural formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus two and three, as expected from space-time supersymmetry arguments, but not at genus four. This suggests that the ansatz for the superstring measure should be corrected for genus higher than four.

  12. Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture.

    Energy Technology Data Exchange (ETDEWEB)

    Culp, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schweizer, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Phase-field techniques provide an alternative approach to fracture problems which mitigate some of the computational expense associated with tracking the crack interface and the coalescence of individual fractures. The technique is extended to apply to hydraulically driven fracture such as would occur during fracking or CO2 sequestration. Additionally, the technique is applied to a stainless steel specimen used in the Sandia Fracture Challenge. It was found that the phase-field model performs very well, at least qualitatively, in both deformation-induced fracture and hydraulically-induced fracture, though spurious hourglassing modes were observed during coupled hydralically-induced fracture. Future work would include performing additional quantitative benchmark tests and updating the model as needed.

  13. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 4; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 4

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-10-22

    Discussions were given on seismic exploration from the ground surface using the reflection method, for surface consistent amplitude correction from among effects imposed from the ground surface and a surface layer. Amplitude distribution on the reflection wave zone is complex. Therefore, items to be considered in making an analysis are multiple, such as estimation of spherical surface divergence effect and exponential attenuation effect, not only amplitude change through the surface layer. If all of these items are taken into consideration, burden of the work becomes excessive. As a method to solve this problem, utilization of amplitude in initial movement of a diffraction wave may be conceived. Distribution of the amplitude in initial movement of the diffraction wave shows a value relatively close to distribution of the vibration transmitting and receiving points. The reason for this is thought because characteristics of the vibration transmitting and receiving points related with waveline paths in the vicinity of the ground surface have no great difference both on the diffraction waves and on the reflection waves. The lecture described in this paper introduces an attempt of improving the efficiency of the surface consistent amplitude correction by utilizing the analysis of amplitude in initial movement of the diffraction wave. 4 refs., 2 figs.

  14. [Amplitude Changes of Low Frequency Fluctuation in Brain Spontaneous Nervous Activities Induced by Needling at Hand Taiyin Lung Channel].

    Science.gov (United States)

    Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin

    2016-05-01

    To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.

  15. Alpha-gamma phase amplitude coupling subserves information transfer during perceptual sequence learning.

    Science.gov (United States)

    Tzvi, Elinor; Bauhaus, Leon J; Kessler, Till U; Liebrand, Matthias; Wöstmann, Malte; Krämer, Ulrike M

    2018-03-01

    Cross-frequency coupling is suggested to serve transfer of information between wide-spread neuronal assemblies and has been shown to underlie many cognitive functions including learning and memory. In previous work, we found that alpha (8-13 Hz) - gamma (30-48 Hz) phase amplitude coupling (αγPAC) is decreased during sequence learning in bilateral frontal cortex and right parietal cortex. We interpreted this to reflect decreased demands for visuo-motor mapping once the sequence has been encoded. In the present study, we put this hypothesis to the test by adding a "simple" condition to the standard serial reaction time task (SRTT) with minimal needs for visuo-motor mapping. The standard SRTT in our paradigm entailed a perceptual sequence allowing for implicit learning of a sequence of colors with randomly assigned motor responses. Sequence learning in this case was thus not associated with reduced demands for visuo-motor mapping. Analysis of oscillatory power revealed a learning-related alpha decrease pointing to a stronger recruitment of occipito-parietal areas when encoding the perceptual sequence. Replicating our previous findings but in contrast to our hypothesis, αγPAC was decreased in sequence compared to random trials over right frontal and parietal cortex. It also tended to be smaller compared to trials requiring a simple motor sequence. We additionally analyzed αγPAC in resting-state data of a separate cohort. PAC in electrodes over right parietal cortex was significantly stronger compared to sequence trials and tended to be higher compared to simple and random trials of the SRTT data. We suggest that αγPAC in right parietal cortex reflects a "default-mode" brain state, which gets perturbed to allow for encoding of visual regularities into memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Two-phase cross-flow-induced forces acting on a circular cylinder

    International Nuclear Information System (INIS)

    Hara, F.

    1982-01-01

    This paper clarifies the characteristics of unsteady flow-induced lift and drag forces acting on a circular cylinder immersed perpendicular to a two-phase bubbly air-water flow, in conjunction with Karman vortex shedding and pressure fluctuations. Experimental results presented show that Karman vortex shedding disappears over a certain value of air concentration in the two-phase flow. Related to this disappearance, flow-induced forces are rather small and periodical in low air concentration but become very large and random in higher air concentration. 7 refs

  17. Green function and scattering amplitudes in many dimensional space

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1991-06-01

    Methods for solving scattering are studied in many dimensional space. Green function and scattering amplitudes are given in terms of the requested asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many dimensional space. Phase-shift analysis are developed for hypercentral potentials and for non-hypercentral potentials with the hyperspherical adiabatic approximation. (author) 16 refs., 3 figs

  18. Power adaptive multi-filter carrierless amplitude and phase access scheme for visible light communication network

    Science.gov (United States)

    Li, Wei; Huang, Zhitong; Li, Haoyue; Ji, Yuefeng

    2018-04-01

    Visible light communication (VLC) is a promising candidate for short-range broadband access due to its integration of advantages for both optical communication and wireless communication, whereas multi-user access is a key problem because of the intra-cell and inter-cell interferences. In addition, the non-flat channel effect results in higher losses for users in high frequency bands, which leads to unfair qualities. To solve those issues, we propose a power adaptive multi-filter carrierless amplitude and phase access (PA-MF-CAPA) scheme, and in the first step of this scheme, the MF-CAPA scheme utilizing multiple filters as different CAP dimensions is used to realize multi-user access. The character of orthogonality among the filters in different dimensions can mitigate the effect of intra-cell and inter-cell interferences. Moreover, the MF-CAPA scheme provides different channels modulated on the same frequency bands, which further increases the transmission rate. Then, the power adaptive procedure based on MF-CAPA scheme is presented to realize quality fairness. As demonstrated in our experiments, the MF-CAPA scheme yields an improved throughput compared with multi-band CAP access scheme, and the PA-MF-CAPA scheme enhances the quality fairness and further improves the throughput compared with the MF-CAPA scheme.

  19. Pressure-induced phase transitions of multiferroic BiFeO3

    International Nuclear Information System (INIS)

    Zhang Xiaoli; Dong Juncai; Liu Jing; Chen Dongliang; Wu Ye; Zhang Qian; Wu Xiang; Wu Ziyu

    2013-01-01

    Pressure-induced phase transitions of multiferroic BiFeO 3 have been investigated using synchrotron radiation X-ray diffraction with diamond anvil cell technique at room temperature. Present experimental data clearly show that rhombohedral (R3c) phase of BiFeO 3 first transforms to monoclinic (C2/m) phase at 7 GPa, then to orthorhombic (Pnma) phase at 11 GPa, which is consistent with recent theoretical ab initio calculation. However, we observe another peak at 2θ=7° in the pressure range of 5-7 GPa that has not been reported previously. Further analysis reveals that this reflection peak is attributed to the orthorhombic (Pbam) phase, indicating the coexistence of monoclinic phase with orthorhombic phase in low pressure range. (authors)

  20. The spectral induced polarisation method and its application to hydrogeological problems

    International Nuclear Information System (INIS)

    Hoerdt, A.

    2007-01-01

    The spectral induced polarisation (SIP) method is an extension of the DC resistivity technique, where an alternating current is injected and the phase shift between voltage and current is measured in addition to the amplitude. In unconsolidated sediments, the phase shift includes complementary information on the structure of the pore space, and thus it should be possible to estimate hydraulic parameters from SIP measurements. Here, I describe some recent developments and give one example where hydraulic conductivity was estimated at the field scale

  1. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    Science.gov (United States)

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  2. Time-delay-induced amplitude death in chaotic map lattices and its avoiding control

    International Nuclear Information System (INIS)

    Konishi, Keiji; Kokame, Hideki

    2007-01-01

    The present Letter deals with amplitude death in chaotic map lattices coupled with a diffusive delay connection. It is shown that if a fixed point of the individual map satisfies an odd-number property, then amplitude death never occurs at the fixed point for any number of the maps, coupling strength, and delay time. From the viewpoint of engineering applications that utilize oscillatory behavior in coupled oscillators, death would be undesirable. This Letter proposes a feedback controller, which is added to each chaotic map, such that the fixed point of the individual map satisfies the odd-number property. Accordingly, it is guaranteed that death never occurs in the controlled chaotic-map-lattice. It is verified that the proposed controller works well in numerical simulations

  3. Fast feedback in active sensing: touch-induced changes to whisker-object interaction.

    Directory of Open Access Journals (Sweden)

    Dudi Deutsch

    Full Text Available Whisking mediated touch is an active sense whereby whisker movements are modulated by sensory input and behavioral context. Here we studied the effects of touching an object on whisking in head-fixed rats. Simultaneous movements of whiskers C1, C2, and D1 were tracked bilaterally and their movements compared. During free-air whisking, whisker protractions were typically characterized by a single acceleration-deceleration event, whisking amplitude and velocity were correlated, and whisk duration correlated with neither amplitude nor velocity. Upon contact with an object, a second acceleration-deceleration event occurred in about 25% of whisk cycles, involving both contacting (C2 and non-contacting (C1, D1 whiskers ipsilateral to the object. In these cases, the rostral whisker (C2 remained in contact with the object throughout the double-peak phase, which effectively prolonged the duration of C2 contact. These "touch-induced pumps" (TIPs were detected, on average, 17.9 ms after contact. On a slower time scale, starting at the cycle following first touch, contralateral amplitude increased while ipsilateral amplitude decreased. Our results demonstrate that sensory-induced motor modulations occur at various timescales, and directly affect object palpation.

  4. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    Science.gov (United States)

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between

  5. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  6. Ball solitons in kinetics of the first order magnetic phase transition

    International Nuclear Information System (INIS)

    Nietz, V.V.; Osipov, A.A.

    2007-01-01

    The theory of magnetic ball solitons (BS), arising as a result of the energy fluctuations at the spin-flop transition induced by a magnetic field in antiferromagnets with uniaxial anisotropy, is presented. Such solitons are possible in a wide range of amplitudes and energies, including the negative energy relative to an initial condition. When such an antiferromagnet is in a metastable condition, ball solitons are born with the greatest probability if the energy of solitons is close to zero. Evolution of these solitons, at which they develop into macroscopic domains of a new magnetic phase, is analyzed, thus carrying out full phase reorganization

  7. Photo-Induced Phase Transitions to Liquid Crystal Phases: Influence of the Chain Length from C8E4 to C14E4

    Directory of Open Access Journals (Sweden)

    Simone Techert

    2009-09-01

    Full Text Available Photo-induced phase transitions are characterized by the transformation from phase A to phase B through the absorption of photons. We have investigated the mechanism of the photo-induced phase transitions of four different ternary systems CiE4/alkane (i with n = 8, 10, 12, 14; cyclohexane/H2O. We were interested in understanding the effect of chain length increase on the dynamics of transformation from the microemulsion phase to the liquid crystal phase. Applying light pump (pulse/x-ray probe (pulse techniques, we could demonstrate that entropy and diffusion control are the driving forces for the kind of phase transition investigated.

  8. Induced Kerr effects and self-guided beams in quasi-phase-matched quadratic media [CBC4

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yuri S.

    1997-01-01

    We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons......We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons...

  9. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    Science.gov (United States)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  10. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    Energy Technology Data Exchange (ETDEWEB)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland [Institute of Materials Physics, Graz University of Technology, A-8010 Graz (Austria)

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  11. Modulation of amplitude and latency of motor evoked potential by direction of transcranial magnetic stimulation

    Science.gov (United States)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Itoh, Yuji; Iramina, Keiji

    2014-05-01

    The present study analyzed the effects of monophasic magnetic stimulation to the motor cortex. The effects of magnetic stimulation were evaluated by analyzing the motor evoked potentials (MEPs). The amplitude and latency of MEPs on the abductor pollicis brevis muscle were used to evaluate the effects of repetitive magnetic stimulation. A figure eight-shaped flat coil was used to stimulate the region over the primary motor cortex. The intensity of magnetic stimulation was 120% of the resting motor threshold, and the frequency of magnetic stimulation was 0.1 Hz. In addition, the direction of the current in the brain was posterior-anterior (PA) or anterior-posterior (AP). The latency of MEP was compared with PA and AP on initial magnetic stimulation. The results demonstrated that a stimulus in the AP direction increased the latency of the MEP by approximately 2.5 ms. MEP amplitude was also compared with PA and AP during 60 magnetic stimulations. The results showed that a stimulus in the PA direction gradually increased the amplitude of the MEP. However, a stimulus in the AP direction did not modulate the MEP amplitude. The average MEP amplitude induced from every 10 magnetic pulses was normalized by the average amplitude of the first 10 stimuli. These results demonstrated that the normalized MEP amplitude increased up to approximately 150%. In terms of pyramidal neuron indirect waves (I waves), magnetic stimulation inducing current flowing backward to the anterior preferentially elicited an I1 wave, and current flowing forward to the posterior elicited an I3 wave. It has been reported that the latency of the I3 wave is approximately 2.5 ms longer than the I1 wave elicitation, so the resulting difference in latency may be caused by this phenomenon. It has also been reported that there is no alteration of MEP amplitude at a frequency of 0.1 Hz. However, this study suggested that the modulation of MEP amplitude depends on stimulation strength and stimulation direction.

  12. Diphoton generalized distribution amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We calculate the leading order diphoton generalized distribution amplitudes by calculating the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region at the Born order and in the leading logarithmic approximation. As in the case of the anomalous photon structure functions, the γγ generalized distribution amplitudes exhibit a characteristic lnQ 2 behavior and obey inhomogeneous QCD evolution equations.

  13. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.

    Directory of Open Access Journals (Sweden)

    Ikuhiro Yamaguchi

    Full Text Available Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.

  14. Interfacial instability induced by a shock wave in a gas-liquid horizontal stratified system

    International Nuclear Information System (INIS)

    Sutradhar, S.C.; Chang, J.S.; Yoshida, H.

    1987-01-01

    The experiments are performed in a rectangular lucite duct equipped with the facility of generating shock waves. Piezo-type pressure transducers are used to monitor the strength and propagation velocity of the shock wave. As the liquid phase has high sound velocity, a prepulse wave system of flow amplitude travels in this phase at a speed faster than the principal shock wave. The magnitude of the transmitted wave in the liquid phase is estimated using a transmission coefficient for gas-liquid system. From the initial pressure ratio of the shock wave, the amplitude of the prepulse as well as the induced interfacial fluid velocity are calculated. The wave length and height of the ripples during the passage of the shock wave are estimated for a specific strength of shock wave moving through the phases. From the high speed photographs, the wave length of the ripples can be assessed. The interfacial friction factor is calculated using colebrook's equation for high speed flow. At least five distinct phenomena are observed to exist during the propagation of a shock wave. These are - (1) the energy carried by the pre-pulse is utilized in perturbing the interface; (2) shock wave induces a mass velocity at the interface; (3) the wavelength of the ripples at the interface is the product of induced interfacial mass velocity and the time period of the prepulse; (4) a portion of the liquid mass of the perturbed interface is entrained in the gas phase may be due to the hydrodynamic lift in that phase; and finally (5) waves with long wavelength are established at the interface

  15. Analyticity properties of two-body helicity amplitudes; Proprietes d'analyticite des amplitudes d'helicite a deux corps

    Energy Technology Data Exchange (ETDEWEB)

    Navelet-Noualhier, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-06-15

    Helicity amplitudes are expressed via the spinor amplitudes in terms of the Joos invariant which have been shown by Williams to be free from kinematical singularities. This procedure allows to analyze the kinematical singularities of helicity amplitudes and separate them out, which results into the definition of regularized helicity amplitudes. A crossing matrix for helicity amplitudes, is written down, corresponding to the continuation path used to cross spinor amplitudes. We verify explicitly that the corresponding crossing matrix for regularized helicity amplitudes is uniform as it should be. Kinematical constraints which generalize, to the case of arbitrary spins and masses, relations which must hold between helicity amplitudes at some values of the energy variable in {pi}N {yields} {pi}N, {pi}{pi} {yields} NN-bar and NN-bar {yields} NN-bar reactions, appear as a consequence of the existence of poles in the crossing matrix between regularized helicity amplitudes. An english version of this work has been written with G. Cohen-Tannoudji and A. Morel and submitted for publication to Annals of Physics. (author) [French] Les amplitudes d'helicite pour une reaction a deux corps sont exprimees, par l'intermediaire des amplitudes spinorielles, en fonction d'amplitudes invariantes de Joos qui sont, comme l'a montre Williams, sans singularites cinematiques. Ce procede nous permet d'analyser puis d'eliminer les singularites cinematiques des amplitudes d'helicite. Ceci nous conduit a la definition d'amplitudes d'helicite 'regularisees'. Une relation de 'croisement' entre amplitudes d'helicite est ecrite; elle realise leur prolongement analytique le long du chemin utilise pour 'croiser' les amplitudes spinorielles. Nous verifions que les elements de la matrice de croisement entre amplitudes d'helicite 'regularisees' sont bien uniformes. Les contraintes cinematiques qui generalisent, au cas de masses et de spins arbitraires, les relations obtenues dans les reactions {pi

  16. Asymmetric induced cubic nonlinearities in homogeneous and quasi-phase-matched quadratic materials: signature and importance

    DEFF Research Database (Denmark)

    Bang, Ole; Corney, Joel Frederick

    2001-01-01

    In continuous-wave operation asymmetric induced nonlinearities induce an intensity-dependent phase mismatch that implies a nonzero so-called separatrix intensity, the crossing of which changes the one-period phase shift of the fundamental by Pi , with obvious use in switching applications.......We derived a formula for this QPM-induced separatrix intensity that corrects earlier estimates by a factor of 5.3, and we found the optimum crystal lengths for a flat phase-versus-intensity response on each side of the separatrix...

  17. Real topological string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)

    2017-03-15

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.

  18. Electric-field Induced Microdynamics of Charged Rods

    Directory of Open Access Journals (Sweden)

    Kyongok eKang

    2014-12-01

    Full Text Available Electric-field induced phase/state transitions are observed in AC electric fields with small amplitudes and low frequencies in suspensions of charged fibrous viruses (fd, which are model systems for highly charged rod-like colloids. Texture- and particle-dynamics in these field-induced states, and on crossing transition lines, are explored by image time-correlation and dynamic light scattering, respectively. At relatively low frequencies, starting from a system within the isotropic-nematic coexistence region, a transition from a nematic to a chiral nematic is observed, as well as a dynamical state where nematic domains melt and reform. These transitions are preliminary due to field-induced dissociation/association of condensed ions. At higher frequencies a uniform state is formed that is stabilized by hydrodynamic interactions through field-induced electro-osmotic flow where the rods align along the field direction. There is a point in the field-amplitude versus frequency plane where various transition lines meet. This point can be identified as a non-equilibrium critical point, in the sense that a length scale and a time scale diverge on approach of that point. The microscopic dynamics exhibits discontinuities on crossing transition lines that were identified independently by means of image and signal correlation spectroscopy.

  19. Lupeol induces S-phase arrest and mitochondria-mediated ...

    Indian Academy of Sciences (India)

    48

    Lupeol induces S-phase arrest and mitochondria-mediated apoptosis in cervical cancer cells. Nupoor Prasad1, Akash Sabarwal2, Umesh C. S. Yadav1, Rana P. Singh2,*. 1School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India. 2Cancer Biology Laboratory, School of Life Sciences, Jawaharlal ...

  20. Using HERA data to determine the infrared behaviour of the BFKL amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lipatov, L.N. [Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Ross, D.A. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Watt, G. [CERN, Geneva (Switzerland). Theory Group

    2010-11-15

    We determine the infrared behaviour of the BFKL forward amplitude for gluon-gluon scattering. Our approach, based on the discrete pomeron solution, leads to an excellent description of the new combined inclusive HERA data at low values of x (<0.01) and at the same time determines the unintegrated gluon density inside the proton, for squared transverse momenta of the gluon less than 100 GeV{sup 2}. The phases of this amplitude are sensitive to the non-perturbative gluonic dynamics and could be sensitive to the presence of Beyond-the- Standard-Model particles at very high energies. (orig.)

  1. Amplitude modulation control of escape from a potential well

    International Nuclear Information System (INIS)

    Chacón, R.; Martínez García-Hoz, A.; Miralles, J.J.; Martínez, P.J.

    2014-01-01

    We demonstrate the effectiveness of periodic amplitude modulations in controlling (suppressing and enhancing) escape from a potential well through the universal model of a damped Helmholtz oscillator subjected to an external periodic excitation (the escape-inducing excitation) whose amplitude is periodically modulated (the escape-controlling excitation). Analytical and numerical results show that this multiplicative control works reliably for different subharmonic resonances between the two periodic excitations involved, and that its effectiveness is comparable to those of different methods of additive control. Additionally, we demonstrate the robustness of the multiplicative control against the presence of low-intensity Gaussian noise. -- Highlights: •Multiplicative control of escape from a potential well has been demonstrated. •Theoretical predictions are obtained from a Melnikov analysis. •It has been shown the robustness of the multiplicative control against noise.

  2. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan [Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China); Kakadiya, Rajesh B.; Su, Tsann-Long [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC (China); Yih, Ling-Huei, E-mail: lhyih@gate.sinica.edu.tw [Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan, ROC (China)

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  3. Blind separation of overlapping partials in harmonic musical notes using amplitude and phase reconstruction

    Science.gov (United States)

    de León, Jesús Ponce; Beltrán, José Ramón

    2012-12-01

    In this study, a new method of blind audio source separation (BASS) of monaural musical harmonic notes is presented. The input (mixed notes) signal is processed using a flexible analysis and synthesis algorithm (complex wavelet additive synthesis, CWAS), which is based on the complex continuous wavelet transform. When the harmonics from two or more sources overlap in a certain frequency band (or group of bands), a new technique based on amplitude similarity criteria is used to obtain an approximation to the original partial information. The aim is to show that the CWAS algorithm can be a powerful tool in BASS. Compared with other existing techniques, the main advantages of the proposed algorithm are its accuracy in the instantaneous phase estimation, its synthesis capability and that the only input information needed is the mixed signal itself. A set of synthetically mixed monaural isolated notes have been analyzed using this method, in eight different experiments: the same instrument playing two notes within the same octave and two harmonically related notes (5th and 12th intervals), two different musical instruments playing 5th and 12th intervals, two different instruments playing non-harmonic notes, major and minor chords played by the same musical instrument, three different instruments playing non-harmonically related notes and finally the mixture of a inharmonic instrument (piano) and one harmonic instrument. The results obtained show the strength of the technique.

  4. Amplitude and Phase Calibration of an Dual Polarized Active Phased Array Antenna

    NARCIS (Netherlands)

    Vermeulen, B.C.B.; Paquay, M.H.A.; Koomen, P.J.; Hoogeboom, P.; Snoeij, P.; Pouwels, H.

    1996-01-01

    In the Netherlands, a Polarimetrie C-band aircraft SAR (Synthetic Aperture Radar) has been developed. The project is called PHARUS, an acronym for Phased Array Universal SAR. This instrument serves remote sensing applications. The antenna system contains 48 modules (expandable to 96). A module is

  5. Unifying relations for scattering amplitudes

    Science.gov (United States)

    Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao

    2018-02-01

    We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.

  6. Carrier phase synchronization system for improved amplitude modulation and television broadcast reception

    Science.gov (United States)

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2009-09-08

    Systems and methods are described for carrier phase synchronization for improved AM and TV broadcast reception. A method includes synchronizing the phase of a carrier frequency of a broadcast signal with the phase of a remote reference frequency. An apparatus includes a receiver to detect the phase of a reference signal; a phase comparator coupled to the reference signal-phase receiver; a voltage controlled oscillator coupled to the phase comparator; and a phase-controlled radio frequency output coupled to the voltage controlled oscillator.

  7. Phase ramping and modulation of reflectometer signals

    International Nuclear Information System (INIS)

    Conway, G.D.; Bartlett, D.V.; Stoff, P.E.

    1999-01-01

    The phase and amplitude signals of JET heterodyne reflectometers show varying levels of high frequency turbulence superimposed on a slow changing mean. The phase signal also shows multi-radian (> 1 fringe) variations with two quite different time scales (2-10 ms and sub-ms). In both cases the mean reflected power, together with turbulent phase and amplitude fluctuation levels, are modulated synchronously with the are modulated synchronously with the phase fringes. The slow fringes appear to result radial movement of the cutoff layer with the amplitude modulation possibly due to multiple reflection between plasma and wall. The fast fringes occur in intermittent bursts and appear to be phase runaway resulting from antenna misalignment. Using a 2-D physical optics simulation code it is possible to replicate the fast bursts of phase runaway from steady-state turbulence and misaligned antennas. This offers a possible alternative explanation for some of the observations of bursting turbulence seen in reflectometer signals. (authors)

  8. Phase ramping and modulation of reflectometer signals

    International Nuclear Information System (INIS)

    Conway, G.; Bartlett, D.; Stott, P.

    1999-06-01

    The phase and amplitude signals of JET heterodyne reflectometers show varying levels of high frequency turbulence superimposed on a slow changing mean. The phase signal also shows multi-radian (>1 fringe) variations with two quite different time scales (2-10ms and sub-ms). In both cases the mean reflected power, together with turbulent phase and amplitude fluctuation levels, are modulated synchronously with the phase fringes. The slow fringes appear to result from radial movement of the cutoff layer with the amplitude modulation possibly due to multiple reflection between plasma and wall. The fast fringes occur in intermittent bursts and appear to be phase runaway resulting from antenna misalignment. Using a 2D physical optics simulation code it is possible to replicate the fast bursts of phase runaway from steady-state turbulence and misaligned antennas. This offers a possible alternative explanation for some of the observations of bursting turbulence seen in reflectometer signals. (author)

  9. Hysteresis and Power-Law Statistics during temperature induced martensitic transformation

    International Nuclear Information System (INIS)

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2011-01-01

    We study hysteresis in temperature induced martensitic transformation using a 2D model solid exhibiting a square to rhombic structural transition. We find that upon quenching, the high temperature square phase, martensites are nucleated at sites having large non-affineness and ultimately invades the whole of the high temperature square phase. On heating the martensite, the high temperature square phase is restored. The transformation proceeds through avalanches. The amplitude and the time-duration of these avalanches exhibit power-law statistics both during heating and cooling of the system. The exponents corresponding to heating and cooling are different thereby indicating that the nucleation and dissolution of the product phase follows different transformation mechanism.

  10. Gravitationally induced neutrino oscillation phases in static spacetimes

    International Nuclear Information System (INIS)

    Bhattacharya, T.; Habib, S.; Mottola, E.

    1999-01-01

    We critically examine the recent claim of a 'new effect' of gravitationally induced quantum mechanical phases in neutrino oscillations. Because this claim has generated some discussion in the literature we present here a straightforward calculation of the phase and clarify some of the conceptual issues involved, particularly in relation to the equivalence principle. When expressed in terms of the asymptotic energy of the neutrinos E and Schwarzschild radial coordinates r, the lowest order at which such a gravitational effect appears is (GMΔm 4 /ℎE 3 )ln(r B /r A ). copyright 1999 The American Physical Society

  11. Use of phase-locking value in sensorimotor rhythm-based brain-computer interface: zero-phase coupling and effects of spatial filters.

    Science.gov (United States)

    Jian, Wenjuan; Chen, Minyou; McFarland, Dennis J

    2017-11-01

    Phase-locking value (PLV) is a potentially useful feature in sensorimotor rhythm-based brain-computer interface (BCI). However, volume conduction may cause spurious zero-phase coupling between two EEG signals and it is not clear whether PLV effects are independent of spectral amplitude. Volume conduction might be reduced by spatial filtering, but it is uncertain what impact this might have on PLV. Therefore, the goal of this study was to explore whether zero-phase PLV is meaningful and how it is affected by spatial filtering. Both amplitude and PLV feature were extracted in the frequency band of 10-15 Hz by classical methods using archival EEG data of 18 subjects trained on a two-target BCI task. The results show that with right ear-referenced data, there is meaningful long-range zero-phase synchronization likely involving the primary motor area and the supplementary motor area that cannot be explained by volume conduction. Another novel finding is that the large Laplacian spatial filter enhances the amplitude feature but eliminates most of the phase information seen in ear-referenced data. A bipolar channel using phase-coupled areas also includes both phase and amplitude information and has a significant practical advantage since fewer channels required.

  12. S-wave kaon-nucleon phase shifts with instanton induced effects

    International Nuclear Information System (INIS)

    Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.

    2003-01-01

    The kaon-nucleon S-wave phase shifts have been calculated, for both isospin channels I=0 and I=1, in the framework of a semirelativistic quark potential model which includes an instanton induced force. The agreement with experimental phase shifts is poor essentially because of a dominant attraction coming from instantons. The low-energy behaviour of S-wave phase shifts, for I=0 and I=1 channels, obtained in the kaon-nucleon system is characteristic of a potential which can produce one loosely bound state

  13. S-wave kaon-nucleon phase shifts with instanton induced effects

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, S. E-mail: lemaire@cenbg.in2p3.fr; Labarsouque, J.; Silvestre-Brac, B

    2003-09-22

    The kaon-nucleon S-wave phase shifts have been calculated, for both isospin channels I=0 and I=1, in the framework of a semirelativistic quark potential model which includes an instanton induced force. The agreement with experimental phase shifts is poor essentially because of a dominant attraction coming from instantons. The low-energy behaviour of S-wave phase shifts, for I=0 and I=1 channels, obtained in the kaon-nucleon system is characteristic of a potential which can produce one loosely bound state.

  14. Protecting Quantum Correlation from Correlated Amplitude Damping Channel

    Science.gov (United States)

    Huang, Zhiming; Zhang, Cai

    2017-08-01

    In this work, we investigate the dynamics of quantum correlation measured by measurement-induced nonlocality (MIN) and local quantum uncertainty (LQU) in correlated amplitude damping (CAD) channel. We find that the memory parameter brings different influences on MIN and LQU. In addition, we propose a scheme to protect quantum correlation by executing prior weak measurement (WM) and post-measurement reversal (MR). However, better protection of quantum correlation by the scheme implies a lower success probability (SP).

  15. Molecular dynamics simulation of amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Hu, Xiaoli; Martini, Ashlie; Egberts, Philip; Dong, Yalin

    2015-01-01

    Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip–substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip–sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement. (paper)

  16. Using a heterodyne vibrometer in combination with pulse excitation for primary calibration of ultrasonic hydrophones in amplitude and phase

    Science.gov (United States)

    Weber, Martin; Wilkens, Volker

    2017-08-01

    A high-frequency vibrometer was used with ultrasonic pulse excitation in order to perform a primary hydrophone calibration. This approach enables the simultaneous characterization of the amplitude and phase transfer characteristic of ultrasonic hydrophones. The method allows a high frequency resolution in a considerably short time for the measurement. Furthermore, the uncertainty contributions of this approach were investigated and quantified. A membrane hydrophone was calibrated and the uncertainty budget for this measurement was determined. The calibration results are presented up to 70~\\text{MHz} . The measurement results show good agreement with the results obtained by sinusoidal burst excitation through the use of the vibrometer and by a homodyne laser interferometer, with RMS deviation of approximately 3% -4% in the frequency range from 1 to 60~\\text{MHz} . Further hydrophones were characterized up to 100~\\text{MHz} with this procedure to demonstrate the suitability for very high frequency calibration.

  17. Radiation-induced phase transformation in ferromagnetic perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Podsekin, A K; Dem' yanov, V V; Ivanova, V V; Venevtsev, Yu N [Nauchno-Issledovatel' skij Fiziko-Khimicheskij Inst., Moscow (USSR)

    1976-12-01

    An effect of neutron irradiation inducing a phase transition in ferromagnetic perovskite, Sr/sub 0.3/La/sub 0.7/MnO/sub 3/, has been discovered and studied. It is shown that a change in the Curie temperature is proportional to the dose of reactor irradiation. A decrease in the temperature of the phase transition with the concentration of radiation defects is accompanied by an increase in the electrical specific resistance and a change in the initial lattice parameters. It is shown that the radiation shift is due to at least two causes, viz. to an increase in the parameters of the elementary cell and the growth of the electrical specific resistance as a result of bounded electron states' forming on the radiation defects.

  18. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    Science.gov (United States)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  19. Mechanically induced atomic disorder and phase transformations. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Limei, D

    1992-11-30

    The study shows the possibilities of preparing alloys in various metastable configurations by the simple technique of ball milling. Firstly, chapter 2 gives the description of experimental techniques. In chapter 3, evidence of atomic anti-site disordering in A15-structure superconducting compounds Nb3Sn and Nb3Au during an early stage of milling is demonstrated. Chapter 4 represents the experimental results on the B2-structure magnetic compounds CoGa and CoAl upon mechanical impact. These compounds are well known for their particular type of atomic disorder, namely triple-defect disorder. Various examples of experimental evidence of phase transformations induced by mechanical grinding are presented in chapter 5. Section 5.2 gives an example of amorphization induced by mechanical attrition in the intermetallic compound Ni3Sn. Section 5.3 shows the milling experiment of the intermetallic compound V3 Ga. In section 5.4, for the first time, the observation of a phase transformation to a high-temperature phase with a complex structure will be demonstrated for the intermetallic compound Co3Sn2. In the last chapter, detailed studies on the intermetallic Nb-Au binary compounds for a variety of compositions are presented.

  20. Graphene based terahertz phase modulators

    Science.gov (United States)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  1. Charmless B{sub (s)} → VV decays in factorization-assisted topological-amplitude approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Zhang, Qi-An [CAS, Institute of High Energy Physics, P.O. Box 918, Beijing (China); University of Chinese Academy of Sciences, School of Physics, Beijing (China); Li, Ying [Yantai University, Department of Physics, Yantai (China); CAS, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); Lue, Cai-Dian [CAS, Institute of High Energy Physics, P.O. Box 918, Beijing (China); University of Chinese Academy of Sciences, School of Physics, Beijing (China); CAS, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-05-15

    Within the factorization-assisted topological-amplitude approach, we studied the 33 charmless B{sub (s)} → VV decays, where V stands for a light vector meson. According to the flavor flows, the amplitude of each process can be decomposed into eight different topologies. In contrast to the conventional flavor diagrammatic approach, we further factorize each topological amplitude into decay constant, form factors and unknown universal parameters. By χ{sup 2} fitting 46 experimental observables, we extracted 10 theoretical parameters with χ{sup 2} per degree of freedom around 2. Using the fitted parameters, we calculated the branching fractions, polarization fractions, CP asymmetries and relative phases between polarization amplitudes of each decay mode. The decay channels dominated by tree diagram have large branching fractions and large longitudinal polarization fraction. The branching fractions and longitudinal polarization fractions of color-suppressed decays become smaller. Current experimental data of large transverse polarization fractions in the penguin dominant decay channels can be explained by only one transverse amplitude of penguin annihilation diagram. Our predictions of the not yet measured channels can be tested in the ongoing LHCb experiment and the Belle-II experiment in the future. (orig.)

  2. Pulse-amplitude multipliers using logarithmic amplitude-to-time conversion; Amplificateurs d'impulsions utilisant une conversion logarithmique temps-amplitude; Ob umnozhitelyakh amplitudy impul'sov s ispol'zovaniem logarifmicheskogo preobrazovaniya amplitudy vo vremya; Multiplicadores de amplitud de impulso usando una conversion logaritmica de amplitud en tiempo

    Energy Technology Data Exchange (ETDEWEB)

    Konrad, M [Institut Rudjer Boskovic, Zagreb, Yugoslavia (Croatia)

    1962-04-15

    The accuracy and limitations of multipliers based on logarithmic amplitude-to-time conversion using RC pulse stretchers are discussed with respect to their application for determining whether the amplitude product of two coincident pulses has a given value. Some possible circuits are given. (author) [French] L'auteur etudie la precision et les limitations des amplificateurs fondes sur la conversion logarithmique temps-amplitude et utilisant des allongeurs d'impulsions RC, afin d'etablir si ces appareils peuvent servir a determiner la valeur du produit des amplitudes de deux impulsions coincidentes. Il decrit en outre plusieurs circuits possibles. (author) [Spanish] La memoria discute la precision y limitaciones de los multiplicadores basados en la conversion logaritmica de amplitud en tiempo empleando circuitos alargadores de resistencia-capacidad en relacion con su aplicacion para determinar si el producto de las amplitudes de dos impulsos coincidentes tiene un valor determinado. Indica algunos circuitos posibles. (author) [Russian] Obsuzhdayutsya predel pogreshnosti i ogranicheniya umnozhitelej, osnovannykh na logarifmicheskom preobrazovanii amplitudy vo vremya, s ispol'zovaniem rasshiritelej impul'sov RC; ehto delaetsya v svyazi s ikh primeneniem dlya vyyasneniya voprosa o tom, imeet li opredelennuyu velichinu proizvedenie amplitud dvukh sovpadayushchikh impul'sov. Privodyatsya nekotorye vozmozhnye blok-skhemy. (author)

  3. Time-amplitude converter; Convertisseur temps-amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Banner, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    It is normal in high energy physics to measure the time of flight of a particle in order to determine its mass. This can be done by the method which consists in transforming the time measurement into an analysis of amplitude, which is easier; a time-amplitude converter has therefore been built for this purpose. The apparatus here described uses a double grid control tube 6 BN 6 whose resolution time, as measured with a pulse generator, is 5 x 10{sup -11} s. The analysis of the response of a particle counter, made up of a scintillator and a photomultiplier, indicates that a time of resolution of 5 x 10{sup -10} s. can be obtained. A time of this order of magnitude is obtained experimentally with the converter. This converter has been used in the study of the time of flight of particles in a secondary beam of the accelerator Saturne. It has thus been possible to measure the energy spectrum of {pi}-mesons, of protons, and of deutons emitted from a polyethylene target bombarded by 1,4 and 2 GeV protons. (author) [French] Pour determiner la masse d'une particule, il est courant, en physique des hautes energies, de mesurer le temps de vol de cette particule. Cela peut etre fait par la methode qui consiste a transformer la mesure d'un temps en une analyse d'amplitude, plus aisee; aussi a-t-on, a cet effet, cree un convertisseur temps-amplitude. L'appareillage decrit dans cet article utilise un tube a double grille de commande 6 BN 6 dont le temps de resolution mesure avec un generateur d'impulsion est de 5.10{sup -11} s. L'analyse de la reponse d'un compteur de particules, constitue par un scintillateur et un photomultiplicateur, indique qu'un temps de resolution de 5.10{sup -10} s peut etre obtenu. Un temps de cet ordre est atteint experimentalement avec le convertisseur. Ce convertisseur a servi a l'etude du temps de vol des particules dans un faisceau secondaire de l'accelerateur Saturne. On a mesure ainsi le spectre d'energie des mesons {pi}, des protons, des deutons

  4. Structure of the amplitude equation of the climate; Struktur der Amplitudengleichung des Klimas

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, A. [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie

    1999-04-01

    The structure of the `amplitude equation`, a new dynamic equation on the seasonal time scale is derived, in which the weather scales may be treated statistically. The elsewhere-introduced climate-specific seasonally smoothed amplitudes and phases of the Fourier spectral representation are used as new prognostic variables. For the vorticity it is shown, that the still unsolved problem of the parameterisation of subscale transports may be solved in the `amplitude equation`. The approach could be successful because of the empirically derived statistical properties of the amplitudes (Poisson distribution and ergodicity) and of the phases (equipartition) of sub-planetary waves could be used. They allow a scale separation of weather and climate and lead to a tremendous reduction of the number of the horizontal degree of freedom of the amplitude equation to be between 10{sup 3} and 10{sup 4}. (orig.) [Deutsch] Es wird die Struktur der `Amplitudengleichung`, einer neuen dynamischen Gleichung auf der saisonalen Zeitskala abgeleitet. Anhand analysierter Daten des EZMW wird gezeigt, dass in der `Amplitudengleichung` die explizite Dynamik des Wetters tatsaechlich statistisch behandelt werden kann. Als prognostische Variablen der Gleichung werden die woanders neu eingefuehrten, klimaspezifischen, saisonal geglaetteten Amplituden und Phasen der Fourier-Spektraldarstellung verwendet. Am Beispiel der Vorticity wird gezeigt, dass das bisher ungeloeste Problem der Behandlung der subskaligen Transporte in der `Amplitudengleichung` grundsaetzlich geloest werden kann. Dies gelingt durch Ausnutzung der ebenfalls empirisch abgeleiteten besonderen statistischen Eigenschaften der Amplituden (Poissonverteilung und Ergodizitaet) und Phasen (Gleichverteilung) der subplanetaren Wellen, die eine Skalentrennung von Wetter und Klima ermoeglichen. Dies fuehrt zur erheblichen Reduktion der Zahl der horizontalen Freiheitsgrade der Amplitudengleichung auf 10{sup 3} bis 10{sup 4}. Die Ableitung

  5. Electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Iamsasri, Thanakorn; Jones, Jacob L., E-mail: jacobjones@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Tutuncu, Goknur [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Uthaisar, Chunmanus; Pojprapai, Soodkhet [School of Ceramic Engineering, Institute of Engineering, Suranaree University of Technology, Nakorn Ratchasima 30000 (Thailand); Wongsaenmai, Supattra [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand)

    2015-01-14

    The electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary (PPB) were observed using in situ X-ray diffraction. The ratio of monoclinic to tetragonal phase fraction was used as an indicator of the extent and reversibility of the phase transitions. The reversibility of the phase transition was greater in compositions further from the PPB. These results demonstrate that the field-induced phase transition is one of the origins of high piezoelectric properties in lead-free ferroelectric materials.

  6. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.

    2011-04-06

    The methods and mechanisms of nonsolvent induced phase separation have been studied for more than fifty years. Today, phase inversion membranes are widely used in numerous chemical industries, biotechnology, and environmental separation processes. The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many commonly used membrane polymers. The key factors in membrane preparation discussed include the solvent type, polymer type and concentration, nonsolvent system type and composition, additives to the polymer solution, and film casting conditions. A brief introduction to membrane characterization is also given, which includes membrane porosity and pore size distribution characterization, membrane physical and chemical properties characterization, and thermodynamic and kinetic evaluation of the phase inversion process. One aim of this review is to lay out the basics for selecting polymer solvent nonsolvent systems with appropriate film casting conditions to produce membranes with the desired performance, morphology, and stability, and to choose the proper way to characterize these properties of nonsolvent induced phase inversion membranes. © 2011 American Chemical Society.

  7. Smooth Phase Interpolated Keying

    Science.gov (United States)

    Borah, Deva K.

    2007-01-01

    Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values

  8. Radiation Pattern Reconstruction from the Near-Field Amplitude Measurement on Two Planes Using PSO

    Directory of Open Access Journals (Sweden)

    Z. Novacek

    2005-12-01

    Full Text Available The paper presents a new approach to the radiation patternreconstruction from near-field amplitude only measurement over a twoplanar scanning surfaces. This new method for antenna patternreconstruction is based on the global optimization PSO (Particle SwarmOptimization. The paper presents appropriate phaseless measurementrequirements and phase retrieval algorithm together with a briefdescription of the particle swarm optimization method. In order toexamine the methodologies developed in this paper, phaselessmeasurement results for two different antennas are presented andcompared to results obtained by a complex measurement (amplitude andphase.

  9. Laser-induced partial oxidation of cyclohexane in liquid phase

    International Nuclear Information System (INIS)

    Oshima, Y.; Wu, X.W.; Koda, S.

    1995-01-01

    A laser-induced partial oxidation of cyclohexane was studied in the liquid phase. With KrF excimer laser (248 nm) irradiation to neat liquid cyclohexane in which O 2 was dissolved, cyclohexanol and cyclohexanone were obtained with very high selectivities, together with cyclohexane as a minor product. Radical recombination reactions to produce dicyclohexyl ether and bicyclohexyl also took place, while these products were not observed in the gas phase reaction. These experimental results were considered to be due not only to higher concentration of cyclohexane but to the cage effect in the liquid phase oxidation. To clarify the reaction progress including the photoabsorption process, the effects of laser intensity and O 2 pressure on product distribution were studied. (author)

  10. Desynchronization of Theta-Phase Gamma-Amplitude Coupling during a Mental Arithmetic Task in Children with Attention Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Kim, Jun Won; Kim, Bung-Nyun; Lee, Jaewon; Na, Chul; Kee, Baik Seok; Min, Kyung Joon; Han, Doug Hyun; Kim, Johanna Inhyang; Lee, Young Sik

    2016-01-01

    Theta-phase gamma-amplitude coupling (TGC) measurement has recently received attention as a feasible method of assessing brain functions such as neuronal interactions. The purpose of this electroencephalographic (EEG) study is to understand the mechanisms underlying the deficits in attentional control in children with attention deficit/hyperactivity disorder (ADHD) by comparing the power spectra and TGC at rest and during a mental arithmetic task. Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD) from a camp for hyperactive children under two conditions (rest and task performance). The EEG power spectra and the TGC data were analyzed. Correlation analyses between the Intermediate Visual and Auditory (IVA) continuous performance test (CPT) scores and EEG parameters were performed. No significant difference in the power spectra was detected between the groups at rest and during task performance. However, TGC was reduced during the arithmetic task in the ADHD group compared with the normal group (F = 16.70, p attention-demanding tasks.

  11. Vlasov simulation of the relativistic effect on the breaking of large amplitude plasma waves

    International Nuclear Information System (INIS)

    Xu Hui; Sheng Zhengming; Zhang Jie

    2007-01-01

    The influence of relativistic and thermal effects on plasma wave breaking has been studied by solving the coupled Vlasov-Poisson equations. When the relativistic effect is not considered, the wave breaking will not occur, provided the initial perturbation is less than certain value as predicted previously, and the largest amplitude of the plasma wave will decrease with the increase of the initial temperature. When the relativistic effect is considered, wave breaking always occurs during the time evolution, irrespective of the initial perturbation amplitude. Yet the smaller the initial perturbation amplitude is, the longer is the time for wave breaking to occur. With large initial perturbations, wave breaking can always occur with the without the relativistic effect. However, the results are significantly different in the two cases. The thermal effects of electrons decrease the threshold value to initial amplitude for wave breaking and large phase velocity makes the nonlinear phenomenon occur more easily. (authors)

  12. Elasticity-based determination of isovolumetric phases in the human heart

    Directory of Open Access Journals (Sweden)

    Braun Jürgen

    2010-10-01

    Full Text Available Abstract Background/Motivation To directly determine isovolumetric cardiac time intervals by magnetic resonance elastography (MRE using the magnitude of the complex signal for deducing morphological information combined with the phase of the complex signal for tension-relaxation measurements. Methods Thirty-five healthy volunteers and 11 patients with relaxation abnormalities were subjected to transthoracic wave stimulation using vibrations of approximately 25 Hz. A k-space-segmented, ECG-gated gradient-recalled echo steady-state sequence with a 500-Hz bipolar motion-encoding gradient was used for acquiring a series of 360 complex images of a short-axis view of the heart at a frame rate of less than 5.2 ms. Magnitude images were employed for measuring the cross-sectional area of the left ventricle, while phase images were used for analyzing the amplitudes of the externally induced waves. The delay between the decrease in amplitude and onset of ventricular contraction was determined in all subjects and assigned to the time of isovolumetric tension. Conversely, the delay between the increase in wave amplitude and ventricular dilatation was used for measuring the time of isovolumetric elasticity relaxation. Results Wave amplitudes decreased during systole and increased during diastole. The variation in wave amplitude occurred ahead of morphological changes. In healthy volunteers the time of isovolumetric elasticity relaxation was 75 ± 31 ms, which is significantly shorter than the time of isovolumetric tension of 136 ± 36 ms (P n = 11 isovolumetric elasticity relaxation was significantly prolonged, with 133 ± 57 ms (P P = 0.053. Conclusion The complex MRE signal conveys complementary information on cardiac morphology and elasticity, which can be combined for directly measuring isovolumetric tension and elasticity relaxation in the human heart.

  13. Mirror symmetry, toric branes and topological string amplitudes as polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Alim, Murad

    2009-07-13

    The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

  14. Mirror symmetry, toric branes and topological string amplitudes as polynomials

    International Nuclear Information System (INIS)

    Alim, Murad

    2009-01-01

    The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

  15. Efficient Ultra-High Speed Communication with Simultaneous Phase and Amplitude Regenerative Sampling (SPARS)

    Science.gov (United States)

    Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang

    2017-09-01

    For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.

  16. Multiple pathways in pressure-induced phase transition of coesite

    Science.gov (United States)

    Liu, Wei; Wu, Xuebang; Liu, Changsong; Miranda, Caetano R.; Scandolo, Sandro

    2017-01-01

    High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture. PMID:29162690

  17. Ultrafast Hot Electron Induced Phase Transitions in Vanadium Dioxide

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available The Au/Cr/VO2/Si system was investigated in pump–probe experiments. Hot-electrons generated in the Au were found to penetrate into the underlying VO2 and couple with its lattice inducing a semiconductor-to-metal phase transition in ~2 picoseconds.

  18. Hidden beauty in multiloop amplitudes

    International Nuclear Information System (INIS)

    Cachazo, Freddy; Spradlin, Marcus; Volovich, Anastasia

    2006-01-01

    Planar L-loop maximally helicity violating amplitudes in N = 4 supersymmetric Yang-Mills theory are believed to possess the remarkable property of satisfying iteration relations in L. We propose a simple new method for studying iteration relations for four-particle amplitudes which involves the use of certain linear differential operators and eliminates the need to fully evaluate any loop integrals. We carry out this procedure in explicit detail for the two-loop amplitude and prove that this method can be applied to any multiloop integral, allowing a conjectured iteration relation for any given amplitude to be tested up to polynomials in logarithms

  19. Photo-induced optical activity in phase-change memory materials.

    Science.gov (United States)

    Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I

    2015-03-05

    We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.

  20. Separation of S-wave pseudoscalar and pseudovector amplitudes in {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n reaction on polarized target

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, R.; Lesniak, L.; Rybicki, K. [Institute of Nuclear Physics, Cracow (Poland)

    1996-06-01

    A new analysis of S-wave production amplitudes for the reaction {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n on a transversely polarized target is performed. It is based on the results obtained by CERN-Cracow-Munich collaboration in the {pi}{pi} energy range from 600 MeV to 1600 MeV at 17.2 GeV/c {pi}{sup -} momentum. Energy-independent separation of the S-wave pseudoscalar amplitude ({pi} exchange) from the pseudovector amplitude (a{sub 1} exchange) is carried out using assumptions much weaker than those in all previous analyses. We show that, especially around 1000 MeV and around 1500 MeV, the a{sub 1} exchange amplitude cannot be neglected. The scalar-isoscalar {pi}{pi} phase shift are calculated using fairly weak assumptions. Our results are consistent both with the so called ``up`` and the well-known ``down`` solution, provided we choose those in which the S-wave phases increase slower with the effective {pi}{pi} mass than the P-wave phases. Above 1420 MeV both sets of phase shifts increase with energy faster than in the experiment on an unpolarized target. This fact can be related to the presence of scalar resonance f{sub o}(1500). (author). 41 refs, 9 figs, 1 tab.

  1. Pressure induced reactions amongst calcium aluminate hydrate phases

    KAUST Repository

    Moon, Ju-hyuk

    2011-06-01

    The compressibilities of two AFm phases (strätlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies. © 2011 Elsevier Ltd. All rights reserved.

  2. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    Science.gov (United States)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  3. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  4. Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light

    Science.gov (United States)

    Cai, Jianjun; Shen, Xueju; Lei, Ming

    2017-11-01

    We propose a novel optical asymmetric image encryption method based on amplitude reconstruction of elliptically polarized light, which is free from silhouette problem. The original image is analytically separated into two phase-only masks firstly, and then the two masks are encoded into amplitudes of the orthogonal polarization components of an elliptically polarized light. Finally, the elliptically polarized light propagates through a linear polarizer, and the output intensity distribution is recorded by a CCD camera to obtain the ciphertext. The whole encryption procedure could be implemented by using commonly used optical elements, and it combines diffusion process and confusion process. As a result, the proposed method achieves high robustness against iterative-algorithm-based attacks. Simulation results are presented to prove the validity of the proposed cryptography.

  5. Metabolic and respiratory costs of increasing song amplitude in zebra finches.

    Directory of Open Access Journals (Sweden)

    Sue Anne Zollinger

    Full Text Available Bird song is a widely used model in the study of animal communication and sexual selection, and several song features have been shown to reflect the quality of the singer. Recent studies have demonstrated that song amplitude may be an honest signal of current condition in males and that females prefer high amplitude songs. In addition, birds raise the amplitude of their songs to communicate in noisy environments. Although it is generally assumed that louder song should be more costly to produce, there has been little empirical evidence to support this assumption. We tested the assumption by measuring oxygen consumption and respiratory patterns in adult male zebra finches (Taeniopygia guttata singing at different amplitudes in different background noise conditions. As background noise levels increased, birds significantly increased the sound pressure level of their songs. We found that louder songs required significantly greater subsyringeal air sac pressure than quieter songs. Though increased pressure is probably achieved by increasing respiratory muscle activity, these increases did not correlate with measurable increases in oxygen consumption. In addition, we found that oxygen consumption increased in higher background noise, independent of singing behaviour. This observation supports previous research in mammals showing that high levels of environmental noise can induce physiological stress responses. While our study did not find that increasing vocal amplitude increased metabolic costs, further research is needed to determine whether there are other non-metabolic costs of singing louder or costs associated with chronic noise exposure.

  6. Visualization of Two-Phase Fluid Distribution Using Laser Induced Exciplex Fluorescence

    Science.gov (United States)

    Kim, J. U.; Darrow, J.; Schock, H.; Golding, B.; Nocera, D.; Keller, P.

    1998-03-01

    Laser-induced exciplex (excited state complex) fluorescence has been used to generate two-dimensional images of dispersed liquid and vapor phases with spectrally resolved two-color emissions. In this method, the vapor phase is tagged by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. A new exciplex visualization system consisting of DMA and 1,4,6-TMN in an isooctane solvent was developed.(J.U. Kim et al., Chem. Phys. Lett. 267, 323-328 (1997)) The direct ca

  7. Polarization controlled UV writing of bragg gratings

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Plougmann, Nikolai; Deyerl, Hans-Jürgen

    2002-01-01

    In conclusion the polarization control method is superior to any double scan method since it allows much more flexible apodization and inclusion of phase shifts, and since only one exposure is required. In many cases the method performs just as well as the most sophisticated phase mask jitter met...

  8. A low-cost non-intercepting beam current and phase monitor for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.

    1995-01-01

    A low cost ion beam measurement system has been developed for use at ATLAS. The system provides nondestructive phase and intensity measurement of passing ion beam bunches by sensing their electric fields. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum jacket where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam induced radiofrequency signals are summed against an offset frequency generated by the master oscillator. The resulting difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop to stabilize phase readings during microsecond beam drop outs. The other channel uses a linear full-wave active rectifier circuit which converts sine wave signal amplitude to a DC voltage representing beam current. Plans are in progress to install this new diagnostic at several locations in ATLAS which should help shorten the tuning cycle of new ion species

  9. The difference in noise property between the Autler—Townes splitting medium and the electromagnetically induced transparent medium

    International Nuclear Information System (INIS)

    Li Zhong-Hua; Li Yuan; Dou Ya-Fang; Zhang Jun-Xiang

    2012-01-01

    The quantum noise of squeezed probe light passing through an atomic system with different electromagnetically induced transparency and Autler—Townes splitting effects is investigated theoretically. It is found that the optimal squeezing preservation of the outgoing probe beam occurs in the strong-coupling-field regime rather than in the weak-coupling-field regime. In the weak-coupling-field regime, which was recently recognized as the electromagnetically induced transparency regime (Abi-Salloum T Y 2010 Phys. Rev. A 81 053836), the output amplitude noise is affected mainly by the atomic noise originating from the random decay process of atoms. While in the strong-coupling-field regime, defined as the Autler—Townes splitting regime, the output amplitude noise is affected mainly by the phase-to-amplitude conversion noise. This is useful in improving the quality of the experiment for efficient quantum memory, and hence has an application in quantum information processing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization

    International Nuclear Information System (INIS)

    Pal, Vishwa; Ghosh, R; Prasad, Awadhesh

    2011-01-01

    We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the so-called linewidth enhancement factor, α. In this work, we explore the role of optical phases of the electric fields in amplitude (and hence power) synchronization through α in such mutually delay-coupled diode laser systems. Our numerical results show that the synchronization of optical phases drives the powers of lasers to synchronized death regimes. We also find that as α varies for different diode lasers, the system goes through a sequence of in-phase amplitude-death states. Within the windows between successive amplitude-death regions, the cross-correlation between the field amplitudes exhibits a universal power-law behaviour with respect to α.

  11. Terahertz Induced Electromigration

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2014-01-01

    We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm.......We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm....

  12. Deformation-induced phase transformation in 4H–SiC nanopillars

    International Nuclear Information System (INIS)

    Chen, Bin; Wang, Jun; Zhu, Yiwei; Liao, Xiaozhou; Lu, Chunsheng; Mai, Yiu-Wing; Ringer, Simon P.; Ke, Fujiu; Shen, Yaogen

    2014-01-01

    The deformation behaviour of single-crystal SiC nanopillars was studied by a combination of in situ deformation transmission electron microscopy and molecular dynamics simulations. An unexpected deformation-induced phase transformation from the 4H hexagonal structure to the 3C face-centred cubic structure was observed in these nanopillars at room temperature. Atomistic simulations revealed that the 4H to 3C phase transformation follows a stick–slip process with initiation and end stresses of 12.1–14.0 and 7.9–9.0 GPa, respectively. The experimentally measured stress of 9–10 GPa for the phase transformation falls within the range of these theoretical upper and lower stresses. The reasons for the phase transformation are discussed. The finding sheds light on the understanding of phase transformation in polytypic materials at low temperature

  13. INFLUENCE OF POLARIZATION MODE DISPERSION ON THE EFFECT OF CROSS-PHASE MODULATION IN INTENSITY MODULATION-DIRECT DETECTION WDM TRANSMISSION SYSTEM

    Directory of Open Access Journals (Sweden)

    M S Islam

    2010-03-01

    Full Text Available Cross-phase modulation (XPM changes the state-of-polarization (SOP of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.

  14. Systematic assessment of noise amplitude generated by toys intended for young children.

    Science.gov (United States)

    Mahboubi, Hossein; Oliaei, Sepehr; Badran, Karam W; Ziai, Kasra; Chang, Janice; Zardouz, Shawn; Shahriari, Shawn; Djalilian, Hamid R

    2013-06-01

    To systematically evaluate the noise generated by toys targeted for children and to compare the results over the course of 4 consecutive holiday shopping seasons. Experimental study. Academic medical center. During 2008-2011, more than 200 toys marketed for children older than 6 months were screened for loudness. The toys with sound output of more than 80 dBA at speaker level were retested in a soundproof audiometry booth. The generated sound amplitude of each toy was measured at speaker level and at 30 cm away from the speaker. Ninety different toys were analyzed. The mean (SD) noise amplitude was 100 (8) dBA (range, 80-121 dBA) at the speaker level and 80 (11) dBA (range, 60-109 dBA) at 30 cm away from the speaker. Eighty-eight (98%) had more than an 85-dBA noise amplitude at speaker level, whereas 19 (26%) had more than an 85-dBA noise amplitude at a 30-cm distance. Only the mean noise amplitude at 30 cm significantly declined during the studied period (P toys specified for different age groups. Our findings demonstrate the persistence of extremely loud toys marketed for very young children. Acoustic trauma from toys remains a potential risk factor for noise-induced hearing loss in this age group, warranting promotion of public awareness and regulatory considerations for manufacture and marketing of toys.

  15. Radiation-induced trioxane postpolymerization in the liquid phase

    International Nuclear Information System (INIS)

    Kapustina, I.B.; Starchenko, T.V.

    1979-01-01

    Radiation-induced trioxane postpolymerization in the presence of maleic anhydride and different solvents in the liquid phase has been studied. It has been found that addition of small quantities of different solvents inhibits the trioxane polymerization process both in the presence of maleic anhydride and in the absence of it. Trioxane postpolymerization in a solvent-nonsolvent mixture gives fibrous polyoxymethylene with high molecular mass and high yield

  16. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    International Nuclear Information System (INIS)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-01-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh–Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h −1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h) −1 (improved by 1

  17. Modulated phases of phospholipid bilayers induced by tocopherols.

    Science.gov (United States)

    Kamal, Md Arif; Raghunathan, V A

    2012-11-01

    The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(β) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Variation of structural damping with response amplitude in piping systems

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    From tests conducted over the last several years, it has become apparent that structural damping is not a single number applicable to all piping systems, but is highly dependent on piping system parameters such as supports, response amplitude, and insulation. As a result, there is considerable scatter in the available data. Furthermore, the relationships between the parameters and damping are often highly complex, interrelated, and difficult to predict. From tests of piping supported by various typical methods, two basic types of energy dissipation in the supports can be observed. The first is friction such as between spring hangers and their housings or in the internal mechanisms of constant force hangers. The second is impacting such as occurs in snubbers, rigid struts, and rod hangers. Overall, these effects lead to a wide variety of possibilities that can occur at low vibration levels and can change with only a slight perturbation of vibration amplitude. This can account for much of the scatter in the data at low strain levels. Thus damping is almost impossible to predict at low amplitudes, and extrapolation of this type data to higher amplitudes is cautioned. However, once strain levels rise above 100 to 200 micro in/in, the damping trend becomes easier to characterize. From the 100 to 200 micro in/in to 800 to 1000 micro in/in range the damping is fairly constant and is induced primarily by the supports. At the upper end of this range a threshold is reached in which damping increases with increasing strain amplitude. Data in the high strain (plastic range) is sparse since the test usually renders the pipe unsuitable for further use. 15 refs

  19. Pressure-induced phase transitions in nanocrystalline ReO3

    International Nuclear Information System (INIS)

    Biswas, Kanishka; Muthu, D V S; Sood, A K; Kruger, M B; Chen, B; Rao, C N R

    2007-01-01

    Pressure-induced phase transitions in the nanocrystals of ReO 3 with an average diameter of ∼12 nm have been investigated in detail by using synchrotron x-ray diffraction and the results compared with the literature data of bulk samples of ReO 3 . The study shows that the ambient-pressure cubic I phase (space group Pm3-barm) transforms to a monoclinic phase (space group C 2/c), then to a rhombohedral I phase (space group R3-barc), and finally to another rhombohedral phase (rhombohedral II, space group R3-barc) with increasing pressure over the 0.0-20.3 GPa range. The cubic I to monoclinic transition is associated with the largest volume change (∼5%), indicative of a reconstructive transition. The transition pressures are generally lower than those known for bulk ReO 3 . The cubic II (Im3-bar) or tetragonal (P4/mbm) phases do not occur at lower pressures. The nanocrystals are found to be more compressible than bulk ReO 3 . On decompression to ambient pressure, the structure does not revert back to the cubic I structure

  20. Finite element Fourier and Abbe transform methods for generalization of aperture function and geometry in Fraunhofer diffraction theory

    International Nuclear Information System (INIS)

    Kraus, H.G.

    1991-01-01

    This paper discusses methods for calculating Fraunhofer intensity fields resulting from diffraction through one- and two-dimensional apertures are presented. These methods are based on the geometric concept of finite elements and on Fourier and Abbe transforms. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define aperture(s) of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s) which may be of continuous or discontinuous form. The transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is most evident in two dimensions, where several examples are presented which include secondary obstructions, straight and curved secondary spider supports, multiple-mirror arrays, synthetic aperture arrays, segmented mirrors, apertures covered by screens, apodization, and phase plates. Typically, the finite element Abbe transform method results in significant gains in computational efficiency over the finite element Fourier transform method, but is also subject to some loss in generality

  1. Strain-hardening behavior and microstructure development in polycrystalline as-cast Mg-Zn-Y alloys with LPSO phase subjected to cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Kazuma [Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Mayama, Tsuyoshi, E-mail: mayama@kumamoto-u.ac.jp [Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Yamasaki, Michiaki [School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Qld 4072 (Australia); Magnesium Research Center/Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Kawamura, Yoshihito [Magnesium Research Center/Department of Materials Science and Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan)

    2016-08-30

    The strain-hardening behavior and microstructural development of polycrystalline as-cast Mg-Zn-Y alloys with various volume fractions of the long-period stacking ordered (LPSO) phase subjected to cyclic loading were experimentally evaluated. For all alloys, cyclic loading tests with a constant strain amplitude of 0.5% for up to 100 cycles showed asymmetric cyclic hardening behavior. That is, the absolute value of the compressive peak stress significantly increased during cyclic loading while the tensile peak stress slightly decreased. With increasing volume fraction of the LPSO phase, the stress amplitude significantly increased. Cyclic loading tests after compressive preloading up to 200 or 250 MPa resulted in a significant increase in the stress amplitude, while a number of kink bands developed during preloading. For the cyclic hardening behavior, the contribution of the increase in kinematic hardening was significant in the alloys with a higher volume fraction of the LPSO phase. Transmission electron microscopy observation of the cyclically deformed Mg{sub 85}Zn{sub 6}Y{sub 9} alloy indicated the formation of a deformation-induced band, where the crystal structure was transformed from 18R-LPSO to hcp-Mg with the exclusion of solute elements.

  2. New relations for Einstein–Yang–Mills amplitudes

    International Nuclear Information System (INIS)

    Stieberger, Stephan; Taylor, Tomasz R.

    2016-01-01

    We obtain new relations between Einstein–Yang–Mills (EYM) amplitudes involving N gauge bosons plus a single graviton and pure Yang–Mills amplitudes involving N gauge bosons plus one additional vector boson inserted in a way typical for a gauge boson of a “spectator” group commuting with the group associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling relations similar to Kleiss–Kuijf relations for Yang–Mills amplitudes. We consider a D-brane embedding of EYM amplitudes in the framework of disk amplitudes involving open and closed strings. A new set of monodromy relations is derived for mixed open–closed amplitudes with one closed string inserted on the disk world-sheet and a number of open strings at the boundary. These relations allow expressing the latter in terms of pure open string amplitudes and, in the field-theory limit, they yield the U(1) decoupling relations for EYM amplitudes.

  3. Initial frequency shift of large amplitude plasma wave

    International Nuclear Information System (INIS)

    Sugihara, Ryo; Yamanaka, Kaoru.

    1979-04-01

    A distribution function which is an exact solution to the collisionless Boltzmann equation is obtained in an expansion form in terms of the potential phi(x, t). A complex nonlinear frequency shift ωsub( n)(t) is obtained by use of the Poisson equation and the expansion. The theory is valid for arbitrary phi 0 and v sub(p) as long as ωsub(p) >> γsub( l), and in the initial phase defined by 0 0 , v sub(p), ωsub(p), γsub( l) and t sub(c) are the initial value of phi, the phase velocity, the Langmuir frequency, the linear Landau damping coefficient and the time for the first minimum of the amplitude oscillation. The ωsub( n)(0) does not vanish and Reωsub( n)(0)/γsub( l) > 1 holds even for e phi 0 /T 1 in the initial phase for v sub( p) > v sub( t). The theory reproduces main features of experimental results and that of simulations. (author)

  4. Phase separation in fluids exposed to spatially periodic external fields.

    Science.gov (United States)

    Vink, R L C; Archer, A J

    2012-03-01

    When a fluid is confined within a spatially periodic external field, the liquid-vapor transition is replaced by a different transition called laser-induced condensation (LIC) [Götze et al., Mol. Phys. 101, 1651 (2003)]. In d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed; by increasing the temperature further, both coexistence regions terminate in critical points. In this paper, we reconsider LIC using the Ising model to resolve a number of open issues. To be specific, we (1) determine the universality class of the LIC critical points and elucidate the nature of the correlations along the field direction, (2) present a mean-field analysis to show how the LIC phase diagram changes as a function of the field wavelength and amplitude, (3) develop a simulation method by which the extremely low tension of the interface between modulated and vapor or liquid phase can be measured, (4) present a finite-size scaling analysis to accurately extract the LIC triple point from finite-size simulation data, and (5) consider the fate of LIC in d=2 dimensions.

  5. Mass-induced [|#8#|]Sea Level Variations in the Red Sea from Satellite Altimetry and GRACE

    Science.gov (United States)

    Feng, W.; Lemoine, J.; Zhong, M.; Hsu, H.

    2011-12-01

    We have analyzed mass-induced sea level variations (SLVs) in the Red Sea from steric-corrected altimetry and GRACE between January 2003 and December 2010. The steric component of SLVs in the Red Sea calculated from climatological temperature and salinity data is relatively small and anti-phase with the mass-induced SLV. The total SLV in the Red Sea is mainly driven by the mass-induced SLV, which increases in winter when the Red Sea gains the water mass from the Gulf of Aden and vice versa in summer. Spatial and temporal patterns of mass-induced SLVs in the Red Sea from steric-corrected altimetry agree very well with GRACE observations. Both of two independent observations show high annual amplitude in the central Red Sea (>20cm). Total mass-induced SLVs in the Red Sea from two independent observations have similar annual amplitude and phase. One main purpose of our work is to see whether GRGS's ten-day GRACE results can observe intra-seasonal mass change in the Red Sea. The wavelet coherence analysis indicates that GRGS's results show the high correlation with the steric-corrected SLVs on intra-seasonal time scale. The agreement is excellent for all the time-span until 1/3 year period and is patchy between 1/3 and 1/16 year period. Furthermore, water flux estimates from current-meter arrays and moorings show mass gain in winter and mass loss in summer, which is also consistent with altimetry and GRACE.

  6. Motivic amplitudes and cluster coordinates

    International Nuclear Information System (INIS)

    Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.

    2014-01-01

    In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity

  7. A Novel Phase-Locking-Free Phase Sensitive Amplifier based Regenerator

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Røge, Kasper Meldgaard; Guan, Pengyu

    2016-01-01

    We propose a scheme for phase regeneration of optical binary phase-shift keying (BPSK) data signals based on phase sensitive amplification without active phase-locking. A delay interferometer (DI) is used to convert a BPSK signal impaired by noise to an amplitude modulated signal followed by cross......-locked pumps. As a result, active phase-stabilization is avoided. A proof-of-principle experiment is carried out with a dual-pump degenerate phase sensitive amplifier (PSA), demonstrating regeneration for a 10 Gb/s non-return-to-zero differential BPSK (NRZ-DPSK) data signal degraded by a sinusoidal phase...

  8. Understanding of phase modulation in two-level systems through inverse scattering

    International Nuclear Information System (INIS)

    Hasenfeld, A.; Hammes, S.L.; Warren, W.S.

    1988-01-01

    Analytical and numerical calculations describe the effects of shaped radiation pulses on two-level systems in terms of quantum-mechanical scattering. Previous results obtained in the reduced case of amplitude modulation are extended to the general case of simultaneous amplitude and phase modulation. We show that an infinite family of phase- and amplitude-modulated pulses all generate rectangular inversion profiles. Experimental measurements also verify the theoretical analysis

  9. Polyoxyethylene/styrene - a model system for studying reaction-induced phase separation (RIPS)

    International Nuclear Information System (INIS)

    Sutton, D.; Stanford, J.L.; Ryan, A.J.

    2003-01-01

    Full text: Reaction-induced, phase-separation has been studied in polymer blends. A model crystalline-amorphous system consisted of semi-crystalline polyoxyethylene (POE) dissolved in the monomer styrene, which was employed as a reactive solvent to ease processing. When the styrene was polymerised to polystyrene (PS) in the mould, phase-separation and phase-inversion are induced, and a polymer blend was formed. POE was selected with a molar mass, Mn = 8578 g mol -1 and a polydispersity of 1.19 as determined using GPC. The polymerisation of styrene was initiated using 1 wt-% benzoin methyl ether (BME) and 0.2 wt-% 2,2'-azobisisobutyronitrile (AIBN) under ultra-violet (UV) light. The polymerisation kinetics were determined by monitoring the reduction in the intensity of the C=C stretching vibration band at 1631 cm -1 in the Raman spectrum of styrene. The onset times for the liquid-solid (L-S) phase-separation and crystallisation of POE from styrene/PS were observed using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). Onset times for L-S phase-separation determined from the SAXS data were combined with the styrene polymerisation kinetics to plot the L-S phase-separation data onto a ternary phase diagram for the reactive system POE/styrene/PS at 45 and 50 deg C

  10. Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?

    Directory of Open Access Journals (Sweden)

    Eugen eDiesch

    2012-05-01

    Full Text Available Objectives: The amplitude of the auditory steady-state response (ASSR is enhanced in tinnitus. As ASSR ampli¬tude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As attention effects on the N1 are signi¬fi¬cantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory evoked response. Methods: MEG recordings of auditory evoked responses which were previously examined for the ASSR (Diesch et al. 2010 were analysed with respect to the N1m component. Like the ASSR previously, the N1m was analysed in the source domain (source space projection. Stimuli were amplitude-modulated tones with one of three carrier fre¬quen¬cies matching the tinnitus frequency or a surrogate frequency 1½ octaves above the audio¬metric edge frequency in con¬trols, the audiometric edge frequency, and a frequency below the audio¬metric edgeResults: In the earlier ASSR study (Diesch et al., 2010, the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate tinnitus condition than in the edge condition. In the present study, both tinnitus patients and healthy controls show an N1m-amplitude profile identical to the one of ASSR amplitudes in healthy controls. N1m amplitudes elicited by tonal frequencies located at the audiometric edge and at the (surrogate tinnitus frequency are smaller than N1m amplitudes elicited by sub-edge tones and do not differ among each other.Conclusions: There is no N1-amplitude enhancement effect in tinnitus. The enhancement effect of tinnitus on ASSR amplitude cannot be accounted for in terms of attention induced by tinnitus.

  11. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  12. Dissipation and oscillatory solvation forces in confined liquids studied by small amplitude atomic force spectroscopy

    NARCIS (Netherlands)

    de Beer, Sissi; van den Ende, Henricus T.M.; Mugele, Friedrich

    2010-01-01

    We determine conservative and dissipative tip–sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat

  13. Laser-induced microstructural development and phase evolution in magnesium alloy

    International Nuclear Information System (INIS)

    Guan, Y.C.; Zhou, W.; Li, Z.L.; Zheng, H.Y.

    2014-01-01

    Highlights: • Secondary phase evolution caused by laser processing was firstly reported. • Microstructure development was controlled by heat flow thermodynamics and kinetics. • Solid-state transformation resulted in submicron and nano-scale precipitates. • Cluster-shaped particles in overlapped region were due to precipitation coarsening. • Properties of materials can be tailored selectively by laser processing. -- Abstract: Secondary phase plays an important role in determining microstructures and properties of magnesium alloys. This paper focuses on laser-induced microstructure development and secondary phase evolution in AZ91D Mg alloy studied by SEM, TEM and EDS analyses. Compared to bulk shape and lamellar structure of the secondary phase in as-received cast material, rapid-solidified microstructures with various morphologies including nano-precipitates were observed in laser melt zone. Formation mechanisms of microstructural evolution and effect of phase development on surface properties were further discussed

  14. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    International Nuclear Information System (INIS)

    Katanchi, B.; Choupani, N.; Khalil-Allafi, J.; Baghani, M.

    2017-01-01

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  15. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi

    Energy Technology Data Exchange (ETDEWEB)

    Katanchi, B. [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Choupani, N., E-mail: choupani@sut.ac.ir [Mechanical Engineering Faculty, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advance Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Baghani, M. [School of Mechanical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)

    2017-03-14

    Phase transformation in shape memory alloys is the most important factor in their unique behavior. In this paper, the formation of stress induced martensite phase transformation in a superelastic NiTi (50.8% Ni) shape memory alloy was investigated by using the photo-stress method. First, the material's fabrication procedure has been described and then the material was studied using the metallurgical tests such as differential scanning calorimetry and X-ray diffraction to characterize the material features and the mechanical tensile test to investigate the superelastic behavior. As a new method in observation of the phase transformation, photo-stress pictures showed the formation of stress induced martensite in a superelastic dog-bone specimen during loading and subsequently it's disappearing during unloading. Finally, finite element analysis was implemented using the constitutive equations derived based on the Boyd-Lagoudas phenomenological model.

  16. Measurement of polarization amplitudes and $CP$ asymmetries in $B^0 \\to \\phi K^*(892)^0$

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Callot, Olivier; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Caponio, Francesco; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coca, Cornelia; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jezabek, Marek; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Longstaff, Ian; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teodorescu, Eliza; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Webber, Adam Dane; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    An angular analysis of the decay $B^0 \\to \\phi K^*(892)^0$ is reported based on a $pp$ collision data sample, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected at a centre-of-mass energy of $\\sqrt{s} = 7$ TeV with the LHCb detector. The P-wave amplitudes and phases are measured with a greater precision than by previous experiments, and confirm about equal amounts of longitudinal and transverse polarization. The S-wave $K^+ \\pi^-$ and $K^+K^-$ contributions are taken into account and found to be significant. A comparison of the $B^0 \\to \\phi K^*(892)^0$ and $\\bar{B}^0 \\to \\phi \\bar{K}^*(892)^0$ results shows no evidence for direct CP violation in the rate asymmetry, in the triple-product asymmetries or in the polarization amplitudes and phases.

  17. COMPARISON OF HOLOGRAPHIC AND ITERATIVE METHODS FOR AMPLITUDE OBJECT RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    I. A. Shevkunov

    2015-01-01

    Full Text Available Experimental comparison of four methods for the wavefront reconstruction is presented. We considered two iterative and two holographic methods with different mathematical models and algorithms for recovery. The first two of these methods do not use a reference wave recording scheme that reduces requirements for stability of the installation. A major role in phase information reconstruction by such methods is played by a set of spatial intensity distributions, which are recorded as the recording matrix is being moved along the optical axis. The obtained data are used consistently for wavefront reconstruction using an iterative procedure. In the course of this procedure numerical distribution of the wavefront between the planes is performed. Thus, phase information of the wavefront is stored in every plane and calculated amplitude distributions are replaced for the measured ones in these planes. In the first of the compared methods, a two-dimensional Fresnel transform and iterative calculation in the object plane are used as a mathematical model. In the second approach, an angular spectrum method is used for numerical wavefront propagation, and the iterative calculation is carried out only between closely located planes of data registration. Two digital holography methods, based on the usage of the reference wave in the recording scheme and differing from each other by numerical reconstruction algorithm of digital holograms, are compared with the first two methods. The comparison proved that the iterative method based on 2D Fresnel transform gives results comparable with the result of common holographic method with the Fourier-filtering. It is shown that holographic method for reconstructing of the object complex amplitude in the process of the object amplitude reduction is the best among considered ones.

  18. Modeling quiescent phase transport of air bubbles induced by breaking waves

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear

  19. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  20. Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes

    Science.gov (United States)

    Gorantla, Pranay; Sensarma, Rajdeep

    2018-05-01

    Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.

  1. Amplitude modulation of atomic wave functions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The major theoretical advance has been to show that one can modulate Rydberg wave functions using either of two methods: (1) the amplitude modulation technique which depends on autoionization to deplete part of the wave function, or (2) a phase modulation method, which uses a change in the core potential to create a localized phase shift in the wave function. Essentially, these two methods can both be seen as using the core potential to change the Rydberg wave function, using the imaginary part of the potential to do amplitude modulation, or using the real part of the potential to do phase modulation. This work will be published as the authors acquire experimental results which show the differences between the two methods. One of the results of this theoretical study is that the initial proposal to study Barium 6snd states had a significant flaw. Neither the autoionization time, nor the quantum defect shifts are very large in these cases. This means that the modulation is relatively small. This shows itself primarily in the difficulty of seeing significant population redistribution into different 6snd states. The authors intend to correct this in the next funding cycle either: (a) by using the more quickly decaying Ba 6pnf states to modulate 6snd states, or (b) by using Sr 5 snd states, as outlined in this report. Their first, low power experiments are complete. These experiments have used two pulses to do a temporal version of the Ramsey separated oscillatory fields excitation. The two pulses are generated by passing the single pulse through a Michelson-Morley interferometer, which is computer controlled to sweep one arm through 2.5 {micro}m in steps of 10 nm. The second pulse`s excitation interferes with that of the first pulse, and so the total excitation has a sinusoidal variation (with a time period equal to the optical period) on top of a constant background. The amplitude of the total variation should decay at half of the rate decay rate of the autoionizing

  2. Photo-induced phase transition: from where it comes and to where it goes?

    International Nuclear Information System (INIS)

    Koshihara, Shin-ya

    2005-01-01

    It is an attractive target for materials science to find a system which shows the phase transition triggered by external stimulation of light. The purpose of our study is to review experimental evidences indicating that the photo-injected local excitation can really trigger the cooperative phenomena in solids. In this sense, this unique photo-induced effect can be named as photo-induced phase transition (PIPT). Here, I will also make brief review on the experimental research on PIPT combining with a development of ultra-fast quantum electronics technology

  3. Pressure-induced ferroelectric to antiferroelectric phase transformation in porous PZT95/5 ceramics

    International Nuclear Information System (INIS)

    Zeng, T.; Dong, X.L.; Chen, X.F.; Yao, C.H.; He, H.L.

    2007-01-01

    The hydrostatic pressure-induced ferroelectric to antiferroelectric (FE-AFE) phase transformation of PZT95/5 ceramics was investigated as a function of porosity, pore shape and pore size. FE-AFE phase transformations were more diffuse and occurred at lower hydrostatic pressures with increasing porosity. The porous PZT95/5 ceramics with spherical pores exhibited higher transformation pressures than those with irregular pores. Moreover, FE-AFE phase transformations of porous PZT95/5 ceramics with polydisperse irregular pores were more diffuse than those of porous PZT95/5 ceramics with monodisperse irregular pores. The relation between pore structure and hydrostatic pressure-induced FE-AFE transformation was established according to stress concentration theory. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Fast process (Flash-SPECT) to extract three-dimensional scans of Fourier amplitude and phase of the heart by means of gated single photon emission computed tomography (GASPECT)

    International Nuclear Information System (INIS)

    Graf, G.; Heidenreich, P.; Clausen, M.; Henze, E.; Bitter, F.; Adam, W.E.

    1989-01-01

    The backprojection of Fourier-data like the average of the heart period and the sums of the cosinus- and sinusrow with the combined advantage of count statistics yield to high quality functional slices of the heart by only 15 minutes acquisition time. Reducing the data volumes of the functional slices for amplitudes and phases by transforming them in a bull's eye display, it results in superposition free and position independent detection of the leftventricular functional state, with adequate and direct comparison to 201 Tl-Myocard-ECT investigation. (orig.) [de

  5. Phase characteristics of earthquake accelerogram and its application

    International Nuclear Information System (INIS)

    Ohsaki, Y.; Iwasaki, R.; Ohkawa, I.; Masao, T.

    1979-01-01

    As the input earthquake motion for seismic design of nuclear power plant structures and equipments, an artificial time history compatible with smoothed design response spectrum is frequently used. This paper deals with a wave generation technique based on phase characteristics in earthquake accelerograms as an alternate of envelope time function. The concept of 'phase differences' distribution' is defined to represent phase characteristics of earthquake motion. The procedure proposed in this paper consists of following steps; (1) Specify a design response spectrum and derive a corresponding initial modal amplitude. (2) Determine a phase differences' distribution corresponding to an envelope function, the shape of which is dependent on magnitude and epicentral distance of an earthquake. (3) Derive the phase angles at all modal frequencies from the phase differences' distribution. (4) Generate a time history by inverse Fourier transeform on the basis of the amplitudes and the phase angles thus determined. (5) Calculate the response spectrum. (6) Compare the specified and calculated response spectra, and correct the amplitude at each frequency so that the response spectrum will be consistent with the specified. (7) Repeat the steps 4 through 6, until the specified and calculated response spectra become consistent with sufficient accuracy. (orig.)

  6. Relative amplitude preservation processing utilizing surface consistent amplitude correction. Part 3; Surface consistent amplitude correction wo mochiita sotai shinpuku hozon shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, T [Japan National Oil Corporation, Tokyo (Japan). Technology Research Center

    1996-10-01

    For the seismic reflection method conducted on the ground surface, generator and geophone are set on the surface. The observed waveforms are affected by the ground surface and surface layer. Therefore, it is required for discussing physical properties of the deep underground to remove the influence of surface layer, preliminarily. For the surface consistent amplitude correction, properties of the generator and geophone were removed by assuming that the observed waveforms can be expressed by equations of convolution. This is a correction method to obtain records without affected by the surface conditions. In response to analysis and correction of waveforms, wavelet conversion was examined. Using the amplitude patterns after correction, the significant signal region, noise dominant region, and surface wave dominant region would be separated each other. Since the amplitude values after correction of values in the significant signal region have only small variation, a representative value can be given. This can be used for analyzing the surface consistent amplitude correction. Efficiency of the process can be enhanced by considering the change of frequency. 3 refs., 5 figs.

  7. Silk fibroin gelation via non-solvent induced phase separation

    Czech Academy of Sciences Publication Activity Database

    Kasoju, Naresh; Hawkins, N.; Pop-Georgievski, Ognen; Kubies, Dana; Vollrath, F.

    2016-01-01

    Roč. 4, č. 3 (2016), s. 460-473 ISSN 2047-4830 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : silk fibroin * non-solvent induced phase separation * desolvation Subject RIV: CE - Biochemistry Impact factor: 4.210, year: 2016

  8. The quantum state vector in phase space and Gabor's windowed Fourier transform

    International Nuclear Information System (INIS)

    Bracken, A J; Watson, P

    2010-01-01

    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.

  9. New relations for gauge-theory amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Carrasco, J. J. M.; Johansson, H.

    2008-01-01

    We present an identity satisfied by the kinematic factors of diagrams describing the tree amplitudes of massless gauge theories. This identity is a kinematic analog of the Jacobi identity for color factors. Using this we find new relations between color-ordered partial amplitudes. We discuss applications to multiloop calculations via the unitarity method. In particular, we illustrate the relations between different contributions to a two-loop four-point QCD amplitude. We also use this identity to reorganize gravity tree amplitudes diagram by diagram, offering new insight into the structure of the Kawai-Lewellen-Tye (KLT) relations between gauge and gravity tree amplitudes. This insight leads to similar but novel relations. We expect this to be helpful in higher-loop studies of the ultraviolet properties of gravity theories.

  10. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it [MR-Lab, Center for Mind/Brain Science, University of Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  11. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    International Nuclear Information System (INIS)

    Minati, Ludovico

    2014-01-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties

  12. Multiscalar production amplitudes beyond threshold

    CERN Document Server

    Argyres, E N; Kleiss, R H

    1993-01-01

    We present exact tree-order amplitudes for $H^* \\to n~H$, for final states containing one or two particles with non-zero three-momentum, for various interaction potentials. We show that there are potentials leading to tree amplitudes that satisfy unitarity, not only at threshold but also in the above kinematical configurations and probably beyond. As a by-product, we also calculate $2\\to n$ tree amplitudes at threshold and show that for the unbroken $\\phi^4$ theory they vanish for $n>4~$, for the Standard Model Higgs they vanish for $n\\ge 3~$ and for a model potential, respecting tree-order unitarity, for $n$ even and $n>4~$. Finally, we calculate the imaginary part of the one-loop $1\\to n$ amplitude in both symmetric and spontaneously broken $\\phi^4$ theory.

  13. Polarisation Control of DFB Fibre Laser Using UV-Induced Birefringent Phase-Shift

    DEFF Research Database (Denmark)

    Philipsen, Jacob Lundgreen; Lauridsen, Vibeke Claudia; Berendt, Martin Ole

    1998-01-01

    The polarisation properties of a distributed feedback (DFB) fibre laser are investigated experimentally. A birefringent phase-shift is induced by side illumination of the centre part of the lasing structure with ultraviolet (UV) light and it is experimentally shown that the birefringence...... of the phase-shift is the dominating effect controlling the polarisation properties of the laser....

  14. Measurement of pulse amplitude and phase using cross-phase modulation in microstructure fiber

    Czech Academy of Sciences Publication Activity Database

    Honzátko, Pavel; Kaňka, Jiří; Vraný, Boleslav

    2005-01-01

    Roč. 30, č. 14 (2005), s. 1821-1823 ISSN 0146-9592 R&D Projects: GA ČR(CZ) GA102/05/0995; GA AV ČR(CZ) IAA1067301 Institutional research plan: CEZ:AV0Z20670512 Keywords : pulse measurement * phase measurement * nonlinear optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.599, year: 2005

  15. Amplitude structure of off-shell processes

    International Nuclear Information System (INIS)

    Fearing, H.W.; Goldstein, G.R.; Moravcsik, M.J.

    1984-01-01

    The structure of M matrices, or scattering amplitudes, and of potentials for off-shell processes is discussed with the objective of determining how one can obtain information on off-shell amplitudes of a process in terms of the physical observables of a larger process in which the first process is embedded. The procedure found is inevitably model dependent, but within a particular model for embedding, a determination of the physically measurable amplitudes of the larger process is able to yield a determination of the off-shell amplitudes of the embedded process

  16. Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO3

    International Nuclear Information System (INIS)

    Wang, Zhiyang; Hinterstein, Manuel; Daniels, John E.; Webber, Kyle G.; Hudspeth, Jessica M.

    2014-01-01

    An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO 3 at temperatures above the Curie point (T C ) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4 °C above T C . The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above T C , while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4 kV mm −1 ) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials.

  17. Observation of large-amplitude ion acoustic wave in microwave-plasma interaction experiments

    International Nuclear Information System (INIS)

    Yugami, Noboru; Nishida, Yasushi

    1997-01-01

    Large amplitude ion acoustic wave, which is not satisfied with a linear dispersion relationship of ion acoustic wave, is observed in microwave-plasma interaction experiments. This ion acoustic wave is excited around critical density layer and begins to propagate to underdense region with a phase velocity one order faster than sound velocity C s , which is predicted by the linear theory, the phase velocity and the wave length of the wave decreases as it propagates. Finally, it converges to C s and strongly dumps. Diagnostic by the Faraday cup indicates that this ion acoustic wave is accompanied with a hot ion beam. (author)

  18. Initial frequency shift of large amplitude plasma wave, 2

    International Nuclear Information System (INIS)

    Yamanaka, K.; Sugihara, R.; Ohsawa, Y.; Kamimura, T.

    1979-07-01

    A nonlinear complex frequency shift of the ion acoustic wave in the initial phase defined by 0 0 and ωsub(s)/k as long as ωsub(s) >> γsub( l), where phi 0 , ωsub(s), γsub( l) and t sub(c) are the initial value of the potential, the frequency of the wave, the linear Landau damping coefficient and the time for the first minimum of the amplitude oscillation, respectively. A simulation study is also carried out. The results confirm the validity of the theory. (author)

  19. Cryptographic analysis on the key space of optical phase encryption algorithm based on the design of discrete random phase mask

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Li, Zengyan

    2013-07-01

    The key space of phase encryption algorithm using discrete random phase mask is investigated by numerical simulation in this paper. Random phase mask with finite and discrete phase levels is considered as the core component in most practical optical encryption architectures. The key space analysis is based on the design criteria of discrete random phase mask. The role of random amplitude mask and random phase mask in optical encryption system is identified from the perspective of confusion and diffusion. The properties of discrete random phase mask in a practical double random phase encoding scheme working in both amplitude encoding (AE) and phase encoding (PE) modes are comparably analyzed. The key space of random phase encryption algorithm is evaluated considering both the encryption quality and the brute-force attack resistibility. A method for enlarging the key space of phase encryption algorithm is also proposed to enhance the security of optical phase encryption techniques.

  20. General-transformation matrix for Dirac spinors and the calculation of spinorial amplitudes

    International Nuclear Information System (INIS)

    Nam, K.; Moravcsik, M.J.

    1983-01-01

    A general transformation matrix T(p's';p,s) is constructed which transforms a Dirac spinor psi(p,s) into another Dirac spinor psi(p',s') with arbitrarily given momenta and polarization states by expoloting the so-called Stech operator as one of generators for those transformations. This transformation matrix is then used in a calculation to yield the spinorial matrix element M = anti psi(p',s')GAMMApsi(p,s) for any spin polarization state. The final expressions of these matrix elements show the explicit structure of spin dependence for the process described by these spinorial amplitudes. The kinematical limiting cases such as very low energy or high energy of the various matrix elements can also be easily displayed. Our method is superior to the existing one in the following points. Since we have a well-defined transformation operator between two Dirac spinor states, we can evaluate the necessary phase factor of the matrix elements in an unambiguous way without introducing the coordinate system. This enables us to write down the Feynman amplitudes of complicated processes in any spin basis very easily in terms of previously calculated matrix elements of anti psiGAMMApsi which are building blocks of those Feynman amplitudes. The usefulness of the results is illustrated on Compton scattering and on the elastic scattering of two identical massive leptons where the phase factor is important. It is also shown that the Stech operator as a polarization operator is simply related to the operator K = #betta#(polarized μ . polarized L + 1)/2 which is often used in bound state problems